Sample records for complex geomorphologic setting

  1. Digital geomorphological landslide hazard mapping of the Alpago area, Italy

    NASA Astrophysics Data System (ADS)

    van Westen, Cees J.; Soeters, Rob; Sijmons, Koert

    Large-scale geomorphological maps of mountainous areas are traditionally made using complex symbol-based legends. They can serve as excellent "geomorphological databases", from which an experienced geomorphologist can extract a large amount of information for hazard mapping. However, these maps are not designed to be used in combination with a GIS, due to their complex cartographic structure. In this paper, two methods are presented for digital geomorphological mapping at large scales using GIS and digital cartographic software. The methods are applied to an area with a complex geomorphological setting on the Borsoia catchment, located in the Alpago region, near Belluno in the Italian Alps. The GIS database set-up is presented with an overview of the data layers that have been generated and how they are interrelated. The GIS database was also converted into a paper map, using a digital cartographic package. The resulting largescale geomorphological hazard map is attached. The resulting GIS database and cartographic product can be used to analyse the hazard type and hazard degree for each polygon, and to find the reasons for the hazard classification.

  2. Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies

    NASA Astrophysics Data System (ADS)

    Schrott, Lothar; Sass, Oliver

    2008-01-01

    During the last decade, the use of geophysical techniques has become popular in many geomorphological studies. However, the correct handling of geophysical instruments and the subsequent processing of the data they yield are difficult tasks. Furthermore, the description and interpretation of geomorphological settings to which they apply can significantly influence the data gathering and subsequent modelling procedure ( e.g. achieving a maximum depth of 30 m requires a certain profile length and geophone spacing or a particular frequency of antenna). For more than three decades geophysical techniques have been successfully applied, for example, in permafrost studies. However, in many cases complex or more heterogeneous subsurface structures could not be adequately interpreted due to limited computer facilities and time consuming calculations. As a result of recent technical improvements, geophysical techniques have been applied to a wider spectrum of geomorphological and geological settings. This paper aims to present some examples of geomorphological studies that demonstrate the powerful integration of geophysical techniques and highlight some of the limitations of these techniques. A focus has been given to the three most frequently used techniques in geomorphology to date, namely ground-penetrating radar, seismic refraction and DC resistivity. Promising applications are reported for a broad range of landforms and environments, such as talus slopes, block fields, landslides, complex valley fill deposits, karst and loess covered landforms. A qualitative assessment highlights suitable landforms and environments. The techniques can help to answer yet unsolved questions in geomorphological research regarding for example sediment thickness and internal structures. However, based on case studies it can be shown that the use of a single geophysical technique or a single interpretation tool is not recommended for many geomorphological surface and subsurface conditions as this may lead to significant errors in interpretation. Because of changing physical properties of the subsurface material ( e.g. sediment, water content) in many cases only a combination of two or sometimes even three geophysical methods gives sufficient insight to avoid serious misinterpretation. A "good practice guide" has been framed that provides recommendations to enable the successful application of three important geophysical methods in geomorphology and to help users avoid making serious mistakes.

  3. Detailed geomorphological mapping from high resolution DEM data (LiDAR, TanDEM-X): two case studies from Germany and SE Tibet

    NASA Astrophysics Data System (ADS)

    Loibl, D.

    2012-04-01

    Two major obstacles are hampering the production of high resolution geomorphological maps: the complexity of the subject that should be depicted and the enormous efforts necessary to obtain data by field work. The first factor prevented the establishment of a generally accepted map legend; the second hampered efforts to collect comprehensive sets of geomorphological data. This left geomorphologists to produce applied maps, focusing on very few layers of information and often not sticking to any of the numerous standards proposed in the second half of the 20th century. Technological progress of the recent years, especially in the fields of digital elevation models, GIS environments, and computational hardware, today offers promising opportunities to overcome the obstacles and to produce detailed geomorphological maps even for remote or inhospitable regions. The feasibility of detailed geomorphological mapping from two new sets of digital elevation data, the 1 m LiDAR DTM provided by Germany's State Surveying Authority and the upcoming TanDEM-X DEM, has been evaluated in two case studies from a low mountain range in Germany and a high mountain range in SE Tibet. The results indicate that most layers of information of classical geomorphological maps (e.g. the German GMK) can be extracted from this data at appropriate scales but that significant differences occur concerning the quality and the grades of certainty of key contents. Generally, an enhancement of the geomorphographical, especially the geomorphometrical, and a weakening of geomorphogenetical contents was observed. From these findings, theoretical, methodological, and cartographical remarks on detailed geomorphological mapping from DEM data in GIS environments were educed. As GIS environments decouple data and design and enable the geomorphologist to choose information layer combinations freely to fit research topics, a general purpose legend becomes obsolete. Yet, a unified data structure is demanded to ensure that data collected by different scientists or in different studies can be exchanged and reused.

  4. GIS Toolsets for Planetary Geomorphology and Landing-Site Analysis

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; van Gasselt, Stephan

    2015-04-01

    Modern Geographic Information Systems (GIS) allow expert and lay users alike to load and position geographic data and perform simple to highly complex surface analyses. For many applications dedicated and ready-to-use GIS tools are available in standard software systems while other applications require the modular combination of available basic tools to answer more specific questions. This also applies to analyses in modern planetary geomorphology where many of such (basic) tools can be used to build complex analysis tools, e.g. in image- and terrain model analysis. Apart from the simple application of sets of different tools, many complex tasks require a more sophisticated design for storing and accessing data using databases (e.g. ArcHydro for hydrological data analysis). In planetary sciences, complex database-driven models are often required to efficiently analyse potential landings sites or store rover data, but also geologic mapping data can be efficiently stored and accessed using database models rather than stand-alone shapefiles. For landings-site analyses, relief and surface roughness estimates are two common concepts that are of particular interest and for both, a number of different definitions co-exist. We here present an advanced toolset for the analysis of image and terrain-model data with an emphasis on extraction of landing site characteristics using established criteria. We provide working examples and particularly focus on the concepts of terrain roughness as it is interpreted in geomorphology and engineering studies.

  5. Toward a new system approach of complexity in geomorphology

    NASA Astrophysics Data System (ADS)

    Masson, E.

    2012-04-01

    Since three decades the conceptual vision of catchment and fluvial geomorphology is strongly based on the "fluvial system" (S. A. Schumm, 1977) and the "river continuum system" (R. L. Vannote et al., 1980) concepts that can be embedded in a classical physical "four dimensions system" (C. Amoros and G.-E. Petts, 1993). Catchment and network properties, sediment and water budgets and their time-space variations are playing a major role in this geomorpho-ecological approach of hydro-geomorphosystems in which human impacts are often considered as negative externalities. The European Water Framework Directive (i.e. WFD, Directive 2000/60/EC) and its objective of good environmental status is addressing the question of fluvial/catchment/landscape geomorphology and its integration into IWRM in such a sustainable way that deeply brings back society and social sciences into the water system analysis. The DPSIR methodology can be seen as an attempt to cope with the analysis of unsustainable consequences of society's water-sediment-landscape uses, environmental pressures and their consequences on complex fluvial dynamics. Although more and more scientific fields are engaged in this WFD objective there's still a lack of a global theory that could integrate geomorphology into the multi-disciplinary brainstorming discussion about sustainable use of water resources. Our proposition is to promote and discuss a trans-disciplinary approach of catchments and fluvial networks in which concepts can be broadly shared across scientific communities. The objective is to define a framework for thinking and analyzing geomorphological issues within a whole "Environmental and Social System" (i.e. ESS, E. Masson 2010) with a common set of concepts and "meta-concepts" that could be declined and adapted in any scientific field for any purpose connected with geomorphology. We assume that geomorphological research can benefit from a six dynamic dimensions system approach based on structures, functions, connections, phases, topologies and adaptations. By combining these six dimensions one can easily understand that geomorphological features and dynamics are then considered as very complex systems in which hierarchies, information, discontinuities, openness, resilience and self-organized responses are fundamental properties emerging among many others (E. Masson 2010). This conceptual approach is consistent with many other scientific concepts used in ecological sciences (S-E. Jorgensen et al. 2007, C-S. Holling and al. 2002, I. Prigogine 1997, W-M. Elsasser 1987…) but also in human sciences (A. Dauphiné 2003, Ch.P.Péguy 2001, P. Bourdieu 1987, U. Beck 1986, J. Tricart 1968, C. Levy-Strauss 1958…), in physics (P. Bak, 1996, K-R. Popper 1982, I. Prigogine 1955…) and obviously into systemic science (E. Morin 1977, J-L. Moigne 1977, L. Von Bertalanffy 1968). Our contribution is then an encouraging attempt to expand the frontier of geomorphological theory with a new trans-disciplinary approach that deals with the huge complexity of hydrosystems considered as a whole Environmental and Social System.

  6. Coral forests diversity in the outer shelf of the south Sardinian continental margin

    NASA Astrophysics Data System (ADS)

    Cau, Alessandro; Moccia, Davide; Follesa, Maria Cristina; Alvito, Andrea; Canese, Simonepietro; Angiolillo, Michela; Cuccu, Danila; Bo, Marzia; Cannas, Rita

    2017-04-01

    Ecological theory predicts that heterogeneous habitats allow more species to co-exist in a given area, but to date, knowledge on relationships between habitat heterogeneity and biodiversity of coral forests in the outer shelf and upper slope along continental margins is rather limited. We investigated biodiversity of coral forests from 8 sites spread over two different geomorphological settings (namely, pinnacles vs. canyons) in the outer shelf along Sardinian continental margin. Using a combination of multivariate statistical analyses, we show here that differences in the composition of coral assemblages among contrasting geomorphological settings were not statistically significant, whereas significant differences emerged among sites within similar geomorphologies (i.e. among pinnacles and among canyons). Our results reveal that environmental and bathymetric factors such as sediment coverage, slope of the substrate, terrain ruggedness, bathymetric positioning index and aspect were important drivers of the observed patterns of coral biodiversity, in both settings. Spatial variability of coral forests' biodiversity is affected by environmental factors that act at the scale of each geomorphological setting (i.e. within each pinnacle and canyon) rather than by the contrasting geomorphological settings themselves. This result allows us to suggest that simple categorization of benthic communities according topographically defined habitat is unlikely to be sufficient for addressing conservation purposes.

  7. Development of a transient, lumped hydrologic model for geomorphologic units in a geomorphology based rainfall-runoff modelling framework

    NASA Astrophysics Data System (ADS)

    Vannametee, E.; Karssenberg, D.; Hendriks, M. R.; de Jong, S. M.; Bierkens, M. F. P.

    2010-05-01

    We propose a modelling framework for distributed hydrological modelling of 103-105 km2 catchments by discretizing the catchment in geomorphologic units. Each of these units is modelled using a lumped model representative for the processes in the unit. Here, we focus on the development and parameterization of this lumped model as a component of our framework. The development of the lumped model requires rainfall-runoff data for an extensive set of geomorphological units. Because such large observational data sets do not exist, we create artificial data. With a high-resolution, physically-based, rainfall-runoff model, we create artificial rainfall events and resulting hydrographs for an extensive set of different geomorphological units. This data set is used to identify the lumped model of geomorphologic units. The advantage of this approach is that it results in a lumped model with a physical basis, with representative parameters that can be derived from point-scale measurable physical parameters. The approach starts with the development of the high-resolution rainfall-runoff model that generates an artificial discharge dataset from rainfall inputs as a surrogate of a real-world dataset. The model is run for approximately 105 scenarios that describe different characteristics of rainfall, properties of the geomorphologic units (i.e. slope gradient, unit length and regolith properties), antecedent moisture conditions and flow patterns. For each scenario-run, the results of the high-resolution model (i.e. runoff and state variables) at selected simulation time steps are stored in a database. The second step is to develop the lumped model of a geomorphological unit. This forward model consists of a set of simple equations that calculate Hortonian runoff and state variables of the geomorphologic unit over time. The lumped model contains only three parameters: a ponding factor, a linear reservoir parameter, and a lag time. The model is capable of giving an appropriate representation of the transient rainfall-runoff relations that exist in the artificial data set generated with the high-resolution model. The third step is to find the values of empirical parameters in the lumped forward model using the artificial dataset. For each scenario of the high-resolution model run, a set of lumped model parameters is determined with a fitting method using the corresponding time series of state variables and outputs retrieved from the database. Thus, the parameters in the lumped model can be estimated by using the artificial data set. The fourth step is to develop an approach to assign lumped model parameters based upon the properties of the geomorphological unit. This is done by finding relationships between the measurable physical properties of geomorphologic units (i.e. slope gradient, unit length, and regolith properties) and the lumped forward model parameters using multiple regression techniques. In this way, a set of lumped forward model parameters can be estimated as a function of morphology and physical properties of the geomorphologic units. The lumped forward model can then be applied to different geomorphologic units. Finally, the performance of the lumped forward model is evaluated; the outputs of the lumped forward model are compared with the results of the high-resolution model. Our results show that the lumped forward model gives the best estimates of total discharge volumes and peak discharges when rain intensities are not significantly larger than the infiltration capacities of the units and when the units are small with a flat gradient. Hydrograph shapes are fairly well reproduced for most cases except for flat and elongated units with large runoff volumes. The results of this study provide a first step towards developing low-dimensional models for large ungauged basins.

  8. Glacimarine Sedimentary Processes and Deposits at Fjord-Terminating Tidewater Glacier Margins

    NASA Astrophysics Data System (ADS)

    Streuff, K.; O'Cofaigh, C.; Lloyd, J. M.; Noormets, R.; Nielsen, T.; Kuijpers, A.

    2016-12-01

    Many fjords along Arctic coasts are influenced by tidewater glaciers, some of them fast-flowing ice sheet outlets. Such glaciers provide important links between terrestrial and marine environments, and, due to their susceptibility to climatic and oceanographic changes, have undergone a complex history of advance and retreat since the last glacial maximum (LGM). Although a growing body of evidence has led to a better understanding of the deglacial dynamics of individual glaciers since the LGM, their overall Holocene glacimarine processes and associated sedimentary and geomorphological products often remain poorly understood. This study addresses this through a detailed analysis of sediment cores, swath bathymetric and sub-bottom profiler data collected from seven fjords in Spitsbergen and west Greenland. The sediment cores preserve a complex set of lithofacies, which include laminated and massive muds in ice-proximal, and bioturbated mud in more ice-distal settings, diamicton in iceberg-dominated areas and massive sand occurring as lenses, laminae and thick beds. These facies record the interplay of three main glacimarine processes, suspension settling, iceberg rafting and sediment gravity flows, and collectively emphasise the dominance of glacial meltwater delivery to sedimentation in high Arctic fjords. The seafloor geomorphology in the fjords shows a range of landforms that include glacial lineations associated with fast ice-flow, terminal moraines and debris lobes marking former maximum glacier extents, and small transverse moraines formed during deglaciation by glaciotectonic deformation at the grounding line and crevasse-squeezing. Additional landforms such as iceberg ploughmarks, submarine channels, pockmarks, and debris lobes formed during or after deglaciation by iceberg calving, erosion by meltwater, and sediment reworking. We present here a new model for sedimentary and geomorphological processes in front of contemporary tidewater glaciers, which integrates our findings with those from Alaska, Canada, and east Greenland.

  9. Geodiversity characterization and assessment of the Morainic Amphitheatre of Rivoli -Avigliana (NW-Italy)

    NASA Astrophysics Data System (ADS)

    Giordano, Enrico; Lucchesi, Stefania; Perotti, Luigi; Giardino, Marco

    2014-05-01

    The concept of Geodiversity in its wide sense refers specifically to particular geosystems that are in themselves complex (e.g diverse) assemblages of bedrock, landform, and soil features. Therefore, geodiversity assessment is strictly related to landscape structure, whose studies are in the field of complex Physical Geography. Moreover, Geodiversity studies provide a fundamental base for geoconservation and environmental management in a holistic way. This is particularly true within complex geomorphological environments, where many intrinsic and extrinsic factors are interconnected. Various procedures has been already applied for the creation of geodiversity maps in different geomorphological context, but especially in wide areas with a large geodiversity of landforms. Pleistocene morainic amphitheatres of the Alpine piedmont regions are indeed particular and complex environments: not only for the geological and geomorphological points of view, but also for their relationships with biotic components and human life. The aim of this study is to carry out a geodiversity characterization of the Rivoli-Avigliana Morainic Amphitheatre (AMRA; NW Italy). The AMRA separates the lower Susa Valley from the middle course of the Sangone River; it is a set of low hills and depressions related to glacial pulsations aged between 750,000 and 12,000 years ago. Earth Sciences knowledge of the area has been compared to detailed field geomorphological and territorial data in order to determine qualitative and quantitative landscape parameters and to evaluate their validity for geodiversity assessment. A first qualitative characterization of the AMRA and an estimation of its geodiversity have been performed by means of geomorphological mapping and stratigraphic studies, including geomorphosites assessment for the same area. Then, geodiversity characterization and evaluation have been performed through the definition and application of quantitative parameters (landform energy, slope, land use, roughness, and other geomorphologic, hydrologic and geologic indexes). After acquisition of vector data, satellite and aerial images, GIS procedures allowed to manage and to process images and data: this allowed to interpret morphometric indexes and to obtain thematic maps with 3D views. Finally, results from the calculation of geodiversity and geomorphosites have been compared. Results turned out to be very effective for the study and for the reconstruction of the AMRA evolutionary stages, also for interpreting scenarios of future natural hazards, land occupation and risks posed to geodiversity for natural and anthropogenic causes. Geomatics devices and digital data demonstrated to be really suitable for improved analysis and representation of the observed phenomena. They can be easily integrated within GIS for decision support requirements. In this way, field and remote sensing data, together with indexes of biotic and abiotic aspects can generate synthetic information, to produce effective spatial interpolations and impressive 3D scenarios useful for Earth Science simulations and environmental/territorial advertising.

  10. Ecological-geomorphological assessment of the suburban area of Astana

    NASA Astrophysics Data System (ADS)

    Akiyanova, F. Zh; Zinabdin, N. B.; Kenzhebayeva, A. Zh; Adilbekova, F. G.; Ilyassova, A. T.; Karakulov, E. M.

    2018-01-01

    The results of ecological-geomorphological assessment of the suburban zone of Astana is presented in the paper. Climatic and hydrological factors, which are the agents of pollutants’ transport and caused the development of exogenous processes in the suburban area of Astana were studied and mapped. On the base of the geoinformation technologies and field studies the geomorphologic structure and morphogenetic processes were studied. The analysis of the data complex led to assess ecological-geomorphological conditions of the suburban area of Astana.

  11. Surficial geological tools in fluvial geomorphology: Chapter 2

    USGS Publications Warehouse

    Jacobson, Robert B.; O'Connor, James E.; Oguchi, Takashi

    2016-01-01

    Increasingly, environmental scientists are being asked to develop an understanding of how rivers and streams have been altered by environmental stresses, whether rivers are subject to physical or chemical hazards, how they can be restored, and how they will respond to future environmental change. These questions present substantive challenges to the discipline of fluvial geomorphology, especially since decades of geomorphologic research have demonstrated the general complexity of fluvial systems. It follows from the concept of complex response that synoptic and short-term historical views of rivers will often give misleading understanding of future behavior. Nevertheless, broadly trained geomorphologists can address questions involving complex natural systems by drawing from a tool box that commonly includes the principles and methods of geology, hydrology, hydraulics, engineering, and ecology.

  12. Catastrophic Shifts in Semiarid Vegetation-Soil Systems May Unfold Rapidly or Slowly.

    PubMed

    Karssenberg, Derek; Bierkens, Marc F P; Rietkerk, Max

    2017-12-01

    Under gradual change of a driver, complex systems may switch between contrasting stable states. For many ecosystems it is unknown how rapidly such a critical transition unfolds. Here we explore the rate of change during the degradation of a semiarid ecosystem with a model coupling the vegetation and geomorphological system. Two stable states-vegetated and bare-are identified, and it is shown that the change between these states is a critical transition. Surprisingly, the critical transition between the vegetated and bare state can unfold either rapidly over a few years or gradually over decennia up to millennia, depending on parameter values. An important condition for the phenomenon is the linkage between slow and fast ecosystems components. Our results show that, next to climate change and disturbance rates, the geological and geomorphological setting of a semiarid ecosystem is crucial in predicting its fate.

  13. Floodplain complexity and surface metrics: influences of scale and geomorphology

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.

  14. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  15. Geomorphology of the Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria

    2013-08-01

    The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.

  16. Geodiversity of the Umbria region (central Italy): a GIS-based quantitative index

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Pica, Alessia; Del Monte, Maurizio

    2014-05-01

    The measure of natural range related to geological bedrock, landforms and geomorphological processes is the necessary starting point to geodiversity evaluation. Geodiversity plays a strategic role in landscape management. Whereas geotourism and geosites are identified as a driving power for the scientific and economic promotion of an area, the geodiversity knowledge is required for a complete and accurate research. For example, high values of this abiotic parameter identify and support the foundation of geoparks. According to this perspective, the geodiversity is the unifying factor for these areas of interest. While a subjective and qualitative approach may be adequate for geosites definition, identification and cultural promotion, the geodiversity concept needs a different evaluation method. A quantitative procedure allows achieving an objective and repeatable process exportable in different geographic units. Geographical Information Systems and spatial analysis techniques are the base to quantitative evaluation involving topographic, geological and geomorphological data. Therefore, the assessment of a numerical index derived from the overlay of spatial parameters can be conveniently computed in GIS environment. In this study, a geodiversity index is proposed where geological, geomorphological and landcover factors deriving mainly from maps and field survey; topographic ones are employed from DEM and remote sensed data. Each abiotic parameter is modelled in a grid format; focal functions do provide neighbourhood analysis and computing variety statistics. A particular extent is dedicated to topographic information and terrain roughness, that are strictly related to efficiency of geomorphological processes and generally corresponding to the abiotic components variability. The study area is located in central Italy and is characterized by a well known natural heritage. Thirty-seven geosites are detected in the Umbria region, where seven regional and one natural parks are present. All the area shows a strong correlation between the geological setting and the relief energy associated to topography assessment. Three main outcrop complexes are present: a fluvial lacustrine, where the lowest slope values and plain area are widespread; a terrigenous one, with a medium slope value; and a calcareous complex corresponding to the mountain areas and the highest amplitude of relief. This partition matches different geomorphological processes and landforms, ensuring a widespread distribution of geodiversity. The final map is a digital data that localizes areas with, respectively, null or minimum, medium, and high geodiversity values. The highest class overlaps to geosites areas, to high values of amplitude of relief and where the geomorphological processes are more effective and various. This confirms the method accuracy. The results obtained represent an important advancement in geodiversity research and a significant instrument for economic development and conservation management.

  17. Geomorphology in context: Dispatches from the field

    NASA Astrophysics Data System (ADS)

    Harden, Carol P.

    2013-10-01

    Field research enables a researcher to view geomorphic systems in broader contexts than those envisioned while at a desk and can yield unanticipated insights that change the course of an investigation or affect the interpretation of results. Geomorphological field research often produces 'aha!' moments, epiphanies that enhance understanding and lead toward more complete explanation of the processes and landforms under study. This paper uses examples from 'aha!' moments in the field to demonstrate the importance of field observation as a way of gaining information about the broader contexts of research sites, especially in process geomorphology. Spatial contexts include the scales of processes and features, linkages between a study site and its surroundings, and information observed in the field about other processes, anthropogenic activities, or unexpected factors that might affect a study. Temporal contexts, not as evident in the field, place a research site in a longer term history of changes and adjustments. Finally, exploring an abstract set of mental contexts reveals reasons that expectations differ from the realities encountered in the field—constraints and biases that a researcher may not have noted—and the possibility that the unexpected can potentially advance geomorphic research. Time spent in the field complements scientific reductionism and provides opportunities to appreciate the richness and complexity of Earth surface systems.

  18. Hydrogeological settings of a volcanic island (San Cristóbal, Galapagos) from joint interpretation of airborne electromagnetics and geomorphological observations

    NASA Astrophysics Data System (ADS)

    Pryet, A.; d'Ozouville, N.; Violette, S.; Deffontaines, B.; Auken, E.

    2012-12-01

    Many volcanic islands face freshwater stress and the situation may worsen with climate change and sea level rise. In this context, an optimum management of freshwater resources becomes crucial, but is often impeded by the lack of data. With the aim of investigating the hydrogeological settings of southern San Cristóbal Island (Galapagos), we conducted a helicopter-borne, transient electromagnetic survey with the SkyTEM system. It provided unprecedented insights into the 3-D resistivity structure of this extinct basaltic shield. Combined with remote sensing and fieldwork, it allowed the definition of the first hydrogeological conceptual model of the island. Springs are fed by a series of perched aquifers overlying a regional basal aquifer subject to seawater intrusion. Dykes, evidenced by alignments of eruptive cones at the surface, correspond to sharp sub-vertical contrasts in resistivity in the subsurface, and impound groundwater in a summit channel. Combined with geomorphological observations, airborne electromagnetics are shown to be a useful for hydrogeological exploratory studies in complex, poorly known environments. They allow optimal development of land-based geophysical surveys and drilling campaigns.

  19. Exploring biological, chemical and geomorphological patterns in fluvial ecosystems with Structural Equation Modelling

    NASA Astrophysics Data System (ADS)

    Bizzi, S.; Surridge, B.; Lerner, D. N.:

    2009-04-01

    River ecosystems represent complex networks of interacting biological, chemical and geomorphological processes. These processes generate spatial and temporal patterns in biological, chemical and geomorphological variables, and a growing number of these variables are now being used to characterise the status of rivers. However, integrated analyses of these biological-chemical-geomorphological networks have rarely been undertaken, and as a result our knowledge of the underlying processes and how they generate the resulting patterns remains weak. The apparent complexity of the networks involved, and the lack of coherent datasets, represent two key challenges to such analyses. In this paper we describe the application of a novel technique, Structural Equation Modelling (SEM), to the investigation of biological, chemical and geomorphological data collected from rivers across England and Wales. The SEM approach is a multivariate statistical technique enabling simultaneous examination of direct and indirect relationships across a network of variables. Further, SEM allows a-priori conceptual or theoretical models to be tested against available data. This is a significant departure from the solely exploratory analyses which characterise other multivariate techniques. We took biological, chemical and river habitat survey data collected by the Environment Agency for 400 sites in rivers spread across England and Wales, and created a single, coherent dataset suitable for SEM analyses. Biological data cover benthic macroinvertebrates, chemical data relate to a range of standard parameters (e.g. BOD, dissolved oxygen and phosphate concentration), and geomorphological data cover factors such as river typology, substrate material and degree of physical modification. We developed a number of a-priori conceptual models, reflecting current research questions or existing knowledge, and tested the ability of these conceptual models to explain the variance and covariance within the dataset. The conceptual models we developed were able to explain correctly the variance and covariance shown by the datasets, proving to be a relevant representation of the processes involved. The models explained 65% of the variance in indices describing benthic macroinvertebrate communities. Dissolved oxygen was of primary importance, but geomorphological factors, including river habitat type and degree of habitat degradation, also had significant explanatory power. The addition of spatial variables, such as latitude or longitude, did not provide additional explanatory power. This suggests that the variables already included in the models effectively represented the eco-regions across which our data were distributed. The models produced new insights into the relative importance of chemical and geomorphological factors for river macroinvertebrate communities. The SEM technique proved a powerful tool for exploring complex biological-chemical-geomorphological networks, for example able to deal with the co-correlations that are common in rivers due to multiple feedback mechanisms.

  20. What do you mean, 'resilient geomorphic systems'?

    NASA Astrophysics Data System (ADS)

    Thoms, M. C.; Piégay, H.; Parsons, M.

    2018-03-01

    Resilience thinking has many parallels in the study of geomorphology. Similarities and intersections exist between the scientific discipline of geomorphology and the scientific concept of resilience. Many of the core themes fundamental to geomorphology are closely related to the key themes of resilience. Applications of resilience thinking in the study of natural and human systems have expanded, based on the fundamental premise that ecosystems, economies, and societies must be managed as linked social-ecological systems. Despite geomorphology and resilience sharing core themes, appreciation is limited of the history and development of geomorphology as a field of scientific endeavor by many in the field of resilience, as well as a limited awareness of the foundations of the former in the more recent emergence of resilience. This potentially limits applications of resilience concepts to the study of geomorphology. In this manuscript we provide a collective examination of geomorphology and resilience as a means to conceptually advance both areas of study, as well as to further cement the relevance and importance of not only understanding the complexities of geomorphic systems in an emerging world of interdisciplinary challenges but also the importance of viewing humans as an intrinsic component of geomorphic systems rather than just an external driver. The application of the concepts of hierarchy and scale, fundamental tenets of the study of geomorphic systems, provide a means to overcome contemporary scale-limited approaches within resilience studies. Resilience offers a framework for geomorphology to expand its application into the broader social-ecological domain.

  1. Modelling changes in the coastal geomorphology of Unst, Shetland and the implications for understanding High to Late Medieval harbour changes in the Norse North Atlantic

    NASA Astrophysics Data System (ADS)

    Preston, John; Dugmore, Andrew; Newton, Anthony; Mudd, Simon

    2016-04-01

    The Norse settlement of the North Atlantic islands relied upon a network of harbours that also played a key role in the development of North European economies through the late Middle Ages. However, many of these harbours fell into disuse, their locations are uncertain and the reasons for this are unclear. A crucial geomorphological characteristic of a successful harbour is structural equilibrium. A harbour must have physical stability (or a dynamic equilibrium in the case of a beach) for boats to use it safely season to season, year on year. In the absence of a major civil engineering effort, something that was not possible in the pre-modern Atlantic islands, the geomorphology of a harbour is a key indicator of its physical equilibrium (or otherwise). Should the harbour be located on a changeable coastline (or one that becomes changeable) it may become unviable. Conversely, a harbour may be located on a coastline stable over centennial timescales, where little geomorphological change occurs, infrastructure can endure and many aspects of the physical environment remain predictable. The geomorphological setting of Norse harbours in the Atlantic is variable, with contrasting landform stability over short, medium and long time scales. We assess geomorphological change on the island of Unst, the most northerly of the British Isles, a coastline used by the Norse as well as earlier and later societies. This island offers a complex coastline of deep fjords and arcuate embayments and thus significant differences in forces acting upon the coastline. There is also evidence for instability in the beaches used by the Norse that could have been driven by the changes in climate conditions from the Medieval Climatic Anomaly to the Little Age and the present day. We model coastlines using the sediment dynamics model MIKE21. Model results agree well with the location of extant sandy beaches on Unst, but model runs with modern environmental drivers also build sandy beaches where none currently exist. Blown sand deposits were formed in the 12th-13th century, consistent with High Medieval settlement times and the onset of the Little Ice Age, suggesting that some of the Norse landing sites began to destabilise at this time. This research shows how beach instability can be modelled to determine the likely circumstances under which beaches formed, changed or disappeared and thus the potential geomorphological drivers of coastal change, harbour use and our ability to identify past harbour sites.

  2. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil

    PubMed Central

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J.

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns. PMID:27171522

  3. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil.

    PubMed

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns.

  4. The making of a productivity hotspot in the coastal ocean.

    PubMed

    Wingfield, Dana K; Peckham, S Hoyt; Foley, David G; Palacios, Daniel M; Lavaniegos, Bertha E; Durazo, Reginaldo; Nichols, Wallace J; Croll, Donald A; Bograd, Steven J

    2011-01-01

    Highly productive hotspots in the ocean often occur where complex physical forcing mechanisms lead to aggregation of primary and secondary producers. Understanding how hotspots persist, however, requires combining knowledge of the spatio-temporal linkages between geomorphology, physical forcing, and biological responses with the physiological requirements and movement of top predators. Here we integrate remotely sensed oceanography, ship surveys, and satellite telemetry to show how local geomorphology interacts with physical forcing to create a region with locally enhanced upwelling and an adjacent upwelling shadow that promotes retentive circulation, enhanced year-round primary production, and prey aggregation. These conditions provide an area within the upwelling shadow where physiologically optimal water temperatures can be found adjacent to a region of enhanced prey availability, resulting in a foraging hotspot for loggerhead sea turtles (Caretta caretta) off the Baja California peninsula, Mexico. We have identified the set of conditions that lead to a persistent top predator hotspot, which increases our understanding of how highly migratory species exploit productive regions of the ocean. These results will aid in the development of spatially and environmentally explicit management strategies for marine species of conservation concern.

  5. Hydrological and geomorphological controls of malaria transmission

    NASA Astrophysics Data System (ADS)

    Smith, M. W.; Macklin, M. G.; Thomas, C. J.

    2013-01-01

    Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.

  6. Geomorphological processes in a semiarid badland area using new technologies: TLS, terrestrial and aerial SfM photogrammetry

    NASA Astrophysics Data System (ADS)

    Ferrer, Victor; Errea, Paz; Alonso, Esteban; Gómez-Gutiérrez, Álvaro; Nadal-Romero, Estela

    2017-04-01

    We used three different methods Terrestrial Laser Scanner (TLS), terrestrial Structure from Motion photogrammetry (SfM) and aerial SfM photogrammetry with an Unmanned Aerial Vehicle (UAV) to analyse geomorphological processes in a semiarid badland landscape. Los Aguarales badlands, located in the Ebro Depression (Spain), occur in the Holocene sediment accumulated in a wide valley infilled with silt and clay. The morphology of Los Aguarales badlands is complex, making the geomorphological interpretation a difficult task. Los Aguarales badlands are characterized by the sequence of incision and piping processes developing an abrupt and complex landscape. Three different representative and small study sites were selected to carry out a detailed analysis of the geomorphological processes. Moreover, the capability of the three methods to produce high resolution point clouds was evaluated. The obtained topographical changes were very low during the first 6 months (March-October 2016). Measured topographical changes, with TLS and terrestrial SfM, were very low, and these values fall within the range of the acquisition error of the devices used (2-6 cm). The preliminary results indicated the possibilities of a multiscale approach using new technologies to study geomorphological and erosion processes, although long-term studies will be necessary to obtain erosion rates in this semiarid badland area. Acknowledgement This research was supported by ESPAS and eTERA 3D projects (CGL2015- 65569-R and CGL2014-54822-R, funded by the MINECO-FEDER). Estela Nadal-Romero is the recipient of a Ramón y Cajal postdoctoral contract (Spanish Ministry of Economy and Competitiveness).

  7. Comparing the information content of coral reef geomorphological and biological habitat maps, Amirantes Archipelago (Seychelles), Western Indian Ocean

    NASA Astrophysics Data System (ADS)

    Hamylton, S.; Andréfouët, S.; Spencer, T.

    2012-10-01

    Increasing the use of geomorphological map products in marine spatial planning has the potential to greatly enhance return on mapping investment as they are commonly two orders of magnitude cheaper to produce than biologically-focussed maps of benthic communities and shallow substrates. The efficacy of geomorphological maps derived from remotely sensed imagery as surrogates for habitat diversity is explored by comparing two map sets of the platform reefs and atolls of the Amirantes Archipelago (Seychelles), Western Indian Ocean. One mapping campaign utilised Compact Airborne Spectrographic Imagery (19 wavebands, 1 m spatial resolution) to classify 11 islands and associated reefs into 25 biological habitat classes while the other campaign used Landsat 7 + ETM imagery (7 bands, 30 m spatial resolution) to generate maps of 14 geomorphic classes. The maps were compared across a range of characteristics, including habitat richness (number of classes mapped), diversity (Shannon-Weiner statistic) and thematic content (Cramer's V statistic). Between maps, a strong relationship was revealed for habitat richness (R2 = 0.76), a moderate relationship for class diversity and evenness (R2 = 0.63) and a variable relationship for thematic content, dependent on site complexity (V range 0.43-0.93). Geomorphic maps emerged as robust predictors of the habitat richness in the Amirantes. Such maps therefore demonstrate high potential value for informing coastal management activities and conservation planning by drawing on information beyond their own thematic content and thus maximizing the return on mapping investment.

  8. The value of teaching about geomorphology in non-traditional settings

    NASA Astrophysics Data System (ADS)

    Davis, R. Laurence

    2002-10-01

    Academics usually teach about geomorphology in the classroom, where the audience is enthusiastic, but generally small. Less traditional settings offer opportunities to reach a wider audience, one that is equally enthusiastic, given its love of geomorphic features in the National Parks, but one which has little knowledge of the science behind what they are seeing. I have "taught" geomorphology in four non-traditional settings: at a summer camp, a state wildlife refuge, on community field trips, and at meetings for clubs and government boards. This paper discusses my experiences and offers suggestions to others who may wish to follow this less-traveled educational path. As Head of Nature Programs at Camp Pemigewassett in New Hampshire, I have worked, over the last 33 years, with thousands of campers ranging from 8 to 15 years old. Our setting, in a glaciated valley on a small lake, exhibits a wide range of geomorphic features and offers many opportunities for direct learning through field investigations. I have found that even 8-year olds can do real science, if we avoid the jargon. Once "taught" they carry their knowledge about landforms and processes with them and eagerly share it with their friends and family on outings and trips, thus reaching an even wider public. Parks, wildlife refuges, nature preserves, and other similar areas generally have nature trails, often with educational information about the environment. Generally, interpretive signs are prepared by biologists and the content ignores the site's physical features, as well as the connections between ecological communities and the underlying geology and geomorphology. My students and I have addressed this situation at two places in Connecticut, one a state wildlife management area, also used for training teachers to teach Environmental Education, and the other, a town recreation area. We catalogued the geomorphic features, looked at relationships of the community level ecology to those features, and prepared interpretive signs that added this perspective to the trails. The public response has been extremely favorable. Geomorphology can also be taught by leading field trips for community organizations. I have done this twice, once for the Manchester (NH) Historical Society and once for a small watershed association. The attendance and interest surprised me. We finally had to limit the Manchester trip to one full busload (˜45) and the watershed trip, which was part of a "trails day," drew over 90 people. Finally, I have found that organizations such as Sierra Club chapters and town conservation boards are frequently looking for speakers for their periodic meetings. Why not a geomorphologist? After all, much of what conservationists do is related to what geomorphologists do. I have given several of these presentations and the receptions have always been enthusiastic. While the work involved in preparing to teach in one of these non-traditional settings is frequently substantial, the rewards are equally large. It is a way to reach masses of people who know little about the science of geomorphology and to demonstrate its importance to them. Taking our message directly to the public in these settings is an effective way to put geomorphology in the public eye.

  9. Habitat Hydrology and Geomorphology Control the Distribution of Malaria Vector Larvae in Rural Africa

    PubMed Central

    Hardy, Andrew J.; Gamarra, Javier G. P.; Cross, Dónall E.; Macklin, Mark G.; Smith, Mark W.; Kihonda, Japhet; Killeen, Gerry F.; Ling’ala, George N.; Thomas, Chris J.

    2013-01-01

    Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools. PMID:24312606

  10. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa.

    PubMed

    Hardy, Andrew J; Gamarra, Javier G P; Cross, Dónall E; Macklin, Mark G; Smith, Mark W; Kihonda, Japhet; Killeen, Gerry F; Ling'ala, George N; Thomas, Chris J

    2013-01-01

    Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.

  11. Multidisciplinary approach to evaluate landslide susceptibility along highway in northern Calabria, Italy

    NASA Astrophysics Data System (ADS)

    Muto, Francesco; Conforti, Massimo; Critelli, Salvatore; Fabbricatore, Davide; Filomena, Luciana; Rago, Valeria; Robustelli, Gaetano; Scarciglia, Fabio; Versace, Pasquale

    2014-05-01

    The interaction of landslides with linear infrastructures is often the cause of disasters. In Italy landslide impact on roads, railways and buildings cause millions of Euro per year in damage and restoration as well. The proposed study is aimed to the landslide susceptibility evaluation using a multidisciplinary approach: geological and geomorphological survey, statistical analysis and GIS technique, along a section of highway "A3 (Salerno-Reggio Calabria)" between Cosenza Sud and Altilia, northern Calabria. This study is included in a wider research project, named: PON01-01503, Landslides Early Warning-Sistemi integrati per il monitoraggio e la mitigazione del rischio idrogeologico lungo le grandi vie di comunicazione - aimed at the hydrogeological risk mitigation and at the early warning along the highways. The work was first based on air-photo interpretations and field investigations, in order to realize the geological map, geomorphological map and landslide inventory map. In the study area the geomorphology is strongly controlled by its bedrock geology and tectonics. The bedrock geology consists of Neogene sedimentary rocks that cover a thick stack of allochthonous nappes. These nappes consist of crystalline rocks mainly gneiss, phyllite and schist. A total of 835 landslides were mapped and the type of movement are represented mainly by slides and complex and subordinately flow. In order to estimate and validate landslide susceptibility the landslides were divided in two group. One group (training set) was used to prepare susceptibility map and the second group (validation set) to validate the map. Then, the selection of predisposing factors was performed, according with the geological and geomorphological settings of the study area: lithology, distance from tectonic elements, land use, slope, aspect, stream power index (SPI) and plan curvature. In order to evaluate landslide susceptibility Conditional Analysis was applied to Unique Conditions Units (UCUs), that are a unique combination of the predisposing factors. Subsequently, the landslide area is determined within each UCU and the landslide density is computed. The outcome of the study was a classification of the study area into four susceptibility classes, ranked from low to very high. The results showed that the 33% of the study area is characterized by a high to very high degree of susceptibility. The validation procedure results, obtained by crossing the group of the landslide of validation set with the susceptibility map, showed that the predictive model is generally satisfactory; therefore, over 75% of the landslide of validation set is correctly classified falling in high and very high susceptibility classes. The consistency of the model is also suggested by computing the seed cell area index (SCAI) because the high and very high susceptibility classes have very low SCAI values, whereas the SCAI values of the very low and low susceptibility classes are very high. Finally, the landslide susceptibility map provides the baseline information for further evaluations of landslide hazards and related risks.

  12. Geomorphological expression of a complex structural region: San Andreas Fault through the San Gorgonio Pass, southern California

    NASA Astrophysics Data System (ADS)

    Kendrick, K. J.; Matti, J. C.

    2015-12-01

    The San Gorgonio Pass (SGP) region of southern California is a locus of extensive Quaternary deformation surrounding a complex section of the San Andreas Fault (SAF) zone. The geomorphology of the SGP region reflects the complicated history of geologic events in the formation of this structural 'knot'. Critical questions remain in assessing earthquake hazard for this region: What is the likelihood that rupture will propagate through the SGP? If rupture is able to propagate, what pathway will connect the various fault strands? To address these questions, we focus on the geology and geomorphology of the SGP region. We have identified fault-bounded blocks, and focus on three that are developed within crystalline bedrock: the Yucaipa Ridge block (YRB) block, the Kitching Peak block (KPB), and the Pisgah Peak block (PPB). The latter two blocks are positioned south of the YRB, and partially separated from each other by the San Bernardino strand; this strand cannot be mapped at the surface as an active connection between fault strands. Both KPB and PPB are bounded to the south by the San Gorgonio Pass Fault Zone. Morphometric analyses consistently demonstrate distinctions between KPB and PPB, though the bedrock lithologies are the same. Geologic mapping of the region highlights the differences in Quaternary units within the blocks. These geomorphic and geologic distinctions lead to our interpretation that KPB and PPB have experienced markedly different uplift histories that constrain the history of dextral slip on the SAF through SGP. Specifically, although the latest Quaternary geologic setting of SGP raises questions about modern slip transfer through the Pass, the contrasting uplift histories of KPB and PPB strongly suggest that earlier in Quaternary time SGP was not a barrier to slip transfer between the Coachella Valley to the SE and the San Bernardino Basin to the NW.

  13. Geomorphological diversity of Dong-Sha Atoll based on spectrum and texture analysis in high resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Chen, Jianyu; Mao, Zhihua; He, Xianqiang

    2009-01-01

    Coral reefs are complex marine ecosystems that are constructed and maintained by biological communities that thrive in tropical oceans. The Dong-Sha Atoll is located at the northern continental margin of the South China Sea. It has being abused by destructive activity of human being and natural event during recent decades. Remote sensing offers a powerful tool for studying coral reef geomorphology and is the most cost-effective approach for large-scale reef survey. In this paper, the high-resolution Quickbird2 imageries which covered the full atoll are used to categorize the current distribution of coral reefs geomorphological structure therein with the auxiliary SPOT5 and ASTER imageries. Spectral and texture analysis are used to distinguish the geomorphological diversity during data processing. The Gray Level Co-occurrence Matrices is adopted for texture feature extraction and atoll geomorphology mapping in the high-resolution pan-color image of Quickbird2. Quickbird2 is considered as the most appropriate image source for coral reefs studies. In the Dong-Sha Atoll, various dynamical geomorphologic units are developed according to wave energy zones. There the reef frame types are classified to 3 different types according as its diversity at the image. The radial structure system is the most characteristic and from high resolution imagery we can distinguish the discrepancy between them.

  14. Urban geomorphological heritage - A new field of research

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel; Pica, Alessia; Coratza, Paola

    2017-04-01

    Urbanization is one of the major challenges that the world faces. In 2015, 54% of the world population was living in urban areas and in some countries this percentage is close to 100% (Singapore 100%; Qatar 99%; Belgium 98%). In several parts of the world annual urbanization rates exceed 5% (e.g. Oman 8.54%; Rwanda 6.43%; Burkina Faso 5.87%), which means that urban sprawl is a widespread phenomenon. Urbanization and correlated infrastructure building highly impact and sometimes completely destroy natural landforms. Geomorphological heritage research has traditionally focused on rural or natural regions, in particular protected areas (nature parks, geoparks). We consider that urban areas, which have been poorly investigated until now, are particularly interesting in a geomorphological heritage point of view for almost three reasons: (i) The geomorphological context (site) of some cities is part of their "image" and their fame (e.g. the sugarloaf of Rio de Janeiro); (ii) Urban sprawl often interacts with landforms, which addresses the challenge of geoheritage protection in fast urbanizing areas; (iii) Cities are often tourist destinations, which creates a potential for a geotourist promotion of their geomorphological heritage. This study addresses the main challenges research on geomorphological heritage is facing in urban contexts: (i) the complex interrelationships between natural landforms and urban forms; (ii) the partial or total invisibility of landforms and sediments that are covered or destroyed by urban infrastructures; (iii) man-made landforms as part of urban geomorphological heritage; (iv) the suitability of some landforms (valleys, gullies, mounts) for specific urban uses; (v) the geomorphic constraints of landforms on urban development; and (vi) the importance of some landforms for the urban landscape and the image of the cities. To address these challenges a methodological framework is proposed, which combines: (i) the geomorphological analysis of the urban landscape through geomorphological mapping (with use of a specific legend for man-made landforms) and geohistorical analysis of landscape evolution (historical maps processing); (ii) the selection, characterization and assessment of urban geomorphosites; (iii) proposals for the conservation and promotion (geotourism) of the urban geomorphological heritage.

  15. Social-ecological resilience and geomorphic systems

    NASA Astrophysics Data System (ADS)

    Chaffin, Brian C.; Scown, Murray

    2018-03-01

    Governance of coupled social-ecological systems (SESs) and the underlying geomorphic processes that structure and alter Earth's surface is a key challenge for global sustainability amid the increasing uncertainty and change that defines the Anthropocene. Social-ecological resilience as a concept of scientific inquiry has contributed to new understandings of the dynamics of change in SESs, increasing our ability to contextualize and implement governance in these systems. Often, however, the importance of geomorphic change and geomorphological knowledge is somewhat missing from processes employed to inform SES governance. In this contribution, we argue that geomorphology and social-ecological resilience research should be integrated to improve governance toward sustainability. We first provide definitions of engineering, ecological, community, and social-ecological resilience and then explore the use of these concepts within and alongside geomorphology in the literature. While ecological studies often consider geomorphology as an important factor influencing the resilience of ecosystems and geomorphological studies often consider the engineering resilience of geomorphic systems of interest, very few studies define and employ a social-ecological resilience framing and explicitly link the concept to geomorphic systems. We present five key concepts-scale, feedbacks, state or regime, thresholds and regime shifts, and humans as part of the system-which we believe can help explicitly link important aspects of social-ecological resilience inquiry and geomorphological inquiry in order to strengthen the impact of both lines of research. Finally, we discuss how these five concepts might be used to integrate social-ecological resilience and geomorphology to better understand change in, and inform governance of, SESs. To compound these dynamics of resilience, complex systems are nested and cross-scale interactions from smaller and larger scales relative to the system of interest can play formative roles during periods of collapse and reorganization. Large- and small-scale disturbances as well as large-scale system memory/capacity and small-scale innovation can have significant impacts on the trajectory of a reorganizing system (Gunderson and Holling, 2002; Chaffin and Gunderson, 2016). Attempts to measure the property of ecological resilience across complex systems amounts to attempts to measure the persistence of system-controlling variables, including processes, parameters, and important feedbacks, when the system is exposed to varying degrees of disturbance (Folke, 2016).

  16. Interdependence of geomorphic and ecologic resilience properties in a geographic context

    NASA Astrophysics Data System (ADS)

    Anthony Stallins, J.; Corenblit, Dov

    2018-03-01

    Ecology and geomorphology recognize the dynamic aspects of resistance and resilience. However, formal resilience theory in ecology has tended to deemphasize the geomorphic habitat template. Conversely, landscape sensitivity and state-and-transition models in geomorphology downweight mechanisms of biotic adaptation operative in fluctuating, spatially explicit environments. Adding to the interdisciplinary challenge of understanding complex biogeomorphic systems is that environmental heterogeneity and overlapping gradients of disturbance complicate inference of the geographic patterns of resistance and resilience. We develop a conceptual model for comparing the resilience properties among barrier dunes. The model illustrates how adaptive cycles and panarchies, the formal building blocks of resilience recognized in ecology, can be expressed as a set of hierarchically nested geomorphic and ecological metrics. The variance structure of these data is proposed as a means to delineate different kinds and levels of resilience. Specifically, it is the dimensionality of these data and how geomorphic and ecological variables load on the first and succeeding axes that facilitates the delineation of resistance and resilience. The construction of dune topographic state space from observations among different barrier islands is proposed as a way to measure the interdependence of geomorphic and ecological resilience properties.

  17. Geomorphology and the World Wide Web

    NASA Astrophysics Data System (ADS)

    Shroder, John F.; Bishop, Michael P.; Olsenholler, Jeffrey; Craiger, J. Philip

    2002-10-01

    The Internet and the World Wide Web have brought many dimensions of new technology to education and research in geomorphology. As with other disciplines on the Web, Web-based geomorphology has become an eclectic mix of whatever material an individual deems worthy of presentation, and in many cases is without quality control. Nevertheless, new electronic media can facilitate education and research in geomorphology. For example, virtual field trips can be developed and accessed to reinforce concepts in class. Techniques for evaluating Internet references helps students to write traditional term papers, but professional presentations can also involve student papers that are published on the Web. Faculty can also address plagiarism issues by using search engines. Because of the lack of peer review of much of the content on the Web, care must be exercised in using it for reference searches. Today, however, refereed journals are going online and can be accessed through subscription or payment per article viewed. Library reference desks regularly use the Web for searches of refereed articles. Research on the Web ranges from communication between investigators, data acquisition, scientific visualization, or comprehensive searches of refereed sources, to interactive analyses of remote data sets. The Nanga Parbat and the Global Land Ice Measurements from Space (GLIMS) Projects are two examples of geomorphologic research that are achieving full potential through use of the Web. Teaching and research in geomorphology are undergoing a beneficial, but sometimes problematic, transition with the new technology. The learning curve is steep for some users but the view from the top is bright. Geomorphology can only prosper from the benefits offered by computer technologies.

  18. Geomorphological and sedimentary record from Poseidi, N. Greece and relationship with Late Bronze and Iron age settlements

    NASA Astrophysics Data System (ADS)

    Psomiadis, David; Parashou, Theodoros; Albanakis, Konstantinos; Dotsika, Elissavet; Zisi, Nikoleta

    2010-05-01

    Coastal geomorphological features from Poseidi, Chalkidiki, N. Greece have been studied in order to classify the Late Pleistocene and Holocene formations that prevail across the coastal zone of Cape Poseidi. Carbonate cementation in the littoral shelf (beachrocks) indicates phases of coastal instability. The adjacent conglomerate formation and the stratigraphical characteristics of the backshore sedimentary sequence define the geomorphological setting of the human occupation in the area that dates back to 3500 BP. Eretrians settled the area (Pallini peninsula) during the Iron age, while Poseidi was already used for ritual ceremonies of god Neptune. Although ancient Mendi was built on an approximately 100m-high hill, its so-called "Suburb" by Thucydides was reaching the shoreline, and its cemetery was excavated in the beach sediments. Palaeo-shorelines have been reconstructed using bathymetry data and submerged fossil coastlines. The submerged beachrock horizons are spotted northwards at 1m, 1.7m, 2.4m and 3.6m depth as well as the formation occupies the swashzone at two subsequent separated beaches southwards near ancient Mendi. Tectonic movements were also evaluated and reconsidered in relation to coastal archaeological sites for the reconstruction of the geomorphological setting. The dynamic wave regime at Cape Poseidi and the sedimentary characteristics seem to have played a prominent role during stages of relatively stable sea level and influenced the human occupation in the area.

  19. Trends in publications in fluvial geomorphology over two decades: A truly new era in the discipline owing to recent technological revolution?

    USGS Publications Warehouse

    Piégay, Hervé; Kondolf, G. Mathias; Minear, J. Toby; Vaudor, Lise

    2015-01-01

    Trends in the field of fluvial geomorphology have been reviewed by a number of authors, who have emphasized the dramatic change occuring in the field in the last two decades of the twentieth century, largely as a result of technological advances. Nevertheless, no prior authors have systematically compiled data on publications in fluvial geomorphology over a long period and statistically analyzed the resulting data set. In this contribution we present a quantitative analysis of fluvial geomorphology papers published in the twenty-two-year period 1987–2009 in five journals of the discipline with a more specific focus on Geomorphology and Earth Surface Processes and Landforms (ESPL), identifying authorships, geographic origin of authors, and spatial and temporal scales covered. We also documented the tools employed, demonstrating the transformation of the field with the emergence of new tools over this period, and conducted a cluster to highlight links between tools and a set of factors (country of author's origin, journals, time, and spatial and temporal scales). Of the 1717 papers published in the five journals during this period, the results showed an increased diversity in the nationality of the first author, mainly when dealing with present time scale, and channel feature. Our data show a significant change in methods used in the field as a result of the increase in data availability and new sources of information from remote sensing (ground, airborne and, satellite). Clearly, a new era in knowledge production is observed since 2000, showing the emergence of a second period of active quantification and an internationalization of the fields.

  20. A Real Space Cellular Automaton Laboratory

    NASA Astrophysics Data System (ADS)

    Rozier, O.; Narteau, C.

    2013-12-01

    Investigations in geomorphology may benefit from computer modelling approaches that rely entirely on self-organization principles. In the vast majority of numerical models, instead, points in space are characterised by a variety of physical variables (e.g. sediment transport rate, velocity, temperature) recalculated over time according to some predetermined set of laws. However, there is not always a satisfactory theoretical framework from which we can quantify the overall dynamics of the system. For these reasons, we prefer to concentrate on interaction patterns using a basic cellular automaton modelling framework, the Real Space Cellular Automaton Laboratory (ReSCAL), a powerful and versatile generator of 3D stochastic models. The objective of this software suite released under a GNU license is to develop interdisciplinary research collaboration to investigate the dynamics of complex systems. The models in ReSCAL are essentially constructed from a small number of discrete states distributed on a cellular grid. An elementary cell is a real-space representation of the physical environment and pairs of nearest neighbour cells are called doublets. Each individual physical process is associated with a set of doublet transitions and characteristic transition rates. Using a modular approach, we can simulate and combine a wide range of physical, chemical and/or anthropological processes. Here, we present different ingredients of ReSCAL leading to applications in geomorphology: dune morphodynamics and landscape evolution. We also discuss how ReSCAL can be applied and developed across many disciplines in natural and human sciences.

  1. Geomorphological processes and frozen ground conditions in Elephant Point (Livingston Island, South Shetland Islands, Antarctica)

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Ruiz-Fernández, Jesús

    2017-09-01

    Elephant Point is an ice-free area in the SW corner of Livingston Island (Maritime Antarctica). The retreat of Rotch Dome glacier during the Holocene has exposed a land area of 1.16 km2. Up to 17.3% of this surface has become ice-free between 1956 and 2010. A detailed geomorphological mapping of this ice-free environment was conducted in late January 2014. A wide range of active periglacial landforms show that periglacial processes are widespread. From the glacier to the coast four different geomorphological areas are identified: proglacial environment, moraine complex, bedrock plateaus and marine terraces. In situ measurements of the thawed soil depth show evidence of the widespread frozen ground conditions in the area. Field observations of permafrost exposures suggest that these frost conditions may be related to a soil permafrost regime, almost down to sea level. The activity of penguin colonies and elephant seals has created minor geomorphological features in the raised marine terraces. Here, several archaeological sites related to early human colonization of Antarctica were also found in natural shelters.

  2. Engineering geomorphology on the coast: lessons from west Dorset

    NASA Astrophysics Data System (ADS)

    Brunsden, Denys; Moore, Roger

    1999-12-01

    The central aim of this paper is to describe the general context in which an applied geomorphological investigation for a management project on a Heritage coast will be set. We attempt to show how the decisions may be affected by historical legacies and public or administrative attitudes. Modern attitudes to the coast in Great Britain are summarized in the light of recent studies by the Department of the Environment and the Ministry of Agriculture, Fisheries and Food. The Dorset coast in southwest England is used to illustrate the main points. The paper describes the coastal features, explains the historical legacy of use, and examines problems of contemporary coastal management. The paper concludes with a consideration of the natural geomorphological principles of landscape design which might be employed as part of the guiding concepts.

  3. The geomorphology of wetlands in drylands: Resilience, nonresilience, or …?

    NASA Astrophysics Data System (ADS)

    Tooth, Stephen

    2018-03-01

    Over the last decade, much attention has focused on wetland resilience to disturbances such as extreme weather events, longer climate change, and human activities. In geomorphology and cognate disciplines, resilience is defined in various ways and has physical and socioeconomic dimensions but commonly is taken to mean the ability of a system to (A) withstand disturbance, (B) recover from disturbance, or (C) adapt and evolve in response to disturbance to a more desirable (e.g., stable) configuration. Most studies of wetland resilience have tended to focus on the more-or-less permanently saturated humid region wetlands, but whether the findings can be readily transferred to wetlands in drylands remains unclear. Given the natural climatic variability and overall strong moisture deficit characteristic of drylands, are such wetlands likely to be more resilient or less resilient? Focusing on wetlands in the South African drylands, this paper uses existing geomorphological, sedimentological, and geochronological data sets to provide the spatial (up to 50 km2) and temporal (late Quaternary) framework for an assessment of geomorphological resilience. Some wetlands have been highly resilient to environmental (especially climate) change, but others have been nonresilient with marked transformations in channel-floodplain structure and process connectivity having been driven by natural factors (e.g., local base-level fall, drought) or human activities (e.g., channel excavation, floodplain drainage). Key issues related to the assessment of wetland resilience include channel-floodplain dynamics in relation to geomorphological thresholds, wetland geomorphological 'life cycles', and the relative roles of natural and human activities. These issues raise challenges for the involvement of geomorphologists in the practical application of the resilience concept in wetland management. A key consideration is how geomorphological resilience interfaces with other dimensions of resilience, especially ecological resilience and socioeconomic resilience, the latter commonly being defined in terms of ecosystem service delivery.

  4. Geomorphology of unique reefs on the western Canadian shelf: sponge reefs mapped by multibeam bathymetry

    NASA Astrophysics Data System (ADS)

    Conway, Kim W.; Barrie, J. Vaughn; Krautter, Manfred

    2005-09-01

    Multibeam imagery of siliceous sponge reefs (Hexactinellida, Hexactinosida) reveals the setting, form, and organization of five reef complexes on the western Canadian continental shelf. The reefs are built by framework skeleton sponges which trap clay-rich sediments resulting in a distinctive pattern of low intensity backscatter from the reefs that colonize more reflective glacial sediments of higher backscatter intensity. Bathymetry and backscatter maps show the distribution and form of reefs in two large complexes in the Queen Charlotte Basin (QCB) covering hundreds of km2, and three smaller reef complexes in the Georgia Basin (GB). Ridges up to 7 km long and 21 m in height, together with diversely shaped, coalescing bioherms and biostromes form the principal reef shape in the QCB whereas chains of wave-form, streamlined mounds up to 14 m in height have developed in the GB. Reef initiation is dependent on the distribution of high backscatter-intensity relict glacial surfaces, and the variation in reef complex morphology is probably the result of tidally driven, near seabed currents.

  5. The case of Sarno River (Southern Italy): effects of geomorphology on the environmental impacts.

    PubMed

    De Pippo, Tommaso; Donadio, Carlo; Guida, Marco; Petrosino, Carmela

    2006-05-01

    Analysis of the morphological, geological and environmental characteristics of the Sarno River basin has shown the present degraded condition of the area. Over the past thirty years, the supply of untreated effluent of domestic, agricultural and industrial origin has ensured the presence of high concentrations of pollutants, including heavy metals. The geological context of the catchment area has played a major part in determining the current ecological conditions and public health problems: while human activity has modified the landscape, the natural order has indirectly contributed to increasing the environmental impact. The health situation is precarious as the basin's inhabitants feed on agricultural and animal products, and use polluted water directly or indirectly. The hazard of contracting degenerative illnesses of the digestive or respiratory apparatus, bacterial infections or some neoplasia has gradually increased, especially in the last five years. Moreover, polluted basin waters flowing into the Bay of Naples increase sea water contamination, thereby damaging tourism, public health and degrading the local littoral quality. The overview presented shows how the environmental state of the Sarno River basin gives considerable cause for concern. The basin's complex geomorphologic setting has a direct bearing on local environmental and health conditions. The analysis of the available data demonstrates how the physical aspects of the area are closely linked to the diffusion and concentration of the pollutants, and how the latter ones have a large influence on the hygienic-sanitary conditions of the local population. Specific interventions need to be undertaken to monitor and improve the chemical, physical and microbiological conditions of water and sediments, especially in light of the geomorphological vulnerability of the river basin.

  6. Glaciated valleys in Europe and western Asia

    PubMed Central

    Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David R.; Schrott, Lothar

    2015-01-01

    In recent years, remote sensing, morphometric analysis, and other computational concepts and tools have invigorated the field of geomorphological mapping. Automated interpretation of digital terrain data based on impartial rules holds substantial promise for large dataset processing and objective landscape classification. However, the geomorphological realm presents tremendous complexity and challenges in the translation of qualitative descriptions into geomorphometric semantics. Here, the simple, conventional distinction of V-shaped fluvial and U-shaped glacial valleys was analyzed quantitatively using multi-scale curvature and a novel morphometric variable termed Difference of Minimum Curvature (DMC). We used this automated terrain analysis approach to produce a raster map at a scale of 1:6,000,000 showing the distribution of glaciated valleys across Europe and western Asia. The data set has a cell size of 3 arc seconds and consists of more than 40 billion grid cells. Glaciated U-shaped valleys commonly associated with erosion by warm-based glaciers are abundant in the alpine regions of mid Europe and western Asia but also occur at the margins of mountain ice sheets in Scandinavia. The high-level correspondence with field mapping and the fully transferable semantics validate this approach for automated analysis of yet unexplored terrain around the globe and qualify for potential applications on other planetary bodies like Mars. PMID:27019665

  7. Some examples of geomorphodiversity in Italy

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    2014-05-01

    The concept of geomorphodiversity (Panizza, 2009) is presented: "the critical and specific assessment of the geomorphological features of a territory, by comparing them in a way both extrinsic (comparison of the geomorphological characteristics with those from other territories) and intrinsic (comparison of the geomorphological characteristics with other areas within the territory itself) and taking into account the level of their scientific quality, the scale of investigation and the purpose of the research". A first example concerns the Dolomites: they have been included in the UNESCO World Heritage List because of their exceptional beauty and unique landscape, together with their scientific importance from the geological and geomorphological point of view. They are of international significance for geomorphodiversity, as the classic site for the development of mountains in dolomite limestone and present a wide range of landforms related to erosion, tectonics and glaciation. They represent a kind of high altitude, open air laboratory of geomorphological heritage of exceptional global value, among the most extraordinary and accessible in the world and ideal for researching, teaching, understanding and developing Earth Science theories. The second example concerns the Emilia-Romagna Apennines, candidate for enrolment in the List of European Geoparks: they show a multifaceted and complex image from the international and regional geomorphological (extrinsic and intrinsic geomorphodiversity) point of view and are an educational example for illustrating morphotectonic evolution, stratigraphic and sedimentological sequences and morpholithological peculiarities connected with gypsum karst and clay mass wasting phenomena. The third example concerns the Vesuvius, one of the National Italian Parks: it shows an extrinsic geomorphodiversity mainly referred to the type of eruptions, with some exemplary processes inserted in international volcanic nomenclature; it makes up an important geoheritage that can be considered a field laboratory for research on volcanic geomorphology. At a regional level, intrinsic geomorphodiversity includes typical examples ascribable to lahars, relief inversion and pseudo-karst morphology.

  8. Updated symbol catalogue for geologic and geomorphologic mapping in Planetary Scinces

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; Fortezzo, Corey; Skinner, James, Jr.; Hunter, Marc; Hare, Trent

    2017-04-01

    Maps are one of the most powerful communication tools for spatial data. This is true for terrestrial data, as well as the many types of planetary data. Geologic and/or geomorphologic maps of planetary surfaces, in particular those of the Moon, Mars, and Venus, are standardized products and often prepared as a part of hypothesis-driven science investigations. The NASA-funded Planetary Geologic Mapping program, coordinated by the USGS Astrogeology Science Center (ASC), produces high-quality, standardized, and refereed geologic maps and digital databases of planetary bodies. In this context, 242 geologic, geomorphologic, and thematic map sheets and map series have been published since the 1962. However, outside of this program, numerous non-USGS published maps are created as result of scientific investigations and published, e.g. as figures or supplemental materials within a peer-reviewed journal article. Due to the complexity of planetary surfaces, diversity between different planet surfaces, and the varied resolution of the data, geomorphologic and geologic mapping is a challenging task. Because of these limiting conditions, the mapping process is a highly interpretative work and is mostly limited to remotely sensed satellite data - with a few expetions from rover data. Uniform and an unambiguous data are fundamental to make quality observations that lead to unbiased and supported interpretations, especially when there is no current groundtruthing. To allow for correlation between different map products (digital or analog), the most commonly used spatial objects are predefined cartographic symbols. The Federal Geographic Data Committee (FGDC) Digital Cartographic Standard for Geologic Map Symbolization (DCSGMS) defines the most commonly used symbols, colors, and hatch patterns in one comprehensive document. Chapter 25 of the DCSGMS defines the Planetary Geology Features based on the symbols defined in the Venus Mapper's Handbook. After reviewing the 242 planetary geological maps, we propose to 1) review standardized symbols for planetary maps, and 2) recommend an updated symbol collection for adoption by the planetary mapping community. Within these points, the focus is on the changing of symbology with respect to time and how it effects communication within and between the maps. Two key questions to address are 1) does chapter 25 provides enough variability within the subcategories (e.g., faults) to represent the data within the maps? 2) How recommendations to the mapping community and their steering committees could be delivered to enhance a map's communicability, and convey information succinctly but thoroughly. For determining the most representative symbol collection of existing maps to support future map results (within or outside of USGS mapping program) we defined a stepwise task list: 1) Statistical review of existing symbol sets and collections, 2) Establish a representative symbol set for planetary mapping, 3) Update cartographic symbols, 4) Implementation into GIS-based mapping software (this implementation will mimic the 2010 application of the planetary symbol set into ArcGIS (more information https://planetarymapping.wr.usgs.gov/Project). 6) Platform to provide the symbol set to the mapping community. This project was initiated within an ongoing cooperation work between the USGS ASC and the German Aerospace Center (DLR), Dept. of Planetary Geology.

  9. Integrated Hydro-geomorphological Monitoring System of the Upper Bussento river basin (Cilento and Vallo Diano Geopark, S-Italy)

    NASA Astrophysics Data System (ADS)

    Guida, D.; Cuomo, A.; Longobardi, A.; Villani, P.; Guida, M.; Guadagnuolo, D.; Cestari, A.; Siervo, V.; Benevento, G.; Sorvino, S.; Doto, R.; Verrone, M.; De Vita, A.; Aloia, A.; Positano, P.

    2012-04-01

    The Mediterranean river ecosystem functionings are supported by river-aquifer interactions. The assessment of their ecological services requires interdisciplinary scientific approaches, integrate monitoring systems and inter-institutional planning and management. This poster illustrates the Hydro-geomorphological Monitoring System build-up in the Upper Bussento river basin by the University of Salerno, in agreement with the local Basin Autorities and in extension to the other river basins located in the Cilento and Vallo Diano National Park (southern Italy), recently accepted in the European Geopark Network. The Monitoring System is based on a hierarchical Hydro-geomorphological Model (HGM), improved in a multiscale, nested and object-oriented Hydro-geomorphological Informative System (HGIS, Figure 1). Hydro-objects are topologically linked and functionally bounded by Hydro-elements at various levels of homogeneity (Table 1). Spatial Hydro-geomorpho-system, HG-complex and HG-unit support respectively areal Hydro-objects, as basin, sector and catchment and linear Hydro-objects, as river, segment, reach and section. Runoff initiation points, springs, disappearing points, junctions, gaining and water losing points complete the Hydro-systems. An automatic procedure use the Pfafstetter coding to hierarchically divide a terrain into arbitrarily small hydro-geomorphological units (basin, interfluve, headwater and no-contribution areas, each with a unique label with hierarchical topological properties. To obtain a hierarchy of hydro-geomorphological units, the method is then applied recursively on each basin and interbasin, and labels of the subdivided regions are appended to the existing label of the original region. The monitoring stations are ranked consequently in main, secondary, temporary and random and located progressively at the points or sections representative for the hydro-geomorphological responses by validation control and modeling calibration. The datasets are organized into a relational geodatabase supporting tracer testings, space-time analysis and hydrological modeling. At the moment, three main station for hourly streamflow measurements are located at the terminal sections of the main basin and the two main sub-basin; secondary stations for weekly discharge measurements are located along the Upper Bussento river segment, upstream and downstream of each river reach or tributary catchments or karst spring inflow. Temporary stations are located in the representative sections of the catchments to detect stream flow losses into alluvial beds or experimental parcels in the bare karst and forested sandstone headwaters. Streamflow measurements are combined with geochemical survey and water sampling for Radon activity concentration measurements. Results of measurement campains in Radon space-time distribution within the basin are given in other contribution of same EGU session. Monitoring results confirm the hourly, daily, weekly and monthly hydrological data and validate outcomes of semi-distributed hydrological models based on previously time series, allowing both academic consultants and institutional subject to extend the Integrated Hydro-geomorphological Monitoring System to the surrounding drainage areas of the Cilento and Vallo di Diano Geopark. Keywords: River-aquifer interaction, Upper Bussento river basin, monitoring system, hydro-geomorphology, semi-distributed hydrological model. Table 1: Comparative, hierarchical Hydro-morpho-climate entities Hierarchy levelArea (Km2) Scale Orography Entity Climate Entity Morfological Entity Areal Drainage Entity Linear Drainage Entity VIII 106 1:15E6 Orogen Macroscale α Morphological Region Hydrological Region VII 105 1:10E6 Chain Sistem Macroscale β Morphological Province Hydrological Province VI 104 1:5E5 Chain Mesoscale α Morphological Sistem Basin River V 103 1:2,5E5Chain Segment Mesoscale β Morphological Sub-systemSub-Basin Torrent IV 100 1:1,0E5Orographic Group Mesoscale γ Morphological Complex Basin Sector Mid Order Channel/ Segment III 10 1: 5E4 Orographic System Microscale αMorphological Unit Watershed Low Order Channel/ Reach II 1 1:2,5E3Orographic ComplexMicroscale βMorphological ComponentCatchment Transient Channel/ Pool I 10-2 1:5E3 Orographic Unit Microscale γMorphological Element Hollow Zero Order Channel PIC

  10. RELATIONSHIPS AMONG GEOMORPHOLOGY, HYDROLOGY, AND VEGETATION IN RIPARIAN MEADOWS: RESTORATION IMPLICATIONS

    EPA Science Inventory

    Vegetation patterns and dynamics within riparian corridors are controlled largely by geomorphic position, substrate characteristics and hydrologic regimes. Understanding management and restoration options for riparian meadow complexes exhibiting stream incision requires knowledge...

  11. An index of floodplain surface complexity

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2016-01-01

    Floodplain surface topography is an important component of floodplain ecosystems. It is the primary physical template upon which ecosystem processes are acted out, and complexity in this template can contribute to the high biodiversity and productivity of floodplain ecosystems. There has been a limited appreciation of floodplain surface complexity because of the traditional focus on temporal variability in floodplains as well as limitations to quantifying spatial complexity. An index of floodplain surface complexity (FSC) is developed in this paper and applied to eight floodplains from different geographic settings. The index is based on two key indicators of complexity, variability in surface geometry (VSG) and the spatial organisation of surface conditions (SPO), and was determined at three sampling scales. FSC, VSG, and SPO varied between the eight floodplains and these differences depended upon sampling scale. Relationships between these measures of spatial complexity and seven geomorphological and hydrological drivers were investigated. There was a significant decline in all complexity measures with increasing floodplain width, which was explained by either a power, logarithmic, or exponential function. There was an initial rapid decline in surface complexity as floodplain width increased from 1.5 to 5 km, followed by little change in floodplains wider than 10 km. VSG also increased significantly with increasing sediment yield. No significant relationships were determined between any of the four hydrological variables and floodplain surface complexity.

  12. Response of megabenthic assemblages to different scales of habitat heterogeneity on the Mauritanian slope

    NASA Astrophysics Data System (ADS)

    Jones, Daniel O. B.; Brewer, Michael E.

    2012-09-01

    The topographically complex deep seabed on the Mauritanian slope, from 990 to 1460 m water depth, was imaged with video in an extensive quantitative survey of 17,199 m2 of seafloor using a Remote Operated Vehicle (ROV). This study investigated the influence of habitat heterogeneity at two scales on the megafaunal assemblages observed by ROV. Changes in megafaunal assemblages on the Mauritanian slope were assessed at a broad scale, within depth zones, and at a finer scale, in response to changes in local geomorphology associated with submarine landslides. Geomorphology was determined by classification of habitat parameters (slope, aspect, bathymetric position, curvature, fractal dimension and ruggedness) derived from an autonomous underwater vehicle-based multibeam bathymetry survey. Habitat parameters were classified by Iterative Self Organizing Clustering into six major geomorphological groups, four of which were assessed in the ROV video survey. A total of 29 megafaunal taxa were observed along the entire survey, with an overall average faunal density of 0.344 ind m-2. Megafaunal assemblage density, species richness and evenness varied significantly across the depth range of the survey in the most common geomorphological zone (sedimentary plains of low slope and complexity). Characteristic species inhabited the shallow areas (asteroid, ophiuroid, anemone, small macrourid), intermediate areas (Benthothuria funabris, black cerianthid, squat lobster) and deeper areas (the holothurians Enypniastes eximia and Elipidia echinata). Megafaunal density, species richness and evenness were not significantly different between geomorphogical groups within one depth zone (1300-1400 m). However, the steepest zone, on the edge of a major headwall feature, had four unique taxa (Parapagurus pilosimanus, a comatulid crinoid, a gorgonian and its associated ophiuroid).

  13. Potential for a hazardous geospheric response to projected future climate changes.

    PubMed

    McGuire, B

    2010-05-28

    Periods of exceptional climate change in Earth history are associated with a dynamic response from the geosphere, involving enhanced levels of potentially hazardous geological and geomorphological activity. The response is expressed through the adjustment, modulation or triggering of a broad range of surface and crustal phenomena, including volcanic and seismic activity, submarine and subaerial landslides, tsunamis and landslide 'splash' waves, glacial outburst and rock-dam failure floods, debris flows and gas-hydrate destabilization. In relation to anthropogenic climate change, modelling studies and projection of current trends point towards increased risk in relation to a spectrum of geological and geomorphological hazards in a warmer world, while observations suggest that the ongoing rise in global average temperatures may already be eliciting a hazardous response from the geosphere. Here, the potential influences of anthropogenic warming are reviewed in relation to an array of geological and geomorphological hazards across a range of environmental settings. A programme of focused research is advocated in order to: (i) understand better those mechanisms by which contemporary climate change may drive hazardous geological and geomorphological activity; (ii) delineate those parts of the world that are most susceptible; and (iii) provide a more robust appreciation of potential impacts for society and infrastructure.

  14. Geomorphologically effective floods from moraine-dammed lakes in the Cordillera Blanca, Peru

    NASA Astrophysics Data System (ADS)

    Emmer, Adam

    2017-12-01

    Outburst floods originating in moraine-dammed lakes represent a significant geomorphological process as well as a specific type of threat for local communities in the Cordillera Blanca, Peru (8.5°-10° S; 77°-78° W). An exceptional concentration of catastrophic floods has been reported from the Cordillera Blanca in the first half of 20th Century (1930s-1950s), leading to thousands of fatalities. The main objective of this paper is to provide a revised and comprehensive overview of geomorphologically effective floods in the area of interest, using various documentary data sources, verified by analysis of remotely sensed images (1948-2013) and enhanced by original field data. Verified events (n = 28; 4 not mentioned before) are analysed from the perspective of spatiotemporal distribution, pre-flood conditions, causes, mechanisms and geomorphological impacts as well as socioeconomical consequences, revealing certain patterns and similar features. GLOFs are further classified according to their magnitude: 5 extreme events, 8 major events and 15 minor events are distinguished, referring to the quantified geomorphological and socioeconomical impacts. Selected moraine dams and flood deposits are dated using lichenometric dating. Special attention is given to moraine dam breaches - the most frequent type of water release with the most significant consequences. Selected major events and their consequences are studied in detail in a separate section. Finally, a general schematic model of lake formation, growth and post-flood evolution reflecting initial topographical setting and glacier retreat is introduced and the utilization of the obtained results is outlined.

  15. A lidar, GIS and basic spatial statistic application for the study of ravine and palaeo-ravine evolution in the upper Vipava valley, SW Slovenia

    NASA Astrophysics Data System (ADS)

    Popit, Tomislav; Rožič, Boštjan; Šmuc, Andrej; Kokalj, Žiga; Verbovšek, Timotej; Košir, Adrijan

    2014-01-01

    The analysis of high resolution airborne lidar topography represents an essential tool for the geomorphological investigation of surface features. Here we present a detailed lidar-based geomorphological analysis of the ravines cut into the slopes of the upper Vipava valley, NW Slovenia. The NE slopes are defined by an Oligocene thrust-front of Mesozoic carbonates overthrusted on Tertiary flysch and covered by numerous fan-shaped Quaternary gravity flows, deposited in palaeo-ravines cut into the flysch base rock. In contrast, the opposite SW slopes are composed solely of flysch. The large dextral-slip Vipava fault extending in the NW-SE direction is present in the central part of the valley. Our research revealed that although the ravines on both slopes of the Vipava valley are lithologically and tectonically controlled, significant statistical differences in their directions exist. Thus, ravines on opposite slopes are not solely related to the Vipava fault system deformation, but instead reflect a more complex tectonic setting. We believe that the ravines are controlled by second-order faults and fault zones that connect the Vipava fault with adjacent faults. On the SW slopes, these include connecting faults between the Vipava and the southwestern Raša fault, with the ravines on the NE slopes formed in fault zones connecting the Vipava and northeastern Predjama faults.

  16. Cultural Resources Survey at Selected Locations, Table Rock Lake, Missouri and Arkansas,

    DTIC Science & Technology

    1986-12-01

    terrace along the river banks, and this alluvial material interfingers with fine-grained colluvium (redeposited loess) and cherty residuum washed fran...by block nhstber) Archaic Period Interfluve Meander Core Rice Complex Bluff Shelter James River Complex Mississippian Sprfld Plteu Cultural Resource...Invt Jefferson City Chert Osage Table Rock Lake Dalton Kings River Ozark Highlands White River Geomorphology Long Creek Paleo-Indian Basin 20

  17. Geomorphology and Ice Content of Glacier - Rock Glacier – Moraine Complexes in Ak-Shiirak Range (Inner Tien Shan, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Bolch, Tobias; Kutuzov, Stanislav; Rohrbach, Nico; Fischer, Andrea; Osmonov, Azamat

    2015-04-01

    Meltwater originating from the Tien Shan is of high importance for the runoff to the arid and semi-arid region of Central Asia. Previous studies estimate a glaciers' contribution of about 40% for the Aksu-Tarim Catchment, a transboundary watershed between Kyrgyzstan and China. Large parts of the Ak-Shiirak Range drain into this watershed. Glaciers in Central and Inner Tien Shan are typically polythermal or even cold and surrounded by permafrost. Several glaciers terminate into large moraine complexes which show geomorphological indicators of ice content such as thermo-karst like depressions, and further downvalley signs of creep such as ridges and furrows and a fresh, steep rock front which are typical indicators for permafrost creep ("rock glacier"). Hence, glaciers and permafrost co-exist in this region and their interactions are important to consider, e.g. for the understanding of glacial and periglacial processes. It can also be assumed that the ice stored in these relatively large dead-ice/moraine-complexes is a significant amount of the total ice storage. However, no detailed investigations exist so far. In an initial study, we investigated the structure and ice content of two typical glacier-moraine complexes in the Ak-Shiirak-Range using different ground penetrating radar (GPR) devices. In addition, the geomorphology was mapped using high resolution satellite imagery. The structure of the moraine-rock glacier complex is in general heterogeneous. Several dead ice bodies with different thicknesses and moraine-derived rock glaciers with different stages of activities could be identified. Few parts of these "rock glaciers" contain also massive ice but the largest parts are likely characterised by rock-ice layers of different thickness and ice contents. In one glacier forefield, the thickness of the rock-ice mixture is partly more than 300 m. This is only slightly lower than the maximum thickness of the glacier ice. Our measurements revealed that up to 20% of the total ice of the entire glacier-rock glacier-moraine-complex could be stored in the moraine-rock glacier parts.

  18. Lewis and Clark's observations and measurements of geomorphology and hydrology, and changes with time

    USGS Publications Warehouse

    Moody, John A.; Meade, Robert H.; Jones, David R.

    2003-01-01

    Two VERY different men, Meriwether Lewis and William Clark, joined to J, ~ake the first recorded set of scientific observations and measurements of geomorphology and hydrology west of the Mississippi River. They did not limit themselves to these two scientific topics but were true naturalists, making observations and measurements related to astronomy (Large, 1979; Bedini, 1984; Plamondon, 1991; Bergantino, 1998), biology (Cutright, 1969), ecology, ethnology (Ronda, 1984a), geology (Bluemle, 2001; Bergantino, 1998), and phenology, as well as to the general geographical understanding of the arrangements of rivers and other topographical features of the trans-Mississippi West (Allen, 1975) .

  19. Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas. Water Science and Application Series

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wigmosta, Mark S.; Burges, S J.

    2001-10-01

    What is the effect of urbanization and forest use on hydrologic and geomorphic processes? How can we develop land use policies that minimize adverse impacts on ecosystems while sustaining biodiversity? Land Use and Watersheds: Human Influence on Hydrology and Geomorphology in Urban and Forest Areas addresses these issues and more. By featuring watersheds principally in the American Pacific Northwest, and the effects of timber harvesting and road construction on stream flow, sediment yield and landslide occurrence, scientists can advance their understanding of what constitutes appropriate management of environments with similar hydro-climatic-geomorphic settings worldwide.

  20. Progress on Platforms, Sensors and Applications with Unmanned Aerial Vehicles in soil science and geomorphology

    NASA Astrophysics Data System (ADS)

    Anders, Niels; Suomalainen, Juha; Seeger, Manuel; Keesstra, Saskia; Bartholomeus, Harm; Paron, Paolo

    2014-05-01

    The recent increase of performance and endurance of electronically controlled flying platforms, such as multi-copters and fixed-wing airplanes, and decreasing size and weight of different sensors and batteries leads to increasing popularity of Unmanned Aerial Systems (UAS) for scientific purposes. Modern workflows that implement UAS include guided flight plan generation, 3D GPS navigation for fully automated piloting, and automated processing with new techniques such as "Structure from Motion" photogrammetry. UAS are often equipped with normal RGB cameras, multi- and hyperspectral sensors, radar, or other sensors, and provide a cheap and flexible solution for creating multi-temporal data sets. UAS revolutionized multi-temporal research allowing new applications related to change analysis and process monitoring. The EGU General Assembly 2014 is hosting a session on platforms, sensors and applications with UAS in soil science and geomorphology. This presentation briefly summarizes the outcome of this session, addressing the current state and future challenges of small-platform data acquisition in soil science and geomorphology.

  1. HYDROLOGY OF CENTRAL GREAT BASIN MEADOW ECOSYSTEMS – EFFECTS OF STREAM INCISION

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. Our interdisciplinary group has investigated 1) the interrelationships of geomorphology, hydrology, and vegetation; and 2) ...

  2. Intensity of geomorphological processes in NW sector of Pacific rim marginal mountain belts

    NASA Astrophysics Data System (ADS)

    Lebedeva, Ekaterina; Shvarev, Sergey; Gotvansky, Veniamin

    2014-05-01

    Continental marginal mountains, including the mountain belts of Russian Far East, are characterized by supreme terrain contrast, mosaic structure of surface and crust, and rich complex of modern endogenous processes - volcanism, seismicity, and vertical movements. Unstable state of geomorphological systems and activity of relief forming processes here is caused also by deep dissected topography and the type and amount of precipitation. Human activities further stimulate natural processes and increase the risk of local disasters. So these territories have high intensity (or tension) of geomorphological processes. Intensity in the authors' understanding is willingness of geomorphological system to be out of balance, risk of disaster under external and internal agent, both natural and human. Mapping with quantitative accounting of intensity of natural and human potential impact is necessary for indication the areal distribution trends of geomorphological processes intensity and zones of potential risk of disasters. Methods of map drowning up are based on several criteria analyzing: 1) total terrain-form processes and their willingness to be a hazard-like, 2) existence, peculiarity and zoning of external agents which could cause extreme character of base processes within the territory, 3) peculiarity of terrain morphology which could cause hazard way of terrain-form processes. Seismic activity is one of the most important factors causing activation of geomorphological processes and contributing to the risk of dangerous situations. Earthquake even small force can provoke many catastrophic processes: landslides, mudslides, avalanches and mudflows, tsunami and others. Seismic gravitational phenomenons of different scale accompany almost all earthquakes of intensity 7-8 points and above, and some processes, such as avalanches, activated by seismic shocks intensity about 1-3 points. In this regard, we consider it important selection of high intensity seismic zones in marginal-continental mountain systems and also offer to give them extra points of tension, the number of which increases depending on the strength of the shock. Such approach allows to identify clearly the most potentially hazardous areas where there may be various, sometimes unpredictable scale catastrophic processes, provoked intense underground tremors. We also consider the impact of the depth of topography dissection and the total amount of precipitation. The marginal-continental mountain systems have often radically different moistening of coastal and inland slopes. And this difference can be 500, 1000 mm and more, that, undoubtedly, affects the course and intensity of geomorphological processes on slopes of different exposures. The total evaluation of intensity of geomorphologic processes exceeding 15 points is considered to be potentially catastrophic. At 10-15 points tension geomorphologic processes is extremely high, and at 5-10 points - high, less than 5 points - low. The maps of the key areas of the Russian Far East - Kamchatka and the north of Kuril Islands, Sakhalin and the Western Okhotsk region were compiled. These areas have differences in geodynamic regimes, landscape-climatic and anthropogenic conditions and highly significant in relation to the differentiated estimation of geomorphologic tension. The growth of intensity of geomorphological processes toward the Pacific Ocean was recorded: from 7-10 points in Western Okhotsk region to 10-13 at Sakhalin and to 13-15 points for Kamchatka.

  3. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    NASA Astrophysics Data System (ADS)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-04-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  4. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska.

    PubMed

    Lara, Mark J; Nitze, Ingmar; Grosse, Guido; McGuire, A David

    2018-04-10

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km 2 ) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  5. Geomorphological change detection of fluvial processes of lower Siret channel using LIDAR data

    NASA Astrophysics Data System (ADS)

    Niculita, Mihai; Obreja, Florin; Boca, Bogdan

    2015-04-01

    Geomorphological change detection is a relatively new method risen from the availability of high resolution multitemporal DEMs (James et. al., 2011; Brodu & Lague, 2012; Barnhart & Crosby, 2013). The main issue in regard with this method is the identification of real change, given by geomorphologic processes, and not by the noise, method artefacts, vegetation or various other errors (Wheaton et. al., 2009). We present the results of geomorphological change detection applied to a part of the lower Siret river channel (from 60 to 140 km above the Siret-Dunăre confluence, between Adjud and Namoloasa). The data sources used were LIDAR DEMs provided by the Siret and Prut-Barlad Water Administrations, one version for 2008, at 2 m resolution, and the other at 0.5 m resolution for 2012. The geomorphological change detection was performed at a resolution of 2 m using the methodology of Wheaton et. al., 2009, on 4 sites with a cumulated length of 47 km, with 41.6 km covering meandering channels and 5.4 km Movileni anthropic lake shore. In the studied period (2008-2012), two major flood events were registered, one in 2008 and the other in 2010 (Olariu et. al., 2009, Serbu et. al., 2009, Nedelcu et. al., 2011). The geomorphological change detection approach managed to outline the presence and the rate of process (expressed as volumetric change) for: channel erosion, channel aggradation, lateral migration of river bank, meander migration, lake bank erosion, alluvial fan deposition and anthropic excavation of channel and river bank. Barnhart T.B., Crosby B.T., 2013. Comparing Two Methods of Surface Change Detection on an Evolving Thermokarst Using High-Temporal-Frequency Terrestrial Laser Scanning, Selawik River, Alaska. Remote Sensing, 5:2813-23937. Brodu N, Lague D. 2012. 3D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology, ISPRS journal of Photogrammmetry and Remote Sensing, 68:121-134. Lague D., Brodu N., Leroux J., 2013. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z), ISPRS journal of Photogrammmetry and Remote Sensing, 80:10-26. James L.A., Hodgson M.E., Ghoshal S., Latiolais M.M., 2012. Geomorphic change detection using historic maps and DEM differencing: the temporal dimension of geospatial analysis. Geomorphology, 137:181-198. Nedelcu G., Borcan M., Branescu E., Petre C., Teleanu B., Preda A., Murafa R., 2011. Exceptional floods from the years 2008 and 2010 in Siret river basin, Proceedings of the Annual Scientific Conference of National Romanian Institute of Hydrology and Water Administration, 1-3 November 2011. (in Romanian) Olariu P., Obreja F., Obreja I., 2009. Some aspects regarding the sediment transit from Trotus catchment and lower sector of Siret river during the exceptional floods from 1991 and 2005, Annals of Stefan cel Mare University of Suceava, XVIII:93-104.(in Romanian) Serbu M., Obreja F., Olariu P., 2009. The 2008 floods from upper Siret catchment. Causes, effects, evaluation, Hidrotechnics, 54(12):1-38. (in Romanian) Wheaton J.M., Brasington J., Darby S., Sear D., 2009. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms, 35(2):136-156.

  6. Multi-Scale and Object-Oriented Analysis for Mountain Terrain Segmentation and Geomorphological Assessment

    NASA Astrophysics Data System (ADS)

    Marston, B. K.; Bishop, M. P.; Shroder, J. F.

    2009-12-01

    Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.

  7. Geomorphological hazards and environmental impact: Assessment and mapping

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    In five sections the author develops the methods for the integration of geomorphological concepts into Environmental Impact and Mapping. The first section introduces the concepts of Impact and Risk through the relationships between Geomorphological Environment and Anthropical Element. The second section proposes a methodology for the determination of Geomorphological Hazard and the identification of Geomorphological Risk. The third section synthesizes the procedure for the compilation of a Geomorphological Hazards Map. The fourth section outlines the concepts of Geomorphological Resource Assessment for the analysis of the Environmental Impact. The fifth section considers the contribution of geomorphological studies and mapping in the procedure for Environmental Impact Assessment.

  8. Geomorphology and failure history of the earthquake-induced Farmington Siding landslide complex, Davis County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M.; Harty, K.M.

    1993-04-01

    The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocenemore » Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.« less

  9. Candor Chasm in Valles Marineris

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Part of Candor Chasm in Valles Marineris, Mars, from about latitude -9 degrees to -3 degrees and longitude 69 degrees to 75 degrees. Layered terrain is visible in the scene, perhaps due to a huge ancient lake. The geomorphology is complex, shaped by tectonics, mass wasting, and wind, and perhaps by water and volcanism.

  10. The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA's Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Barbieri, C.; Keller, H. U.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; Wenzel, K. P.; Cremonese, G.; Jorda, L.; Küppers, M.; Marchi, S.; Marzari, F.; Massironi, M.; Preusker, F.; Scholten, F.; Stephan, K.; Barucci, M. A.; Besse, S.; El-Maarry, M. R.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Koschny, D.; Kührt, E.; Martellato, E.; Moissl, R.; Snodgrass, C.; Tubiana, C.; Vincent, J.-B.

    2012-06-01

    The surface of (21) Lutetia is highly complex with significant interactions between ancient and more recent structures. This work attempts to summarize the surface geomorphology observed using the high resolution images from OSIRIS, the imaging system onboard the European Space Agency's Rosetta spacecraft. A wide range of surface morphologies are seen including heavily cratered terrain, extensive sets of lineaments, young impact craters, and a ridge, the height of which is more than 1/5th of the mean radius of the body. Very young and very old terrains (as inferred from crater densities) are seen in close proximity. The longest continuous lineament is over 80 km long. The lineaments show regional-dependent organization and structure. Several categories of lineament can be described. Lineaments radial to impact craters as seen on other asteroidal bodies are mostly absent. Although the lineaments may be of seismic origin (and possibly the result of several impact-induced events), impacts producing recent large craters place constraints on seismic phenomena. In particular, stronger attenuation of shocks than seen on other asteroidal bodies seems to be required. Inhomogeneous energy transport, possibly matching observed inhomogeneous ejecta deposition may offer explanations for some of the observed phenomena. Some impact craters show unusual forms, which are probably the result of impact into a surface with relief comparable to the resultant crater diameter and/or oblique impact. There is evidence that re-surfacing through landslides has occurred at several places on the object.

  11. Geomorphology of ice stream beds: recent progress and future challenges

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.

    2016-04-01

    Ice sheets lose mass primarily by melting and discharge via rapidly-flowing ice streams. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive changes in ice stream discharge are more complex; and are influenced by conditions at their bed which can sustain, enhance or inhibit their motion. Although explicit comparisons are rare, the ice-bed interface is similar to the 'boundary layer' in fluvial and aeolian environments, where shear stresses (both basal and lateral in the case of ice streams) oppose the flow of the overlying medium. The analogy extends further because processes within the boundary layer create a distinctive geomorphology (and roughness) that is characterised by subglacial bedforms that resemble features in fluvial and aeolian environments. Their creation results from erosion, transport and deposition of sediment which is poorly constrained, but which is intimately linked to the mechanisms through which ice streams are able to flow rapidly. The study of ice stream geomorphology is, therefore, critical to our understanding of their dynamics. Despite difficulty in observing the subglacial environment of active ice streams, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. This has been brought about by two main approaches: (i) geophysical investigation of modern (active) ice streams, and (ii) sedimentological and geomorphological investigation of palaeo-ice stream beds. The aim of this paper is to review progress in these two areas, highlight the key questions that remain, and discuss the opportunities that are likely to arise that will enable them to be addressed. It is clear that whilst these two main approaches have led to important advances, they have often been viewed as separate sub-disciplines, with minimal cross-pollination of ideas and concepts, particularly with respect to how landforms can be securely linked to subglacial processes and ice dynamics. However, recent developments in numerical modelling of the subglacial environment are beginning to offer new opportunities to tackle this issue and observations from both modern and palaeo-ice streams will be critical to constrain and validate such modelling.

  12. Small-scale variability in geomorphological settings influences mangrove-derived organic matter export in a tropical bay

    NASA Astrophysics Data System (ADS)

    Signa, Geraldina; Mazzola, Antonio; Kairo, James; Vizzini, Salvatrice

    2017-02-01

    Organic matter (OM) exchanges between adjacent habitats affect the dynamics and functioning of coastal systems, as well as the role of the different primary producers as energy and nutrient sources in food webs. Elemental (C, N, C : N) and isotope (δ13C) signatures and fatty acid (FA) profiles were used to assess the influence of geomorphological setting in two climatic seasons on the export and fate of mangrove OM across a tidally influenced tropical area, Gazi Bay (Kenya). The main results indicate that tidal transport, along with riverine runoff, plays a significant role in the distribution of mangrove organic matter. In particular, a marked spatial variability in the export of organic matter from mangroves to adjacent habitats was due to the different settings of the creeks flowing into the bay. Kinondo Creek acted as a mangrove retention site, where export of mangrove material was limited to the contiguous intertidal area, while Kidogoweni Creek acted as a flow-through system, from which mangrove material spreads into the bay, especially in the rainy season. This pattern was evident from the isotopic signature of primary producers, which were more 13C-depleted in the Kinondo Creek and nearby, due to the lower dilution of the dissolved inorganic carbon (DIC) pool, typically depleted as an effect of intense mangrove mineralisation. Despite the trapping efficiency of the seagrass canopy, suspended particulate OM showed the important contribution of mangroves across the whole bay, up to the coral reef, as an effect of the strong ebb tide. Overall, mixing model outcomes indicated a widespread mixed contribution of both allochthonous and autochthonous OM sources across Gazi Bay. Moreover, FAs indicated a notable contribution of brown macroalgae and bacteria in both sediment and suspended pools. These results suggest that ecological connectivity in Gazi Bay is strongly influenced by geomorphological setting, which may have far-reaching consequences for the functioning of the whole ecosystem and the local food webs.

  13. Actual geomorphological processes on steep hillslope vineyards. A comparison of Ruwertal (Germany) with the Montes de Málaga (Spain).

    NASA Astrophysics Data System (ADS)

    Rodrigo Comino, Jesús; Damián Ruiz Sinoga, José; María Senciales González, José; Guerra Merchán, Antonio; Seeger, Manuel; Ries, Johannes B.

    2016-04-01

    Nowadays, steep hillslope viticulture areas are one of the most complex agricultural eco-geomorphological systems in Europe. Precisely, the vineyards of the Ruwer-Mosel valley (Germany) and Montes de Málaga-Axarquía (Spain) are one clear example. Both regions are characterized by frequent heavy rainfall events, concentrated in summer (Germany) and autumn-winter (Spain), and intensive and not conservative land use managements on the soil (application of vine training systems, herbicides, non ecological amendments, anthropic rills generated by wheel traffic, footsteps in Germany and built by hoes or shovels in Spain). The goals of this work were: i) to determine and to quantify the hydrological and erosive phenomena in two traditional hillslope vineyards in Waldrach (Ruwer-Mosel valley, Germany) and Almáchar (Montes de Málaga-Axarquía, Spain); ii) to compare the geomorphological and hydrological dynamics of these study areas during diverse seasons and under different management conditions (Mediterranean and Continental climatic contexts, application of machineries, traditional protection measures...). For this purpose, a combined methodology performed by Trier and Málaga Universities with soil analysis, sediment traps, rainfall simulations and Guelph permeameter were applied. The main results showed high soil erosion and similar variations in the runoff and infiltration rates. In both study areas, geomorphological and hydrological dynamics registered several spatiotemporal variations along the upper, middle and foot slope, and during different seasons (before and after the vintage, and between the dry and humid period).

  14. (Semi-)Automated landform mapping of the alpine valley Gradental (Austria) based on LiDAR data

    NASA Astrophysics Data System (ADS)

    Strasser, T.; Eisank, C.

    2012-04-01

    Alpine valleys are typically characterised as complex, hierarchical structured systems with rapid landform changes. Detection of landform changes can be supported by automated geomorphological mapping. Especially, the analysis over short time scales require a method for standardised, unbiased geomorphological map reproduction, which is delivered by automated mapping techniques. In general, digital geomorphological mapping is a challenging task, since knowledge about landforms with respect to their natural boundaries as well as their hierarchical and scaling relationships, has to be integrated in an objective way. A combination of very-high spatial resolution data (VHSR) such as LiDAR and new methods like object based image analysis (OBIA) allow for a more standardised production of geomorphological maps. In OBIA the processing units are spatially configured objects that are created by multi-scale segmentation. Therefore, not only spectral information can be used for assigning the objects to geomorphological classes, but also spatial and topological properties can be exploited. In this study we focus on the detection of landforms, especially bedrock sediment deposits (alluvion, debris cone, talus, moraine, rockglacier), as well as glaciers. The study site Gradental [N 46°58'29.1"/ E 12°48'53.8"] is located in the Schobergruppe (Austria, Carinthia) and is characterised by heterogenic geology conditions and high process activity. The area is difficult to access and dominated by steep slopes, thus hindering a fast and detailed geomorphological field mapping. Landforms are identified using aerial and terrestrial LiDAR data (1 m spatial resolution). These DEMs are analysed by an object based hierarchical approach, which is structured in three main steps. The first step is to define occurring landforms by basic land surface parameters (LSPs), topology and hierarchy relations. Based on those definitions a semantic model is created. Secondly, a multi-scale segmentation is performed on a three-band LSP that integrates slope, aspect and plan curvature, which expresses the driving forces of geomorphological processes. In the third step, the generated multi-level object structures are classified in order to produce the geomorphological map. The classification rules are derived from the semantic model. Due to landform type-specific scale dependencies of LSPs, the values of LSPs used in the classification are calculated in a multi-scale manner by constantly enlarging the size of the moving window. In addition, object form properties (density, compactness, rectangular fit) are utilised as additional information for landform characterisation. Validation of classification is performed by intersecting a visually interpreted reference map with the classification output map and calculating accuracy matrices. Validation shows an overall accuracy of 78.25 % and a Kappa of 0.65. The natural borders of landforms can be easily detected by the use of slope, aspect and plan curvature. This study illustrates the potential of OBIA for a more standardised and automated mapping of surface units (landforms, landcover). Therefore, the presented methodology features a prospective automated geomorphological mapping approach for alpine regions.

  15. Irrigation channels of the Upper Rhone valley (Switzerland). Geomorphological analysis of a cultural heritage

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel

    2016-04-01

    The Upper Rhone valley (Canton of Valais, Switzerland) is characterised by dry climatic conditions that explain the presence of an important network (about 800 km) of irrigation channels - called Bisses in the French-speaking part of the canton or Suonen in the German-speaking area - dating back to the Middle Ages. This network constitutes a cultural heritage and during the last 30 years these agricultural infrastructures have sparked a renewed interest for tourist and cultural reasons. Indeed, the paths along the channels are used as tourist trails and several abandoned channels have been renovated for tourist use. Based on an inventory of the Bisses/Suonen of Valais, the proposed communication has three aims: (1) to analyse the geomorphological context (morphometric analysis, structural geomorphology, main processes) of various types of channels and to show the impact of the geomorphological context on the building techniques; (2) to identify particularly active processes along the channels; (3) to classify the Bisses/Suonen according to their geomorphological value and to their geomorphological sensitivity, and to propose managing measures. Structural and climatic conditions influence the geomorphological context of the channels. In a structural point of view, irrigation channels are developed in three main contexts: (1) in the Aar Massif crystalline basement; (2) in the limestone and marl cover nappes of the Helvetic Alps; (3) in the metamorphic cover nappes of the Penninic domain. The Rhone River valley is boarded by two high mountain ranges: the Penninic Alps in the South and the Bernese Alps in the North. Because of rain shadow effects, the climate is relatively dry and, between Brig and Martigny, annual rainfall is not more than 600 mm at 500 m ASL and 800 mm at 1600 m ASL. Nevertheless, due to important vertical precipitation gradients annual rainfall totals are high at high altitudes. On the southern facing tributary valleys, the dry climatic conditions are accentuated by high insulation and evaporation. Finally, foehn events are quite common. In a climatic point of view, the area can be divided in three main zones: (1) Upstream of Brig, the climate is characterised by cold and wet conditions, and irrigation is not necessary; (2) between Brig and Martigny, the rain shadow effect is responsible of irrigation needs in the lower altitudes, whereas at high altitudes rainfall is sufficient for plant growing without irrigation; (3) downstream of Martigny, the climate is wetter and irrigation is not necessary. In a palaeoclimatic point of view, the Rhone River catchment was characterised by numerous glaciations during the Quaternary. Quaternary glaciers have shaped the valleys (U-shaped valleys, hanged valleys) and the postglacial hydrographical network had to adapt to the glacial valleys (presence of numerous waterfalls, hanged valleys, postglacial gorges, alluvial fans). By crossing climatic and structural contexts, three groups of geomorphological contexts of irrigation channels can be highlighted: (1) In the tributary valleys situated South of the Rhone valley (Penninic Alps) the irrigation channels are simply dug in the valley slopes; several of them are affected by landslides typical of metamorphic rocks of Penninic Alps; (2) In the short tributary valleys of the crystalline Aar Massif - in the valleys North to the city of Visp -, the geomorphological context is characterised by steep slopes both in the tributary valleys and in the south-facing slopes dominating the Rhone River valley. In this area, water channels are cut into the rocks and in some parts they are built in wood pipes hanged along the rock walls; (3) In the tributary valleys of the Helvetic domain - North of the Rhone River between Leuk and Sion - the geological context highly influences the building techniques: due to geological dipping towards Southeast, the tributary valley are dissymmetric: in the dip slopes channels are simply cut in the soil, whereas in the steep opposite sides, they are hanged on the limestone rock walls. In the south-facing slopes of the main valley, differential erosion by the Rhone glacier has formed a complex alternation of hills, depressions and gently dipping slopes very favourable to agriculture; the irrigation network had adapted to this complex geomorphological context.

  16. A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning

    NASA Astrophysics Data System (ADS)

    Sear, D.; Newson, M.; Hill, C.; Branson, J.; Old, J.

    2005-12-01

    Fluvial geomorphology is increasingly used by those responsible for conserving river ecosystems; survey techniques are used to derive conceptual models of the processes and forms that characterise particular systems and locations, with a view to making statements of `condition' or `status' and providing fundamental strategies for rehabilitation/restoration. However, there are important scale-related problems in developing catchments scale restoration plans that inevitably are implemented on a reach- by-reach basis. This paper reports on a watershed scale methodology for setting geomorphological and physical habitat reference conditions based on a science-based conceptual model of cachment:channel function. Using a case study from the River Nar, a gravel-bed groundwater dominated river in the UK with important conservation status, the paper describes the sequences of the methodology; from analysis of available evidence, process of field data capture and development of a conceptual model of catchment-wide fluvial dynamics. Reference conditions were derived from the conceptual model and gathered from the literature for the two main river types found on the river Nar, and compared with the current situation in 76 sub-reaches from source to mouth. Multi-Criteria Analysis (MCA) was used to score the extent of channel departures from `natural' and to suggest the basis for a progressive restoration strategy for the whole river system. MCA is shown to be a flexible method for setting and communicating decisions that are amenable to stakeholder and public consultation.

  17. Influence of geomorphological properties and stage on in-stream travel time

    NASA Astrophysics Data System (ADS)

    Åkesson, Anna; Wörman, Anders

    2014-05-01

    The travel time distribution within stream channels is known to vary non-linearly with stage (discharge), depending on the combined effects of geomorphologic, hydrodynamic and kinematic dispersions. This non-linearity, implying that stream network travel time generally decreases with increasing discharge is a factor that is important to account for in hydrological modelling - especially when making peak flow predictions where uncertainty is often high and large values can be at risk. Through hydraulic analysis of several stream networks, we analyse how travel time distributions varies with discharge. The principal focus is the coupling to the geomorphologic properties of stream networks with the final goal being to use this physically based information as a parameterisation tool of the streamflow component of hydrologic models. For each of the studied stream networks, a 1D, steady-state, distributed routing model was set up to determine the velocities in each reach during different flow conditions. Although the model (based in the Manning friction formula) is built on the presence of uniform conditions within sub-reaches, the model can in the stream network scale be considered to include effects of non-uniformity as supercritical conditions in sections of the stream network give rise to backwater effects that reduce the flow velocities in upstream reaches in the stream. By coupling the routing model to a particle tracking routine tracing water "parcels" through the stream network, the average travel time within the stream network can be determined quantitatively for different flow conditions. The data used to drive the model is digitised stream network maps, topographical data (DEMs). The model is not calibrated in any way, but is run for with different sets of parameters representing a span of possible friction coefficients and cross-sectional geometries as this information is not generally known. The routing model is implemented in several different stream networks (representing catchments of the spatial scale of a few hundred km2) in different geographic regions in Sweden displaying different geomorphological properties. Results show that the geomorphological properties (data that is often available in the form of maps and/or DEMs) of individual stream networks have major influence on the stream network travel times. By coupling the geomorphological information to general expressions for stage dependency, catchment-specific relationships of how the travel times within stream networks can be determined. Basing the parameterisation procedure of a hydrological model in physical catchment properties and process understanding rather than statistical parameterisation (based in how a catchment has responded in the past) - is believed to lead to more reliable hydrological predictions - during extreme conditions as well as during changing conditions such as climate change and landscape modifications, and/or when making predictions in ungauged basins.

  18. Applicability of Complexity Theory to Martian Fluvial Systems: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Rosenshein, E. B.

    2003-01-01

    In the last 15 years, terrestrial geomorphology has been revolutionized by the theories of chaotic systems, fractals, self-organization, and selforganized criticality. Except for the application of fractal theory to the analysis of lava flows and rampart craters on Mars, these theories have not yet been applied to problems of Martian landscape evolution. These complexity theories are elucidated below, along with the methods used to relate these theories to the realities of Martian fluvial systems.

  19. Perfection and complexity in the lower Brazos River

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2007-11-01

    The "perfect landscape" concept is based on the notion that any specific geomorphic system represents the combined, interacting effects of a set of generally applicable global laws and a set of geographically and historically contingent local controls. Because the joint probability of any specific combination of local and global controls is low, and the local controls are inherently idiosyncratic, the probability of existence of any given landscape is vanishingly small. A perfect landscape approach to geomorphic complexity views landscapes as circumstantial, contingent outcomes of deterministic laws operating in a specific environmental and historical context. Thus, explaining evolution of complex landscapes requires the integration of global and local approaches. Because perfection in this sense is the most important and pervasive form of complexity, the study of geomorphic complexity is not restricted to nonlinear dynamics, self-organization, or any other aspects of complexity theory. Beyond what can be achieved via complexity theory, the details of historical and geographic contexts must be addressed. One way to approach this is via synoptic analyses, where the relevant global laws are applied in specific situational contexts. A study of non-acute tributary junctions in the lower Brazos River, Texas illustrates this strategy. The application of generalizations about tributary junction angles, and of relevant theories, does not explain the unexpectedly high occurrence or the specific instances of barbed or straight junctions in the study area. At least five different causes for the development of straight or obtuse junction angles are evident in the lower Brazos. The dominant mechanism, however, is associated with river bank erosion and lateral channel migration which encroaches on upstream-oriented reaches of meandering tributaries. Because the tributaries are generally strongly incised in response to Holocene incision of the Brazos, the junctions are not readily reoriented to the expected acute angle. The findings are interpreted in the context of nonlinear divergent evolution, geographical and historical contingency, synoptic frameworks for generalizing results, and applicability of the dominant processes concept in geomorphology.

  20. The development and application of landscape evolution models to coupled coast-estuarine environments

    NASA Astrophysics Data System (ADS)

    Morris, Chloe; Coulthard, Tom; Parsons, Daniel R.; Manson, Susan; Barkwith, Andrew

    2017-04-01

    Landscape Evolution Models (LEMs) are proven to be useful tools in understanding the morphodynamics of coast and estuarine systems. However, perhaps owing to the lack of research in this area, current models are not capable of simulating the dynamic interactions between these systems and their co-evolution at the meso-scale. Through a novel coupling of numerical models, this research is designed to explore coupled coastal-estuarine interactions, controls on system behaviour and the influence that environmental change could have. This will contribute to the understanding of the morphodynamics of these systems and how they may behave and evolve over the next century in response to climate changes, with the aim of informing management practices. This goal is being achieved through the modification and coupling of the one-line Coastline Evolution Model (CEM) with the hydrodynamic LEM CAESAR-Lisflood (C-L). The major issues faced with coupling these programs are their differing complexities and the limited graphical visualisations produced by the CEM that hinder the dissemination of results. The work towards overcoming these issues and reported here, include a new version of the CEM that incorporates a range of more complex geomorphological processes and boasts a graphical user interface that guides users through model set-up and projects a live output during model runs. The improved version is a stand-alone tool that can be used for further research projects and for teaching purposes. A sensitivity analysis using the Morris method has been completed to identify which key variables, including wave climate, erosion and weathering values, dominate the control of model behaviour. The model is being applied and tested using the evolution of the Holderness Coast, Humber Estuary and Spurn Point on the east coast of England (UK), which possess diverse geomorphologies and complex, co-evolving sediment pathways. Simulations using the modified CEM are currently being completed to ascertain the processes influential to the morphodynamics and evolution of these systems; presently this includes increasing sea levels and changing wave climate patterns. Outputs and findings from these runs will be presented and discussed, with the aid of the improved graphical visualisations and animations that illustrate the evolution of simulated environments.

  1. Object-based classification of global undersea topography and geomorphological features from the SRTM30_PLUS data

    NASA Astrophysics Data System (ADS)

    Dekavalla, Maria; Argialas, Demetre

    2017-07-01

    The analysis of undersea topography and geomorphological features provides necessary information to related disciplines and many applications. The development of an automated knowledge-based classification approach of undersea topography and geomorphological features is challenging due to their multi-scale nature. The aim of the study is to develop and evaluate an automated knowledge-based OBIA approach to: i) decompose the global undersea topography to multi-scale regions of distinct morphometric properties, and ii) assign the derived regions to characteristic geomorphological features. First, the global undersea topography was decomposed through the SRTM30_PLUS bathymetry data to the so-called morphometric objects of discrete morphometric properties and spatial scales defined by data-driven methods (local variance graphs and nested means) and multi-scale analysis. The derived morphometric objects were combined with additional relative topographic position information computed with a self-adaptive pattern recognition method (geomorphons), and auxiliary data and were assigned to characteristic undersea geomorphological feature classes through a knowledge base, developed from standard definitions. The decomposition of the SRTM30_PLUS data to morphometric objects was considered successful for the requirements of maximizing intra-object and inter-object heterogeneity, based on the near zero values of the Moran's I and the low values of the weighted variance index. The knowledge-based classification approach was tested for its transferability in six case studies of various tectonic settings and achieved the efficient extraction of 11 undersea geomorphological feature classes. The classification results for the six case studies were compared with the digital global seafloor geomorphic features map (GSFM). The 11 undersea feature classes and their producer's accuracies in respect to the GSFM relevant areas were Basin (95%), Continental Shelf (94.9%), Trough (88.4%), Plateau (78.9%), Continental Slope (76.4%), Trench (71.2%), Abyssal Hill (62.9%), Abyssal Plain (62.4%), Ridge (49.8%), Seamount (48.8%) and Continental Rise (25.4%). The knowledge-based OBIA classification approach was considered transferable since the percentages of spatial and thematic agreement between the most of the classified undersea feature classes and the GSFM exhibited low deviations across the six case studies.

  2. Geomorphology, active tectonics, and landscape evolution in the Mid-Atlantic region: Chapter

    USGS Publications Warehouse

    Pazzaglia, Frank J.; Carter, Mark W.; Berti, Claudio; Counts, Ronald C.; Hancock, Gregory S.; Harbor, David; Harrison, Richard W.; Heller, Matthew J.; Mahan, Shannon; Malenda, Helen; McKeon, Ryan; Nelson, Michelle S.; Prince, Phillip; Rittenour, Tammy M.; Spotilla, James; Whittecar, G. Richard

    2015-01-01

    In 2014, the geomorphology community marked the 125th birthday of one of its most influential papers, “The Rivers and Valleys of Pennsylvania” by William Morris Davis. Inspired by Davis’s work, the Appalachian landscape rapidly became fertile ground for the development and testing of several grand landscape evolution paradigms, culminating with John Hack’s dynamic equilibrium in 1960. As part of the 2015 GSA Annual Meeting, the Geomorphology, Active Tectonics, and Landscape Evolution field trip offers an excellent venue for exploring Appalachian geomorphology through the lens of the Appalachian landscape, leveraging exciting research by a new generation of process-oriented geomorphologists and geologic field mapping. Important geomorphologic scholarship has recently used the Appalachian landscape as the testing ground for ideas on long- and short-term erosion, dynamic topography, glacial-isostatic adjustments, active tectonics in an intraplate setting, river incision, periglacial processes, and soil-saprolite formation. This field trip explores a geologic and geomorphic transect of the mid-Atlantic margin, starting in the Blue Ridge of Virginia and proceeding to the east across the Piedmont to the Coastal Plain. The emphasis here will not only be on the geomorphology, but also the underlying geology that establishes the template and foundation upon which surface processes have etched out the familiar Appalachian landscape. The first day focuses on new and published work that highlights Cenozoic sedimentary deposits, soils, paleosols, and geomorphic markers (terraces and knickpoints) that are being used to reconstruct a late Cenozoic history of erosion, deposition, climate change, and active tectonics. The second day is similarly devoted to new and published work documenting the fluvial geomorphic response to active tectonics in the Central Virginia seismic zone (CVSZ), site of the 2011 M 5.8 Mineral earthquake and the integrated record of Appalachian erosion preserved on the Coastal Plain. The trip concludes on Day 3, joining the Kirk Bryan Field Trip at Great Falls, Virginia/ Maryland, to explore and discuss the dramatic processes of base-level fall, fluvial incision, and knickpoint retreat.

  3. Fluvial biogeomorphology in the Anthropocene: Managing rivers and managing landscapes.

    NASA Astrophysics Data System (ADS)

    Viles, Heather

    2015-04-01

    Biogeomorphology considers the many, and often complex, interactions between ecological and geomorphological processes. The concept of the Anthropocene deserves greater attention by scientists working on biogeomorphology, as will be demonstrated in this talk though a focus on fluvial environments. Rivers and river systems have been the subject of long-term human interference and management across the world, often in the form of direct manipulation of biogeomorphic interactions. Up to the present three broadly-defined phases of the Anthropocene can be identified - the Palaeoanthropocene, the Industrial Revolution and the Great Acceleration. Each of these broad phases of the Anthropocene has different implications for fluvial biogeomorphology and river management. The nature and dynamics of tufa-depositing systems provide good examples of the differing Anthropocene situations and will be focused on in this talk. We may now be entering a fourth phase of the Anthropocene called 'Earth system stewardship'. In terms of better understanding and managing the biogeomorphic interactions within rivers in such a phase, an improved conceptualisation of the Anthropocene and the complex web of interactions between human, ecological and geomorphological processes is needed.

  4. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    PubMed Central

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling. PMID:29633984

  5. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    USGS Publications Warehouse

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  6. Geomorphological survey and remote sensing analysis: a multidisciplinary approach to reconstruct triggering factors of a DSGSD in Maso Corto (South Tyrol, Italy)

    NASA Astrophysics Data System (ADS)

    Amato, Gabriele; Fubelli, Giandomenico; Piccin, Gianluca; Chinellato, Giulia; Iasio, Christian; Mosna, David; Morelli, Corrado

    2015-04-01

    In the Alpine regions, it is essential and urgent to define an improved and specific set of monitoring methods for the evolution of instability phenomena in order to avoid the closure of the installations because of the occurrence of natural calamities and to ensure the safety of citizens. In this context the SloMove Project aims at consolidate know-how of the ordinary monitoring applications of surface movements, evaluate their pros and cons and optimize the expected technical procedures of investigation. Within the SloMove project, an experimental composite monitoring has been carried out in the touristic site of Maso Corto (South Tyrol, Italy). Structural-Geomorphological Survey, GPS measurements and Time series analysis of SAR Interferometry data have been integrated. The purposes of this experiment are: 1) to reconstruct the geomorphological dynamics and their state of activity; 2) to provide considerations on the role of permafrost as an influential factor for landslide activity. Structural-Geomorphological survey highlighted control of structural asset of the outcropping lithologies on geomorphological markers, such as trenches, counterscarps, outcropping sliding surfaces. The area is characterized by metamorphic rocks, affected by foliation oriented between N350 and N30. Moreover, joints due to frost thaw activity are common in the shallow portions and the presence of two sets of tectonics fractures (N45, 45°-60° and N360, sub-vertical) has been recognized. In order to evaluate the state of permafrost, rock glaciers in the area have been investigated. SAR interferometry data have been processed by TRE® through the SqueeSAR™ analysis using Radarsat and Envisat images acquired during a period between 2003 and 2009. GPS surveys were carried out through the technique of Rapid-Static Relative Positioning during the summer months of 2012 and 2013. Data shows that an area of 2km2, north of Maso Corto, is affected by a Deep Seated Gravitational Slide Deformation that affects the outcropping metamorphic rocks throughout most part of the slope. Deformation facing southeast is extremely slow, reaching a maximum average speed of 10-15 mm/y. A clearly visible sliding surface, rising further upstream, separates stable bedrock by the deformed layer. Structural-Geomorphological Survey allowed to understand the boundaries of the DSGSD that is located on the east flank of the mountain north of the town, where the adjacent re-incised N-S glacial valley rises the maximum deep. Finally, GPS data measured 34 mm/y as the maximum horizontal velocity value of the rock glaciers in the study area. This low displacement rate let us assume that discontinuous, shallow, hot and thin permafrost may be present in the area. The overall analysis of composite survey suggests that the DSGSD formation may result as consequence of deglaciation, subsequent river incision and presence of tectonic discontinuity surfaces, favorably oriented with respect to the maximum slope, whereas the recent degradation of permafrost, due to post-LGM global warming, might have triggered or increased the velocity of the movement. Keywords: integrated monitoring, permafrost, DSGSD, InSAR, GPS, Rock Glacier, Geomorphological Survey, Alps

  7. Observation of the geology and geomorphology of the 1999 Marsokhod test site

    USGS Publications Warehouse

    De Hon, R. A.; Barlow, N.G.; Reagan, M.K.; Bettis, E. Arthur; Foster, C.T.; Gulick, V.C.; Crumpler, L.S.; Aubele, J.C.; Chapman, M.G.; Tanaka, K.L.

    2001-01-01

    The Marsokhod rover returned data from six stations that were used to decipher the geomorphology and geology of a region not previously visited by members of the geomorphology field team. Satellite images and simulated descent images provided information about the regional setting. The landing zone was on an alluvial apron flanking a mountain block to the west and a playa surface to the east. Rover color images, infrared spectra analysis of the mountains, and the apron surface provided insight into the rock composition of the nearby mountains. From the return data the geomorphology team interpreted the region to consist of compressionally deformed, ancient marine sediments and igneous rocks exposed by more recent extensional tectonics. Unconsolidated alluvial materials blanket the lower flanks of the mountains. An ancient shoreline cut into alluvial material marks a high stand of water during a past, wetter climate period. Playa sediments floor a present-day, seasonally, dry lake. Observations made by the rover using panoramic and close-up (hand specimens-scale) image data and color scene data confirmed the presence of boulders, cobbles, and fines of various provinces. Rover traverses to sites identified as geologically distinct, such as fan, channel, shoreline, and playa, provided useful clues to the geologic interpretations. Analysis of local rocks was given context only through comparison with distant geologic features. These results demonstrated the importance of a multifaceted approach to site interpretation through comparison of interpretations derived by differing geologic techniques. Copyright 2001 by the American Geophysical Union.

  8. Control of the geomorphology and gas hydrate extent on widespread gas emissions offshore Romania (Black Sea)

    NASA Astrophysics Data System (ADS)

    Riboulot, V.; Cattaneo, A.; Sultan, N.; Ker, S.; Scalabrin, C.; Gaillot, A.; Jouet, G.; Marsset, B.; Thomas, Y.; Ballas, G.; Marsset, T.; Garziglia, S.; Ruffine, L.; Boulart, C.

    2016-12-01

    The Romanian sector of the Black Sea deserves attention because the Danube deep-sea fan is one of the largest sediment depositional systems worldwide and is considered the world's most isolated sea, the largest anoxic water body on the planet and a unique energy-rich sea. Due to the high sediment accumulation rate, presence of organic matter and anoxic conditions, the Black sea sediment offshore the Danube delta is rich in gas and thus show BSR. The cartography of the BSR over the last 20 years, exhibits its widespread occurrence, indicative of extensive development of hydrate accumulations and a huge gas hydrate potential. By combining old and new datasets acquired in 2015 during the GHASS expedition, we performed a geomorphological analysis of the continental slope north-east of the Danube canyon that reveals the presence of several landslides inside and outside several canyons incising the seafloor. It is a complex study area presenting sedimentary processes such as seafloor erosion and instability, mass wasting, formation of gas hydrates, fluid migration, gas escape, where the imprint of geomorphology seems to dictate the location where gas seep occurs. . Some 1409 gas seeps within the water column acoustic records are observed between 200 m and 800 m water depth. No gas flares were detected in deeper areas where gas hydrates are stable. Overall, 93% of the all gas seeps observed are above geomorphological structures. 78% are right above escarpment induced by sedimentary destabilizations inside or outside canyons. The results suggest a geomorphological control of degassing at the seafloor and gas seeps are thus constrained by the gas hydrates stability zone. The stability of the gas hydrates is dependent on the salinity gradient through the sedimentary column and thus on the Black Sea recent geological history. The extent and the dynamics of gas hydrates have a probable impact on the sedimentary destabilization observed at the seafloor.

  9. Coastal Geomorphology, Growth Patterns and Stratigraphy of Uplifted Coral-Reef Terraces of Sumba Island, Indonesia: Towards a Re-Evaluation of Quaternary Sea-Level Highstands

    NASA Astrophysics Data System (ADS)

    Rigaud, S.; Leclerc, F.; Abidin, H. Z.; Bijaksana, S.; Chiang, H. W.; Ginting Munthe, F. A.; Liu, X.; Meilano, I.; Pradipta, G. C.; Ramdhani, B. D.; Tapponnier, P.; Wang, X.

    2016-12-01

    The island of Sumba (Indonesia) is uniquely located within the Sunda-Banda forearc, at the transition between oceanic subduction and arc-continent collision, and has experienced vertical movements for the last 7 Myrs (Fortuin et al., 1997). The spectacular flights of coral-reef terraces exposed on the northern coast have served as benchmarks to reconstruct Quaternary sea-level highstands (stages 5 to 23). Sea-level paleo-elevations were established using reef crests and marine notches as geomorphological markers, assuming a constant uplift rate of 0.49 mm/yr and neglecting erosion and weathering processes (Pirazzoli et al., 1991, 1993). Recent and fossil coral reefs of the northern coast of Sumba Island are fringing, leeward reefs. A new examination of the morphology and stratigraphy of fossil terraces shows that they are primarily built by prograding complexes formed during forced regressions. The current geomorphological expression of reef crests, therefore, does not correspond to the highest position of past sea-levels. The same is true for marine notches, which may only indicate intermediary still-stand phases and are barely distinguishable from weathering surfaces in terraces older than stages 5-7. In our study, we use the elevation of the inner edges of coral terraces as indicators of the highest position of the sea-level during Quaternary highstands. At the island scale, our geomorphological investigations, U/Th dating and high-resolution correlations point to high discrepancies in the deformation patterns, especially at Cape Laundi where the position of past sea-level highstands was established. Through a multi-disciplinary study involving geomorphology, stratigraphy, tectonic, sedimentology, paleontology and geochronology, we offer new estimates for uplift rates at the island scale and re-evaluate the elevation of past sea-level highstands. References : Fortuin et al. 1997. Journal of Asian Earth Sciences 15, p. 61-88. Pirazzoli et al. 1991. Science 252, p. 1834-1836. Pirazzoli et al. 1993. Marine Geology 109, p. 221-236.

  10. Complex geomorphologic assemblage of terrains in association with the banded terrain in Hellas basin, Mars

    NASA Astrophysics Data System (ADS)

    Diot, X.; El-Maarry, M. R.; Schlunegger, F.; Norton, K. P.; Thomas, N.; Grindrod, P. M.; Chojnacki, M.

    2016-02-01

    Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called ;banded terrain;, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas.

  11. A new multi-scale geomorphological landscape GIS for the Netherlands

    NASA Astrophysics Data System (ADS)

    Weerts, Henk; Kosian, Menne; Baas, Henk; Smit, Bjorn

    2013-04-01

    At present, the Cultural Heritage Agency of the Netherlands is developing a nationwide landscape Geographical Information System (GIS). In this new conceptual approach, the Agency puts together several multi-scale landscape classifications in a GIS. The natural physical landscapes lie at the basis of this GIS, because these landscapes provide the natural boundary conditions for anthropogenic. At the local scale a nationwide digital geomorphological GIS is available in the Netherlands. This map, that was originally mapped at 1:50,000 from the late 1970's to the 1990's, is based on geomorphometrical (observable and measurable in the field), geomorphological and, lithological and geochronological criteria. When used at a national scale, the legend of this comprehensive geomorphological map is very complex which hampers use in e.g. planning practice or predictive archaeology. At the national scale several landscape classifications have been in use in the Netherlands since the early 1950's, typically ranging in the order of 10 -15 landscape units for the entire country. A widely used regional predictive archaeological classification has 13 archaeo-landscapes. All these classifications have been defined "top-down" and their actual content and boundaries have only been broadly defined. Thus, these classifications have little or no meaning at a local scale. We have tried to combine the local scale with the national scale. To do so, we first defined national physical geographical regions based on the new 2010 national geological map 1:500,000. We also made sure there was a reference with the European LANMAP2 classification. We arrived at 20 landscape units at the national scale, based on (1) genesis, (2) large-scale geomorphology, (3) lithology of the shallow sub-surface and (4) age. These criteria that were chosen because the genesis of the landscape largely determines its (scale of) morphology and lithology that in turn determine hydrological conditions. All together, they define the natural boundary conditions for anthropogenic use. All units have been defined, mapped and described based on these criteria. This enables the link with the European LANMAP2 GIS. The unit "Till-plateau sand region" for instance runs deep into Germany and even Poland. At the local scale, the boundaries of the national units can be defined and precisely mapped by linking them to the 1:50,000 geomorphological map polygons. Each national unit consists of a typical assemblage of local geomorphological units. So, the newly developed natural physical landscape map layer can be used from the local to the European scale.

  12. A Framework for the Ecogeomorphological Modelling of the Macquarie Marshes, Australia

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Seoane Salazar, M.; Sandi Rojas, S.; Saco, P. M.; Riccardi, G.; Saintilan, N.; Wen, L.

    2014-12-01

    The Macquarie Marshes is a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Over the last four decades, some of the wetlands have undergone degradation, which has been attributed to flow abstraction and regulation at Burrendong Dam upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological framework that combines hydrodynamic, vegetation and channel evolution modules. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model. We perform preliminary tests by running continuous simulation over several years and compare the results to existing hydrological, vegetation and geomorphological data to assess the model capabilities and limitations. We also analyse the effects of the implementation of a number of water management strategies.

  13. Geomorphological Fieldwork

    USGS Publications Warehouse

    Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    Geomorphological Fieldwork addresses a topic that always remains popular within the geosciences and environmental science. More specifically, the volume conveys a growing legacy of field-based learning for young geomorphologists that can be used as a student book for field-based university courses and postgraduate research requiring fieldwork or field schools. The editors have much experience of field-based learning within geomorphology and extend this to physical geography. The topics covered are relevant to basic geomorphology as well as applied approaches in environmental and cultural geomorphology. The book integrates a physical-human approach to geography, but focuses on physical geography and geomorphology from an integrated field-based geoscience perspective.

  14. Excursions in fluvial (dis)continuity

    NASA Astrophysics Data System (ADS)

    Grant, Gordon E.; O'Connor, Jim; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences. In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.

  15. Excursions in fluvial (dis)continuity

    USGS Publications Warehouse

    Grant, Gordon E.; O'Connor, James E.; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences.In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.

  16. Inlet Geomorphology Evolution

    DTIC Science & Technology

    2015-04-01

    APR 2015 2. REPORT TYPE 3. DATES COVERED 00-00-2015 to 00-00-2015 4. TITLE AND SUBTITLE Inlet Geomorphology Evolution 5a. CONTRACT NUMBER 5b...Std Z39-18 Coastal Inlets Research Program Inlet Geomorphology Evolution The Inlet Geomorphology Evolution work unit of the CIRP evaluates

  17. Quaternary geology and geomorphology of the lower Deschutes River Canyon, Oregon.

    Treesearch

    Jim E. O' Connor; Janet H. Curran; Robin A. Beebee; Gordon E. Grant; Andrei Sarna-Wojcicki

    2003-01-01

    The morphology of the Deschutes River canyon downstream of the Pelton-Round Butte dam complex is the product of the regional geologic history, the composition of the geologic units that compose the valley walls, and Quaternary processes and events. Geologic units within the valley walls and regional deformation patterns control overall valley morphology. Valley bottom...

  18. On the relation between fluvio-deltaic flood basin geomorphology and the wide-spread occurrence of arsenic pollution in shallow aquifers.

    PubMed

    Donselaar, Marinus E; Bhatt, Ajay G; Ghosh, Ashok K

    2017-01-01

    Pollution of groundwater with natural (geogenic) arsenic occurs on an enormous, world-wide scale, and causes wide-spread, serious health risks for an estimated more than hundred million people who depend on the use of shallow aquifers for drinking and irrigation water. A literature review of key studies on arsenic concentration levels yields that Holocene fluvial and deltaic flood basins are the hotspots of arsenic pollution, and that the dominant geomorphological setting of the arsenic-polluted areas consists of shallow-depth meandering-river deposits with sand-prone fluvial point-bar deposits surrounded by clay-filled (clay plug) abandoned meander bends (oxbow lakes). Analysis of the lithofacies distribution and related permeability contrasts of the geomorphological elements in two cored wells in a point bar and adjacent clay plug along the Ganges River, in combination with data of arsenic concentrations and organic matter content reveals that the low-permeable clay-plug deposits have a high organic matter content and the adjacent permeable point-bar sands show high but spatially very variable arsenic concentrations. On the basis of the geomorphological juxtaposition, the analysis of fluvial depositional processes and lithofacies characteristics, inherent permeability distribution and the omnipresence of the two geomorphological elements in Holocene flood basins around the world, a generic model is presented for the wide-spread arsenic occurrence. The anoxic deeper part (hypolimnion) of the oxbow lake, and the clay plugs are identified as the loci of reactive organic carbon and microbial respiration in an anoxic environment that triggers the reductive dissolution of iron oxy-hydroxides and the release of arsenic on the scale of entire fluvial floodplains and deltaic basins. The adjacent permeable point-bar sands are identified as the effective trap for the dissolved arsenic, and the internal permeability heterogeneity is the cause for aquifer compartmentalization, with large arsenic concentration differences between neighboring compartments. Copyright © 2016 Elsevier B.V. All rights reserved.

  19. Coastal cliff geometry derived from structure-from-motion photogrammetry at Stara Ba\\vska, Krk Island, Croatia

    NASA Astrophysics Data System (ADS)

    Ružić, Igor; Marović, Ivan; Benac, Čedomir; Ilić, Suzana

    2014-12-01

    The aim of this study was to examine the capability of structure-from-motion photogrammetry in defining the geometry of cliffs and undercuts in rocks of complex geomorphology. A case site was chosen along pocket beaches near the village of Stara Ba\\vska on the Adriatic Sea island of Krk, Gulf of Kvarner, Croatia, where cliff erosion of 5 m in breccias was identified by comparison of aerial photographs from 1960 and 2004. The 3D point cloud was derived from approx. 800 photos taken on 9 January 2014 by a single camera from various elevations and angles, and processed using the online software ReCap (Autodesk). Data acquisition was found to be quick and the method easy to implement. The difference between the georeferenced 3D cloud points and an RTK-GPS survey was 7 cm, i.e. within the limits of RTK-GPS precision. Quantifying the spatial variation in undercut geometries revealed that the deepest and largest (17 m3) undercut was in the south-eastern sector of the beach. Reconstructing the detailed geomorphology of this 3.8-m-deep undercut convincingly demonstrates the high efficiency of the method. Such assessments of spatiotemporal changes in undercut and overhang volumes can prove useful for evaluations of cliff erosion risk. Coupled with the low cost and relatively simple application, this is evidently an attractive technique for meaningful geotechnical and coastal engineering monitoring in the future on the island of Krk and, for that matter, also on other Adriatic islands and in similar settings worldwide.

  20. Geology of Libya Montes and the Interbasin Plains of Northern Tyrrhena Terra, Mars: Project Introduction and First Year Work Plan

    NASA Technical Reports Server (NTRS)

    Skiner, J. A., Jr.; Rogers, A. D.; Seelos, K. D.

    2009-01-01

    The highland-lowland boundary (HLB) of Mars is interpreted to be a complex tectonic and erosional transition that may hold evidence for past geologic processes and environments. The HLB-abutting margin of the Libya Montes and the interbasin plains of northern Tyrrhena Terra display an exceptional view of the earliest to middle history of Mars that has yet to be fully characterized. This region contains some of the oldest exposed materials on the Martian surface as well as aqueous mineral signatures that may be potential chemical artifacts of early highland formational processes. However, a full understanding of the regions geologic and stratigraphic evolution is remarkably lacking. Some outstanding questions regarding the geologic evolution of Libya Montes and northern Tyrrhena Terra in-clude: Does combining geomorphology and composition advance our understanding of the region s evolution? Can highland materials be subdivided into stratigraphically discrete rock and sediment sequences? What do major physiographic transitions imply about the balanced tectonism, climate change, and erosion? Where is the erosional origin and what is the post-depositional history of channel and plains units? When and in what types of environments did aqueous mineral signatures arise? This abstract introduces the geologic setting, science rationale, and first year work plan of a recently-funded 4-year geologic mapping proposal (project year = calendar year). The objective is to delineate the geologic evolution of Libya Montes and northern Tyrrhena Terra at 1:1M scale using both classical geomorphological and compositional mapping techniques. The funded quadrangles are MTMs 00282, -05282, -10282, 00277, -05277, and -10277.

  1. Multi-scale curvature for automated identification of glaciated mountain landscapes

    NASA Astrophysics Data System (ADS)

    Prasicek, Günther; Otto, Jan-Christoph; Montgomery, David; Schrott, Lothar

    2014-05-01

    Automated morphometric interpretation of digital terrain data based on impartial rule sets holds substantial promise for large dataset processing and objective landscape classification. However, the geomorphological realm presents tremendous complexity in the translation of qualitative descriptions into geomorphometric semantics. Here, the simple, conventional distinction of V-shaped fluvial and U-shaped glacial valleys is analyzed quantitatively using the relation of multi-scale curvature and drainage area. Glacial and fluvial erosion shapes mountain landscapes in a long-recognized and characteristic way. Valleys incised by fluvial processes typically have V-shaped cross-sections with uniform and moderately steep slopes, whereas glacial valleys tend to have U-shaped profiles and topographic gradients steepening with distance from valley floor. On a DEM, thalweg cells are determined by a drainage area cutoff and multiple moving window sizes are used to derive per-cell curvature over a variety of scales ranging from the vicinity of the flow path at the valley bottom to catchment sections fully including valley sides. The relation of the curvatures calculated for the user-defined minimum scale and the automatically detected maximum scale is presented as a novel morphometric variable termed Difference of Minimum Curvature (DMC). DMC thresholds determined from typical glacial and fluvial sample catchments are employed to identify quadrats of glaciated and non-glaciated mountain landscapes and the distinctions are validated by field-based geological and geomorphological maps. A first test of the novel algorithm at three study sites in the western United States and a subsequent application to Europe and western Asia demonstrate the transferability of the approach.

  2. Geomorphology of Triton's polar materials

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1993-01-01

    One of Triton's most debated puzzles is the nature, distribution, and transport of its atmospheric volatiles. The full potential of constraints provided by detailed observations of the morphology and distribution of the polar deposits has not been realized. The objective of this study is characterization of the morphology, distribution, stratigraphy, and geologic setting of Triton's polar materials.

  3. Hydrologic processes in the pinyon-juniper woodlands: A literature review

    Treesearch

    Peter F. Ffolliott; Gerald J. Gottfried

    2012-01-01

    Hydrologic processes in the pinyon-juniper woodlands of the western region of the United States are variable because of the inherent interactions among the occurring precipitation regimes, geomorphological settings, and edaphic conditions that characterize the ecosystem. A wide range of past and present land-use practices further complicates comprehensive evaluations...

  4. Influences of watershed geomorphology on extent and composition of riparian vegetation

    Treesearch

    Blake M. Engelhardt; Peter J. Weisberg; Jeanne C. Chambers

    2011-01-01

    Watershed (drainage basin) morphometry and geology were derived from digital data sets (DEMs and geologic maps). Riparian corridors were classified into five vegetation types (riparian forest, riparian shrub, wet/mesic meadow, dry meadow and shrub dry meadow) using high-resolution aerial photography. Regression and multivariate analyses were used to relate geomorphic...

  5. Effects of Watershed Land Use and Geomorphology on Stream Baseflows In the Southern Blue Ridge Mountains, NC and GA

    EPA Science Inventory

    While it has been shown in many settings that both human land use and natural topographic variability influence stream baseflows, their interactions and relative influences have remained unresolved. Our objective was to determine the influence of human land use and watershed geo...

  6. Handbook on surficial uranium deposits. Chapter 3. World distribution relative to climate and physical setting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlisle, D

    1983-01-01

    This chapter discusses regional controls which affect the world distribution of surficial chemogenic uranium deposits. The most important of these are (1) climate, (2) geomorphology, including physiographic and climatic stability, and (3) provenance, i.e., the weathering terrain from which uranium and associated substances are derived. The three economically important environments are the calcrete environment, simple evaporative environments and paludal environments. Of these three categories, the calcrete uranium environment is probably the most uniquely constrained in terms of regional climate, geomorphic setting, provenance (vanadium as well as uranium) and especially the need for long term stability of both climate and physiography.more » Purely evaporative deposits, though subject to some of the same kinds of constraints, can also reflect local circumstances and a wider range of climates, physiographic settings, and source terrains. The third category encompassing bogs, marshes and organic-rich playas can form under an even wider range of climates and settings provided only that organic materials accumulate in abundance and are contacted by uranium-bearing waters. For all of these reasons and also because of the great economic importance of the calcrete environment as well as its relative novelty and complexity the discussion in this chapter is focused on calcrete, dolocrete and gypcrete uranium deposits. Objective data are reviewed first follwed by inferences and suggestions. 13 figures.« less

  7. Evaluating the use of augmented reality to support undergraduate student learning in geomorphology

    NASA Astrophysics Data System (ADS)

    Ockelford, A.; Bullard, J. E.; Burton, E.; Hackney, C. R.

    2016-12-01

    Augmented Reality (AR) supports the understanding of complex phenomena by providing unique visual and interactive experiences that combine real and virtual information and help communicate abstract problems to learners. With AR, designers can superimpose virtual graphics over real objects, allowing users to interact with digital content through physical manipulation. One of the most significant pedagogic features of AR is that it provides an essentially student-centred and flexible space in which students can learn. By actively engaging participants using a design-thinking approach, this technology has the potential to provide a more productive and engaging learning environment than real or virtual learning environments alone. AR is increasingly being used in support of undergraduate learning and public engagement activities across engineering, medical and humanities disciplines but it is not widely used across the geosciences disciplines despite the obvious applicability. This paper presents preliminary results from a multi-institutional project which seeks to evaluate the benefits and challenges of using an augmented reality sand box to support undergraduate learning in geomorphology. The sandbox enables users to create and visualise topography. As the sand is sculpted, contours are projected onto the miniature landscape. By hovering a hand over the box, users can make it `rain' over the landscape and the water `flows' down in to rivers and valleys. At undergraduate level, the sand-box is an ideal focus for problem-solving exercises, for example exploring how geomorphology controls hydrological processes, how such processes can be altered and the subsequent impacts of the changes for environmental risk. It is particularly valuable for students who favour a visual or kinesthetic learning style. Results presented in this paper discuss how the sandbox provides a complex interactive environment that encourages communication, collaboration and co-design.

  8. The influence of control parameter estimation on large scale geomorphological interpretation of pointclouds

    NASA Astrophysics Data System (ADS)

    Dorninger, P.; Koma, Z.; Székely, B.

    2012-04-01

    In recent years, laser scanning, also referred to as LiDAR, has proved to be an important tool for topographic data acquisition. Basically, laser scanning acquires a more or less homogeneously distributed point cloud. These points represent all natural objects like terrain and vegetation as well as man-made objects such as buildings, streets, powerlines, or other constructions. Due to the enormous amount of data provided by current scanning systems capturing up to several hundred thousands of points per second, the immediate application of such point clouds for large scale interpretation and analysis is often prohibitive due to restrictions of the hard- and software infrastructure. To overcome this, numerous methods for the determination of derived products do exist. Commonly, Digital Terrain Models (DTM) or Digital Surface Models (DSM) are derived to represent the topography using a regular grid as datastructure. The obvious advantages are a significant reduction of the amount of data and the introduction of an implicit neighborhood topology enabling the application of efficient post processing methods. The major disadvantages are the loss of 3D information (i.e. overhangs) as well as the loss of information due to the interpolation approach used. We introduced a segmentation approach enabling the determination of planar structures within a given point cloud. It was originally developed for the purpose of building modeling but has proven to be well suited for large scale geomorphological analysis as well. The result is an assignment of the original points to a set of planes. Each plane is represented by its plane parameters. Additionally, numerous quality and quantity parameters are determined (e.g. aspect, slope, local roughness, etc.). In this contribution, we investigate the influence of the control parameters required for the plane segmentation on the geomorphological interpretation of the derived product. The respective control parameters may be determined either automatically (i.e. estimated of the given data) or manually (i.e. supervised parameter estimation). Additionally, the result might be influenced if data processing is performed locally (i.e. using tiles) or globally. Local processing of the data has the advantages of generally performing faster, having less hardware requirements, and enabling the determination of more detailed information. By contrast, especially in geomorphological interpretation, a global data processing enables determining large scale relations within the dataset analyzed. We investigated the influence of control parameter settings on the geomorphological interpretation on airborne and terrestrial laser scanning data sets of the landslide at Doren (Vorarlberg, Austria), on airborne laser scanning data of the western cordilleras of the central Andes, and on HRSC terrain data of the Mars surface. Topics discussed are the suitability of automated versus manual determination of control parameters, the influence of the definition of the area of interest (local versus global application) as well as computational performance.

  9. The role of geomorphology in environmental impact assessment

    NASA Astrophysics Data System (ADS)

    Cavallin, A.; Marchetti, M.; Panizza, M.; Soldati, M.

    1994-04-01

    This paper aims to define the role of Geomorphology in the assessment of the impact of human activities on the environment. Environmental impact assessment (EIA) should be carried out for specific projects, in order to evaluate their suitability for the quality of the environment. In fact, each planned activity may have an impact on various environmental components. Among these, the natural component must be examined in terms of geomorphological hazards, which may endanger a project, and of geomorphological assets (elements forming the educational and cultural heritage of the landscape), which may be damaged to various extents by human activities. The relationships between humans and environment are taken into account, with particular attention to the effects of a project on the geomorphological environment. From a geomorphological point of view, after having assessed the suitability of a certain location, mainly with respect to its morphography and morphometry, the geomorphological hazards of the area which may threaten the project (risk) must be considered; then the geomorphological assets, which may be damaged by the same project (direct impact) have to be individuated. Human activities may produce two other kinds of effect: the first refers to the consequences of the geomorphological hazards induced by a project on the project itself (direct risk) and on the surronding areas (indirect risk); the second takes into account the potential deterioration of a geomorphological asset due to hazards induced by the project (indirect impact). Examples of these different cases are presented.

  10. Quantifying Precipitation Variability on Titan Using a GCM and Implications for Observed Geomorphology

    NASA Astrophysics Data System (ADS)

    Faulk, Sean P.; Mitchell, Jonathan L.; Moon, Seulgi; Lora, Juan Manuel

    2016-10-01

    Titan's zonal-mean precipitation behavior has been widely investigated using general circulation models (GCMs), but the spatial and temporal variability of rainfall in Titan's active hydrologic cycle is less well understood. We conduct statistical analyses of rainfall, diagnosed from GCM simulations of Titan's atmosphere, to determine storm intensity and frequency. Intense storms of methane have been proposed to be critical for enabling mechanical erosion of Titan's surface, as indicated by observations of dendritic valley networks. Using precipitation outputs from the Titan Atmospheric Model (TAM), a GCM shown to realistically simulate many features of Titan's atmosphere, we quantify the precipitation variability within eight separate latitude bins for a variety of initial surface liquid distributions. We find that while the overall wettest regions are indeed the poles, the most intense rainfall generally occurs in the high mid-latitudes, between 45-67.5 degrees, consistent with recent geomorphological observations of alluvial fans concentrated at those latitudes. We also find that precipitation rates necessary for surface erosion, as estimated by Perron et al. (2006) J. Geophys. Res. 111, E11001, frequently occur at all latitudes, with recurrence intervals of less than one Titan year. Such analysis is crucial towards understanding the complex interaction between Titan's atmosphere and surface and defining the influence of precipitation on observed geomorphology.

  11. Evaluation of TanDEM-X elevation data for geomorphological mapping and interpretation in high mountain environments - A case study from SE Tibet, China

    NASA Astrophysics Data System (ADS)

    Pipaud, Isabel; Loibl, David; Lehmkuhl, Frank

    2015-10-01

    Digital elevation models (DEMs) are a prerequisite for many different applications in the field of geomorphology. In this context, the two near-global medium resolution DEMs originating from the SRTM and ASTER missions are widely used. For detailed geomorphological studies, particularly in high mountain environments, these datasets are, however, known to have substantial disadvantages beyond their posting, i.e., data gaps and miscellaneous artifacts. The upcoming TanDEM-X DEM is a promising candidate to improve this situation by application of state-of-the-art radar technology, exhibiting a posting of 12 m and less proneness to errors. In this study, we present a DEM processed from a single TanDEM-X CoSSC scene, covering a study area in the extreme relief of the eastern Nyainqêntanglha Range, southeastern Tibet. The potential of the resulting experimental TanDEM-X DEM for geomorphological applications was evaluated by geomorphometric analyses and an assessment of landform cognoscibility and artifacts in comparison to the ASTER GDEM and the recently released SRTM 1″ DEM. Detailed geomorphological mapping was conducted for four selected core study areas in a manual approach, based exclusively on the TanDEM-X DEM and its basic derivates. The results show that the self-processed TanDEM-X DEM yields a detailed and widely consistent landscape representation. It thus fosters geomorphological analysis by visual and quantitative means, allowing delineation of landforms down to footprints of 30 m. Even in this premature state, the TanDEM-X elevation data are widely superior to the ASTER and SRTM datasets, primarily owing to its significantly higher resolution and its lower susceptibility to artifacts that hamper landform interpretation. Conversely, challenges toward interferometric DEM generation were identified, including (i) triangulation facets and missing topographic information resulting from radar layover on steep slopes facing toward the radar sensor, (ii) low coherence values on leeward slopes, (iii) decorrelation effects over water bodies, and (iv) challenges for phase unwrapping in settings of strong topographic contrasts. There is, however, a high probability that these drawbacks can be overcome by applying multiple interferograms exhibiting different perpendicular baselines as planned for the generation of the final TanDEM-X DEM product.

  12. Geomorphology, hydrology, and ecology of Great Basin meadow complexes - implications for management and restoration

    Treesearch

    Jeanne C. Chambers; Jerry R. Miller

    2011-01-01

    This report contains the results of a 6-year project conducted by the U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station and U.S. Environmental Protection Agency, Office of Research and Development on stream incision and meadow ecosystem degradation in the central Great Basin. The project included a coarse-scale assessment of 56 different...

  13. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Poeppl, Ronald E.; Keesstra, Saskia D.; Maroulis, Jerry

    2017-01-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to the coupling relationships between them. To better understand system complexity and system response to changing inputs, "connectivity thinking" has become an important recent paradigm within various disciplines including ecology, hydrology and geomorphology. With the presented conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Geomorphic response of fluvial systems to human disturbance is shown to be determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  14. Geomorphology and anthropogenic impact including military constraints in a microtidal wave-dominated embayment in south western Sardinia (Porto Pino beach, SCI ITB040025, Mediterranean Sea). Implications for beach management.

    NASA Astrophysics Data System (ADS)

    De Muro, Sandro; Buosi, Carla; Pusceddu, Nicola; Frongia, Paolo; Passarella, Marinella; Ibba, Angelo

    2016-04-01

    The coastal zones of the Mediterranean have undergone increasing pressure over the last century. The intensifying coastal development and the increasing tourist impact have led to an intense transformation of the coastlines and adjacent marine areas. The beach and the coastal dune play an important role in protecting the coastline. Thus, the study of its geomorphological evolution and of its anthropic modification is fundamental in order to adopt the best management practices. In this regard, the LIFE Project (LIFE13NAT/IT/001013) SOSS DUNES (Safeguard and management Of South-western Sardinian Dunes) aims to safeguard the dune habitats and the beach system in a site belonging to the Natura 2000 network, an EUwide network of nature protection areas established under the 1992 Habitats Directive. This project is focused on a microtidal wave-dominated embayment located in south western Sardinia (Italy, Mediterranean Sea) called Porto Pino beach comprised in the SCI (Site of Community Importance) "Promontory, dunes and wetland of Porto Pino (ITB040025)". This research aims to investigate the geomorphological processes, the evolution and the main human impacts on Porto Pino beach as an useful tool for both conservation and coastal management. The coastal area of Porto Pino is represented by sandy shorelines extending for a total length of 5 km characterized by a wide primary and secondary dune systems, a backshore wetland lagoon and marsh area arranged parallel to the coastline. This littoral area can be ideally divided into three parts: the first, about 600 m long, in the north-west part characterized by the highest human pressure due to touristic activity on the foredunes and deposition of beach wrack; the second part in the south-east, about 1100 m long, characterized by a complex dune system (primary and secondary foredunes); and the third southernmost part included in a military area, about 3300 m long, characterized by transgressive dune system with low human impact. The coastal dunes vulnerability status of this three parts was assessed using the Dune Vulnerability Index (DVI) based on 57 variables that described geomorphological condition, marine influence, aeolian influence, vegetation condition, and human effects. Results reveal the lowest vulnerability value in the area undergone military constraints. Blowouts, breaches in the coastal dune system and deflation areas are observed in the first and second part where there is the greatest human transit to allow users access of the beach. The main pressures and threats identified that determine significant impacts on dune habitats are: transit of vehicles in the dune with the subsequent degradation of vegetation and the triggering of deflation processes; setting of infrastructure on the dune; removal of seagrass banquettes. In particular, the impact of trucks used to remove banquettes is significant on subaerial beach morphology. This traffic flattens the berms, modifies sand permeability and reduces organic sediment input to the shore. This study has allowed to highlight the geomorphological processes, the anthropic pressure and the coastal dune vulnerability of this coastal area in order to mitigate the impacts.

  15. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models

    NASA Astrophysics Data System (ADS)

    Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea

    2017-12-01

    Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.

  16. Glaciation style and the geomorphological record: evidence for Younger Dryas glaciers in the eastern Lake District, northwest England

    NASA Astrophysics Data System (ADS)

    McDougall, Derek

    2013-08-01

    The Younger Dryas (c. 12,900-11,700 years ago) in Britain witnessed renewed glaciation, with the readvance of ice masses that had survived the preceding Lateglacial Interstadial as well as the formation of new glaciers. The extents of these former glaciers have been mapped by many workers over the past fifty years, usually as a basis for palaeoclimatic investigations. It has frequently been asserted that the landform record is sufficiently clear to allow accurate ice mass reconstructions at or near maximum extents. Detailed geomorphological mapping in the eastern Lake District in NW England, however, demonstrates that this confidence may not always be warranted. Whereas previous workers have interpreted the well-developed moraines that exist in some locations as evidence for an alpine-style of glaciation, with ice restricted to a small number of valleys, this study shows that the most recent glaciation to affect the area was characterised by: (i) extensive summit icefields, which supplied ice to the surrounding valleys; and (ii) a much greater volume of ice in the valleys than previously thought. The discovery that summit icefields were relatively common at this time is consistent with recent studies elsewhere in the Lake District and beyond. More significant, however, is the recognition that changing glacier-topographic interactions over both space and time appears to have had a profound impact on valley-floor glacial landform development, with the absence of clear moraines not necessarily indicating ice-free conditions at this time. This complicates glacier reconstructions based solely on the geomorphological record. Similar geomorphological complexity may be present in other areas that previously supported summit icefields, and this needs to be taken into account in glacier reconstructions.

  17. Quantitative evaluation of the risk induced by dominant geomorphological processes on different land uses, based on GIS spatial analysis models

    NASA Astrophysics Data System (ADS)

    Ştefan, Bilaşco; Sanda, Roşca; Ioan, Fodorean; Iuliu, Vescan; Sorin, Filip; Dănuţ, Petrea

    2018-06-01

    Maramureş Land is mostly characterized by agricultural and forestry land use due to its specific configuration of topography and its specific pedoclimatic conditions. Taking into consideration the trend of the last century from the perspective of land management, a decrease in the surface of agricultural lands to the advantage of built-up and grass lands, as well as an accelerated decrease in the forest cover due to uncontrolled and irrational forest exploitation, has become obvious. The field analysis performed on the territory of Maramureş Land has highlighted a high frequency of two geomorphologic processes — landslides and soil erosion — which have a major negative impact on land use due to their rate of occurrence. The main aim of the present study is the GIS modeling of the two geomorphologic processes, determining a state of vulnerability (the USLE model for soil erosion and a quantitative model based on the morphometric characteristics of the territory, derived from the HG. 447/2003) and their integration in a complex model of cumulated vulnerability identification. The modeling of the risk exposure was performed using a quantitative approach based on models and equations of spatial analysis, which were developed with modeled raster data structures and primary vector data, through a matrix highlighting the correspondence between vulnerability and land use classes. The quantitative analysis of the risk was performed by taking into consideration the exposure classes as modeled databases and the land price as a primary alphanumeric database using spatial analysis techniques for each class by means of the attribute table. The spatial results highlight the territories with a high risk to present geomorphologic processes that have a high degree of occurrence and represent a useful tool in the process of spatial planning.

  18. Application and evaluation of ERTS color composites for natural resources inventory. [hydrology, geomorphology, volcanology, geology, soils, and vegetation of Bolivia

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E. (Principal Investigator); Fernandez, A. C.

    1973-01-01

    The author has identified the following significant results. Bolivia is participating the Earth Resources Technology Satellite Program. Within this program many interesting sets of images were received which were evaluated in the Bolivian ERTS Program. One of the images was obtained in color of the central part of the Bolivian Altiplano. The color composite and black and white images were compared in order to evaluate which class of ERTS-1 product furnishes more information about specific topics. It was found that the color composites give far more information, about 50% more data, in hydrology, geomorphology, vulcanism, geology, soils, and vegetation than can be obtained from black and white images of the same scene. For this reason, the project is processing with preference color composites of the whole country.

  19. An Energy-Based Approach for Detection and Characterization of Subtle Entities Within Laser Scanning Point-Clouds

    NASA Astrophysics Data System (ADS)

    Arav, Reuma; Filin, Sagi

    2016-06-01

    Airborne laser scans present an optimal tool to describe geomorphological features in natural environments. However, a challenge arises in the detection of such phenomena, as they are embedded in the topography, tend to blend into their surroundings and leave only a subtle signature within the data. Most object-recognition studies address mainly urban environments and follow a general pipeline where the data are partitioned into segments with uniform properties. These approaches are restricted to man-made domain and are capable to handle limited features that answer a well-defined geometric form. As natural environments present a more complex set of features, the common interpretation of the data is still manual at large. In this paper, we propose a data-aware detection scheme, unbound to specific domains or shapes. We define the recognition question as an energy optimization problem, solved by variational means. Our approach, based on the level-set method, characterizes geometrically local surfaces within the data, and uses these characteristics as potential field for minimization. The main advantage here is that it allows topological changes of the evolving curves, such as merging and breaking. We demonstrate the proposed methodology on the detection of collapse sinkholes.

  20. Current trends in geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Seijmonsbergen, A. C.

    2012-04-01

    Geomorphological mapping is a world currently in motion, driven by technological advances and the availability of new high resolution data. As a consequence, classic (paper) geomorphological maps which were the standard for more than 50 years are rapidly being replaced by digital geomorphological information layers. This is witnessed by the following developments: 1. the conversion of classic paper maps into digital information layers, mainly performed in a digital mapping environment such as a Geographical Information System, 2. updating the location precision and the content of the converted maps, by adding more geomorphological details, taken from high resolution elevation data and/or high resolution image data, 3. (semi) automated extraction and classification of geomorphological features from digital elevation models, broadly separated into unsupervised and supervised classification techniques and 4. New digital visualization / cartographic techniques and reading interfaces. Newly digital geomorphological information layers can be based on manual digitization of polygons using DEMs and/or aerial photographs, or prepared through (semi) automated extraction and delineation of geomorphological features. DEMs are often used as basis to derive Land Surface Parameter information which is used as input for (un) supervised classification techniques. Especially when using high-res data, object-based classification is used as an alternative to traditional pixel-based classifications, to cluster grid cells into homogeneous objects, which can be classified as geomorphological features. Classic map content can also be used as training material for the supervised classification of geomorphological features. In the classification process, rule-based protocols, including expert-knowledge input, are used to map specific geomorphological features or entire landscapes. Current (semi) automated classification techniques are increasingly able to extract morphometric, hydrological, and in the near future also morphogenetic information. As a result, these new opportunities have changed the workflows for geomorphological mapmaking, and their focus have shifted from field-based techniques to using more computer-based techniques: for example, traditional pre-field air-photo based maps are now replaced by maps prepared in a digital mapping environment, and designated field visits using mobile GIS / digital mapping devices now focus on gathering location information and attribute inventories and are strongly time efficient. The resulting 'modern geomorphological maps' are digital collections of geomorphological information layers consisting of georeferenced vector, raster and tabular data which are stored in a digital environment such as a GIS geodatabase, and are easily visualized as e.g. 'birds' eye' views, as animated 3D displays, on virtual globes, or stored as GeoPDF maps in which georeferenced attribute information can be easily exchanged over the internet. Digital geomorphological information layers are increasingly accessed via web-based services distributed through remote servers. Information can be consulted - or even build using remote geoprocessing servers - by the end user. Therefore, it will not only be the geomorphologist anymore, but also the professional end user that dictates the applied use of digital geomorphological information layers.

  1. Rock falls landslides in Abruzzo (Central Italy) after recent earthquakes: morphostructural control

    NASA Astrophysics Data System (ADS)

    Piacentini, T.; Miccadei, E.; Di Michele, R.; Esposito, G.

    2012-04-01

    Recent earthquakes show that damages due to collateral effects could, in some cases exceed the economic and social losses directly connected to the seismic shaking. The earthquake heavily damaged urban areas and villages and induced several coseismic deformations and geomorphologic effects, including different types of instability such as: rock falls, debris falls, sink holes, ground collapses, liquefaction, etc. Among the effects induced by the seismic energy release, landslides are one of the most significant in terms of hazard and related risk, owing to the occurrence of exposed elements. This work analyzes the geomorphological effects, and particularly the rock falls, which occurred in the L'Aquila area during and immediately after the April 2009 earthquake. The analysis is focused mainly on the rock fall distribution related to the local morphostructural setting. Rock falls occurred mostly on calcareous bedrock slopes or on scarps developed on conglomerates and breccias of Quaternary continental deposits. Geological and geomorphological surveys have outlined different types of rock falls on different morpho-structural settings, which can be summarized as follow: 1)rock falls on calcareous faulted homoclinal ridges; 2)rock falls on calcareous rock slopes of karst landforms; 3)rock falls on structural scarps on conglomerates and breccias of Quaternary continental deposits. The first type of rockfall occurred particularly along main gorges carved on calcareous rocks and characterised by very steep fault slopes and structural slopes (i.e. San Venanzio Gorges, along the Aterno river). In these cases already unstable slopes due to lithological and structural control were triggered as rockfalls also at high distance from the epicentre area. These elements provide useful indications both at local scale, for seismic microzonation studies and seismic risk prevention, and at regional scale, for updating studies and inventory of landslides.

  2. Understanding of the Geomorphological Elements in Discrimination of Typical Mediterranean Land Cover Types

    NASA Astrophysics Data System (ADS)

    Elhag, Mohamed; Boteva, Silvena

    2017-12-01

    Quantification of geomorphometric features is the keystone concern of the current study. The quantification was based on the statistical approach in term of multivariate analysis of local topographic features. The implemented algorithm utilizes the Digital Elevation Model (DEM) to categorize and extract the geomorphometric features embedded in the topographic dataset. The morphological settings were exercised on the central pixel of 3x3 per-defined convolution kernel to evaluate the surrounding pixels under the right directional pour point model (D8) of the azimuth viewpoints. Realization of unsupervised classification algorithm in term of Iterative Self-Organizing Data Analysis Technique (ISODATA) was carried out on ASTER GDEM within the boundary of the designated study area to distinguish 10 morphometric classes. The morphometric classes expressed spatial distribution variation in the study area. The adopted methodology is successful to appreciate the spatial distribution of the geomorphometric features under investigation. The conducted results verified the superimposition of the delineated geomorphometric elements over a given remote sensing imagery to be further analyzed. Robust relationship between different Land Cover types and the geomorphological elements was established in the context of the study area. The domination and the relative association of different Land Cover types in corresponding to its geomorphological elements were demonstrated.

  3. A multi-disciplinary approach to study coastal complex landslides: the case of Torino di Sangro (Central Italy)

    NASA Astrophysics Data System (ADS)

    Sciarra, Marco; Carabba, Luigi; Urbano, Tullio; Calista, Monia

    2016-04-01

    This work illustrates the studies carried out on a complex landslide phenomenon between the Sangro and Osento River's mouths, near Torino di Sangro village in Southern Abruzzo Region (Italy). Historical activity of this landslide is well-documented since 1916; the activation/reactivation of the movements caused several interruptions of a national railway and the damage of few houses. The Torino di Sangro case study can be regarded as representative of many large landslides distributed along the central Adriatic coast (e.g., Ancona, Ortona, Vasto and Petacciato Landslides) that affect densely populated urban areas with a large amount of man-made infrastructure. The main controlling factors of these large and deep-seated landslides are still debated. From the geological and geomorphological viewpoint, the central Adriatic coast is characterized by a low-relief landscape (mesa) carved on clay-sandstone-conglomerate bedrock belonging to the Upper Pliocene - Lower Pleistocene marine deposits and locally to the Middle Pleistocene marine to continental transitional deposits. This high coast is widely affected by slope instability (rock falls, rotational, complex and shallow landslides) on both active and inactive sea cliffs, the first being mainly affected by wave-cut erosion and the latter influenced by heavy rainfall and changes of pore pressure. The main landslide has the typical characteristics of a deep-seated gravitation deformation. The landslide study was based on a multidisciplinary approach including: 1) definition and GIS mapping of geology and geomorphology factors (slope, aspect, topographic curvature, bedrock lithology, near-surface deposits, deposit thickness and land use), by means of DTM processing, multi-temporal analysis, and large-scale geomorphological field survey; 2) monitoring system in the landslide; 3) application of empiric models for the analysis of unstable sandstone-conglomerate escarpments; 4) slope stability analysis performed using a stress-strain numerical modeling solved by a Finite Difference Method (FLAC 2D). This study suggests that rock falls and shallow landslide are hazardous phenomenal that involve the near-surface cover of a bigger and more complex landslide. The distinction between secondary processes, which appear to be the most hazardous in the short-term, and deep-seated one, demonstrated that accurate multi-approach analysis provide important information that can be supportive for local administration and decision makers, and for the comprehension of the factors controlling large and deep-seated landslide affecting the Adriatic coastal slopes.

  4. Quantitative evaluation of the underground Geoheritage in karst areas: The Picos de Europa National Park, North Spain

    NASA Astrophysics Data System (ADS)

    Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; José Domínguez-Cuestra, María; García-Sansegundo, Joaquín; Meléndez-Asensio, Mónica

    2014-05-01

    Karst areas show a lot of kilometers of cave conduits with a hidden Geoheritage poorly investigated in previous works that concerning with their cultural, scientific and education values. The evaluation of cave Geoheritage is complex due to methodological constrains. One of the most important karst areas in the World is the Picos de Europa National Park (North Spain) that was declared as a Global Geosite in 2007 and includes 14 % of the World's Deepest Caves. The GEOCAVE research project is being developed in several caves from the Picos de Europa National Park since 2012 in order to characterize geomorphology and geochronology of the cavities, proposing and validating new methodologies adapted to these environments. The aim of this work is to evaluate the Geoheritage of the Picos de Europa caves based on the studies made in nine selected caves. The methodology includes: 1) elaboration of geomorphological maps of the nine selected caves, projecting geomorphological, geological, hydrogeological, paleontological and cultural forms on the caves surveys; and 2) definition and calculation of three indexes useful to evaluate the Geoheritage of the caves. The indexes are: a) Cave Geoheritage Extension Index (CGhEI), defined as the percentage of the area occupied by the entire features divided by the cave area (excluding the forms that represent the conduits themselves), b) Feature Extension Index (FEI), defined as the area occupied by each group of form divided by the cave area, and c) Cave Geodiversity Index (CGdI), defined as the number of forms divided by the cave area. The nine cave geomorphological maps cover 178,639 m2 of caves and include a whole of 14.9 km of karst conduits, representing these caves the 4.1 % of the conduits of the Picos de Europa. The values of the Cave Geoheritage Extension Index range from 22 to 82 %, while the values of the Feature Extension Indexes for each group of features reach the following values: Geomorphological FEI take values of 20-80 % (speleothems FEI is 15-60 %, fluviokarst FEI is 5-25 %, gravity FEI is 10-40 %); Geological FEI is 4-5 %; Hydrogeological FEI is 0-3 %; Paleontological FEI is 0-0.1% and cultural FEI is 0-4 %. the On the other hand, 84 features are recognized into the caves and the Cave Geodiversity Index ranges from 0.3 to 1.1 features/cm2. These results evidence that 22 to 82 % of the cave conduits are occupy with Geoheritage features, being most of them geomorphological forms (speleothems, fluviokarst and gravity forms). The Geodiversity of the karst caves is high, recognizing a whole of 84 features into the caves and showing a high density of forms. Consequently, underground Geoheritage from karst areas can be estimated combining geomorphological maps few selected caves and three indexes based on number and extensions of the features. These indexes allow us to assign a preliminary weight of the geomorphological, geological, hydrogeological, paleontological and cultural features in a karst area.

  5. Geomorphological reference condition definition as a basis for river restoration and river management: the example of Oiartzun, Oria and Urumea River basins (Basque Country)

    NASA Astrophysics Data System (ADS)

    Ibisate, Askoa; Ollero, Alfredo; Sáenz de Olazagoitia, Ana; Acín, Vanesa; Granado, David; Herrero, Xabier; Horacio, Jesús

    2017-04-01

    The application of hydrogeomorphology as a tool for river management and decision making on reference condition definition for river restoration is presented. Water Framework Directive (2000/60/CE) requires the identification of reference conditions and attainable target images, to achieve the good ecological status, taking into account the direct and indirect changes in the basin and river course. Data collection was done through an exhaustive fieldwork and GIS tools. Based on geomorphological homogeneous river reaches identification (waterfall, bedrock, step-pool, cascade, coluvial, run, riffle-pool, heavily modified), the hydrogeomorphological assessment of all of them in relation to its "natural" condition allowed the identification of those with a good or very good hydrogeomorphological condition, considered as reference condition. The loss of hydrogeomorphological quality was closely linked to sociodemographical pressure, due to artificial elements in the river course, floodplain and land use changes on the basin. The assessment done based on pressures and impacts allowed the proposal of specific restoration objectives which facilitated the identification of the elements that degrade the hydrogeomorphological quality of the reaches, and helped the identification of specific restoration actions. In addition it was possible to set the reaches with the potentiality of being restored, those reversible and those that due to its high degradation were considered irreversible, and therefore not able to be restored, except for some rehabilitation or mitigation measures. The application in two basins, Oria and Oiartzun, concluded that 36% of the reaches could recover their geomorphological good status and a 40% could be considered as reference condition for other reaches. This geomorphological based reference condition definition could be linked and complete with ecological data.

  6. Enhancing rescue-archaeology using geomorphological approaches: Archaeological sites in Paredes (Asturias, NW Spain)

    NASA Astrophysics Data System (ADS)

    Jiménez-Sánchez, M.; González-Álvarez, I.; Requejo-Pagés, O.; Domínguez-Cuesta, M. J.

    2011-09-01

    Palaeolithic remnants, a Necropolis (Roman villa), and another minor archaeological site were discovered in Paredes (Spain). These sites were the focus of multidisciplinary research during the construction of a large shopping centre in Asturias (NW Spain). The aims of this study are (1) to contribute to archaeological prospection in the sites and (2) to develop evolutionary models of the sites based on geomorphological inferences. Detailed archaeological prospection (103 trenches), geomorphologic mapping, stratigraphic studies (36 logs) and ground penetration radar (GPR) surveys on five profiles indicate that the location of the settlement source of the Necropolis is outside the construction perimeter, farther to the southeast. The Pre-Holocene evolution of the fluvial landscape is marked by the development of two terraces (T1 and T2) that host the Early Palaeolithic remains in the area (ca 128-71 ka). The Holocene evolution of the landscape was marked by the emplacement of the Nora River flood plain, covered by alluvial fans after ca. 9 ka BP (cal BC 8252-7787). Subsequently, Neolithic pebble pits dated ca. 5.3 ka BP (cal BC 4261-3963 and 4372-4051) were constructed on T2, at the area reoccupied as a Necropolis during the Late Roman period, 1590 ± 45 years BP (cal AD 382-576). Coeval human activity during the Late Roman period at 1670 ± 60 years BP (cal AD 320-430) is also recorded by channel infill sediments in a minor site at the margin of an alluvial fan located to the southeast. This work shows that a rescue-archaeological study can be significantly enhanced by the implementation of multidisciplinary scientific studies, in which the holistic view of geomorphologic settings provide key insights into the geometry and evolution of archaeological sites.

  7. Conceptualising and mapping coupled estuary, coast and inner shelf sediment systems

    NASA Astrophysics Data System (ADS)

    French, Jon; Burningham, Helene; Thornhill, Gillian; Whitehouse, Richard; Nicholls, Robert J.

    2016-03-01

    Whilst understanding and predicting the effects of coastal change are primarily modelling problems, it is essential that we have appropriate conceptual frameworks for (1) the formalisation of existing knowledge; (2) the formulation of relevant scientific questions and management issues; (3) the implementation and deployment of predictive models; and (4) meaningful engagement involvement of stakeholders. Important progress continues to be made on the modelling front, but our conceptual frameworks have not evolved at a similar pace. Accordingly, this paper presents a new approach that re-engages with formal systems analysis and provides a mesoscale geomorphological context within which the coastal management challenges of the 21st century can be more effectively addressed. Coastal and Estuarine System Mapping (CESM) is founded on an ontology of landforms and human interventions that is partly inspired by the coastal tract concept and its temporal hierarchy of sediment sharing systems, but places greater emphasis on a hierarchy of spatial scales. This extends from coastal regions, through landform complexes, to landforms, the morphological adjustment of which is constrained by diverse forms of human intervention. Crucially, CESM integrates open coastal environments with estuaries and relevant portions of the inner shelf that have previously been treated separately. In contrast to the nesting of littoral cells that has hitherto framed shoreline management planning, CESM charts a complex web of interactions, of which a sub-set of mass transfer pathways defines the sediment budget, and a multitude of human interventions constrains natural landform behaviour. Conducted within a geospatial framework, CESM constitutes a form of knowledge formalisation in which disparate sources of information (published research, imagery, mapping, raw data etc.) are generalised into usable knowledge. The resulting system maps provide a framework for the development and application of predictive models and a repository for the outputs they generate (not least, flux estimates for the major sediment system pathways). They also permit comparative analyses of the relative abundance of landforms and the multi-scale interactions between them. Finally, they articulate scientific understanding of the structure and function of complex geomorphological systems in a way that is transparent and accessible to diverse stakeholder audiences. As our models of mesoscale landform evolution increase in sophistication, CESM provides a platform for a more participatory approach to their application to coastal and estuarine management.

  8. Geographic considerations for fire management in the Eastern United States: geomorphology and topography, soils, and climate

    Treesearch

    Barton D. Clinton; James M. Vose; Erika C. Cohen

    2012-01-01

    Across the Eastern United States, there is on average an estimated 36 MT ha–1 (16 tons ac–1) of dead woody fuel (Chojnacky and others 2004). Variations in fuel type, size, and flammability make the selection of treatment options critical for effective fuels management. The region is a complex landscape characterized by...

  9. Geology and geomorphology of the Lower Deschutes River Canyon, Oregon.

    Treesearch

    Robin A. Beebee; Jim E. O' Connor; Gordon E. Grant

    2002-01-01

    This field guide is designed for geologists floating the approximately 80 kilometers (50 miles) of the Deschutes River from the Pelton-Round Butte Dam Complex west of Madras to Maupin, Oregon. The first section of the guide is a geologic timeline tracing the formation of the units that compose the canyon walls and the incision of the present canyon. The second section...

  10. SWAT-based streamflow and embayment modeling of Karst-affected Chapel branch watershed, South Carolina

    Treesearch

    Devendra Amatya; M. Jha; A.E. Edwards; T.M. Williams; D.R. Hitchcock

    2011-01-01

    SWAT is a GIS-based basin-scale model widely used for the characterization of hydrology and water quality of large, complex watersheds; however, SWAT has not been fully tested in watersheds with karst geomorphology and downstream reservoir-like embayment. In this study, SWAT was applied to test its ability to predict monthly streamflow dynamics for a 1,555 ha karst...

  11. Geomorphology subprogram: Geomorphological map of Occidental region of Bolivia, utilizing ERTS imagery

    NASA Technical Reports Server (NTRS)

    Brockmann, C. E. (Principal Investigator); Suarez, M. M.

    1973-01-01

    The author has identified the following significant results. Due to the receipt of ERTS-1 imagery, Bolivia will have for the first time a geomorphological map at a scale of 1:100,000. Now the researcher and the student will be able to compare the distribution of the existing shapes of the country, which have been modelled by diverse processes, factors, and agents. This geomorphological information will be very useful in its application to mining, especially alluvial beds, engineering work, and other geological studies. This map is divided into ten geomorphological units which coincide with the geostructural units of the western region of the country.

  12. Geo-information for sustainable urban development of Greater Dhaka City, Bangladesh

    NASA Astrophysics Data System (ADS)

    Günther, Andreas; Asaduzzaman, Atm; Bahls, Rebecca; Ludwig, Rüdiger; Ashraful Kamal, Mohammad; Nahar Faruqa, Nurun

    2015-04-01

    Greater Dhaka City (including Dhaka and five adjacent municipal areas) is one of the fastest developing urban regions in the world. Densely build-up areas in the developed metropolitan area of Dhaka City are subject to extensive restructuring as common six-storied buildings are replaced by higher and heavier constructions. Additional stories are built on existing houses, frequently exceeding the allowable bearing pressure on the subsoil as supported by the foundations. In turn, newly developing areas are projected in marshy areas modified by extensive, largely unengineered landfills. In many areas, these terrains bear unfavorable building ground conditions, and reliable geospatial information is a major prerequisite for risk-sensitive urban planning. Within a collaborative technical cooperation project between Bangladesh and Germany, BGR supports GSB in the provision of geo-information for the Capital Development authority (RAJUK). For general urban planning, RAJUK successively develops a detailed area plan (DAP) at scale 1 : 50000 for the whole Greater Dhaka City area. Geospatial information have not been considered in the present DAP. Within the project, GSB prepared a detailed geomorphologic map matching the DAP both in areal extent and scale. The geomorphological setting can be used as an important spatial proxy for the characterization of the subsurface since highly segmented, elevated terraces consisting of consolidated sandy Pliocene deposits overlain by stiff Plio-Pleistocene sediments are sharply bordered by low lying-areas. The floodplain and marsh areas are consisting of thick, mechanically weak Holocene fluvial sandy-silty sediments that are sometimes alternated by organic layers. A first expert-based engineering geological reclassification of the geomorphological map resulting in five building ground suitability classes is highly supported by the spatial analysis of extensive archive borehole information consisting of depth-continuous standard penetration test (SPT) observations, engineering geological sample analyses and lithological profiles. The database compiled within the project currently contains more than 1600 locations. The joining of the spatial geomorphological information with the borehole data allows a specific characterization of the building ground classes in terms of bearing capacities for different foundation designs, earthquake-induced subsoil liquefaction potentials and depth-to-engineering rock head considerations. First-order hazard and cost scenarios for several general types of projected settlements can already be broadly evaluated with the data presented in a small scale (DAP scale). However, detailed building ground surveys have to be performed at larger spatial scales (1 : 10000 - 1 : 5000) in areas assigned for new settlements. These involve regular spaced borehole observations, 3-D modeling of the subsurface and geophysical loggings. Within the project, specific representative pilot areas in different geomorphological settings are defined where detailed geospatial building ground investigations are conducted, providing a robust basis for sustainable urban planning related to natural and technological hazards and their associated risks.

  13. Tectonic Geomorphology.

    ERIC Educational Resources Information Center

    Bull, William B.

    1984-01-01

    Summarizes representative quantitative tectonic-geomorphology studies made during the last century, focusing on fault-bounded mountain-front escarpments, marine terraces, and alluvial geomorphic surfaces (considering stream terraces, piedmont fault scarps, and soils chronosequences). Also suggests where tectonic-geomorphology courses may best fit…

  14. Dynamics of sediment carbon stocks across intertidal wetland habitats of Moreton Bay, Australia.

    PubMed

    Hayes, Matthew A; Jesse, Amber; Hawke, Bruce; Baldock, Jeff; Tabet, Basam; Lockington, David; Lovelock, Catherine E

    2017-10-01

    Coastal wetlands are known for high carbon storage within their sediments, but our understanding of the variation in carbon storage among intertidal habitats, particularly over geomorphological settings and along elevation gradients, is limited. Here, we collected 352 cores from 18 sites across Moreton Bay, Australia. We assessed variation in sediment organic carbon (OC) stocks among different geomorphological settings (wetlands within riverine settings along with those with reduced riverine influence located on tide-dominated sand islands), across elevation gradients, with distance from shore and among habitat and vegetation types. We used mid-infrared (MIR) spectroscopy combined with analytical data and partial least squares regression to quantify the carbon content of ~2500 sediment samples and provide fine-scale spatial coverage of sediment OC stocks to 150 cm depth. We found sites in river deltas had larger OC stocks (175-504 Mg/ha) than those in nonriverine settings (44-271 Mg/ha). Variation in OC stocks among nonriverine sites was high in comparison with riverine and mixed geomorphic settings, with sites closer to riverine outflow from the east and south of Moreton Bay having higher stocks than those located on the sand islands in the northwest of the bay. Sediment OC stocks increased with elevation within nonriverine settings, but not in riverine geomorphic settings. Sediment OC stocks did not differ between mangrove and saltmarsh habitats. OC stocks did, however, differ between dominant species across the research area and within geomorphic settings. At the landscape scale, the coastal wetlands of the South East Queensland catchments (17,792 ha) are comprised of approximately 4,100,000-5,200,000 Mg of sediment OC. Comparatively high variation in OC storage between riverine and nonriverine geomorphic settings indicates that the availability of mineral sediments and terrestrial derived OC may exert a strong influence over OC storage potential across intertidal wetland systems. © 2017 John Wiley & Sons Ltd.

  15. Geomorphology, acoustic backscatter, and processes in Santa Monica Bay from multibeam mapping.

    PubMed

    Gardner, James V; Dartnell, Peter; Mayer, Larry A; Hughes Clarke, John E

    2003-01-01

    Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.

  16. Quantifying Precipitation Variability and Relative Erosion Rates on Titan Using a GCM and Implications for Observed Geomorphology

    NASA Astrophysics Data System (ADS)

    Faulk, S.; Moon, S.; Mitchell, J.; Lora, J. M.

    2016-12-01

    Titan's zonal-mean precipitation behavior has been widely investigated using general circulation models (GCMs), but the spatial and temporal variability of rainfall in Titan's active hydrologic cycle is less well understood. We conduct statistical analyses of rainfall, diagnosed from GCM simulations of Titan's atmosphere, to determine storm intensity and frequency. Intense storms of methane have been proposed to be critical for enabling mechanical erosion of Titan's surface, as indicated by extensive observations of dendritic valley networks. Using precipitation outputs from the Titan Atmospheric Model (TAM), a GCM shown to realistically simulate many features of Titan's atmosphere, we quantify the precipitation variability and resulting relative erosion rates within eight separate latitude bins for a variety of initial surface liquid distributions. We find that while the overall wettest regions are indeed the poles, the most intense rainfall generally occurs in the high mid-latitudes, between 45-67.5 degrees, consistent with recent geomorphological observations of alluvial fans concentrated at those latitudes. We also find that precipitation rates necessary for surface erosion, as estimated by Perron et al. (2006) J. Geophys. Res. 111, E11001, frequently occur at all latitudes, with recurrence intervals of less than one Titan year. Such analysis is crucial towards understanding the complex interaction between Titan's atmosphere and surface and defining the influence of precipitation on observed geomorphology.

  17. Geomorphology and seismic risk

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    1991-07-01

    The author analyses the contributions provided by geomorphology in studies suited to the assessment of seismic risk: this is defined as function of the seismic hazard, of the seismic susceptibility, and of the vulnerability. The geomorphological studies applicable to seismic risk assessment can be divided into two sectors: (a) morpho-neotectonic investigations conducted to identify active tectonic structures; (b) geomorphological and morphometric analyses aimed at identifying the particular situations that amplify or reduce seismic susceptibility. The morpho-neotectonic studies lead to the identification, selection and classification of the lineaments that can be linked with active tectonic structures. The most important geomorphological situations that can condition seismic susceptibility are: slope angle, debris, morphology, degradational slopes, paleo-landslides and underground cavities.

  18. A low-cost landslide displacement activity assessment from time-lapse photogrammetry and rainfall data: Application to the Tessina landslide site

    NASA Astrophysics Data System (ADS)

    Gabrieli, F.; Corain, L.; Vettore, L.

    2016-09-01

    Acquiring useful and reliable displacement data from a complex landslide site is often a problem because of large, localized and scattered erosive processes and deformations; the inaccessibility of the site; the high cost of instrumentation and maintenance. However, these data are of fundamental importance not only to hazard assessments but also to understanding the processes at the basis of slope evolution. In this framework, time-lapse photogrammetry can represent a good compromise; the low accuracy is compensated for by the wide-ranging and dense spatial displacement information that can be obtained with inexpensive equipment. Nevertheless, when large displacement monitoring data sets become available, the problem becomes the choice of the most suitable statistical model to describe the probability of movement and adequately simplify the complexity of a scattered, intermittent, and spatially inhomogeneous displacement field. In this paper, an automated displacement detection method, which is based on the absolute image differences and digital correlations from a sequence of photos, was developed and applied to a photographic survey activity at the head of the Tessina landslide (northeastern Italy). The method allowed us to simplify and binarize the displacement field and to recognize the intermittent activity and the peculiar behaviours of different parts of the landslide, which were identified and classified by combining geomorphological and geological information. Moreover, for the first time, sliding correlations between these areas were quantitatively estimated using time-series-based binary logistic regression and the definition of a probability-based directed graph of displacement occurrence that connected the source zones to the lower depletion basin and the main collector channel. Using rainfall data, event-based logistic and Poisson regression models were applied to the upper zones of the landslide to estimate the probability of movement of each scarp and the persistence of the displacement as a result of certain rainfall events. The results of these statistical analyses highlighted the capability of this approach to quantitatively evaluate the pattern of displacement occurrences and to assess the evolution of a landslide site to gain insight into geomorphological processes.

  19. Conceptualizing the Structure of Coupled Estuary, Coast and Inner Shelf Sediment Systems

    NASA Astrophysics Data System (ADS)

    French, J.; Burningham, H.

    2013-12-01

    The concept of the coastal cell has endured for 50 years as a geomorphological framework for coastal engineering and management. Cells are readily defined for coasts dominated by alongshore transport of beach-grade material, but the concept struggles to accommodate long range cohesive sediment fluxes. Moreover, the challenges of predicting, understanding and mitigating climate change impacts at the coast demand a richer conceptualization that embraces the connectedness of open coasts with estuaries and the inner shelf at broader scales and that also acknowledges the extent of anthropogenic control. Accordingly, this paper presents a new approach that re-engages with formal systems analysis and restores a geomorphological focus to coastal management problems that have latterly been tackled primarily by engineers. At the heart of this approach is an ontology of landforms and interventions (both structural and non-structural) that is partly inspired by the coastal tract concept and its temporal hierarchy of sediment sharing systems, but which also emphasizes a spatial hierarchy in scale, from coastal regions, through landform complexes, to landforms and human interventions. The complex web of interactions is represented through an influence network in which a sub-set of mass transfer pathways define the sediment system. Guided by a machine-readable ontology and produced within a geospatial framework, such system ';maps' can be utilized in several ways. First, their generation constitutes a form of knowledge formalization in which disparate sources of information (published research, data etc) are generalized into usable knowledge. Second, system maps also provide a repository for more quantitative analyses and system-level modelling at the scales that really matter. Third, they can also be analyzed using methods derived from graph theory to yield potentially valuable insights into the scale linkages that govern the mutual adjustment of estuary, coast and inner shelf morphology and their implications for the development of quantitative models able to capture such behaviour. Illustrative results, produced as a contribution to the NERC Integrated Coastal Sediment Systems (iCOASST) project, are presented for demonstration regions in Liverpool Bay and Suffolk, UK.

  20. Multi-site evaluation of IKONOS data for classification of tropical coral reef environments

    USGS Publications Warehouse

    Andrefouet, S.; Kramer, Philip; Torres-Pulliza, D.; Joyce, K.E.; Hochberg, E.J.; Garza-Perez, R.; Mumby, P.J.; Riegl, Bernhard; Yamano, H.; White, W.H.; Zubia, M.; Brock, J.C.; Phinn, S.R.; Naseer, A.; Hatcher, B.G.; Muller-Karger, F. E.

    2003-01-01

    Ten IKONOS images of different coral reef sites distributed around the world were processed to assess the potential of 4-m resolution multispectral data for coral reef habitat mapping. Complexity of reef environments, established by field observation, ranged from 3 to 15 classes of benthic habitats containing various combinations of sediments, carbonate pavement, seagrass, algae, and corals in different geomorphologic zones (forereef, lagoon, patch reef, reef flats). Processing included corrections for sea surface roughness and bathymetry, unsupervised or supervised classification, and accuracy assessment based on ground-truth data. IKONOS classification results were compared with classified Landsat 7 imagery for simple to moderate complexity of reef habitats (5-11 classes). For both sensors, overall accuracies of the classifications show a general linear trend of decreasing accuracy with increasing habitat complexity. The IKONOS sensor performed better, with a 15-20% improvement in accuracy compared to Landsat. For IKONOS, overall accuracy was 77% for 4-5 classes, 71% for 7-8 classes, 65% in 9-11 classes, and 53% for more than 13 classes. The Landsat classification accuracy was systematically lower, with an average of 56% for 5-10 classes. Within this general trend, inter-site comparisons and specificities demonstrate the benefits of different approaches. Pre-segmentation of the different geomorphologic zones and depth correction provided different advantages in different environments. Our results help guide scientists and managers in applying IKONOS-class data for coral reef mapping applications. ?? 2003 Elsevier Inc. All rights reserved.

  1. Downstream effects of the Pelton-Round Butte hydroelectric project on bedload, transport, channel morphology, and channel-bed texture, lower Deschutes River, Oregon.

    Treesearch

    Heidi Fassnacht; Ellen M. McClure; Gordon E. Grant; Peter C. Klingeman

    2003-01-01

    Field, laboratory, and historical data provide the basis for interpreting the effects of the Pelton-Round Butte dam complex on the surface water hydrology and geomorphology of the lower Deschutes River, Oregon, USA. The river's response to upstream impoundment and flow regulation is evaluated in terms of changes in predicted bedload transport rates, channel...

  2. A conceptual connectivity framework for understanding geomorphic change in human-impacted fluvial systems

    NASA Astrophysics Data System (ADS)

    Pöppl, Ronald; Keesstra, Saskia; Maroulis, Jerry

    2017-04-01

    Human-induced landscape change is difficult to predict due to the complexity inherent in both geomorphic and social systems as well as due to emerging coupling relationships between them. To better understand system complexity and system response to change, connectivity has become an important research paradigm within various disciplines including geomorphology, hydrology and ecology. With the proposed conceptual connectivity framework on geomorphic change in human-impacted fluvial systems a cautionary note is flagged regarding the need (i) to include and to systematically conceptualise the role of different types of human agency in altering connectivity relationships in geomorphic systems and (ii) to integrate notions of human-environment interactions to connectivity concepts in geomorphology to better explain causes and trajectories of landscape change. Underpinned by case study examples, the presented conceptual framework is able to explain how geomorphic response of fluvial systems to human disturbance is determined by system-specific boundary conditions (incl. system history, related legacy effects and lag times), vegetation dynamics and human-induced functional relationships (i.e. feedback mechanisms) between the different spatial dimensions of connectivity. It is further demonstrated how changes in social systems can trigger a process-response feedback loop between social and geomorphic systems that further governs the trajectory of landscape change in coupled human-geomorphic systems.

  3. Geotourist itineraries along the Italian territory: examples of mapping the geoheritage in different geomorphological and historical contexts

    NASA Astrophysics Data System (ADS)

    Panizza, Valeria; Brandolini, Pierluigi; Laureti, Lamberto; Nesci, Olivia; Russo, Filippo; Savelli, Daniele

    2016-04-01

    In the framework of the studies dealing with geomorphosites mapping, many researches were carried out in the last years presenting both applied examples and proposals for tourist fruition. Researchers had to face many different challenges in transferring the knowledge about the geomorphological heritage on maps. The most relevant are those concerning the use of maps for tourist promotion, taking into account the requirements of clearness of representation of landforms and also the need of pointing out possible geomorphological hazards along tourist paths. Within the activity of the Working Group "Geomorphosites and Cultural Landscape" of AIGeo (Italian Association of Physical Geography and Geomorphology), some Italian itineraries, focused on the promotion of the geomorphological heritage by means of geotourist maps, are presented. They have the goal of: promoting landscape through its geomorphological and geological heritage; disseminating geoheritage knowledge focusing its relationships with cultural landscape and human history; assessing geomorphological hazards and possible risk situations The proposed itineraries are localised in different Italian regions and they concern: - the area around the remains of the Roman town of Ostra. The town is placed on the left side of the Misa River (Marche region, Italy), atop a stream terrace dating back to the uppermost Pleistocene-early Holocene. Detailed geomorphological field and remote-sensing mapping started in 2015. The surveying is aimed at focusing the geomorphological evolution as well as at assessing possible geomorphological hazard for both conservation and exploitation scopes. A geotourist trail is proposed with the aim of highlighting and integrating geomorphological and archaeological elements and information. - a geotourist trail along the coastal terraced slopes of Cinque Terre (Liguria, NW Italy): worldwide considered as one of the most outstanding examples of human integration with the natural landscape within the Mediterranean region. The Cinque Terre are has been recognized since 1997 as a World Heritage Site by UNESCO and are currently affected by high geomorphological risk. - the territory of the town of Bosa, north-western Sardinia (Italy). From a geological point of view the area is characterized by the outcropping of the Oligo-Miocene volcanic sequence related to the rotational tectonic. The geomorphological survey allowed the reconstruction of the Quaternary evolution and the assessment of the geomorphological heritage. The itinerary proposed wants to promote, by means of a geo-tourist map, the geomorphological heritage in its relationship with the rich cultural context and give all information for a correct and conscious fruition of the landscape. - the vacant railway tract Avellino-Rocchetta S. Antonio (Campania region, Italy): an inland area of the southern Italian Apennine. Here the great diversity of landforms give rise to a rich variety of landscapes, strictly linked with the long archaeological and cultural history, protected, in part, by the institution of regional Parks and other kind of protected areas. - abandoned or deactivated old mines in the Eastern Italian Alps, in order to promote their recovery for tourist or didactic purposes. The aim of the proposed itinerary is to organize its specific fruition as well as the preservation of their environmental and historic heritage.

  4. The Teaching of Geomorphology and the Geography/Geology Debate.

    ERIC Educational Resources Information Center

    Petch, Jim; Reid, Ian

    1988-01-01

    Examines the place of geomorphology in undergraduate programs in the United Kingdom. A questionnaire survey reveals that geomorphology is widely taught in all geo- and environmental sciences, but that teaching methods and the size of the curriculum vary significantly between disciplines. (LS)

  5. Curriculum Development in Geomorphology.

    ERIC Educational Resources Information Center

    Gregory, Kenneth J.

    1988-01-01

    Examines the context of present curriculum development in geomorphology and the way in which it has developed in recent years. Discusses the content of the geomorphology curriculum in higher education and the consequences of curriculum development together with a consideration of future trends and their implications. (GEA)

  6. Techniques, problems and uses of mega-geomorphological mapping

    NASA Technical Reports Server (NTRS)

    Embleton, C.

    1985-01-01

    A plea for a program of global geomorphological mapping based on remote sensing data is presented. It is argued that the program is a necessary step in bringing together the rapidly evolving concepts of plate tectonics with the science of geomorphology. Geomorphologists are urged to bring temporal scales into their subject and to abandon their recent isolation from tectonics and geological history. It is suggested that a start be made with a new geomorphological map of Europe, utilizing the latest space technology.

  7. Geomorphological and ecological effects of check dams in mountain torrents of Southern Italy

    NASA Astrophysics Data System (ADS)

    Zema, Demetrio Antonio; Bombino, Giuseppe; Denisi, Pietro; Tamburino, Vincenzo; Marcello Zimbone, Santo

    2017-04-01

    It is known that installation of check dams noticeably influences torrent morphology and ecology. However, the effects of check dams on channel section and riparian vegetation of torrents are not yet completely understood. This paper provides a further contribution to a better comprehension of the actions played by check dams on hydrological and geomorphological processes in headwaters and their effects on riparian ecosystem. Field surveys on channel morphology, bed material and riparian vegetation were carried out close to five check dams in each of four mountain reaches of Calabria (Southern Italy). For each check dam three transects (one upstream, one downstream and one far from the check dam, located in the undisturbed zone and adopted as control) were identified; at each transect, a set of geomorphological and ecological indicators were surveyed as follows. Channel section morphology was assessed by the width/depth ratio (w/d); the median particle size (D50) and the finer sediment fraction (%fines) were chosen to characterize channel bed material; the specific discharge (q, the discharge per channel unit width) was assumed as measure of the flow regime. Vegetation cover and structure were evaluated by Global Canopy Cover (GCC) and Weighted Canopy Height (WCH) respectively (Bombino et al., 2008); the index of alpha-diversity (H-alpha, Hill, 1973) and the ratio between the number of alien species and the number of native species (NSA/NSN) were chosen as indicators of species richness/abundance and degree of vegetation integrity, respectively. Compared to the control transects, the values of w/d were higher upstream of check dams and lower downstream; conversely, q was lower upstream and higher in downstream sites. Upstream of the check dams D50 of bed material was lower and %fines was higher compared to the control transects; vice versa, the downstream transects showed higher D50 and lower %fines. The differences in the riparian vegetation among transects were found as the torrent ecological response to the strong contrasts surveyed in hydrological (q) and geomorphological (w/d, D50 and %fines) characteristics. Compared to control transects, vegetation was more extensive (higher GCC) and developed (higher WCH) in the upstream zones; the reverse pattern was noticed in the downstream transects (lower GCC and WCH). The indexes H-alpha and NSA/NSN were higher upstream of check dams: the presence of the check dams induced higher species richness and evenness, with alien species prevailing over native ones in the sedimentation wedge. Conversely, downstream of check dams H-alpha and NSA/NSN were lower: here, riparian vegetation lost some herbaceous species and assumed a terrestrial character. Overall, this study confirms on a quantitative approach that check dams have far reaching effects on geomorphology and ecology of mountain torrent channels; as a consequence, important and complex changes occur not only in the extent and development of riparian vegetation, but also in the species diversity and distribution. REFERENCES - Bombino G., Gurnell A.M., Tamburino V., Zema D.A., Zimbone S.M. 2008. Sediment size variation in torrents with check-dams: effects on riparian vegetation. Ecological Engineering 32(2), 166-177. - Hill MO. 1973. Diversity and evenness: a unifying notation and its consequences. Ecology 54: 427-431.

  8. Large-area landslide susceptibility with optimized slope-units

    NASA Astrophysics Data System (ADS)

    Alvioli, Massimiliano; Marchesini, Ivan; Reichenbach, Paola; Rossi, Mauro; Ardizzone, Francesca; Fiorucci, Federica; Guzzetti, Fausto

    2017-04-01

    A Slope-Unit (SU) is a type of morphological terrain unit bounded by drainage and divide lines that maximize the within-unit homogeneity and the between-unit heterogeneity across distinct physical and geographical boundaries [1]. Compared to other terrain subdivisions, SU are morphological terrain unit well related to the natural (i.e., geological, geomorphological, hydrological) processes that shape and characterize natural slopes. This makes SU easily recognizable in the field or in topographic base maps, and well suited for environmental and geomorphological analysis, in particular for landslide susceptibility (LS) modelling. An optimal subdivision of an area into a set of SU depends on multiple factors: size and complexity of the study area, quality and resolution of the available terrain elevation data, purpose of the terrain subdivision, scale and resolution of the phenomena for which SU are delineated. We use the recently developed r.slopeunits software [2,3] for the automatic, parametric delineation of SU within the open source GRASS GIS based on terrain elevation data and a small number of user-defined parameters. The software provides subdivisions consisting of SU with different shapes and sizes, as a function of the input parameters. In this work, we describe a procedure for the optimal selection of the user parameters through the production of a large number of realizations of the LS model. We tested the software and the optimization procedure in a 2,000 km2 area in Umbria, Central Italy. For LS zonation we adopt a logistic regression model implemented in an well-known software [4,5], using about 50 independent variables. To select the optimal SU partition for LS zonation, we want to define a metric which is able to quantify simultaneously: (i) slope-unit internal homogeneity (ii) slope-unit external heterogeneity (iii) landslide susceptibility model performance. To this end, we define a comprehensive objective function S, as the product of three normalized objective functions dealing with the points (i)-(ii)-(iii) independently. We use an intra-segment variance function V, the Moran's autocorrelation index I and the AUCROC function R arising from the application of the logistic regression model. Maximization of the objective function S = f(I,V,R) as a function of the r.slopeunits input parameters provides an objective and reproducible way to select the optimal parameter combination for a proper SU subdivision for LS modelling. We further perform an analysis of the statistical significance of the LS models as a function of the r.slopeunits input parameters, focusing on the degree of coarseness of each subdivision. We find that the LRM, when applied to subdivisions with large average SU size, has a very poor statistical significance, resulting in only few (5%, typically lithological) variables being used in the regression due to the large heterogeneity of all variables within each unit, while up to 35% of the variables are used when SU are very small. This behavior was largely expected and provides further evidence that an objective method to select SU size is highly desirable. [1] Guzzetti, F. et al., Geomorphology 31, (1999) 181-216 [2] Alvioli, M. et al., Geoscientific Model Development 9 (2016), 3975-3991 [3] http://geomorphology.irpi.cnr.it/tools/slope-units [4] Rossi, M. et al., Geomorphology 114, (2010) 129-142 [5] Rossi, M. and Reichenbach, P., Geoscientific Model Development 9 (2016), 3533-3543

  9. ERTS: A multispectral image analysis contribution for the geomorphological evaluation of southern Maracaibo Lake Basin. [geological survey and drainage patterns

    NASA Technical Reports Server (NTRS)

    Salas, F.; Cabello, O.; Alarcon, F.; Ferrer, C.

    1974-01-01

    Multispectral analysis of ERTS-A images at scales of 1:1,000,000 and 1:500,000 has been conducted with conventional photointerpretation methods. Specific methods have been developed for the geomorphological analysis of southern Maracaibo Lake Basin which comprises part of the Venezuelan Andean Range, Perija Range, the Tachira gap and the Southern part of the Maracaibo Lake depression. A steplike analysis was conducted to separate macroforms, landscapes and relief units as well as drainage patterns and tectonic features, which permitted the delineation of tectonic provinces, stratigraphic units, geomorphologic units and geomorphologic positions. The geomorphologic synthesis obtained compares favorably with conventional analysis made on this area for accuracy of 1:100,000 scale, and in some features with details obtained through conventional analysis for accuracy of 1:15,000 and field work. Geomorphological units in the mountains were identified according to changes in tone, texture, forms orientation of interfluves and tectonic characteristics which control interfluvial disimetrics.

  10. Forensic geomorphology

    NASA Astrophysics Data System (ADS)

    Ruffell, Alastair; McKinley, Jennifer

    2014-02-01

    Geomorphology plays a critical role in two areas of geoforensics: searching the land for surface or buried objects and sampling scenes of crime and control locations as evidence. Associated geoscience disciplines have substantial bodies of work dedicated to their relevance in forensic investigations, yet geomorphology (specifically landforms, their mapping and evolution, soils and relationship to geology and biogeography) have not had similar public exposure. This is strange considering how fundamental to legal enquiries the location of a crime and its evolution are, as this article will demonstrate. This work aims to redress the balance by showing how geomorphology featured in one of the earliest works on forensic science methods, and has continued to play a role in the sociology, archaeology, criminalistics and geoforensics of crime. Traditional landscape interpretation from aerial photography is used to demonstrate how a geomorphological approach saved police time in the search for a clandestine grave. The application geomorphology has in military/humanitarian geography and environmental/engineering forensics is briefly discussed as these are also regularly reviewed in courts of law.

  11. Time and the rivers flowing: Fluvial geomorphology since 1960

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2014-07-01

    Fluvial geomorphology has been the largest single subdiscipline within geomorphology for many decades. Fluvial geomorphic expertise is integral to understanding and managing rivers and to developing strategies for sustainable development. This paper provides an overview of some of the significant advances in fluvial geomorphology between 1960 and 2010 with respect to: conceptual models; fluvial features and environments being studied; tools used by fluvial geomorphologists; geomorphic specialty groups within professional societies; journals in which fluvial geomorphic research is published; and textbooks of fluvial geomorphology. During this half century, fluvial geomorphology broadened considerably in scope, from a focus primarily on physical principles underlying process and form in lower gradient channels with limited grain size range, to a more integrative view of rivers as ecosystems with nonlinear behavior and great diversity of gradient, substrate composition, and grain size. The array of tools for making basic observations, analyzing data, and disseminating research results also expanded considerably during this period, as did the diversity of the fluvial geomorphic community.

  12. The influence of drought on flow‐ecology relationships in Ozark Highland streams

    USGS Publications Warehouse

    Lynch, Dustin T.; Leasure, D. R.; Magoulick, Daniel D.

    2018-01-01

    Drought and summer drying can have strong effects on abiotic and biotic components of stream ecosystems. Environmental flow‐ecology relationships may be affected by drought and drying, adding further uncertainty to the already complex interaction of flow with other environmental variables, including geomorphology and water quality.Environment–ecology relationships in stream communities in Ozark Highland streams, USA, were examined over two years with contrasting environmental conditions, a drought year (2012) and a flood year (2013). We analysed fish, crayfish and benthic macroinvertebrate assemblages using two different approaches: (1) a multiple regression analysis incorporating predictor variables related to habitat, water quality, geomorphology and hydrology and (2) a canonical ordination procedure using only hydrologic variables in which forward selection was used to select predictors that were most related to our response variables.Reach‐scale habitat quality and geomorphology were found to be the most important influences on community structure, but hydrology was also important, particularly during the flood year. We also found substantial between‐year variation in environment–ecology relationships. Some ecological responses differed significantly between drought and flood years, while others remained consistent. We found that magnitude was the most important flow component overall, but that there was a shift in relative importance from low flow metrics during the drought year to average flow metrics during the flood year, and the specific metrics of importance varied markedly between assemblages and years.Findings suggest that understanding temporal variation in flow‐ecology relationships may be crucial for resource planning. While some relationships show temporal variation, others are consistent between years. Additionally, different kinds of hydrologic variables can differ greatly in terms of which assemblages they affect and how they affect them. Managers can address this complexity by focusing on relationships that are temporally stable and flow metrics that are consistently important across groups, such as flood frequency and flow variability.

  13. Coevolution of hydrodynamics, vegetation and channel evolution in wetlands of a semi-arid floodplain

    NASA Astrophysics Data System (ADS)

    Seoane, Manuel; Rodriguez, Jose Fernando; Rojas, Steven Sandi; Saco, Patricia Mabel; Riccardi, Gerardo; Saintilan, Neil; Wen, Li

    2015-04-01

    The Macquarie Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The Marshes are comprised of a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Some of the wetlands have undergone degradation over the last four decades, which has been attributed to changes in flow management upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment, with the subsequent invasion of terrestrial vegetation. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model.

  14. Exploring Groundwater origin for theater-headed valleys on the walls of Ius Chasma based on geomorphological analogy to the Saharan Plateaus

    NASA Astrophysics Data System (ADS)

    Farag, A. Z. A.; Heggy, E.; Mohamed, R.

    2017-12-01

    Understanding the origin and evolution of Martian fluvial landforms constrains the ambiguities associated to the variability of paleoclimatic and hydrological conditions. Despite of the significance of understanding the mechanism of formation of theater-headed valleys (THV) in Valles Mariners, where abundant distribution of seasonal liquid water flow is reported, their origin remains debatable. The original groundwater sapping hypothesis is challenged by the capability of springs to cut canyons into massive rocks and alternatively mega-floods and landslides were suggested. On Earth however, widespread THV cutting through the carbonate plateaus in the Sahara are confirmed to be of long-lasting groundwater processes based on recent isotopic, geochemical and hydrogeological evidences. Geomorphological characterizations of the THV in both the Sahara and in Valles Marineris suggest similar settings including: (1) widespread and dense occurrence along the length of escarpments, (2) low relief floors, (3) association with extensive faulting, and (4) lack of well-developed stream networks and small upstream contributing areas. The above suggest that both the Martian and the Saharan THV to be of groundwater origins. Herein, we constraint the geomorphological, lithological and textural characteristics of THV in El Diffa and El-Merir plateaus in the Eastern Sahara as a limited analog to the THV in Ius Chasma using structural and textural mapping derived from ALOS PalSAR scenes and similar settings on Mars using SHARAD, MOLA and HIRISE images. These observations are correlated with several in-situ field and laboratory measurements for hardness, granulometry and channel morphology to support the common phenomenology. Preliminary findings show that in both sets of THV, we observe a spatial confinement of boulders to the sidewalls with relatively finer grains along the channel courses, and association with large-scale hydrated sulphates along the sidewalls and channel bottoms. These findings support the hypothesis that long-lasting groundwater processes have contributed to the formation of these valleys on Mars rather than intensive short-lived processes. Moreover, disintegration of rocky materials arising from groundwater salt weathering could have played a major role in carving the THV.

  15. The influence of floodplain geomorphology and hydrologic connectivity on alligator gar (Atractosteus spatula) habitat along the embanked floodplain of the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    van der Most, Merel; Hudson, Paul F.

    2018-02-01

    The floodplain geomorphology of large lowland rivers is intricately related to aquatic ecosystems dependent upon flood pulse dynamics. The alligator gar (Atractosteus spatula) is native to the Lower Mississippi River and dependent upon floodplain backwater areas for spawning. In this study we utilize a geospatial approach to develop a habitat suitability index for alligator gar that explicitly considers hydrologic connectivity and the floodplain geomorphology along a frequently inundated segment of the Lower Mississippi River. The data sets include Landsat imagery, a high-resolution LiDAR digital elevation model (DEM), National Hydrography Dataset (NHD), and hydrologic and geomorphic data. A habitat suitability index is created based on the extent and frequency of inundation, water depth, temperature, and vegetation. A comparison between the remote sensing approach and the NHD revealed substantial differences in the area and location of water bodies available for alligator gar spawning. The final habitat suitability index indicates that a modest proportion (19%) of the overall embanked floodplain is available for alligator gar spawning. Opportunities exist for management efforts to utilize engineered and natural geomorphic features to facilitate hydrologic connectivity at flow levels below flood stage that would expand the habitat of alligator gar across the floodplain. The study results have direct implications regarding environmental restoration of the Lower Mississippi, an iconic example of an embanked meandering river floodplain.

  16. Complex pegmatite - apelitic of Cabecinha - strategies appreciation of geological heritage and economic development of the region

    NASA Astrophysics Data System (ADS)

    Nobre, José; Cabral, Tiago; Cabral, João; Gomes, Ana

    2014-05-01

    The Complex pegmatite - apelitic of Cabecinha corresponds to an isolated ridge that reaches 933 meters, located in the middle zone of transition between the Hesperian massif and the Cova da Beira being located in the NE central part of Portugal, more specifically in the Mountainous region of the province of Beira Alta, council of Sabugal. This complex lies embedded in porphyritic granites with terms of switching to a medium-grained granite rich in sodium feldspars in which they are muscovite granite intrusions. The lodes have pegmatites with NE-SW orientation, presenting phases of predominantly quartz crystallization with multiple parageneses. The inclusions observed are veins filonianian secondary. Some veins have structural discontinuity due to further their training tectonics. The apelitico material is basic in nature engaging in descontinuiddes of pegmatite material, showing no preferred orientation. The petrological characteristics of the area in question provide the appearance of motivating exotic landforms of scientific interest. These landforms, over time, have motivated the popular level the emergence of various myths, thus contributing to the enrichment of the local cultural heritage. This study proceeded to the geological and geomorphological mapping an area of about 6945,350 m2 with a maximum length of 182 m. The huge patent mineralogical, petrological and geomorphological level geodiversity, allied to the structural complexity and associated cultural heritage, allow geoconservation strategies and recovery, using new multimedia technologies including use of QR codes and 3D. All this geological framework and environment becomes an asset for the scientific, educational and economic development of the region. On the other hand, it has the vital Importance in the context of the strategy of forming a geological park, in the point of view of tourism, research and interpretation.

  17. Ultrahigh-Resolution 3-Dimensional Seismic Imaging of Seeps from the Continental Slope of the Northern Gulf of Mexico: Subsurface, Seafloor and Into the Water Column

    NASA Astrophysics Data System (ADS)

    Brookshire, B. N., Jr.; Mattox, B. A.; Parish, A. E.; Burks, A. G.

    2016-02-01

    Utilizing recently advanced ultrahigh-resolution 3-dimensional (UHR3D) seismic tools we have imaged the seafloor geomorphology and associated subsurface aspects of seep related expulsion features along the continental slope of the northern Gulf of Mexico with unprecedented clarity and continuity. Over an area of approximately 400 km2, over 50 discrete features were identified and three general seafloor geomorphologies indicative of seep activity including mounds, depressions and bathymetrically complex features were quantitatively characterized. Moreover, areas of high seafloor reflectivity indicative of mineralization and areas of coherent seismic amplitude anomalies in the near-seafloor water column indicative of active gas expulsion were identified. In association with these features, shallow source gas accumulations and migration pathways based on salt related stratigraphic uplift and faulting were imaged. Shallow, bottom simulating reflectors (BSRs) interpreted to be free gas trapped under near seafloor gas hydrate accumulations were very clearly imaged.

  18. Learning to Observe in a Geomorphological Context

    ERIC Educational Resources Information Center

    Martinez, Patricia; Bannan-Ritland, Brenda; Peters, Erin E.; Baek, John

    2011-01-01

    This three-lesson sequence, addressing the topic of slow geomorphological change caused by water movement, integrates a Web-based system called Goinquire into a series of activities aimed to help upper-elementary, diverse students improve their observation skills and content knowledge in geomorphology. During the inquiry-based lessons, students…

  19. Assessing the geomorphological vulnerability of arid beach-dune systems.

    PubMed

    Peña-Alonso, Carolina; Gallego-Fernández, Juan B; Hernández-Calvento, Luis; Hernández-Cordero, Antonio I; Ariza, Eduard

    2018-09-01

    In this study, an arid dune vulnerability index (ADVI) is developed using a system of indicators to evaluate the geomorphological vulnerability of beach-dune systems of arid regions. The indicators are comprised of three analytical dimensions (susceptibility, exposure and resilience) and their corresponding sub-indices and variables and were assessed for eleven sites located in four aeolian sedimentary systems of the Canary archipelago (Spain). The selected sites have varying geomorphological characteristics, vegetation types, marine and wind conditions and human pressure degrees, and have seen different trends in their geomorphological evolution since 1960. The eleven sites were separated into three groups according to their different conservation status and different management needs, and the results of the ADVI dimensions and variables were compared and analyzed for these three groups. In general, the results obtained in the analyzed sites reveal that susceptibility and exposure dimensions are related to low-moderate values, while resilience was high. Only one site presented a state of critical vulnerability, due to the loss of its capacity to maintain its geomorphological function in recent decades. Given the lack of knowledge about geomorphological vulnerability processes in foredunes of arid regions, ADVI is the first approximation to geomorphological diagnostic in these environments and can be useful for managers. Copyright © 2018 Elsevier B.V. All rights reserved.

  20. Feedbacks Between Bioclogging and Infiltration in Losing River Systems

    NASA Astrophysics Data System (ADS)

    Newcomer, M. E.; Hubbard, S. S.; Fleckenstein, J. H.; Schmidt, C.; Maier, U.; Thullner, M.; Ulrich, C.; Rubin, Y.

    2014-12-01

    Reduction in riverbed permeability due to biomass growth is a well-recognized yet poorly understood process associated with losing connected and disconnected rivers. Although several studies have focused on riverbed bioclogging processes at the pore-scale, few studies have quantified bioclogging feedback cycles at the scale relevant for water resources management, or at the meander-scale. At this scale, often competing hydrological-biological processes influence biomass dynamics and infiltration. Disconnection begins when declines in the water table form an unsaturated zone beneath the river maximizing seepage. Simultaneously, bioclogging reduces the point-scale infiltration flux and can either limit the nutrient flux and reduce bioclogging, or preferentially focus infiltration elsewhere and enhance bioclogging. These feedbacks are highly dependent on geomorphology and seasonal patterns of discharge and water temperature. To assess the mutual influences of disconnection, biomass growth, and temperature changes on infiltration in a geomorphologically complex river system, we built a 3D numerical model, conditioned on field data, using the reactive-transport simulator MIN3P. Results show that in disconnected regions of the river, biomass growth reduced vertical seepage downward and extended the unsaturated zone length; however these changes were contingent upon disconnection. Mid-way through the seasonal cycle, biomass declined in these same regions due to limited nutrient flux. Seepage and biomass continued to oscillate with a lag correlation of 1 month. Connected regions, however, showed the largest infiltration rates, nutrient fluxes, and concentrations of biomass. Despite the reduction in conductivity from biomass, flow remains high in connected regions because the feedback between bioclogging and infiltration is not as pronounced due to the sharpening hydraulic gradient. Bioclogging ultimately shapes the pattern of flow, however geomorphology dominates the strength of connection. Recognition of the feedbacks between geomorphological patterns and heterogeneous biomass on meander scale hydrological processes can lead to better estimates of local water volumes and capacities, especially when these systems are used as municipal and public water supply sources.

  1. Study of geomorphological changes by high quality DEMs, obtained from UAVs-Structure from Motion in highest continental cliffs of Europe: A Capelada (Galicia, Spain)

    NASA Astrophysics Data System (ADS)

    Muñoz Narciso, Efrén; García, Horacio; Sierra Pernas, Chema; Pérez-Alberti, Augusto

    2017-04-01

    This study analyses the geomorphological evolution of a highly dynamic coastal environment, one of the higher cliffs in Continental Europe (A Capelada, NW Spain), using Structure from Motion-Multi View Stereoscan techniques (hereafter referred to as SfM-MVS). Comparing orthoimages from the last 10 years we observed several topographical changes in one specific valley (Teixidelo). Interestingly, these changes were caused by 2 different processes: (i) heavy coastal erosion and (ii) slow complex landslides, working in opposite directions. The main challenge was obtaining high quality topographical data for quantifying the changes during the last few years using low cost-high quality techniques in remote areas. Unmanned Aerial Vehicle platforms (drones, hereafter referred to as UAVs) and SFM-MVS offer ultrahigh-density topographical data. Furthermore, the use of drones and SfM-MVS close range images requires new applications in geomorphology for understanding the workflow and limitations. In this paper we present the 2 main results: (i) a centimeter spatial resolution DEM from august 2016 was obtained using a @DJI Phantom 3 advanced model drone. The pictures were processed in Agisoft PhotoScan Pro 1.2.6 version by SfM-MVS techniques, generating a high-density point cloud (i.e. ˜2000 points/m2) with 3mm of RMSE (i.e. the point cloud was georeferenced in a geographical coordinates system using ˜40 Ground Control Points obtained from differential RTK-GPS and a Total Station network) and (ii) a DEM of Differences, which compares official freely available 2010 LiDAR data (i.e. ˜2 points/m2) with a 2016 DEM derived by UAVs-SfM, where we have observed meter-scale elevation changes (i.e. sediment and erosion processes). During this time, 75% of the sediment has been mobilized. The novel UAVs and SfM-MVS techniques prove to be great for advancing the study of geomorphological processes in remote areas.

  2. Hydro-geomorphological characterization and classification of Chilean river networks using horizontal, vertical and climatological properties

    NASA Astrophysics Data System (ADS)

    Pereira, A. A.; Gironas, J. A.; Passalacqua, P.; Mejia, A.; Niemann, J. D.

    2017-12-01

    Previous work has shown that lithological, tectonic and climatic processes have a major influence in shaping the geomorphology of river networks. Accordingly, quantitative classification methods have been developed to identify and characterize network types (dendritic, parallel, pinnate, rectangular and trellis) based solely on the self-affinity of their planform properties, computed from available Digital Elevation Model (DEM) data. In contrast, this research aim is to include both horizontal and vertical properties to evaluate a quantitative classification method for river networks. We include vertical properties to consider the unique surficial conditions (e.g., large and steep height drops, volcanic activity, and complexity of stream networks) of the Andes Mountains. Furthermore, the goal of the research is also to explain the implications and possible relations between the hydro-geomorphological properties and climatic conditions. The classification method is applied to 42 basins in the southern Andes in Chile, ranging in size from 208 Km2 to 8,000 Km2. The planform metrics include the incremental drainage area, stream course irregularity and junction angles, while the vertical metrics include the hypsometric curve and the slope-area relationship. We introduce new network structures (Brush, Funnel and Low Sinuosity Rectangular), possibly unique to the Andes, that can be quantitatively differentiated from previous networks identified in other geographic regions. Then, this research evaluates the effect that excluding different Strahler order streams has on the horizontal properties and therefore in the classification. We found that climatic conditions are not only linked to horizontal parameters, but also to vertical ones, finding significant correlation between climatic variables (average near-surface temperature and rainfall) and vertical measures (parameters associated with the hypsometric curve and slope-area relation). The proposed classification shows differences among basins previously classified as the same type, which are not noticeable in their horizontal properties and helps reduce misclassifications within the old clusters. Additional hydro-geomorphological metrics are to be considered in the classification method to improve the effectiveness of it.

  3. Constraints on the geomorphological evolution of the nested summit craters of Láscar volcano from high spatio-temporal resolution TerraSAR-X interferometry

    NASA Astrophysics Data System (ADS)

    Richter, Nicole; Salzer, Jacqueline Tema; de Zeeuw-van Dalfsen, Elske; Perissin, Daniele; Walter, Thomas R.

    2018-03-01

    Small-scale geomorphological changes that are associated with the formation, development, and activity of volcanic craters and eruptive vents are often challenging to characterize, as they may occur slowly over time, can be spatially localized, and difficult, or dangerous, to access. Using high-spatial and high-temporal resolution synthetic aperture radar (SAR) imagery collected by the German TerraSAR-X (TSX) satellite in SpotLight mode in combination with precise topographic data as derived from Pléiades-1A satellite data, we investigate the surface deformation within the nested summit crater system of Láscar volcano, Chile, the most active volcano of the central Andes. Our aim is to better understand the structural evolution of the three craters that comprise this system, to assess their physical state and dynamic behavior, and to link this to eruptive activity and associated hazards. Using multi-temporal SAR interferometry (MT-InSAR) from ascending and descending orbital geometries, we retrieve the vertical and east-west components of the displacement field. This time series indicates constant rates of subsidence and asymmetric horizontal displacements of all summit craters between June 2012 and July 2014, as well as between January 2015 and March 2017. The vertical and horizontal movements that we observe in the central crater are particularly complex and cannot be explained by any single crater formation mechanism; rather, we suggest that short-term activities superimposed on a combination of ongoing crater evolution processes, including gravitational slumping, cooling and compaction of eruption products, as well as possible piston-like subsidence, are responsible for the small-scale geomorphological changes apparent in our data. Our results demonstrate how high-temporal resolution synthetic aperture radar interferometry (InSAR) time series can add constraints on the geomorphological evolution and structural dynamics of active crater and vent systems at volcanoes worldwide.

  4. Detailed sedimentology and geomorphology elucidate mechanisms of formation of modern and historical sequences of minor moraines in the European Alps

    NASA Astrophysics Data System (ADS)

    Wyshnytzky, Cianna; Lukas, Sven

    2016-04-01

    Suites of closely-spaced minor moraines may help further understanding of glacier retreat and predict its geomorphological effects through the observations of moraine formation on short timescales. This research is common in lowland, maritime settings (Sharp, 1984; Boulton, 1986; Krüger, 1995; Reinardy et al., 2013), but remains sparse in high-mountain settings (Hewitt, 1967; Ono, 1985; Beedle et al., 2009; Lukas, 2012). This research presents detailed sedimentological and geomorphological research on minor moraines at two high-mountain settings in the Alps: Silvrettagletscher, Switzerland, as a modern setting and Schwarzensteinkees, Austria, as a historical setting. Geomorphological investigations included mapping and measurements through field observations and assessing aerial imagery. Additionally, terrestrial laser scanning and ground-penetrating radar data were collected in the Schwarzensteinkees foreland. Detailed sedimentological investigations followed excavation of seven moraines at Silvrettagletscher and five moraines at Schwarzensteinkees and include multiple scales of observation and measurements to support interpretations of sediment transport and deposition (e.g. Evans and Benn, 2004). The modern moraines at Silvrettagletscher, in the immediately proglacial foreland, have been forming since before 2003. Four mechanisms of formation show distinct sedimentological signatures: formerly ice-cored moraines (e.g. Kjær & Krüger, 2001; Lukas, 2012; Reinardy et al., 2013) , push moraine formation on a reverse bedrock slope (e.g. Lukas, 2012), push moraine formation incorporating sediments deposited in a former proglacial basin, and basal freeze-on (e.g. Andersen & Sollid, 1971; Krüger, 1995; Reinardy et al., 2013). Schwarzensteinkees still exists but is currently restricted to steeply-dipping bedrock slabs above the main valley. This study therefore investigates the moraines in the foreland that formed between approximately 1850 and 1930. The minor moraines here formed as push moraines in two groups separated by a former proglacial basin and are composed dominantly of pre-existing proglacial outwash gravel through efficient bulldozing of the glacier front (Lukas, 2012). These findings show a range of mechanisms responsible for moraine formation. Furthermore, basal freeze-on processes incorporating subglacial sediment (till) have not been recorded in high-mountain moraine formation, suggesting a commonality of seasonal climatic controls between the glacier dynamics of high-mountain glaciers and those in more lowland, maritime settings. References Andersen, J.L., and Sollid, J.L., 1971, Glacial Chronology and Glacial Geomorphology in the Marginal Zones of the Glaciers, Midtdalsbreen and Nigardsbreen, South Norway: Norsk Geografisk Tidsskrift - Norwegian Journal of Geography, v. 25, no. 1, p. 1-38, doi: 10.1080/00291957108551908. Beedle, M.J., Menounos, B., Luckman, B.H., and Wheate, R., 2009, Annual push moraines as climate proxy: Geophysical Research Letters, v. 36, no. 20, p. L20501, doi: 10.1029/2009GL039533. Boulton, G.S., 1986, Push-moraines and glacier-contact fans in marine and terrestrial environments: Sedimentology, v. 33, p. 677-698. Evans, D.J.A., and Benn, D.I., 2004, A Practical Guide to the Study of Glacial Sediments: Hodder Education, London, United Kingdom. Hewitt, K., 1967, Ice-Front Deposition and the Seasonal Effect: A Himalayan Example: Transactions of the Institute of British Geographers, v. 42, p. 93-106. Kjær, K.H., and Krüger, J., 2001, The final phase of dead-ice moraine development: processes and sediment architecture, Kötlujökull, Iceland: Sedimentology, v. 48, p. 935-952. Krüger, J., 1995, Origin, chronology and climatological significance of annual-moraine ridges at Myrdalsjökull, Iceland: The Holocene, v. 5, no. 4, p. 420-427. Lukas, S., 2012, Processes of annual moraine formation at a temperate alpine valley glacier: insights into glacier dynamics and climatic controls: Boreas, v. 41, no. 3, p. 463-480, doi: 10.1111/j.1502-3885.2011.00241.x. Ono, Y., 1985, Recent Fluctuations of the Yala (Dakpatsen) Glacier, Langtang Himal, Reconstructed From Annual Moraine Ridges: Zeitschrift für Gletscherkunde und Glazialgeologie, v. 21, p. 251-258. Reinardy, B.T.I., Leighton, I., and Marx, P.J., 2013, Glacier thermal regime linked to processes of annual moraine formation at Midtdalsbreen, southern Norway: Boreas, v. 42, no. 4, p. 896-911, doi: 10.1111/bor.12008. Sharp, M., 1984, Annual moraine ridges at Skálafellsjökull, south-east Iceland: Journal of Glaciology, v. 30, no. 104, p. 82-93.

  5. Student-Produced Podcasts as an Assessment Tool: An Example from Geomorphology

    ERIC Educational Resources Information Center

    Kemp, Justine; Mellor, Antony; Kotter, Richard; Oosthoek, Jan W.

    2012-01-01

    The emergence of user-friendly technologies has made podcasting an accessible learning tool in undergraduate teaching. In a geomorphology course, student-produced podcasts were used as part of the assessment in 2008-2010. Student groups constructed radio shows aimed at a general audience to interpret and communicate geomorphological data within…

  6. Psychometric and Edumetric Validity of Dimensions of Geomorphological Knowledge Which Are Tapped by Concept Mapping.

    ERIC Educational Resources Information Center

    Hoz, Ron; Bowman, Dan; Chacham, Tova

    1997-01-01

    Students (N=14) in a geomorphology course took an objective geomorphology test, the tree construction task, and the Standardized Concept Structuring Analysis Technique (SConSAT) version of concept mapping. Results suggest that the SConSAT knowledge structure dimensions have moderate to good construct validity. Contains 82 references. (DDR)

  7. Teaching Topographic Map Skills and Geomorphology Concepts with Google Earth in a One-Computer Classroom

    ERIC Educational Resources Information Center

    Hsu, Hsiao-Ping; Tsai, Bor-Wen; Chen, Che-Ming

    2018-01-01

    Teaching high-school geomorphological concepts and topographic map reading entails many challenges. This research reports the applicability and effectiveness of Google Earth in teaching topographic map skills and geomorphological concepts, by a single teacher, in a one-computer classroom. Compared to learning via a conventional instructional…

  8. Environmental conditions and geomorphologic changes during the Middle-Upper Paleolithic in the southern Iberian Peninsula

    NASA Astrophysics Data System (ADS)

    Jiménez-Espejo, Francisco J.; Rodríguez-Vidal, Joaquín; Finlayson, Clive; Martínez-Ruiz, Francisca; Carrión, José S.; García-Alix, Antonio; Paytan, Adina; Giles Pacheco, Francisco; Fa, Darren A.; Finlayson, Geraldine; Cortés-Sánchez, Miguel; Rodrigo Gámiz, Marta; González-Donoso, José M.; Linares, M. Dolores; Cáceres, Luis M.; Fernández, Santiago; Iijima, Koichi; Martínez Aguirre, Aranzazu

    2013-01-01

    This study utilizes geomorphology, marine sediment data, environmental reconstructions and the Gorham's Cave occupational record during the Middle to Upper Paleolithic transition to illustrate the impacts of climate changes on human population dynamics in the Western Mediterranean. Geomorphologic evolution has been dated and appears to be driven primarily by coastal dune systems, sea-level changes and seismo-tectonic evolution. Continental and marine records are well correlated and used to interpret the Gorham's Cave sequence. Specific focus is given to the three hiatus sections found in Gorham's Cave during Heinrich periods 4, 3 and 2. These time intervals are compared with a wide range of regional geomorphologic, climatic, paleoseismic, faunal and archeological records. Our data compilations indicate that climatic and local geomorphologic changes explain the Homo sapiens spp. occupational hiatuses during Heinrich periods 4 and 3. The last hiatus corresponds to the replacement of Homo neanderthalensis by H. sapiens. Records of dated cave openings, slope breccias and stalactite falls suggest that marked geomorphologic changes, seismic activity and ecological perturbations occurred during the period when Homo replacement took place.

  9. Complex patterns of glacier advances during the Lateglacial in the Chagan-Uzun Valley, Russian Altai

    NASA Astrophysics Data System (ADS)

    Gribenski, Natacha; Lukas, Sven; Jansson, Krister N.; Stroeven, Arjen P.; Preusser, Frank; Harbor, Jonathan M.; Blomdin, Robin; Ivanov, Mikhail N.; Heyman, Jakob; Petrakov, Dmitry; Rudoy, Alexei; Clifton, Tom; Lifton, Nathaniel A.; Caffee, Marc W.

    2016-04-01

    Over the last decades, numerous paleoglacial reconstructions have been carried out in Central Asian mountain ranges because glaciers in this region are sensitive to climate change, and thus their associated glacial deposits can be used as proxies for paleoclimate inference. However, non-climatic factors can complicate the relationship between glacier fluctuation and climate change. Careful investigations of the geomorphological and sedimentological context are therefore required to understand the mechanisms behind glacier retreat and expansion. In this study we present the first detailed paleoglacial reconstruction of the Chagan Uzun valley, located in the Russian Altai. This reconstruction is based on detailed geomorphological mapping, sedimentological logging, in situ cosmogenic 10Be and 26Al surface exposure dating of glacially transported boulders, and Optically Stimulated Luminescence (OSL) dating. The Chagan Uzun valley includes extensive lobate moraine belts (>100 km2) deposited in the intramontane Chuja basin, reflecting a series of pronounced former glacial advances. Observation of "hillside-scale" folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, indicate that these moraine belts were formed during glacier-surge like events. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley indicate that they were deposited by retreat of temperate valley glaciers and do not include features indicative of surging. Cosmogenic ages associated with the outermost, innermost and intermediary stages, all indicate deposition times clustered around 19.5 ka, although the 10Be ages of the outermost margin are likely slightly underestimated due to brief episode of glacial lake water coverage. Such close deposition timings are consistent with periods of fast or surge advances, followed by active glacier retreat. OSL dating yields significantly older ages of thick lacustrine accumulation along the Chagan Uzun River, which confirms the presence of lacustrine sediments in the Chagan Uzun glacier foreland before the glacier advances. Such sediments could have acted as a soft bed over which fast or unstable glacier flow occurred. This is the first study reporting surge-like behaviour of former glaciers in the Altai mountain range, supported by detailed geomorphological and sedimentological evidences. Such findings are crucial for paleoclimate inference, as the surge-related features cannot be attributed to a glacier system in equilibrium with the contemporary climate, and cannot be interpreted with traditional ELA reconstructions. This study also highlights the complexity of establishing robust paleoglacial chronologies in highly dynamic environments, with interactions between glacial events and the formation and drainage of lakes.

  10. Geomorphology of coal seam fires

    NASA Astrophysics Data System (ADS)

    Kuenzer, Claudia; Stracher, Glenn B.

    2012-02-01

    Coal fires occur in underground natural coal seams, in exposed surface seams, and in coal storage or waste piles. The fires ignite through spontaneous combustion or natural or anthropogenic causes. They are reported from China, India, USA, South Africa, Australia, and Russia, as well as many other countries. Coal fires lead to loss of a valuable resource (coal), the emission of greenhouse-relevant and toxic gases, and vegetation deterioration. A dangerous aspect of the fires is the threat to local mines, industries, and settlements through the volume loss underground. Surface collapse in coal fire areas is common. Thus, coal fires are significantly affecting the evolution of the landscape. Based on more than a decade of experience with in situ mapping of coal fire areas worldwide, a general classification system for coal fires is presented. Furthermore, coal seam fire geomorphology is explained in detail. The major landforms associated with, and induced by, these fires are presented. The landforms include manifestations resulting from bedrock surface fracturing, such as fissures, cracks, funnels, vents, and sponges. Further manifestations resulting from surface bedrock subsidence include sinkholes, trenches, depressions, partial surface subsidence, large surface subsidence, and slides. Additional geomorphologic coal fire manifestations include exposed ash layers, pyrometamorphic rocks, and fumarolic minerals. The origin, evolution, and possible future development of these features are explained, and examples from in situ surveys, as well as from high-resolution satellite data analyses, are presented. The geomorphology of coal fires has not been presented in a systematic manner. Knowledge of coal fire geomorphology enables the detection of underground coal fires based on distinct surface manifestations. Furthermore, it allows judgments about the safety of coal fire-affected terrain. Additionally, geomorphologic features are indicators of the burning stage of fires. Finally, coal fire geomorphology helps to explain landscape features whose occurrence would otherwise not be understood. Although coal fire-induced thermal anomalies and gas release are also indications of coal fire activity, as addressed by many investigators, no assessment is complete without sound geomorphologic mapping of the fire-induced geomorphologic features.

  11. National Seabed Mapping Programmes Collaborate to Advance Marine Geomorphological Mapping in Adjoining European Seas

    NASA Astrophysics Data System (ADS)

    Monteys, X.; Guinan, J.; Green, S.; Gafeira, J.; Dove, D.; Baeten, N. J.; Thorsnes, T.

    2017-12-01

    Marine geomorphological mapping is an effective means of characterising and understanding the seabed and its features with direct relevance to; offshore infrastructure placement, benthic habitat mapping, conservation & policy, marine spatial planning, fisheries management and pure research. Advancements in acoustic survey techniques and data processing methods resulting in the availability of high-resolution marine datasets e.g. multibeam echosounder bathymetry and shallow seismic mean that geological interpretations can be greatly improved by combining with geomorphological maps. Since December 2015, representatives from the national seabed mapping programmes of Norway (MAREANO), Ireland (INFOMAR) and the United Kingdom (MAREMAP) have collaborated and established the MIM geomorphology working group) with the common aim of advancing best practice for geological mapping in their adjoining sea areas in north-west Europe. A recently developed two-part classification system for Seabed Geomorphology (`Morphology' and Geomorphology') has been established as a result of an initiative led by the British Geological Survey (BGS) with contributions from the MIM group (Dove et al. 2016). To support the scheme, existing BGS GIS tools (SIGMA) have been adapted to apply this two-part classification system and here we present on the tools effectiveness in mapping geomorphological features, along with progress in harmonising the classification and feature nomenclature. Recognising that manual mapping of seabed features can be time-consuming and subjective, semi-automated approaches for mapping seabed features and improving mapping efficiency is being developed using Arc-GIS based tools. These methods recognise, spatially delineate and morphologically describe seabed features such as pockmarks (Gafeira et al., 2012) and cold-water coral mounds. Such tools utilise multibeam echosounder data or any other bathymetric dataset (e.g. 3D seismic, Geldof et al., 2014) that can produce a depth digital model. The tools have the capability to capture an extensive list of morphological attributes. The MIM geomorphology working group's strategy to develop methods for more efficient marine geomorphological mapping is presented with data examples and case studies showing the latest results.

  12. Wildfire as a hydrological and geomorphological agent

    NASA Astrophysics Data System (ADS)

    Shakesby, R. A.; Doerr, S. H.

    2006-02-01

    Wildfire can lead to considerable hydrological and geomorphological change, both directly by weathering bedrock surfaces and changing soil structure and properties, and indirectly through the effects of changes to the soil and vegetation on hydrological and geomorphological processes. This review summarizes current knowledge and identifies research gaps focusing particularly on the contribution of research from the Mediterranean Basin, Australia and South Africa over the last two decades or so to the state of knowledge mostly built on research carried out in the USA. Wildfire-induced weathering rates have been reported to be high relative to other weathering processes in fire-prone terrain, possibly as much as one or two magnitudes higher than frost action, with important implications for cosmogenic-isotope dating of the length of rock exposure. Wildfire impacts on soil properties have been a major focus of interest over the last two decades. Fire usually reduces soil aggregate stability and can induce, enhance or destroy soil water repellency depending on the temperature reached and its duration. These changes have implications for infiltration, overland flow and rainsplash detachment. A large proportion of publications concerned with fire impacts have focused on post-fire soil erosion by water, particularly at small scales. These have shown elevated, sometimes extremely large post-fire losses before geomorphological stability is re-established. Soil losses per unit area are generally negatively related to measurement scale reflecting increased opportunities for sediment storage at larger scales. Over the last 20 years, there has been much improvement in the understanding of the forms, causes and timing of debris flow and landslide activity on burnt terrain. Advances in previously largely unreported processes (e.g. bio-transfer of sediment and wind erosion) have also been made. Post-fire hydrological effects have generally also been studied at small rather than large scales, with soil water repellency effects on infiltration and overland flow being a particular focus. At catchment scales, post-fire accentuated peakflow has received more attention than changes in total flow, reflecting easier measurement and the greater hazard posed by the former. Post-fire changes to stream channels occur over both short and long terms with complex feedback mechanisms, though research to date has been limited. Research gaps identified include the need to: (1) develop a fire severity index relevant to soil changes rather than to degree of biomass destruction; (2) isolate the hydrological and geomorphological impacts of fire-induced soil water repellency changes from other important post-fire changes (e.g. litter and vegetation destruction); (3) improve knowledge of the hydrological and geomorphological impacts of wildfire in a wider range of fire-prone terrain types; (4) solve important problems in the determination and analysis of hillslope and catchment sediment yields including poor knowledge about soil losses other than at small spatial and short temporal scales, the lack of a clear measure of the degradational significance of post-fire soil losses, and confusion arising from errors in and lack of scale context for many quoted post-fire soil erosion rates; and (5) increase the research effort into past and potential future hydrological and geomorphological changes resulting from wildfire.

  13. Long term landscape evolution within central Apennines (Italy): Marsica and Peligna region morphotectonics and surface processes

    NASA Astrophysics Data System (ADS)

    Miccadei, E.; Piacentini, T.; Berti, C.

    2010-12-01

    The relief features of the Apennines have been developed in a complex geomorphological and geological setting from Neogene to Quaternary. Growth of topography has been driven by active tectonics (thrust-related crustal shortening and high-angle normal faulting related to crustal extension), regional rock uplift, and surface processes, starting from Late Miocene(?) - Early Pliocene. At present a high-relief landscape is dominated by morphostructures including high-standing, resistant Mesozoic and early Tertiary carbonates ridges (i.e. thrust ridges, faulted homocline ridges) and intervening, erodible Tertiary siliciclastics valleys (i.e. fault line valleys) and Quaternary continental deposits filled basins (i.e. tectonic valleys, tectonic basins). This study tries to identify paleo-uplands that may be linked to paleo-base levels and aims at the reconstruction of ancient landscapes since the incipient phases of morphogenesis. It analyzes the role of tectonics and morphogenic processes in the long term temporal scale landscape evolution (i.e. Mio?-Pliocene to Quaternary). It is focused on the marsicano-peligna region, located along the main drainage divide between Adriatic side and Tyrrhenian side of Central Apennines, one of the highest average elevation area of the whole chain. The work incorporates GIS-based geomorphologic field mapping of morphostructures and Quaternary continental deposits, and plano-altimetric analysis and morphometry (DEM-, map-based) of the drainage network (i.e. patterns, hypsometry, knick points, Ks). Field mapping give clues on the definition of paleo-landscapes related to different paleo-morpho-climatic environments (i.e. karst, glacial, slope, fluvial). Geomorphological evidence of tectonics and their cross-cutting relationships with morphostructures, continental deposits and faults, provide clues on the deciphering of the reciprocal relationship of antecedence of the paleo-landscapes and on the timing of morphotectonics. Morphotectonic features are related to Neogene thrusts, reactivated or displaced by complex kinematic strike slip and followed by extensional tectonic features (present surface evidence given by fault line scarps, fault line valleys, fault scarps, fault slopes, wind gaps, etc.). Geomorphic evidence of faults is provided also by morphometry of the drainage network: highest long slope of the main streams (knick points and Ks) are located where the streams cut across or run along recent faults. Correlation of tectonic elements, paleosurfaces, Quaternary continental deposits, by means of morphotectonic cross sections, lead to the identification, in the marsicano-peligna region, of areas in which morphotectonics acted in the same period, becoming younger moving from the West to the East. In conclusion, recognition of different morphotectonic features, identification of different paleo-landscapes, and reconstruction of their migration history, contribute to define the main phases of syn and post orogenic, Apennine chain landscape evolution: it results from the link of alternating morphotectonics and surface processes, due to migrating fault activity, rock uplift processes and alternating karst, glacial, slope, fluvial processes.

  14. Fluvial drainage networks: the fractal approach as an improvement of quantitative geomorphic analyses

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Liucci, Luisa; Vergari, Francesca; Ciccacci, Sirio; Del Monte, Maurizio

    2014-05-01

    Drainage basins are primary landscape units for geomorphological investigations. Both hillslopes and river drainage system are fundamental components in drainage basins analysis. As other geomorphological systems, also the drainage basins aim to an equilibrium condition where the sequence of erosion, transport and sedimentation approach to a condition of minimum energy effort. This state is revealed by a typical geometry of landforms and of drainage net. Several morphometric indexes can measure how much a drainage basin is far from the theoretical equilibrium configuration, revealing possible external disarray. In active tectonic areas, the drainage basins have a primary importance in order to highlight style, amount and rate of tectonic impulses, and morphometric indexes allow to estimate the tectonic activity classes of different sectors in a study area. Moreover, drainage rivers are characterized by a self-similarity structure; this promotes the use of fractals theory to investigate the system. In this study, fractals techniques are employed together with quantitative geomorphological analysis to study the Upper Tiber Valley (UTV), a tectonic intermontane basin located in northern Apennines (Umbria, central Italy). The area is the result of different tectonic phases. From Late Pliocene until present time the UTV is strongly controlled by a regional uplift and by an extensional phase with different sets of normal faults playing a fundamental role in basin morphology. Thirty-four basins are taken into account for the quantitative analysis, twenty on the left side of the basin, the others on the right side. Using fractals dimension of drainage networks, Horton's laws results, concavity and steepness indexes, and hypsometric curves, this study aims to obtain an evolutionary model of the UTV, where the uplift is compared to local subsidence induced by normal fault activity. The results highlight a well defined difference between western and eastern tributary basins, suggesting a greater disequilibrium in the last ones. The quantitative analysis points out the segments of the basin boundaries where the fault activity is more efficient and the resulting geomorphological implications.

  15. "Parco Archeologico Storico Naturale delle Chiese Rupestri del Materano": geomorphological fragility and slope instability in a rupestrian-heritage rich area (Basilicata, south Italy).

    NASA Astrophysics Data System (ADS)

    Francioso, R.; Sdao, F.; Tropeano, M.

    2003-04-01

    The Italian Ministry of Education, University and Research financed a research project about the study and the control of hydrogeological hazard of some sites belonging to the "Parco Archeologico Storico Naturale delle Chiese Rupestri del Materano"; the Park and the old city of Matera ("Sassi di Matera") was inserted in the UNESCO World Heritage list since 1993. The studied sites ("Belvedere Chiese Rupestri" and "Iazzo dell'Ofra" localities) are located along the top of the walls of the deep canyon (locally called "Gravina di Matera" and deeper than 100 m) which characterizes the area. Several valuable medieval rupestrian hand-hewn rock churches and sanctuaries are present along the canyon walls. The canyon cut weak rocks (Plio-Pleistocene calcarenites, in which churches and sanctuaries are excavated) and the underlying well-stratified limestones (Cretaceous calcilutites). Both rocks are abundantly and strongly fractured and disjointed by several different joint sets, and, on the left wall of the "Gravina di Matera" canyon, they are characterized by a mainly dipping-slope attitude. Consequently, rock blocks of different sizes formed (up to some tens of m^3 in volume), and are characterized by low stability condition. The considerable acclivity of the walls and the defects and intense fracturing state of rocks, especially along the edge, cause rapid falls, topples and rockslides of the blocks. This geomorphological fragility, confirmed by wide-spread signs of potential instability and by several rock blocks fell in the stream, causes the diffuse and significant structural-failures processes that involve most of the very fine rupestrian heritages. Our study, after the geological and geomorphological description of the sites and the editing of thematic maps, concentrates on the determination the present-day slope instability conditions. Moreover, the study demonstrated the notable genetic relationship between jointing, slope instability and failure type of carbonate blocks. The main results of this geological and geomorphological studies and thematic maps will be reported and discussed.

  16. Student Involvement with the Regionally Important Geomorphological Site (RIGS) Scheme: An Opportunity to Learn Geomorphology and Gain Transferable Skills.

    ERIC Educational Resources Information Center

    McEwen, Lindsey

    1996-01-01

    Outlines student involvement with a conservation project that aims to develop a Regionally Important Geological/Geomorphological Site network (RIGS) at a county level in the United Kingdom. Emphasis is placed on identifying, describing, evaluating, and documenting land forms of educational, research, historical, and/or aesthetic value. (MJP)

  17. Advances in global mountain geomorphology

    NASA Astrophysics Data System (ADS)

    Slaymaker, Olav; Embleton-Hamann, Christine

    2018-05-01

    Three themes in global mountain geomorphology have been defined and reinforced over the past decade: (a) new ways of measuring, sensing, and analyzing mountain morphology; (b) a new emphasis on disconnectivity in mountain geomorphology; and (c) the emergence of concerns about the increasing influence of anthropogenic disturbance of the mountain geomorphic environment, especially in intertropical mountains where population densities are higher than in any other mountain region. Anthropogenically induced hydroclimate change increases geomorphic hazards and risks but also provides new opportunities for mountain landscape enhancement. Each theme is considered with respect to the distinctiveness of mountain geomorphology and in relation to important advances in research over the past decade. The traditional reliance on the high energy condition to define mountain geomorphology seems less important than the presence of unique mountain landforms and landscapes and the distinctive ways in which human activity and anthropogenically induced hydroclimate change are transforming mountain landscapes.

  18. Space geodiversity review: a case study in the southwestern region of Paraná State, Brazil.

    NASA Astrophysics Data System (ADS)

    Manosso, Fernando; Tauana Basso, Bruna; Alcindo Da Roza, Douglas; Souza dos Santos, Daniel

    2015-04-01

    Considering the strong global concern for nature protection, improvements emerge to support techniques to understand physical and biological means of selecting areas for environmental conservation. Most techniques take into consideration mainly the biological characteristics of nature, however as the nature is a complex of biotic and abiotic elements it becomes thus necessary the creation of parameters to understand the diversity of abiotic elements, their distribution, occurrence, threats and values as well. This paper aims to identify, quantify and perform a spatial analysis of the distribution of geodiversity in the southwestern region of Paraná State, Brazil, from the different concepts of geodiversity with the use of techniques on digital cartographic database in a Geographic Information System - GIS. Gray (2004) conceptualized geodiversity as the natural distribution of geology, including rocks, minerals, fossils, soil characteristics, land forms and processes (geomorphology), and their connections. Geodiversity is composed by the variability of abiotic nature, including lithological elements, tectonic, geomorphological, edaphic, hydrological, topographical and physical processes of the Earth surface, seas, oceans, together with natural endogenous, exogenous and anthropogenic processes that include a diversity of particles, elements and places (Serrano and Ruiz Flaño, 2007). Different methods of quantitative assessment of geodiversity in different territories were applied by Carcavilla et al (2007), Pellitero and González-Amuchastegui (2010), Navarro (2010), Katerina and Dušan (2008), Serrano et al (2007; 2009), Kozlowski (2010), Zwolinski and Stachowiak (2012), Thomas (2012), Hjort and Luoto (2010; 2012), Pellitero et al (2014), and Silva (2014). Considering geodiversity as the abiotic elements which constitute the landscape; it is important to mention that such set may vary spatially according to the occurrence of different geological formations, rock types, landforms, occurrence of fossils, drainage system, soil and other processes that outline the geodiversity. In addition to the wealth index number, which presents a quantity and area ratio, another way of analyzing the geodiversity of a case study is the abundance, dominance or the relative frequency of geodiversity (Carcavilla et al, 2007). As for the southwestern region of Paraná State case study, we used a set of cartographic databases at the 1:250.000 scale; for example: geomorphological and soil compartments, rivers, geological formations, structural lineaments, as well as temperature, rainfall and humidity average maps. The maps were organized relating the attribute tables, quantifying the sum of different elements each sample cell contained in a regular grid of 4km2. As a result, a map of the geodiversity wealth index of the region has been generated. High geodiversity wealth index comprises more carved valleys with steep slopes on some structural lines; on the other hand, less wealthy areas are located on softer relief plateaus with large hills, more homogeneous soils and lower relief structural control. These results, as well as adjustments and efficiency of the method seem to indicate an important tool for area management, especially regarding the selection of priority areas for nature conservation.

  19. Geomorphology and Sediment Stability of a Segment of the U.S. Continental Slope off New Jersey.

    PubMed

    Robb, J M; Hampson, J C; Twichell, D C

    1981-02-27

    The morphology of complex deposits of Pleistocene sediments covering the upper continental slope between Lindenkohl Canyon and South Toms Canyon results from both depositional and erosional processes. Small slump or slide features were detected primarily on the flanks of canyons or valleys and were observed to occur only within Pleistocene-aged sediments. Eocene to Miocene sediments are exposed over much of the mid- and lower slope in this area.

  20. Erosion research with a digital camera: the structure from motion method used in gully monitoring - field experiments from southern Morocco

    NASA Astrophysics Data System (ADS)

    Kaiser, Andreas; Rock, Gilles; Neugirg, Fabian; Müller, Christoph; Ries, Johannes

    2014-05-01

    From a geoscientific view arid or semiarid landscapes are often associated with soil degrading erosion processes and thus active geomorphology. In this regard gully incision represents one of the most important influences on surface dynamics. Established approaches to monitor and quantify soil loss require costly and labor-intensive measuring methods: terrestrial or airborne LiDAR scans to create digital elevation models and unmanned airborne vehicles for image acquisition provide adequate tools for geomorphological surveying. Despite their ever advancing abilities, they are finite with their applicability in detailed recordings of complex surfaces. Especially undercuttings and plunge pools in the headcut area of gully systems are invisible or cause shadowing effects. The presented work aims to apply and advance an adequate tool to avoid the above mentioned obstacles and weaknesses of the established methods. The emerging structure from motion-based high resolution 3D-visualisation not only proved to be useful in gully erosion. Moreover, it provides a solid ground for additional applications in geosciences such as surface roughness measurements, quantification of gravitational mass movements or capturing stream connectivity. During field campaigns in semiarid southern Morocco a commercial DSLR camera was used, to produce images that served as input data for software based point cloud and mesh generation. Thus, complex land surfaces could be reconstructed entirely in high resolution by photographing the object from different perspectives. In different scales the resulting 3D-mesh represents a holistic reconstruction of the actual shape complexity with its limits set only by computing capacity. Analysis and visualization of time series of different erosion-related events illustrate the additional benefit of the method. It opens new perspectives on process understanding that can be exploited by open source and commercial software. Results depicted a soil loss of 5,28 t for a 3,5 m² area at a headcut retreat of 1,95 m after two heavy rain events. At a different site in the Souss region the depression line of a gully was lowered after channel flow and a hollow appeared while the headcut remained stable. The latter is usually interpreted as a hint for an inactive system. While formerly precise differences in volumes could only be estimated based on aerial imagery or LiDAR scans, the presented methodology allows assumptions of high quality and precision. Not only in erosion research the structure from motion-method serves as a useful, flexible and cheap means to increase detail and work efficiency.

  1. Recent advances in research on the aeolian geomorphology of China's Kumtagh Sand Sea

    NASA Astrophysics Data System (ADS)

    Dong, Z.; Lv, P.

    2014-02-01

    The Kumtagh Sand Sea in the hyper-arid region of northwestern China remained largely unexplored until the last decade. It deserves study due to its significance in understanding the evolution of the arid environments in northwestern China, and even central Asia. Aeolian geomorphology in the sand sea has received unprecedented study in the last decade. Encouraging advances have been made in types of aeolian landforms, geological outlines, wind systems, the formation of aeolian landforms, several unique aeolian landforms, aeolian geomorphic regionalization, aeolian geomorphological heritages and tourism development, and aeolian sand hazards and their control. These advances expand our knowledge of aeolian geomorphology.

  2. Quantitative geomorphologic studies from spaceborne platforms

    NASA Technical Reports Server (NTRS)

    Williams, R. S., Jr.

    1985-01-01

    Although LANDSAT images of our planet represent a quantum improvement in the availability of a global image-data set for independent or comparative regional geomorphic studies of landforms, such images have several limitations which restrict their suitability for quantitative geomorphic investigations. The three most serious deficiencies are: (1) photogrammetric inaccuracies, (2) two-dimensional nature of the data, and (3) spatial resolution. These deficiencies are discussed, as well as the use of stereoscopic images and laser altimeter data.

  3. Geomorphology and American dams: The scientific, social, and economic context

    NASA Astrophysics Data System (ADS)

    Graf, William L.

    2005-10-01

    American geomorphologic research related to dams is embedded in a complicated context of science, policy, economics, and culture. Research into the downstream effects of large dams has progressed to the point of theory-building, but generalization and theory-building are from this research because (1) it is highly focused on a few locations, (2) it concerns mostly very large dams rather than a representative sample of sizes, (3) the available record of effects is too short to inform us on long-term changes, (4) the reversibility of changes imposed by dam installation and operation is unknown, and (5) coordinated funding for the needed research is scarce. In the scientific context, present research is embedded in a history of geomorphology in government service, with indistinct boundaries between "basic and applied" research. The federal policy that most strongly influences present geomorphological investigations connected with dams is related to habitat for endangered species, because the biological aspects of ecosystems are directly dependent on the substrate formed by the sediments and landforms that are influenced by dams. The economic context for research includes large amounts of public funds for river restoration, along with substantial private investments in dams; and geomorphology is central to these expensive issues. The cultural context for research is highly contentious and dominated by advocacy procedures that include intense scrutiny of any geomorphologic research related to dams. Advocates are likely to use the products of geomorphological research to make cases for their own positions.

  4. Smart "geomorphological" map browsing - a tale about geomorphological maps and the internet

    NASA Astrophysics Data System (ADS)

    Geilhausen, M.; Otto, J.-C.

    2012-04-01

    With the digital production of geomorphological maps, the dissemination of research outputs now extends beyond simple paper products. Internet technologies can contribute to both, the dissemination of geomorphological maps and access to geomorphologic data and help to make geomorphological knowledge available to a greater public. Indeed, many national geological surveys employ end-to-end digital workflows from data capture in the field to final map production and dissemination. This paper deals with the potential of web mapping applications and interactive, portable georeferenced PDF maps for the distribution of geomorphological information. Web mapping applications such as Google Maps have become very popular and widespread and increased the interest and access to mapping. They link the Internet with GIS technology and are a common way of presenting dynamic maps online. The GIS processing is performed online and maps are visualised in interactive web viewers characterised by different capabilities such as zooming, panning or adding further thematic layers, with the map refreshed after each task. Depending on the system architecture and the components used, advanced symbology, map overlays from different applications and sources and their integration into a Desktop GIS are possible. This interoperability is achieved through the use of international open standards that include mechanisms for the integration and visualisation of information from multiple sources. The portable document format (PDF) is commonly used for printing and is a standard format that can be processed by many graphic software and printers without loss of information. A GeoPDF enables the sharing of geospatial maps and data in PDF documents. Multiple, independent map frames with individual spatial reference systems are possible within a GeoPDF, for example, for map overlays or insets. Geospatial functionality of a GeoPDF includes scalable map display, layer visibility control, access to attribute data, coordinate queries and spatial measurements. The full functionality of GeoPDFs requires free and user-friendly plug-ins for PDF readers and GIS software. A GeoPDF enables fundamental GIS functionality turning the formerly static PDF map into an interactive, portable georeferenced PDF map. GeoPDFs are easy to create and provide an interesting and valuable way to disseminate geomorphological maps. Our motivation to engage with the online distribution of geomorphological maps originates in the increasing number of web mapping applications available today indicating that the Internet has become a medium for displaying geographical information in rich forms and user-friendly interfaces. So, why not use the Internet to distribute geomorphological maps and enhance their practical application? Web mapping and dynamic PDF maps can play a key role in the movement towards a global dissemination of geomorphological information. This will be exemplified by live demonstrations of i.) existing geomorphological WebGIS applications, ii.) data merging from various sources using web map services, and iii.) free to download GeoPDF maps during the presentations.

  5. Interactions between geomorphology and vegetation in the Western Swiss Alps: first investigations

    NASA Astrophysics Data System (ADS)

    Giaccone, Elisa; Mariéthoz, Grégoire; Lambiel, Christophe

    2017-04-01

    The influence of earth surface processes can modify the microhabitat conditions and the species richness, composition and distribution patterns of plant communities. It is therefore important to understand how geomorphology affects the distribution of plant species to predict future vegetation evolution in a context of climate change. To better analyse the influence of geomorphology on vegetation growth in the alpine periglacial belt, we are studying various geomorphological processes (e.g. cryoturbation and solifluction), permafrost, nivation and ground surface characteristics at three focus sites of the Vaud Alps (Western Swiss Alps). The sites are located at an altitude range comprised between 2000 and 2600 m a.s.l. The geomorphology is characterized mainly by the presence of small glaciers, large moraine deposits, rock glaciers and debris slopes. Monitoring of the ground surface temperatures, permafrost mapping, vegetation survey and drone flights have been carried out to investigate in detail the environmental variables. Initial results show a heterogeneous vegetation cover depending on time since deglaciation, debris size, ground stability and soil age. Debris pioneer species are present on moraines, rock glaciers and debris slope; grassland are developed in zones not affected by LIA glacier advances or other interfering processes such as avalanches. The high-resolution images obtained from drone flights (5 cm/pixel) allow a detailed study of the granulometry. In order to use such geomorphological information on a wider area of interest, the local data acquired on focus sites have to be spatialized to a regional scale. This is accomplished by developing an approach based on remote sensing and multiple-point geostatistics that performs a semi-automated geomorphological mapping (SAGM). The SAGM is based on a training image composed by a geomorphological map yet existent, an orthophoto, the slope, the aspect, the curvature, the granulometry classification and the NDVI. The SAGM will be first elaborated for the focus sites and will then be extended to the entire Vaud Alps above 2000 m a.s.l. This information will be used to better understand the geomorphology-vegetation interactions and their spatialization.

  6. Hybrid geomorphological maps as the basis for assessing geoconservation potential in Lech, Vorarlberg (Austria)

    NASA Astrophysics Data System (ADS)

    Seijmonsbergen, Harry; de Jong, Mat; Anders, Niels; de Graaff, Leo; Cammeraat, Erik

    2013-04-01

    Geoconservation potential is, in our approach, closely linked to the spatial distribution of geomorphological sites and thus, geomorphological inventories. Detailed geomorphological maps are translated, using a standardized workflow, into polygonal maps showing the potential geoconservation value of landforms. A new development is to semi-automatically extract in a GIS geomorphological information from high resolution topographical data, such as LiDAR, and combine this with conventional data types (e.g. airphotos, geological maps) into geomorphological maps. Such hybrid digital geomorphological maps are also easily translated into digital information layers which show the geoconservation potential in an area. We present a protocol for digital geomorphological mapping illustrated with an example for the municipality of Lech in Vorarlberg (Austria). The protocol consists of 5 steps: 1. data preparation, 2. generating training and validation samples, 3. parameterization, 4. feature extraction, and 5. assessing classification accuracy. The resulting semi-automated digital geomorphological map is then further validated, in two ways. Firstly, the map is manually checked with the help of a series of digital datasets (e.g. airphotos) in a digital 3D environment, such as ArcScene. The second validation is field visit, which preferably occurs in parallel to the digital evaluation, so that updates are quickly achieved. The final digital and coded geomorphological information layer is converted into a potential geoconservation map by weighting and ranking the landforms based on four criteria: scientific relevance, frequency of occurrence, disturbance, and environmental vulnerability. The criteria with predefined scores for the various landform types are stored in a separate GIS attribute table, which is joined to the attribute table of the hybrid geomorphological information layer in an automated procedure. The results of the assessment can be displayed as the potential geoconservation map or as GeoPDF in a separate information layer. The Lech example highlights the problems ski resorts in a fragile high-alpine mountain environment are facing. The ongoing development poses a challenge to the communities. Which place do the high-ranking potential geoconservation sites get in the landscape planning and management? Must they be sacrificed to the economic benefits of winter tourism or, conversely, can their value be exploited in summer tourism - or is their intrinsic value enough to justify protection? Our method is transparent, takes into account the total landscape, and allows for rapid updating of the geodatabase. Evaluating the change in geoconservation potential over time, as a consequence of expansion of infrastructure or change in intensity of natural processes, is possible. In addition, model scenarios can be run to assess the impact of man-induced change on the potential geoconservation value of landforms.

  7. Evaluation of terrain complexity by autocorrelation. [geomorphology and geobotany

    NASA Technical Reports Server (NTRS)

    Craig, R. G.

    1982-01-01

    The topographic complexity of various sections of the Ozark, Appalachian, and Interior Low Plateaus, as well as of the New England, Piedmont, Blue Ridge, Ouachita, and Valley and Ridge Provinces of the Eastern United States were characterized. The variability of autocorrelation within a small area (7 1/2-ft quadrangle) to the variability at widely separated and diverse areas within the same physiographic region was compared to measure the degree of uniformity of the processes which can be expected to be encountered within a given physiographic province. The variability of autocorrelation across the eight geomorphic regions was compared and contrasted. The total study area was partitioned into subareas homogeneous in terrain complexity. The relation between the complexity measured, the geomorphic process mix implied, and the way in which geobotanical information is modified into a more or less recognizable entity is demonstrated. Sampling strategy is described.

  8. Mega-geomorphology: Mars vis a vis Earth

    NASA Technical Reports Server (NTRS)

    Sharp, R. P.

    1985-01-01

    The areas of chaotic terrain, the giant chasma of the Valles Marineris region, the complex linear and circular depressions of Labyrinthus Noctis on Mars all suggest the possibility of large scale collapse of parts of the martian crust within equatorial and sub equatorial latitudes. It seems generally accepted that the above features are fossil, being perhaps, more than a billion years old. It is possible that parts of Earth's crust experienced similar episodes of large scale collapse sometime early in the evolution of the planet.

  9. Kinds and problems of geomorphological explanation

    NASA Astrophysics Data System (ADS)

    Cox, Nicholas J.

    2007-07-01

    What characterises satisfactory explanations in geomorphology is a key methodological question deserving continued analysis. In turn it raises the issue of the role played by methodology within the science. At its best, methodology can provide helpful distinctions, identify key issues and yield guidance for researchers. The substantive context for debates on explanation is the apparent complexity and difficulty of geomorphology as a science, which is arguably no greater than that of other Earth or environmental sciences. The logical view of explanation dominant in the 1950s and 1960s still has value, but a broader view is needed of explanations, related to the questions geomorphologists (and others) ask and to the answers that they find interesting. Answers may be sought in terms of purpose, history, mechanisms and statistics. Arguments over what is supposed to be reductionism can be clarified by underlining that both micro- and macro-explanations may be helpful. Although many geomorphologists aspire to mechanistic explanations, they often stop short at statistical explanations, making use of convenient functional forms such as power laws. Explanations have both social and psychological dimensions, the former much stressed in history of science and recent science studies, the latter deserving greater emphasis at present. Complicated models raise the question of how far it can be said that geomorphologists understand them in totality. A bestiary of poor explanations is needed, so that geomorphologists are not seduced by weak arguments and because they often serve as steps towards better explanations. Circular arguments, ad hoc explanations, and mistaking the name of the problem for the solution are cases in point.

  10. Applications of Skylab EREP photographs to mapping landforms and environmental geomorphology in the Great Plains and Midwest

    NASA Technical Reports Server (NTRS)

    Morrison, R. B.; Lineback, J. A.; Fuller, H. K.; Rinkenberger, R. K.

    1975-01-01

    The following evaluations of Skylab photographs were undertaken: (1) the 1290 Skylab S190A and S190B photographs of Illinois, Iowa, Kansas, Missouri, Nebraska, and South Dakota were evaluated in detail in terms of coverage, cloud cover, photographic quality, endlap, detectability of roads and stereorelief, and utility for geomorphologic mapping, and (2) the utility of the Skylab photos were tested for interpretive analytic mapping of geomorphologic features over large areas representative of different parts of this region. Photointerpretative maps of analytic geomorphology were obtained for various test areas representative of the varied landscapes in the region. These maps are useful for regional land-use planning, ground-water exploration, and other environmental geomorphologic-geologic applications. Compared with LANDSAT-1 MSS images, Skylab photos afford almost as extensive overviews of large areas but in considerably greater detail, and for many SL photos, moderate stereorelief. However, repetitive multiseasonal, cloud-free coverage by high-quality photos is very limited and many areas have no coverage at all.

  11. Optimising UAV topographic surveys processed with structure-from-motion: Ground control quality, quantity and bundle adjustment

    NASA Astrophysics Data System (ADS)

    James, M. R.; Robson, S.; d'Oleire-Oltmanns, S.; Niethammer, U.

    2017-03-01

    Structure-from-motion (SfM) algorithms greatly facilitate the production of detailed topographic models from photographs collected using unmanned aerial vehicles (UAVs). However, the survey quality achieved in published geomorphological studies is highly variable, and sufficient processing details are never provided to understand fully the causes of variability. To address this, we show how survey quality and consistency can be improved through a deeper consideration of the underlying photogrammetric methods. We demonstrate the sensitivity of digital elevation models (DEMs) to processing settings that have not been discussed in the geomorphological literature, yet are a critical part of survey georeferencing, and are responsible for balancing the contributions of tie and control points. We provide a Monte Carlo approach to enable geomorphologists to (1) carefully consider sources of survey error and hence increase the accuracy of SfM-based DEMs and (2) minimise the associated field effort by robust determination of suitable lower-density deployments of ground control. By identifying appropriate processing settings and highlighting photogrammetric issues such as over-parameterisation during camera self-calibration, processing artefacts are reduced and the spatial variability of error minimised. We demonstrate such DEM improvements with a commonly-used SfM-based software (PhotoScan), which we augment with semi-automated and automated identification of ground control points (GCPs) in images, and apply to two contrasting case studies - an erosion gully survey (Taroudant, Morocco) and an active landslide survey (Super-Sauze, France). In the gully survey, refined processing settings eliminated step-like artefacts of up to 50 mm in amplitude, and overall DEM variability with GCP selection improved from 37 to 16 mm. In the much more challenging landslide case study, our processing halved planimetric error to 0.1 m, effectively doubling the frequency at which changes in landslide velocity could be detected. In both case studies, the Monte Carlo approach provided a robust demonstration that field effort could by substantially reduced by only deploying approximately half the number of GCPs, with minimal effect on the survey quality. To reduce processing artefacts and promote confidence in SfM-based geomorphological surveys, published results should include processing details which include the image residuals for both tie points and GCPs, and ensure that these are considered appropriately within the workflow.

  12. Hyperspectral remote sensing and GIS techniques application for the evaluation and monitoring of interactions between natural risks and industrial hazards

    NASA Astrophysics Data System (ADS)

    Marino, Alessandra; Ludovisi, Giancarlo; Moccaldi, Antonio; Damiani, Fiorenzo

    2001-02-01

    The aim of this paper is to outline the potential of imaging spectroscopy and GIS techniques as tool for the management of data rich environments, as complex fluvial areas, exposed to geological, geomorphological, and hydrogeological risks. The area of study, the Pescara River Basin is characterized by the presence of important industrial sites and by the occurrence of floods, landslides and seismic events. Data were collected, during a specific flight, using an hyperspectral MIVIS sensor. Images have been processed in order to obtain updated and accurate land-cover and land-use maps that have been inserted in a specific GIS database and integrated with further information like lithology, geological structure, geomorphology, hydrogeological features, productive plants location and characters. The processing of data layers was performed, using a dedicated software, through typical GIS operators like indexing, recording, matrix analysis, proximity analysis. The interactions between natural risks, industrial installations, agricultural areas, water resources and urban settlements have been analyzed. This allowed the creation and processing of thematic layers like vulnerability, risk and impact maps.

  13. Identifying riparian sinks for watershed nitrate using soil surveys.

    PubMed

    Rosenblatt, A E; Gold, A J; Stolt, M H; Groffman, P M; Kellogg, D Q

    2001-01-01

    The capacity of riparian zones to serve as critical control locations for watershed nitrogen flux varies with site characteristics. Without a means to stratify riparian zones into different levels of ground water nitrate removal capacity, this variability will confound spatially explicit source-sink models of watershed nitrate flux and limit efforts to target riparian restoration and management. We examined the capability of SSURGO (1:15 840 Soil Survey Geographic database) map classifications (slope class, geomorphology, and/or hydric soil designation) to identify riparian sites with high capacity for ground water nitrate removal. The study focused on 100 randomly selected riparian locations in a variety of forested and glaciated settings within Rhode Island. Geomorphic settings included till, outwash, and organic/alluvial deposits. We defined riparian zones with "high ground water nitrate removal capacity" as field sites possessing both >10 m of hydric soil width and an absence of ground water surface seeps. SSURGO classification based on a combination of geomorphology and hydric soil status created two functionally distinct sets of riparian sites. More than 75% of riparian sites classified by SSURGO as organic/alluviumhydric or as outwash-hydric had field attributes that suggest a high capacity for ground water nitrate removal. In contrast, >85% of all till sites and nonhydric outwash sites had field characteristics that minimize the capacity for ground water nitrate removal. Comparing the STATSGO and SSURGO databases for a 64000-ha watershed, STATSGO grossly under-represented critical riparian features. We conclude that the SSURGO database can provide modelers and managers with important insights into riparian zone nitrogen removal potential.

  14. The Archeological Record at Bull Shoals Lake and Norfork Lake Arkansas and Missouri

    DTIC Science & Technology

    1993-06-01

    geomorphological analysis of the landscape within the project areas, a review of previously gathered data about the nature and distribution of the...effort. These included a reconnaissance level geomorphological analysis of the landscape within the project areas, a review of previously gathered data...1989) which sought to integrate the description of the archeological record with a geomorphological analysis of the landscape within the areas directly

  15. Feedbacks between geomorphology and biota controlling Earth surface processes and landforms: A review of foundation concepts and current understandings

    NASA Astrophysics Data System (ADS)

    Corenblit, Dov; Baas, Andreas C. W.; Bornette, Gudrun; Darrozes, José; Delmotte, Sébastien; Francis, Robert A.; Gurnell, Angela M.; Julien, Frédéric; Naiman, Robert J.; Steiger, Johannes

    2011-06-01

    This review article presents recent advances in the field of biogeomorphology related to the reciprocal coupling between Earth surface processes and landforms, and ecological and evolutionary processes. The aim is to present to the Earth Science community ecological and evolutionary concepts and associated recent conceptual developments for linking geomorphology and biota. The novelty of the proposed perspective is that (1) in the presence of geomorphologic-engineer species, which modify sediment and landform dynamics, natural selection operating at the scale of organisms may have consequences for the physical components of ecosystems, and particularly Earth surface processes and landforms; and (2) in return, these modifications of geomorphologic processes and landforms often feed back to the ecological characteristics of the ecosystem (structure and function) and thus to biological characteristics of engineer species and/or other species (adaptation and speciation). The main foundation concepts from ecology and evolutionary biology which have led only recently to an improved conception of landform dynamics in geomorphology are reviewed and discussed. The biogeomorphologic macroevolutionary insights proposed explicitly integrate geomorphologic niche-dimensions and processes within an ecosystem framework and reflect current theories of eco-evolutionary and ecological processes. Collectively, these lead to the definition of an integrated model describing the overall functioning of biogeomorphologic systems over ecological and evolutionary timescales.

  16. Geomorphological map and preliminary analysis of Quaternary sediments in the Planica-Tamar valley (Julian Alps, NW Slovenia)

    NASA Astrophysics Data System (ADS)

    Novak, Andrej; Šmuc, Andrej

    2016-04-01

    The Planica-Tamar valley is located in the Julian Alps in north-west Slovenia. The Planica-Tamar valley represents typical mountain glacial valley bounded by steep, mainly carbonate cliffs with some glacial deposits still preserved. The valley is currently being filled with numerous Holocene sediments deposited by rock falls, landslides, mass gravity flows and fluvial flows. These deposits are forming active or inactive interfingering talus slopes, alluvial and debris-flow fans, all of them with a complex history of sedimentation and erosion forming unconformity bounded sedimentary units. In order to make a thorough analysis of these deposits a detailed geomorphological map in a scale of 1:10 000 has been made. Six different types of sedimentary deposits were defined and mapped. These are moraines, lacustrine sediments, fluvio-glacial deposits, talus slopes, debris fans and alluvial fans. Other mapped features also include shape of ravines, their depths, ridges and direction of sedimentary flow. Additionally areas of active, semi-active and inactive sedimentation were marked. Moraines forms a ridge in the bottom of the valleys and are composed of unconsolidated, poorly sorted, subangular grains ranging from clay size to a few cubic meters big blocks. Lacustrine sediments are represented by laminated well sorted sand and silt, while fluvio-glacial deposits are composed of washed out subrounded sands and gravels. Talus slope deposits are characterised by clast-supported poorly sorted very angular gravel. Debris flow fans are represented by extremely poorly sorted matrix-supported gravels with grain size ranging from clay to few cubic meters big blocks. Alluvial fans are composed by variety of sedimentary textures. Sediments at the fan apex are clast-supported poorly sorted very angular gravels with up to a few cubic meters big block. In the middle part of the fan the sieve deposits are common, while in the distal parts a few centimeters thick layers of sand and moderately sorted clast or sandy matrix-supported angular gravels occur. In cross-sections of alluvial fans distinct palaeosoil horizons are present indicating longer inactivity of that part of the fan. The geomorphological map forms a base for further research and thorough analysis of Quaternary deposits in order to reconstruct the Holocene dynamic of triggering and sedimentation of different types of slope deposits and relate them to base rock geology, tectonic and local/regional climate events. Key words: geomorphological mapping, Holocene slope deposits, alluvial fans, debris fans, Alpine geomorphology.

  17. An approach for quantifying geomorphological impacts for EIA of transportation infrastructures: a case study in northern Spain

    NASA Astrophysics Data System (ADS)

    Bonachea, Jaime; Bruschi, Viola Maria; Remondo, Juan; González-Díez, Alberto; Salas, Luis; Bertens, Jurjen; Cendrero, Antonio; Otero, César; Giusti, Cecilia; Fabbri, Andrea; González-Lastra, José Ramón; Aramburu, José María

    2005-03-01

    A methodological proposal for the assessment of impacts due to linear infrastructures such as motorways, railways, etc. is presented. The approach proposed includes a series of specific issues to be addressed for each geomorphological feature analysed—both 'static' and 'dynamic'—as well as a series of steps to be followed in the process. Geomorphic characteristics potentially affected were initially identified on the basis of a conceptual activities/impacts model that helps to single out geomorphic impacts related to environmental concerns for the area. The following issues were addressed for each individual impact: nature of potential effects; indicators that can be used to measure impacts; criteria of 'geomorphologic performance'; procedure for measurement/prediction of changes; translation of geomorphologic impacts into significant terms from the viewpoint of human concerns; possible mitigation and/or compensation measures. The procedure has been applied to a case study corresponding to a new motorway in the Basque Country, northern Spain. Geomorphological impacts considered in this analysis included: (1) consumable resources; (2) sites of geomorphological interest; (3) land units with high potential for use, high productivity or value for conservation; (4) visual landscape; (5) slope instability processes. The procedure has been designed for implementation in a Geographic Information System (GIS) environment. Details are given on the application of the method to each individual impact analysed and results are presented in both numerical and map form. Impacts assessed were initially expressed by means of heterogeneous magnitudes, depending on the geomorphological feature considered. Those geomorphological impacts were then translated into significant terms and homogeneous magnitudes. Integration was carried out on the basis of impact values thus obtained. Final integrated results were also expressed in numerical and map form. The method proposed enables comparison of alternatives as well as 'prediction' and assessment of impacts in terms directly related to geomorphic characteristics. It also facilitates the expression of those impacts in terms that allow integration with other types of environmental impacts.

  18. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    NASA Astrophysics Data System (ADS)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated from ongoing radionuclide (Pb-210 and Cs-137) and pollen analysis of the fluvial sediment sequences. However, based on the established chronology and geomorphic field relationships, it is plausible that the archaeological complex represents a late medieval site linked to Dunmoe Castle (14th to 17th century AD), which overlooks the floodplain.

  19. Evolution of ice sheets in the early Quaternary of the central North Sea: 2.58 Ma to 0.78 Ma

    NASA Astrophysics Data System (ADS)

    Lamb, R.; Huuse, M.; Stewart, M.; Brocklehurst, S. H.

    2016-12-01

    Integration of chronostratigraphic proxies with 3D seismic and well-log data has allowed for a basin-wide re-interpretation of the onset of glaciation in the central North Sea during the Quaternary. Mapping of seismic geomorphology, calculations of water depth and sediment accumulation rates, and other basin analysis techniques unravel the evolution of the North Sea basin during the early Pleistocene, a period of dramatic global cooling and rapid 41 kyr glacial-interglacial cycles, identifying a system which is increasingly dominated by large, continental-scale ice sheets. Prior to this study continental-scale ice sheets were generally not considered able to grow in a 41 kyr cycle and the earliest date for such an ice sheet in the North Sea was identified at the onset of tunnel valley formation in the Elsterian (0.48 Ma; MIS 12) which forms a large regional-scale glacial unconformity. At the onset of the Pleistocene at 2.58 Ma the North Sea basin was an elongate `mega-fjord' with water depths of up to 350 m, infilling rapidly as the European river systems deposited a large clinoform complex in the southern end of the basin. This period corresponds to the preservation of large scale ice-berg scouring on clinoform topsets, suggesting the presence of marine-terminating ice sheets with repeated calving events. As the Pleistocene progressed and global climate became increasingly colder the North Sea became smaller and shallower due to the continual infill of the basin. At 1.72 Ma the basin reached a critical point between the cold climate and the shallowing of the basin and the first evidence for grounded glaciation in the form of mega-scale glacial lineations is seen at this level. Between 1.72 and 0.48 Ma there is evidence for ice-streaming in the form of multiple MSGL flow sets re-occupying the central North Sea, as well as a large glaciotectonic complex. The glacial geomorphological evidence presented pushes back the date of grounded glaciation in the central North Sea by over one million years relative to the existing models. This raises important questions about the completeness of glaciation histories of Europe and other high and mid latitude land areas that can only be addressed by in depth scrutiny of their adjacent offshore sedimentary records.

  20. Quantitative paleotopography and paleogeography around the Gibraltar Arc (South Spain) during the Messinian Salinity Crisis

    NASA Astrophysics Data System (ADS)

    Elez, Javier; Silva, Pablo G.; Huerta, Pedro; Perucha, M. Ángeles; Civis, Jorge; Roquero, Elvira; Rodríguez-Pascua, Miguel A.; Bardají, Teresa; Giner-Robles, Jorge L.; Martínez-Graña, Antonio

    2016-12-01

    The Malaga basin contains an important geological record documenting the complex paleogeographic evolution of the Gibraltar Arc before, during and after the closure and desiccation of the Mediterranean Sea triggered by the "Messinian Salinity crisis" (MSC). Proxy paleo-elevation data, estimated from the stratigraphic and geomorphological records, allow the building of quantitative paleogeoid, paleotopographic and paleogeographic models for the three main paleogeographic stages: pre-MSC (Tortonian-early Messinian), syn-MSC (late Messinian) and post-MSC (early Pliocene). The methodological workflow combines classical contouring procedures used in geology and isobase map models from geomorphometric analyses and proxy data overprinted on present Digital Terrain Models. The resulting terrain quantitative models have been arranged, managed and computed in a GIS environment. The computed terrain models enable the exploration of past landscapes usually beyond the reach of classical geomorphological analyses and strongly improve the paleogeographic and paleotopographic knowledge of the study area. The resulting models suggest the occurrence of a set of uplifted littoral erosive and paleokarstic landforms that evolved during pre-MSC times. These uplifted landform assemblages can explain the origin of key elements of the present landscape, such as the Torcal de Antequera and the large amount of mogote-like relict hills present in the zone, in terms of ancient uplifted tropical islands. The most prominent landform is the extensive erosional platform dominating the Betic frontal zone that represents the relic Atlantic wave cut platform elaborated during late-Tortonian to early Messinian times. The amount of uplift derived from paleogeoid models suggests that the area rose by about 340 m during the MSC. This points to isostatic uplift triggered by differential erosional unloading (towards the Mediterranean) as the main factor controlling landscape evolution in the area during and after the MSC. Former littoral landscapes in the old emergent axis of the Gibraltar Arc were uplifted to form the main water-divide of the present Betic Cordillera in the zone.

  1. Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars

    NASA Astrophysics Data System (ADS)

    Chavan, A. A.; Bhandari, S.

    2017-12-01

    The modern era of planetary exploration has revealed fluvial or fluvial like landforms on the extraterrestrial surfaces of planets and moons of our solar system. This has posed as interesting challenges for advancing our fundamental understanding of fluvial processes and their associated landforms on the planetary surfaces especially on Mars. It has been recognized through earlier studies that the channels and valleys are extensively dissected on Mars. The Valleys are low lying, elongate troughs surrounded by elevated topography. Moreover, valley networks on Mars are the most noticeable features attesting that different geological processes and possibly climatic conditions prevailed in the past and played a vital role in formulating the Martian topography. Channel incisions which are a domino effect both tectonic and surface runoff and groundwater sapping. The components of surface runoff have been deciphered with the help of morphometric exercises. Further, the geomorphological studies of these landforms are critical in understanding the regional tectonics. The present work is an assessment of Fluvio geomorphic set-up of Noctis Fossae in Noctis Labyrinthus of Syria-Planum Provenance, Mars. This study focuses on the fluvio geomorphology of the southern highlands (00 to 400S to 850-1200W) to determine how these features were formed, which process formed these valleys and includes the probable causes resulting into the development of the topography. Keywords: Noctis Fossae; Noctis Labyrinthus; Syria Planum; Mars

  2. Geomorphology: Perspectives on observation, history, and the field tradition

    NASA Astrophysics Data System (ADS)

    Vitek, John D.

    2013-10-01

    Other than a common interest in form and process, current geomorphologists have little in common with those who established the foundations of this science. Educated people who had an interest in Earth processes during the nineteenth century cannot be compared to the scholars who study geomorphology in the twenty-first century. Whereas Earth has undergone natural change from the beginning of time, the human record of observing and recording processes and changes in the surface Is but a recent phenomena. Observation is the only thread, however, that connects all practitioners of geomorphology through time. As people acquired knowledge related to all aspects of life, technological revolutions, such as the Iron Age, Bronze Age, agricultural revolution, the atomic age, and the digital age, shaped human existence and thought. Technology has greatly changed the power of human observation, including inward to the atomic scale and outward into the realm of space.Books and articles describe how to collect and analyze data but few references document the field experience. Each of us, however, has experienced unique circumstances during field work and we learned from various mentors how to observe. The surface of Earth on which we practice the vocation of geomorphology may not be much different from a hundred years ago but many things about how we collect data, analyze it and disseminate the results have changed. How we function in the field, including what we wear, what we eat, how we get there, and where we choose to collect data, clearly reflects the complexity of the human system on Earth and the processes and forms that arouse our interest. Computers, miniaturization of electronics, satellite communications and observation platforms in space provide access to data to aid in our quest to understand Earth surface processes. Once, people lived closer to nature in primitive shelters in contrast with life in urban environments. But as urban life continues to expand and people need to know how Earth operates, geomorphologists, therefore, serve humanity today as the primary observers and reporters in the realm of Earth surface processes.

  3. Application Development: AN Interactive, Non-Technical Perspective of the Geology and Geomorphology of the Ouray Perimeter Tail, CO.

    NASA Astrophysics Data System (ADS)

    Allen, H. M.; Giardino, J. R.

    2015-12-01

    Each year people seek respite from their busy lifestyles by traveling to state or national parks, national forests or wilderness areas. The majority of these parks were established in order to help preserve our natural heritage, including wildlife, forests, and the beauty of landscapes formed from thousands of years of geologic/geomorphologic processes. Whilst being able to enjoy the tranquility of nature, tourists are being robbed of a more in-depth experience as a result of the lack of a geologic background. One such location that attracts a large number of summer tourists is the perimeter trail in Ouray, Colorado. Located in the Southwestern portion of Colorado, Ouray is situated in the beautiful San Juan Mountain range along the "Million Dollar Highway." The Perimeter trail is a six-mile trail loop that circles the city of Ouray. The city is a very popular place for summertime tourism because of its unparalleled scenery. Ouray is situated in an area that is riddled with textbook angular unconformities, metasedimentary, sedimentary, and volcanic rocks. In the study area, The San Juans have been beautifully sculpted by an array of major faulting events, glacial activity and volcanics. With the understanding that technology is ever expanding, we think there is no better way to experience the Perimeter Trail than to have an interactive application that will be both educational as well as interesting. This application is a non-technical way of looking at the geology and geomorphology of the perimeter trail. Additionally, a paper brochure shows the most noteworthy points of interest. The brochure contains a brief geologic history of the San Juan Mountains accompanied with annotated photographs to illustrate the complex geology/geomorphology encountered on the trail. The application is based on an interactive three-dimensional map, which can be zoomed to various scales. The app hosts a locational service that uses the phone's GPS to communicate location of the hiker on the trail. This project developed a simple, yet effective application that will not only guide hikers along the trail, but also aid in educating the thousands of tourists that visit the area yearly.

  4. Should precise numerical dating overrule glacial geomorphology?

    NASA Astrophysics Data System (ADS)

    Winkler, Stefan

    2016-04-01

    Numerical age dating techniques, namely different types of terrestrial cosmogenic nuclide dating (TCND), have achieved an impressive progress in both laboratory precision and regional calibration models during the past few decades. It is now possible to apply precise TCND even to young landforms like Late Holocene moraines, a task seemed hardly achievable just about 15 years ago. An increasing number of studies provide very precise TCND ages for boulders from Late Holocene moraines enabling related reconstruction of glacier chronologies and the interpretation of these glacial landforms in a palaeoclimatological context. These studies may also solve previous controversies about different ages assigned to moraines obtained by different dating techniques, for example relative-age dating techniques or techniques combining relative-age dating with few fixed points derived from numerical age dating. There are a few cases, for example Mueller Glacier and nearby long debris-covered valley glacier in Aoraki/Mt.Cook National Park (Southern Alps, New Zealand), where the apparent "supremacy" of TCND-ages seem to overrule glacial geomorphological principles. Enabled by a comparatively high number of individual boulders precisely dated by TCND, moraine ridges on those glacier forelands have been primarily clustered on basis of these boulder ages rather than on their corresponding morphological position. To the extreme, segments of a particular moraine complex morphologically and sedimentologically proven to be formed during one event have become split and classified as two separate "moraines" on different parts of the glacier foreland. One ledge of another moraine complex contains 2 TCND-sampled boulders apparently representing two separate "moraines"-clusters of an age difference in the order of 1,500 years. Although recently criticism has been raised regarding the non-contested application of the arithmetic mean for calculation of TCND-ages for individual moraines, this problem is still not properly addressed in every case and significant age differences of individual boulders on moraine ridges create uncertainties with their palaeoclimatic interpretation. Referring to the exemplary case of the glacier forelands mentioned above it is argued that prior to any chronological interpretation the geomorphological correlation of individual moraine ridges and complexes need to be established and potential uncertainties clearly addressed. After the TCND-ages have been obtained from sampled boulders and assigned to the moraines any discrepancy needs to be carefully investigated to ensure that misleading ages don't effect subsequent chronological reconstructions and palaeoclimatic interpretations. Even if dating precision has recently considerably increased, moraines should not be clustered into synchronous moraine-groups based on TCND-ages if their morphological position or sedimentology contradicts such classification. Furthermore, the high precision of TCND-ages do often not consider the concept of 'LIA'-type events and different response times of nearby glaciers to the same mass balance/climate signal, therefore potentially overestimating the true number of glacier advances during a specific period. An alternative interpretation of existing TCND-ages reveals fewer advances during the Late Holocene. Summarising, modern TCND-ages are possibly "too precise" in some aspects and wrongly judged as superior to geomorphological evidence. A more critical evaluation would be beneficial to any subsequent attempts of intra-hemispheric and global correlation of glacier chronologies.

  5. Large eddy simulation modeling of particle-laden flows in complex terrain

    NASA Astrophysics Data System (ADS)

    Salesky, S.; Giometto, M. G.; Chamecki, M.; Lehning, M.; Parlange, M. B.

    2017-12-01

    The transport, deposition, and erosion of heavy particles over complex terrain in the atmospheric boundary layer is an important process for hydrology, air quality forecasting, biology, and geomorphology. However, in situ observations can be challenging in complex terrain due to spatial heterogeneity. Furthermore, there is a need to develop numerical tools that can accurately represent the physics of these multiphase flows over complex surfaces. We present a new numerical approach to accurately model the transport and deposition of heavy particles in complex terrain using large eddy simulation (LES). Particle transport is represented through solution of the advection-diffusion equation including terms that represent gravitational settling and inertia. The particle conservation equation is discretized in a cut-cell finite volume framework in order to accurately enforce mass conservation. Simulation results will be validated with experimental data, and numerical considerations required to enforce boundary conditions at the surface will be discussed. Applications will be presented in the context of snow deposition and transport, as well as urban dispersion.

  6. Geomorphological evolution of western Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Di Maggio, Cipriano; Madonia, Giuliana; Vattano, Marco; Agnesi, Valerio; Monteleone, Salvatore

    2017-02-01

    This paper proposes a morphoevolutionary model for western Sicily. Sicily is a chain-foredeep-foreland system still being built, with tectonic activity involving uplift which tends to create new relief. To reconstruct the morphoevolutionary model, geological, and geomorphological studies were done on the basis of field survey and aerial photographic interpretation. The collected data show large areas characterized by specific geological, geomorphological, and topographical settings with rocks, landforms, and landscapes progressively older from south to north Sicily. The achieved results display: (1) gradual emersion of new areas due to uplift, its interaction with the Quaternary glacio-eustatic oscillations of the sea level, and the following production of a flight of stair-steps of uplifted marine terraces in southern Sicily, which migrates progressively upward and inwards; in response to the uplift (2) triggering of down-cutting processes that gradually dismantle the oldest terraces; (3) competition between uplift and down-cutting processes, which is responsible for the genesis of river valleys and isolated rounded hills in central Sicily; (4) continuous deepening over time that results in the exhumation of older and more resistant rocks in northern Sicily, where the higher heights of Sicily are realized and the older forms are retained; (5) extensional tectonic event in the northern end of Sicily, that produces the collapse of large blocks drowned in the Tyrrhenian Sea and sealed by coastal-marine deposits during the Calabrian stage; (6) trigger of uplift again in the previously subsiding blocks and its interaction with coastal processes and sea level fluctuations, which produce successions of marine terraces during the Middle-Upper Pleistocene stages.

  7. Geomorphometric analysis of cave ceiling channels mapped with 3-D terrestrial laser scanning

    NASA Astrophysics Data System (ADS)

    Gallay, Michal; Hochmuth, Zdenko; Kaňuk, Ján; Hofierka, Jaroslav

    2016-05-01

    The change of hydrological conditions during the evolution of caves in carbonate rocks often results in a complex subterranean geomorphology, which comprises specific landforms such as ceiling channels, anastomosing half tubes, or speleothems organized vertically in different levels. Studying such complex environments traditionally requires tedious mapping; however, this is being replaced with terrestrial laser scanning technology. Laser scanning overcomes the problem of reaching high ceilings, providing new options to map underground landscapes with unprecedented level of detail and accuracy. The acquired point cloud can be handled conveniently with dedicated software, but applying traditional geomorphometry to analyse the cave surface is limited. This is because geomorphometry has been focused on parameterization and analysis of surficial terrain. The theoretical and methodological concept has been based on two-dimensional (2-D) scalar fields, which are sufficient for most cases of the surficial terrain. The terrain surface is modelled with a bivariate function of altitude (elevation) and represented by a raster digital elevation model. However, the cave is a 3-D entity; therefore, a different approach is required for geomorphometric analysis. In this paper, we demonstrate the benefits of high-resolution cave mapping and 3-D modelling to better understand the palaeohydrography of the Domica cave in Slovakia. This methodological approach adopted traditional geomorphometric methods in a unique manner and also new methods used in 3-D computer graphics, which can be applied to study other 3-D geomorphological forms.

  8. Geomorphology, tectonics, and exploration

    NASA Technical Reports Server (NTRS)

    Sabins, F. F., Jr.

    1985-01-01

    Explorationists interpret satellite images for tectonic features and patterns that may be clues to mineral and energy deposits. The tectonic features of interest range in scale from regional (sedimentary basins, fold belts) to local (faults, fractures) and are generally expressed as geomorphic features in remote sensing images. Explorationists typically employ classic concepts of geomorphology and landform analysis for their interpretations, which leads to the question - Are there new and evolving concepts in geomorphology that may be applicable to tectonic analyses of images?

  9. Geomorphologic flood-hazard assessment of alluvial fans and piedmonts

    USGS Publications Warehouse

    Field, J.J.; Pearthree, P.A.

    1997-01-01

    Geomorphologic studies are an excellent means of flood-hazard assessment on alluvial fans and piedmonts in the southwestern United States. Inactive, flood-free, alluvial fans display well developed soils, desert pavement, rock varnish, and tributary drainage networks. These areas are easily distinguished from flood-prone active alluvial fans on aerial photographs and in the field. The distribution of flood-prone areas associated with alluvial fans is strongly controlled by fanhead trenches dissecting the surface. Where fanhead trenches are permanent features cut in response to long-term conditions such as tectonic quiescence, flood-prone surfaces are situated down-slope from the mountain front and their positions are stable for thousands of years. Since the length and permanency of fanhead trenches can vary greatly between adjacent drainages, it is not appropriate to use regional generalizations to evaluate the distribution and stability of flood-hazard zones. Site-specific geomorphologic studies must be carried out if piedmont areas with a high risk of flooding are to be correctly identified and losses due to alluvial-fan flooding minimized. To meet the growing demand for trained professionals to complete geomorphologic maps of desert piedmonts, undergraduate and graduate geomorphology courses should adopt an instructional unit on alluvial-fan flood hazards that includes: 1) a review of geomorphologic characteristics that vary with surface age; 2) a basic mapping exercise; and 3) a discussion of the causes of fanhead trenching.

  10. Using Miniature Landforms in Teaching Geomorphology.

    ERIC Educational Resources Information Center

    Petersen, James F.

    1986-01-01

    This paper explores the uses of true landform miniatures and small-scale analogues and suggests ways to teach geomorphological concepts using small-scale relief features as illustrative examples. (JDH)

  11. Methods for acquiring data on terrain geomorphology, course geometry and kinematics of competitors' runs in alpine skiing: a historical review.

    PubMed

    Erdmann, Włodzimierz S; Giovanis, Vassilis; Aschenbrenner, Piotr; Kiriakis, Vaios; Suchanowski, Andrzej

    2017-01-01

    This paper aims at the description and comparison of methods of topographic analysis of racing courses at all disciplines of alpine skiing sports for the purposes of obtaining: terrain geomorphology (snowless and with snow), course geometry, and competitors' runs. The review presents specific methods and instruments according to the order of their historical appearance as follows: (1) azimuth method with the use of a compass, tape and goniometer instruments; (2) optical method with geodetic theodolite, laser and photocells; (3) triangulation method with the aid of a tape and goniometer; (4) image method with the use of video cameras; (5) differential global positioning system and carrier phase global positioning system methods. Described methods were used at homologation procedure, at training sessions, during competitions of local level and during International Ski Federation World Championships or World Cups. Some methods were used together. In order to provide detailed data on course setting and skiers' running it is recommended to analyse course geometry and kinematics data of competitors' running for all important competitions.

  12. Role of ground water in geomorphology, geology, and paleoclimate of the Southern High Plains, USA.

    PubMed

    Wood, Warren W

    2002-01-01

    Study of ground water in the Southern High Plains is central to an understanding of the geomorphology, deposition of economic minerals, and climate change record in the area. Ground water has controlled the course of the Canadian and Pecos rivers that isolated the Southern High Plains from the Great Plains and has contributed significantly to the continuing retreat of the westward escarpment. Evaporative and dissolution processes are responsible for current plateau topography and the development of the signature 20,000 small playa basins and 40 to 50 large saline lake basins in the area. In conjunction with eolian processes, ground water transport controls the mineralogy of commercially valuable mineral deposits and sets up the distribution of fine efflorescent salts that adversely affect water quality. As the water table rises and retreats, lunette and tufa formation provides valuable paleoclimate data for the Southern High Plains. In all these cases, an understanding of ground water processes contributes valuable information to a broad range of geological topics, well beyond traditional interest in water supply and environmental issues.

  13. Groundwater arsenic contamination affecting different geologic domains in India--a review: influence of geological setting, fluvial geomorphology and Quaternary stratigraphy.

    PubMed

    Acharyya, Subhrangsu K; Shah, Babar A

    2007-10-01

    Arsenic contamination in groundwater is pervasive within lowland organic-rich Bengal Delta and narrow entrenched channels in the Middle Ganga floodplains. Local areas of Damodar fan-delta and isolated areas within the Dongargarh Proterozoic rift-zone in central India are also contaminated. In this rift-zone, arsenic is enriched in felsic magmatic rocks and weathered rocks and soils from local areas are enriched further in arsenic and iron. Late Quaternary stratigraphy, geomorphology and sedimentation have influenced groundwater arsenic contamination in alluvium that aggraded during the Holocene sea-level rise. No specific source of arsenic could be identified, although Himalaya is the main provenance for the Ganga floodplain and the Bengal Delta. Gondwana coal seams and other Peninsular Indian rocks might be sources for arsenic in the Damodar fan-delta. As-bearing pyrite or any As-mineral is nearly absent in the aquifer sediments. Arsenic mainly occurs adsorbed on hydrated-iron-oxide (HFO), which coat sediment grains and minerals. Arsenic and iron are released to groundwater by bio-mediated reductive dissolution of HFO with corresponding oxidation of organic matter.

  14. Geomorphology and the Restoration Ecology of Salmon

    NASA Astrophysics Data System (ADS)

    Montgomery, D. R.

    2005-05-01

    Natural and anthropogenic influences on watershed processes affect the distribution and abundance of salmon across a wide range of spatial and temporal scales, from differences in species use and density between individual pools and riffles to regional patterns of threatened, endangered, and extinct runs. The specific impacts of human activities (e.g., mining, logging, and urbanization) vary among regions and watersheds, as well as between different channel reaches in the same watershed. Understanding of both disturbance history and key biophysical processes are important for diagnosing the nature and causes of differences between historical and contemporary fluvial and watershed conditions based on evaluation of both historical and spatial contexts. In order to be most effective, the contribution of geomorphologic insight to salmon recovery efforts requires both assessment protocols commensurate with providing adequate knowledge of historical and spatial context, and experienced practitioners well versed in adapting general theory to local settings. The historical record of salmon management in Europe, New England and the Pacific Northwest indicates that there is substantial need to incorporate geomorphic insights on the effects of changes in watershed processes on salmon habitat and salmon abundance into salmon recovery efforts.

  15. Geomorphology and reflectance patterns of vegetation-covered dunes at the Tsodilo Hills, north-west Botswana

    NASA Technical Reports Server (NTRS)

    Jacobberger, P. A.; Hooper, D. M.

    1991-01-01

    Seasonal reflectance variations in semigrid environments provide a means of assessing vegetation health and density as well as monitoring landform processes. Multitemporal Landsat Thematic Mapper scenes with field measurements are used to map geomorphology and vegetation density in a stabilized dune environment and to measure seasonal reflectance changes for a series of ten geomorphological and vegetation units on the Kalahari-age linear dunes. Units were chosen based on differences in landform and proportion of trees, forbs and bare soil. Reflectance curves and normalized-difference vegetation indices (NDVI) show that dune crests have the strongest seasonal variability in color and brightness. The geomorphological link with reflectance and NDVI values are linked to biomass production and zoning of vegetation with slope, drainage and subtle soil differences.

  16. The elevation and its distribution in geomorphological regions of the European Russia

    NASA Astrophysics Data System (ADS)

    Kharchenko, S. V.; Ermolaev, O. P.; Mukharamova, S. S.

    2018-01-01

    Spatial differences of elevation were analysed by side of view of geomorphological boundaries on the European Russia territory. Geomorphological pattern of the studied territory was taken from Geomorphological Map of the USSR at scale of 1: 2 500 000. There 2401 fragments for combinations of 58 types of structural landforms and 22 types of sculptural landforms were allocated. The elevation values computed by digital elevation model (cell size - 200 m, number of cells - 322M) based on SRTM (south of 60 nl.) and GDEM 2010 (north of 60 nl.) resampled data. It was founded that some types of structural (16 types) and sculptural (6 types) landforms located in the relatively thin intervals of elevation. Using of elevation above sea level is needed for effective automatic recognizing these landform regions.

  17. System-focused environmental flow regime prescription, monitoring and adaptive management

    NASA Astrophysics Data System (ADS)

    Hetherington, David; Lexartza Artza, Irantzu

    2016-04-01

    The definition of appropriate environmental flow regimes through hydropower schemes and water storage reservoirs is key part of mitigation. Insufficient (magnitude and variability) environmental flows can result in much environmental harm with negative impacts being encountered by morphological, ecological and societal systems. Conventionally, environmental flow regimes have been determined by using generic protocols and guidance such as the Tennant method of environmental flow estimation. It is generally accepted that such approaches to minimum environmental flow definition, although being a useful starting point, are not universally applicable across catchment typologies and climatic regions. Such approaches will not always produce conditions that would be associated with 'Good Ecological Status' under the Water framework Directive (or equivalent). Other similar approaches to minimum environmental flow estimation are used that are specific to geographies, yet still the associated guidance rarely thoroughly covers appropriate definition for healthy holistic systems across the flow regime. This paper draws on experience of system-focused environmental flow regime determination in the UK and the Georgian Caucasus Mountains, which allowed for a critical analysis of more conventional methods to be undertaken. The paper describes a recommended approach for determining appropriate environmental flow regimes based on analysis of the impacted geomorphological, ecological and societal systems in a way which is sensitive to the local holistic environment and associated complexities and interactions. The paper suggests that a strong understanding of the local geomorphology in key in predicting how flows will manifest habitat differently across the flow regime, and be spatially dynamic. Additionally, an understanding of the geomorphological system allows the flow of course and fine sediment to be factored into the initial suggested environmental flow regime. It is suggested that more peripheral influencing factors should be given serious consideration when developing environmental flow regimes. These factors could include the development of ice, non-fluvial geomorphic processes such as landslides, connectivity with groundwater and provision for local cottage industries. Even with a thorough appreciation of the holistic system, the value of detailed environmental monitoring and adaptive management plans cannot be underestimated as a means of further managing risk and uncertainty in complex systems. It is suggested that by taking a more holistic and system-focused approach to environmental flow definition, that environmental flow regimes can be tailored to the specificity and complexity of any given location. By improving the way that environmental flow regimes and associated physical mitigation are prescribed, monitored and managed it should be possible to develop more sustainable forms of energy production whilst minimising environmental harm as far as possible.

  18. Formalized landscape models for surveying and modelling tasks

    NASA Astrophysics Data System (ADS)

    Löwner, Marc-Oliver

    2010-05-01

    We present a formalization of main geomorphic landscape models, mainly the concept of slopes, to clarify the needs and potentials of surveying technologies and modelling approaches. Using the Unified Modelling Language (UML) it is implemented as a exchangeable Geography Markup Language (GML3) -based application schema and therefore supports shared measurement campaigns. Today, knowledge in Geomorphology is given synoptically in textbooks in a more or less lyrical way. This knowledge is hard to implement for the use of modelling algorithms or data storage and sharing questions. On the other hand physical based numerical modelling and high resolution surveying technologies enable us to investigate case scenarios within small scales. Bringing together such approaches and organizing our data in an appropriate way will need the formalization of the concepts and knowledge that is archived in the science of geomorphology. The main problem of comparing research results in geomorphology but is that the objects under investigation are composed of 3-dimensional geometries that change in time due to processes of material fluxes, e. g. soil erosion or mass movements. They have internal properties, e. g. soil texture or bulk density, that determine the effectiveness of these processes but are under change as well. The presented application schema is available on the Internet and therefore a first step to enable researchers to share information using an OGC's Web feature service. In this vein comparing modelling results of landscape evolution with results of other scientist's observations is possible. Compared to prevalent data concepts the model presented makes it possible to store information about landforms, their geometry and the characteristics in more detail. It allows to represent the 3D-geometry, the set of material properties and the genesis of a landform by associating processes to a geoobject. Thus, time slices of a geomorphic system can be represented as well as scenarios of landscape modelling. Commercial GI-software is not adapted to the needs of the science of geomorphology. Therefore the development of an application model i. e. a formal description of semantics is imperative to partake in technologies like Web Feature Services supporting interoperable data transfer.

  19. Stream Tables and Watershed Geomorphology Education.

    ERIC Educational Resources Information Center

    Lillquist, Karl D.; Kinner, Patricia W.

    2002-01-01

    Reviews copious stream tables and provides a watershed approach to stream table exercises. Results suggest that this approach to learning the concepts of fluvial geomorphology is effective. (Contains 39 references.) (DDR)

  20. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    PubMed

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( < 0.02) in annual NO emission between the riparian buffers was detected (4.32 vs. 1.03 kg NO-N ha at WR and LWD, respectively), and this difference was attributed to site geomorphology and flooding (WR is flood prone; no flooding occurred at tile-drained LWD). The study results demonstrate the significance of landscape geomorphology and land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  1. Tsunami sediments and their grain size characteristics

    NASA Astrophysics Data System (ADS)

    Sulastya Putra, Purna

    2018-02-01

    Characteristics of tsunami deposits are very complex as the deposition by tsunami is very complex processes. The grain size characteristics of tsunami deposits are simply generalized no matter the local condition in which the deposition took place. The general characteristics are fining upward and landward, poor sorting, and the grain size distribution is not unimodal. Here I review the grain size characteristics of tsunami deposit in various environments: swale, coastal marsh and lagoon/lake. Review results show that although there are similar characters in some environments and cases, but in detail the characteristics in each environment can be distinguished; therefore, the tsunami deposit in each environment has its own characteristic. The local geological and geomorphological condition of the environment may greatly affect the grain size characteristics.

  2. The Spectral Nature of Titan's Major Geomorphological Units: Constraints on Surface Composition

    NASA Astrophysics Data System (ADS)

    Solomonidou, A.; Coustenis, A.; Lopes, R. M. C.; Malaska, M. J.; Rodriguez, S.; Drossart, P.; Elachi, C.; Schmitt, B.; Philippe, S.; Janssen, M.; Hirtzig, M.; Wall, S.; Sotin, C.; Lawrence, K.; Altobelli, N.; Bratsolis, E.; Radebaugh, J.; Stephan, K.; Brown, R. H.; Le Mouélic, S.; Le Gall, A.; Villanueva, E. V.; Brossier, J. F.; Bloom, A. A.; Witasse, O.; Matsoukas, C.; Schoenfeld, A.

    2018-02-01

    We investigate Titan's low-latitude and midlatitude surface using spectro-imaging near-infrared data from Cassini/Visual and Infrared Mapping Spectrometer. We use a radiative transfer code to first evaluate atmospheric contributions and then extract the haze and the surface albedo values of major geomorphological units identified in Cassini Synthetic Aperture Radar data, which exhibit quite similar spectral response to the Visual and Infrared Mapping Spectrometer data. We have identified three main categories of albedo values and spectral shapes, indicating significant differences in the composition among the various areas. We compare with linear mixtures of three components (water ice, tholin-like, and a dark material) at different grain sizes. Due to the limited spectral information available, we use a simplified model, with which we find that each albedo category of regions of interest can be approximately fitted with simulations composed essentially by one of the three surface candidates. Our fits of the data are overall successful, except in some cases at 0.94, 2.03, and 2.79 μm, indicative of the limitations of our simplistic compositional model and the need for additional components to reproduce Titan's complex surface. Our results show a latitudinal dependence of Titan's surface composition, with water ice being the major constituent at latitudes beyond 30°N and 30°S, while Titan's equatorial region appears to be dominated partly by a tholin-like or by a very dark unknown material. The albedo differences and similarities among the various geomorphological units give insights on the geological processes affecting Titan's surface and, by implication, its interior. We discuss our results in terms of origin and evolution theories.

  3. Geoarchaeological approaches to Palaeolithic surface artefact distributions and hominin landscape use in SW Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Inglis, Robyn; Sinclair, Anthony; Fanning, Patricia; Alsharekh, Abdullah; Bailey, Geoff

    2017-04-01

    The vast majority of Palaeolithic archaeological material in arid and semi-arid regions exists in the form of scatters of stone tools across the surface of present-day landscapes. This is particularly the case in the Saharo-Arabian desert belt, a region vital to understanding the global dispersal of hominins from Africa. These surface artefacts possess little stratigraphic context, but comprise the only record we possess to examine spatial behavioural patterning and landscape use by hominin populations. Interpretation of the observed spatial distribution of artefacts is far from straightforward. Surface artefact distributions result from a complex interplay of varying human behaviours over time. Also, geomorphological processes affect the preservation, exposure and visibility of the artefacts, as well as alter the presence and location of attractive resources. The SURFACE project employs an interdisciplinary approach to understanding the distribution of Palaeolithic artefacts in SW Saudi Arabia. By combining remote sensing, geomorphological fieldwork, archaeological survey and GIS analyses, the project is developing a geomorphological context for the artefacts that guides survey to areas of high archaeological potential, as well as allowing the robust interpretation of the observed artefact distribution in a dynamic landscape in terms of past landscape use. This paper will present the ongoing multi-scalar approaches employed by the project to Palaeolithic landscapes, particularly focussing on the site of Wadi Dabsa, Asir Province, where Lower and Middle Palaeolithic artefacts have been found in association with extensive tufa deposits. Investigation in early 2017 at the site will apply SURFACE's methods to understand the present-day artefact distributions at the exposure, and their relationship to the tufa deposition, as well as their potential to inform on Palaeolithic activity and landscape use at the site.

  4. Enhancing flood hazard estimation methods on alluvial fans using an integrated hydraulic, geological and geomorphological approach

    NASA Astrophysics Data System (ADS)

    Mollaei, Zeinab; Davary, Kamran; Majid Hasheminia, Seyed; Faridhosseini, Alireza; Pourmohamad, Yavar

    2018-04-01

    Due to the uncertainty concerning the location of flow paths on active alluvial fans, alluvial fan floods could be more dangerous than riverine floods. The United States Federal Emergency Management Agency (FEMA) used a simple stochastic model named FAN for this purpose, which has been practiced for many years. In the last decade, this model has been criticized as a consequence of development of more complex computer models. This study was conducted on three alluvial fans located in northeast and southeast Iran using a combination of the FAN model, the hydraulic portion of the FLO-2D model, and geomorphological information. Initial stages included three steps: (a) identifying the alluvial fans' landforms, (b) determining the active and inactive areas of alluvial fans, and (c) delineating 100-year flood within these selected areas. This information was used as an input in the mentioned three approaches of the (i) FLO-2D model, (ii) geomorphological method, and (iii) FAN model. Thereafter, the results of each model were obtained and geographical information system (GIS) layers were created and overlaid. Afterwards, using a scoring system, the results were evaluated and compared. The goal of this research was to introduce a simple but effective solution to estimate the flood hazards. It was concluded that the integrated method proposed in this study is superior at projecting alluvial fan flood hazards with minimum required input data, simplicity, and affordability, which are considered the primary goals of such comprehensive studies. These advantages are more highlighted in underdeveloped and developing countries, which may well lack detailed data and financially cannot support such costly projects. Furthermore, such a highly cost-effective method could be greatly advantageous and pragmatic for developed countries.

  5. Analysis of the effects of geological and geomorphological factors on earthquake triggered landslides using artificial neural networks (ANN)

    NASA Astrophysics Data System (ADS)

    Kawabata, D.; Bandibas, J.

    2007-12-01

    The occurrence of landslide is the result of the interaction of complex and diverse environmental factors. The geomorphic and geologic features, rock types and vegetative cover are important base factors of landslide occurrence. However, determining the relationship between these factors and landslide occurrence is very difficult using conventional mathematical analysis. The use of an advanced computing technique for this kind of analysis is very important. Artificial neural network (ANN) has recently been included in the list of analytical tools for a wide range of applications in the natural sciences research fields. One of the advantages of using ANN for pattern recognition is that it can handle data at any measurement scale ranging from nominal, ordinal to linear and ratio, and any form of data distribution (Wang et al., 1995). In addition, it can easily handle qualitative variables making it widely used in integrated analysis of spatial data from multiple sources for predicting and classification. This study focuses on the definition of the relationship between geological factors and landslide occurrence using artificial neural networks. The study also focuses on the effect of the DTMs (e.g. ASTER DTM, ALSM, digitized from paper map and digital photogrammetric measurement data). The main aim of the study is to generate landslide susceptibility index map using the defined relationship using ANN. Landslide data in the Chuetsu region were used in this research. The 2004 earthquake triggered many landslides in the region. The initial results of the study showed that ANN is more accurate in defining the relationship between geological and geomorphological factors and landslide occurrence. It also determined the best combination of geological and geomorphological factors that is directly related to landslide occurrence.

  6. Bathymetry & Geomorphology - A New Seafloor Mapping of the Israeli Exclusive Economic Zone

    NASA Astrophysics Data System (ADS)

    Tibor, G.; Hall, J. K.; Kanari, M.; Sade, R. A.; Sade, H.; Amit, G.; Gur-Arie, L.; Ketter, T.

    2017-12-01

    Recent extensive activities of oil and gas exploration and production companies in the Israeli Exclusive Economic Zone (EEZ) raised the need for an up-to-date baseline mapping of the seafloor to assist policy makers. The baseline mapping focused on bathymetry, geomorphology, geology, biodiversity, infauna and habitat in order to compile a sensitivity map for the Petroleum Commissioner in the Ministry of Energy in the bid for opening the sea to new natural gas and oil explorations. The Israeli EEZ covers an area of 25,950 sq. km. and reaches a maximum water depth of 2,100 m. It is located within the Levantine Basin, a zone of compression and strike-slip tectonics as Africa pushes into Eurasia. These forces operate on a half kilometer thick of Messinian evaporates and over a dozen kilometers of Pliocene and Pleistocene sediments to produce a complex seafloor morphology. The margin is cut by numerous slumps and canyons, while the basin is traversed by deep sea channels emptying into the moat around Eratosthenes Seamount farther north. The bathymetric and geomorphological mapping was done in three phases using Kongsberg and Elac multibeam sonars installed on different research vessels. The last phase (Aug.-Sept., 2016) covering depths from 1,400 to 2,100 m used the Kongsberg EM302 sonar installed on our new governmental research vessel Bat Galim. It has "state of the art" capabilities to map, sample and analyze the water column, seafloor and sub-bottom from water depths of 10m to 7,000 m. These mapping capabilities are unique in our region, the Eastern Mediterranean and the Red Sea, so we hope to promote research collaborations with our neighbors.

  7. Habitat use by a freshwater dolphin in the low-water season

    USGS Publications Warehouse

    Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard

    2012-01-01

    1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.

  8. On the issue of equifinality in glacial geomorphology

    NASA Astrophysics Data System (ADS)

    Möller, Per; Dowling, Thomas; Cleland, Carol; Johnson, Mark

    2016-04-01

    A contemporary trend in glacial geomorphology is the quest for some form of unifying theory for drumlin and/or ribbed moraine formation: there MUST be ONE explanation. The result of this is attempts to apply 'instability theory' to the formation of all drumlinoid and ribbed moraine formation or, as an alternative to this, the 'erodent layer hypothesis' for single processes driven formation. However, based on field geology evidence on internal composition and architecture and the internals relation to the exterior, i.e. the shape of drumlins or ribbed moraine, many glacial sedimentologists would argue that it is instead different processes in their own or in combination that lead to similar form, i.e. look-alike geomorphologic expression or equifinality in spite of different process background for their formation. As expressed by Cleland (2013) from a philosophical point of view of a 'common cause explanation', as exemplified with mass extinctions through geologic time, there is probably a 'common cause explanation' for the K/T boundary extinction (massive meteorite impact on Earth), but this is not a common explanation for every other mass extinction. The parallel to our Quaternary enigma is that there can of course be a single common cause for explaining a specific drumlinoid flow set (a particular case), but that does not have to be the explanation of another flow set showing other sedimentological/structural attributes, in turn suggesting that the particular case cause cannot be used for explaining the general case, i.e. all drumlins over glaciated terrain on the globe. We argue in the case of streamlined terrain, which often have considerable morphologic difference between features at local landscape scale whilst still remaining part of the drumlinoid continuum on regional scale, is a product of different processes or process combinations (erosion/deformation/accumulation) in the subglacial system, tending towards the most efficient obstacle shape and thus bedform for sliding to take place on. The logic for this in the first order is that obstacles enhance sliding speed by increasing melting and plastic flow. However, if an obstacle is too 'rough' the increase in basal drag counteracts this. Therefore the subglacial system finds an efficiency equilibrium whereby an obstacle is shaped so that it enhances flow with a minimum of drag, i.e. the typical streamlined form is the result of a positive feedback cycle that tends towards efficiency. From Swedish geomorphologic data sets we find the dominating rock-cored drumlins to be formed by accumulation around rock obstacles, in some areas with deep drift the streamlined surface expression is due to combinations of excavational and constructive deformation without any 'seed cores', and in some areas with pre-LGM deglacial sediment successions there is erosional carving into drumlinoid forms. In the case of ribbed moraine it is evident from field geology that such are not single-process bedforms but form in a number of ways (i.e. equifinality); examples from the Swedish Quaternary landscape are ribbed moraine formed (i) from melt-out of stagnant ice, (ii) from remoulding of pre-existing landforms and (iii) from subglacial stacking/folding of sediment and lee-side cavity infill.

  9. Geomorphology

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The study of geomorphology and terrain analysis using TM and MSS data are discussed. The spatial and spectral characteristics of a variety of landforms are also investigated. An outline of possible experiments and a summary of data requirements are included.

  10. Geomorphology in North American Geology Departments, 1971

    ERIC Educational Resources Information Center

    White, Sidney E.; Malcolm, Marshall D.

    1972-01-01

    Presents results of a 1970-71 survey of 350 geomorphologists and geology departments to determine what sort of geomorphology is being taught in the colleges and universities of the United States and Canada. (PR)

  11. Bio-geomorphology and resilience thinking: Common ground and challenges

    NASA Astrophysics Data System (ADS)

    Thoms, Martin C.; Meitzen, Kimberly M.; Julian, Jason P.; Butler, David R.

    2018-03-01

    Geomorphology plays a fundamental role in shaping and maintaining landscapes, as well as influencing the social and ecological systems that occupy and utilize these landscapes. In turn, social-ecological systems can have a profound influence on geomorphic forms and processes. These interactions highlight the tightly coupled nature of geomorphic systems. Over the past decade, there has been a proliferation of research at the interface of geomorphology and resilience thinking, and the 2017 Binghamton Symposium brought together leading researchers from both communities to address mutual concerns and challenges of these two disciplines. This paper reviews some of the key intersections between the disciplines of bio-geomorphology and resilience thinking, and the papers presented at the symposium. The papers in this volume illustrate the current status of the disciplines, the difficulties in bridging the disciplines, and the issues that are emerging as research priorities.

  12. Introduction to the special issue: permafrost and periglacial research from coasts to mountains

    NASA Astrophysics Data System (ADS)

    Schrott, Lothar; Humlum, Ole

    2017-09-01

    This special issue of Geomorphology includes eleven papers dealing with permafrost and periglacial research from coasts to mountains. The compilation represents a selection from 47 presentations (oral and posters) given at the 4th European Conference on Permafrost - IPA Regional Conference (EUCOP4, June 2014) in the session ;Periglacial Geomorphology;. Geomorphology as a leading journal for our discipline is particularly suitable to publish advances in permafrost and periglacial research with a focus on geomorphic processes. Since 1989 Geomorphology has published 121 special issues and two special issues are explicitly dedicated to permafrost and periglacial research, however, only with a focus on research in Antarctica. In this special issue we present papers from the Canadian Beaufort Sea, Alaska, Spitzbergen, central western Poland, the European Alps, the eastern Sudetes, the southern Carpathians, Nepal, and Antarctica.

  13. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    NASA Astrophysics Data System (ADS)

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical environmental drivers, which control C storage in coastal wetlands. We encourage the science community more close utilize coastal environmental settings and new inventories of geomorphological typologies to build more robust estimates of local and regional estimates of SOC that can be extrapolated to global C estimates.

  14. Submarine Landslides: A Multidisciplinary Crossroad

    NASA Astrophysics Data System (ADS)

    Moscardelli, L. G.

    2014-12-01

    The study of submarine landslides has advanced considerably in the last decade. A multitude of geoscience disciplines, including marine, petroleum and planetary geology, as well as geohazard assessments, are concerned with the study of these units. Oftentimes, researchers working in these fields disseminate their findings within their own communities and a multidisciplinary approach seems to lack. This presentation showcases several case studies in which a broader approach has increased our understanding of submarine landslides in a variety of geologic settings. Three-dimensional seismic data from several continental margins (Trinidad, Brazil, Morocco, Canada, GOM), as well as data from outcrop localities are shown to explore geomorphological complexities associated with submarine landslides. Discussion associated with the characterization and classification of submarine landslides is also part of this work. Topics that will be cover include: 1) how data from conventional oil and gas exploration activities can be used to increase our understanding of the dynamic behavior of submarine landslides, 2) analogies between terrestrial submarine landslides and potential Martian counterparts, 3) impact of submarine landslides in margin construction, as well as their economic significance and 4) the importance of quantifying the morphology of submarine landslides in a systematic fashion.

  15. Spectral Clustering and Geomorphological Analysis on Mercury Hollows

    NASA Astrophysics Data System (ADS)

    Lucchetti, A.; Pajola, M.; Galluzzi, V.; Giacomini, L.; Carli, C.; Cremonese, G.; Marzo, G. A.; Massironi, M.; Roush, T.

    2018-05-01

    Characterization of hollows located in different craters to understand whether there is a similar trend from a compositional point of view, and whether a possible correlation exists between spectral behavior of hollows and geomorphological units.

  16. WATERSHED (SOUTHWESTERN OHIO)

    EPA Science Inventory

    We are evaluating the use of stream geomorphology and related measurements in the assessment and management of channel risks associated with stream impairment associated with clean sediments. The relationships between various geomorphological variables have been used by Rosgen a...

  17. Geomorphologic Map of Titan's Polar Terrains

    NASA Astrophysics Data System (ADS)

    Birch, S. P. D.; Hayes, A. G.; Malaska, M. J.; Lopes, R. M. C.; Schoenfeld, A.; Williams, D. A.

    2016-06-01

    Titan's lakes and seas contain vast amounts of information regarding the history and evolution of Saturn's largest moon. To understand this landscape, we created a geomorphologic map, and then used our map to develop an evolutionary model.

  18. Using the glacial geomorphology of palaeo-ice streams to understand mechanisms of ice sheet collapse

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.; Margold, Martin; Clark, Chris; Tarasov, Lev

    2017-04-01

    Processes which bring about ice sheet deglaciation are critical to our understanding of glacial-interglacial cycles and ice sheet sensitivity to climate change. The precise mechanisms of deglaciation are also relevant to our understanding of modern-day ice sheet stability and concerns over global sea level rise. Mass loss from ice sheets can be broadly partitioned between melting and a 'dynamic' component whereby rapidly-flowing ice streams/outlet glaciers transfer ice from the interior to the oceans. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive dynamic changes in ice stream discharge are more complex, which generates much larger uncertainties about their future contribution to ice sheet mass loss and sea level rise. A major problem is that observations of modern-day ice streams typically span just a few decades and, at the ice-sheet scale, it is unclear how the entire drainage network of ice streams evolves during deglaciation. A key question is whether ice streams might increase and sustain rates of mass loss over centuries or millennia, beyond those expected for a given ocean-climate forcing. To address this issue, numerous workers have sought to understand ice stream dynamics over longer time-scales using their glacial geomorphology in the palaeo-record. Indeed, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. Building on this body of work, this paper uses the glacial geomorphology of 117 ice streams in the North American Laurentide Ice Sheet to reconstruct their activity during its deglaciation ( 22,000 to 7,000 years ago). Ice stream activity was characterised by high variability in both time and space, with ice streams switching on and off in different locations. During deglaciation, we find that their overall number decreased, they occupied a progressively smaller percentage of the ice sheet perimeter, and their total discharge decreased. Underlying geology and topography clearly influenced ice stream activity, but - at the ice sheet scale - their drainage network adjusted and was strongly linked to changes in ice sheet volume. It is unclear whether these findings are directly translatable to modern ice sheets but, contrary to the view that sees ice streams as unstable entities that can draw-down large sectors of an ice sheet and accelerate its demise, we conclude that they reduced in effectiveness during deglaciation of the Laurentide Ice Sheet, with final deglaciation accomplished most effectively by surface melting. This raises some interesting questions about the source and nature of major meltwater pulses and iceberg discharge events in the sea-level record.

  19. Geographic location, network patterns and population distribution of rural settlements in Greece

    NASA Astrophysics Data System (ADS)

    Asimakopoulos, Avraam; Mogios, Emmanuel; Xenikos, Dimitrios G.

    2016-10-01

    Our work addresses the problem of how social networks are embedded in space, by studying the spread of human population over complex geomorphological terrain. We focus on villages or small cities up to a few thousand inhabitants located in mountainous areas in Greece. This terrain presents a familiar tree-like structure of valleys and land plateaus. Cities are found more often at lower altitudes and exhibit preference on south orientation. Furthermore, the population generally avoids flat land plateaus and river beds, preferring locations slightly uphill, away from the plateau edge. Despite the location diversity regarding geomorphological parameters, we find certain quantitative norms when we examine location and population distributions relative to the (man-made) transportation network. In particular, settlements at radial distance ℓ away from road network junctions have the same mean altitude, practically independent of ℓ ranging from a few meters to 10 km. Similarly, the distribution of the settlement population at any given ℓ is the same for all ℓ. Finally, the cumulative distribution of the number of rural cities n(ℓ) is fitted to the Weibull distribution, suggesting that human decisions for creating settlements could be paralleled to mechanisms typically attributed to this particular statistical distribution.

  20. The Ischia island flash flood of November 2009 (Italy): Phenomenon analysis and flood hazard

    NASA Astrophysics Data System (ADS)

    Santo, A.; Di Crescenzo, G.; Del Prete, S.; Di Iorio, L.

    The island of Ischia is particularly susceptible to landslides and flash floods due to its particular geological and geomorphological context. Urbanization in recent decades coupled with the development of tourism has increased the risk. After the November 10, 2009 event occurring in the northern sector of the island (the town of Casamicciola), a detailed geo-morphological survey was conducted to ascertain the evolution of the phenomenon. In the watersheds upstream of Casamicciola, many landslides were mapped and the volume of material involved during detachment and sliding was estimated. In the lower course area, near the town and towards the sea, flow pathways were reconstructed with the aid of extensive video footage taken during the event. Rainfall data were also analyzed and a relationship was established between the hourly rainfall rate and the flash flood. The phenomenon was found to be quite complex, with many upstream landslides stopping before reaching the urban area. In the lower course the alluvial event occurred as a flood with a very small sediment discharge, which left a very thin layer of sediment. Reconstruction of the flash flood phenomenon suggested possible action for future risk mitigation, early warning and civil protection plans.

  1. A centennial tribute to G.K. Gilbert's Hydraulic Mining Débris in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    James, L. A.; Phillips, J. D.; Lecce, S. A.

    2017-10-01

    G.K. Gilbert's (1917) classic monograph, Hydraulic-Mining Débris in the Sierra Nevada, is described and put into the context of modern geomorphic knowledge. The emphasis here is on large-scale applied fluvial geomorphology, but other key elements-e.g., coastal geomorphology-are also briefly covered. A brief synopsis outlines key elements of the monograph, followed by discussions of highly influential aspects including the integrated watershed perspective, the extreme example of anthropogenic sedimentation, computation of a quantitative, semidistributed sediment budget, and advent of sediment-wave theory. Although Gilbert did not address concepts of equilibrium and grade in much detail, the rivers of the northwestern Sierra Nevada were highly disrupted and thrown into a condition of nonequilibrium. Therefore, concepts of equilibrium and grade-for which Gilbert's early work is often cited-are discussed. Gilbert's work is put into the context of complex nonlinear dynamics in geomorphic systems and how these concepts can be used to interpret the nonequilibrium systems described by Gilbert. Broad, basin-scale studies were common in the period, but few were as quantitative and empirically rigorous or employed such a range of methodologies as PP105. None demonstrated such an extreme case of anthropogeomorphic change.

  2. Ozymandias in the Anthropocene: A conceptual framework for the city as an emerging landform

    NASA Astrophysics Data System (ADS)

    Dixon, Simon; Viles, Heather; Garrett, Bradley

    2017-04-01

    The Anthropocene is a topic receiving much attention in the geomorphological community, as well as in wider scientific and public spheres. The application of the Anthropocene as a theoretical framework within geomorphology has so far had a clear anthropogenic focus; considering how human activities are affecting geomorphological processes and shaping the natural environment. An area which has so far not received attention is how fundamental geomorphological processes interact to alter, shape and potentially destroy anthropogenic infrastructure and urban landscapes. In some cases these processes can lead to emergent urban geohazards (e.g. "sinkholes"), and damage to urban infrastructure; additionally, they may also lead to the development of unique Anthropocene geomorphological forms. There is therefore a need to develop a conceptual framework for how earth science principles can be integrated with a broad spectrum of research areas, including archaeology, social science and geology, to underpin future field studies. The number of people living in cities already outnumbers those who do not and the urban population and urban extent is expected to continue to grow. Within this landscape there is a theoretical justification for identifying the formation of pseudokarst within the urban fabric, including the formation of urban stalactites and urban sinkholes. Additionally, both the chronic and acute degradation of urban buildings can form rubble and dust which if left in situ will be shaped by fluvial and aeolian processes. For many of these urban geomorphological processes the neglect or abandonment of parts of the urban network will facilitate or accelerate their influence. If there are economic, climatic or social reasons for abandonment or neglect these processes are likely to reshape parts of the urban fabric into unique landforms at a range of scales. We consider examples of; urban stalactite formation on bridges and within subterranean tunnels, the formation of urban regolith deposits as a result of building collapse, and the formation of sinkholes in made-earth underlying asphalt as potential case studies of unique Anthropocene urban geomorphologies. We make links with previous abandoned structures and civilisations and suggest that by understanding how geomorphological processes act upon the built environment in the present day important insights can be gained for archaeological studies. We suggest abandoned or neglected areas which may be ripe for case study work such as Chernobyl, the tunnels beneath London, and the US "rust belt". To fully investigate Anthropocene urban geomorphologies will require a flexible and broad conceptual framework encompassing true interdisciplinary work including: geomorphologists, geologists, karst scientists, civil engineers, archaeologists and social scientists. We suggest that without explicitly considering these phenomena in the urban environment there is a risk of making the mistakes of Shelley's "Ozymandias", in which the eponymous king failed to account for the impact of geomorphology on the fabric of his (now long fallen) empire.

  3. Present morphoclimate and morphodynamics in the boreal Homla drainage basin system (Trøndelag, middle Norway)

    NASA Astrophysics Data System (ADS)

    Beylich, Achim A.

    2017-04-01

    It is generally accepted that ongoing and future climate change will cause major changes in Earth surface systems and environments. From a geomorphological point of view, it is accordingly of increasing importance to obtain a better understanding of the relationships between contemporary geomorphological processes and present-day climatic conditions to come to more reliable assessments of the possible geomorphological effects of climate change. Until recently, the present-day climate has often only been characterized by monthly and annual means or sum values of wind speed, air temperature and precipitation. As most geomorphological surface processes consist of discrete events which are only partly correlated to these meteorological means or sum values, there is an obvious need for an additional approach of statistical analysis of meteorological data. In this study the "morphoclimate" of the Homla drainage basin situated in a boreal environment in Trøndelag in middle Norway is analyzed. "Morphoclimate" according to Ahnert (e.g., 1982) is specially related to geomorphological needs and, in this sense, is defined as the totality of those climatic characteristics of an area that influence the type, frequency, duration and intensity of the exogenic geomorphologic processes in this area. The statistical method primarily used in this context is the magnitude-frequency analysis. Particular emphasis is on (i) the frequencies or recurrence intervals of meteorological events of given magnitudes, and (ii) the frequencies of geomorphologically important thresholds. Aspects of the current wind, temperature and precipitation regimes which control the type, frequency, duration and intensity of the contemporary denudational surface processes as well as the sedimentary budget in the selected study area are presented. Runoff in the boreal Homla drainage basin is occurring year-round and the contemporary morphodynamics are altogether characterized by a clear dominance of chemical denudation over mechanical fluvial denudation. The general intensity of the denudational surface processes operating under the present-day morphoclimate is low.

  4. Comprehensive investigation of submarine slide zones and mass movements at the northern continental slope of South China Sea

    NASA Astrophysics Data System (ADS)

    Chen, Hongjun; Liang, Jin; Gong, Yuehua

    2018-02-01

    Multi-beam bathymetry and seismic sequence surveys in the northern slope of the South China Sea reveal detailed geomorphology and seismic stratigraphy characteristics of canyons, gullies, and mass movements. Modern canyons and gullies are roughly elongated NNW-SSW with U-shaped cross sections at water depths of 400-1000 m. Mass movements include slide complexes, slide scars, and debris/turbidity flows. Slide complexes and slide scars are oriented in the NE-SW direction and cover an area of about 1790 and 926 km2, respectively. The debris/turbidity flows developed along the lower slope. A detailed facies analysis suggests that four seismic facies exist, and the late Cenozoic stratigraphy above the acoustic basement can be roughly subdivided into three sequences separated by regional unconformities in the study area. The occurrence of gas hydrates is marked by seismic velocity anomalies, bottom-simulating reflectors, gas chimneys, and pockmarks in the study area. Seismic observations suggest that modern canyons and mass movements formed around the transition between the last glacial period and the current interglacial period. The possible existence and dissociation of gas hydrates and the regional tectonic setting may trigger instability and mass movements on the seafloor. Canyons may be the final result of gas hydrate dissociation. Our study aims to contribute new information that is applicable to engineering construction required for deep-water petroleum exploration and gas hydrate surveys along any marginal sea.

  5. Using a Bayesian network to predict barrier island geomorphologic characteristics

    USGS Publications Warehouse

    Gutierrez, Ben; Plant, Nathaniel G.; Thieler, E. Robert; Turecek, Aaron

    2015-01-01

    Quantifying geomorphic variability of coastal environments is important for understanding and describing the vulnerability of coastal topography, infrastructure, and ecosystems to future storms and sea level rise. Here we use a Bayesian network (BN) to test the importance of multiple interactions between barrier island geomorphic variables. This approach models complex interactions and handles uncertainty, which is intrinsic to future sea level rise, storminess, or anthropogenic processes (e.g., beach nourishment and other forms of coastal management). The BN was developed and tested at Assateague Island, Maryland/Virginia, USA, a barrier island with sufficient geomorphic and temporal variability to evaluate our approach. We tested the ability to predict dune height, beach width, and beach height variables using inputs that included longer-term, larger-scale, or external variables (historical shoreline change rates, distances to inlets, barrier width, mean barrier elevation, and anthropogenic modification). Data sets from three different years spanning nearly a decade sampled substantial temporal variability and serve as a proxy for analysis of future conditions. We show that distinct geomorphic conditions are associated with different long-term shoreline change rates and that the most skillful predictions of dune height, beach width, and beach height depend on including multiple input variables simultaneously. The predictive relationships are robust to variations in the amount of input data and to variations in model complexity. The resulting model can be used to evaluate scenarios related to coastal management plans and/or future scenarios where shoreline change rates may differ from those observed historically.

  6. Understanding Geomorphological Processes on the Earth's Surface from Laboratory Experiments and the Role of Communities of Practice in Generating Reusable Data

    NASA Astrophysics Data System (ADS)

    Hsu, L.

    2016-12-01

    Geomorphological processes move masses of sediment across the face of the Earth, from mountain tops to hillslopes, rivers, flood plains, and coastlines, on a range of temporal and spatial scales that span many orders of magnitude. These processes, sometimes spanning millennia and sometimes occurring catastrophically, affect human communities that live on and near these surface landforms. Experiments conveniently scale these processes to time and space that can be observed and measured in the laboratory. As a result, the research community has produced remarkable experimental datasets for processes such as particle transport, hillslope erosion, channel migration, and coastline evolution. These datasets build a collection that quantifies a wide range of environmental processes and contributes to hazards mitigation and the understanding of long-term effects of climate and tectonics on landscape evolution. However, technology and data acquisition rates are outgrowing capabilities for storing, maintaining, and serving the data. Solutions that improve preservation, reuse, and attribution of geomorphological data from unique experimental set-ups are germinating at different research centers. These solutions allow the cross-disciplinary data integration that is often necessary to achieving a mechanistic and holistic understanding of the processes that shape the Earth's surface. Communities of practice such as the Sediment Experimentalist Network (SEN) and the U.S. Geological Survey's Community for Data Integration (USGS CDI) play a critical role in effectively facilitating information exchange about tools, methods, and results that accelerate experimental success. Through community interactions and a culture change to generate data more fit for reuse, broad challenges in reproducibility, scaling, and integration may be addressed, leading to more rapid progress in Earth surface process research.

  7. The role of upper-regime flow bedforms in the morphodynamics of submarine channels

    NASA Astrophysics Data System (ADS)

    Covault, Jacob A.; Kostic, Svetlana; Fildani, Andrea

    2014-05-01

    Advances in acoustic imaging of submarine canyons and channels have provided accurate renderings of seafloor geomorphology. Still, a fundamental understanding of channel inception, evolution, sediment transport, and the nature of the currents traversing these channels remains elusive. Here, we review a mosaic of geomorphology, shallow stratigraphy, and morphodynamics of channelized deep-water depositional systems of tectonically active slopes offshore of California, USA. These systems are imaged in high-resolution multi-beam sonar bathymetry (dominant frequency ~200 kHz) and seismic-reflection (2-16 kHz) data. From north to south, the Monterey East, Lucia Chica, and San Mateo channelized deep-water depositional systems show a breadth of geomorphology and stratigraphic architecture, including channel reaches of varying sinuosity, levees, terraces within channels, and crescent-shaped bedforms, especially in the thalwegs of incipient channel elements. Morphodynamic numerical modeling is combined with interpretations of seafloor and shallow subsurface stratigraphic imagery to demonstrate that the crescent-shaped bedforms common to channel thalwegs are likely to be cyclic steps. We propose that net-erosional and net-depositional cyclic steps play a fundamental role in the formation, filling, and maintenance phases of submarine channels in continental margins with high gradient, locally rugose bathymetry. These margins include passive-margin slopes subjected to gravity-driven tectonic deformation. In such settings, high gradients support the development of densimetric Froude-supercritical turbidity currents, and abrupt slope breaks can promote hydraulic jumps and the spontaneous evolution of an erodible seabed into cyclic steps. This morphodynamic investigation of turbidity currents and the seafloor has the potential to enhance prediction of the locations, stratigraphic evolution, and architecture of submarine canyon-channel systems.

  8. Rainfall simulators in hydrological and geomorphological sciences: benefits, applications and future research directions

    NASA Astrophysics Data System (ADS)

    Iserloh, Thomas; Cerdà, Artemi; Fister, Wolfgang; Seitz, Steffen; Keesstra, Saskia; Green, Daniel; Gabriels, Donald

    2017-04-01

    Rainfall simulators are used extensively within the hydrological and geomorphological sciences and provide a useful investigative tool to understand many processes, such as: (i) plot-scale runoff, infiltration and erosion; (ii) irrigation and crop management, and; (iii) investigations into flooding within a laboratory setting. Although natural rainfall is desirable as it represents actual conditions in a given geographic location, data acquisition relying on natural rainfall is often hindered by its unpredictable nature. Furthermore, rainfall characteristics such as the intensity, duration, drop size distribution and kinetic energy cannot be spatially or temporally regulated or repeated between experimentation. Rainfall simulators provide a suitable method to overcome the issues associated with depending on potentially erratic and unpredictable natural rainfall as they allow: (i) multiple measurements to be taken quickly without waiting for suitable natural rainfall conditions; (ii) the simulation of spatially and/or temporally controlled rainfall patterns over a given plot area, and; (iii) the creation of a closed environment, allowing simplified measurement of input and output conditions. There is no standardisation of rainfall simulation and as such, rainfall simulators differ in their design, rainfall characteristics and research application. Although this impedes drawing meaningful comparisons between studies, this allows researchers to create a bespoke and tailored rainfall simulator for the specific research application. This paper summarises the rainfall simulators used in European research institutions (Universities of Trier, Valencia, Basel, Tuebingen, Wageningen, Loughborough and Ghent) to investigate a number of hydrological and geomorphological issues and includes details on the design specifications (such as the extent and characteristics of simulated rainfall), as well as a discussion of the purpose and application of the rainfall simulator.

  9. Significance of beach geomorphology on fecal indicator bacteria levels.

    PubMed

    Donahue, Allison; Feng, Zhixuan; Kelly, Elizabeth; Reniers, Ad; Solo-Gabriele, Helena M

    2017-08-15

    Large databases of fecal indicator bacteria (FIB) measurements are available for coastal waters. With the assistance of satellite imagery, we illustrated the power of assessing data for many sites by evaluating beach features such as geomorphology, distance from rivers and canals, presence of piers and causeways, and degree of urbanization coupled with the enterococci FIB database for the state of Florida. We found that beach geomorphology was the primary characteristic associated with enterococci levels that exceeded regulatory guidelines. Beaches in close proximity to marshes or within bays had higher enterococci exceedances in comparison to open coast beaches. For open coast beaches, greater enterococci exceedances were associated with nearby rivers and higher levels of urbanization. Piers and causeways had a minimal contribution, as their effect was often overwhelmed by beach geomorphology. Results can be used to understand the potential causes of elevated enterococci levels and to promote public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Tectonic control of complex slope failures in the Ameka River Valley (Lower Gibe Area, central Ethiopia): Implications for landslide formation

    NASA Astrophysics Data System (ADS)

    Kycl, Petr; Rapprich, Vladislav; Verner, Kryštof; Novotný, Jan; Hroch, Tomáš; Mišurec, Jan; Eshetu, Habtamu; Tadesse Haile, Ezra; Alemayehu, Leta; Goslar, Tomasz

    2017-07-01

    Even though major faults represent important landslide controlling factors, the role the tectonic setting in actively spreading rifts plays in the development of large complex landslides is seldom discussed. The Ameka complex landslide area is located on the eastern scarp of the Gibe Gorge, approximately 45 km to the west of the Main Ethiopian Rift and 175 km to the southwest of Addis Ababa. Investigation of the complex landslide failures required a combination of satellite and airborne data-based geomorphology, geological field survey complemented with structural analysis, radiocarbon geochronology and vertical electric sounding. The obtained observations confirmed the multiphase evolution of the landslide area. We have documented that, apart from climatic and lithological conditions, the main triggering factor of the Ameka complex landslide is the tectonic development of this area. The E-W extension along the NNE-SSW trending Main Ethiopian Rift is associated with the formation of numerous parallel normal faults, such as the Gibe Gorge fault and the almost perpendicular scissor faults. The geometry of the slid blocks of coherent lithology have inherited the original tectonic framework, which suggests the crucial role tectonics play in the fragmentation of the compact rock-masses, and the origin and development of the Ameka complex landslide area. Similarly, the main scarps were also parallel to the principal tectonic features. The local tectonic framework is dominated by faults of the same orientation as the regional structures of the Main Ethiopian Rift. Such parallel tectonic frameworks display clear links between the extension of the Main Ethiopian Rift and the tectonic development of the landslide area. The Ameka complex landslide developed in several episodes over thousands of years. According to the radiocarbon data, the last of the larger displaced blocks (representing only 2% of the total area) most likely slid down in the seventh century AD. The main scarps, namely the high scarps in the western part, are unstable over the long term and toppling and falling-type slope movements can be expected here in the future.

  11. An historical look at the Binghamton Geomorphology Symposium

    NASA Astrophysics Data System (ADS)

    Sawyer, Carol F.; Butler, David R.; O'Rourke, Tela

    2014-10-01

    The Binghamton Geomorphology Symposium (BGS) is an annual meeting held since 1970, usually in the U.S.A., on timely topics in the field of geomorphology. A special issue of this journal presents the papers from each meeting and provides an opportunity to disseminate to the international community research relevant to that year's theme written by key people in that field. In this paper, we review the history of the BGS, examine the academic disciplines of each year's organizers, compile a list of the researchers who have made multiple contributions to BGS, note the citation impact of papers published in the annual proceedings, map the spatial distribution of the meeting locations, and categorize the gender distribution of the contributors to the symposium. Contributions from female authors to the BGS have steadily increased since the 1970s; however, from 2003 to 2013, females still only accounted for 23.6% of the proceeding's papers, an increase of 16.4% from the 1970s. These numbers are not surprising when compared to the gender distribution of the top positions in specialty groups in the U.S. Between 1989 and 2010, over 7000 citations were from articles published in BGS special issues, indicating their contributions to the geomorphology field. When normalized by the number of years the articles have been available, papers from BGS whose themes combined geomorphology with other fields (i.e., natural hazards and geomorphology), rated higher numbers of citations. The dispersion of the location of BGS meetings illustrates how the series is maturing by moving away from its origin in the U.S. northeast.

  12. Smal-Scale Spatial Differences in Supply-Side Ecology of Barnacle Larvae Involves a Complex Suite of Factors (Including Surface Tide, Internal Tides And Surface Winds) in Baja California

    NASA Astrophysics Data System (ADS)

    Valencia, A.; Ladah, L. B.

    2016-02-01

    The objective of this study was to quantify and compare the daily settlement rate of barnacle larvae of Chthamalus spp. at small spatial scales ( 1 km) at three sites with unique geomorphology. Simultaneously, water-column temperature, currents, and coastal winds were measured to detect potential physical transport mechanisms responsible for supply of planktonic larvae to the coast. Autocorrelation artifacts in the environmental and settlement time series were removed with the Autoregressive Integrated Moving Average (ARIMA) and their residuals were used to perform a Principal Component Analysis (PCA). This analysis was carried out to determine the independent modes of variability in the environmental forcing mechanisms that may explain the settlement patterns. We found synchronous settlement pulses occurring throughout the study. Settlement at the wave exposed site was only associated to the wind-forcing mode and not to internal waves, which had not been detected previously and was surprising, considering the strong semidiurnal internal tide at this site. Settlement at both the reef-bounded site and the inside-bay site associated to vertical isotherm displacements, thereby suggesting the importance of internal waves for supply-side ecology at these more southern sites. Our results suggest that a complex suite of factors may interact to result in larval supply at the same site, and that larval supply at nearby sites may be forced by different factors due to differences in geomorphology and/or bathymetry, explaining spatial heterogeneity often detected in larval supply and settlement.

  13. Vanishing point: Scale independence in geomorphological hierarchies

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2016-08-01

    Scale linkage problems in geosciences are often associated with a hierarchy of components. Both dynamical systems perspectives and intuition suggest that processes or relationships operating at fundamentally different scales are independent with respect to influences on system dynamics. But how far apart is ;fundamentally different;-that is, what is the ;vanishing point; at which scales are no longer interdependent? And how do we reconcile that with the idea (again, supported by both theory and intuition) that we can work our way along scale hierarchies from microscale to planetary (and vice-versa)? Graph and network theory are employed here to address these questions. Analysis of two archetypal hierarchical networks shows low algebraic connectivity, indicating low levels of inferential synchronization. This explains the apparent paradox between scale independence and hierarchical linkages. Incorporating more hierarchical levels results in an increase in complexity or entropy of the network as a whole, but at a nonlinear rate. Complexity increases as a power α of the number of levels in the hierarchy, with α < 1 and usually ≤ 0.6. However, algebraic connectivity decreases at a more rapid rate. Thus, the ability to infer one part of the hierarchical network from other level decays rapidly as more levels are added. Relatedness among system components decreases with differences in scale or resolution, analogous to distance decay in the spatial domain. These findings suggest a strategy of identifying and focusing on the most important or interesting scale levels, rather than attempting to identify the smallest or largest scale levels and work top-down or bottom-up from there. Examples are given from soil geomorphology and karst flow networks.

  14. A Transient Landscape: Geospatial Analysis and Numerical Modeling of Coastal Geomorphology in the Outer Banks, North Carolina

    NASA Astrophysics Data System (ADS)

    Hardin, Eric Jon

    Coastal landscapes can be relentlessly dynamic---owing to wave energy, tidal cycles, extreme weather events, and perpetual coastal winds. In these settings, the ever-changing landscape can threaten assets and infrastructure, necessitating costly measures to mitigate associated risks and to repair or maintain the changing landscape. Mapping and monitoring of terrain change, identification of areas susceptible to dramatic change, and understanding the processes that drive landscape change are critical for the development of responsible coastal management strategies and policies. Over the past two decades, LiDAR mapping has been conducted along the U.S. east coast (including the Outer Banks, North Carolina) on a near annual basis---generating a rich time series of topographic data with unprecedented accuracy, resolution, and extent. This time series has captured the response of the landscape to episodic storms, daily forcing of wind and waves, and anthropogenic activities. This work presents raster-based geospatial techniques developed to gain new insights into coastal geomorphology from the time series of available LiDAR. Per-cell statistical techniques derive information that is typically not obtained through the techniques traditionally employed by coastal scientists and engineers. Application of these techniques to study sites along the Outer Banks, NC, revealed substantial spatial and temporal variations in terrain change. Additionally, they identify the foredunes as being the most geomorphologically dynamic coastal features. In addition to per-cell statistical analysis, an approach is presented for the extraction of the dune ridge and dune toe (two features that are essential to standard vulnerability assessment). The approach employs a novel application of least cost path analysis and a physics-based model of an elastic sheet. The spatially distributed nature of the approach achieves a high level of automation and repeatability that semi-automated methods and manual digitization lack. Furthermore, the approach can be fully implemented with standard Geographic Information System (GIS) functionality, resulting in efficiency and ease of implementation. With this approach, a raster-based implementation of the U.S. Geological Survey (USGS) storm impact scale (designed to assess storm vulnerability of barrier islands) was developed. Vulnerability of 4km of the Outer Banks to Hurricane Isabel (2003) was assessed. The demonstrated approach produced vulnerability mapping at the high resolution of the input Digital Elevation Model (DEM)---providing results at the scale needed for local management, in contrast to the USGS approach, which is designed for continental scale vulnerability assessment. However, geospatial techniques cannot fully explain the observed geomorphology. Therefore, we present the Smoothed Particle Hydrodynamics (SPH) implementation of the Sauermann model for wind-driven sand transport. The SPH implementation enables the full nonlinearity of the model to be applied to complex scenarios that are typical of coastal landscapes. Through application of the SPH model and Computational Fluid Dynamics (CFD) modeling of the windborne surface shear stress (which drives sand transport), we present the sediment flux at two study sites along the Outer Banks. Scenarios were tested that involved steady-state surface shear stress as well as scenarios with intermittent variations in the surface shear stress. Results showed that intermittency in the surface shear stress has the potential to greatly influence the resulting flux. However, the degree to which intermittency does alter the flux is highly dependent on wind characteristics and wind direction relative to the orientation of salient topographic features.

  15. Planetary Geomorphology.

    ERIC Educational Resources Information Center

    Baker, Victor R.

    1984-01-01

    Discusses various topics related to planetary geomorphology, including: research techniques; such geomorphic processes as impact, volcanic, degradational, eolian, and hillslope/mass movement processes; and channels and valleys. Indicates that the subject should be taught as a series of scientific questions rather than scientific results of…

  16. NUTRIENT DYNAMICS IN RELATION TO GEOMORPHOLOGY OF RIVERINE WETLANDS

    EPA Science Inventory

    Variation in water depth and soil properties associated with geomorphic structures can affect riverine wetland nutrient dynamics by altering biogeochemical processes. We examined the seasonal influence of soils and geomorphology on nutrient forms and concentrations in riverine we...

  17. Delineating riparian zones for entire river networks using geomorphological criteria

    NASA Astrophysics Data System (ADS)

    Fernández, D.; Barquín, J.; Álvarez-Cabria, M.; Peñas, F. J.

    2012-03-01

    Riparian zone delineation is a central issue for riparian and river ecosystem management, however, criteria used to delineate them are still under debate. The area inundated by a 50-yr flood has been indicated as an optimal hydrological descriptor for riparian areas. This detailed hydrological information is, however, not usually available for entire river corridors, and is only available for populated areas at risk of flooding. One of the requirements for catchment planning is to establish the most appropriate location of zones to conserve or restore riparian buffer strips for whole river networks. This issue could be solved by using geomorphological criteria extracted from Digital Elevation Models. In this work we have explored the adjustment of surfaces developed under two different geomorphological criteria with respect to the flooded area covered by the 50-yr flood, in an attempt to rapidly delineate hydrologically-meaningful riparian zones for entire river networks. The first geomorphological criterion is based on the surface that intersects valley walls at a given number of bankfull depths above the channel (BFDAC), while the second is based on the surface defined by a~threshold value indicating the relative cost of moving from the stream up to the valley, accounting for slope and elevation change (path distance). As the relationship between local geomorphology and 50-yr flood has been suggested to be river-type dependant, we have performed our analyses distinguishing between three river types corresponding with three valley morphologies: open, shallow vee and deep vee valleys (in increasing degree of valley constrainment). Adjustment between the surfaces derived from geomorphological and hydrological criteria has been evaluated using two different methods: one based on exceeding areas (minimum exceeding score) and the other on the similarity among total area values. Both methods have pointed out the same surfaces when looking for those that best match with the 50-yr flood. Results have shown that the BFDAC approach obtains an adjustment slightly better than that of path distance. However, BFDAC requires bankfull depth regional regressions along the considered river network. Results have also confirmed that unconstrained valleys require lower threshold values than constrained valleys when deriving surfaces using geomorphological criteria. Moreover, this study provides: (i) guidance on the selection of the proper geomorphological criterion and associated threshold values, and (ii) an easy calibration framework to evaluate the adjustment with respect to hydrologically-meaningful surfaces.

  18. Spreading Geodiversity awareness in schools through field trips and ICT

    NASA Astrophysics Data System (ADS)

    Magagna, Alessandra; Giardino, Marco; Ferrero, Elena

    2014-05-01

    Geodiversity, unlike Biodiversity, is not a topic included in the Italian schools curriculum. Nevertheless, Geomorphology is taught at all levels, and it seems to be the right tool for introducing the students to the concepts related to Geodiversity. In this context, a research on the use of field trips and Information and Communication Technologies (ICT) is being carried out for spreading the value of Geodiversity in Secondary Schools. Relevant international literature states that field trips are effective didactic tools for Earth Science education, because they stimulate an active learning process and allow students to appreciate the geological complexity of an area. On the other side, ICT allow students to get knowledge about the variety of landforms of their own territory by staying indoor, using virtual field trips and free software like Google Earth, Google Maps, Bing etc. In order to connect the two strategies, an innovative educational project is proposed here; it involves both the indoor and the outdoor activities, by enhancing a critical approach to the complexity of geological processes. As a starting point, a multimedia product on 20 Italian geological tours, designed for analyzing Geodiversity at a regional scale, has been tested with teachers and students, in order to understand its effectiveness by using it solely indoor. In a second phase, teachers and students have been proposed to compare and integrate indoor and outdoor activities to approach Geodiversity directly at a local scale, by means of targeted field trips. For achieving this goal, during the field trips, students used their mobile devices (smartphone and tablet) equipped with free and/or open source applications (Epicollect, Trimble Outdoor Navigator). These tools allow to track field trips, to gather data (geomorphological observations and related photographs), and to elaborate them in the laboratory; a process useful for reasoning on concepts such as spatial and temporal scales and for comparing the real and the virtual experience. Particularly, the geological history of an Alpine Piedmont area West of Torino (NW Italy) has been investigated. A one-day educational field trip has been performed starting from the man-made features of the Sangano town, walking on the present-day, historical and pre-historical fluvial landforms of the Sangone River, and finally climbing up the Pleistocene glacial landforms of the Rivoli-Avigliana Morainic Amphitheatre. The track offers samples of the Geodiversity of the area by showing a variety of landforms and including panoramic views to the Alpine chain. Students collected geomorphological data and carried out research-type activities, such as mapping and describing landforms, making hypotheses on geomorphic processes and gathering useful elements for the reconstruction of the geological history of the area. By taking awareness of the spatial and temporal scales related to landforms and geomorphic processes, as well as to the Man-Nature interactions, students realize the "dynamic dimension" of Geodiversity. As a consequence, students can perceive the geomorphological landscape as a changeable system over time, and therefore worthy of protection.

  19. Predicting fish community properties within estuaries: Influence of habitat type and other environmental features

    NASA Astrophysics Data System (ADS)

    França, Susana; Vasconcelos, Rita P.; Fonseca, Vanessa F.; Tanner, Susanne E.; Reis-Santos, Patrick; Costa, Maria José; Cabral, Henrique N.

    2012-07-01

    Statistical models predicting species distributions are essential not only to increase knowledge on species but for their application in conservation and ecologically-based management. The variation of fish species richness and abundance in the most representative habitats (saltmarsh, mudflat and subtidal) in five estuaries along the Portuguese coast was analysed through seasonal sampling surveys in 2009. Generalized additive models (GAM) were developed to describe the variation of species richness and abundances with a set of geomorphologic, hydrologic and environmental characteristics from the sampled estuaries and habitats. GAM were chosen as the complex interactions dominating these ecosystems and species distribution are non-linear. Final models built for each estuary and for all estuaries together performed well during the calibration phase and also during the validation phase, where an unused data sub-set from each estuary was used. There was not a similar combination of variables retained by the models for the studied estuaries but factors such as the area of the habitat, the distance to estuary mouth, percentage of mud in the sediment and depth were commonly retained. The partial effect of these predictor variables on the variation of species richness and abundance in the estuaries varied markedly and the importance of preserving the heterogeneity of habitats within estuaries was highlighted. Models for each individual estuary performed better than models for estuaries combined. Predictive models could be useful as a preliminary tool to prepare long-term conservation plans at different scales.

  20. KSC-05pd2632A

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, technicians monitor New Horizons as it is lowered onto a transporter for its move to Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  1. KSC-05pd2636

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - A Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility awaits the arrival of New Horizons at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  2. KSC-05pd2633

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, New Horizons sits atop a transporter awaiting its move to Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  3. KSC-05pd2634

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - New Horizons leaves the Payload Hazardous Servicing Facility before dawn for its journey to the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  4. KSC-05pd2635

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - Technicians prepare to move New Horizons before dawn from the Payload Hazardous Servicing Facility to the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  5. KSC-05pd2637

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - New Horizons arrives at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station where buildup of its Lockheed Martin Atlas V launch vehicle is complete. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  6. KSC-05pd2639

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is secured to the nose of the fairing enclosing New Horizons at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  7. KSC-05pd2630

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, technicians prepare to lift New Horizons to a transporter for its move to Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  8. KSC-05pd2642

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing enclosing New Horizons arrives at the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  9. Quaternary and Geomorphology.

    ERIC Educational Resources Information Center

    Andrews, J. T.; Graf, W. L.

    1983-01-01

    Highlights conferences and meetings of organizations involved with quaternary geology and geomorphology, including International Union of Quaternary Research Conference held in Moscow. The impetus of a revision of "The Quaternary of the United States" resulted from this conference. Includes activities/aims of "Friends of the…

  10. Teaching Geomorphology at University

    ERIC Educational Resources Information Center

    Sugden, David; Hamilton, Patrick

    1978-01-01

    Geomorphology courses in British universities emphasize the main landform/process systems rather than more abstract concepts. Recommends a more theoretical focus on fundamental geomorphic processes and methodological problems. Available from: Faculty of Modern Studies, Oxford Polytechnic, Headington, Oxford OX3 OBP, England. (Author/AV)

  11. Periglacial Geomorphology.

    ERIC Educational Resources Information Center

    Potter, Noel, Jr.

    1984-01-01

    Describes preglacial processes, focusing on weathering, rate and timing of movement of material, snow and snow avalanches, rock glaciers, gelifluction, pingos, patterned ground, and the thaw of permafrost. This information is provided for individuals teaching introductory geology/geomorphology and whose specialty is not cold-climate phenomena. (JN)

  12. A New Global Geomorphology?

    NASA Technical Reports Server (NTRS)

    Baker, V. R.

    1985-01-01

    Geomorphology is entering a new era of discovery and scientific excitement centered on expanding scales of concern in both time and space. The catalysts for this development include technological advances in global remote sensing systems, mathematical modeling, and the dating of geomorphic surfaces and processes. Even more important are new scientific questions centered on comparative planetary geomorphology, the interaction of tectonism with landscapes, the dynamics of late Cenozoic climatic changes, the influence of cataclysmic processes, the recognition of extremely ancient landforms, and the history of the world's hydrologic systems. These questions all involve feedback relationships with allied sciences that have recently yielded profound developments.

  13. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia.

    PubMed

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-06-29

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent.

  14. Mantle Subduction and Uplift of Intracontinental Mountains: A Case Study from the Chinese Tianshan Mountains within Eurasia

    PubMed Central

    Li, Jinyi; Zhang, Jin; Zhao, Xixi; Jiang, Mei; Li, Yaping; Zhu, Zhixin; Feng, Qianwen; Wang, Lijia; Sun, Guihua; Liu, Jianfeng; Yang, Tiannan

    2016-01-01

    The driving mechanism that is responsible for the uplift of intracontinental mountains has puzzled geologists for decades. This study addresses this issue by using receiver function images across the Chinese Tianshan Mountains and available data from both deep seismic profiles and surface structural deformation. The near-surface structural deformation shows that the Tianshan crust experienced strong shortening during the Cenozoic. The receiver function image across the Tianshan Mountains reveals that the lithosphere of the Junggar Basin to the north became uncoupled along the Moho, and the mantle below the Moho subducted southwards beneath the northern part of the Tianshan Mountains, thereby thickening the overlying crust. Similar deep structures, however, are not observed under the Tarim Basin and the adjacent southern Tianshan Mountains. This difference in the deep structures correlates with geomorphological features in the region. Thus, a new model of mantle subduction, herein termed M-type subduction, is proposed for the mountain-building processes in intracontinental compressional settings. The available geomorphological, geological and seismic data in the literatures show that this model is probably suitable for other high, linear mountains within the continent. PMID:27353861

  15. Communicating Geomorphology. JGHE Annual Lecture

    ERIC Educational Resources Information Center

    Brierley, Gary

    2009-01-01

    Communication strategies emphasize concerns for "content" (what is said) and "process" (the way things are said). Scientists have a responsibility to communicate the findings of their research, enhancing prospects that their insights can meaningfully inform management practice. When used effectively, principles from geomorphology provide critical…

  16. Sand fairway mapping as a tool for tectonic restoration in orogenic belts

    NASA Astrophysics Data System (ADS)

    Butler, Rob

    2016-04-01

    The interplay between regional subsidence mechanisms and local deformation associated with individual fold-thrust structures is commonly investigated in neotectonic subaerial systems using tectonic geomorphology. Taking these approaches back into the early evolution of mountain belts is difficult as much of the key evidence is lost through erosion. The challenge is to develop appropriate tools for investigating these early stages of orogenesis. However, many such systems developed under water. In these settings the connections between regional and local tectonics are manifest in complex bathymetry. Turbidity currents flowing between and across these structures will interact with their substrate and thus their deposits, tied to stratigraphic ages, can chart tectonic evolution. Understanding the depositional processes of the turbidity currents provides substantial further insight on confining seabed geometry and thus can establish significant control on the evolution of bathymetric gradients and continuity through basins. However, reading these records commonly demands working in structurally deformed terrains that hitherto have discouraged sedimentological study. This is now changing. Sand fairway mapping provides a key approach. Fairway maps chart connectivity between basins and hence their relative elevation through time. Larger-scale tectonic reconstructions may be tested by linking fairway maps to sand composition and other provenance data. More detailed turbidite sedimentology provides substantial further insight. In confined turbidite systems, it is the coarser sand component that accumulates in the deeper basin with fines fractionated onto the flanks. Flow bypass, evidenced by abrupt breaks in grading within individual event beds, can be used to predict sand fraction distribution down fairways. Integrating sedimentology into fairway maps can chart syntectonic slope evolution and thus provide high resolution tools equivalent to those in subaerial tectonic geomorphology. The stratigraphic records are preserved in many parts of the Alpine-Mediterranean region. Examples are drawn from the Eo-Oligocene of the western Alps and the early Miocene of the Maghreb-Apennine system to illustrate how turbidite sedimentology, linked to studies of basin structure, can inform understanding of tectonic processes on regional and local scales. In both examples, sediment was delivered across deforming basin arrays containing contractional structures, sourced from beyond the immediate orogenic segments. The depositional systems show that multiple structures were active in parallel, rather than develop in any particular sequence. Both systems show that significant deformation occurs, emerging to the syn-orogenic surface ahead of the main orogenic wedge. The cycling of uplift and subsidence of "massifs" can be significantly more complex that the histories resolved from thermochronological data alone.

  17. A geomorphological characterisation of river systems in South Africa: A case study of the Sabie River

    NASA Astrophysics Data System (ADS)

    Eze, Peter N.; Knight, Jasper

    2018-06-01

    Fluvial geomorphology affects river character, behaviour, evolution, trajectory of change and recovery potential, and as such affects biophysical interactions within a catchment. Water bodies in South Africa, in common with many other water-stressed parts of the world, are generally under threat due to increasing natural and anthropogenic influences including aridity, siltation and pollution, as well as climate and environmental change. This study reports on a case study to characterise the geomorphology of different river systems in South Africa, with the aim of better understanding their properties, controls, and implications for biophysical interactions including water quality, biodiversity (aquatic and riparian), and human activity within the catchment. The approach adopted is based on the River Styles® framework (RSF), a geomorphology-based approach developed for rivers in New Zealand and Australia, but applied here for the first time to South Africa. Based on analysis of remote sensing imagery, SRTM-2 digital topographic data and field observations on sites through the entire river system, six geomorphic elements were identified along the Sabie River, northeast South Africa (gorge, bedrock-forced meander, low-moderate sinuosity planform controlled sand bed, meandering sand bed, low sinuosity fine grained sand bed, and floodouts), using the RSF classification scheme and based on the RSF procedural tree of Brierley and Fryirs (2005). Previous geomorphological studies along the Sabie River have shown that different reaches respond differently to episodic floods; we use these data to link river geomorphological character (as defined by the RSF) to the hydrodynamic conditions and processes giving rise to such character. This RSF approach can be used to develop a new management approach for river systems that considers their functional biophysical behaviour within individual reaches, rather than considering them as homogeneous and uniform systems.

  18. Geological, geomorphological, facies and allostratigraphic maps of the Eberswalde fan delta

    NASA Astrophysics Data System (ADS)

    Pondrelli, M.; Rossi, A. P.; Platz, T.; Ivanov, A.; Marinangeli, L.; Baliva, A.

    2011-09-01

    Geological, facies, geomorphological and allostratigraphic map of the Eberswalde fan delta area are presented. The Eberswalde fan delta is proposed as a sort of prototype area to map sedimentary deposits, because of its excellent data coverage and its variability in depositional as well as erosional morphologies and sedimentary facies. We present a report to distinguish different cartographic products implying an increasing level of interpretation. The geological map - in association with the facies map - represents the most objective mapping product. Formations are distinguished on the basis of objectively observable parameters: texture, color, sedimentary structures and geographic distribution. Stratigraphic relations are evaluated using Steno's principles. Formations can be interpreted in terms of depositional environment, but an eventual change of the genetic interpretation would not lead to a change in the geological map. The geomorphological map is based on the data represented in the geological map plus the association of the morphological elements, in order to infer the depositional sub-environments. As a consequence, it is an interpretative map focused on the genetic reconstruction. The allostratigraphic map is based on the morphofacies analysis - expressed by the geomorphological map - and by the recognition of surfaces which reflect allogenic controls, such as water level fluctuations: unconformities, erosional truncations and flooding surfaces. As a consequence, this is an even more interpretative map than the geomorphological one, since it focuses on the control on the sedimentary systems. Geological maps represent the most suitable cartographic product for a systematic mapping, which can serve as a prerequisite for scientific or landing site analyses. Geomorphological and allostratographic maps are suitable tools to broaden scientific analysis or to provide scientific background to landing site selection.

  19. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    NASA Astrophysics Data System (ADS)

    Rogger, M.; Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-07-01

    Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long-term experiments on physical-chemical-biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology.

  20. Land use change impacts on floods at the catchment scale: Challenges and opportunities for future research

    PubMed Central

    Agnoletti, M.; Alaoui, A.; Bathurst, J. C.; Bodner, G.; Borga, M.; Chaplot, V.; Gallart, F.; Glatzel, G.; Hall, J.; Holden, J.; Holko, L.; Horn, R.; Kiss, A.; Kohnová, S.; Leitinger, G.; Lennartz, B.; Parajka, J.; Perdigão, R.; Peth, S.; Plavcová, L.; Quinton, J. N.; Robinson, M.; Salinas, J. L.; Santoro, A.; Szolgay, J.; Tron, S.; van den Akker, J. J. H.; Viglione, A.; Blöschl, G.

    2017-01-01

    Abstract Research gaps in understanding flood changes at the catchment scale caused by changes in forest management, agricultural practices, artificial drainage, and terracing are identified. Potential strategies in addressing these gaps are proposed, such as complex systems approaches to link processes across time scales, long‐term experiments on physical‐chemical‐biological process interactions, and a focus on connectivity and patterns across spatial scales. It is suggested that these strategies will stimulate new research that coherently addresses the issues across hydrology, soil and agricultural sciences, forest engineering, forest ecology, and geomorphology. PMID:28919651

  1. Geomorpho-Landscapes

    NASA Astrophysics Data System (ADS)

    Farabollini, Piero; Lugeri, Francesca; Amadio, Vittorio

    2014-05-01

    Landscape is the object of human perceptions, being the image of spatial organization of elements and structures: mankind lives the first approach with the environment, viewing and feeling the landscape. Many definitions of landscape have been given over time: in this case we refer to the Landscape defined as the result of interaction among physical, biotic and anthropic phenomena acting in a different spatial-temporal scale (Foreman & Godron) Following an Aristotelic approach in studying nature, we can assert that " Shape is synthesis": so it is possible to read the land features as the expression of the endogenous and exogenous processes that mould earth surfaces; moreover, Landscape is the result of the interaction of natural and cultural components, and conditions the spatial-temporal development of a region. The study of the Landscape offers results useful in order to promote sustainable development, ecotourism, enhancement of natural and cultural heritage, popularization of the scientific knowledge. In Italy, a very important GIS-based tool to represent the territory is the "Carta della Natura" ("Map of Nature", presently coordinated by the ISPRA) that aims at assessing the state of the whole Italian territory, analyzing Landscape. The methodology follows a holistic approach, taking into consideration all the components of a landscape and then integrating the information. Each individual landscape, studied at different scales, shows distinctive elements: structural, which depend on physical form and specific spatial organization; functional, which depend on relationships created between biotic and abiotic elements, and dynamic, which depend on the successive evolution of the structure. The identification of the landscape units, recognized at different scales of analysis, allows an evaluation of the state of the land, referring to the dual risk/resource which characterizes the Italian country. An interesting opportunity is to discover those areas of unusual value -referring to biodiversity, geodiversity, culture- which can be considered as a special heritage. Starting from the concept of Geomorphosite, a geomorphologic landform with a scientific, cultural and socio-economical value (Panizza 2001), we propose a further definition, useful in the preliminary steps of the landscape analysis: "geomorpho-landscape" as a spatial object or component of a geological landscape, whose geo-morphological evolution, linked to the geological setting, are elements of aesthetical, semiological as well as historical and cultural value. The structure of the landscape is represented by the physical shape and spatial organization, in dynamic way: it is necessary to provide a readout of the landscape components that supplements the geo-morphological, lithological, geodiversity data (Lugeri et alii, 2012). The concept of "geomorpho-landscape" is conceived to address the need to describe by a synthetic approach the geological processes emerging at the landscape scale, allowing to link spatial patterns to geological processes Each geo-form has in itself geological, geo-morphological, landmark, historical and cultural features, of such special relevance, that they can be defined in terms of scientific quality, rarity, aesthetic appeal and educational and cultural value. Reference List AMADIO V. (2003). Analisi di sistemi e progetti di paesaggio. Franco Angeli, Milano, pp 236 AMADIO V, AMADEI M, BAGNAIA R, DI BUCCI D, LAURETI L, LISI A, LUGERI FR, LUGERI N. (2002). The role of Geomorphology in Landscape Ecology: The Landscape Unit Map of Italy', Scale 1: 250,000 ("Carta della Natura" Project). In: Allison RJ (ed) Applied Geomorphology: theory and practice. John Wiley & Sons, London, pp 265-282 APAT (2003). Carta della natura alla scala 1:250,000: metodologie di realizzazione. APAT, Manuali e linee guida 17/2003, Roma, pp 103 LUGERI F.R., FARABOLLINI P., GRAVIANO G. & AMADIO V. (2012). Geoheritage: Nature and culture in a landscape approach. European Geologist, 34, 23-28. (ISSN 1028-267X) FORMAN R.T.T. & GODRON M. (1986). Landscape ecology. John Wiley and Sons, NewYork, pp 620 PANIZZA M. (2001). Geomorphosites: concepts, methods and example of geomorphological survey. Chinese Science Bulletin, Suppl. Bd, 4-6, p 46

  2. Space imagery and some geomorphological problems of the Guiana Shield, South America

    NASA Technical Reports Server (NTRS)

    Melhorn, W. N.

    1985-01-01

    Some ongoing involvement in regional geomorphologic research in South America is described. Because of association with LARS at Purdue University, there has been engagement, vicarious or adivsory, in projects which led to LANDSAT 1-2 mapping of the natural resources of Bolivia (1:8,000,000 scale), and preparation of a geographic information system which mapped the general hydrology, geology, soils, and vegetation of Ecuador (1:4,000,000 scale). Currently we are involved more specifically in geological-geomorphological mapping of the Venezuelan portion of the Guiana shield, and because of manuscript limitations only questions pertinent to this region are posed in the ensuing discussion.

  3. Groundwater controls on river channel pattern

    NASA Astrophysics Data System (ADS)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a reduction in flood disturbance, it was still sufficient to maintain a wandering/braided state. Thus, it appears that access to groundwater can control river channel pattern through its impact upon the "engineering effects" of vegetation. The results are important for river management as they highlight the non-linearity of developing vegetation in dynamic alluvial floodplains and the importance of considering the wider environmental setting and associated feedbacks between biotic and abiotic river components in defining long-term geomorphological river response.

  4. Critical zone evolution and the origins of organised complexity in watersheds

    NASA Astrophysics Data System (ADS)

    Harman, C.; Troch, P. A.; Pelletier, J.; Rasmussen, C.; Chorover, J.

    2012-04-01

    The capacity of the landscape to store and transmit water is the result of a historical trajectory of landscape, soil and vegetation development, much of which is driven by hydrology itself. Progress in geomorphology and pedology has produced models of surface and sub-surface evolution in soil-mantled uplands. These dissected, denuding modeled landscapes are emblematic of the kinds of dissipative self-organized flow structures whose hydrologic organization may also be understood by low-dimensional hydrologic models. They offer an exciting starting-point for examining the mapping between the long-term controls on landscape evolution and the high-frequency hydrologic dynamics. Here we build on recent theoretical developments in geomorphology and pedology to try to understand how the relative rates of erosion, sediment transport and soil development in a landscape determine catchment storage capacity and the relative dominance of runoff process, flow pathways and storage-discharge relationships. We do so by using a combination of landscape evolution models, hydrologic process models and data from a variety of sources, including the University of Arizona Critical Zone Observatory. A challenge to linking the landscape evolution and hydrologic model representations is the vast differences in the timescales implicit in the process representations. Furthermore the vast array of processes involved makes parameterization of such models an enormous challenge. The best data-constrained geomorphic transport and soil development laws only represent hydrologic processes implicitly, through the transport and weathering rate parameters. In this work we propose to avoid this problem by identifying the relationship between the landscape and soil evolution parameters and macroscopic climate and geological controls. These macroscopic controls (such as the aridity index) have two roles: 1) they express the water and energy constraints on the long-term evolution of the landscape system, and 2) they bound the range of plausible short-term hydroclimatic regimes that may drive a particular landscape's hydrologic dynamics. To ensure that the hydrologic dynamics implicit in the evolutionary parameters are compatible with the dynamics observed in the hydrologic modeling, a set of consistency checks based on flow process dominance are developed.

  5. Improving dust emission characterization in dust models using dynamic high-resolution geomorphic erodibility map

    NASA Astrophysics Data System (ADS)

    Parajuli, S. P.; Yang, Z.; Kocurek, G.

    2013-12-01

    Dust is known to affect the earth radiation budget, biogeochemical cycle, precipitation, human health and visibility. Despite the increased research effort, dust emission modeling remains challenging because dust emission is affected by complex geomorphological processes. Existing dust models overestimate dust emission and rely on tuning and a static erodibility factor in order to make simulated results comparable to remote sensing and ground-based observations. In most of current models, dust emission is expressed in terms of threshold friction speed, which ultimately depends mainly upon the percentage clay content and soil moisture. Unfortunately, due to the unavailability of accurate and high resolution input data of the clay content and soil moisture, estimated threshold friction speed commonly does not represent the variability in field condition. In this work, we attempt to improve dust emission characterization by developing a high resolution geomorphic map of the Middle East and North Africa (MENA), which is responsible for more than 50% of global dust emission. We develop this geomorphic map by visually examining high resolution satellite images obtained from Google Earth Pro and ESRI base map. Albeit subjective, our technique is more reliable compared to automatic image classification technique because we incorporate knowledge of geological/geographical setting in identifying dust sources. We hypothesize that the erodibility is unique for different geomorphic landforms and that it can be quantified by the correlation between observed wind speed and satellite retrieved aerosol optical depth (AOD). We classify the study area into several key geomorphological categories with respect to their dust emission potential. Then we quantify their dust emission potential using the correlation between observed wind speed and satellite retrieved AOD. The dynamic, high-resolution geomorphic erodibility map thus prepared will help to reduce the uncertainty in current dust models associated with poor characterization of dust sources. The baseline dust scheme used in this study is the Dust Entrainment and Deposition (DEAD) model, which is also a component of the community land model (CLM). Proposed improvements in the dust emission representation will help to better understand the accurate effect of dust on climate processes.

  6. Landslide triggering-thickness susceptibility, a simple proxy for landslide hazard? A test in the Mili catchment (North-Eastern Sicily, Italy)

    NASA Astrophysics Data System (ADS)

    Lombardo, Luigi; Fubelli, Giandomenico; Amato, Gabriele; Bonasera, Mauro; Mai, Martin

    2016-04-01

    This study implements a landslide triggering-thickness susceptibility approach in order to investigate the landslide scenario in the catchment of Mili, this being located in the north-easternmost sector of Sicily (Italy). From a detailed geomorphological campaign, thicknesses of mobilised materials at the triggering zone of each mass movement were collected and subsequently used as a dependent variable to be analysed in the framework of spatial predictive models. The adopted modelling methodology consisted of a presence-only learning algorithm which differently from classic presence-absence methods does not rely on stable conditions in order to derive functional relationships between dependent and independent variables. The dependent was pre-processed by reclassifying the crown thickness spectrum into a binary condition expressing thick (values equal or greater than 1m) and thin (values less than 1m) landslide crown classes. The explanatory variables were selected to express triggering-thickness dependency at different scales, these being in close proximity to the triggering point through primary and secondary attributes from a 2m-cell side Lidar HRDEM, at a medium scale through vegetation indexes from multispectral satellite images (ASTER) and a coarser scale through a geological, land use and tectonic maps. The choice of a presence-only approach allowed to effectively discriminate between the two types of landslide thicknesses at the triggering zone, producing excellent prediction skills associated with relatively low variances across a set of 50 randomly generated replicates. In addition, the role of each predictor was assessed for the two considered classes as relevant differences arose in terms of their contribution to the final models. In this regard, predictor importance, Jack-knife tests and response curves were used to assess the reliability of the models together with their geomorphological reasonability. This work attempts to capitalize on fieldwork data in order to produce an example for a landslide triggering-thickness susceptibility which differently from more common approaches, may performs as a better proxy for more complex landslide hazard assessments.

  7. Developing Connectivist Schemas for Geological and Geomorphological Education

    NASA Astrophysics Data System (ADS)

    Whalley, B.

    2012-12-01

    Teaching geology is difficult; students need to grasp changes in time over three dimensions. Furthermore, the scales and rates of change in four dimensions may vary over several orders of magnitude. Geological explanations incorporate ideas from physics, chemistry, biology and engineering, lectures and textbooks provide a basic framework but they need to be amplified by laboratories and fieldwork involving active student participation and engagement. Being shown named 'things' is only a start to being able to being able to inculcate geological thinking that requires a wide and focused viewpoints. Kastens and Ishikawa (2006) suggested five aspects of thinking geologically, summarised as: 1. Observing, describing, recording, communicating geologically entities (ie basic cognitive skills) 2. (mentally) manipulating these entities 3. interpreting them via causal relationships 4. predicting other aspects using the basic knowledge (to create new knowledge) 5. using cognitive strategies to develop new ways of interpreting gained knowledge. These steps can be used follow the sequence from 'known' through 'need to know' to using knowledge to gain better geologic explanation, taken as enquiry-based or problem solving modes of education. These follow ideas from Dewey though Sternberg's 'thinking styles' and Siemens' connectivist approaches. Implementation of this basic schema needs to be structured for students in a complex geological world in line with Edelson's (2006) 'learning for' framework. In a geomorphological setting, this has been done by showing students how to interpret a landscape (landform, section etc) practice their skills and thus gain confidence with a tutor at hand. A web-based device, 'Virtorial' provides scenarios for students to practice interpretation (or even be assessed with). A cognitive tool is provided for landscape interpretation by division into the recognition of 'Materials' (rock, sediments etc), Processes (slope, glacial processes etc) and 'Geometry' (what it looks like). These components provide basic metadata for any landform in a landscape. Thus, the recognition of a landform means much more than a feature; the metadata provide contexts that can be used for interpretation in the field or laboratory, individually or in discussion groups, distance or field learning environments.

  8. Recent Trends in Karst Geomorphology.

    ERIC Educational Resources Information Center

    Palmer, Arthur N.

    1984-01-01

    Recent trends related to the karst processes and the evolution of karst landscapes are discussed. The hydrochemical processes responsible for the origin of karst are expanded on to illustrate the present scope of karst studies. These geomorphological studies are combined with concepts and techniques from hydraulics, chemistry, and mathematics. (JN)

  9. Geomorphological map as a tool for visualisation of geodiversity - example from Cave Park Grabovaca (Croatia)

    NASA Astrophysics Data System (ADS)

    Buzjak, Nenad; Bocic, Neven; Pahernik, Mladen

    2014-05-01

    Cave Park Grabovaca is located near Perusic in Lika region (central Croatia). It was established in 2006 at the area of 5.95 km2 (protection category: significant landscape). The main task is management and protection of Samograd, Medina and Amidzina caves that were declared as geomorphological monuments, and 6 other caves located close to each other. Owing to the central geographic location in Croatian Dinaric karst area, good traffic connections between central Europe and tourist centres of the Adriatic coast, preserved nature and easy accessible karst features typical for the Dinaric Karst, it has good potential to develop as an research, educational and tourist centre. In 2013. Cave Park management and the Department of Geography (University of Zagreb, Faculty of Science) established a core team that started to develop the project of Geoeducational centre (GEC) with following goals: exploration-evaluation-presentation-education. According to the accepted strategy, the first step in the project process is to enlarge the area and change the protection category. During the consultation process team members take into account protection, environmental, local economy, tourism and local population issues and proposed that protected area should be increased to 52,2 km2. This enlargement provides more efficient protection, greater geodiversity and biodiversity by occupying geotope, biotope, and landscape units typical for the whole Lika karst region. The next step was inventorying, evaluation, analysis and visualisation of geological, geomorphological and speleological phenomena. This 2 year task was made in cooperation between Croatian Geomorphological Society, Department of Geography, Speleological Society Karlovac and Caving Club Samobor. The inventory was made using field-work mapping and geotagged photographs, cave mapping and DEM analysis. It resulted in GIS oriented geodatabase consisting of geomorphological forms, processes and cave inventory. From those data geomorphological map 1:25.000, morphometrical maps (hypsometrical, slope, relative relief) and speleological maps were produced. Cartographic model of the geomorphological map is defined by 5 groups: geological structure, morphogenetic, morphographic, morphometric and morpho-chronological data. The geodatabase and maps were used for preparing the study as a part of regulated legal procedure for protected area enlargement. It is also a plan to use it for karst and landscape geodiversity presentation and education. For that purpose general geomorphological map, with professional symbology understandable only to professionals, must be didactically transformed to media that is visually and contextually acceptable to wider non-professional audience.

  10. Geomorphological map of glaciated gorges in a granitic massif (Gredos range, Central Spain).

    NASA Astrophysics Data System (ADS)

    Campos, Néstor; Tanarro, Luis Miguel; Palacios, David

    2017-04-01

    A detailed geomorphological map on a 1:10,000 scale is presented for a high mountain area in Gredos range (Iberian Central System), this area is located in a granitic massif 160 km West of Madrid and comprises three gorges : La Vega, Taheña-Honda and La Nava. Only few detailed geomorphological maps of the Gredos range are available despite the wide diversity of landforms, in order to improve the understanding of this zone, this geomorphological map of the area has been produced, showing in detail the geomorphologic diversity of these gorges. The map was created with the aid of 25 cm resolution aerial photographs, 25 cm resolution satellite images, Iberpix 3D images provided by the Spanish National Geographic Institute and verified with field work. The landforms were delimitated with a stereoscope and satellite image pairs and digitized using GIS and CAD software, in some areas 3D glasses has been used with 3D images and the software Esri ArcScene. The landforms resulting from interpretation of aerial photographs and satellite images were classified using the IGUL (Institute of Geography, University of Lausanne) legend system (developed at the end of the 1980s) combined with the legend proposed by Peña et al. (1997) and some personal adaptations. The map legend includes 45 landforms divided into seven sections: structural, hydrography, fluvial, gravitative, glacial, nival and anthropic landforms. The use of both legend systems allows us to represent the landform types distributed over an area of 40 km2 and to identify the geomorphic processes involved in their morphogenesis, this variety of processes and landforms identified demonstrated that geomorphological cartography obtained by combining traditional image interpretation and GIS technology facilitates the production of geomorphological maps and the obtaining of valuable data for identify and understand surface processes and landforms. References: Maillard, B., Lambiel, C., Martin, S., Pellitero, R., Reynard, E., & Schoeneich, P. (2011). The ArcGIS version of the geomorphological mapping legend of the University of Lausanne. Technical report, Université de Lausanne. Peña, J., Pellicer, F., Chueca, J., & Julián, A. (1997). Leyenda para mapas geomorfológicos a escalas 1:25.000/1:50.000. In J. L. Peña (Ed.), Cartografía Geomorfológica Básica y Aplicada. Geoforma Ed. Logroño. Research funded by Deglaciation project (CGL2015-65813-R), Government of Spain

  11. A data-calibrated distribution of deglacial chronologies for the North American ice complex from glaciological modeling

    NASA Astrophysics Data System (ADS)

    Tarasov, Lev; Dyke, Arthur S.; Neal, Radford M.; Peltier, W. R.

    2012-01-01

    Past deglacial ice sheet reconstructions have generally relied upon discipline-specific constraints with no attention given to the determination of objective confidence intervals. Reconstructions based on geophysical inversion of relative sea level (RSL) data have the advantage of large sets of proxy data but lack ice-mechanical constraints. Conversely, reconstructions based on dynamical ice sheet models are glaciologically self-consistent, but depend on poorly constrained climate forcings and sub-glacial processes. As an example of a much better constrained methodology that computes explicit error bars, we present a distribution of high-resolution glaciologically-self-consistent deglacial histories for the North American ice complex calibrated against a large set of RSL, marine limit, and geodetic data. The history is derived from ensemble-based analyses using the 3D MUN glacial systems model and a high-resolution ice-margin chronology derived from geological and geomorphological observations. Isostatic response is computed with the VM5a viscosity structure. Bayesian calibration of the model is carried out using Markov Chain Monte Carlo methods in combination with artificial neural networks trained to the model results. The calibration provides a posterior distribution for model parameters (and thereby modeled glacial histories) given the observational data sets that takes data uncertainty into account. Final ensemble results also account for fits between computed and observed strandlines and marine limits. Given the model (including choice of calibration parameters), input and constraint data sets, and VM5a earth rheology, we find the North American contribution to mwp1a was likely between 9.4 and 13.2 m eustatic over a 500 year interval. This is more than half of the total 16 to 26 m meltwater pulse over 500 to 700 years (with lower values being more probable) indicated by the Barbados coral record (Fairbanks, 1989; Peltier and Fairbanks, 2006) if one assumes a 5 meter living range for the Acropora Palmata coral. 20 ka ice volume for North America was likely 70.1 ± 2.0 m eustatic, or about 60% of the total contribution to eustatic sea level change. We suspect that the potentially most critical unquantified uncertainties in our analyses are those related to model structure (especially climate forcing), deglacial ice margin chronology, and earth rheology.

  12. Assessment and protection of geomorphological heritage in the Gruyère - Pays-d'Enhaut Regional Nature Park (Switzerland)

    NASA Astrophysics Data System (ADS)

    Bussard, Jonathan; Reynard, Emmanuel

    2014-05-01

    This research deals with two main issues: (1) the protection of the abiotic nature and (2) the promotion of geotourism in a protected area, the Gruyère - Pays-d'Enhaut Regional Nature Park (Switzerland). First, an identification and assessment of the geomorphological heritage is conducted, with special attention given to the degree of protection of the sites. The assessment is carried out using the method developed by Reynard et al. (2007), partly modified (addition of new criteria concerning the present use and management of the sites). Secondly, we try to understand how the stakeholders active in the tourism sector take into account the Earth heritage (especially geomorphosites). The final goal is to give some perspectives for a suitable protection and a better promotion of the geomorphosites. The Gruyère - Pays-d'Enhaut Regional Nature Park is one of the new nature parks developed during the last decade in Switzerland. Created in 2012, it covers a surface of 503 square kilometers on the territory of 13 municipalities. It is managed by an association constituted by the 13 municipalities and by private individuals, companies and societies. The three main objectives of the park are (1) the preservation and qualitative development of nature and landscape; (2) the promotion of sustainable economic activities; and (3) raising public awareness and environmental education. The park is situated in the Swiss Prealps (altitudes ranging from 375 to 2548 m ASL) and is characterised by extensive structural landforms and numerous relicts of Quaternary glaciations. 33 sites were inventoried. Most of them (27 sites) are related to three main geomorphological processes: karst formations, relicts of glacial/periglacial processes and fluvial landforms. The other sites are related to gravity processes, to organic processes and to the structural context. The inventory shows that the study area has a high diversity of landforms and presents a large set of geomorphosites with an important scientific value. Most of them (24 sites) have also a high ecological value. Two thirds of the geomorphosites are directly linked to the biodiversity of the region for two reasons: (1) geomorphological processes allow the regeneration of different primary species, which is the case of active geomorphosites such as scree fans or floodplains and (2) they provide a high diversity of habitats. For example, inherited sites such as relict rock glaciers or ancient rock falls have a chaotic topography and a diversity of soil formations favourable to a high biodiversity. The majority of the sites have a good protection status and only three of them are threatened by human activities because they do not benefit of any protection. One third of the park's area and 20 geomorphosites are under the protection of the Federal inventory of landscapes and natural monuments of national importance. This protection is, however, related more to their ecological or landscape value than to their geomorphological characteristics. An improved knowledge of this geomorphological value and a better recognition by scientists and by the society are important in order to improve the protection of geomorphosites. Reference Reynard, E., Fontana, G., Kozlik, L., Scapozza, C. 2007: A method for assessing «scientific» and «additional values» of geomorphosites, Geogr. Helv., 62(3), 148-158.

  13. Hydro-geomorphologic events in Portugal and its association with Circulation weather types

    NASA Astrophysics Data System (ADS)

    Pereira, Susana; Ramos, Alexandre M.; Rebelo, Luís; Trigo, Ricardo M.; Zêzere, José L.

    2017-04-01

    Floods and landslides correspond to the most hazardous weather driven natural disasters in Portugal. A recent improvement on their characterization has been achieved with the gathering of basic information on past floods and landslides that caused social consequences in Portugal for the period 1865-2015 through the DISASTER database (Zêzere et al., 2014). This database was built under the assumption that strong social impacts of floods and landslides are sufficient relevant to be reported consistently by national and regional newspapers. The DISASTER database contains detailed information on the location, date of occurrence and social impacts (fatalities, injuries, missing people, evacuated and homeless people) of each individual hydro-geomorphologic case (1677 flood cases and 292 landslide cases). These hydro-geomorphologic disaster cases are grouped in a restrict number of DISASTER events that were selected according to the following criteria: a set of at least 3 DISASTER cases sharing the same trigger in time (with no more than 3 days without cases), which have a widespread spatial extension related to the triggering mechanism and a certain magnitude. In total, the DISASTER database includes 134 events (3.7 average days of duration) that generated high social impacts in Portugal (962 fatalities and 40878 homeless people). Each DISASTER event was characterized with the following attributes: hydro-geomorphologic event type (e.g landslides, floods, flash floods, urban floods); date of occurrence (year, month and days); duration in days; spatial location in GIS; number of fatalities, injured, evacuated and homeless people; and weather type responsible for triggering the event. The atmospheric forcing at different time scales is the main trigger for the hydro-meteorological DISASTER events occurred in Portugal. In this regard there is an urge for a more systematic assessment of the weather types associated to flood and landslide damaging events to correctly characterize the climatic forcing of hydro-geomorphologic risk in Portugal. The weather type classification used herein is an automated version of the Lamb weather type procedure, initially developed for the United Kingdom and often named circulation weather types (CWT) and latter adapted for Portugal. We computed the daily CWT for the 1865-2015 period by means of the daily SLP retrieved from the 20 Century Reanalysis dataset. The relationship between the CWTs and the hydro-meteorological events in Portugal shows that the cyclonic, westerly and southwesterly are CWTs frequently associated with major socio-economic impacts of DISASTER events. In addition, CWT basic variables (flow strength, vorticity and direction) were used to better understand the impacts of the meteorological conditions in the hydro-meteorological events in Portugal. Reference: Zêzere, J. L., Pereira, S., Tavares, A. O., Bateira, C., Trigo, R. M., Quaresma, I., Santos, P. P., Santos, M. and Verde, J.: DISASTER: a GIS database on hydro-geomorphologic disasters in Portugal, Nat. Hazards, 72(2), 503-532, doi:10.1007/s11069-013-1018-y, 2014. This work was supported by the project FORLAND - Hydrogeomorphologic risk in Portugal: driving forces and application for land use planning [grant number PTDC/ATPGEO/1660/2014] funded by the Portuguese Foundation for Science and Technology (FCT), Portugal. A. M. Ramos was also supported by a FCT postdoctoral grant (FCT/DFRH/ SFRH/BPD/84328/2012).

  14. Assessing the accuracy of the Second Military Survey for the Doren Landslide (Vorarlberg, Austria)

    NASA Astrophysics Data System (ADS)

    Zámolyi, András.; Székely, Balázs; Biszak, Sándor

    2010-05-01

    Reconstruction of the early and long-term evolution of landslide areas is especially important for determining the proportion of anthropogenic influence on the evolution of the region affected by mass movements. The recent geologic and geomorphological setting of the prominent Doren landslide in Vorarlberg (Western Austria) has been studied extensively by various research groups and civil engineering companies. Civil aerial imaging of the area dates back to the 1950's. Modern monitoring techniques include aerial imaging as well as airborne and terrestrial laser scanning (LiDAR) providing us with almost yearly assessment of the changing geomorphology of the area. However, initiation of the landslide occurred most probably earlier than the application of these methods, since there is evidence that the landslide was already active in the 1930's. For studying the initial phase of landslide formation one possibility is to get back on information recorded on historic photographs or historic maps. In this case study we integrated topographic information from the map sheets of the Second Military Survey of the Habsburg Empire that was conducted in Vorarlberg during the years 1816-1821 (Kretschmer et al., 2004) into a comprehensive GIS. The region of interest around the Doren landslide was georeferenced using the method of Timár et al. (2006) refined by Molnár (2009) thus providing a geodetically correct positioning and the possibility of matching the topographic features from the historic map with features recognized in the LiDAR DTM. The landslide of Doren is clearly visible in the historic map. Additionally, prominent geomorphologic features such as morphological scarps, rills and gullies, mass movement lobes and the course of the Weißach rivulet can be matched. Not only the shape and character of these elements can be recognized and matched, but also the positional accuracy is adequate for geomorphological studies. Since the settlement structure is very stable in the region, and in the historical map sheets the individual buildings were also mapped, it is possible to match several buildings with their present-day counterparts. We used matched geomorphologic features and buildings for deriving RMSE values, which range around 26 m. Orientation of major scarps and conspicuous geomorphologic features derived from the historic map and on the LiDAR DTM show a good correlation which confirms the long-term existence of these elements. Evidence from field geologic measurements provide the possible link of these elements to structural geologic features. Furthermore there is strong indication for that the landslide had been in a somewhat other state in the 19th century and the scarp retreat rate could have increased in the second half of the 20th century. Kretschmer, I., Dörflinger, J., Wawrick, F. (2004): Österreichische Kartographie. Wiener Schiften zur Geographie und Kartographie - Band 15. Institut für Geographie und Regionalforschung der Universität Wien, Wien. Molnár, G. (2009): Making a georeferenced mosaic of historical map series using constrained polynomial fit. Geophysical Research Abstracts, 11, ISSN 10297006. Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p. ISBN 963-7374-33-7

  15. Digital image enhancement techniques used in some ERTS application problems. [geology, geomorphology, and oceanography

    NASA Technical Reports Server (NTRS)

    Goetz, A. F. H.; Billingsley, F. C.

    1974-01-01

    Enhancements discussed include contrast stretching, multiratio color displays, Fourier plane operations to remove striping and boosting MTF response to enhance high spatial frequency content. The use of each technique in a specific application in the fields of geology, geomorphology and oceanography is demonstrated.

  16. Quantitative geomorphology with geographical information systems (GIS) for evolving societies and science

    NASA Astrophysics Data System (ADS)

    Gomez, C.; Oguchi, T.; Evans, I. S.

    2016-05-01

    Based on the two sessions on spatial analysis, GIS and geostatistics convened by T. Oguchi, I. Evans and C. Gomez at the 2013 International Association of Geomorphology in Paris, the conveners have edited two special issues on the topic: volume 242 and the present one.

  17. Incorporating Concept Sketching into Teaching Undergraduate Geomorphology

    ERIC Educational Resources Information Center

    Reusser, Lucas J.; Corbett, Lee B.; Bierman, Paul R.

    2012-01-01

    Constructing concept sketches (diagrams annotated with short captions in which students demonstrate their understanding of form, process, and interactions) provides a new and different way to teach Earth surface processes and assess the depth of student learning. During a semester-long course in Geomorphology, we used concept sketches as an…

  18. Learning Geomorphology Using Aerial Photography in a Web-Facilitated Class

    ERIC Educational Resources Information Center

    Palmer, R. Evan

    2013-01-01

    General education students taking freshman-level physical geography and geomorphology classes at Arizona State University completed an online laboratory whose main tool was Google Earth. Early in the semester, oblique and planimetric views introduced students to a few volcanic, tectonic, glacial, karst, and coastal landforms. Semi-quantitative…

  19. An Evaluation of the Effectiveness of Stereo Slides in Teaching Geomorphology.

    ERIC Educational Resources Information Center

    Giardino, John R.; Thornhill, Ashton G.

    1984-01-01

    Provides information about producing stereo slides and their use in the classroom. Describes an evaluation of the teaching effectiveness of stereo slides using two groups of 30 randomly selected students from introductory geomorphology. Results from a pretest/postttest measure show that stereo slides significantly improved understanding. (JM)

  20. Learning Desert Geomorphology Virtually versus in the Field

    ERIC Educational Resources Information Center

    Stumpf, Richard J., II; Douglass, John; Dorn, Ronald I.

    2008-01-01

    Statistical analyses of pre-test and post-test results, as well as qualitative insight obtained by essays, compared introductory physical geography college students who learned desert geomorphology only virtually, in the field and both ways. With the exception of establishing geographic context, the virtual field trip was statistically…

  1. A Synthesis of Equilibrium and Historical Models of Landform Development.

    ERIC Educational Resources Information Center

    Renwick, William H.

    1985-01-01

    The synthesis of two approaches that can be used in teaching geomorphology is described. The equilibrium approach explains landforms and landform change in terms of equilibrium between landforms and controlling processes. The historical approach draws on climatic geomorphology to describe the effects of Quaternary climatic and tectonic events on…

  2. KSC-05pd2641

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture raises the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  3. KSC-05pd2646

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing enclosing New Horizons awaits further processing upon its arrival atop a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  4. KSC-06pd0009

    NASA Image and Video Library

    2006-01-11

    KENNEDY SPACE CENTER, FLA. - In the Vertical Integration Facility on Launch Complex 41, Cape Canaveral Air Force Station, Hal Weaver, New Horizons project scientist with the Johns Hopkins University Applied Physics Laboratory, signs the fairing enclosing the New Horizons spacecraft. The fairing protects the spacecraft during launch and flight through the atmosphere. Once out of the atmosphere, the fairing is jettisoned. The compact 1,060-pound New Horizons probe carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  5. KSC-05pd2644

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - Technicians monitor the fairing enclosing New Horizons as it is lowered onto the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  6. KSC-05pd2647

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing enclosing New Horizons awaits further processing upon its arrival atop a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  7. KSC-05pd2645

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - Technicians monitor the fairing enclosing New Horizons as it is positioned atop a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  8. KSC-05pd2640

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture lifts the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  9. Systematic Underestimation of Earthquake Magnitudes from Large Intracontinental Reverse Faults: Historical Ruptures Break Across Segment Boundaries

    NASA Technical Reports Server (NTRS)

    Rubin, C. M.

    1996-01-01

    Because most large-magnitude earthquakes along reverse faults have such irregular and complicated rupture patterns, reverse-fault segments defined on the basis of geometry alone may not be very useful for estimating sizes of future seismic sources. Most modern large ruptures of historical earthquakes generated by intracontinental reverse faults have involved geometrically complex rupture patterns. Ruptures across surficial discontinuities and complexities such as stepovers and cross-faults are common. Specifically, segment boundaries defined on the basis of discontinuities in surficial fault traces, pronounced changes in the geomorphology along strike, or the intersection of active faults commonly have not proven to be major impediments to rupture. Assuming that the seismic rupture will initiate and terminate at adjacent major geometric irregularities will commonly lead to underestimation of magnitudes of future large earthquakes.

  10. 4D-SFM Photogrammetry for Monitoring Sediment Dynamics in a Debris-Flow Catchment: Software Testing and Results Comparison

    NASA Astrophysics Data System (ADS)

    Cucchiaro, S.; Maset, E.; Fusiello, A.; Cazorzi, F.

    2018-05-01

    In recent years, the combination of Structure-from-Motion (SfM) algorithms and UAV-based aerial images has revolutionised 3D topographic surveys for natural environment monitoring, offering low-cost, fast and high quality data acquisition and processing. A continuous monitoring of the morphological changes through multi-temporal (4D) SfM surveys allows, e.g., to analyse the torrent dynamic also in complex topography environment like debris-flow catchments, provided that appropriate tools and procedures are employed in the data processing steps. In this work we test two different software packages (3DF Zephyr Aerial and Agisoft Photoscan) on a dataset composed of both UAV and terrestrial images acquired on a debris-flow reach (Moscardo torrent - North-eastern Italian Alps). Unlike other papers in the literature, we evaluate the results not only on the raw point clouds generated by the Structure-from- Motion and Multi-View Stereo algorithms, but also on the Digital Terrain Models (DTMs) created after post-processing. Outcomes show differences between the DTMs that can be considered irrelevant for the geomorphological phenomena under analysis. This study confirms that SfM photogrammetry can be a valuable tool for monitoring sediment dynamics, but accurate point cloud post-processing is required to reliably localize geomorphological changes.

  11. On the theory of drainage area for regular and non-regular points.

    PubMed

    Bonetti, S; Bragg, A D; Porporato, A

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47 , W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219 , 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  12. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Komasi, Mehdi

    2013-05-01

    This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.

  13. On the theory of drainage area for regular and non-regular points

    NASA Astrophysics Data System (ADS)

    Bonetti, S.; Bragg, A. D.; Porporato, A.

    2018-03-01

    The drainage area is an important, non-local property of a landscape, which controls surface and subsurface hydrological fluxes. Its role in numerous ecohydrological and geomorphological applications has given rise to several numerical methods for its computation. However, its theoretical analysis has lagged behind. Only recently, an analytical definition for the specific catchment area was proposed (Gallant & Hutchinson. 2011 Water Resour. Res. 47, W05535. (doi:10.1029/2009WR008540)), with the derivation of a differential equation whose validity is limited to regular points of the watershed. Here, we show that such a differential equation can be derived from a continuity equation (Chen et al. 2014 Geomorphology 219, 68-86. (doi:10.1016/j.geomorph.2014.04.037)) and extend the theory to critical and singular points both by applying Gauss's theorem and by means of a dynamical systems approach to define basins of attraction of local surface minima. Simple analytical examples as well as applications to more complex topographic surfaces are examined. The theoretical description of topographic features and properties, such as the drainage area, channel lines and watershed divides, can be broadly adopted to develop and test the numerical algorithms currently used in digital terrain analysis for the computation of the drainage area, as well as for the theoretical analysis of landscape evolution and stability.

  14. Geo-hydrological risk management for civil protection purposes in the urban area of Genoa (Liguria, NW Italy)

    NASA Astrophysics Data System (ADS)

    Brandolini, P.; Cevasco, A.; Firpo, M.; Robbiano, A.; Sacchini, A.

    2012-04-01

    Over the past century the municipal area of Genoa has been affected by recurring flood events and several landslides that have caused severe damage to urbanized areas on both the coastal-fluvial plains and surrounding slopes, sometimes involving human casualties. The analysis of past events' annual distribution indicates that these phenomena have occurred with rising frequency in the last seventy years, following the main land use change due to the development of harbour, industrial, and residential areas, which has strongly impacted geomorphological processes. Consequently, in Genoa, civil protection activities are taking on an increasing importance for geo-hydrological risk mitigation. The current legislative framework assigns a key role in disaster prevention to municipalities, emergency plan development, as well as response action coordination in disaster situations. In view of the geomorphological and environmental complexity of the study area and referring to environmental laws, geo-hydrological risk mitigation strategies adopted by local administrators for civil protection purposes are presented as examples of current land/urban management related to geo-hydrological hazards. Adopted measures have proven to be effective on several levels (planning, management, structure, understanding, and publication) in different cases. Nevertheless, the last flooding event (4 November 2011) has shown that communication and public information concerning the perception of geo-hydrological hazard can be improved.

  15. Deep sea sedimentation processes and geomorphology: Northwest Atlantic continental margin

    NASA Astrophysics Data System (ADS)

    Mosher, David; Campbell, Calvin; Gardner, Jim; Chaytor, Jason; Piper, David; Rebesco, Michele

    2017-04-01

    Deep-sea sedimentation processes impart a fundamental control on the morphology of the western North Atlantic continental margin from Blake Spur to Hudson Strait. This fact is illustrated by the variable patterns of cross-margin gradients that are based on extensive new multibeam echo-sounder data informed by subbottom profiler and seismic reflection data. Erosion by off-shelf sediment transport in turbidity currents creates gullies, canyons and channels and a steep upper slope. Amalgamation of these conduits produces singular channels and turbidite fan complexes on the lower slope, flattening slope-profile gradients. The effect is an exponentially decaying "graded" slope profile. Comparatively, sediment mass failure produces steeper upper slopes due to head scarp development and a wedging architecture to the lower slope as deposits thin in the downslope direction. This process results in either a "stepped" slope, and/or a significant downslope gradient change where MTDs pinch out. Large drift deposits created by geostrophic currents are developed all along the margin. Blake Ridge, Sackville Spur, and Hamilton Spur are large detached drifts on disparate parts of the margin. They form a linear "above grade" profile along their crests from the shelf to abyssal plain. Deeper portions of the US continental margin are dominated by the Chesapeake Drift and Hatteras Outer Ridge; both plastered elongate mounded drifts. Farther north, particularly on the Grand Banks margin, are plastered and separated drifts. These drifts form "stepped" slope profiles, where they onlap the margin. Trough-mouth fan complexes become more common along the margin with increasing latitude. Sediment deposition and retention, particularly those dominated by glacigenic debris flows, characterize these segments producing an "above grade" slope profile. Understanding these geomorphological consequences of deep sea sedimentation processes is important to extended continental shelf mapping in which gradients and gradient change is a critical metric.

  16. Impact of volcanic processes on the cryospheric system of the Peteroa Volcano, Andes of southern Mendoza, Argentina

    NASA Astrophysics Data System (ADS)

    Liaudat, Dario Trombotto; Penas, Pablo; Aloy, Gustavo

    2014-03-01

    Soil temperatures of the active Volcanic Complex Peteroa situated in the Cordillera Principal between Chile and Argentina at 35°15‧ S and 70°35‧ W (approximately) were monitored in the area, and local geomorphology (periglacial geomorphology, presence of permafrost, and cryoforms) was studied. The present contribution also resulted in a comparison of two consecutive analyses of the volcano peak carried out with special thermocameras (AGEMA TVH 550, FUR P660) in order to study the thermal range of different hot and cold sites selected in 2009. The thermocameras were used ascending by foot and also during flights with a Cessna 180. A night expedition to the volcanic avalanche caldera, at up to 3900 m asl (approximately), completed the monitoring activity of 2010. Hot zones were associated to present volcanism and cold zones to the presence of glacier ice and shadowy slopes with possible presence of permafrost. Identifying and mapping uncovered and covered ice was possible with the help of monitoring and geomorphological interpretation related to the upper englacement, which is severely affected by volcanism. Glaciers are retreating toward the north or approaching the rims of the volcanic avalanche caldera leaving islands of ice associated with superficial permafrost. The cryogenic area with slope permafrost was identified through active protalus and sedimentary cryogenic slopes. Craters have undergone considerable thermal changes in comparison to the year 2009; and new, much more vigorous fumaroles have appeared in hot areas detected in 2009 following a tendency toward the west. New subaquatic heat columns that appeared in crater 3, crater walls, and glaciated areas vanished, supplying cold water and thus contributing to the formation of a new lake in crater 4. A possible post-seismic shift of the volcanic activity may provide geodynamical evidence of the changes registered in other areas after the earthquake of 27 February 2010.

  17. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences?

    PubMed

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems.

  18. Geomorphic changes in Ras Al-Subiyah area, Kuwait

    NASA Astrophysics Data System (ADS)

    Al Hurban, A.; El-Gamily, H.; El-Sammak, A.

    2008-06-01

    The Ras Al-Subiyah area is considered one of the most promising areas in Kuwait for future development. This development will include a new town called Subiyah and its associated infrastructure. This area is also being considered as the location for connection between Boubyan Island, which is now undergoing major development and the Kuwait mainland. The present study investigates the geomorphology of the Ras Al-Sabiyah area in the northern sector of Kuwait. The study area is generally flat, and it is located west of the Jal Az-Zor escarpment. It is bordered on the east by the Khor Al-Sabiyah tidal channel and on the south by Kuwait Bay. The area receives sediments from several sources; currently the most important are aeolian sediments and the deposition of mud delivered through the Khor Al-Sabiyah from the Iraqi marshes. The study area has been subjected to severe environmental changes due to the Gulf wars and the drainage of Iraqi marshes and the associated artificial changes in fluvial system. Twenty-two surface sediments were collected from the Ras Al-Subiyah area. Samples were collected to include the main geomorphologic characteristic features of the study area. Field observations and remote sensing images from 1990 and 2001 were used to produce an updated geomorphologic map for the Ras Al-Subiyah and a map showing geomorphic changes between 1990 and 2001. Grain size of the surface sediment ranges from gravel to medium sand. In general, grain size statistical analysis indicates that most of the areas are composed of two or more classes of sands transported and deposited from different sources including aeolian, sabkhas, river and the bays. The variability in the grain size statistical parameters may be attributed to the complexity of surface morphology as well as the diversity in the type of depositional environment in the Ras Al-Subiyah area. The total area subjected to change during the 12-year period (1990 2001) is about 32 km2 as calculated using GIS techniques.

  19. Slope instability in a historical and architectural interest site: the Agrigento hill (Sicily-Italy)

    NASA Astrophysics Data System (ADS)

    Liguori, Vincenzo; Manno, Giorgio

    2014-05-01

    The impact of landslides are an issue for many urban cities and their cultural heritage, especially where both natural factors and human actions are join. Indeed in these cases, both the geological-geomorphological area predisposition and the continuous human actions increase the possibility occurrence of a landslide. In order to study these landslides and their natural hazard, a multi-disciplinary approach is necessary. Agrigento (37°19'18''N; 13°35'22''E), founded around 580 b.C. along the Sicilian southern coast, is an example of a possible impacts of landslides on cultural heritage. This work discusses the geological, geomorphological and hydrological data results, performed in order to study and the monitoring the landslide on the north side of the Agrigento hill (335 m a.s.l.), on which is localized the antique cathedral (sixteenth century) and the old city. The hill geology is a typical regressive Plio-Pleistocene succession and their lithology are clays (Monte Narbone formation) , calcarenites , sands and silts of the Agrigento formation. The landslide phenomena, current since 1315, involves a calcarenitic pack (Pleistocene), weakly cemented, highly porous, fractured and fissured (E-W). This phenomena from 1924, at different times, have produced various types of instability such as: falls, flows and complex movements. From 7 March 2005 have been reactivated fractures of the calcarenitic pack, already highlighted by studies in 1966. These fractures have triggered slope movements damaging the cathedral and the various historic buildings. In order to reduce the risk and thus safeguard the monuments and the activity in this area, carried out the several studies. Since 2005, the landslide is the subject both geological-geomorphological studies and a continuous monitoring, which have used different techniques of different disciplines: interferometric analysis, interpretation of aerial and satellite imagery, geophysical investigations, stratigraphic survey, etc. The results of this studies carried out the landslide kinematics and the lithology involved, in this way it was possible to suggest targeted intervention. Keywords: rotational landslide, rockfall, hazard, architectural heritage.

  20. Re-Meandering of Lowland Streams: Will Disobeying the Laws of Geomorphology Have Ecological Consequences?

    PubMed Central

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems. PMID:25264627

  1. A simple model that identifies potential effects of sea-level rise on estuarine and estuary-ecotone habitat locations for salmonids in Oregon, USA.

    PubMed

    Flitcroft, Rebecca; Burnett, Kelly; Christiansen, Kelly

    2013-07-01

    Diadromous aquatic species that cross a diverse range of habitats (including marine, estuarine, and freshwater) face different effects of climate change in each environment. One such group of species is the anadromous Pacific salmon (Oncorhynchus spp.). Studies of the potential effects of climate change on salmonids have focused on both marine and freshwater environments. Access to a variety of estuarine habitat has been shown to enhance juvenile life-history diversity, thereby contributing to the resilience of many salmonid species. Our study is focused on the effect of sea-level rise on the availability, complexity, and distribution of estuarine, and low-freshwater habitat for Chinook salmon (Oncorhynchus tshawytscha), steelhead (anadromous O. mykiss), and coho salmon (O. kisutch) along the Oregon Coast under future climate change scenarios. Using LiDAR, we modeled the geomorphologies of five Oregon estuaries and estimated a contour associated with the current mean high tide. Contour intervals at 1- and 2-m increments above the current mean high tide were generated, and changes in the estuary morphology were assessed. Because our analysis relied on digital data, we compared three types of digital data in one estuary to assess the utility of different data sets in predicting the changes in estuary shape. For each salmonid species, changes in the amount and complexity of estuarine edge habitats varied by estuary. The simple modeling approach we applied can also be used to identify areas that may be most amenable to pre-emptive restoration actions to mitigate or enhance salmonid habitat under future climatic conditions.

  2. Vegetation mapping from high-resolution satellite images in the heterogeneous arid environments of Socotra Island (Yemen)

    NASA Astrophysics Data System (ADS)

    Malatesta, Luca; Attorre, Fabio; Altobelli, Alfredo; Adeeb, Ahmed; De Sanctis, Michele; Taleb, Nadim M.; Scholte, Paul T.; Vitale, Marcello

    2013-01-01

    Socotra Island (Yemen), a global biodiversity hotspot, is characterized by high geomorphological and biological diversity. In this study, we present a high-resolution vegetation map of the island based on combining vegetation analysis and classification with remote sensing. Two different image classification approaches were tested to assess the most accurate one in mapping the vegetation mosaic of Socotra. Spectral signatures of the vegetation classes were obtained through a Gaussian mixture distribution model, and a sequential maximum a posteriori (SMAP) classification was applied to account for the heterogeneity and the complex spatial pattern of the arid vegetation. This approach was compared to the traditional maximum likelihood (ML) classification. Satellite data were represented by a RapidEye image with 5 m pixel resolution and five spectral bands. Classified vegetation relevés were used to obtain the training and evaluation sets for the main plant communities. Postclassification sorting was performed to adjust the classification through various rule-based operations. Twenty-eight classes were mapped, and SMAP, with an accuracy of 87%, proved to be more effective than ML (accuracy: 66%). The resulting map will represent an important instrument for the elaboration of conservation strategies and the sustainable use of natural resources in the island.

  3. An advanced stochastic weather generator for simulating 2-D high-resolution climate variables

    NASA Astrophysics Data System (ADS)

    Peleg, Nadav; Fatichi, Simone; Paschalis, Athanasios; Molnar, Peter; Burlando, Paolo

    2017-07-01

    A new stochastic weather generator, Advanced WEather GENerator for a two-dimensional grid (AWE-GEN-2d) is presented. The model combines physical and stochastic approaches to simulate key meteorological variables at high spatial and temporal resolution: 2 km × 2 km and 5 min for precipitation and cloud cover and 100 m × 100 m and 1 h for near-surface air temperature, solar radiation, vapor pressure, atmospheric pressure, and near-surface wind. The model requires spatially distributed data for the calibration process, which can nowadays be obtained by remote sensing devices (weather radar and satellites), reanalysis data sets and ground stations. AWE-GEN-2d is parsimonious in terms of computational demand and therefore is particularly suitable for studies where exploring internal climatic variability at multiple spatial and temporal scales is fundamental. Applications of the model include models of environmental systems, such as hydrological and geomorphological models, where high-resolution spatial and temporal meteorological forcing is crucial. The weather generator was calibrated and validated for the Engelberg region, an area with complex topography in the Swiss Alps. Model test shows that the climate variables are generated by AWE-GEN-2d with a level of accuracy that is sufficient for many practical applications.

  4. Mapping Surface Features Produced by an Active Landslide

    NASA Astrophysics Data System (ADS)

    Parise, Mario; Gueguen, Erwan; Vennari, Carmela

    2016-10-01

    A large landslide reactivated on December 2013, at Montescaglioso, southern Italy, after 56 hours of rainfall. The landslide disrupted over 500 m of a freeway, involved a few warehouses, a supermarket, and private homes. After the event, it has been performed field surveys, aided by visual analysis of terrestrial and helicopter photographs, to compile a map of the surface deformations. The geomorphological features mapped included single fractures, sets of fractures, tension cracks, trenches, and pressure ridges. In this paper we present the methodology used, the map obtained through the intensive field work, and discuss the main surface features produced by the landslide.

  5. Dynamics of Bottomland Geomorphology and Vegetation Along a Dammed, Arid Region River: Implications for Streamflow Management

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; House, P. K.

    2007-05-01

    In arid and semiarid western North America, floodplain forests dominated by native cottonwood and willow trees are highly valued as wildlife habitat and preferred recreation sites and are thus the focus of conservation efforts. The Bill Williams River harbors some of the most extensive native floodplain forests in the lower Colorado River region. Our work is aimed at understanding the dynamics of the Bill Williams River floodplain forests, in the context of pre- and post-dam hydrology and geomorphology. We have mapped bottomland geomorphology and vegetation using seven sets of orthorectified aerial photographs spanning more than 50 years. Two sets of photos (1953 and 1964) pre-date the completion of Alamo Dam, a large flood control structure; and three sets of photos (1996, 2002, and 2005) are from an era during which streamflow downstream of the dam has been managed to promote the establishment and survival of native floodplain forest. Comparison of the aerial photographs to LiDAR data collected in 2005 is providing a framework for quantifying changes in valley bottom morphology and estimating reach-scale changes in volumes of stored and evacuated sediment between 1953 and 2005. Furthermore, comparison of the extent of pre-dam active channel in 1953 with the extent of floodwaters from a regulated moderate flood in 2005 provides an approximation of the predominant patterns of aggradation and degradation in the system over this interval of time. Flood magnitude on the Bill Williams has been dramatically reduced since the closure of Alamo Dam in 1968, and low flows have increased considerably since 1979. Channels along the Bill Williams R. narrowed an average of 111 m (71 %) between 1953 and 1987, with most narrowing occurring after dam closure. Multiple regression analysis revealed significant relationships among flood power, summer flows, intermittency (independent variables) and channel width (dependent variable). Concurrent with channel narrowing was an expansion of dense floodplain vegetation, consisting primarily of native cottonwood and willow and non-native tamarisk shrubs. Moderate flood releases (~7000 ft3/s) from Alamo Dam in the early 1990's widened the river channel and resulted in the establishment of new woody vegetation. For the following nine years, relatively steady, low discharges were released from the dam, resulting in channel narrowing, extensive beaver pond creation, and dense vegetation growth. Moderate flood releases in 2005 again widened channels, destroyed beaver ponds, and created conditions suitable for new vegetation establishment. In addition to understanding the specific conditions along the Bill Williams River, our work should contribute to a more general understanding of connections between fluvial processes and floodplain vegetation, in the contexts of geomorphic response downstream of a large dam and efforts to manage streamflow for ecological benefits downstream.

  6. A Coastal Environment Field and Laboratory Activity for an Undergraduate Geomorphology Course

    ERIC Educational Resources Information Center

    Ellis, Jean T.; Rindfleisch, Paul R.

    2006-01-01

    A field and laboratory exercise for an undergraduate geomorphology class is described that focuses on the beach. The project requires one day of fieldwork and two laboratory sessions. In the field, students measure water surface fluctuations (waves) with a pressure sensor, survey beach profiles, collect sediment samples, and observe the beach…

  7. Introducing Field-Based Geologic Research Using Soil Geomorphology

    ERIC Educational Resources Information Center

    Eppes, Martha Cary

    2009-01-01

    A field-based study of soils and the factors that influence their development is a strong, broad introduction to geologic concepts and research. A course blueprint is detailed where students design and complete a semester-long field-based soil geomorphology project. Students are first taught basic soil concepts and to describe soil, sediment and…

  8. Perspectives on Geomorphic Processes. Resource Paper No. 3.

    ERIC Educational Resources Information Center

    Dury, George H.

    Intended as a supplement to undergraduate college geography courses, this resource paper describes the science of geomorphology, the study of landforms. The general aim of this paper is to review the developments which have made geomorphology what it is today, to indicate its present character and status, to demonstrate its increasingly close…

  9. Capability of applying morphometric parameters of relief in river basins for geomorphological zoning of a territory

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Yermolaev, O. P.

    2018-01-01

    Information about morphometric characteristics of relief is necessary for researches devoted to geographic characteristics of territory, its zoning, assessment of erosion processes, geoecological condition and others. For the Volga Federal District for the first time a spatial database of geomorphometric parameters 1: 200 000 scale was created, based on a river basin approach. Watersheds are used as a spatial units created by semi-automated method using the terrain and hydrological modeling techniques implemented in the TAS GIS and WhiteBox GIS. As input data DEMs SRTM and Aster GDEM and hydrographic network vectorized from topographic maps were used. Using DEM highlighted above for each river basin, basic morphometric relief characteristics such as mean height, slope steepness, slope length, height range, river network density and factor LS were calculated. Basins belonging to the geomorphological regions and landscape zones was determined, according to the map of geomorphological zoning and landscape map. Analysis of variance revealed a statistically significant relationship between these characteristics and geomorphological regions and landscape zones. Consequently, spatial trends of changes of analyzed morphometric characteristics were revealed.

  10. GIS- and field based mapping of geomorphological changes in a glacier retreat area: A case study from the Kromer valley, Silvretta Alps (Austria)

    NASA Astrophysics Data System (ADS)

    Guttmann, Markus; Pöppl, Ronald

    2017-04-01

    Global warming results in an ongoing retreat of Alpine glaciers, leaving behind large amounts of easily erodible sediments. As a consequence processes like rockfalls, landslides and debris flows as well as fluvial processes occur more frequently in pro- and paraglacial areas, often involving catastrophic consequences for humans and infrastructure in the affected valleys. The main objective of the presented work was to map and spatially quantify glacier retreat and geomorphological changes in the Kromer valley, Silvretta Alps (Austria) by applying GIS- and field-based geomorphological mapping. In total six geomorphological maps (1950s, 1970s, 2001, 2006, 2012, and 2016) were produced and analyzed in the light of the study aim. First results have shown a significant decrease of total glaciated area from 96 ha to 53 ha which was accompanied by increased proglacial geomorphic activity (i.e. fluvial processes, rockfalls, debris flows, shallow landslides) in the last 15 years. More detailed results will be presented at the EGU General Assembly 2017.

  11. Hydrology and Geomorphology of Tallgrass Prairie Intermittent Headwater Streams

    NASA Astrophysics Data System (ADS)

    Daniels, M. D.; Grudzinski, B.

    2011-12-01

    The arid to semi-arid Great Plains region of the United States covers more than 1 million km2, yet virtually nothing is known about the geomorphology of its intermittent headwater streams. These streams and the perennial rivers they feed support a unique and increasingly endangered assemblage of endemic fish species. While human impacts in the region are not at first glace significant, the reality is that the Great Plains are an intensively managed landscape, with pervasive cattle grazing, channelization, and groundwater over-pumping affecting these systems. These stresses will only increase with potential climate and related land use changes. Few natural remnants of native grassland remain today, limiting opportunities to study the natural dynamics of these systems in contrast to the anthropogenically modified systems. This paper presents a review of the existing geomorphological and hydrological knowledge of Great Plains headwater streams and presents the initial analysis of an 18 year intermittent headwater stream record from the tallgrass Konza Prairie LTER, Kansas. Results suggest that fire frequency and grazing and the resultant riparian vegetation composition strongly influence stream flow dynamics as well as stream geomorphology.

  12. Physical modeling in geomorphology: are boundary conditions necessary?

    NASA Astrophysics Data System (ADS)

    Cantelli, A.

    2012-12-01

    Referring to the physical experimental design in geomorphology, boundary conditions are key elements that determine the quality of the results and therefore the study development. For years engineers have modeled structures, such as dams and bridges, with high precision and excellent results. Until the last decade, a great part of the physical experimental work in geomorphology has been developed with an engineer-like approach, requiring an accurate scaling analysis to determine inflow parameters and initial geometrical conditions. However, during the last decade, the way we have been approaching physical experiments has significantly changed. In particular, boundary conditions and initial conditions are considered unknown factors that need to be discovered during the experiment. This new philosophy leads to a more demanding data acquisition process but relaxes the obligation to a priori know the appropriate input and initial conditions and provides the flexibility to discover those data. Here I am going to present some practical examples of this experimental approach in deepwater geomorphology; some questions about scaling of turbidity currents and a new large experimental facility built at the Universidade Federal do Rio Grande do Sul, Brasil.

  13. Geomorphological analysis and classification of foredune ridges based on Terrestrial Laser Scanning (TLS) technology

    NASA Astrophysics Data System (ADS)

    Fabbri, Stefano; Giambastiani, Beatrice M. S.; Sistilli, Flavia; Scarelli, Frederico; Gabbianelli, Giovanni

    2017-10-01

    Along the North Adriatic Sea coast (Italy), vulnerability to climate change is further aggravated by anthropogenic influences, such as strong subsidence rate due to deep groundwater and gas abstraction, tourism and industry impacts. In this context, conservation and restoration of coastal sand dunes become extremely important especially because of their importance in terms of 'natural' coastal defense. This paper proposes an innovative geomorphological approach based on Terrestrial Laser Scanning - TLS, which allows us to measure and monitor morphometric dune evolution with high precision and details. Several TLS surveys were performed along the Ravenna coast (Adriatic Sea, Italy) and the resulting Digital Elevation Models (DEMs) were analyzed in order to classify the foredune ridges in three geomorphological sub-zones. The topographic, areal and volumetric variations over time of geomorphological units were calculated by GIS tools in order to identify seasonal trends or particular pattern. Meteo-marine climate conditions were also analyzed and Principal Component Analysis (PCA) was performed to correlate changes in morphology with meteo-marine forcing factors, highlighting the ones that most influence dune evolution and dynamics.

  14. Habitats as Surrogates of Taxonomic and Functional Fish Assemblages in Coral Reef Ecosystems: A Critical Analysis of Factors Driving Effectiveness

    PubMed Central

    Van Wynsberge, Simon; Andréfouët, Serge; Hamel, Mélanie A.; Kulbicki, Michel

    2012-01-01

    Species check-lists are helpful to establish Marine Protected Areas (MPAs) and protect local richness, endemicity, rarity, and biodiversity in general. However, such exhaustive taxonomic lists (i.e., true surrogate of biodiversity) require extensive and expensive censuses, and the use of estimator surrogates (e.g., habitats) is an appealing alternative. In truth, surrogate effectiveness appears from the literature highly variable both in marine and terrestrial ecosystems, making it difficult to provide practical recommendations for managers. Here, we evaluate how the biodiversity reference data set and its inherent bias can influence effectiveness. Specifically, we defined habitats by geomorphology, rugosity, and benthic cover and architecture criteria, and mapped them with satellite images for a New-Caledonian site. Fish taxonomic and functional lists were elaborated from Underwater Visual Censuses, stratified according to geomorphology and exposure. We then tested if MPA networks designed to maximize habitat richness, diversity and rarity could also effectively maximize fish richness, diversity, and rarity. Effectiveness appeared highly sensitive to the fish census design itself, in relation to the type of habitat map used and the scale of analysis. Spatial distribution of habitats (estimator surrogate’s distribution), quantity and location of fish census stations (target surrogate’s sampling), and random processes in the MPA design all affected effectiveness to the point that one small change in the data set could lead to opposite conclusions. We suggest that previous conclusions on surrogacy effectiveness, either positive or negative, marine or terrestrial, should be considered with caution, except in instances where very dense data sets were used without pseudo-replication. Although this does not rule out the validity of using surrogates of species lists for conservation planning, the critical joint examination of both target and estimator surrogates is needed for every case study. PMID:22815891

  15. Physiographic map of the Sicilian region (1:250,000 scale)

    NASA Astrophysics Data System (ADS)

    Priori, Simone; Fantappiè, Maria; Costantini, Edoardo A. C.

    2015-04-01

    Physiographic maps summarize and group the landforms of a territory into homogeneous areas in terms of kind and intensity of main geomorphological process. Most of the physiographic maps have large scale, which is national or continental scale. Other maps have been produced at the semi-detailed scales, while examples at the regional scale are much less common. However, being the Region the main administrative level in Europe, they can be very useful for land planning in many fields, such as ecological studies, risk maps, and soil mapping. This work presents a methodological example of regional physiographic map, compiled at 1:250,000 scale, representing the whole Sicilian region, the largest and most characteristic of Mediterranean island. The physiographic units were classed matching thematich layers (NDVI, geology, DEM, land cover) with the main geomorphological processes that were identified by stereo-interpretation of aerial photographs (1:70,000 scale). In addition, information from other published maps, representing geomorphological forms, aeolian deposits, anthropic terraced slopes, and landslide were used to improve the accuracy and reliability of the map. The classification of the physiographic units, and then the map legend, was built up on the basis of literature and taking into account Italian geomorphological legend. The legend proposed in this map, which can be applied also in other Mediterranean countries, is suitable for different scales. The landform units were grouped on the base of a geomorphological classification of the forms into: anthropogenic, eolian, coastal, valley floor, intermountain fluvial, slope erosional, structural, karstic, and volcanic.

  16. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks

    PubMed Central

    Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads. PMID:29360857

  17. Using object-based geomorphometry for hydro-geomorphological analysis in a Mediterranean research catchment

    NASA Astrophysics Data System (ADS)

    Guida, Domenico; Cuomo, Albina; Palmieri, Vincenzo

    2016-08-01

    The aim of the paper is to apply an object-based geomorphometric procedure to define the runoff contribution areas and support a hydro-geomorphological analysis of a 3 km2 Mediterranean research catchment (southern Italy). Daily and sub-hourly discharge and electrical conductivity data were collected and recorded during a 3-year monitoring activity. Hydro-chemograph analyses carried out on these data revealed a strong seasonal hydrological response in the catchment that differed from the stormflow events that occur in the wet periods and in dry periods. This analysis enabled us to define the hydro-chemograph signatures related to increasing flood magnitude, which progressively involves various runoff components (baseflow, subsurface flow and surficial flow) and an increasing contributing area to discharge. Field surveys and water table/discharge measurements carried out during a selected storm event enabled us to identify and map specific runoff source areas with homogeneous geomorphological units previously defined as hydro-geomorphotypes (spring points, diffuse seepage along the main channel, seepage along the riparian corridors, diffuse outflow from hillslope taluses and concentrate sapping from colluvial hollows). Following the procedures previously proposed and used by authors for object-based geomorphological mapping, a hydro-geomorphologically oriented segmentation and classification was performed with the eCognition (Trimble, Inc.) package. The best agreement with the expert-based geomorphological mapping was obtained with weighted plan curvature at different-sized windows. By combining the hydro-chemical analysis and object-based hydro-geomorphotype map, the variability of the contribution areas was graphically modeled for the selected event, which occurred during the wet season, by using the log values of flow accumulation that better fit the contribution areas. The results allow us to identify the runoff component on hydro-chemographs for each time step and calculate a specific discharge contribution from each hydro-geomorphotype. This kind of approach could be useful when applied to similar, rainfall-dominated, forested and no-karst catchments in the Mediterranean eco-region.

  18. Beach Geomorphology and Kemp's Ridley (Lepidochelys kempii) Nest Site Selection along Padre Island, Texas, USA

    NASA Astrophysics Data System (ADS)

    Culver, M.; Gibeaut, J. C.; Shaver, D. J.; Tissot, P.; Starek, M. J.

    2017-12-01

    The Kemp's ridley sea turtle (Lepidochelys kempii) is the most endangered sea turtle in the world, largely due to the limited geographic range of its nesting habitat. In the U.S., the majority of nesting occurs along Padre Island National Seashore (PAIS) in Texas. There has been limited research regarding the connection between beach geomorphology and Kemp's ridley nesting patterns, but studies concerning other sea turtle species suggest that certain beach geomorphology variables, such as beach slope and width, influence nest site selection. This research investigates terrestrial habitat variability of the Kemp's ridley sea turtle and quantifies the connection between beach geomorphology and Kemp's ridley nest site selection on PAIS and South Padre Island, Texas. Airborne topographic lidar data collected annually along the Texas coast from 2009 through 2012 was utilized to extract beach geomorphology characteristics, such as beach slope and width, dune height, and surface roughness, among others. The coordinates of observed Kemp's ridley nests from corresponding years were integrated with the aforementioned data in statistical models, which analyzed the influence of both general trends in geomorphology and individual morphologic variables on nest site selection. This research identified the terrestrial habitat variability of the Kemp's ridley and quantified the range of geomorphic characteristics of nesting beaches. Initial results indicate that dune width, beach width, and wind speed are significant variables in relation to nest presence, using an alpha of 0.1. Higher wind speeds and narrower beaches and foredunes favor nest presence. The average nest elevation is 1.13 m above mean sea level, which corresponds to the area directly below the potential vegetation line, and the majority of nesting occurs between the elevations of 0.68 m and 1.4 m above mean sea level. The results of this study include new information regarding Kemp's ridley beach habitat and its influence on nesting patterns that could be useful for the conservation and management of the species.

  19. Development of a new British Geologcial Survey(BGS) Map Series: Seabed Geomorphology

    NASA Astrophysics Data System (ADS)

    Dove, Dayton

    2015-04-01

    BGS scientists are developing a new offshore map series, Seabed Geomorphology (1:50k), to join the existing 1:250k 'Sea Bed Sediments', 'Quaternary Geology', and 'Solid Geology' map series. The increasing availability of extensive high-resolution swath bathymetry data (e.g. MCA's Civil Hydrography Programme) provides an unprecedented opportunity to characterize the processes which formed, and actively govern the physical seabed environment. Mapping seabed geomorphology is an effective means to describe individual, or groups of features whose form and other physical attributes (e.g. symmetry) may be used to distinguish feature origin. Swath bathymetry also provides added and renewed value to other data types (e.g. grab samples, legacy seismic data). In such cases the geomorphic evidence may be expanded to make inferences on the evolution of seabed features as well as their association with the underlying geology and other environmental variables/events over multiple timescales. Classifying seabed geomorphology is not particularly innovative or groundbreaking. Terrestrial geomorphology is of course a well established field of science, and within the marine environment for example, mapping submarine glacial landforms has probably become the most reliable method to reconstruct the extent and dynamics of past ice-sheets. What is novel here, and we believe useful/necessary for a survey organization, is to standardise the geomorphological classification scheme such that it is applicable to multiple and diverse environments. The classification scheme should be sufficiently detailed and interpretive to be informative, but not so detailed that we over-interpret or become mired in disputed feature designations or definitions. We plan to present the maps at 1:50k scale with the intention that these maps will be 'enabling' resources for research, educational, commercial, and policy purposes, much like the existing 1:250k map series. We welcome feedback on the structure and content of the proposed classification scheme, as well as the anticipated value to respective user communities.

  20. Using geomorphological variables to predict the spatial distribution of plant species in agricultural drainage networks.

    PubMed

    Rudi, Gabrielle; Bailly, Jean-Stéphane; Vinatier, Fabrice

    2018-01-01

    To optimize ecosystem services provided by agricultural drainage networks (ditches) in headwater catchments, we need to manage the spatial distribution of plant species living in these networks. Geomorphological variables have been shown to be important predictors of plant distribution in other ecosystems because they control the water regime, the sediment deposition rates and the sun exposure in the ditches. Whether such variables may be used to predict plant distribution in agricultural drainage networks is unknown. We collected presence and absence data for 10 herbaceous plant species in a subset of a network of drainage ditches (35 km long) within a Mediterranean agricultural catchment. We simulated their spatial distribution with GLM and Maxent model using geomorphological variables and distance to natural lands and roads. Models were validated using k-fold cross-validation. We then compared the mean Area Under the Curve (AUC) values obtained for each model and other metrics issued from the confusion matrices between observed and predicted variables. Based on the results of all metrics, the models were efficient at predicting the distribution of seven species out of ten, confirming the relevance of geomorphological variables and distance to natural lands and roads to explain the occurrence of plant species in this Mediterranean catchment. In particular, the importance of the landscape geomorphological variables, ie the importance of the geomorphological features encompassing a broad environment around the ditch, has been highlighted. This suggests that agro-ecological measures for managing ecosystem services provided by ditch plants should focus on the control of the hydrological and sedimentological connectivity at the catchment scale. For example, the density of the ditch network could be modified or the spatial distribution of vegetative filter strips used for sediment trapping could be optimized. In addition, the vegetative filter strips could constitute new seed bank sources for species that are affected by the distance to natural lands and roads.

  1. Fort Collins Science Center: Ecosystem Dynamics

    USGS Publications Warehouse

    Bowen, Zack

    2004-01-01

    Current studies fall into five general areas. Herbivore-Ecosystem Interactions examines the efficacy of multiple controls on selected herbivore populations and cascading effects through predator-herbivore-plant-soil linkages. Riparian Ecology is concerned with interactions among streamflow, fluvial geomorphology, and riparian vegetation. Integrated Fire Science focuses on the effects of fire on plant and animal communities at multiple scales, and on the interactions between post-fire plant, runoff, and erosion processes. Reference Ecosystems comprises long-term, place-based studies of ecosystem biogeochemistry. Finally, Integrated Assessments is investigating how to synthesize multiple ecosystem stressors and responses over complex landscapes in ways that are useful for management and planning.

  2. Bottom-up control of macrobenthic communities in a guanotrophic coastal system.

    PubMed

    Signa, Geraldina; Mazzola, Antonio; Costa, Valentina; Vizzini, Salvatrice

    2015-01-01

    Soft bottom macrobenthic communities were studied seasonally in three coastal ponds (Marinello ponds, Italy) at increasing distances from a gull (Larus michahellis) colony to investigate the effect of seabird-induced eutrophication (i.e. guanotrophication) on macrobenthic fauna. We hypothesized that enhanced nutrient concentration and organic load caused by guano input significantly alter the trophic and sedimentological condition of ponds, affecting benthic fauna through a bottom-up control. The influence of a set of environmental features on macrobenthic assemblages was also tested. Overall, the lowest macrobenthic abundances and functional group diversity were found in deeper sites, especially in the pond characterised by severe guanotrophication, where the higher disturbance resulted in a decline in suspension feeders and carnivores in favour of deposit feeders. An increase in opportunistic/tolerant taxa (e.g. chironomid larvae and paraonids) and totally azoic sediments were also found as an effect of the harshest environmental conditions, resulting in a very poor ecological status. We conclude that macrobenthic assemblages of the Marinello coastal system display high spatial variability due to a synergistic effect of trophic status and the geomorphological features of the ponds. The macrobenthic response to guanotrophication, which was a clear decrease in abundance, diversity and trophic functional groups, was associated with the typical response to severe eutrophication, magnified by the geomorphological features.

  3. Bottom-Up Control of Macrobenthic Communities in a Guanotrophic Coastal System

    PubMed Central

    Signa, Geraldina; Mazzola, Antonio; Costa, Valentina; Vizzini, Salvatrice

    2015-01-01

    Soft bottom macrobenthic communities were studied seasonally in three coastal ponds (Marinello ponds, Italy) at increasing distances from a gull (Larus michahellis) colony to investigate the effect of seabird-induced eutrophication (i.e. guanotrophication) on macrobenthic fauna. We hypothesized that enhanced nutrient concentration and organic load caused by guano input significantly alter the trophic and sedimentological condition of ponds, affecting benthic fauna through a bottom-up control. The influence of a set of environmental features on macrobenthic assemblages was also tested. Overall, the lowest macrobenthic abundances and functional group diversity were found in deeper sites, especially in the pond characterised by severe guanotrophication, where the higher disturbance resulted in a decline in suspension feeders and carnivores in favour of deposit feeders. An increase in opportunistic/tolerant taxa (e.g. chironomid larvae and paraonids) and totally azoic sediments were also found as an effect of the harshest environmental conditions, resulting in a very poor ecological status. We conclude that macrobenthic assemblages of the Marinello coastal system display high spatial variability due to a synergistic effect of trophic status and the geomorphological features of the ponds. The macrobenthic response to guanotrophication, which was a clear decrease in abundance, diversity and trophic functional groups, was associated with the typical response to severe eutrophication, magnified by the geomorphological features. PMID:25679400

  4. Hydrologic controls on equilibrium soil depths

    NASA Astrophysics Data System (ADS)

    Nicótina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2011-04-01

    This paper deals with modeling the mutual feedbacks between runoff production and geomorphological processes and attributes that lead to patterns of equilibrium soil depth. Our primary goal is an attempt to describe spatial patterns of soil depth resulting from long-term interactions between hydrologic forcings and soil production, erosion, and sediment transport processes under the framework of landscape dynamic equilibrium. Another goal is to set the premises for exploiting the role of soil depths in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography. Geomorphological processes are described by means of well-studied geomorphic transport laws. The modeling approach is applied to the semiarid Dry Creek Experimental Watershed, located near Boise, Idaho. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origins are discussed.

  5. Effects of alluvial knickpoint migration on floodplain ecology and geomorphology

    NASA Astrophysics Data System (ADS)

    Larsen, Annegret; May, Jan-Hendrick

    2016-04-01

    Alluvial knickpoints are well described as erosional mechanism within discontinuous ephemeral streams in the semi-arid SW USA. However, alluvial knickpoints occur globally in a wide range of settings and of climate zones, including temperate SE Australia, subtropical Africa, and tropical Australia. Much attention has been given in the scientific literature to the trigger mechanisms of alluvial knickpoints, which can be summarized as: i) threshold phenomena, ii) climate variability and iii) land-use change, or to a combination of these factors. Recently, studies have focused on the timescale of alluvial knickpoint retreat, and the processes, mechanisms and feedbacks with ecology, geomorphology and hydrology. In this study, we compile data from a global literature review with a case study on a tropical river system in Australia affected by re-occurring, fast migrating (140 myr-1) alluvial knickpoint. We highlight the importance of potential water table declines due to channel incision following knickpoint migration, which in turn leads to the destabilization of river banks, and a shift in floodplain vegetation and fire incursion. We hypothesize that the observed feedbacks might also help to understand the broader impacts of alluvial knickpoint migration in other regions, and might explain the drastic effects of knickpoint migration on land cover and land-use in semi-arid areas.

  6. The role of multicollinearity in landslide susceptibility assessment by means of Binary Logistic Regression: comparison between VIF and AIC stepwise selection

    NASA Astrophysics Data System (ADS)

    Cama, Mariaelena; Cristi Nicu, Ionut; Conoscenti, Christian; Quénéhervé, Geraldine; Maerker, Michael

    2016-04-01

    Landslide susceptibility can be defined as the likelihood of a landslide occurring in a given area on the basis of local terrain conditions. In the last decades many research focused on its evaluation by means of stochastic approaches under the assumption that 'the past is the key to the future' which means that if a model is able to reproduce a known landslide spatial distribution, it will be able to predict the future locations of new (i.e. unknown) slope failures. Among the various stochastic approaches, Binary Logistic Regression (BLR) is one of the most used because it calculates the susceptibility in probabilistic terms and its results are easily interpretable from a geomorphological point of view. However, very often not much importance is given to multicollinearity assessment whose effect is that the coefficient estimates are unstable, with opposite sign and therefore difficult to interpret. Therefore, it should be evaluated every time in order to make a model whose results are geomorphologically correct. In this study the effects of multicollinearity in the predictive performance and robustness of landslide susceptibility models are analyzed. In particular, the multicollinearity is estimated by means of Variation Inflation Index (VIF) which is also used as selection criterion for the independent variables (VIF Stepwise Selection) and compared to the more commonly used AIC Stepwise Selection. The robustness of the results is evaluated through 100 replicates of the dataset. The study area selected to perform this analysis is the Moldavian Plateau where landslides are among the most frequent geomorphological processes. This area has an increasing trend of urbanization and a very high potential regarding the cultural heritage, being the place of discovery of the largest settlement belonging to the Cucuteni Culture from Eastern Europe (that led to the development of the great complex Cucuteni-Tripyllia). Therefore, identifying the areas susceptible to landslides may lead to a better understanding and mitigation for government, local authorities and stakeholders to plan the economic activities, minimize the damages costs, environmental and cultural heritage protection. The results show that although the VIF Stepwise selection allows a more stable selection of the controlling factors, the AIC Stepwise selection produces better predictive performance. Moreover, when working with replicates the effect of multicollinearity are statistically reduced by the application of the AIC stepwise selection and the results are easily interpretable in geomorphologic terms.

  7. Climbing walls as multitasking sites of geo(morpho)logical interests: Italian examples from the Western Alps and Sardinia

    NASA Astrophysics Data System (ADS)

    Bollati, Irene; Fossati, Maria; Panizza, Valeria; Pelfini, Manuela; Zanoletti, Enrico; Zucali, Michele

    2015-04-01

    Geosites and in particular geomorphosites have been recently more and more used as base for educational activities in Earth Sciences and to enhance the geodiversity of a territory. Their attributes acquire a greater value and become especially appreciable when associated with field and outdoor activities. Frequently rock walls represent key sites for geological and gemorphological researches due to the wide outcrops of rocks where mineralogical composition and structures are very evident as well as landforms deriving from the modeling of outcrops surfaces. Where the rock walls are equipped for climbing activities they may be considered open-air laboratories useful to get in touch with the different features of rocks that condition progression on climbing routes. Due to these two aspects, geohistorical importance and educational exemplarity contribute to the increase of the scientific value and, as a consequence, of the global value of these sites as geosites. Geomorphosites from climbing sites allow to realize educational projects with different goals: 1) Recent researches in the Western Italian Alps have been conducted to make a census of climbing rock cliffs along the Ossola Valley (Verbanio-Cusio-Ossola Province, Italy) and to operate a choice of the ones characterized by high educational value (considering easy accessibility, grades for experts and beginners and the good exposition of rock features), representativeness, geohistorical importance, high cultural and socio-economic values, in order to propose an educational project addressed to students of an Italian secondary school aimed at introducing the three great families of rocks (magmatic, metamorphic and sedimentary); 2) The Eclogitic Micaschist Complex of the Austroalpine Domain (Montestrutto climbing wall, Turin Province, Italy) has been investigated in order to i) reconstruct the deformation stages at local scales along the sport climbing wall and the relationships between geological elements and physical elements necessary for vertical progression ii) elaborate an educational proposal; 3) Risk assessment and education has been approached through the analysis of site hazard on climbing routes, linked with both geomorphological processes, and to the variable meteorological conditions, at Monteleone Rocca Doria (Sardinia, Italy), a site sensitive to both the needs of the climbers and the environment. Here a particular attention was given to potential geomorphologically-related risks for climbers, the impacts linked to human presence and the specific features of the geomorphosite. In order to assess the possible risk situations related to the active geomorphological processes in a specific climbing site, a method for collecting data and information has been also proposed.

  8. Comparison of UAV and TLS DTMs for acquisition of geological, geomorphological information for Doren landslide, Vorarlberg Austria

    NASA Astrophysics Data System (ADS)

    Koma, Zsófia; Székely, Balázs; Dorninger, Peter; Rasztovits, Sascha; Roncat, Andreas; Zámolyi, András; Krawczyk, Dominik; Pfeifer, Norbert

    2014-05-01

    Aerial imagery derivatives collected by the Unmanned Aerial Vehicle (UAV) technology can be used as input for generation of high resolution digital terrain model (DTM) data along with the Terrestrial Laser Scanning (TLS) method. Both types of datasets are suitable for detailed geological and geomorphometric analysis, because the data provide micro-topographical and structural geological information. Our study focuses on the comparison of the possibilities of the extracted geological information, which is available from high resolution DTMs. This research attempts to find an answer which technology is more effective for geological and geomorphological analysis. The measurements were taken at the Doren landslide (Vorarlberg, Austria), a complex rotational land slide situated in the Alpine molasse foreland. Several formations (Kojen Formation, Würmian glacial moraine sediments, Weissach Formation) were tectonized there in the course of the alpine orogeny (Oberhauser et al, 2007). The typical fault direction is WSW-ENE. The UAV measurements that were carried out simultaneously with the TLS campaign focused on the landslide scarp. The original image resolution was 4 mm/pixel. Image matching was implemented in pyramid level 2 and the achieved resolution of the DTM was 0.05 meter. The TLS dataset includes 18 scan positions and more than 300 million points for the whole landslide area. The achieved DTM has 0.2 meter resolution. The steps of the geological and geomorphological analysis were: (1) visual interpretation based on field work and geological maps, (2) quantitative DTM analysis. In the quantitative analysis input data provided by the different kinds of DTMs were used for further parameter calculations (e.g. slope, aspect, sigmaZ). In the next step an automatic classification method was used for the detection of faults and classification of different parts of the landslide. The conclusion was that for geological visualization interpretation UAV datasets are better, because the high resolution texture information allows for the extraction of the digital geomorphology indicators. For quantitative analysis both datasets are informative, but the TLS DTM has an advantage of accessing additional information on faults beneath the vegetation cover. These studies were carried out partly in the framework of Hybrid 3D project financed by the Austrian Research Promotion Agency (FFG) and Von-Oben and 4D-IT; the contribution of ZsK was partly funded by Campus Hungary Internship TÁMOP-424B1; BSz contributed partly as an Alexander von Humboldt Research Fellow.

  9. Bayesian network modeling applied to coastal geomorphology: lessons learned from a decade of experimentation and application

    NASA Astrophysics Data System (ADS)

    Plant, N. G.; Thieler, E. R.; Gutierrez, B.; Lentz, E. E.; Zeigler, S. L.; Van Dongeren, A.; Fienen, M. N.

    2016-12-01

    We evaluate the strengths and weaknesses of Bayesian networks that have been used to address scientific and decision-support questions related to coastal geomorphology. We will provide an overview of coastal geomorphology research that has used Bayesian networks and describe what this approach can do and when it works (or fails to work). Over the past decade, Bayesian networks have been formulated to analyze the multi-variate structure and evolution of coastal morphology and associated human and ecological impacts. The approach relates observable system variables to each other by estimating discrete correlations. The resulting Bayesian-networks make predictions that propagate errors, conduct inference via Bayes rule, or both. In scientific applications, the model results are useful for hypothesis testing, using confidence estimates to gage the strength of tests while applications to coastal resource management are aimed at decision-support, where the probabilities of desired ecosystems outcomes are evaluated. The range of Bayesian-network applications to coastal morphology includes emulation of high-resolution wave transformation models to make oceanographic predictions, morphologic response to storms and/or sea-level rise, groundwater response to sea-level rise and morphologic variability, habitat suitability for endangered species, and assessment of monetary or human-life risk associated with storms. All of these examples are based on vast observational data sets, numerical model output, or both. We will discuss the progression of our experiments, which has included testing whether the Bayesian-network approach can be implemented and is appropriate for addressing basic and applied scientific problems and evaluating the hindcast and forecast skill of these implementations. We will present and discuss calibration/validation tests that are used to assess the robustness of Bayesian-network models and we will compare these results to tests of other models. This will demonstrate how Bayesian networks are used to extract new insights about coastal morphologic behavior, assess impacts to societal and ecological systems, and communicate probabilistic predictions to decision makers.

  10. Hydrologic controls on the development of equilibrium soil depths

    NASA Astrophysics Data System (ADS)

    Nicotina, L.; Tarboton, D. G.; Tesfa, T. K.; Rinaldo, A.

    2010-12-01

    The object of the present work was the study of the coevolution of runoff production and geomorphological processes and its effects on the formation of equilibrium soil depth by focusing on their mutual feedbacks. The primary goal of this work is to describe spatial patterns of soil depth resulting, under the hypothesis of dynamic equilibrium, from long-term interactions between hydrologic forcings and soil production, erosion and sediment transport processes. These processes dominate the formation of actual soil depth patterns that represent the boundary condition for water redistribution, thus this paper also proposes and attempt to set the premises for decoding their individual role and mutual interactions in shaping the hydrologic response of a catchment. The relevance of the study stems from the massive improvement in hydrologic predictions for ungauged basins that would be achieved by using directly soil depths derived from geomorphic features remotely measured and objectively manipulated. Moreover the setup of a coupled hydrologic-geomorphologic approach represents a first step into the study of such interactions and in particular of the effects of soil moisture in determining soil production functions. Hydrological processes are here described by explicitly accounting for local soil depths and detailed catchment topography from high resolution digital terrain models (DTM). Geomorphological processes are described by means of well-studied geomorphic transport laws. Soil depth is assumed, in the exponential soil production function, as a proxy for all the mechanisms that induce mechanical disruption of bedrock and it’s conversion into soil. This formulation, although empirical, has been widely used in the literature and is currently accepted. The modeling approach is applied to the semi-arid Dry Creek Experimental Watershed, located near Boise, Idaho, USA. Modeled soil depths are compared with field data obtained from an extensive survey of the catchment. Our results show the ability of the model to describe properly the mean soil depth and the broad features of the distribution of measured data. However, local comparisons show significant scatter whose origin is discussed.

  11. Reconstruction of late Holocene glacier retreat and relevant climatic and topographic patterns in southeastern Tibet by glacier mapping and equilibrium line altitude calculation

    NASA Astrophysics Data System (ADS)

    Loibl, David; Lehmkuhl, Frank

    2014-05-01

    Temperate glaciers in the eastern Nyainqêntanglha range, southeastern Tibet, are highly sensitive to climate change and are therefore of particular high interest for research on late Holocene changes of the monsoonal climate in High Asia. However, due to the remoteness of the area, the scarcity of empirical data, and the challenges to remote sensing work posed by cloud and snow cover, knowledge about the glacier dynamics and changes is still very limited. We applied a remote sensing approach that allowed a comprehensive regional glacier survey despite the few available data. Geomorphologic characteristics, distribution and late Holocene changes of 1964 glaciers were mapped from one of the few appropriate late summer satellite images: a Landsat ETM+ scene from September 23, 1999. The glacier dataset was subsequently parameterized by DEM supported measurements. Complex climate-relief-glacier interactions were studied in detail for three large glaciers in neighboring valleys. Despite their spatial proximity, these display strong heterogeneity in terms of catchment morphology, debris cover, and glacier characteristics. The results of this case study then provided the conceptual basis to use geomorphological evidence, i.e. trimlines and latero-frontal moraines, to obtain quantitative data on the changes since the Little Ice Age (LIA) maximum glacier advance. Statistical analysis of glacier length change revealed an average retreat of ~ 40 % and a trend towards stronger retreat for smaller glaciers. An evaluation of different methods to calculate equilibrium line altitudes (ELAs) indicates that an optimized toe-to-ridge altitude method (TRAM) outperforms other methods in settings with complex topography and a lack of mass-balance measurements. However, a large number of glacier measurements is crucial for high quality TRAM results and special attention has to be paid to different morphological glacier characteristics: debris-cover, reconstitution, valley floor limitation, and detachment of glacier tributaries, are criteria that prevent reliable ELA calculations. In order to determine the best-fitting TRAM ratio value and to test the quality of the calculated ELAs, a remote sensing approach was applied: the altitudes of transient snowlines visible in the late summer Landsat scene were measured from the DEM and compared to TRAM results for each glacier. The interpolated ELA results show a southeast-northwest gradient ranging from 4,400 to 5,600 m a.s.l. and an average ELA rise of ~ 98 m since the LIA. Due to the large amount of measurements, the ELA distribution reveals topographic effects down to the catchment scale, i.e. orographic rainfalls and leeward shielding. Contrasting to the expectations for subtropical settings, glaciers on south facing slopes have not retreated strongest and ELAs on south facing slopes did not rise furthest. Instead, highly heterogeneous spatial patterns emerge that show a strong imprint of both, topography and monsoonal dynamics. The interpretation of these patterns provides insights into the monsoonal system and the characteristics of late Holocene glacier change in southeastern Tibet. For example, the ELA distribution reveals that the study area is influenced by both, Indian summer monsoon and East Asian summer monsoon, but that the latter does not reach the Tibetan Plateau.

  12. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan

    USGS Publications Warehouse

    Farrell, K.M.

    2001-01-01

    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions - vertical (x), lateral (y), and down-the-basin (z). A flood basin fills in as landforms vertically (x) and laterally accrete (y), and prograde down-the-basin (z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution. ?? 2001 Elsevier Science B.V. All rights reserved.

  13. Geomorphology, facies architecture, and high-resolution, non-marine sequence stratigraphy in avulsion deposits, Cumberland Marshes, Saskatchewan

    NASA Astrophysics Data System (ADS)

    Farrell, K. M.

    2001-02-01

    This paper demonstrates field relationships between landforms, facies, and high-resolution sequences in avulsion deposits. It defines the building blocks of a prograding avulsion sequence from a high-resolution sequence stratigraphy perspective, proposes concepts in non-marine sequence stratigraphy and flood basin evolution, and defines the continental equivalent to a parasequence. The geomorphic features investigated include a distributary channel and its levee, the Stage I crevasse splay of Smith et al. (Sedimentology, vol. 36 (1989) 1), and the local backswamp. Levees and splays have been poorly studied in the past, and three-dimensional (3D) studies are rare. In this study, stratigraphy is defined from the finest scale upward and facies are mapped in 3D. Genetically related successions are identified by defining a hierarchy of bounding surfaces. The genesis, architecture, geometry, and connectivity of facies are explored in 3D. The approach used here reveals that avulsion deposits are comparable in process, landform, facies, bounding surfaces, and scale to interdistributary bayfill, i.e. delta lobe deposits. Even a simple Stage I splay is a complex landform, composed of several geomorphic components, several facies and many depositional events. As in bayfill, an alluvial ridge forms as the feeder crevasse and its levees advance basinward through their own distributary mouth bar deposits to form a Stage I splay. This produces a shoestring-shaped concentration of disconnected sandbodies that is flanked by wings of heterolithic strata, that join beneath the terminal mouth bar. The proposed results challenge current paradigms. Defining a crevasse splay as a discrete sandbody potentially ignores 70% of the landform's volume. An individual sandbody is likely only a small part of a crevasse splay complex. The thickest sandbody is a terminal, channel associated feature, not a sheet that thins in the direction of propagation. The three stage model of splay evolution proposed by Smith et al. (Sedimentology, vol. 36 (1989) 1) is revised to include facies and geometries consistent with a bayfill model. By analogy with delta lobes, the avulsion sequence is a parasequence, provided that its definition is modified to be independent from sea level. In non-marine settings, facies contacts at the tops of regional peats, coals, and paleosols are analogous to marine flooding surfaces. A parasequence is redefined here as a relatively conformable succession of genetically related strata or landforms that is bounded by regional flooding surfaces or their correlative surfaces. This broader definition incorporates the concept of landscape evolution between regional flooding surfaces in a variety of depositional settings. With respect to landscape evolution, accommodation space has three spatial dimensions — vertical ( x), lateral ( y), and down-the-basin ( z). A flood basin fills in as landforms vertically ( x) and laterally accrete ( y), and prograde down-the-basin ( z). Vertical aggradation is limited by the elevation of maximum flood stage (local base level). Differential tectonism and geomorphology control the slope of the flood basin floor and the direction of landscape evolution. These processes produce parasequences that include inclined stratal surfaces and oriented, stacked macroforms (clinoforms) that show the magnitude and direction of landscape evolution.

  14. Propagation of landslide inventory errors on data driven landslide susceptibility models

    NASA Astrophysics Data System (ADS)

    Henriques, C. S.; Zezere, J. L.; Neves, M.; Garcia, R. A. C.; Oliveira, S. C.; Piedade, A.

    2009-04-01

    Research on landslide susceptibility assessment developed recently worldwide has shown that quality and reliability of modelling results are more sensitive to the quality and consistence of the cartographic database than to statistical tools used in the modelling process. Particularly, the quality of the landslide inventory is of crucial importance, because data-driven models used for landside susceptibility evaluation are based on the spatial correlation between past landslide occurrences and a data set of thematic layers representing independent landslide predisposing factors. Uncertainty within landslide inventorying may be very high and is usually related to: (i) the geological and geomorphological complexity of the study area; (ii) the dominant land use and the rhythm and magnitude of land use change; (iii) the conservation level of landslide evidences (e.g., topography, vegetation, drainage) both in the field and aerial photographs; and (iv) the experience of the geomorphologist(s) that build the landslide inventory. Traditionally, landslide inventory has been made through aerial-photo interpretation and field work surveying by using standard geomorphological techniques. More recently, the interpretation of detailed geo-referenced digital ortophotomaps (pixel = 0.5 m), combined with the accurate topography, as become an additional analytical tool for landslide identification at the regional scale. The present study was performed in a test site (256 km2) within Caldas da Rainha County, located in the central part of Portugal. Detailed geo-referenced digital ortophotomaps obtained in 2004 were used to build three different landslide inventories. The landslide inventory #1 was constructed by a single regular trained geomorphologist using photo-interpretation. 408 probable slope movements were identified and geo-referenced by a point marked in the central part of the probable landslide rupture zone. The landslide inventory #2 was obtained through the examination of landslide inventory #1 by a senior geomorphologist. This second phase of photo and morphologic interpretation (pre-validation) allows the selection of 204 probable slope movements from the first landslide inventory. The landslide inventory #3 was obtained by the field verification of the total set of probable landslide zones (408 points), and was performed by 6 geomorphologists. This inventory has 193 validated slope movements, and includes 101 "new landslides" that have not been recognized by the ortophotomaps interpretation. Additionally, the field work enabled the cartographic delimitation of the slope movement depletion and accumulation zones, and the definition of landslide type. Landslide susceptibility was assessed using the three landslide inventories by using a single predictive model (logistic regression) and the same set of landslide predisposing factors to allow comparison of results. Uncertainty associated to landslide inventory errors and their propagation on landslide susceptibility results are evaluated and compared by the computation of success-rate and prediction-rate curves. The error derived from landslide inventorying is quantified by assessing the overlapping degree of susceptible areas obtained from the different prediction models.

  15. KSC-05pd2638

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is lowered toward the nose of the fairing enclosing New Horizons upon its arrival at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. A Lockheed Martin Atlas V launch vehicle stands ready to receive it in the background. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  16. KSC-05pd2631

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, technicians lift New Horizons toward a transporter for its move to Complex 41 on Cape Canaveral Air Force Station. The last strip of the mission decal will be installed on the fairing after the spacecraft is delivered to the pad. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  17. KSC-05pd2632

    NASA Image and Video Library

    2005-12-16

    KENNEDY SPACE CENTER, FLA. - In the Payload Hazardous Servicing Facility, technicians lower New Horizons onto a transporter for its move to Complex 41 on Cape Canaveral Air Force Station. The last strip of the mission decal will be installed on the fairing after the spacecraft is delivered to the pad. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  18. KSC-05pd2643

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - InDyne employee Mic Miracle captures on video the arrival of the fairing enclosing New Horizons at the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  19. Geomorphology of the Alluvial Sediments and Bedrock in an Intermontane Basin: Application of Variogram Modeling to Electrical Resistivity Soundings

    NASA Astrophysics Data System (ADS)

    Khan, Adnan Ahmad; Farid, Asam; Akhter, Gulraiz; Munir, Khyzer; Small, James; Ahmad, Zulfiqar

    2016-05-01

    The study describes a methodology used to integrate legacy resistivity data with limited geological data in order to build three-dimensional models of the near subsurface. Variogram analysis and inversion techniques more typically found in the petroleum industry are applied to a set of 1D resistivity data taken from electrical surveys conducted in the 1980s. Through careful integration with limited geological data collected from boreholes and outcrops, the resultant model can be visualized in three dimensions to depict alluvium layers as lithological and structural units within the bedrock. By tuning the variogram parameters to account for directionality, it is possible to visualize the individual lithofacies and geomorphological features in the subsurface. In this study, an electrical resistivity data set collected as part of a groundwater study in an area of the Peshawar basin in Pakistan has been re-examined. Additional lithological logs from boreholes throughout the area have been combined with local outcrop information to calibrate the data. Tectonic activity during the Himalayan orogeny has caused uplift in the area and generated significant faulting in the bedrock resulting in the formation of depressions which are identified by low resistivity values representing clays. Paleo-streams have reworked these clays which have been eroded and replaced by gravel-sand facies along paleo-channels. It is concluded that the sediments have been deposited as prograding fan-shaped bodies and lacustrine deposits with interlayered gravel-sand and clay-silt facies. The Naranji area aquifer system has thus been formed as a result of local tectonic activity with fluvial erosion and deposition and is characterized by coarse sediments with high electrical resistivities.

  20. Comprehensive Representation of Hydrologic and Geomorphic Process Coupling in Numerical Models: Internal Dynamics and Basin Evolution

    NASA Astrophysics Data System (ADS)

    Istanbulluoglu, E.; Vivoni, E. R.; Ivanov, V. Y.; Bras, R. L.

    2005-12-01

    Landscape morphology has an important control on the spatial and temporal organization of basin hydrologic response to climate forcing, affecting soil moisture redistribution as well as vegetation function. On the other hand, erosion, driven by hydrology and modulated by vegetation, produces landforms over geologic time scales that reflect characteristic signatures of the dominant land forming process. Responding to extreme climate events or anthropogenic disturbances of the land surface, infrequent but rapid forms of erosion (e.g., arroyo development, landsliding) can modify topography such that basin hydrology is significantly influenced. Despite significant advances in both hydrologic and geomorphic modeling over the past two decades, the dynamic interactions between basin hydrology, geomorphology and terrestrial ecology are not adequately captured in current model frameworks. In order to investigate hydrologic-geomorphic-ecologic interactions at the basin scale we present initial efforts in integrating the CHILD landscape evolution model (Tucker et al. 2001) with the tRIBS hydrology model (Ivanov et al. 2004), both developed in a common software environment. In this talk, we present preliminary results of the numerical modeling of the coupled evolution of basin hydro-geomorphic response and resulting landscape morphology in two sets of examples. First, we discuss the long-term evolution of both the hydrologic response and the resulting basin morphology from an initially uplifted plateau. In the second set of modeling experiments, we implement changes in climate and land-use to an existing topography and compare basin hydrologic response to the model results when landscape form is fixed (e.g. no coupling between hydrology and geomorphology). Model results stress the importance of internal basin dynamics, including runoff generation mechanisms and hydrologic states, in shaping hydrologic response as well as the importance of employing comprehensive conceptualizations of hydrology in modeling landscape evolution.

  1. Multidisciplinary approach for fault detection: Integration of PS-InSAR, geomorphological, stratigraphic and structural data in the Venafro intermontane basin (Central-Southern Apennines, Italy)

    NASA Astrophysics Data System (ADS)

    Amato, Vincenzo; Aucelli, Pietro P. C.; Bellucci Sessa, Eliana; Cesarano, Massimo; Incontri, Pietro; Pappone, Gerardo; Valente, Ettore; Vilardo, Giuseppe

    2017-04-01

    A multidisciplinary methodology, integrating stratigraphic, geomorphological and structural data, combined with GIS-aided analysis and PS-InSAR interferometric data, was applied to characterize the relationships between ground deformations and the stratigraphic and the morphostructural setting of the Venafro intermontane basin. This basin is a morphostructural depression related to NW-SE and NE-SW oriented high angle normal faults bordering and crossing it. In particular, a well-known active fault crossing the plain is the Aquae Juliae Fault, whose recent activity is evidenced by archeoseismological data. The approach applied here reveals new evidence of possible faulting, acting during the Lower to Upper Pleistocene, which has driven the morphotectonic and the environmental evolution of the basin. In particular, the tectonic setting emerging from this study highlights the influence of the NW-SE oriented extensional phase during the late Lower Pleistocene - early Middle Pleistocene, in the generation of NE-SW trending, SE dipping, high-angle faults and NW-SE trending, high-angle transtensive faults. This phase has been followed by a NE-SW extensional one, responsible for the formation of NW-SE trending, both NW and SE dipping, high-angle normal faults, and the reactivation of the oldest NE-SW oriented structures. These NW-SE trending normal faults include the Aquae Juliae Fault and a new one, unknown until now, crossing the plain between the Venafro village and the Colle Cupone Mt. (hereinafter named the Venafro-Colle Cupone Fault, VCCF). This fault has controlled deposition of the youngest sedimentary units (late Middle Pleistocene to late Upper Pleistocene) suggesting its recent activity and it is well constrained by PS-InSAR data, as testified by the increase of the subsidence rate in the hanging wall block.

  2. Ecological filtering and plant traits variation across quarry geomorphological surfaces: implication for restoration.

    PubMed

    Gilardelli, Federica; Sgorbati, Sergio; Armiraglio, Stefano; Citterio, Sandra; Gentili, Rodolfo

    2015-05-01

    Revegetation patterns after quarry abandonment have been widely studied from several ecological points of view, but a trait-based approach is still lacking. The aim of this study was to characterise the plant species assemblages and the associated functional traits filtered on different geomorphological surfaces in abandoned limestone quarry areas: artificial cliffs, embankments, and platforms. We then verified if species with certain traits were better able to overcome the dispersal and environmental filters necessary for establishment. To this aim, we analyzed 113 vegetation plots and collected data on 25 morphological, ecological, and dispersal traits to detect species adaptaions across these man-made environments. As a case study, we investigated the extraction basin of Botticino (Lombardy, Italy), the second largest in Italy. The results obtained by SIMPER and CCA analyses showed that rockiness, stoniness, slope, elevation, and time of surfaces are the main filters that varied across quarries and affected plant assemblages at the macro-scale level. Across the three geomorphological surfaces (meso-scale) of quarries, more specific abiotic filters selecting species were found. In turn, traits differentiation according to the three main geomorphological surfaces of quarry emphasized that further filters acting at the micro-scale imply differences in dispersal mechanisms and resource availability. This work highlighted the utility to study species assemblages and environmental filters to address quarry restoration according to the type of geomorphological surface. The investigation of some traits (chorological form, life forms, seed dispersal,s and plant height) can furnish some interesting indications for practice individuating further abiotic filters acting at the micro-scale.

  3. On the ability of plant life-history strategies to shape bio-geomorphologic interactions

    NASA Astrophysics Data System (ADS)

    Schwarz, Christian; van Belzen, Jim; Zhu, ZhenChang; Bouma, Tjeerd; van de Koppel, Johan; Gourgue, Olivier; Temmerman, Stijn

    2017-04-01

    Previous work studying bio-geomorphologic interactions in intertidal habitats underlined the importance of wetland vegetation shaping their environment (e.g. tidal channel networks). Up to this point the potential of wetland vegetation to shape their environment was linked to their physical plant properties, such as stiffness, stem diameter or stem density. However the effect of life-history strategies, i.e. the mode of plant proliferation such as sexual reproduction from seeds, non-sexual lateral expansion or a combination of the former two was hitherto ignored. We present numerical experiments based on a wetland ecosystem present in the Western Scheldt Estuary (SW, the Netherlands) showing the importance of life-history strategies shaping bio-geomorphologic interactions. We specifically compare two extremes in life-history strategies, (1) one species solely establishing from seeds and relying on their mass recruitment (Salicornia europea); And a second species (Spartina anglica) which relies on a mixed establishment strategy consisting of seed dispersal and asexual lateral expansion through tillering, with a very low seed recruitment success per year. Based on conducted numerical experiments using TELEMAC2D we show that the Spartina-case facilitates relative low channel densities with pronounced channel networks, whereas the Salicornia-case favors high channel densities with less pronounced intertidal channels. The conducted numerical experiments are the first indication showing that plant proliferation strategies exert a major control on emerging patterns in bio-geomorphologic systems. This provides a deeper understanding in the constraining factors and dynamics shaping the emergence and resilience of bio-geomorphologic systems.

  4. Drought Vulnerability Mapping with Geomorphological Approach in Yogyakarta Special Region (DIY) and Central Java

    NASA Astrophysics Data System (ADS)

    Sudaryatno

    2016-11-01

    This study aims to determine the level of vulnerability of the geomorphologic drought that occurred in Central Java and Yogyakarta Special Region. This study examines geomorphologic drought. Parameters used were slope, drainage, Available Water Capacity (AWC), permeability, landform, and land use. Landsat 8 and SRTM data were used for the extraction of physical parameters, such as slope, drainage, landform, and land use. The method used in this study is scoring and weighting. Query results were used for data classification by overlaying drought geomorphologic parameters. The expected outcome of this research is to map the geomorphologic drought vulnerability on Central Java and Yogyakarta Special Region. Drought vulnerability was divided into wet, normal and dry classes. Distribution of the dry class is frequent. Some of the dry classes are distributed on the steep till extremely steep slope region and on the structural and karsts landform. This was related to AWC value where region with high AWC contributed to the poor drainage of the soil, such as at Kulonprogo, Purworejo, Kebumen, Blora, Wonogiri, Purbalingga, Pekalongan, Jepara and Kudus regency. Normal classes are distributed on the sloping till steep slope, have moderate till well-drained soil and low AWC, such as at Gunung Kidul, Pati, Temanggung regency, and Magelang city. Wet classes are distributed on the flat or almost flat and sloping region. Most of the wet classes are distributed on volcanic hills and coastal area. Those regions are well-drained and the land uses are mostly for settlement and farming, such as at Sleman, Yogyakarta city, Klaten, Bantul, and Wonosobo regency.

  5. A Detailed Geomorphological Sketch Map of Titan's Afekan Crater Region

    NASA Astrophysics Data System (ADS)

    Schoenfeld, A.; Malaska, M. J.; Lopes, R. M. C.; Le Gall, A. A.; Birch, S. P.; Hayes, A.

    2014-12-01

    Due to Titan's uniquely thick atmosphere and organic haze layers, the most detailed images (with resolution of 300 meters per pixel) of the Saturnian moon's surface exist as Synthetic Aperture Radar (SAR) images taken by Cassini's RADAR instrument. Using the SAR data, we have been putting together detailed geomorphological sketch maps of various Titan regions in an effort to piece together its geologic history. We initially examined the Afekan region of Titan due to extensive SAR coverage. Features described on Afekan fall under the categories (in order of geologic age, extrapolated from their relative emplacement) of hummocky, labyrinthic, plains, and dunes. During our mapping effort, we also divided each terrain category into several different subclasses on a local level. Our map offers a chance to present and analyze the distribution, relationship, and potential formation hypotheses of the different terrains. In bulk, we find evidence for both Aeolian and fluvial processes. A particularly important unit found in the Afekan region is the unit designated "undifferentiated plains", or the "Blandlands" of Titan, a mid-latitude terrain unit comprising 25% of the moon's surface. Undifferentiated plains are notable for its relative featurelessness in radar and infrared. Our interpretation is that it is a fill unit in and around Afekan crater and other hummocky/mountainous units. The plains suggest that the nature of Titan's geomorphology seems to be tied to ongoing erosional forces and sediment deposition. Other datasets used in characterizing Titan's various geomorphological units include information obtained from radiometry, infrared (ISS), and spectrometry (VIMS). We will present the detailed geomorphological sketch map with all the terrain units assigned and labeled.

  6. Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment

    NASA Astrophysics Data System (ADS)

    Domínguez-Cuesta, María José; Jiménez-Sánchez, Montserrat; Berrezueta, Edgar

    2007-09-01

    A geomorphological study focussing on slope instability and landslide susceptibility modelling was performed on a 278 km 2 area in the Nalón River Basin (Central Coalfield, NW Spain). The methodology of the study includes: 1) geomorphological mapping at both 1:5000 and 1:25,000 scales based on air-photo interpretation and field work; 2) Digital Terrain Model (DTM) creation and overlay of geomorphological and DTM layers in a Geographical Information System (GIS); and 3) statistical treatment of variables using SPSS and development of a logistic regression model. A total of 603 mass movements including earth flow and debris flow were inventoried and were classified into two groups according to their size. This study focuses on the first group with small mass movements (10 0 to 10 1 m in size), which often cause damage to infrastructures and even victims. The detected conditioning factors of these landslides are lithology (soils and colluviums), vegetation (pasture) and topography. DTM analyses show that high instabilities are linked to slopes with NE and SW orientations, curvature values between - 6 and - 0.7, and slope values from 16° to 30°. Bedrock lithology (Carboniferous sandstone and siltstone), presence of Quaternary soils and sediments, vegetation, and the topographical factors were used to develop a landslide susceptibility model using the logistic regression method. Application of "zoom method" allows us to accurately detect small mass movements using a 5-m grid cell data even if geomorphological mapping is done at a 1:25,000 scale.

  7. Comparing the efficiency of digital and conventional soil mapping to predict soil types in a semi-arid region in Iran

    NASA Astrophysics Data System (ADS)

    Zeraatpisheh, Mojtaba; Ayoubi, Shamsollah; Jafari, Azam; Finke, Peter

    2017-05-01

    The efficiency of different digital and conventional soil mapping approaches to produce categorical maps of soil types is determined by cost, sample size, accuracy and the selected taxonomic level. The efficiency of digital and conventional soil mapping approaches was examined in the semi-arid region of Borujen, central Iran. This research aimed to (i) compare two digital soil mapping approaches including Multinomial logistic regression and random forest, with the conventional soil mapping approach at four soil taxonomic levels (order, suborder, great group and subgroup levels), (ii) validate the predicted soil maps by the same validation data set to determine the best method for producing the soil maps, and (iii) select the best soil taxonomic level by different approaches at three sample sizes (100, 80, and 60 point observations), in two scenarios with and without a geomorphology map as a spatial covariate. In most predicted maps, using both digital soil mapping approaches, the best results were obtained using the combination of terrain attributes and the geomorphology map, although differences between the scenarios with and without the geomorphology map were not significant. Employing the geomorphology map increased map purity and the Kappa index, and led to a decrease in the 'noisiness' of soil maps. Multinomial logistic regression had better performance at higher taxonomic levels (order and suborder levels); however, random forest showed better performance at lower taxonomic levels (great group and subgroup levels). Multinomial logistic regression was less sensitive than random forest to a decrease in the number of training observations. The conventional soil mapping method produced a map with larger minimum polygon size because of traditional cartographic criteria used to make the geological map 1:100,000 (on which the conventional soil mapping map was largely based). Likewise, conventional soil mapping map had also a larger average polygon size that resulted in a lower level of detail. Multinomial logistic regression at the order level (map purity of 0.80), random forest at the suborder (map purity of 0.72) and great group level (map purity of 0.60), and conventional soil mapping at the subgroup level (map purity of 0.48) produced the most accurate maps in the study area. The multinomial logistic regression method was identified as the most effective approach based on a combined index of map purity, map information content, and map production cost. The combined index also showed that smaller sample size led to a preference for the order level, while a larger sample size led to a preference for the great group level.

  8. Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of December 1909 in Iberia

    NASA Astrophysics Data System (ADS)

    Pereira, S.; Ramos, A. M.; Zêzere, J. L.; Trigo, R. M.; Vaquero, J. M.

    2016-02-01

    According to the DISASTER database the 20-28 December 1909 event was the hydro-geomorphologic event with the highest number of flood and landslide cases that occurred in Portugal in the period 1865-2010 (Zêzere et al., 2014). This event also caused important social impacts over the Spanish territory, especially in the Douro Basin, having triggered the highest floods in more than 100 years at the river's mouth in the city of Oporto. This work has a dual purpose: (i) to characterize the spatial distribution and social impacts of the December 1909 hydro-geomorphologic DISASTER event over Portugal and Spain; (ii) to analyse the meteorological conditions that triggered the event and the spatial distribution of the precipitation anomalies. Social impacts that occurred in Portugal were obtained from the Disaster database (Zêzere et al., 2014) whereas the data collection for Spain was supported by the systematic analysis of Spanish daily newspapers. In addition, the meteorological conditions that triggered the event are analysed using the 20th Century Reanalysis data set from NOAA and precipitation data from Iberian meteorological stations. The Iberian Peninsula was spatially affected during this event along the SW-NE direction spanning from Lisbon, Santarém, Oporto, and Guarda (in Portugal), to Salamanca, Valladolid, Zamora, Orense, León, and Palencia (in Spain). In Iberia, 134 DISASTER cases were recorded (130 flood cases; 4 landslides cases) having caused 89 casualties (57 due to floods and 32 due to landslides) and a further total of 3876 affected people, including fatalities, injured, missing, evacuated, and homeless people. This event was associated with outstanding precipitation registered at Guarda (Portugal) on 22 December 1909 and unusual meteorological conditions characterized by the presence of a deep low-pressure system located over the NW Iberian Peninsula with a stationary frontal system striking the western Iberian Peninsula. The presence of an upper-level jet (250 hPa) and low-level jet (900 hPa) located SW-NE oriented towards Iberia along with upper-level divergence and lower-level convergence favoured large-scale precipitation. Finally, associated with these features it is possible to state that this extreme event was clearly associated with the presence of an elongated Atmospheric River, crossing the entire northern Atlantic Basin and providing a continuous supply of moisture that contributed to enhance precipitation. This work contributes to a comprehensive and systematic synoptic evaluation of the second most deadly hydro-geomorphologic DISASTER event that has occurred in Portugal since 1865 and will help to better understand the meteorological system that was responsible for triggering the event.

  9. Combining historical and geomorphological information to investigate earthquake induced landslides

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Ferrari, G.; Galli, M.; Guidoboni, E.; Guzzetti, F.

    2003-04-01

    Landslides are caused by many different triggers, including earthquakes. In Italy, a detailed new generation catalogue of information on historical earthquakes for the period 461 B.C to 1997 is available (Catalogue of Strong Italian Earthquakes from 461 B.C. to 1997, ING-SGA 2000). The catalogue lists 548 earthquakes and provides information on a total of about 450 mass-movements triggered by 118 seismic events. The information on earthquake-induced landslides listed in the catalogue was obtained through the careful scrutiny of historical documents and chronicles, but was rarely checked in the field. We report on an attempt to combine the available historical information on landslides caused by earthquakes with standard geomorphological techniques, including the interpretation of aerial photographs and field surveys, to better determine the location, type and distribution of seismically induced historical slope failures. We present four examples in the Central Apennines. The first example describes a rock slide triggered by the 1279 April 30 Umbria-Marche Apennines earthquake (Io = IX) at Serravalle, along the Chienti River (Central Italy). The landslide is the oldest known earthquake-induced slope failure in Italy. The second example describes the location of 2 large landslides triggered by the 1584 September 10 earthquake (Io = IX) at San Piero in Bagno, along the Savio River (Northern Italy). The landslides were subsequently largely modified by mass movements occurred on 1855 making the recognition of the original seismically induced failures difficult, if not impossible. In the third example we present the geographical distribution of the available information on landslide events triggered by 8 earthquakes in Central Valnerina, in the period 1703 to 1979. A comparison with the location of landslides triggered by the September-October 1997 Umbria-Marche earthquake sequence is presented. The fourth example describes the geographical distribution of the available information on landslides triggered by the great 1915 January 13 Marsica (Central Italy) earthquake (Io = XI) mostly along the Liri River valley. Problems encountered in matching the recent historical information with the local geomorphological setting are discussed. A critical analysis of the four studied examples allows general considerations on the advantages and limitations of a combined historical and geomorphological approach to investigate past earthquake induced landslides. Lastly, a preliminary analysis of the relationship between the earthquake intensity and the distance of the known slope failures to the triggering earthquake epicentres is presented, for the four investigated areas and for the entire catalogue of historical earthquakes.

  10. Process Study of Sorted Patterns on Arctic Soils

    DTIC Science & Technology

    1991-03-01

    thick layer of a coarse mixture of beach sediments . INSTRUMENTATION Based on our past work we were able to design instrumentation that...Washburn, A.L., 1980. Geocryologv: a Survey of Periglacial Processes and Environments, 406 pp., John Wiley and Sons, New York. 17 PUBLICATIONS...38 pages. Submitted for inclusion in Periglacial Geomorphology. Proceedings of the 1991 Binghampton Geomorphology Symposium, to be

  11. Fire and water: volcanology, geomorphology, and hydrogeology of the Cascade Range, central Oregon

    Treesearch

    Katharine V. Cashman; Natalia I. Deligne; Marshall W. Gannett; Gordon E. Grant; Anne Jefferson

    2009-01-01

    This field trip guide explores the interactions among the geologic evolution, hydrology, and fluvial geomorphology of the central Oregon Cascade Range. Key topics include the geologic control of hydrologic regimes on both the wet and dry sides of the Cascade Range crest, groundwater dynamics and interaction between surface and groundwater in young volcanic arcs, and...

  12. Benelux Colloquium on Geomorphological Processes and Soils (4th) Held in Amsterdam and Leuven on April 24-May 2, 1988. Excursion Guide

    DTIC Science & Technology

    1988-01-01

    Utrecht and Lidge. The colloquium is being organised by the Laboratoy of Experimental Geomorphology, Catholic University of Leuven and the Laboratory of...37 ARTIKELEN EN RAPPORM!N Ancker, J.A.24.van den & Jungeriuc, P.D., 1985. Recante duinvormingupro- cessen langs de Franse vastkust. Intern Rapport

  13. Controls on valley width in mountainous landscapes: the role of landsliding and implications for salmonid habitat

    Treesearch

    C. May; J. Roering; L.S. Eaton; K.M. Burnett

    2013-01-01

    A fundamental yet unresolved question in fluvial geomorphology is what controls the width of valleys in mountainous terrain. Establishing a predictive relation for valley floor width is critical for realizing links between aquatic ecology and geomorphology because the most productive riverine habitats often occur in low-gradient streams with broad floodplains. Working...

  14. Estimation of water table based on geomorphologic and geologic conditions using public database of geotechnical information over Japan

    NASA Astrophysics Data System (ADS)

    Koshigai, Masaru; Marui, Atsunao

    Water table provides important information for the evaluation of groundwater resource. Recently, the estimation of water table in wide area is required for effective evaluation of groundwater resources. However, evaluation process is met with difficulties due to technical and economic constraints. Regression analysis for the prediction of groundwater levels based on geomorphologic and geologic conditions is considered as a reliable tool for the estimation of water table of wide area. Data of groundwater levels were extracted from the public database of geotechnical information. It was observed that changes in groundwater level depend on climate conditions. It was also observed and confirmed that there exist variations of groundwater levels according to geomorphologic and geologic conditions. The objective variable of the regression analysis was groundwater level. And the explanatory variables were elevation and the dummy variable consisting of group number. The constructed regression formula was significant according to the determination coefficients and analysis of the variance. Therefore, combining the regression formula and mesh map, the statistical method to estimate the water table based on geomorphologic and geologic condition for the whole country could be established.

  15. Mapping of land use and geomorphology in the APAPORE project area by LANDSAT satellite data, volume 1

    NASA Technical Reports Server (NTRS)

    Parada, N. D. J. (Principal Investigator); Dossantos, A. P.; Kux, H. J.; Sausen, T. M.; Bueno, A. M. T. R.; Desouza, L. F.; Nunes, J. S. D.

    1982-01-01

    The results of a land use and geomorphological mapping of the so-called Projeto APAPORE area, at Mato Grosso do Sul State are presented. The study was carried out using multispectral scanner (MSS) and return beam vidicon LANDSAT images (channels 5 and 7 for the MSS) at the scale of 1:250,000 from 1980 through visual interpretation. The results indicate that pastureland is the most widespead class and that the agricultural areas re concentrated in the north of the area under study. The area covered with cerradao (arboreous savanna type) has a great areal extention, thus permitting the advance of the agricultural frontier. The geomorphological mapping can be useful to regional planning of future land use within the studied area.

  16. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutfin, Nicholas Alan

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek;more » Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.« less

  17. Near surface geophysics techniques and geomorphological approach to reconstruct the hazard cave map in historical and urban areas

    NASA Astrophysics Data System (ADS)

    Lazzari, M.; Loperte, A.; Perrone, A.

    2010-03-01

    This work, carried out with an integrated methodological approach, focuses on the use of near surface geophysics techniques, such as ground penetrating radar and electrical resistivity tomography (ERT), and geomorphological analysis, in order to reconstruct the cave distribution and geometry in a urban context and, in particular, in historical centres. The interaction during recent centuries between human activity (caves excavation, birth and growth of an urban area) and the characters of the natural environment were the reasons of a progressive increase in hazard and vulnerability levels of several sites. The reconstruction of a detailed cave map distribution is the first step to define the anthropic and geomorphological hazard in urban areas, fundamental basis for planning and assessing the risk.

  18. Denudational slope processes and slope response to global climate changes and other disturbances: insights from the Nepal Himalayas.

    NASA Astrophysics Data System (ADS)

    Fort, Monique

    2016-04-01

    Hillslope geomorphology results from a large range of denudational processes mainly controlled by relief, structure, lithology, climate, land-cover and land use. In most areas of the world, the "critical zone" concept is a good integrator of denudation that operates on a long-term scale. However, in large and high mountain areas, short-time scale factors often play a significant role in the denudational pattern, accelerating and/or delaying the transfer of denudation products and fluxes, and creating specific, spatially limited disturbances. We focus on the Nepal Himalayas, where the wide altitudinal range of bio-climatic zones and the intense geodynamic activity create a complex mosaic of landforms, as expressed by the present geomorphology of mountain slopes. On the basis of examples selected in the different Himalayan mountain belts (Siwaliks hills, middle mountains, High Himalaya), we illustrate different types of slopes and disturbances induced by active tectonics, climate extremes, and climate warming trends. Special attention is paid to recent events, such as landslide damming, triggered by either intense rainfalls (Kali Gandaki and Sun Kosi valleys) or the last April-May 2015 Gorkha seismic sequence (southern Khumbu). Lastly, references to older, larger events show that despite the highly dynamic environment, landforms caused by large magnitude disturbances may persist in the landscape in the long term.

  19. Geomorphological map of a coastal stretch of north-eastern Gozo (Maltese archipelago, Mediterranean Sea)

    NASA Astrophysics Data System (ADS)

    Soldati, Mauro; Micallef, Anton; Biolchi, Sara; Chelli, Alessandro; Cuoghi, Alessandro; Devoto, Stefano; Gauci, Christopher; Graff, Kevin; Lolli, Federico; Mantovani, Matteo; Mastronuzzi, Giuseppe; Pisani, Luca; Prampolini, Mariacristina; Restall, Brian; Roulland, Thomas; Saliba, Michael; Selmi, Lidia; Vandelli, Vittoria

    2017-04-01

    Geomorphological investigations carried out along the north-eastern coast of the Island of Gozo (Malta) have led to the production of a detailed geomorphological map. Field surveys, accompanied by aerial photo-interpretation, were carried out within the framework of the EUR-OPA Major Hazards Agreement Project ``Developing Geomorphological mapping skills and datasets in anticipation of subsequent Susceptibility, Vulnerability, Hazard and Risk Mapping'' (Council of Europe). In particular, this geomorphological map is the main output of a `Training Course on Geomorphological Mapping in Coastal Areas' held within the Project in November 2016. The study area selected was between Ramla Bay and Dacrhlet Qorrot Bay on the Island of Gozo (67 km2), part of the Maltese archipelago in the central Mediterranean Sea. From a geological viewpoint, the stratigraphic sequence includes Late Oligocene (Chattian) to Late Miocene (Messinian) sedimentary rocks. The hard limestones of the Upper Coralline Limestone Formation, the youngest lithostratigraphic unit, dominate the study area. Underlying this formation, marls and clays belonging to the Blue Clay Formation extensively outcrop. The oldest lithostratigraphic unit observed in the study area is the Globigerina Limestone Formation, a fine-grained limestone. The lithostructural features of the outcropping units clearly condition the morphography of the landscape. The coast is characterised by the alternation of inlets and promontories. Worthy of notice is the large sandy beach of Ramla Bay partly backed by dunes. From a geomorphological perspective, the investigated coastal stretch is characterised by limestone plateaus bounded by steep structural scarps which are reshaped by gravitational and/or degradation processes, and milder slopes in Blue Clays at their foot comprising of numerous rock block deposits (rdum in Maltese) and active or abandoned terraced fields used for agricultural purposes. Landforms and processes related to structural, gravitational, coastal, alluvial and karst processes were mapped. Particular attention was devoted to the recognition and classification of landslides of different type (in particular block slides and earth flows/slides) which affect large sectors of the north-eastern coast of Gozo. In most cases, landslide accumulations reach the coastline and cover shore platforms. In addition, wide portions of the plateau areas are affected by rock spreading related to the presence of limestones overlying clayey terrains. The climatic conditions, the dense joint systems and the karstification of limestone determine a temporary superficial drainage pattern. Temporary streambeds (wieden in Maltese) were identified in correspondence of V-shaped valleys once occupied by permanent water courses. Karst processes widely affect the Upper Coralline Limestone Formation resulting in caves, diffuse solution pools, grooves and furrows. The geomorphological map output represents a baseline document on which to undertake, first the landslide susceptibility mapping, subsequently the hazard mapping and finally the risk mapping, a critical part of the wider-scoped risk management process of this and similar coastal areas.

  20. Directions in Geoheritage Studies: Suggestions from the Italian Geomorphological Community

    NASA Astrophysics Data System (ADS)

    Panizza, Valeria

    2015-04-01

    More and more attention has been focused on geological and geomorphological heritage in the past years, leading to several researches in the framework of conservation projects, both at administrative and at scientific level, involving national and international research groups whose purposes are the promotion of Earth Sciences knowledge and the conservation of geological heritage. This paper presents an overview of research and conservation projects in Italy, mainly focused on the geomorphological heritage. Members of the AIGEO Working Group on geomorphosites and cultural landscape analyzed the historical development, methodological issues and main results of these research projects in order to identify possible innovation lines to improve the awareness and knowledge on geodiversity and geoheritage by a wide public, including education, tourism and conservation sectors. In Italy numerous projects of research have been realized with the main aim of geomorphosites inventory and the proposal of assessment methodologies, and so to the improvement and to the analysis of risks and impacts related to their fruition. At an international level, many Italian researchers have also been involved in studies carried out in the Working Group "Geomorphological sites" of the International Association of Geomorphologists (IAG). At a national level several research lines are under development, offering different responses to methodological issues within the general topic of geodiversity and geoheritage: Geosites inventories and assessment activities are performed with powerful digital techniques and new reference models: among these, the investigation on the ecologic support role for increasing geomorphosites global value and the elaboration of quantitative assessment methods of the scientific quality of Geomorphosites, carried out specifically for territorial planning. Improvements in field data collection and visual representation of landforms lead to new findings in geomorphological mapping; by making use of both traditional paper maps and computer-elaborated documents produced by GIS new visual products for geotourism have been created. Geomorphological heritage is now analysed with a special focus on its relationships with cultural landscape and human history; integrated studies of natural and cultural landscapes allow development of better itineraries for geotourism. Quantitative selection of geomorphosites and definition of global value of geotouristic trails according to dedicated relational database are performed with a focus on monitoring of evolution rates of active geomorphosites in different morphoclimatic contexts in order to evaluate the risk scenarios in touristic contexts. Development of innovative educational strategies for the dissemination of scientific research results on geomorphosites includes extensive use of multimedia and Web technologies. More and more detailed reconstruction of the recent evolutionary stages of the geomorphological landscape are performed by means of collaborative investigations performed by geomorphologists, geoarcheologists, archeologists. Relationships between geomorphological heritage and parks are now a comprehensive development, including the proposal of interdisciplinary attractions such as geoarcheological parks, mining and other georesources thematic parks. Geomorphosites are now selected with a particular attention to targeted climatic conditions and environments, such as glacial and periglacial environments, karsts lands.

  1. Recent transformations in the high-Arctic glacier landsystem Hørbyebreen, Svalbard.

    NASA Astrophysics Data System (ADS)

    Ewertowski, Marek; Evans, David; Roberts, David; Tomczyk, Aleksandra

    2016-04-01

    The Hørbyebreen is a polythermal valley glacier in the Petuniabukta area, central part of Spitsbergen. Since the end of the Little Ice Age, a debris-free glacier margin retreated by more than 3 km exposing complex landform assemblages including ice-cored moraines, flutes, eskers and geometric ridge networks. Glacier recession and landforms' development in the terrestrial parts of the foreland were quantified using time-series of orthophotos and digital elevation models (generated based on 1961, 1990, 2009 aerial photographs) and high resolution satellite images from 2013. Additionally, detailed analyses of a case study area were performed based on unmanned aerial vehicle (UAV) imagery (3 cm resolution) captured in 2014. A time-series of 1:5,000 geomorphological maps of the whole foreland, together with 1:300 map of a sample area of complex geometric ridge networks and results of sedimentological analysis, enable us to assess the evolution of glacial landform assemblages. The two main areas of the Hørbyebreen foreland were identified as: (1) the outer moraine ridge and (2) the inner zone between the contemporary ice edge and the outer moraine ridge. The outer moraine ridge was relatively stable and subject to mainly vertical transformation between 1960 and 2009. The most prominent changes were observed within the inner zone. In 1960 it was covered by glacier ice, whereas in 2009 this area exhibited a wide range of subglacial and englacial landforms, including a network of rectilinear ridges which we interpret as crevasse infills created by the injection of pressurized englacial meltwater. Other prominent features in this zone include controlled moraine, indicative of sub-marginal debris entrainment by the polythermal snout, and complex esker network. This landform assemblage is diagnostic of a variable process-form regime in which the glacial geomorphology of polythermal conditions is supplemented with surge signatures and therefore is likely to be the most representative landsystem model for terrestrial-terminating Svalbard glaciers. The research was founded by Polish National Science Centre (project granted by decision number DEC-2011/01/D/ST10/06494).

  2. Highlighting landslides and other geomorphological features using sediment connectivity maps

    NASA Astrophysics Data System (ADS)

    Bossi, Giulia; Crema, Stefano; Cavalli, Marco; Marcato, Gianluca; Pasuto, Alessandro

    2016-04-01

    Landslide identification is usually made through interpreting geomorphological features in the field or with remote sensing imagery. In recent years, airborne laser scanning (LiDAR) has enhanced the potentiality of geomorphological investigations by providing a detailed and diffuse representation of the land surface. The development of algorithms for geomorphological analysis based on LiDAR derived high-resolution Digital Terrain Models (DTMs) is increasing. Among them, the sediment connectivity index (IC) has been used to quantify sediment dynamics in alpine catchments. In this work, maps of the sediment connectivity index are used for detecting geomorphological features and processes not exclusively related to water-laden processes or debris flows. The test area is located in the upper Passer Valley in South Tyrol (Italy). Here a 4 km2 Deep-seated Gravitational Slope Deformation (DGSD) with several secondary phenomena has been studied for years. The connectivity index was applied to a well-known study area in order to evaluate its effectiveness as an interpretative layer to assist geomorphological analysis. Results were cross checked with evidence previously identified by means of in situ investigations, photointerpretation and monitoring data. IC was applied to a 2.5 m LiDAR derived DTM using two different scenarios in order to test their effectiveness: i) IC derived on the hydrologically correct DTM; ii) IC derived on the original DTM. In the resulting maps a cluster of low-connectivity areas appears as the deformation of the DGSD induce a convexity in the central part of the phenomenon. The double crests, product of the sagging of the landslide, are extremely evident since in those areas the flow directions diverge from the general drainage pattern, which is directed towards the valley river. In the crown area a rock-slab that shows clear evidence of incumbent detachment is clearly highlighted since the maps emphasize the presence of traction trenches and reverse slope. In the second scenario, rockfall activity is more evident since the collapse path induces scars in the slope that locally are identified as flow paths, moreover the presence of the block remnants creates an obstruction (i.e., a sink) for the algorithm. On the other hand, the presence of a smaller rotational landslide at the toe of the DGSD is more detectable in the map derived from the first scenario that shows a rapid change in slope together with a high drainage concentration. An integrated approach that assists the geomorphologic analysis based on aerial images and shaded relief maps with an IC map has proven to be a valuable tool as it allows to highlight different gravitational processes.

  3. Geomorphosites and the history of geomorphology

    NASA Astrophysics Data System (ADS)

    Giusti, Christian

    2013-04-01

    Geomorphosites are geosites of geomorphological significance, with a now well admitted distinction between central or scientific values on the one hand, and additional values such as ecological, economical or aesthetical values on the other hand. Among the scientific values, some are directly linked to the climatic forcings through geomorphological processes in the case of active geomorphosites, for example the meaning of a waterfall in a post-glacial trough valley. In the case of passive geomorphosites, the central values rather lie in structural features, ancient landforms, inherited regoliths such as the clay-with-flints of the Chalklands of Southern England and Northern France. Sometimes, the scientific value is not fully determined by the type of geomorphosite, active or passive, but rather by the fact this geosite has a special importance concerning the history of the Earth sciences, especially in geomorphology. This is well exemplified with the famous case of the Nant d'Arpenaz waterfall S-folds in the lower Arve valley between Geneva and Chamonix, first described by Horace Benedict de Saussure in 1774 and invoked to explain the formation of the Alps by folding. This structural geosite (history of tectonics) is also a geomorphosite. Concerning geomorphology, the current Nant d'Arpenaz waterfall is quite similar to the Pissevache waterfall in the Rhone valley: they are both examples of postglacial geomorphosites due to hanging valleys. When erosion is more advanced narrow gorges appear, for example Diosaz gorge (Haute-Savoie, France) or Dailley, Trient and Triège gorges (Valais, Switzerland). All these geomorphosites (main trough valleys, tributary valleys, waterfalls and postglacial gorges) were studied by pionneers of fluvial and glacial geomorphology such as Jean Bruhnes and Emmanuel de Martonne before World War I. The former has played an important role at the University of Fribourg (Switzerland) and has devoted many studies about the potholes and eddies of rivers, particularly in the Alps (e.g. Maigrauge dam and Sarine valley, Fribourg). The latter has left many sketchbooks preserved in a restricted repository at the Geographic Institute library in Paris, which are the illustrated part (e.g., The Châtelard Valley from Finhaut, Valais, Switzerland) of a huge archive of his theory of glacial erosion in alpine mountains. Both were scientific editors (with E. Chaix) of the first Atlas Photographique des Formes du Relief, published by Boissonas in Geneva, 1914. The presentation will focus on the scientific importance of some geomorphosites for the knowledge on the history of geomorphology and Earth sciences in general.

  4. Comparison of different hydrological similarity measures to estimate flow quantiles

    NASA Astrophysics Data System (ADS)

    Rianna, M.; Ridolfi, E.; Napolitano, F.

    2017-07-01

    This paper aims to evaluate the influence of hydrological similarity measures on the definition of homogeneous regions. To this end, several attribute sets have been analyzed in the context of the Region of Influence (ROI) procedure. Several combinations of geomorphological, climatological, and geographical characteristics are also used to cluster potentially homogeneous regions. To verify the goodness of the resulting pooled sites, homogeneity tests arecarried out. Through a Monte Carlo simulation and a jack-knife procedure, flow quantiles areestimated for the regions effectively resulting as homogeneous. The analysis areperformed in both the so-called gauged and ungauged scenarios to analyze the effect of hydrological measures on flow quantiles estimation.

  5. Using R to unravel animal-sediment interactions.

    NASA Astrophysics Data System (ADS)

    Soetaert, Karline

    2017-04-01

    Marine sediments are often characterized by seabed features ranging from small sand ripples to large sandbanks. These sediments also form the living space of many marine organisms, impacting the sediment dynamics and the geochemical cycles. In a number of projects in the Northsea, we have started to investigate these interactions, combining field sampling with laboratory experiments and modelling. R is used to interpret the various data sets and to model the effects of biology and geomorphology on the geochemistry. I will discuss these new developments in R, based on my previous R-work (packages FME, ReacTran, deSolve, rootSolve, plot3D, marelac).

  6. Metric remote sensing experiments in preparation for Spacelab flights. [alpine geomorphology and ice and/or snow cover

    NASA Technical Reports Server (NTRS)

    Galibert, G.

    1978-01-01

    Aerial and ground photographs of Wallis mountains and of Dolomiti di Cortina d'Ampezzo in Italy were made using spectrozonal emulsions and optical multichannel filters. A metric camera was used in the perspective of the first Spacelab flight aboard the space shuttle. Elementary forms of alpine geomorphology and ice or snow phenomena are detectable on these metric scenes.

  7. Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions forward

    NASA Astrophysics Data System (ADS)

    Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.

    2018-03-01

    Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.

  8. The geomorphology and hydrogeology of the karstic Islands Maratua, East Kalimantan, Indonesia: the potential and constraints for tourist destination development

    NASA Astrophysics Data System (ADS)

    Haryono, E.; Sasongko, M. H. D.; Barianto, D. H.; Setiawan, J. B.; Hakim, A. A.; Zaenuri, A.

    2018-04-01

    Maratua Island is one of the islands of Berau District, East Kalimantan which has great potential of natural beauty for tourism development. The area currently is one of famous tourist destination in East Kalimantan which is a carbonate reef built-up or so-called karst island. This paper is an endeavor 1) to unveil geomorphological and hydrogeological characteristics of the island, and 2) to recommend Island development as a tourist destination. Maratua Island is a V shape atoll with the open lagoon. Six geomorphological units were found on the island, i.e., fringing reef, beach, marine terrace, karst ridge, structural valley, and lagoon. Caves are also found in the karst ridge and the coast as an inundated passage. Three structural depressions in the karst ridge are other unique geomorphological feature in the area of which a marine lake environment with jellyfish is inhabited. The island is typified by two different aquifer units, i.e., porous media and fractured media aquifer. Porous aquifer lies on the beach of Boibukut area. Fractured-aquifer characterizes the other geomorphological units in the area. Freshwater accordingly is found in the beach area with a limited amount. Unfortunately, the groundwater in the marine terrace and karst ridge are saline. Maratua Island has enormous potential for tourism destination development. The major tourist activities in the area based on the geomorphological unit are snorkeling and diving (in fringing reef and lagoo n), hiking, cave exploration and marine lake exploration and cave diving (in karst ridge and structural valley); recreation and picnic (beach). The major limitation in the area is a shortage of freshwater resource and land. Limited water supply should be extracted from the beach area of Bohe Bukut village. Groundwater extraction from the beach area of Bohe Bukut must be for drinking water only. Supply of drinking water should be substituted from collected rainwater or desalination from sea water and water in the cave. Restrictions in the number of visitors and lodging development should also be considered.

  9. Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework

    NASA Astrophysics Data System (ADS)

    Gilvear, David J.

    1999-12-01

    River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and geophysical techniques; dovetailing engineering approaches to the study of river channels which emphasize reach-scale flow resistance, shear stresses, and material strength with catchment scale geomorphic approaches, empirical predictions, bed and bank processes, landform evolution, and magnitude-frequency concepts; producing accepted river channel typologies; fundamental research aimed at producing more reliable deterministic equations for prediction of bed and bank stability and bedload transport; and collaboration with aquatic biologists to determine the role and importance of geomorphologically and hydraulically defined habitats.

  10. Advances in the continuous monitoring of erosion and deposition dynamics: Developments and applications of the new PEEP-3T system

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.

    2008-01-01

    In most episodic erosion and deposition systems, knowledge of the timing of geomorphological change, in relation to fluctuations in the driving forces, is crucial to strong erosion process inference, and model building, validation and development. A challenge for geomorphology, however, is that few studies have focused on geomorphological event structure (timing, magnitude, frequency and duration of individual erosion and deposition events), in relation to applied stresses, because of the absence of key monitoring methodologies. This paper therefore (a) presents full details of a new erosion and deposition measurement system — PEEP-3T — developed from the Photo-Electronic Erosion Pin sensor in five key areas, including the addition of nocturnal monitoring through the integration of the Thermal Consonance Timing (TCT) concept, to produce a continuous sensing system; (b) presents novel high-resolution datasets from the redesigned PEEP-3T system for river bank system of the Rivers Nidd and Wharfe, northern England, UK; and (c) comments on their potential for wider application throughout geomorphology to address these key measurement challenges. Relative to manual methods of erosion and deposition quantification, continuous PEEP-3T methodologies increase the temporal resolution of erosion/deposition event detection by more than three orders of magnitude (better than 1-second resolution if required), and this facility can significantly enhance process inference. Results show that river banks are highly dynamic thermally and respond quickly to radiation inputs. Data on bank retreat timing, fixed with PEEP-3T TCT evidence, confirmed that they were significantly delayed up to 55 h after flood peaks. One event occurred 13 h after emergence from the flow. This suggests that mass failure processes rather than fluid entrainment dominated the system. It is also shown how, by integrating turbidity instrumentation with TCT ideas, linkages between sediment supply and sediment flux can be forged at event timescales, and a lack of sediment exhaustion was evident here. Five challenges for wider geomorphological process investigation are discussed. This event-based dynamics approach, based on continuous monitoring methodologies, appears to have considerable wider potential for stronger process inference and model testing and validation in many areas of geomorphology.

  11. How a geomorphosite inventory can contribute to regional sustainable development? The case of the Simen Mountains National Park, Ethiopia

    NASA Astrophysics Data System (ADS)

    Mauerhofer, Lukas; Reynard, Emmanuel; Asrat, Asfawossen; Hurni, Hans; Wildlife Conservation Authority, Ethiopian

    2016-04-01

    This research aimed at investigating how an inventory of geomorphosites can foster or improve the knowledge and management of geomorphological heritages in the context of developing countries. Accordingly, a geomorphosite inventory in the Simen Mountains National Park (SMNP), Ethiopia was conducted following the method of Reynard et al. (2015). The national context of geoheritage and geoconservation in Ethiopia was appraised and a road map for the management of the inventoried sites in the SMNP was elaborated. Ethiopia hosts numerous geoheritage sites, some of which of highest international significance. Therefore, geotourism has recently been promoted throughout the country (Asrat et al., 2008). Despite numerous trials of the scientific community, there is not yet a national policy for geoconservation in the country. Many parts of Ethiopia are underdeveloped in terms of economic subsistence and infrastructure, making these immediate priorities over conservation efforts. Nevertheless, this study showed that the Simen Mountains have the potential to become a UNESCO Global Geopark and that geosites could be used to develop geotourism within SMNP, and that development and conservation are not contradictory. Twenty-one geomorphosites were identified and assessed. Diverse geomorphological contexts including fluvial, structural, glacial, periglacial, anthropic and organic characterize the SMNP. The temporal stages, which allow the reconstitution of the morphogenesis of the Simen Mountains, are the Cenozoic volcanism, Last Glacial Maximum, Holocene as well as historic/modern landscape modification. Four synthesis maps were elaborated to present the results of the assessment. The average scientific value of the inventoried geomorphosites is very high compared to other inventories realized using the same method. This is particularly due to the extremely high integrity of the sites. Almost all geomorphosites are in a good state of conservation and only few sites are vulnerable to human encroachment. The educational interest of most sites is high but interpretation facilities are absent. With some minor adjustments, the application of the inventory method (Reynard et al., 2015) to the SMNP has proven successful and can be recommended for application to other areas in developing countries of similar well-documented geomorphology. However, the method could prove too complex for areas where basic knowledge on geomorphology is poor, as is often the case in developing countries. Based on previous studies (in particular Asrat et al. 2012) and results of the current inventory, a road map for SMNP geomorphosite management was proposed. Eight strategic objectives and working tasks were considered, which include the development of geotourism products such as geotourist maps, geo-trails and guidebooks, geo-trekking, geo-sightseeing tours, and interpretive panels as well as the training of geo-guides and capacity building of the park staff and specific management of the Lemalemo site, one of the most accessible geosites in the park. The overall goal is to raise awareness on the rich geomorphological heritage through geotourism development and empowerment of locals and thus to contribute to long-term protection of the geomorphosites. In conclusion the study revealed important potential for sustainable rural development in the Simen. Applied research will be necessary on how exactly the promotion products should be developed. References Asrat, A., Demissie, M., Mogessie, A. (2008). Geotourism in Ethiopia: archaelogical and ancient cities, religious and cultural centres: Yeha, Axum, Wukro, and Lalibela. Addis Ababa: Shama Books. Asrat, A., Demissie, M., Mogessie, A. (2012). Geoheritage conservation in Ethiopia: the case of the Simien Mountains. Quaestiones Geographicae, 31(1), 7-23. doi:10.2478/v10117-012-0001-0. Reynard E., Perret A., Bussard J., Grangier L., Martin S. (2015). Integrated approach for the inventory and management of geomorphological heritage at the regional scale. Geoheritage, doi: 10.1007/s12371-015-0153-0

  12. Robotic Measurement of Aeolian Processes

    NASA Astrophysics Data System (ADS)

    Roberts, S.; Duperret, J. M.; Jerolmack, D. J.; Lancaster, N.; Nikolich, G.; Shipley, T. F.; Van Pelt, R. S.; Zobeck, T. M.; Koditschek, D. E.

    2015-12-01

    Local and regional measurements of sand transport and dust emission in complex natural settings presently lack spatiotemporal resolution adequate to inform models relevant for land management, climate policy, and the basic science of geomorphology. Deployments of wind, sand and dust sensors sophisticated enough to begin unpacking the complex relations among wind turbulence, surface roughness, sand flux and dust emission remain largely stationary. Aerial observations from satellites, planes and even UAVs help fill in, but none of these modalities offer the hope of "capturing the action" by being at the right place at the right time relative to the highly localized nature of sediment transport during wind storms. We have been developing a legged robot capable of rapidly traversing desert terrain, and are now adapting it to serve as a platform for scientific instrumentation. We aim to field a semi-autonomous, reactive mobile sensory package suited to the needs of aeolian science that can address the limitations of existing alternatives. This presentation reports on early trials in the Jornada LTER and White Sands National Monument aimed at gathering measurements of airflow and rates of sand transport on a dune face, assessing the role of roughness elements such as vegetation in modifying the wind shear stresses incident on the surface, and estimating erosion susceptibility in a natural arid soil. We will solicit ideas from the audience about other potentially interesting and viable measurement targets. Future close collaboration between aeolian, cognitive and robotics scientists such as we hope to promote through this presentation may yield machines with scientifically relevant sensory suites possessing sufficient autonomy to operate in-situ at the most intense episodes of wind and sediment movement under conditions far too uncomfortable and hazardous for human presence.

  13. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  14. The topographic signature of anthropogenic geomorphic processes

    NASA Astrophysics Data System (ADS)

    Tarolli, P.; Sofia, G.

    2014-12-01

    Within an abiotic-dominated context, geomorphologic patterns and dynamics are single expressions of trade-offs between the physical resistance forces, and the mechanical and chemical forces related to climate and erosion. Recently, however, it has become essential for the geomorphological community to take into account also biota as a fundamental geomorphologic agent acting from local to regional scales. However, while there is a recent flourishing literature about the impacts of vegetation on geomorphic processes, the study of anthropogenic pressure on geomorphology is still at its early stages. Humans are indeed among the most prominent geomorphic agents, redistributing land surface, and causing drastic changes to the geomorphic organization of the landscape (e.g. intensive agriculture, urbanization), with direct consequences on land degradation and watershed response. The reconstruction or identification of artificial or anthropogenic topographies, therefore, provides a mechanism for quantifying anthropogenic changes to the landscape systems in the context of the Anthropocene epoch. High-resolution topographic data derived from the recent remote sensing technologies (e.g. lidar, SAR, SfM), offer now new opportunities to recognize better understand geomorphic processes from topographic signatures, especially in engineered landscapes where the direct anthropic alteration of processes is significant. It is possible indeed to better recognize human-induced geomorphic and anthropogenic features (e.g. road networks, agricultural terraces), and the connected erosion. The study presented here may allow improved understanding and targeted mitigation of the processes driving geomorphic changes during urban development and help guide future research directions for development-based watershed studies. Human society is deeply affecting the environment with consequences on the landscape. It is therefore fundamental to establish greater management control over the Earth's rapidly changing ecosystems. Tarolli, P. (2014). High-resolution topography for understanding Earth surface processes: opportunities and challenges, Geomorphology, 216, 295-312, doi:10.1016/j.geomorph.2014.03.008.

  15. Discovery of a Plains Caldera Complex and Extinct Lava Lake in Arabia Terra, Mars: Implications for the Discovery of Additional Highland Volcanic Source Regions

    NASA Technical Reports Server (NTRS)

    Bleacher, Jacob; Michalski, Joseph

    2012-01-01

    Several irregularly shaped topographic depressions occur near the dichotomy boundary in northern Arabia Terra, Mars. The geomorphology of these features suggests that they formed by collapse, opposed to meteor impact. At least one depression (approx.55 by 85 km) displays geologic features indicating a complex, multi-stage collapse history. Features within and around the collapse structure indicate volcanic processes. The complex occurs within Hesperian ridged plains of likely volcanic origin and displays no crater rim or evidence for ejecta. Instead the depression consists of a series of circumferential graben and down-dropped blocks which also display upper surfaces similar to ridged plain lavas. Large blocks within the depression are tilted towards the crater center, and display graben that appear to have originally been linked with circumferential graben outside of the complex related to earlier collapse events. A nearly 700 m high mound exists along a graben within the complex that might be a vent. The deepest depression displays two sets of nearly continuous terraces, which we interpret as high-stands of a drained lava lake. These features appear similar to the black ledge described during the Kilauea Iki eruption in 1959. A lacustrine origin for the terraces seems unlikely because of the paucity of channels found in or around the depression that could be linked to aqueous surface processes. In addition, there is no obvious evidence for lacustrine sediments within the basin. Together with the presence of significant faulting that is indicative of collapse we conclude that this crater complex represents a large caldera formed in the Late Noachian to Early Hesperian. Other linear and irregular depressions in the region also might be linked to ancient volcanism. If that hypothesis is correct, it suggests that northern Arabia Terra could contain a large, previously unrecognized highland igneous province. Evacuation of magma via explosive and effusive activity produced localized collapse, might have contributed to nearby ridged plains, and pyroclastic materials erupted from these vents might have supplied sediments in fretted terrain and other deposits. The recognition of volcanoes within Arabia Terra expands the known extent of Noachian-Hesperian volcanism to cover much of the preserved martian highland crust.

  16. Geomorphology from space: A global overview of regional landforms

    NASA Technical Reports Server (NTRS)

    Short, Nicholas M. (Editor); Blair, Robert W., Jr. (Editor)

    1986-01-01

    This book, Geomorphology from Space: A Global Overview of Regional Landforms, was published by NASA STIF as a successor to the two earlier works on the same subject: Mission to Earth: LANDSAT views the Earth, and ERTS-1: A New Window on Our Planet. The purpose of the book is threefold: first, to serve as a stimulant in rekindling interest in descriptive geomorphology and landforms analysis at the regional scale; second, to introduce the community of geologists, geographers, and others who analyze the Earth's surficial forms to the practical value of space-acquired remotely sensed data in carrying out their research and applications; and third, to foster more scientific collaboration between geomorphologists who are studying the Earth's landforms and astrogeologists who analyze landforms on other planets and moons in the solar system, thereby strengthening the growing field of comparative planetology.

  17. Environmental assessment of the area surrounding Dam Rio Verde - Parana/Brazil. An overview of environmental geomorphology.

    PubMed

    Garcia, Claudia Moreira; Carrijo, Beatriz Rodrigues; Sessegolo, Gisele; Passos, Everton

    2012-04-01

    This paper presents a brief essay on the situation in which the environment of the dam of the Rio Verde Basin-Parana, from the vision of environmental geomorphology. The area is located between the cities of Campo Magro and Campo Largo, Paraná plateau in the first part of theAlto Iguaçu basin. This study aims to raise the concepts relating to environmental geomorphology, to identify the anthropogenic impacts caused in the reservoir areas, identify the environmental compartments found around the dam and characterize the geologic and physiographic region. It was found that the area has intense anthropogenic influence, as urban growth is present in areas and wavy and rough terrain, subject to mass movements and floods. Besides these aspects, the use of land for agriculture contributes to fragility of the area.

  18. Faith in floods: Field and theory in landscape evolution before geomorphology

    NASA Astrophysics Data System (ADS)

    Montgomery, David R.

    2013-10-01

    Opinions about the origin of topography have long marked the frontier between science and religion. The creation of the world we know is central to religious and secular world views; and until recently the power to shape landscapes lay beyond the reach of mortals, inviting speculation as to a role for divine intervention. For centuries, Christians framed rational inquiry into the origin of topography around theories for how Noah's Flood shaped mountains and carved valleys. Only as geologists learned how to decipher Earth history and read the signature of Earth surface processes did naturalists come to understand the forces that shaped the world. In this sense, the historical roots of geomorphology lie in the tension between faith in theories and the compelling power of field observations—issues that remain relevant to the practice of geomorphology today.

  19. Global controls on carbon storage in mangrove soils

    NASA Astrophysics Data System (ADS)

    Rovai, André S.; Twilley, Robert R.; Castañeda-Moya, Edward; Riul, Pablo; Cifuentes-Jara, Miguel; Manrow-Villalobos, Marilyn; Horta, Paulo A.; Simonassi, José C.; Fonseca, Alessandra L.; Pagliosa, Paulo R.

    2018-06-01

    Global-scale variation in mangrove ecosystem properties has been explained using a conceptual framework linking geomorphological processes to distinct coastal environmental settings (CES) for nearly 50 years. However, these assumptions have not been empirically tested at the global scale. Here, we show that CES account for global variability in mangrove soil C:N:P stoichiometry and soil organic carbon (SOC) stocks. Using this ecogeomorphology framework, we developed a global model that captures variation in mangrove SOC stocks compatible with distinct CES. We show that mangrove SOC stocks have been underestimated by up to 50% (a difference of roughly 200 Mg ha-1) in carbonate settings and overestimated by up to 86% (around 400 Mg ha-1) in deltaic coastlines. Moreover, we provide information for 57 nations that currently lack SOC data, enabling these and other countries to develop or evaluate their blue carbon inventories.

  20. A Coastal Hazards Data Base for the U.S. West Coast (1997) (NDP-043C)

    DOE Data Explorer

    Gomitz, Vivien M. [Columbia Univ., New York, NY (United States); Beaty, Tammy W. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Daniels, Richard C. [The University of Tennessee, Knoville, TN (United States)

    1997-01-01

    This data base integrates point, line, and polygon data for the U.S. West Coast into 0.25 degree latitude by 0.25 degree longitude grid cells and into 1:2,000,000 digitized line segments that can be used by raster or vector geographic information systems (GIS) as well as by non-GIS data bases. Each coastal grid cell and line segment contains data variables from the following seven data sets: elevation, geology, geomorphology, sea-level trends, shoreline displacement (erosion/accretion), tidal ranges, and wave heights. One variable from each data set was classified according to its susceptibility to sea-level rise and/or erosion to form 7 relative risk variables. These risk variables range in value from 1 to 5 and may be used to calculate a Coastal Vulnerability Index (CVI). Algorithms used to calculate several CVIs are listed within this text.

  1. Some rates of geomorphological processes

    USGS Publications Warehouse

    Leopold, Luna Bergere; Emmett, William W.

    1972-01-01

    This brief report summarizes three sets of measurement data on certain processes.The first concerns the rate of movement of soil on hillslopes, especially by mass movement or slow gravitational creep. The results are abstracted from an unpublished manuscript by the junior author who reports on the measurements which Leopold began 10 or more years ago and to which in more recent years Emmett has added new sites and has carried on the annual remeasurement. The results are those from "mass-movement lines", which consist of a series of pins or iron rods, 10 inches (25 cm) long driven vertically into the ground along a straight line-of-sight, secured at each end with stiff iron posts. The Survey consists of setting a theodolite over one of the end bench marks and orienting on the other. The distance of each individual pin from the line of sight is recorded. Resurveys are usually made annually.

  2. Quantitative Modeling of Earth Surface Processes

    NASA Astrophysics Data System (ADS)

    Pelletier, Jon D.

    This textbook describes some of the most effective and straightforward quantitative techniques for modeling Earth surface processes. By emphasizing a core set of equations and solution techniques, the book presents state-of-the-art models currently employed in Earth surface process research, as well as a set of simple but practical research tools. Detailed case studies demonstrate application of the methods to a wide variety of processes including hillslope, fluvial, aeolian, glacial, tectonic, and climatic systems. Exercises at the end of each chapter begin with simple calculations and then progress to more sophisticated problems that require computer programming. All the necessary computer codes are available online at www.cambridge.org/9780521855976. Assuming some knowledge of calculus and basic programming experience, this quantitative textbook is designed for advanced geomorphology courses and as a reference book for professional researchers in Earth and planetary science looking for a quantitative approach to Earth surface processes.

  3. More details...
  4. The potential for dams to impact lowland meandering river floodplain geomorphology.

    PubMed

    Marren, Philip M; Grove, James R; Webb, J Angus; Stewardson, Michael J

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an "environmental sediment regime" to operate alongside environmental flows.

  5. A geomorphological approach to sustainable planning and management of the coastal zone of Kuwait

    NASA Astrophysics Data System (ADS)

    Al Bakri, Dhia

    1996-10-01

    The coastal zone in Kuwait has been under a considerable pressure from conflicting land uses since the early 1960s, as well as from the destruction and oil pollution caused by the Gulf War. To avoid further damage and to protect the coastal heritage it is essential to adopt an environmentally sustainable management process. This paper shows how the study of coastal geomorphology can provide a sound basis for sustainable planning and management. Based on coastal landforms, sediments and processes, the coastline of Kuwait was divided into nine geomorphic zones. These zones were grouped into two main geomorphic provinces. The northern province is marked by extensive muddy intertidal flats and dominated by a depositional and low-energy environment. The southern geomorphic province is characterised by relatively steep beach profiles, rocky/sandy tidal flats and a moderate to high-energy environment. The study has demonstrated that pollution, benthic ecology and other environmental conditions of the coast are a function of coastline geomorphology, sedimentology and related processes. The geomorphological information was used to determine the coastal vulnerability and to assess the environmental impacts of development projects and other human activities. Several strategies were outlined to integrate the geomorphic approach into the management of the coastal resources.

  6. Geomorphology and sediment transport on a submerged back-reef sand apron: One Tree Reef, Great Barrier Reef

    NASA Astrophysics Data System (ADS)

    Harris, Daniel L.; Vila-Concejo, Ana; Webster, Jody M.

    2014-10-01

    Back-reef sand aprons are conspicuous and dynamic sedimentary features in coral reef systems. The development of these features influences the evolution and defines the maturity of coral reefs. However, the hydrodynamic processes that drive changes on sand aprons are poorly understood with only a few studies directly assessing sediment entrainment and transport. Current and wave conditions on a back-reef sand apron were measured during this study and a digital elevation model was developed through topographic and bathymetric surveying of the sand apron, reef flats and lagoon. The current and wave processes that may entrain and transport sediment were assessed using second order small amplitude (Stokes) wave theory and Shields equations. The morphodynamic interactions between current flow and geomorphology were also examined. The results showed that sediment transport occurs under modal hydrodynamic conditions with waves the main force entraining sediment rather than average currents. A morphodynamic relationship between current flow and geomorphology was also observed with current flow primarily towards the lagoon in shallow areas of the sand apron and deeper channel-like areas directing current off the sand apron towards the lagoon or the reef crest. These results show that the short-term mutual interaction of hydrodynamics and geomorphology in coral reefs can result in morphodynamic equilibrium.

  7. The Potential for Dams to Impact Lowland Meandering River Floodplain Geomorphology

    PubMed Central

    Marren, Philip M.; Grove, James R.; Webb, J. Angus; Stewardson, Michael J.

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an “environmental sediment regime” to operate alongside environmental flows. PMID:24587718

  8. Uncertainties in the palaeoflood record - interpreting geomorphology since 12 500 BP

    NASA Astrophysics Data System (ADS)

    Moloney, Jessica; Coulthard, Tom; Freer, Jim; Rogerson, Mike

    2017-04-01

    Recent floods in the UK have reinvigorated the national debate within academic and non-academic organisations of how we quantify risk and improve the resilience of communities to flooding. One critical aspect of that debate is to better understand and quantify the frequency of extreme floods occurring. The research presented in this study explores the challenges and uncertainties of using longer term palaeoflood data records to improve the quantification of flood risk. The frequency of floods has been studied on short (under 100 years) and long-time (over 200 years) scales. Long term flood frequency records rely on the radiocarbon dating and interpretation of geomorphological evidence within fluvial depositional environments. However, there are limitations with the methods used to do this. Notably, the use of probability distribution functions of fluvial deposits dates does not consider any other information, such as the geomorphological context of material and/ or the type of depositional environment. This study re-analyses 776 radiocarbon dated fluvial deposits from the UK, which have been compiled into a database, to interpret the geomorphological flood record. Initial findings indicate that even this large number of samples may be unsuitable for probabilistic methods and shows an unusual sensitivity to the number of records present in the database.

  9. Geomorphological Mapping on the Southern Hemisphere of Comet 67P/Churyumov-Gerasimenko

    NASA Astrophysics Data System (ADS)

    Lee, Jui-Chi; Massironi, Matteo; Giacomini, Lorenza; Ip, Wing-Huen; El-Maarry, Mohamed R.

    2016-04-01

    Since its rendezvous with comet 67P/Churyumov-Gerasimenko on the sixth of August, 2014, the Rosetta spacecraft has carried out close-up observations of the nucleus and coma of this Jupiter family comet. The OSIRIS, the Scientific Imaging Camera System onboard the Rosetta spacecraft, which consists of a narrow-angle and wide-angle camera (NAC and WAC), has made detailed investigations of the physical properties and surface morphology of the comet. From May 2015, the southern hemisphere of the comet became visible and the adaptical resolution was high enough for us to do a detailed analysis of the surface. Previous work shows that the fine particle deposits are the most extensive geomorphological unit in the northern hemisphere. On the contrary, southern hemisphere is dominated by rocky-like stratified terrain. The southern hemisphere of the nucleus surface reveals quite different morphologies from the northern hemisphere. This could be linked to the different insolation condition between northern and southern hemisphere. As a result, surface geological processes could operate with a diverse intensity on the different sides of the comet nucleus. In this work, we provide the geomorphological maps of the southern hemisphere with linear features and geological units identified. The geomorphological maps described in this study allow us to understand the processes and the origin of the comet.

  10. From erosion to earthquakes: A geomorphic model for intraplate seismicity in post-orogenic settings

    NASA Astrophysics Data System (ADS)

    Gallen, S. F.; Thigpen, J. R.

    2017-12-01

    Intraplate seismicity does not conform to plate tectonics theory and its driving mechanisms remain uncertain, yet it is recognized as a relevant seismic hazard to populated regions, such as eastern North America. A variety of models, mostly geodynamic or tectonic in origin, have been proposed to explain this enigma, but conclusive supporting evidence remains elusive. In order to identify high hazard areas and derive predictive models, it is imperative to identify the underlying processes responsible for intraplate seismicity. Here we conduct an interdisciplinary study of the Eastern Tennessee Seismic Zone (ETSZ), the second most seismically active region east of the Rocky Mountains in the North American continent, to clarify the potential mechanisms driving intraplate seismicity in post-orogenic and passive margin settings. Previous studies document that the Upper Tennessee drainage basin, which lies directly above the ETSZ, is in a transient state of adjustment to 150 m of base level fall that was provoked by river capture in the Late Miocene. Using quantitative geomorphology, we demonstrate that base level fall enhanced erosion rates in a 75 km wide 400 km long corridor of highly erodible rocks in the late Paleozoic (Alleghanian orogen) fold-thrust belt. The total volume of rock preferentially removed above the ETSZ since 9 Ma is 3,600 ± 150 km3. Stress modeling indicates spatially focused erosion has of reduced clamping stresses on ancient basement normal faults beneath the Appalachian fold-thrust belt on the order of 3.5 MPa, with a time-averaged unclamping rate of 0.4 Pa yr-1. Under the assumption that the crust is critically stressed, we argue that the preferential erosion of less competent rock units reduced clamping stresses on relict faults such to induce seismic activity in the ambient stress field. This model for surface process-induced intraplate seismicity is generally transferable to other continental settings where complex geology and landscape dynamics conspire to spatially focus erosion and perturb the stress field in the mid-to-upper crust.

  11. Sedimentology and preservation of aeolian sediments on steep terrains: Incipient sand ramps on the Atacama coast (northern Chile)

    NASA Astrophysics Data System (ADS)

    Ventra, Dario; Rodríguez-López, Juan Pedro; de Boer, Poppe L.

    2017-05-01

    The origin of topographically controlled aeolian landforms in high-relief settings is difficult to synthesize under general models, given the dependence of such accumulations on local morphology. Quaternary sand ramps have been linked to palaeoclimate, regional geomorphology and wind patterns; however, controls on the early development and preservation of such landforms are poorly known. This study describes the morphology and sedimentology of complex sedimentary aprons along steep coastal slopes in the Atacama Desert (Chile). Direct slope accessibility and continuous stratigraphic exposures enable comparisons between active processes and stratigraphic signatures. Stratigraphic facies distribution and its links with patterns of aeolian deposition show that the preservation of wind-laid sediments depends on the morphology and processes of specific slope sectors. The spatial organization of runoff depends on bedrock configuration and directly controls the permanence or erosion of aeolian sediment. The occurrence of either water or mass flows depends on the role of aeolian fines in the rheology of flash floods. In turn, the establishment of a rugged surface topography controlled by patterns of mass-flow deposition creates local accommodation for aeolian fines, sustaining the initial aggradation of a colluvial-aeolian system. By contrast, slopes subject to runoff develop a thin, extensive aeolian mantle whose featureless surface is subject mostly to sediment bypass down- and across-slope; the corresponding stratigraphic record comprises almost exclusively thin debris-flow and sheetflood deposits. Slope morphology and processes are fundamental in promoting or inhibiting aeolian aggradation in mountain settings. Long-term sand-ramp construction depends on climate and regional topography, but the initial development is probably controlled by local geomorphic factors. The observed interactions between wind and topography in the study area may also represent a process analogue for the interpretation of similar geomorphic features on Mars.

  12. Simulating the mobility of meteoric 10Be in the landscape through a coupled soil-hillslope model (Be2D)

    NASA Astrophysics Data System (ADS)

    Campforts, Benjamin; Vanacker, Veerle; Vanderborght, Jan; Baken, Stijn; Smolders, Erik; Govers, Gerard

    2016-04-01

    Meteoric 10Be allows for the quantification of vertical and lateral soil fluxes over long time scales (103-105 yr). However, the mobility of meteoric 10Be in the soil system makes a translation of meteoric 10Be inventories into erosion and deposition rates complex. Here, we present a spatially explicit 2D model simulating the behaviour of meteoric 10Be on a hillslope. The model consists of two parts. The first component deals with advective and diffusive mobility of meteoric 10Be within the soil profile, and the second component describes lateral soil and meteoric 10Be fluxes over the hillslope. Soil depth is calculated dynamically, accounting for soil production through weathering as well as downslope fluxes of soil due to creep, water and tillage erosion. Synthetic model simulations show that meteoric 10Be inventories can be related to erosion and deposition across a wide range of geomorphological and pedological settings. Our results also show that meteoric 10Be can be used as a tracer to detect human impact on soil fluxes for soils with a high affinity for meteoric 10Be. However, the quantification of vertical mobility is essential for a correct interpretation of the observed variations in meteoric 10Be profiles and inventories. Application of the Be2D model to natural conditions using data sets from the Southern Piedmont (Bacon et al., 2012) and Appalachian Mountains (Jungers et al., 2009; West et al., 2013) allows to reliably constrain parameter values. Good agreement between simulated and observed meteoric 10Be concentrations and inventories is obtained with realistic parameter values. Furthermore, our results provide detailed insights into the processes redistributing meteoric 10Be at the soil-hillslope scale.

  13. River restoration: separating myths from reality

    NASA Astrophysics Data System (ADS)

    Friberg, N.; Woodward, G.

    2015-12-01

    River restorations are a social construct where degraded systems are physically modified to obtain a pre-disturbance set of attributes. These can be purely esthetic but are often linked to some kind of biotic recovery or the provision of important ecosystem services such as flood control or self-purification. The social setting of restoration projects, with a range of potential conflicts, significantly reduces scale of most interventions to a size with little room, or wish, for natural processes. We show that projects sizes are still very small and that the restoration target is not to recover natural geomorphic processes but rather to fulfil human perception of what a nice stream looks like. One case from Danish lowland streams, using a space-for-time substitution approach, shows excess use of pebble and gravel when restoring channelized sandy bottom streams, de-coupling the link between energy and substrate characteristics that are found in natural lowland systems. This has implication for both the biological structure and functioning of these systems as a direct link between substrate heterogeneity and macroinvertebrate diversity was not found in restored streams, while the density of grazer increased indicating an increased use of periphyton as a basal resource. Another case of adding woody debris to UK lowland streams, using a BACI study design, showed very little effect on the macroinvertebrate community even after a 100-year flood, which indicate that added tree trunks did not provide additional flow refugia. We suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers.

  14. Depositional setting and early diagenesis of the dinosaur eggshell-bearing Aren Fm at Bastus, Late Campanian, south-central Pyrenees

    NASA Astrophysics Data System (ADS)

    Díaz-Molina, Margarita; Kälin, Otto; Benito, M. Isabel; Lopez-Martinez, Nieves; Vicens, Enric

    2007-07-01

    The Late Cretaceous Aren Fm exposed north of Bastus in the Tremp Basin (south-central Pyrenees) preserves an excellent record of dinosaur eggs laid in a marine littoral setting. Different from other cases reported in literature, at the Bastus site the preferential nesting ground was original beach sand. The coastal deposits of Aren Fm can be grouped into four facies assemblages, representing respectively shoreface, beachface, beach ridge plain and backbarrier lagoon environments. Shoreface deposits include fine- to coarse-grained hybrid arenites and subordinate quartz-dominated conglomerates with ripple structures of wave and wave-current origin. Beachface deposits are mainly storm beach conglomerates, but parallel-laminated foreshore arenites locally occur. Backbarrier lagoon deposits comprise of washover sandy conglomerates that grade laterally into sandy lime mudstones, biomicrites and marls. Beach ridge sediment, wherein the bulk of dinosaur eggs and eggshell debris occurs, predominantly is a reddish hybrid arenite that has undergone a complex early diagenetic evolution, including marine and meteoric cementation followed by soil development. The reddish arenites overlie wave-dominated shoreface deposits and in places pass laterally into lagoonal deposits. They originally formed shore ridges, that became stabilized during progradational episodes by pedogenesis (beach ridge, sensu [Otvos, E.G., 2000. Beach ridges—definitions and significance. Geomorphology 32, 83-108.]), which also affected the dinosaur eggs. The eggshell-bearing beach ridge arenites are typically preserved at the top of parasequences forming the systems tracts of a third-order sequence. Thick packages of this facies resulted from aggradation of barrier/beach ridge deposits, whose preservation below surfaces of transgressive erosion was favoured by incipient lithification.

  15. Controls on the early Holocene collapse of the Bothnian Sea Ice Stream

    NASA Astrophysics Data System (ADS)

    Clason, Caroline C.; Greenwood, Sarah L.; Selmes, Nick; Lea, James M.; Jamieson, Stewart S. R.; Nick, Faezeh M.; Holmlund, Per

    2016-12-01

    New high-resolution multibeam data in the Gulf of Bothnia reveal for the first time the subglacial environment of a Bothnian Sea Ice Stream. The geomorphological record suggests that increased meltwater production may have been important in driving rapid retreat of Bothnian Sea Ice during deglaciation. Here we apply a well-established, one-dimensional flow line model to simulate ice flow through the Gulf of Bothnia and investigate controls on retreat of the ice stream during the post-Younger Dryas deglaciation of the Fennoscandian Ice Sheet. The relative influence of atmospheric and marine forcings are investigated, with the modeled ice stream exhibiting much greater sensitivity to surface melting, implemented through surface mass balance and hydrofracture-induced calving, than to submarine melting or relative sea level change. Such sensitivity is supported by the presence of extensive meltwater features in the geomorphological record. The modeled ice stream does not demonstrate significant sensitivity to changes in prescribed ice stream width or overall bed slope, but local variations in basal topography and ice stream width result in nonlinear retreat of the grounding line, notably demonstrating points of short-lived retreat slowdown on reverse bed slopes. Retreat of the ice stream was most likely governed by increased ice surface meltwater production, with the modeled retreat rate less sensitive to marine forcings despite the marine setting.

  16. A Representation of an Instantaneous Unit Hydrograph From Geomorphology

    NASA Astrophysics Data System (ADS)

    Gupta, Vijay K.; Waymire, Ed; Wang, C. T.

    1980-10-01

    The channel network and the overland flow regions in a river basin satisfy Horton's empirical geo-morphologic laws when ordered according to the Strahler ordering scheme. This setting is presently employed in a kinetic theoretic framework for obtaining an explicit mathematical representation for the instantaneous unit hydrograph (iuh) at the basin outlet. Two examples are developed which lead to explicit formulae for the iuh. These examples are formally analogous to the solutions that would result if a basin is represented in terms of linear reservoirs and channels, respectively, in series and in parallel. However, this analogy is only formal, and it does not carry through physically. All but one of the parameters appearing in the iuh formulae are obtained in terms of Horton's bifurcation ratio, stream length ratio, and stream area ratio. The one unknown parameter is obtained through specifying the basin mean lag time independently. Three basins from Illinois are selected to check the theoretical results with the observed direct surface runoff hydrographs. The theory provided excellent agreement for two basins with areas of the order of 1100 mi2 (1770 km2) but underestimates the peak flow for the smaller basin with 300-mi2 (483-km2) area. This relative lack of agreement for the smaller basin may be used to question the validity of the linearity assumption in the rainfall runoff transformation which is embedded in the above development.

  17. Geomorphology and age of the Marocche di Dro rock avalanches (Trentino, Italy)

    NASA Astrophysics Data System (ADS)

    Ivy-Ochs, S.; Martin, S.; Campedel, P.; Hippe, K.; Alfimov, V.; Vockenhuber, C.; Andreotti, E.; Carugati, G.; Pasqual, D.; Rigo, M.; Viganò, A.

    2017-08-01

    The Marocche di Dro deposits in the lower Sarca Valley are some of the most distinctive rock avalanche deposits of the Alps. We use geomorphology and cosmogenic 36Cl exposure dating of boulders to divide the Marocche di Dro deposits into two rock avalanche bodies; the Marocca Principale to the north and the Kas to the south. The deposits were previously undated and had been mapped as up to five different events. The largest event Marocca Principale, which comprises an estimated 1000 106 m3 of predominantly Rotzo Formation limestones, occurred 5300 ± 860 yr ago. The release area is located mainly in the alcove between Mt. Casale and Mt. Granzoline, but likely extends all the way to Mt. Brento. The Kas event took place 1080 ± 160 yr ago with detachment below Mt. Brento. The Kas debris, with an estimated volume of 300 106 m3, buried the southern third of the Marocca Principale deposit. Kas presents a barren, stark landscape dominated by house-sized Tovel Member Rotzo Formation boulders bearing distinctive chert lenses. Both the extreme relief of the rock wall (more than 1300 m) and the tectonic setting predispose the range front to massive failure. For the two events, initially translational movement likely quickly evolved into complex failure and massive collapse. Run-out across the valley of several kilometers and run-up on the opposite slope of hundreds of meters followed. A summary of all dated and large historical landslides in the Alps underlines the periods of enhanced slope activity discussed in the literature: 10-9 kyr, 5-3 kyr, and 2-1 kyr, the latter especially for the Southern Alps. No deposits of the first temporal cluster are found at Marocche di Dro. The age of Marocca Principale at 5300 ± 860 yr suggests occurrence during the second period. Failure may have been related to the shift to wetter, colder climate at the transition from the middle to the late Holocene. Nevertheless, a seismic trigger cannot be ruled out. For the Kas rock avalanche at 1080 ± 160 yr ago we implicate the ;Middle Adige Valley; (1046 CE) earthquake as trigger. Its epicentral distance is much closer to the Sarca Valley in comparison to that of the Verona earthquake (1117 CE).

  18. Inventory of geomorphosites with educational purposes in the Province of Málaga (South of Spain).

    NASA Astrophysics Data System (ADS)

    Martínez-Murillo, Juan F.; Ruiz-Sinoga, José D.; Ferre-Bueno, Emilio

    2017-04-01

    The geomorphological landscape, as it was defined by Reynard (2004) can be considered a portion of the geomorphological context that is viewed, perceived, (and sometimes ex- ploited) by Man and, when perceived by humans and characterised by certain attributes, it may be considered a wider geomorphosite (Reynard and Panizza, 2005) or a complex of geomorphosites inside of which single geomorphosites can be individuated. Moreover, single geomorphosites belong to a landscape system that is dynamic, and thus the comprehension of a geomorphosite mechanism requires good observations, measurements and quantifications of processes (Reynard 2004). Since 1990s, interest on geomorphosite studies has increased, especially, due to their educational. The aim of this study is to present a complete inventory of the main geomorphosites that can be found in the Province of Málaga, with educational purposes. The Province of Málaga, located in the South of Spain, in the Mediterranean Coast but very close to the Atlantic Ocean, is characterised by a wide range of geomorphological landscape, with many different landforms and very dynamic land uses. The methodology follows that proposed by the Spanish Geological and Mining Institute (IGME, 2014). In total, more than 100-geomorphosites were recognised, inventoried and classified in order to achieve a better comprehension and improve the learning of high academic level students. References IGME, 2014. Documento metodológico para la elaboración del inventario español de lugares de interés geológico (IELIG). Instituto Geológico y Minero de España, Madrid, España, pp. 64. Pelfini, M., Bollati, I. 2014. Landforms and geomorphosites ongoing changes: concepts and implications for geoheritage promotion. Quaestiones Geographicae, 33-1: 131-143. Reynard E., 2004. Géotopes, géo(morpho)sites et paysag- es géomorphologiques. In: E. Reynard, J.P. Pralong (eds), Paysages géomorphologiques, Institut de géographie, Travaux et Recherches, Lausanne 27, pp. 124-136. Reynard E., Panizza M., 2005. Geomorphosites: de nition, assessment and mapping. An introduction. Géomorphologie: relief, processus, environnement, 3: 177-180.

  19. Core-seismic investigation of Surveyor Channel tributaries: Glacial history of the southern Alaskan margin

    NASA Astrophysics Data System (ADS)

    Somchat, K.; Reece, R.; Gulick, S. P. S.; Asahi, H.; Mix, A. C.

    2016-12-01

    The low angle subduction and collision of the Yakutat microplate with the North America Plate created, and continues to contribute to the uplift of the Chugach-St. Elias Range. This heavily glaciated, high topography proximal to the shoreline creates a unique source-to-sink system in which glacial sediment is transported and preserved offshore in a deep sea fan without much interruption. The product of this sediment is the Surveyor Fan and Channel system. Four tributary channels form the head of the Surveyor Channel complex and merge into the main channel trunk 200 km from the shelf edge. We integrate drill core and seismic reflection data to study the evolution of these tributaries in order to decipher glacial history of the southern Alaskan margin since the mid-Pleistocene (1.2 Ma). Updated age models from Integrated Ocean Drilling Program Expedition 341 Sites U1417 and U1418 provide a higher resolution chronology of sediment delivery to the Surveyor Fan than previous studies. We regionally extended the mapping of seismic subunits previously identified by Exp. 341 scientists at sites U1417 and U1418 and analyzed regional patterns of sediment deposition. Two-way travel time (isopach) maps of the three subunits show a trend of sediment depocenter shifting to the east since 1.2 Ma, where the Yakutat and Alsek tributaries have increasing sediment flux through time. Changes in sediment flux in each system represent the changes in locations and amplitudes of glacial ice over successive glacial intervals. Additionally, seismic analysis of channel geomorphology shows that each system contains distinct geomorphological evolutions. Since glacial erosion provides the sediment for the fan, the history of glacial ice onshore can be inferred from seismic geomorphology, where changes in glacial ice affect sediment supply and therefore shifts in depocenters and sedimentation pathways. This study shows an interaction between glacial activity onshore and deep sea fan sediment deposition and has implications for how glacial ice at high latitude margins can shape continental margins on a 100 kyr timescale.

  20. Structure and geomorphology of the "big bend" in the Hosgri-San Gregorio fault system, offshore of Big Sur, central California

    NASA Astrophysics Data System (ADS)

    Johnson, S. Y.; Watt, J. T.; Hartwell, S. R.; Kluesner, J. W.; Dartnell, P.

    2015-12-01

    The right-lateral Hosgri-San Gregorio fault system extends mainly offshore for about 400 km along the central California coast and is a major structure in the distributed transform margin of western North America. We recently mapped a poorly known 64-km-long section of the Hosgri fault offshore Big Sur between Ragged Point and Pfieffer Point using high-resolution bathymetry, tightly spaced single-channel seismic-reflection and coincident marine magnetic profiles, and reprocessed industry multichannel seismic-reflection data. Regionally, this part of the Hosgri-San Gregorio fault system has a markedly more westerly trend (by 10° to 15°) than parts farther north and south, and thus represents a transpressional "big bend." Through this "big bend," the fault zone is never more than 6 km from the shoreline and is a primary control on the dramatic coastal geomorphology that includes high coastal cliffs, a narrow (2- to 8-km-wide) continental shelf, a sharp shelfbreak, and a steep (as much as 17°) continental slope incised by submarine canyons and gullies. Depth-converted industry seismic data suggest that the Hosgri fault dips steeply to the northeast and forms the eastern boundary of the asymmetric (deeper to the east) Sur Basin. Structural relief on Franciscan basement across the Hosgri fault is about 2.8 km. Locally, we recognize five discrete "sections" of the Hosgri fault based on fault trend, shallow structure (e.g., disruption of young sediments), seafloor geomorphology, and coincidence with high-amplitude magnetic anomalies sourced by ultramafic rocks in the Franciscan Complex. From south to north, section lengths and trends are as follows: (1) 17 km, 312°; (2) 10 km, 322°; (3)13 km, 317°; (4) 3 km, 329°; (5) 21 km, 318°. Through these sections, the Hosgri surface trace includes several right steps that vary from a few hundred meters to about 1 km wide, none wide enough to provide a barrier to continuous earthquake rupture.

  21. Quantifying the Influence of Waves and Tides in Shaping Delta Morphologies with the Use of Numerical Modelling.

    NASA Astrophysics Data System (ADS)

    Adam, A.; Avdis, A.; Allison, P. A.

    2016-12-01

    Deltas form at river mouths with a geomorphology that is controlled by the energy level of the river and the water body into which it is flowing and sedimentation rate. Modern deltas are often areas of high productivity and thus important fisheries and diversity hotspots and also home to millions of people. Geologically ancient deltas are important hydrocarbon prospects that can include both source rocks and reservoirs. Deltas around the world show considerable variability in their geomorphology,but can be geomorphologically classified based on the dominant physical processes controlling sedimentation (wave, fluvial and tidal). There is clear value in being able to determine the relative importance of these processes on geologically ancient deltas, as this information can inform hydrocarbon exploitation strategies. The interaction of these processes, however, is complex and/or temporal and spatially variable. One approach is the use of numerical modelling. Earth system models are now used to study the Earth's climate, either to reconstruct the past and understand the forces that shaped Earth, or to predict the future. Atmospheric and oceanic models are used in conjunction to calculate the propagation and evolution of winds, waves and tides over long periods of time. Using this information to study the coastal geophysical processes can be very useful, since both the temporal variabilities and temporal ranges of the dominant forces can be accounted for.Herein we outline a research strategy and initial results that quantify the wave and tidal influences on some of the largest deltas and study their relative impact on delta morphologies. First an ocean circulation model (Fluidity) and a spectral wave model (SWAN) are used to simulate the waves and tides in modern Earth, globally. The results are then validated against measurements and the tidal- and wave- induced bed shear stresses are calculated for a wide range of deltas. The utility of numerical modelling as a classification metric is then tested by comparing the results with well known morphologies. Finally the models are applied to the Mesozoic deltas in an effort to evaluate the impact of these processes on geologically ancient deltas.

  1. Noise is the new signal: Moving beyond zeroth-order geomorphology (Invited)

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.

    2010-12-01

    The last several decades have witnessed a rapid growth in our understanding of landscape evolution, led by the development of geomorphic transport laws - time- and space-averaged equations relating mass flux to some physical process(es). In statistical mechanics this approach is called mean field theory (MFT), in which complex many-body interactions are replaced with an external field that represents the average effect of those interactions. Because MFT neglects all fluctuations around the mean, it has been described as a zeroth-order fluctuation model. The mean field approach to geomorphology has enabled the development of landscape evolution models, and led to a fundamental understanding of many landform patterns. Recent research, however, has highlighted two limitations of MFT: (1) The integral (averaging) time and space scales in geomorphic systems are sometimes poorly defined and often quite large, placing the mean field approximation on uncertain footing, and; (2) In systems exhibiting fractal behavior, an integral scale does not exist - e.g., properties like mass flux are scale-dependent. In both cases, fluctuations in sediment transport are non-negligible over the scales of interest. In this talk I will synthesize recent experimental and theoretical work that confronts these limitations. Discrete element models of fluid and grain interactions show promise for elucidating transport mechanics and pattern-forming instabilities, but require detailed knowledge of micro-scale processes and are computationally expensive. An alternative approach is to begin with a reasonable MFT, and then add higher-order terms that capture the statistical dynamics of fluctuations. In either case, moving beyond zeroth-order geomorphology requires a careful examination of the origins and structure of transport “noise”. I will attempt to show how studying the signal in noise can both reveal interesting new physics, and also help to formalize the applicability of geomorphic transport laws. Flooding on an experimental alluvial fan. Intensity is related to the cumulative amount of time flow has visited an area of the fan over the experiment. Dark areas represent an emergent channel network resulting from stochastic migration of river channels.

  2. Traces on the 'Ubaidian Shore: Mid-Holocene Eustasis, Marine Transgression, and Urbanization in the Mesopotamian Delta (Iraq)

    NASA Astrophysics Data System (ADS)

    Pournelle, J. R.; Smith, J. R.; Hritz, C.; Nsf Hrrpaa 1045974

    2011-12-01

    Development and flourit of pre-urban and urban complex societies of southern Mesopotamia (Iraq) during the mid-Holocene took place in the context of Tigris-Euphrates and Karun-Karkheh deltaic progradation on one hand, and marine transgression at the head of the Gulf on the other. Understanding these processes has profound implications for assessing likely resource bioavailability, resource extraction and transport options, population distribution and density, and labour requirements for intensification/ extensification of extraction and production activities during this critical formative period. Multiple attempts have been made to reconstruct the Gulf "shoreline" at various pre-historic and historical periods. Because no systematic coring operations have been undertaken in the region, these attempts have been hampered by the paucity of direct geologic evidence. Conflicting hypotheses based on models of deltaic subsidence, tectonic uplift, and and/or eustatic change were barely testable against scant available cores and archaeologically-derived proxies from a few sites on the western "shore," such as H3, Eridu, Ur, Uruk, and Tell al Oueli. Recently published coring operations in the Iranian Karun-Karkheh delta add considerably to the available corpus of archaeological and geomorphologic data useful for reconstructing the timeline and extent of these processes, especially on the eastern "shore," but these are also bounded in spatial and temporal extent. Multi-scale, multi-sensor processing of remote sensing data and imagery make possible a fuller interpretation of geomorphologic and artifactual evidence bearing on overall shoreline reconstruction from approximately 6,000-3,000 BCE. This paper reports the results of combining interpreted LANDSAT, ASTER, SPOT, CORONA, Digital Globe, and other imagery with multiple derived Digital Elevation Models, thus providing stochastic boundaries for re-interpreting geological and archaeological point data, as well as new pilot data collected in 2010-2011. The result is better understanding of the likely location, extent, and impact of maximum mid-Holocene marine incursion into lower Mesopotamia and Khuzistan associated with deltaic geomorphological and ecological evolution, with implications for assessing site locations, agricultural potential, and water transport routes available to the world's oldest-known cities.

  3. Mapping Drought Sensitivity of Ecosystem Functioning in Mountainous Watersheds: Spatial Heterogeneity and Geological-Geomorphological Control

    NASA Astrophysics Data System (ADS)

    Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.

    2016-12-01

    Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our results highlight the importance of geology and subsurface flow conditions, in addition to snow accumulation. In parallel, the remotely-sensed drought sensitivity can be used as a scalable metric to identify the vulnerable regions to the future climate change, as well as to inform future sampling and characterization.

  4. Preliminary Inventory of geomorphosites along The Great Málaga Path (Gran Senda de Málaga).

    NASA Astrophysics Data System (ADS)

    Martinez-Murillo, Juan F.; Ferre-Bueno, Emilio; Ruiz-Sinoga, José D.

    2016-04-01

    Reynard (2004) defined a geomorphological landscape as a portion of the geomorphological context that is viewed, perceived, (and sometimes ex- ploited) by Man and, when perceived by humans and characterised by certain attributes, it may be considered a wider geomorphosite (Reynard and Panizza, 2005) or a complex of geomorphosites inside of which single geomorphosites can be individuated. Moreover, single geomorphosites belong to a landscape system that is dynamic, and thus the comprehension of a geomorphosite mechanism requires good observations, measurements and quantifications of processes (Reynard 2004). Since 1990s, interest on geomorphosite studies has increased, especially, due to their educational. The aim of this study is to present a preliminary inventory of the main geomorphosites that can be found along the Great Málaga Path (or Gran Senda de Málaga). This route, developed by the Government of Malaga Province, is a pioneer in Andalusia route incorporating the territorial and environmental range of an entire province, integrating it into a journey that stimulates interest in natural spaces. One of the main attractions is crossing most of the more important sites from the geomorphological point of view in the Province of Málaga. In this study, some of them are inventoried in order to highlight their importance and improve their knowledge from educational and touristic purposes. The methodology follows that proposed by the Spanish Geological and Mining Institute (IGME, 2014). References IGME, 2014. Documento metodológico para la elaboración del inventario español de lugares de interés geológico (IELIG). Instituto Geológico y Minero de España, Madrid, España, pp. 64. Pelfini, M., Bollati, I. 2014. Landforms and geomorphosites ongoing changes: concepts and implications for geoheritage promotion. Quaestiones Geographicae, 33-1: 131-143. Reynard E., 2004. Géotopes, géo(morpho)sites et paysag- es géomorphologiques. In: E. Reynard, J.P. Pralong (eds), Paysages géomorphologiques, Institut de géographie, Travaux et Recherches, Lausanne 27, pp. 124-136. Reynard E., Panizza M., 2005. Geomorphosites: de nition, assessment and mapping. An introduction. Géomorphologie: relief, processus, environnement, 3: 177-180.

  5. Catchment controls and human disturbances on the geomorphology of small Mediterranean estuarine systems

    NASA Astrophysics Data System (ADS)

    Estrany, Joan; Grimalt, Miquel

    2014-10-01

    Geographic signatures are physical and human-induced characteristics or processes that identify comparable or unique features of estuaries along latitudinal gradients. In Mediterranean areas, the microtidal regime and the strong seasonal and inter-annual contrasts cause an alternation between relatively high runoff and arid conditions. Furthermore, the long history of human settlement also increases the complexity in the study of these estuarine systems. This study investigates these signatures of the estuaries located within the Mallorcan eastern coast, which are geomorphologically homogeneous because of a similar bedrock geology and Holocene history. A multi-method approach focused on the integration of geomorphometry, hydraulics, historical sources and statistics was used. We explore the role played by catchment morphometric parameters, severe flash flood events and human disturbances in controlling the geomorphology of 10 beach-barrier enclosed, fluvial incised lagoons. Most of the lagoons discharge into 'calas', ranging in size from 1345 to 17,537 m2 and their related catchments are representative of the Mediterranean hydrological systems. Multiple regression models illustrate that the size, slope and drainage network development of the catchments explain the variance in length (r2 = 0.67), volume (r2 = 0.49), area (r2 = 0.64), circularity (r2 = 0.72) and average width (r2 = 0.81) of the lagoons. Depending on these catchment morphometric variables, the shape of the lagoons is also determined by the occurrence of catastrophic flash floods, which cause scouring and dredging, whereas the ordinary flood events and sea storms promote refilling and sedimentation. A historical analysis since 1850 documented 18 flood events, 5 of which were catastrophic with destructive effects along the catchments and large morphological changes in coastal lagoons. High intensity rainfall (up to 200 mm in 2 h), the geomorphometry of the catchments and the massive construction of terraces and transverse walls are involved in the generation of catastrophic flood events. Additionally, the lagoons were altered considerably by human intervention for flood control and to allow for an increased amount of human activities within the surrounding areas, although the high recurrence of catastrophic flood events causes a persistent difficulty in the human battle to dominate these ecosystems. Therefore, the area occupied by lagoons increased between 1956 and the present time from 31,981 m2 to 63,802 m2 because of the high recurrence of catastrophic flood events. Furthermore, tourism demand and a social conservation consciousness have promoted restoration and preservation since the 1990s. This study has improved the geomorphological knowledge of small Mediterranean estuaries affected by human disturbances in the high-energy environment found in Mallorca.

  6. The constructed catchment Chicken Creek as Critical Zone Observatory under transition

    NASA Astrophysics Data System (ADS)

    Gerwin, Werner; Schaaf, Wolfgang; Elmer, Michael; Hinz, Christoph

    2014-05-01

    The constructed catchment Chicken Creek was established in 2005 as an experimental landscape laboratory for ecosystem research. The 6 ha area with clearly defined horizontal as well as vertical boundary conditions was left for an unrestricted primary succession. All Critical Zone elements are represented at this site, which allows the study of most processes occurring at the interface of bio-, pedo-, geo- and hydrosphere. It provides outstanding opportunities for investigating interactions and feedbacks between different evolving compartments during ecosystem development. The catchment is extensively instrumented since 2005 in order to detect transition stages of the ecosystem. Data recorded with a high spatial and temporal resolution include hydrological, geomorphological, pedological, limnological as well as biological parameters. In contrast to other Critical Zone Observatories, this site offers the unique situation of an early stage ecosystem with highly dynamic system properties. The first years of development were characterized by a fast formation of geomorphological structures due to massive erosion processes at the initially non-vegetated surface. Hydrological processes led to the establishment of a local groundwater body within 5 years. In the following years the influence of biological structures like vegetation patterns gained an increasing importance. Feedbacks between developing vegetation and e.g. hydrological features became more and more dominant. As a result, different phases of ecosystem development could be distinguished until now. This observatory offers manifold possibilities to identify and disentangle complex interactions between Critical Zone processes in situ under natural conditions. The originally low complexity of the system is growing with time facilitating the identification of influences of newly developing structures on system functions. Thus, it is possible to study effects of small-scale processes on the whole system at the landscape scale. In addition, the highly dynamic initial system properties allow the observation of multifaceted changes of Critical Zone properties and functions within short periods of time. Chicken Creek could complement the existing network of Critical Zone Observatories which are usually established at ecosystems in a mature state.

  7. Characterization of the Navy Fan Channel-to-Lobe Transition: Geomorphology, Gradient, and Structure Imaged through High-Resolution AUV Bathymetry

    NASA Astrophysics Data System (ADS)

    Carvajal, C.; Paull, C. K.; Caress, D. W.; Anderson, K.; Lundsten, E. M.; Gwiazda, R.; Fildani, A.; Dykstra, M.; McGann, M.; Maier, K. L.; Herguera, J. C.

    2016-12-01

    Channel to lobe transition zones (CLTZ) are elusive sectors of the seafloor. They record complex interactions between sediment-gravity flows, flow confinement, and gradient that can result in contrasting geomorphologies. If present, structural controls can add additional intricacies. We illustrate such complexities in the Navy Fan CLTZ offshore California/Mexico using AUV-collected high-resolution (1x1x0.25 m) bathymetry and chirp profiles. The AUV bathymetry images the fine scale details of the seafloor, otherwise unresolved in surface-ship-mounted multibeam bathymetry. Three morphological areas standout that in a direction transverse to sediment transport are: 1) An unconfined area with variable but overall steep gradients (0.5o-1.7o), and considerable erosion shown by numerous large scours that truncate underlying strata. These scours are elongate (<500x180 m), deep (<18 m), asymmetric (steeper proximally), and more prominent along steeper gradients; 2) An area of moderate confinement along a smoother, gentler gradient (0.2o-0.5o; 0.9o locally). This area is 8 km long with a channel (WxD: 233x11 m) that transitions basinwards to low confinement (WxD: 1000x4 m); and 3) An area with an escarpment (<25 m high, <19o) and ridge of the San Clemente Fault. We hypothesize that the erosional morphologies of the unconfined areas reflect swifter turbidity currents due to high gradients, which resulted from relief along the San Clemente Fault and probably from differential seafloor aggradation. In the moderate confinement area, the smoother and gentler seafloor may be related to more efficient sediment dispersal able to transfer/deposit sediment to heal structural relief (though not completely) while avoiding significant local aggradation, hence preventing major gradient build up. In the faulted area, the steep and prominent structure reroutes the sediments. The findings of this study have broad application to any seafloor areas with rapid changes of gradient.

  8. Hydrodynamics, vegetation transition and geomorphology coevolution in a semi-arid floodplain wetland.

    NASA Astrophysics Data System (ADS)

    Sandi, Steven; Rodriguez, Jose F.; Saco, Patricia M.; Riccardi, Gerardo; Wen, Li; Saintilan, Neil

    2016-04-01

    The Macquarie Marshes is a complex system of marshes, swamps and lagoons interconnected by a network of streams in the semi-arid region in north western NSW, Australia. The low-gradient topography of the site leads to channel breakdown processes where the river network becomes practically non-existent. As a result, the flow extends over large areas of wetland that later re-join and reform channels exiting the system. Vegetation in semiarid wetlands are often water dependent and flood tolerant species that rely on periodical floods in order to maintain healthy conditions. The detrimental state of vegetation in the Macquarie Marshes over the past few decades has been linked to decreasing inundation frequencies. Spatial distribution of flood tolerant overstory species such as River Red Gum and Black Box has not greatly changed since early 1990's, however; the condition of the vegetation patches shows a clear deterioration evidenced by terrestrial species encroachment on the wetland understory. On the other hand, areas of flood dependent species such as Water Couch and Common Reed have undergone complete succession to terrestrial species and dryland. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model. We presents also the development and assessment of transitional rules to determine if the water conditions have been met for different vegetation associations in the patches known to have undergone succession to terrestrial species and dry-land.

  9. The inner structure of landslides and landslide-prone slopes in south German cuesta landscapes assessed by geophysical, geomorphological and sedimentological approaches

    NASA Astrophysics Data System (ADS)

    Schwindt, Daniel; Sandmeier, Christine; Büdel, Christian; Jäger, Daniel; Wilde, Martina; Terhorst, Birgit

    2016-04-01

    Investigations on landslide activity in the cuesta landscape of Germany, usually characterized by an interbedding of morphologically hard (e.g. sand-/limestones) and soft (clay) sedimentary rocks are relatively sparse. However, spring 2013 has once again revealed a high susceptibility of the slopes in the Franconian and Swabian Alb to mass movements, when enduring rainfalls initiated numerous landslides causing considerable damage to settlements and infrastructure. Many aspects like the spatial distribution of landslides, triggering factors, and process dynamics - especially with view on the reactivation of landslides - require intensive investigations to allow for assessment of the landslide vulnerability and the development of reliable early-warning systems. Aim of the study is to achieve a deeper insight into the triggering factors and the process dynamics of landslides in the cuesta landscape with special regard on landslide proneness of slopes and the potential reactivation of old landslides. A multi-methodological approach was conducted based on geophysical investigations (seismic refraction tomography - SRT, electrical resistivity tomography - ERT), geomorphological mapping, morphometric GIS-based analysis, core soundings and substrate mapping. Study sites are located in the Swabian Alb (southwestern Germany) in the Jurassic escarpment where where Oxfordian marls and limestones superimpose Callovian clays, as well as in the northeastern Franconian Alb, within the escarpment of the so called Rhätolias with with red claystones of the late Norian (Feuerletten formation) below interbedding layers of sand- and claystones of the Rhaetian (Upper Triassic) and Hettangian ( Lower Jurassic). The investigated landslides strongly differ with respect to their age, from young landslides originated in spring 2013 to ancient landslides. Investigations reveal a distinct diversity of landslide types composed of a complex combination of processes. The applied methods allow for a sophisticated characterization of the landslides and the deduction of process complexes with phases of reactivations. The combination of ERT and SRT enables the delineation of the inner structure of the slide masses including rupture surfaces, landslide blocks and material inhomogeneities.

  10. Wave climate model of the Mid-Atlantic shelf and shoreline (Virginian Sea): Model development, shelf geomorphology, and preliminary results

    NASA Technical Reports Server (NTRS)

    Goldsmith, V.; Morris, W. D.; Byrne, R. J.; Whitlock, C. H.

    1974-01-01

    A computerized wave climate model is developed that applies linear wave theory and shelf depth information to predict wave behavior as they pass over the continental shelf as well as the resulting wave energy distributions along the coastline. Reviewed are also the geomorphology of the Mid-Atlantic Continental Shelf, wave computations resulting from 122 wave input conditions, and a preliminary analysis of these data.

  11. Fluvial geomorphology and suspended-sediment transport during construction of the Roanoke River Flood Reduction Project in Roanoke, Virginia, 2005–2012

    USGS Publications Warehouse

    Jastram, John D.; Krstolic, Jennifer L.; Moyer, Douglas; Hyer, Kenneth

    2015-09-30

    Results of the geomorphological and suspended-sediment monitoring components were largely in agreement and consistent with those of a related effort that monitored the logperch population before and during construction. These findings suggest that construction and sediment-control practices sufficiently protected in-stream habitat and the organisms that inhabit those locations, namely the Roanoke logperch, during the period monitored.

  12. Geomorphological hazard and tourist vulnerability along Portofino Park trails (Italy)

    NASA Astrophysics Data System (ADS)

    Brandolini, P.; Faccini, F.; Piccazzo, M.

    2006-06-01

    The many trails existing in the coastal area of Portofino Promontory are used by tourists for trekking or as pathways to small villages and beaches. The aim of this paper is to define geomorphological hazard and tourist vulnerability in this area, within the framework of the management and planning of hiking activities in Portofino Natural Park. In particular, processes triggered by gravity, running waters and wave motion, affecting the slopes and the cliff, are considered. The typology of the trails and trail maintenance are also taken into account in relation to weather conditions that can make the excursion routes dangerous for tourists. In conclusion, an operative model is applied for the definition of possible risk scenarios. This model is founded on an inventory and the quantification of geomorphological hazards and tourist vulnerability, in comparison with trail rescue data. The model can be applied to other environments and tourist areas.

  13. Geoarchaeology and geomorphology of Phoenicus ancient harbor, NW coast of Egypt

    NASA Astrophysics Data System (ADS)

    Moustafa, Samah; Torab, Magdy

    2016-04-01

    Phoenicus Greek harbor located in SE coastline of Ras El Hekma area, west of Alexandria city for about 220 km. It is shaped as triangle with its headland extending into the Mediterranean Sea for about 15 km. It is occupied by sedimentary rocks belonging to the Tertiary and Quaternary Eras, the western coastline consists of Pleistocene, Separated polygons of limestone sheets and fossil lime stone, where there are coastal platforms, fluvial forms and solution holes. The location and description of Phoenicus ancient harbor were mentioned by some late writers (Fourtau,1893) & (Muller,1901), some geoarchaeological indicators were discovered by the authors such as fish tanks, well, remains of breakwater and wine press. The present work is mainly devoted to define the geomorphological and geoarchaelological indicators of Phoenicus Greek harbor site, based on detailed geomorphological and geoarchaelogical surveying, sampling, dating and mapping as well as satellite image interpretation and GIS techniques.

  14. Neotectonic of Southern Brazilian Passive Margin: evidence from field and remote sensing studies

    NASA Astrophysics Data System (ADS)

    Riffel, S. B.; Fernandes, L. A. D.

    2017-12-01

    Canyons and structured-controlled coastal lagoons along Southern Brazil show morphotectonic evidence of an active response from the compressive strain on rifted continental margins. Considering the current main stress directions (E-W) and co-axial deformation, the most likely faults to be reactivated are the N45E and N45W trending systems. The area set in the eastern limit of the Paraná-Etendeka large igneous province, where a fault scarp marks regressive erosion and exposes a succession of fine-grained sediments belonging to the Pelotas Offshore Basin. Extrusion of enormous volumes of lavas provoked isostatic compensation during the Lower Cretaceous followed by the break-up of the Gondwanaland and the development of a volcanic passive margin. At this latitude (29°30´S), the Paraná Basin occurs as a promontory and extends below the Pelotas Offshore Basin, which sets in a continental crust. Regionally, this area is characterized by a down-warping known as Torres Syncline, limited towards the North by the outcropping of Permian sedimentary units, whilst the Serra Geral escarpment is recessed into the interior. The abrupt scarp on acidic volcanic rocks is cut-across by lineaments produced by reactivation of pre-existing faults, resulting in one of the most remarkable sequences of canyons in South America (Aparados da Serra National Park). Along the V-shaped valleys, several sets of triangular facets and suspended valleys are common. Capture, and flow of streams are controlled by the N45-70E and N45-70W trending lineaments. Besides, fault scarps showing displacement of up to 2-3 m, alluvial fan sediments, and transported soil with several sets of fracture represent a geomorphological evidence of reactivation. At the coastal plain, four depositional episodes have developed along the last 400 ka, functioning as barrier-lagoon systems. In this region, linear NE and NW lineaments constrained the shape of Holocene lagoons and affected the distribution of wet lands and dunes. Epicenters of low-intensity earthquakes (<4.0) have been registered by a local array of stations, during 9 years, and are distributed along some of the NE and NW trending lineaments, suggesting reactivation of these older faults. This seems to be in agreement with geomorphological evidence such as the development of young valleys and streams.

  15. The value of Geoheritage and implications for the assessment

    NASA Astrophysics Data System (ADS)

    Perret, Amandine; Reynard, Emmanuel

    2014-05-01

    Geological, geomorphological, hydrological and pedological features form with biological elements the natural heritage, which, in addition to cultural material features (historical monuments, archaeological vestiges) or intangible elements of the culture (e.g. traditions) constitute the heritage of an area, a country or even the World. Heritage recognition is the result of a complex process including the awareness of the heritage value by specialists (e.g. scientists), by militants (e.g. environmental associations) and then by large circles of the society. The emergence of this awareness often happens in times of crisis (Di Méo, 2008) (e.g. when species are close to disappear) and is not concomitant for all parts of nature or culture. Until recently geological and geomorphological features have not been fully recognized as heritage by the society. The current context of environmental crisis (climate change, overexploitation of natural resources) seems to be one of the drivers of a process of geoheritage recognition in several parts of the World. In this process, the first stage is often the selection of objects worth to be conserved and transmitted to the future generations. This selection, carried out by geoscientists, is funded on a set of values attributed to the potential heritage objects. The definition of these values is underway in the scientific community since the 1990s. Two main lines of research have emerged. (1) The first one reflects an anthropo-centred conception of Nature. These authors (e.g. Reynard, 2005) consider that the core value of geosites is their scientific importance for the knowledge of the Earth, climate and life history on the planet Earth; this central value (scientific) may be completed by several so-called additional values (e.g. ecological, cultural, aesthetic); they form together the intrinsic value of geosites. In this context, "intrinsic" is understood as inherent in the nature of the object as defined by the Earth sciences. In addition, several works (e.g. Giusti and Calvet, 2010) have demonstrated that this intrinsic value can completed by a second group of interests forming the social value of geosites, often defined based on their interest for education or tourism. (2) A second view exists, based on an eco-centred conception of Nature (Sharples, 2002). These works assign importance to geological and geomorphological objects without any reference to human interests. The assessment of the geodiversity can also be considered as an eco-centred tentative of defining the value of the "geonature" per se. A detailed comparison of various geosite assessment methods relating to the first conception shows that: (1) the main values considered are very similar even if the criteria used for the assessment and their weighting can vary from one method to the other; 2) more than the criteria to be used, it is the transparency of the procedure that is important for understanding how the sites have been selected; (3) new research is needed to evaluate what are the differences between the selection funded by the anthropo- and eco-centred assessment methods.

  16. Multisensor of Remotely Sensed Data for Characterizing Seismotectonic Activities in Malaysia

    NASA Astrophysics Data System (ADS)

    Abu Bakar, Rabieahtul; Azahari Razak, Khamarrul; Anuar Jamaludin, Tajul; Tongkul, Felix; Mohamad, Zakaria; Ramli, Zamri; Abd Manap, Mohamad; Rahman, Muhammad Zulkarnain Abdul

    2015-04-01

    Seismically induced events pose serious hazards yet are difficult to predict. Despite remarkable efforts of mapping, monitoring and modelling of such great events at regional or local scales, the understanding of the processes in the Earth's dynamic system remains elusive. Although Malaysia is in a relatively low seismic hazard zone, the current trend and pattern of seismotectonic activities triggered a series of fundamental study to better understand the relationship between the earthquakes, recent tectonics and seismically active fault zones. Several conventional mapping techniques have been intensively used but shown some limitations. Remote sensing is the preferable mean to quantify the seismic activity accurately in a larger area within a short period. Still, only few of such studies have been carried out in this subduction region. Characterization of seismotectonic activities from space in a tropical environment is very challenging given the complexity of its physiographic, climatic, geologic conditions and anthropogenic activities. There are many factors controlling the success rate of the implementation mainly due to the lack of historical earthquakes, geomorphological evidence, and proper identification of regional tectonic patterns. In this study, we aim at providing better insight to extract and characterize seismotectonic activities by integrating passive and active remotely-sensed data, geodetic data, historical records, GIS-based data analysis and in-situ measurements as well quantify them based on field investigation and expert knowledge. It is crucial to perform spatiotemporal analysis of its activities in the most seismically induced region in North-Western Sabah. A comprehensive geodatabase of seismotectonic events are developed and allowed us to analyse the spatiotemporal activities. A novelty of object-based image method for extracting tropical seismically active faults and related seismotectonic features are introduced and evaluated. We aim to develop the exchangeable and transferable rule-set with optimal parameterization for such aforementioned tasks. A geomorphometric-based remotely sensed approach is used to understand the tectonic geomorphology in processes affecting the environment at different spatial scales. As a result of this study, questions related to cascading natural disasters, e.g. landslides can be quantitatively answered. Development and applications of seismically induced landslide hazard and risk zonation at different scales are conceptually presented and critically discussed. So far, quantification evaluation of uncertainties associated to spatial seismic hazard and risks prediction remains very challenging to understand and it is an interest of on-going research. In the near-future, it is crucial to address the changes of climate and land-use-land-cover in relation to temporal and spatial pattern of seismically induced landslides. It is also important to assess, model and incorporate the changes due to natural disasters into a sustainable risk management. As a conclusion, the characteristics, development and function of tectonic movement, as one of the components for geomorphological process-response system is crucial for a regional seismic study. With newly emerging multi-sensor of remotely sensed data coupled with the satellite positioning system promises a better mapping and monitoring tool for seismotectonic activities in such a way that it can be used to map, monitor, and model related seismically induced processes for a comprehensive hazard and associated risk assessment.

  17. Digital mono- and 3D stereo-photogrammetry for geological and geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Schenker, Filippo Luca; Castelletti, Claudio; Bozzini, Claudio; Ambrosi, Christian

    2016-04-01

    The generalization of application of digital tools for managing, mapping and updating geological data have become widely accepted in the last decennia. Despite the increasing quality and availability of digital topographical maps, orthorectified aerial photographs (orthophotos) and high resolution (5 up to 0.5 m) Digital Elevation Models (DEMs), a correct recognition of the kind, the nature and the boundaries of geological formations and geomophological landforms, unconsolidated sedimentary deposits or slope instabilities is often very difficult on conventional two-dimensional (2D) products, in particular in steep zones (rock walls and talus slopes), under the forest cover, for a very complex topography and in deeply urbanised zones. In many cases, photo-interpretative maps drawn only by 2D data sets must be improved by field verifications or, at least, by field oblique photographs. This is logical, because our natural perception of the real world is three-dimensional (3D), which is partially disabled by the application of 2D visualization techniques. Here we present some examples of application of digital mapping based on a 3D visualization (for aerial and satellite images photo-interpretation) or on a terrestrial perception by digital mono-photogrammetry (for oblique photographs). The 3D digital mapping was performed thanks to an extension of the software ESRI® ArcGIS™ called ArcGDS™. This methodology was also applied on historical aerial photographs (normally analysed by optical stereo-photogrammetry), which were digitized by scanning and then oriented and aero-triangulated thanks to the ArcGDS™ software, allowing the 3D visualisation and the mapping in a GIS environment (Ambrosi and Scapozza, 2015). The mono-photogrammetry (or monoplotting) is the technique of photogrammetrical georeferentiation of single oblique unrectified photographs, which are related to a DEM. In other words, the monoplotting allows relating each pixel of the photograph to the corresponding real world pixel on the DEM, and then extract georeferenced vector data and orthorectified raster data from terrestrial photographs (Bozzini et al., 2012; Scapozza et al., 2014). Through some case studies, we show (1) how 3D digital stereo-photogrammetry makes it possible the production of Quaternary geological and geomorphological maps, (2) how digital mono-photogrammetry is a powerful tool for supporting geological mapping in very steep zones and (3) how the combination of these two digital tools permits diachronical mapping of phenomena evolution (such as landslides or rockglaciers) during the entire twentieth century. Ambrosi C. and Scapozza C. 2015. Improvements in 3-D digital mapping for geomorphological and Quaternary geological cartography. Geographica Helvetica 70: 121-133. doi: 10.5194/gh-70-121-2015 Bozzini C., Conedera M. and Krebs P. 2012. A new monoplotting tool to extract georeferenced vector data and orthorectified raster data from oblique non-metric photographs. International Journal of Heritage in the Digital Era 1: 499-518. doi: 10.1260/2047-4970.1.3.499 Scapozza C., Lambiel C., Bozzini C., Mari S. and Conedera M. 2014. Assessing the rock glacier kinematics on three different timescales: a case study from the southern Swiss Alps. Earth Surface Processes and Landforms 39: 2056-2069. doi: 10.1002/esp.3599

  18. A geomorphologist's dream come true: synoptic high resolution river bathymetry with the latest generation of airborne dual wavelength lidar

    NASA Astrophysics Data System (ADS)

    Lague, Dimitri; Launeau, Patrick; Michon, Cyril; Gouraud, Emmanuel; Juge, Cyril; Gentile, William; Hubert-Moy, Laurence; Crave, Alain

    2016-04-01

    Airborne, terrestrial lidar and Structure From Motion have dramatically changed our approach of geomorphology, from low density/precision data, to a wealth of data with a precision adequate to actually measure topographic change across multiple scales, and its relation to vegetation. Yet, an important limitation in the context of fluvial geomorphology has been the inability of these techniques to penetrate water due to the use of NIR laser wavelengths or to the complexity of accounting for water refraction in SFM. Coastal bathymetric systems using a green lidar can penetrate clear water up to 50 m but have a resolution too coarse and deployment costs that are prohibitive for fluvial research and management. After early prototypes of narrow aperture green lidar (e.g., EEARL NASA), major lidar manufacturer are now releasing dual wavelength laser system that offer water penetration consistent with shallow fluvial bathymetry at very high resolution (> 10 pts/m²) and deployment costs that makes the technology, finally accessible. This offers unique opportunities to obtain synoptic high resolution, high precision data for academic research as well as for fluvial environment management (flood risk mapping, navigability,…). In this presentation, we report on the deployment of the latest generation Teledyne-Optech Titan dual-wavelength lidar (1064 nm + 532 nm) owned by the University of Nantes and Rennes. The instrument has been deployed over several fluvial and lacustrine environments in France. We present results and recommendation on how to optimize the bathymetric cover as a function of aerial and aquatic vegetation cover and the hydrology regime of the river. In the surveyed rivers, the penetration depth varies from 0.5 to 4 m with discrete echoes (i.e., onboard detection), heavily impacted by water clarity and bottom reflectance. Simple post-processing of the full waveform record allows to recover an additional 20 % depth. As for other lidar techniques, the main challenge lies in the post-processing of the massive amount of data generated by the instrument (typically 10 billions points for 60 km of rivers). Yet the very high density of the raw point cloud data (40 pts/m² on topography, 20 pts/m² on bathymetry) and the full waveform nature of the signal offers new opportunities to develop classification and change detection algorithms. In this context, we present a new automated workflow to extract automatically the water surface (a critical aspect for refraction correction) and submerged data in highly complex fluvial environments based on a combined analysis of the 1064 nm and 532 nm channels. We conclude that topo-bathymetric lidar is getting close to being an operational technique for fluvial bathymetry offering a vast range of applications in hydrology, ecohydrology, geomorphology and river management.

  19. Insights from analyzing and modelling cascading multi-lake outburst flood events in the Santa Cruz Valley (Cordillera Blanca, Perú)

    NASA Astrophysics Data System (ADS)

    Emmer, Adam; Mergili, Martin; Juřicová, Anna; Cochachin, Alejo; Huggel, Christian

    2016-04-01

    Since the end of Little Ice Age, the Cordillera Blanca of Perú has experienced tens of lake outburst floods (LOFs), resulting in the loss of thousands of lives and significant material damages. Most commonly involving glacial lakes, such events are often directly or indirectly related to glacier retreat. Here we analyze an event on 8th February 2012 involving four lakes and affecting two valleys (Santa Cruz and Artizón) in the northern part of the Cordillera Blanca. Using the combination of field data, satellite images, digital elevation model (DEM) and GIS-based modelling approaches, the main objectives are: (i) to better understand complex multi-lake outburst flood and related foregoing and induced geomorphological processes; and (ii) to evaluate and discuss the suitability, potentials and limitations of the r.avaflow model for modelling such complex process chains. Analyzing field geomorphological evidence and remotely-sensed images, we reconstruct the event as follows: a landslide from the recently deglaciated left lateral moraine of Lake Artizón Alto (4 639 m a.s.l.), characterized by steep slopes and a height of more than 200 m produced a displacement wave which overtopped the bedrock dam of the lake. The resulting flood wave breached the dam of the downstream moraine-/landslide-dammed Lake Artizón Bajo (4 477 m a.s.l.), decreasing the lake level by 10 m and releasing 3 x 105 m3 of water. Significant amounts of material were eroded from the steeper parts of the Artizón Valley (mean slope >15°) and deposited further downstream in the flatter part of the Santa Cruz Valley (mean slope <2°; confluence of the two valleys at 3 985 m a.s.l.). The flood affected two debris cone-dammed lakes (Jatuncocha and Ichiccocha) in the Santa Cruz Valley. Some minor damages to the dam of Lake Jatuncocha were documented. Geomprohological evidence of the event was observed more than 20 km downstream from Lake Artizón Alto. The described multi-LOF event was employed as a particularly challenging test case for the currently developed, GIS-based two-phase dynamic mass flow model r.avaflow. Whilst the test results are very promising, lessons learned for r.avaflow model are the need for (i) an improved concept to determine the flow boundaries; and (ii) thorough parameter tests. High demands on the resolution and quality of the DEM are revealed. From our event and modelling analysis we conclude the following: mass movements in the headwaters of hydrologically connected lake and river systems may affect the catchment in complex and cascading ways. Flood and mass flow magnitudes can be both intensified or attenuated along the pathway. Geomorphological analysis and related modelling efforts may elucidate the related hazards as a basis to reduce the associated risks to downstream communities and infrastructures. Keywords: cascading processes, dam failure, glacial lake outburst flood (GLOF), high-mountain lakes, r.avaflow

  20. New insights from DEM's into form, process and causality in Distributive Fluvial Systems

    NASA Astrophysics Data System (ADS)

    Scuderi, Louis; Weissmann, Gary; Hartley, Adrian; Kindilien, Peter

    2014-05-01

    Recent developments in platforms and sensors, as well as advances in our ability to access these rich data sources in near real time presents geoscientists with both opportunities and problems. We currently record raster and point cloud data about the physical world at unprecedented rates with extremely high spatial and spectral resolution. Yet the ability to extract scientifically useful knowledge from such immense data sets has lagged considerably. The interrelated fields of database creation, data mining and modern geostatistics all focus on such interdisciplinary data analysis problems. In recent years these fields have made great advances in analyzing the complex real-world data such as that captured in Digital Elevation Models (DEM's) and satellite imagery and by LIDAR and other geospatially referenced data sets. However, even considering the vast increase in the use of these data sets in the past decade these methods have enjoyed only a relatively modest penetration into the geosciences when compared to data analysis in other scientific disciplines. In part, a great deal of the current research weakness is due to the lack of a unifying conceptual approach and the failure to appreciate the value of highly structured and synthesized compilations of data, organized in user-friendly formats. We report on the application of these new technologies and database approaches to global scale parameterization of Distributive Fluvial Systems (DFS) within continental sedimentary basins and illustrate the value of well-constructed databases and tool-rich analysis environments for understanding form, process and causality in these systems. We analyzed the characteristics of aggradational fluvial systems in more than 700 modern continental sedimentary basins and the links between DFS within these systems and their contributing drainage basins. Our studies show that in sedimentary basins, distributive fluvial and alluvial systems dominate the depositional environment. Consequently, we have found that studies of modern tributary drainage systems in degradational settings are likely insufficient for understanding the geomorphology expressed within these basins and ultimately for understanding the basin-scale architecture of dominantly distributive fluvial deposits preserved in the rock record.

  1. Map Showing Quaternary Geology and Geomorphology of the Granite Park Area, Grand Canyon, Arizona

    USGS Publications Warehouse

    Hereford, Richard; Burke, Kelly J.; Thompson, Kathryn S.

    2000-01-01

    View to west-northwest showing map area and setting of Granite Park; Grand Canyon, Arizona. The Colorado River flows from right to left. Granite Park Wash is the light-colored area in foreground of photograph. The debris fan of 209 Mile Canyon is at left center. Pleistocene gravel is exposed in the steep, light-colored bank above 209 Mile Rapids at left edge of photograph. The black-colored ledge that forms the dark cliff at upper right of photograph is the basalt flow of Hamblin (1994). Sand dunes, debris fans, and terraces of the Colorado River cover the lower half of this area shown in this photograph.

  2. Digital Elevation Models of the Earth derived from space-based observations: Advances and potential for geomorphological studies

    NASA Astrophysics Data System (ADS)

    Mouratidis, Antonios

    2013-04-01

    Digital Elevation Models (DEMs) are an inherently interdisciplinary topic, both due to their production and validation methods, as well as their significance for numerous disciplines. The most utilized contemporary topographic datasets worldwide are those of global DEMs. Several space-based sources have been used for the production of (almost) global DEMs, namely satellite Synthetic Aperture Radar (SAR) Interferometry/InSAR, stereoscopy of multispectral satellite images and altimetry, producing several versions of autonomous or mixed products (i.e. SRTM, ACE, ASTER-GDEM). Complementary space-based observations, such as those of Global Navigation Satellite Systems (GNSS), are also used, mainly for validation purposes. The apparent positive impact of these elevation datasets so far has been consolidated by the plethora of related scientific, civil and military applications. Topography is a prominent element for almost all Earth sciences, but in Geomorphology it is even more fundamental. In geomorphological studies, elevation data and thus DEMs can be extensively used for the extraction of both qualitative and quantitative information, such as relief classification, determination of slope and slope orientation, delineation of drainage basins, extraction of drainage networks and much more. Global DEMs are constantly becoming finer, i.e. of higher spatial resolution and more "sensitive" to elevation changes, i.e. of higher vertical accuracy and these progresses are undoubtedly considered as a major breakthrough, each time a new improved global DEM is released. Nevertheless, for Geomorphology in particular, if not already there, we are close to the point in time, where the need for discrimination between DSM (Digital Surface Model) and DTM (Digital Terrain Model) is becoming critical; if the distinction between vegetation and man-made structures on one side (DSM), and actual terrain elevation on the other side (DTM) cannot be made, then, in many cases, any further increase of elevation accuracy in DEMs will have little impact on geomorphological studies. After shortly reviewing the evolution of satellite-based global DEMs, the purpose of this paper is to address their current limitations and challenges from the perspective of a geomorphologist. Subsequently, the implications for geomorphological studies are discussed, with respect to the expected near-future advances in the field, such as the TanDEM-X Global Digital Elevation Model ("WorldDEM", 2014), as well as spaceborne LIDAR (Light Detection and Ranging) approaches (e.g. Lidar Surface Topography/LIST mission, 2016-2020).

  3. Changing tidal hydrodynamics during different stages of eco-geomorphological development of a tidal marsh: A numerical modeling study

    NASA Astrophysics Data System (ADS)

    Stark, J.; Meire, P.; Temmerman, S.

    2017-03-01

    The eco-geomorphological development of tidal marshes, from initially low-elevated bare tidal flats up to a high-elevated marsh and its typical network of channels and creeks, induces long-term changes in tidal hydrodynamics in a marsh, which will have feedback effects on the marsh development. We use a two-dimensional hydrodynamic model of the Saeftinghe marsh (Netherlands) to study tidal hydrodynamics, and tidal asymmetry in particular, for model scenarios with different input bathymetries and vegetation coverages that represent different stages of eco-geomorphological marsh development, from a low elevation stage with low vegetation coverage to a high and fully vegetated marsh platform. Tidal asymmetry is quantified along a 4 km marsh channel by (1) the difference in peak flood and peak ebb velocities, (2) the ratio between duration of the rising tide and the falling tide and (3) the time-integrated dimensionless bed shear stress during flood and ebb. Although spatial variations in tidal asymmetry are large and the different indicators for tidal asymmetry do not always respond similarly to eco-geomorphological changes, some general trends can be obtained. Flood-dominance prevails during the initial bare stage of a low-lying tidal flat. Vegetation establishment and platform expansion lead to marsh-scale flow concentration to the bare channels, causing an increase in tidal prism in the channels along with a less flood-dominant asymmetry of the horizontal tide. The decrease in flood-dominance continues as the platform grows vertically and the sediment-demand of the platform decreases. However, when the platform elevation gets sufficiently high in the tidal frame and part of the spring-neap cycle is confined to the channels, the discharge in the channels decreases and tidal asymmetry becomes more flood-dominant again, indicating an infilling of the marsh channels. Furthermore, model results suggest that hydro-morphodynamic feedbacks based on tidal prism to channel cross-sectional area relationships keep the marsh channels from filling in completely by enhancing ebb-dominance as long as the tidal volume and flow velocities remain sufficiently high. Overall, this study increases insight into the hydro-morphodynamic interactions between tidal flow and marsh geomorphology during various stages of eco-geomorphological development of marshes and marsh channels in particular.

  4. "I'm into pure geomorphology, not that theoretical modelling or cultural stuff": discussing elapsed time, equifinality, simultaneous processes, and human-landscape interactions with students and many other people

    NASA Astrophysics Data System (ADS)

    Catto, Norm

    2013-04-01

    I have heard many variations of this statement over the years, both from our students and many other people (and perhaps, internally, from myself…). Contemplation of the factors behind such comments, and personal or collective responsibility for engendering them, has implications for our own understanding and interpretation of landforms and landscapes. Personal interaction reflects research tactics and strategies, and other peoples' responses can shed light on how we are going about our study of geomorphology, and on how our work is perceived. Geomorphological education varies considerably around the world. Our subject is potentially of interest to a diverse group of people. The necessity to connect with this diversity of interests requires a multi-faceted approach, including both physically-based process analysis and positioning individual landforms and exposures in a broader context. Although this has been recognized increasingly by geomorphologists, the results have not always been as desired. Approaches to studying geomorphology have varied, and the adopted (or desired) approach has a strong influence on the philosophy, the methods used, the data recorded, and the interpretation. In teaching, discussion, research, and grant applications, the tendency is to focus exclusively on one process, landform, or exposure at any one time. We cannot cover everything at once, regardless of which approach we adopt: of necessity, we have to start somewhere, and gradually build our pictures of landscape evolution. It is not only difficult to thoroughly dissect a landscape into individual components and discuss each absolutely separately: it is not appropriate if we want to understand landscapes from a somewhat holistic perspective. However, although lapsing into this tactic is often easy and convenient, it does have several unintended consequences. The approach chosen has a strong influence on the community, leading to the phenomenon of the student (observer, audience, consumer, professional in another discipline) who sees geomorphology as narrowly focused on the elucidation of "real", "field", "(overly) pragmatic", "reductionist", or "science-based" information, together with limited consideration of dynamic modelling or human interaction. This in turn can lead to the belief that this approach is the "best" or "only" approach to "true" geomorphology, effectively creating feedback loops and perpetuating this state of affairs.

  5. Summary of oceanographic and water-quality measurements in Rachel Carson National Wildlife Refuge, Wells, Maine, in 2013

    USGS Publications Warehouse

    Montgomery, Ellyn T.; Ganju, Neil K.; Dickhudt, Patrick J.; Borden, Jonathan; Martini, Marinna A.; Brosnahan, Sandra M.

    2015-01-01

    Suspended-sediment transport is a critical element controlling the geomorphology of tidal wetland complexes. Wetlands rely on organic material and inorganic sediment deposition to maintain their elevation relative to sea level. The U.S. Geological Survey performed observational deployments to measure suspended-sediment concentration and water flow rates in the tidal channels of the wetlands in the Rachel Carson National Wildlife Refuge in Wells, Maine. The objective was to characterize the sediment-transport mechanisms that contribute to the net sediment budget of the wetland complex. We deployed a meteorological tower, optical turbidity sensors, and acoustic velocity meters at sites on Stephens Brook and the Ogunquit River between March 27 and December 9, 2013. This report presents the time-series oceanographic and atmospheric data collected during those field studies. The oceanographic parameters include water velocity, depth, turbidity, salinity, temperature, and pH. The atmospheric parameters include wind direction, speed, and gust; air temperature; air pressure; relative humidity; short wave radiation; and photosynthetically active radiation.

  6. Improving Data Discovery, Access, and Analysis to More Than Three Decades of Oceanographic and Geomorphologic Observations

    NASA Astrophysics Data System (ADS)

    Forte, M.; Hesser, T.; Knee, K.; Ingram, I.; Hathaway, K. K.; Brodie, K. L.; Spore, N.; Bird, A.; Fratantonio, R.; Dopsovic, R.; Keith, A.; Gadomski, K.

    2016-02-01

    The U.S. Army Engineer Research and Development Center's (USACE ERDC) Coastal and Hydraulics Laboratory (CHL) Coastal Observations and Analysis Branch (COAB) Measurements Program has a 35-year record of coastal observations. These datasets include oceanographic point source measurements, Real-Time Kinematic (RTK) GPS bathymetry surveys, and remote sensing data from both the Field Research Facility (FRF) in Duck, NC and from other project and experiment sites around the nation. The data has been used to support a variety of USACE mission areas, including coastal wave model development, beach and bar response, coastal project design, coastal storm surge, and other coastal hazard investigations. Furthermore these data have been widely used by a number of federal and state agencies, academic institutions, and private industries in hundreds of scientific and engineering investigations, publications, conference presentations and model advancement studies. A limiting factor to the use of FRF data has been rapid, reliable access and publicly available metadata for each data type. The addition of web tools, accessible data files, and well-documented metadata will open the door to much future collaboration. With the help of industry partner RPS ASA and the U.S. Army Corps of Engineers Mobile District Spatial Data Branch, a Data Integration Framework (DIF) was developed. The DIF represents a combination of processes, standards, people, and tools used to transform disconnected enterprise data into useful, easily accessible information for analysis and reporting. A front-end data portal connects the user to the framework that integrates both oceanographic observation and geomorphology measurements using a combination of ESRI and open-source technology while providing a seamless data discovery, access, and analysis experience to the user. The user interface was built with ESRI's JavaScript API and all project metadata is managed using Geoportal. The geomorphology data is made available through ArcGIS Server, while the oceanographic data sets have been formatted to netCDF4 and made available through a THREDDS server. Additional web tools run alongside the THREDDS server to provide rapid statistical calculations and plotting, allowing for user defined data access and visualization.

  7. Assessment of rockfall susceptibility by integrating statistical and physically-based approaches

    NASA Astrophysics Data System (ADS)

    Frattini, Paolo; Crosta, Giovanni; Carrara, Alberto; Agliardi, Federico

    In Val di Fassa (Dolomites, Eastern Italian Alps) rockfalls constitute the most significant gravity-induced natural disaster that threatens both the inhabitants of the valley, who are few, and the thousands of tourists who populate the area in summer and winter. To assess rockfall susceptibility, we developed an integrated statistical and physically-based approach that aimed to predict both the susceptibility to onset and the probability that rockfalls will attain specific reaches. Through field checks and multi-temporal aerial photo-interpretation, we prepared a detailed inventory of both rockfall source areas and associated scree-slope deposits. Using an innovative technique based on GIS tools and a 3D rockfall simulation code, grid cells pertaining to the rockfall source-area polygons were classified as active or inactive, based on the state of activity of the associated scree-slope deposits. The simulation code allows one to link each source grid cell with scree deposit polygons by calculating the trajectory of each simulated launch of blocks. By means of discriminant analysis, we then identified the mix of environmental variables that best identifies grid cells with low or high susceptibility to rockfalls. Among these variables, structural setting, land use, and morphology were the most important factors that led to the initiation of rockfalls. We developed 3D simulation models of the runout distance, intensity and frequency of rockfalls, whose source grid cells corresponded either to the geomorphologically-defined source polygons ( geomorphological scenario) or to study area grid cells with slope angle greater than an empirically-defined value of 37° ( empirical scenario). For each scenario, we assigned to the source grid cells an either fixed or variable onset susceptibility; the latter was derived from the discriminant model group (active/inactive) membership probabilities. Comparison of these four models indicates that the geomorphological scenario with variable onset susceptibility appears to be the most realistic model. Nevertheless, political and legal issues seem to guide local administrators, who tend to select the more conservative empirically-based scenario as a land-planning tool.

  8. Mapping seabed geomorphology in the Inner Hebrides, Scotland; Bathymetric records of ice streaming and retreat

    NASA Astrophysics Data System (ADS)

    Dove, Dayton; Finlayson, Andrew; Bradwell, Tom; Arosio, Riccardo; Howe, John

    2014-05-01

    Approximately 7,000 km² of new bathymetry have been stitched together with onshore airborne radar data, both gridded at 5m resolution, to map and describe the submarine glacial landscape of the Inner Hebrides sector of the former British-Irish Ice Sheet (BIIS). As part of the MAREMAP Project (http://www.maremap.ac.uk), and to build on previous work (Howe et al., 2012), we are using recently acquired swath bathymetry data, collected primarily by the UKHO Civil Hydrography Programme, to characterise the geomorphology, sea-bed sediments, and bedrock geology of the Inner Hebrides region. Mapping has revealed an extensive array of well-preserved glacigenic landforms on the seabed associated with key stages of ice flow and retreat of the BIIS following the Last Glacial Maximum. On multiple submarine rock platforms and within overdeepened troughs, diverse assemblages of glacially streamlined landforms are present, forming a geomorphic continuum between rock drumlins and mega-flutes. Superimposed streamlined bedforms indicate different phases of fast flow at the ice sheet bed, and the convergence of flow sets suggest that ice sheet flow was organised into faster flowing topographically controlled corridors. Across the region, the streamlined landforms occur within a geographically controlled zone, semi-independent of the underlying geology. This is consistent with the onset zone of the Hebrides Ice Stream, as previously postulated (Howe et al., 2012). Submarine moraine ridges are observed widely across the survey area: within sea lochs, atop rock platforms and superimposed on glacially streamlined bedforms, as well as pinned to topographic highs (i.e. islands). Some retreat patterns reveal clear glacial recession towards respective catchments, while others are more ambiguous and are the focus of ongoing work. The bathymetry data notably reveal more geomorphic evidence of glaciation than adjacent land records, thus providing the opportunity to reassess onshore mapping where clear offshore examples may provide insights into poorly understood terrestrial geological and geomorphological features. And importantly, these new data provide the opportunity to greatly improve offshore geology maps of the region, which are in increasing demand by governmental, commercial, and conservation groups.

  9. Geomorphological records of diachronous quarrying activities along the ancient Appia route at the Aurunci Mountain pass (Central Italy)

    NASA Astrophysics Data System (ADS)

    Di Luzio, E.; Carfora, P.

    2018-04-01

    The topic of this research consists in the description of landscape modifications occurring from the 4th century BCE to the 19th century CE as a consequence of quarrying activities on carbonate slopes along a tract of the ancient Appia route crossing the central Apennine belt at the Aurunci Mountain pass (Lazio region, central Italy). The main objectives were to discern different quarrying phases and techniques, quantify quarrying activities and understand the role of quarrying in create morphological features. Multidisciplinary studies were completed including aerial photogrammetry, geoarchaeological field surveys, morphometric characterization of quarry areas, structural analysis of rock outcrops aided by terrestrial photogrammetry, GPS measurements. The results of this study show how the local geomorpological and tectonic setting determined which kinds of extractable rock material, i.e., rock blocks or breccias, were used for different purposes. Moreover, different phases of extraction were evidenced. A main Roman quarrying phase, lasting between the 4th century BCE and the 1st century CE, was recognized as taking place over eight quarry areas. These are delimited by sharp edges and have regular shapes, revealing in some cases a staircase-like morphological profile, and are characterized by similar volumes of extracted rock material. A later quarrying phase -the Bourbon Age, 19th century CE-is assumed to be evidenced instead by five quarries with a peculiar semi-elliptical shape and different volumes of carved material. Seven quarries were found to be of uncertain age. The quarry system described in this paper, together with geomorphological records of slope cuts, terraced surfaces, and the remains of retaining walls, represents a unique and important example of anthropogenic landscape modification in the territory of the central Apennines caused by the construction and maintenance of a Roman road over the centuries. This could be relevant for further studies on the relations between natural environments and the development of civilisation. In addition, the multi-methodological analyses of geomorphological records originated by quarrying activities may be considered for the characterization of similar quarry landscapes.

  10. Lacustrine-fluvial interactions in Australia's Riverine Plains

    NASA Astrophysics Data System (ADS)

    Kemp, Justine; Pietsch, Timothy; Gontz, Allen; Olley, Jon

    2017-06-01

    Climatic forcing of fluvial systems has been a pre-occupation of geomorphological studies in Australia since the 1940s. In the Riverine Plain, southeastern Australia, the stable tectonic setting and absence of glaciation have combined to produce sediment loads that are amongst the lowest in the world. Surficial sediments and landforms exceed 140,000 yr in age, and geomorphological change recorded in the fluvial, fluvio-lacustrine and aeolian features have provided a well-studied record of Quaternary environmental change over the last glacial cycle. The region includes the Willandra Lakes, whose distinctive lunette lakes preserve a history of water-level variations and ecological change that is the cornerstone of Australian Quaternary chronostratigraphy. The lunette sediments also contain an ancient record of human occupation that includes the earliest human fossils yet found on the Australian continent. To date, the lake-level and palaeochannel records in the Lachlan-Willandra system have not been fully integrated, making it difficult to establish the regional significance of hydrological change. Here, we compare the Willandra Lakes environmental record with the morphology and location of fluvial systems in the lower Lachlan. An ancient channel belt of the Lachlan, Willandra Creek, acted as the main feeder channel to Willandra Lakes before channel avulsion caused the lakes to dry out in the late Pleistocene. Electromagnetic surveys, geomorphological and sedimentary evidence are used to reconstruct the evolution of the first new channel belt following the avulsion. Single grain optical dating of floodplain sediments indicates that sedimentation in the new Middle Billabong Palaeochannel had commenced before 18.4 ± 1.1 ka. A second avulsion shifted its upper reaches to the location of the present Lachlan River by 16.2 ± 0.9 ka. The timing of these events is consistent with palaeohydrological records reconstructed from Willandra Lakes and with the record of palaeochannels on the Lachlan River upstream. Willandra Lakes shows high inflows during the Last Glacial Maximum (∼22 ka), but their subsequent drying between 20.5 ka and 19 ka was caused by river avulsion rather than regional aridity. This case study highlights the benefits of combining fluvial with lacustrine archives to build complementary records of hydrological change in lowland riverine plains.

  11. The glacial geomorphology of the Lago Buenos Aires and Lago Puerreydón ice lobes, Central Patagonia

    NASA Astrophysics Data System (ADS)

    Bendle, Jacob; Thorndycraft, Varyl; Palmer, Adrian

    2016-04-01

    Patagonia is ideally located for reconstructions of late Quaternary ice-climate interaction(s) in the Southern Hemisphere mid-latitudes, yet many questions remain concerning post-LGM ice sheet retreat dynamics across the region. While modern-day glaciation is restricted to three small icefields (the North and South Patagonian and Cordillera Darwin icefields), during the Quaternary, and at the LGM, episodes of significant ice advance culminated in an expansive Patagonian ice sheet (PIS) centered over the southern Andes, for which a long and well-preserved landform record exists. Previous mapping in the region has either aimed to achieve regional coverage, necessarily omitting more subtle/complex features suggestive of certain ice-marginal processes, or has focused on the identification of palaeo-ice limits (e.g. moraine ridges) for geochronological applications, with little attention given to other (e.g. glaciofluvial, glaciolacustrine) features that are significant for understanding post-LGM ice sheet retreat dynamics. This poster presents a comprehensive and highly detailed (<30m spatial resolution) map of the glacial geomorphology of the Lago Buenos Aires (46.4°S) and Lago Puerreydón (47.2°S) ice lobes, major outlet glaciers of the central sector of the former PIS. The map allows refined reconstructions of glacial and, in particular, deglacial ice-marginal processes, and will underpin further analysis on the retreat history of the palaeo-ice lobes using high-resolution lithostratigraphic (varve) analyses.

  12. Landscapes of human evolution: models and methods of tectonic geomorphology and the reconstruction of hominin landscapes.

    PubMed

    Bailey, Geoffrey N; Reynolds, Sally C; King, Geoffrey C P

    2011-03-01

    This paper examines the relationship between complex and tectonically active landscapes and patterns of human evolution. We show how active tectonics can produce dynamic landscapes with geomorphological and topographic features that may be critical to long-term patterns of hominin land use, but which are not typically addressed in landscape reconstructions based on existing geological and paleoenvironmental principles. We describe methods of representing topography at a range of scales using measures of roughness based on digital elevation data, and combine the resulting maps with satellite imagery and ground observations to reconstruct features of the wider landscape as they existed at the time of hominin occupation and activity. We apply these methods to sites in South Africa, where relatively stable topography facilitates reconstruction. We demonstrate the presence of previously unrecognized tectonic effects and their implications for the interpretation of hominin habitats and land use. In parts of the East African Rift, reconstruction is more difficult because of dramatic changes since the time of hominin occupation, while fossils are often found in places where activity has now almost ceased. However, we show that original, dynamic landscape features can be assessed by analogy with parts of the Rift that are currently active and indicate how this approach can complement other sources of information to add new insights and pose new questions for future investigation of hominin land use and habitats. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. The geomorphology of the Chandeleur Island Wetlands

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Debusschere, K.; Penland, S.; Westphal, K.

    1990-09-01

    The Chandeleur Islands represent the largest and oldest transgressive barrier island arc in the northern Gulf of Mexico. Generated by the transgressive submergence of the St. Bernard delta complex, the Chandeleur Islands form the protective geologic framework for one of the richest areas of salt marsh and seagrass flats in Louisiana. The Chandeleur barrier island arc is 60 km long and consists of five individual islands backed by a linear, multiple bar system enclosing a shallow basin floored by extensive seagrass flats. The northern part of the Chandeleur chain is the highest in relief, elevation, width, and habitat diversity. Nonstormmore » morphology is predominantly a combination of continuous dunes and dune terraces. Numerous washover channels and large washover fans extend into the backbarrier environment. Further south, the island width decreases and washover flats and terraces dominate the shoreline morphology In the southernmost section, the island arc is fragmented into a series of small islands and shoals separated by tidal inlets. Between 1984 and 1989, aerial videotape, aerial photographic, and bathymetric surveys were used to map and monitor the geomorphic changes occurring along the shoreline and in backbarrier areas. The aerial videotape mapping surveys focused on the impacts of hurricanes Danny, Elena, and Juan on the geomorphology of the islands. Videotape imagery was acquired in July 1984 and in July (prestorm), August (post-Danny), September (post-Elena), and November (post-Juan) 1985. A coastal geomorphic classification was developed to map the spatial and temporal landscape changes between surveys.« less

  14. High-Altitude Aeolian Research on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Hu, Guangyin; Qian, Guangqiang; Lu, Junfeng; Zhang, Zhengcai; Luo, Wanyin; Lyu, Ping

    2017-12-01

    Aeolian processes and their role in desertification have been studied extensively at low elevations but have been rarely studied at high elevations in areas such as the Tibetan Plateau, where aeolian processes were active in the geologic past and remain active today. In this review, we summarize research that improves our understanding of aeolian processes on the Tibetan Plateau, including the distribution, characteristics, and provenance of aeolian sediments; the history of aeolian activity; aeolian geomorphology; and wind-driven land degradation. Contemporary aeolian processes primarily occur in dry basins, in wide river valleys, on lakeshores, on mountain slopes, and on gravel pavements. Sediment characteristics suggest a local origin and provide interesting contrasts with those of China's Loess Plateau. The history of aeolian activity and its paleoclimatic implications, reconstructed based on aeolian archives, is short (mostly since the Late Glacial) and shows wide regional differences. Aeolian geomorphology is simple and suggests short formation time. Wind-driven land degradation is less severe than previously thought, driven by different factors in different areas, and exhibited complex interactions with freeze-thaw processes. Aeolian research has been conducted within the general framework of aeolian science but addresses issues specific to the Tibetan Plateau that arise due to the low air temperature, low air density, and the presence of a cryosphere. We propose six priorities for future research: aeolian physics, the effect of freeze-thaw cycles, comparisons with other areas, regional differences, effects of wind-driven land degradation, and integrated observation and monitoring.

  15. The utilization of ERTS-1 data for the study of the French Atlantic Littoral. [coastal water and geomorphology

    NASA Technical Reports Server (NTRS)

    Demathieu, P. G.; Verger, F. H.

    1974-01-01

    The French Atlantic Littoral (FRALIT) program uses ERTS-1 data to study coastal geomorphology and waters. ERTS-1 gives an overall picture of the phenomena for the first time due mainly to channel 4 data, but the other channels also contribute valuable complementary data on superficial waters. These studies have already resulted in accurate maps of the mud transported south-westwards from the mouth of the River Loire.

  16. The Cultural Resources and Geomorphology of Coralville Lake, Johnson County, Iowa. Volume 1. Technical Report.

    DTIC Science & Technology

    1984-04-01

    PERIOD COVERED THE CULTURAL RESOURCES AND GEOMORPHOLOGY OF FINAL 1984 CORALVILLE LAKE, JOHNSON COUNTY. IOWA 6 PERORMINGORG.REPORTNMBER 7. AUTHOR() 0...County, Iowa (see Figure 1). Coralville Dam Is located on the Iowa River approximately 7 miles above Iowa City, and inundates an area, at maximum flood...landform regions in Iowa . Two of these regions, namely, the Iowan Surface and the Southern Iowa Drift Plain, are in the Coralville Lake area. The

  17. Comparative study of urban development and groundwater condition in coastal areas of Buenos Aires, Argentina

    NASA Astrophysics Data System (ADS)

    Rodrigues Capítulo, Leandro; Carretero, Silvina C.; Kruse, Eduardo E.

    2017-08-01

    The geomorphological evolution of a sand-dune barrier in Buenos Aires, Argentina, is analyzed as a factor regulating the fresh groundwater reserves available. The impact of geomorphological evolution and the consequences for the social and economic development of two coastal areas are assessed. This is one of the most important tourist destinations in the country; for study purposes, it was divided into a northern sector and a southern sector. In the southern sector, the exploitable groundwater is associated with the Holocene and upper Pleistocene geomorphological evolution, which generated three interrelated aquifer units, constituting a system whose useful thickness reaches at least 45 m. In contrast, the northern sector is restricted to two Holocene aquifer units, whose total thickness is on the order of 12 m. The morphological characteristics and the occurrence of the largest fresh groundwater reserves in the southern sector are indicators of better conditions for economic growth, which is mainly reflected on the expansion of real estate ventures. The relationships of transmissivity vs area of real estate ventures (Arev), and total water consumption vs Arev, are indicators for the sustainable management of the water resources. The approach chosen may be used by decision makers in other regions to assess the feasibility of future tourism projects on the basis of the availability of water resources associated with geomorphological features.

  18. True 3D kinematic analysis for slope instability assessment in the Siq of Petra (Jordan), from high resolution TLS

    NASA Astrophysics Data System (ADS)

    Gigli, Giovanni; Margottini, Claudio; Spizzichino, Daniele; Ruther, Heinz; Casagli, Nicola

    2016-04-01

    Most classifications of mass movements in rock slopes use relatively simple, idealized geometries for the basal sliding surface, like planar sliding, wedge sliding, toppling or columnar failures. For small volumes, the real sliding surface can be often well described by such simple geometries. Extended and complex rock surfaces, however, can exhibit a large number of mass movements, also showing various kind of kinematisms. As a consequence, the real situation in large rock surfaces with a complicate geometry is generally very complex and a site depending analysis, such as fieldwork and compass, cannot be comprehensive of the real situation. Since the outstanding development of terrestrial laser scanner (TLS) in recent years, rock slopes can now be investigated and mapped through high resolution point clouds, reaching the resolution of few mm's and accuracy less than a cm in most advanced instruments, even from remote surveying. The availability of slope surface digital data can offer a unique chance to determine potential kinematisms in a wide distributed area for all the investigated geomorphological processes. More in detail the proposed method is based on the definition of least squares fitting planes on clusters of points extracted by moving a sampling cube on the point cloud. If the associated standard deviation is below a defined threshold, the cluster is considered valid. By applying geometric criteria it is possible to join all the clusters lying on the same surface; in this way discontinuity planes can be reconstructed, rock mass geometrical properties are calculated and, finally, potential kinematisms established. The Siq of Petra (Jordan), is a 1.2 km naturally formed gorge, with an irregular horizontal shape and a complex vertical slope, that represents the main entrance to Nabatean archaeological site. In the Siq, discontinuities of various type (bedding, joints, faults), mainly related to geomorphological evolution of the slope, lateral stress released, stratigraphic setting and tectonic activity can be recognized. As a consequence, rock-falls have been occurring, even recently, with unstable rock mass volumes ranging from 0.1 m3 up to over some hundreds m3. Slope instability, acceleration of crack deformation and consequent increasing of rock-fall hazard conditions, could threaten the safety of tourist as well as the integrity of the heritage. 3D surface model coming from Terrestrial Laser Scanner acquisitions was developed almost all over the site of Petra, including the Siq. Comprehensively, a point cloud of five billion points was generated making the site of Petra likely the largest scanned archaeological site in the word. As far as the Siq, the scanner was positioned on the path floor at intervals of not more than 10 meters from each station. The total number of scans in the Siq was 220 with an average point cloud interval of approximately 3 cm. Subsequently, for the definition of the main rockfall source areas, a spatial kinematic analysis for the whole Siq has been performed, by using discontinuity orientation data extracted from the point cloud by means of the software Diana. Orientation, number of sets, spacing/frequency, persistence, block size and scale dependent roughness was obtained combining fieldwork and automatic analysis. This kind of analysis is able to establish where a particular instability mechanism is kinematically feasible, given the geometry of the slope, the orientation of discontinuities and shear strength of the rock. The final outcome of this project was a detail landslide kinematic index map, reporting main potential instability mechanisms for a given area. The kinematic index was finally calibrated for each instability mechanism (plane failure; wedge failure; block toppling; flexural toppling) surveyed in the site. The latter is including the collapse occurred in May 2015, likely not producing any victim, in a sector clearly identified by the susceptibility maps produced by the analysis.

  19. TRENDS IN ENGINEERING GEOLOGIC AND RELATED MAPPING.

    USGS Publications Warehouse

    Varnes, David J.; Keaton, Jeffrey R.

    1983-01-01

    Progress is reviewed that has been made during the period 1972-1982 in producing medium- and small-scale engineering geologic maps with a variety of content. Improved methods to obtain and present information are evolving. Standards concerning text and map content, soil and rock classification, and map symbols have been proposed. Application of geomorphological techniques in terrain evaluation has increased, as has the use of aerial photography and other remote sensing. Computers are being used to store, analyze, retrieve, and print both text and map information. Development of offshore resources, especially petroleum, has led to marked improvement and growth in marine engineering geology and geotechnology. Coordinated planning for societal needs has required broader scope and increased complexity of both engineering geologic and environmental geologic studies. Refs.

  20. Alpine treeline of western North America: Linking organism-to-landscape dynamics

    USGS Publications Warehouse

    Malanson, George P.; Butler, David R.; Fagre, Daniel B.; Walsh, Stephen J; Tomback, Diana F.; Daniels, Lori D.; Resler, Lynn M.; Smith, William K.; Weiss, Daniel J.; Peterson, David L.; Bunn, Andrew G.; Hiemstra, Christopher A.; Liptzin, Daniel; Bourgeron, Patrick S.; Shen, Zehao; Millar, Constance I.

    2007-01-01

    Although the ecological dynamics of the alpine treeline ecotone are influenced by climate, it is an imperfect indicator of climate change. Mechanistic processes that shape the ecotone—seed rain, seed germination, seedling establishment and subsequent tree growth form, or, conversely tree dieback—depend on microsite patterns. Growth forms affect wind and snow, and so develop positive and negative feedback loops that create these microsites. As a result, complex landscape patterns are generated at multiple spatial scales. Although these mechanistic processes are fundamentally the same for all forest-tundra ecotones across western North America, factors such as prior climate, underlying geology and geomorphology, and genetic constraints of dominant tree species lead to geographic differences in the responses of particular ecotones to climate change.

  1. Introduction to "northern Gulf of Mexico ecosystem change and hazards susceptibility"

    USGS Publications Warehouse

    Brock, J.C.; Lavoie, D.L.; Poore, R.Z.

    2009-01-01

    The northern Gulf of Mexico and its diverse natural resources are threatened by population and development pressure, and by the impacts of rising sea level and severe storms. In the wake of the devastating 2005 hurricane season, and in response to the complex management issues facing the region, the U.S. Geological Survey organized the multidisciplinary "Northern Gulf of Mexico Ecosystem Change and Hazards Susceptibility" project. This special issue of Geo-Marine Letters hosts a few of the early results in the form of 11 papers covering three themes: (1) the control exerted by the underlying geologic framework on geomorphology and nearshore processes and features; (2) impact of human activities on nearshore water quality; and (3) hurricanes and associated effects. ?? 2009 US Government.

  2. Multibeam mapping of the Pinnacles region, Gulf of Mexico

    USGS Publications Warehouse

    Gardner, James V.; Dartnell, Peter; Sulak, Kenneth J.

    2002-01-01

    Recent USGS mapping shows an extensive deep (~100 m) reef tract occurs on the Mississippi-Alabama outer continental shelf (Figure 1). The tract, known as "The Pinnacles", is apparently part of a sequence of drowned reef complexes along the "40-fathom" shelf edge of the northern Gulf of Mexico (Ludwick and Walton, 1957). It is critical to determine the accurate geomorphology of these deep-reefs because of their importance as benthic habitats for fisheries. The Pinnacles have previously been mapped using a single-beam echo sounder (Ludwick and Walton,1957), sidescan sonar (Laswell et al., 1990), and the TAMU2 towed single-beam sidescan-sonar system (Anonymous, 1999). These existing studies do not provide the quality of geomorphic data necessary for reasonable habitat studies.

  3. Ancient Hydrothermal Springs in Arabia Terra, Mars

    NASA Technical Reports Server (NTRS)

    Oehler, Dorothy Z.; Allen, Carlton C.

    2008-01-01

    Hydrothermal springs are important astrobiological sites for several reasons: 1) On Earth, molecular phylogeny suggests that many of the most primitive organisms are hyperthermophiles, implying that life on this planet may have arisen in hydrothermal settings; 2) on Mars, similar settings would have supplied energy- and nutrient-rich waters in which early martian life may have evolved; 3) such regions on Mars would have constituted oases of continued habitability providing warm, liquid water to primitive life forms as the planet became colder and drier; and 4) mineralization associated with hydrothermal settings could have preserved biosignatures from those martian life forms. Accordingly, if life ever developed on Mars, then hydrothermal spring deposits would be excellent localities in which to search for morphological or chemical remnants of that life. Previous attempts to identify martian spring deposits from orbit have been general or limited by resolution of available data. However, new satellite imagery from HiRISE has a resolution of 28 cm/pixel which allows detailed analysis of geologic structure and geomorphology. Based on these new data, we report several features in Vernal Crater, Arabia Terra that we interpret as ancient hydrothermal springs.

  4. Monitoring large-scale landslides and their induced hazard with COSMO-SkyMed Intermittent SBAS (ISBAS): a case study in north-western Sicily, Italy.

    NASA Astrophysics Data System (ADS)

    Novellino, Alessandro; Cigna, Francesca; Jordan, Colm; Sowter, Andrew; Calcaterra, Domenico

    2014-05-01

    Landslides detection and mapping are fundamental requirements for every hazard and risk evaluation. Due to their inevitable shortcomings, geomorphological field surveys and airphoto interpretation do not document all the gravitational events. Indeed some unstable slopes are inaccessible to field surveyors, while some landslides are too slow to be detected with the naked eye or interpretation of aerial photographs. In this work, we integrate geomorphological surveys with ground motion data derived by employing COSMO-SkyMed satellite imagery and the Intermittent Small BAseline Subset (ISBAS; Sowter et al., 2013), a new Advanced Differential Interferometry Synthetic Aperture Radar (ADInSAR) technique which has been developed recently at the Nottingham University in the UK. The main advantage of ISBAS with respect to other InSAR and SBAS techniques, is the possibility to detect good radar reflectors even in non-urbanized terrain, where ground targets usually look intermittently coherent, meaning they have high coherence only in some interferograms but not in others. ISBAS has proven capable of increasing results over natural, woodland and agricultural terrains and, as a result, it makes it possible to improve the detection of landslide boundaries and the assessment of the state of activity where other InSAR approaches fail. We used COSMO-SkyMed StripMap data covering the period between November 2008 and October 2011, with 3m ground range resolution, 40° look angle and minimum revisiting time of 8 days. The data consist of 38 ascending images (track 133, frame 380) with ground track angle at scene centre of 169.5° from the north-south direction. These have been obtained thanks to an agreement between the Italian Ministry for the Environment, Land and Sea and the University of Naples 'Federico II'. We tested ISBAS in north-western Sicily (southern Italy), over a 1,530 km2 area where 1,473 landslides have been identified based on optical imagery and field surveys by the local Hydro-geomorphological Setting Plan published in 2006. The geological and tectonic setting of the area, related to the Apenninic-Maghrebian Chain orogeny, makes most of the instability phenomena of complex or flow type with an extremely slow to very slow velocity, namely very suitable for an interferometric analysis. We show the results for Piana degli Albanesi, a thrust faults-bounded basin located in the northern Mt. Kumeta massif, filled in with Lower Miocene marls and pelitic deposits. Here landslide risk affects housing and public infrastructure (e.g. the SP34, the SP38 and SP102 highways), and the unstable slopes extend up to a gravity masonry dam, such as to require continuous rebuilding of infrastructures in the portions with the higher displacement rates. The ISBAS results for ascending geometry entail an unprecedented 685,518 points in a 90 km2 extended processing area, and their Line Of Sight velocities range between -6.4 mm/yr (away from the sensor) and +6.6mm/yr (towards the sensor). ISBAS results detect a total of 89 mapped landslides, of which 23 are previously not recorded. The analysis of ISBAS COSMO-SKyMed time-series allows us to compare the deformation trends to rainfall events, and to evaluate the correlation between heavy or prolonged rainfall and accelerations in the ground motion histories of the identified landslides. Sowter A., Bateson L., Strange P., Ambrose K., Syafiudin M.F., 2013. DInSAR estimation of land motion using intermittent coherence with application to the South Derbyshire and Leicestershire coalfields. Remote Sensing Letters, v.4 : 979-987.

  5. Lateral and "vertico-lateral" cave dwellings in Haddej and Guermessa: characteristic geocultural heritage of Southeast Tunisia

    NASA Astrophysics Data System (ADS)

    Boukhchim, Nouri; Ben Fraj, Tarek; Reynard, Emmanuel

    2016-04-01

    Southeast Tunisia is known for different types of cave dwellings developed for centuries on the Matmata-Dahar plateau. Their shaping takes into account the geological and geomorphological context of the sites. They thus provide an interesting example of geoheritage on which was developed an important cultural and architectural heritage. Most of these sites are now not more used and partly abandoned. An interdisciplinary research - crossing geomorphological and archaeological approaches - was carried out in two sites: Haddej and Guermessa. Haddej site belongs to the Matmata area and its surroundings located in the northern part of the plateau. It is characterized by cave dwellings dug vertically and then laterally in the Quaternary wind silt accumulations (loess) filling the valleys that dissect the plateau surface. The latter corresponds to the back of a monoclinic structure cuesta.Guermessa site belongs to the Tataouine region, located in the southern part of the plateau. It is characterized by troglodyte dwellings dug laterally in alternations of limestone, clay, marl and dolomite layers of Cenomanian and Turonian age. These alternations are the backbone of buttes still partially attached to the front of the cuesta. Both sites offer favourable conditions for geomorphological study. They exhibit a wide range of structural landforms within the monoclinic structure, and their surroundings present a variety of shapes and Quaternary formations allowing the study of the geomorphological and palaeoenvironmental changes that happened during the Quaternary in this now arid region. These geosites were assessed using the method developed by the University of Lausanne (Reynard et al. 2015), which allowed us to assign them a strong scientific, aesthetic, cultural, educational and tourist value. Proposals for their tourist promotion were then proposed taking into account the lack of maintenance that reduces their cultural and tourist value. Reference Reynard E., Perret A., Bussard J., Grangier L., Martin S. (2015). Integrated approach for the inventory and management of geomorphological heritage at the regional scale, Geoheritage, DOI: 10.1007/s12371-015-0153-0

  6. Post-Wildfire Potential for Carbon and Nitrogen Sequestration in the Southwestern United States in Restored Ephemeral and Intermittent Stream Channels

    NASA Astrophysics Data System (ADS)

    Callegary, J. B.; Norman, L.; Eastoe, C. J.; Sankey, J. B.; Youberg, A.

    2016-12-01

    The Kemp's ridley sea turtle (Lepidochelys kempii) is the most endangered sea turtle in the world, largely due to the limited geographic range of its nesting habitat. In the U.S., the majority of nesting occurs along Padre Island National Seashore (PAIS) in Texas. There has been limited research regarding the connection between beach geomorphology and Kemp's ridley nesting patterns, but studies concerning other sea turtle species suggest that certain beach geomorphology variables, such as beach slope and width, influence nest site selection. This research investigates terrestrial habitat variability of the Kemp's ridley sea turtle and quantifies the connection between beach geomorphology and Kemp's ridley nest site selection on PAIS and South Padre Island, Texas. Airborne topographic lidar data collected annually along the Texas coast from 2009 through 2012 was utilized to extract beach geomorphology characteristics, such as beach slope and width, dune height, and surface roughness, among others. The coordinates of observed Kemp's ridley nests from corresponding years were integrated with the aforementioned data in statistical models, which analyzed the influence of both general trends in geomorphology and individual morphologic variables on nest site selection. This research identified the terrestrial habitat variability of the Kemp's ridley and quantified the range of geomorphic characteristics of nesting beaches. Initial results indicate that dune width, beach width, and wind speed are significant variables in relation to nest presence, using an alpha of 0.1. Higher wind speeds and narrower beaches and foredunes favor nest presence. The average nest elevation is 1.13 m above mean sea level, which corresponds to the area directly below the potential vegetation line, and the majority of nesting occurs between the elevations of 0.68 m and 1.4 m above mean sea level. The results of this study include new information regarding Kemp's ridley beach habitat and its influence on nesting patterns that could be useful for the conservation and management of the species.

  7. Role of sediment transport model to improve the tsunami numerical simulation

    NASA Astrophysics Data System (ADS)

    Sugawara, D.; Yamashita, K.; Takahashi, T.; Imamura, F.

    2015-12-01

    Are we overlooking an important factor for improved numerical prediction of tsunamis in shallow sea to onshore? In this presentation, several case studies on numerical modeling of tsunami-induced sediment transport are reviewed, and the role of sediment transport models for tsunami inundation simulation is discussed. Large-scale sediment transport and resulting geomorphological change occurred in the coastal areas of Tohoku, Japan, due to the 2011 Tohoku Earthquake Tsunami. Datasets obtained after the tsunami, including geomorphological and sedimentological data as well as hydrodynamic records, allows us to validate the numerical model in detail. The numerical modeling of the sediment transport by the 2011 tsunami depicted the severest erosion of sandy beach, as well as characteristic spatial patterns of erosion and deposition on the seafloor, which have taken place in Hirota Bay, Sanriku Coast. Quantitative comparisons of observation and simulation of the geomorphological changes in Sanriku Coast and Sendai Bay showed that the numerical model can predict the volumes of erosion and deposition with a right order. In addition, comparison of the simulation with aerial video footages demonstrated the numerical model is capable of tracking the overall processes of tsunami sediment transport. Although tsunami-induced sediment erosion and deposition sometimes cause significant geomorphological change, and may enhance tsunami hydrodynamic impact to the coastal zones, most tsunami simulations do not include sediment transport modeling. A coupled modeling of tsunami hydrodynamics and sediment transport draws a different picture of tsunami hazard, comparing with simple hydrodynamic modeling of tsunami inundation. Since tsunami-induced erosion, deposition and geomorphological change sometimes extend more than several kilometers across the coastline, two-dimensional horizontal model are typically used for the computation of tsunami hydrodynamics and sediment transport. Limitations of the conventional model and future challenges are discussed regarding further improvement of numerical modeling of tsunami and sediment transport. Improved numerical modeling may provide useful information for assessing sediment-related damages and planning post-disaster recovery.

  8. Watershed geomorphological characteristics

    USGS Publications Warehouse

    Fitzpatrick, Faith A.

    2016-01-01

    This chapter describes commonly used geomorphological characteristics that are useful for analyzing watershed-scale hydrology and sediment dynamics. It includes calculations and measurements for stream network features and areal basin characteristics that cover a range of spatial and temporal scales and dimensions of watersheds. Construction and application of longitudinal profiles are described in terms of understanding the three-dimensional development of stream networks. A brief discussion of outstanding problems and directions for future work, particularly as they relate to water-resources management, is provided. Notations with preferred units are given.

  9. Carbonate landscapes evolution: Insights from 36Cl

    NASA Astrophysics Data System (ADS)

    Godard, Vincent; Thomas, Franck; Ollivier, Vincent; Bellier, Olivier; Shabanian, Esmaeil; Miramont, Cécile; Fleury, Jules; Benedetti, Lucilla; Guillou, Valéry; Aster Team

    2017-04-01

    Carbonate landscapes cover a significant fraction of the Earth surface, but their long-term dynamics is still poorly understood. When comparing with the situation in areas underlain by quartz-rich lithologies, where the routine use of 10Be-derived denudation rates has delivered fundamental insights on landscape evolution processes, this knowledge gap is particularly notable. Recent advances in the measurement of 36Cl and better understanding of its production pathways has opened the way to the development of a similar physically-based and quantitative analysis of landscape evolution in carbonate settings. However, beyond these methodological considerations, we still face fundamental geomorphological open questions, as for example the assessment of the importance of congruent carbonate dissolution in long-wavelength topographic evolution. Such unresolved problems concerning the relative importance of physical and chemical weathering processes lead to question the applicability of standard slope-dependent Geomorphic Transport Laws in carbonate settings. These issues have been addressed studying the geomorphological evolution of selected limestone ranges in Provence, SE France, where 36Cl concentration measurements in bedrock and stream sediment samples allow constraining denudation over 10 ka time-scale. We first identify a significant denudation contrast between the summit surface and the flanks of the ranges, pointing to a substantial contribution of gravity-driven processes to the landscape evolution, in addition to dissolution. Furthermore, a detailed analysis of the relationships between hillslope morphology and hilltop denudation allow to identify a fundamental transition between two regimes: (1) a dynamics where hillslope evolution is controlled by linear diffusive downslope regolith transport; and, (2) a domain where denudation is limited by the rate at which physical and chemical weathering processes can produce clasts and lower the hilltop. Such an abrupt transition toward a weathering-limited dynamics may prevent hillslope denudation from balancing the rate of base level fall imposed by the river network and could potentially explain the development of high local relief observed in many Mediterranean carbonate landscapes.

  10. Modelling soil erosion in a head catchment of Jemma Basin on the Ethiopian highlands

    NASA Astrophysics Data System (ADS)

    Cama, Mariaelena; Schillaci, Calogero; Kropáček, Jan; Hochschild, Volker; Maerker, Michael

    2017-04-01

    Soil erosion represents one of the most important global issues with serious effects on agriculture and water quality especially in developing countries such as Ethiopia where rapid population growth and climatic changes affect wide mountainous areas. The catchment of Andit-Tid is a head catchment of Jemma Basin draining to the Blue Nile (Central Ethiopia). It is located in an extremely variable topographical environment and it is exposed to high degradation dynamics especially in the lower part of the catchment. The increasing agricultural activity and grazing, lead to an intense use of the steep slopes which altered the soil structure. As a consequence, water erosion processes accelerated leading to the evolution of sheet erosion, gullies and badlands. This study is aimed at a geomorphological assessment of soil erosion susceptibility. First, a geomorphological map is generated using high resolution digital elevation model (DEM) derived from high resolution stereoscopic satellite data, multispectral imagery from Rapid Eye satellite system . The map was then validated by a detailed field survey. The final maps contains three inventories of landforms: i) sheet, ii) gully erosion and iii) badlands. The water erosion susceptibility is calculated with a Maximum Entropy approach. In particular, three different models are built using the three inventories as dependent variables and a set of spatial attributes describing the lithology, terrain, vegetation and land cover from remote sensing data and DEMs as independent variables. The single susceptibility maps for sheet, gully erosion as well as badlands showed good to excellent predictive performances. Moreover, we reveal and discuss the importance of different sets of variables among the three models. In order to explore the mutual overlap of the three susceptibility maps we generated a combined map as color composite whereas each color represents one component of water erosion. The latter map yield a useful information for land use managers and planning purposes.

  11. A review of the activities of the IAG working group on geomorphosites over the last ten years

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel; Coratza, Paola

    2013-04-01

    During the last two decades a renewed interest emerged in the scientific community for geoheritage, geoconservation and geotourism research. This was the reason for the International Association of Geomorphologists (IAG) for creating a specific working group on geomorphosites in 2001, with the aim to improve knowledge and scientific research on the definition, assessment, cartography, promotion and conservation of geomorphological heritage. The working group is chaired by the two authors, experiences were shared during several workshops and international conferences, and results were collected in several special publications (http://www.geomorph.org/wg/wggs.html). Several intensive courses for Master and PhD students were also organized and a book was published, dedicated particularly to Master and PhD students working on geomorphosite issues (Reynard et al., 2009). This contribution proposes a review of the working group activities since 2001 that focused on four main domains: (1) Definition and conceptualization. Geomorphosites are a type of geosite that is portions of the geosphere that present a particular importance for the comprehension of the Earth's history. Geomorphosites have to be considered as the result of human valuation. Conceptualization related to the value of geomorphosites is still in course. Nevertheless, three groups of values can be demonstrated: the scientific value (that is the interest of sites for Earth history and for the history and epistemology of geomorphology), several additional values (aesthetic, ecological, and cultural in a broad sense), and use and management values, that can be divided in three groups (educational value, economic value, including the tourist value, and protection). The scientific and additional value can be considered as intrinsic values, whereas the management and use value are to be related to extrinsic or societal values. (2) Assessment. Several methods, based on the measurement of specific features of geomorphosites, were applied. A problem found in practically all of them is the subjectivity of assessment and, consequently, the difficulty for one operator to replicate results obtained by another. The original objective of the WG was, after four years, to publish guidelines to assess geomorphosites. Nevertheless, the works have shown that the development of general guidelines to be used by all the countries was quite impossible, because the choice of assessment methods depends on the objectives and the context of the research. For this reason, the project of guidelines was abandoned and several of the methods available were developed. These methods have their specificities and are based on several assessment criteria. Nevertheless, it is possible to recognize common and recurrent assessment criteria, like rarity, representativeness and integrity, and others, for example ecological value, palaeogeographic importance, educational value etc., that are dependent on the context of the assessment and on the aims of the research. (3) Mapping. Designing maps is not a simple procedure and in the codification phase (implementation of the map) several points should be considered, in particular, when mapping geomorphosites efforts should be made to identify and use symbols corresponding to semiotic criteria (communicative immediacy, graphic originality and flexibility). Although it is not possible to set up a standardized methodology valid for all purposes, the WG proposed guiding principles for geomorphosite mapping. (4) Education and dissemination. The issue of interpretation of geomorphological heritage, in particular the sensitive question of the adequacy of geoproducts with the public needs and previous knowledge, was also addressed by the WG, and several scholars proposed methods for interpreting geomorphology in a geotourist context. Several questions have not been solved until now and should be addressed in the future: (1) The scale issue in geomorphosite studies is not clearly addressed, even if it impacts on several domains such as the assessment and cartography of geomorphological heritage; (2) Relationships between geoheritage assessment and geodiversity assessment may also be explored in the future, especially in terms of geoconservation; (3) Guidelines such as those proposed for the mapping issues and for the elaboration of geotourist products are particularly useful and a book of good practices in the fields of geomorphological heritage assessment, cartography and interpretation should be encouraged; (4) Finally, the integration of geomorphosite studies with other scientific domains is needed, in particular with educational and social sciences in the field of public characterization, with computer sciences in the field of knowledge dissemination using digital technologies, with political and law sciences in the field of geoconservation, and with process geomorphology in the management of geomorphosites in particularly dynamic environments. Reference Reynard E., Coratza P., Regolini-Bissig G. (2009) (Eds.). Geomorphosites. München, Pfeil Verlag.

  12. Observations and a linear model of water level in an interconnected inlet-bay system

    NASA Astrophysics Data System (ADS)

    Aretxabaleta, Alfredo L.; Ganju, Neil K.; Butman, Bradford; Signell, Richard P.

    2017-04-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (˜0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  13. The western Qaidam Basin as a potential Martian environmental analogue: An overview

    NASA Astrophysics Data System (ADS)

    Anglés, Angélica; Li, Yiliang

    2017-05-01

    The early Martian environment is interpreted as warmer and wetter, before a significant change in its global climatic conditions irreversibly led to the current hyperarid environments. This transition is one of the most intriguing processes of Martian history. The extreme climatic change is preserved in the salt deposits, desiccated landscapes, and geomorphological structures that were shaped by the evaporation of water. However, until a manned journey to Mars is feasible, many Martian materials, morphological structures, and much of its evolutionary history will continue to be poorly understood. In this regard, searching and investigating Martian analogues are still meaningful. To find an Earth environment with a whole set of Martian structures distributed at a scale comparable to Mars is even more important to test landing crafts and provide optimized working parameters for rovers. The western Qaidam Basin in North Tibetan Plateau is such a Martian analogue. The area harbors one of the most extreme hyperarid environments on Earth and contains a series of ancient lakes that evaporated at different evolutionary stages during the rise of the Tibetan Plateau. Large quantities of salts and geomorphological features formed during the transition of warmer-and-wet to colder-and-dry conditions provide unique references to study the modern Martian surface and interpret the orbital data. We present numerous similarities and results of investigations that suggest the Qaidam Basin as a potential analogue to study modern geomorphic processes on Mars, and suggest that this is an essential site to test future Mars sample return missions.

  14. Metabolic principles of river basin organization.

    PubMed

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

    2011-07-19

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.

  15. The cold climate geomorphology of the Eastern Cape Drakensberg: A reevaluation of past climatic conditions during the last glacial cycle in Southern Africa

    NASA Astrophysics Data System (ADS)

    Mills, S. C.; Barrows, T. T.; Telfer, M. W.; Fifield, L. K.

    2017-02-01

    Southern Africa is located in a unique setting for investigating past cold climate geomorphology over glacial-interglacial timescales. It lies at the junction of three of the world's major oceans and is affected by subtropical and temperate circulation systems, therefore recording changes in Southern Hemisphere circulation patterns. Cold climate landforms are very sensitive to changes in climate and thus provide an opportunity to investigate past changes in this region. The proposed existence of glaciers in the high Eastern Cape Drakensberg mountains, together with possible rock glaciers, has led to the suggestion that temperatures in this region were as much as 10-17 °C lower than present. Such large temperature depressions are inconsistent with many other palaeoclimatic proxies in Southern Africa. This paper presents new field observations and cosmogenic nuclide exposure ages from putative cold climate landforms. We discuss alternative interpretations for the formation of the landforms and confirm that glaciers were absent in the Eastern Cape Drakensberg during the last glaciation. However, we find widespread evidence for periglacial activity down to an elevation of 1700 m asl, as illustrated by extensive solifluction deposits, blockstreams, and stone garlands. These periglacial deposits suggest that the climate was significantly colder ( 6 °C) during the Last Glacial Maximum, in keeping with other climate proxy records from the region, but not cold enough to initiate or sustain glaciers or rock glaciers.

  16. Observations and a linear model of water level in an interconnected inlet-bay system

    USGS Publications Warehouse

    Aretxabaleta, Alfredo; Ganju, Neil K.; Butman, Bradford; Signell, Richard

    2017-01-01

    A system of barrier islands and back-barrier bays occurs along southern Long Island, New York, and in many coastal areas worldwide. Characterizing the bay physical response to water level fluctuations is needed to understand flooding during extreme events and evaluate their relation to geomorphological changes. Offshore sea level is one of the main drivers of water level fluctuations in semienclosed back-barrier bays. We analyzed observed water levels (October 2007 to November 2015) and developed analytical models to better understand bay water level along southern Long Island. An increase (∼0.02 m change in 0.17 m amplitude) in the dominant M2 tidal amplitude (containing the largest fraction of the variability) was observed in Great South Bay during mid-2014. The observed changes in both tidal amplitude and bay water level transfer from offshore were related to the dredging of nearby inlets and possibly the changing size of a breach across Fire Island caused by Hurricane Sandy (after December 2012). The bay response was independent of the magnitude of the fluctuations (e.g., storms) at a specific frequency. An analytical model that incorporates bay and inlet dimensions reproduced the observed transfer function in Great South Bay and surrounding areas. The model predicts the transfer function in Moriches and Shinnecock bays where long-term observations were not available. The model is a simplified tool to investigate changes in bay water level and enables the evaluation of future conditions and alternative geomorphological settings.

  17. Watershed Scale Analyses of Mangrove Ecosystems in the Americas and the Contributing Upland Area Land Cover Change Over Time

    NASA Astrophysics Data System (ADS)

    Corcoran, J.; Simard, M.

    2013-12-01

    Ecosystems throughout the world have been under pressure by drivers of change both natural and anthropogenic. Coastal and marine ecosystems such as mangrove forests contribute to the biodiversity of land and ocean habitats at various scales, acting as direct link to biogeochemical cycles of both upland and coastal regions. All of the positive and negative drivers of change of both natural and anthropogenic, within watershed and political boundaries, play a role in the health and function of these ecosystems. As a result, they are among the most rapidly changing landscapes in the Americas. This research presents a watershed scale monitoring approach of mangrove ecosystems using datasets that contain several sources of remotely sensed data and intensive ecological field data. Spatially exclusive decision tree models were used to assess and monitor land use and land cover change in mangrove ecosystems for different regions of the Americas, representing varying geomorphologic settings across a latitudinal gradient. The integration of ecological, hydrological, and geomorphologic characteristics of the contributing areas to these critical downstream ecosystems is crucial for both mapping and monitoring these vulnerable ecosystems. This research develops the scientific and technical framework needed for advancement in regional scale natural resource management and valuation, informed policy making, and protection of coastal ecosystems. This research also provides a foundation for the development of forecast models to simulate and assess mangrove area, health, and viability changes under different land management and climate scenarios.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ligier, N.; Poulet, F.; Carter, J.

    We present new insights into Europa’s surface composition on the global scale from linear spectral modeling of a high spectral resolution data set acquired during a ground-based observation campaign using SINFONI{sup 4}, an adaptive optics near-infrared instrument on the Very Large Telescope (ESO). The spectral modeling confirms the typical “bullseye” distribution of sulfuric acid hydrate on the trailing hemisphere, which is consistent with Iogenic sulfur ion implantation. However, the traditional hypothesis of the presence of sulfate salts on the surface of the satellite is challenged as Mg-bearing chlorinated species (chloride, chlorate, and perchlorate) are found to provide improved spectral fits.more » The derived global distribution of Mg-chlorinated salts (and particularly chloride) is correlated with large-scale geomorphologic units such as chaos and darker areas, thus suggesting an endogenous origin. Based on the 1.65 μ m water-ice absorption band shape and position, the surface temperature is estimated to be in the range 110–130 K, and water ice is found to be predominantly in its crystalline state rather than amorphous. While amorphous water ice exhibits a strong correlation with the expected intensity of the Ionian plasma torus bombardment, crystalline water ice is instead more associated with distinct geomorphological units. Endogenous processes such as jets and ice heating due to active geology may explain this relationship. Otherwise, no evidence of a correlation between grain size for the water ice and the sputtering rate has been detected so far.« less

  19. Formation of minor moraines in high-mountain environments independent of a primary climatic driver

    NASA Astrophysics Data System (ADS)

    Wyshnytzky, Cianna; Lukas, Sven

    2016-04-01

    Closely-spaced minor moraines allow observations of moraine formation and ice-marginal fluctuations on short timescales, helping to better understand glacier retreat and predict its geomorphological effects (e.g. Sharp, 1984; Boulton, 1986; Bradwell, 2004; Lukas, 2012). Some minor moraines can be classified as annual moraines given sufficient chronological control, which implies a seasonal climatic driver of minor ice-front fluctuations. This leads to annual moraines being utilised as very specific and short-term records of glacier fluctuations and climate change. However, such research is sparse in high-mountain settings (Hewitt, 1967; Ono, 1985; Beedle et al., 2009; Lukas, 2012). This study presents the detailed sedimentological results of minor moraines at two high-mountain settings in the Alps. Minor moraines at Schwarzensteinkees, Austria, formed as push moraines in two groups, separated by a flat area and sloping zone with scattered boulders and flutings. The existence of a former proglacial lake, evident from ground-penetrating radar surveys and geomorphological relationships, appears to have exerted the primary control on minor moraine formation. Minor moraines at Silvrettagletscher, Switzerland, exist primarily on reverse bedrock slopes. The presence of these bedrock slopes, and in some areas medial moraines emerging beyond the ice front, appear to exert the primary controls on minor moraine formation. These findings show that climate may only play a small role in minor moraine formation at these study sites, echoing similar findings from another glacier in the Alps (Lukas, 2012). These two glaciers and valleys are differentiated primarily by geometry, sedimentation, and mechanisms of minor moraine formation. Despite these crucial differences, valley geometry and pre-existing geomorphology play a large, if not dominant, role in minor moraine formation and are at odds with a primarily-climatic control of minor moraine formation in lowland settings. This compelling discrepancy requires further investigation. References Beedle, M.J., Menounos, B., Luckman, B.H., and Wheate, R., 2009, Annual push moraines as climate proxy: Geophysical Research Letters, v. 36, no. 20, p. L20501, doi: 10.1029/2009GL039533. Boulton, G.S., 1986, Push-moraines and glacier-contact fans in marine and terrestrial environments: Sedimentology, v. 33, p. 677-698. Bradwell, T., 2004, Annual Moraines and Summer Temperatures at Lambatungnajökull, Iceland: Arctice, Antarctic, and Alpine Research, v. 36, no. 4, p. 502-508. Hewitt, K., 1967, Ice-Front Deposition and the Seasonal Effect: A Himalayan Example: Transactions of the Institute of British Geographers, v. 42, p. 93-106. Lukas, S., 2012, Processes of annual moraine formation at a temperate alpine valley glacier: insights into glacier dynamics and climatic controls: Boreas, v. 41, no. 3, p. 463-480, doi: 10.1111/j.1502-3885.2011.00241.x. Ono, Y., 1985, Recent Fluctuations of the Yala (Dakpatsen) Glacier, Langtang Himal, Reconstructed From Annual Moraine Ridges: Zeitschrift für Gletscherkunde und Glazialgeologie, v. 21, p. 251-258. Sharp, M., 1984, Annual moraine ridges at Skálafellsjökull, south-east Iceland: Journal of Glaciology, v. 30, no. 104, p. 82-93.

  20. Monitoring sediment transfer processes on the desert margin

    NASA Technical Reports Server (NTRS)

    Millington, Andrew C.; Arwyn, R. Jones; Quarmby, Neil; Townshend, John R. G.

    1987-01-01

    LANDSAT Thematic Mapper and Multispectral Scanner data have been used to construct change detection images for three playas in south-central Tunisia. Change detection images have been used to analyze changes in surface reflectance and absorption between wet and dry season (intra-annual change) and between different years (inter-annual change). Change detection imagery has been used to examine geomorphological changes on the playas. Changes in geomorphological phenomena are interpreted from changes in soil and foliar moisture levels, differences in reflectances between different salt and sediments and the spatial expression of geomorphological features. Intra-annual change phenomena that can be detected from multidate imagery are changes in surface moisture, texture and chemical composition, vegetation cover and the extent of aeolian activity. Inter-annual change phenomena are divisible into those restricted to marginal playa facies (sedimentation from sheetwash and alluvial fans, erosion from surface runoff and cliff retreat) and these are found in central playa facies which are related to the internal redistribution of water, salt and sediment.

  1. Geomorphology and forest management in New Zealand's erodible steeplands: An overview

    NASA Astrophysics Data System (ADS)

    Phillips, Chris; Marden, Michael; Basher, Les R.

    2018-04-01

    In this paper we outline how geomorphological understanding has underpinned forest management in New Zealand's erodible steeplands, where it contributes to current forest management, and suggest where it will be of value in the future. We focus on the highly erodible soft-rock hill country of the East Coast region of North Island, but cover other parts of New Zealand where appropriate. We conclude that forestry will continue to make a significant contribution to New Zealand's economy, but several issues need to be addressed. The most pressing concerns are the incidence of post-harvest, storm-initiated landslides and debris flows arising from steepland forests following timber harvesting. There are three areas where geomorphological information and understanding are required to support the forest industry - development of an improved national erosion susceptibility classification to support a new national standard for plantation forestry; terrain analysis to support improved hazard and risk assessment at detailed operational scales; and understanding of post-harvest shallow landslide-debris flows, including their prediction and management.

  2. A Study on the Assessment of Multi-Factors Affecting Urban Floods Using Satellite Image: A Case Study in Nakdong Basin, S. Korea

    NASA Astrophysics Data System (ADS)

    Kwak, Youngjoo; Kondoh, Akihiko

    2010-05-01

    Floods are also related to the changes in social economic conditions and land use. Recently, floods increased due to rapid urbanization and human activity in the lowland. Therefore, integrated management of total basin system is necessary to get the secure society. Typhoon ‘Rusa’ swept through eastern and southern parts of South Korea in the 2002. This pity experience gave us valuable knowledge that could be used to mitigate the future flood hazards. The purpose of this study is to construct the digital maps of the multi-factors related to urban flood concerning geomorphologic characteristics, land cover, and surface wetness. Parameters particularly consider geomorphologic functional unit, geomorphologic parameters derived from DEM (digital elevation model), and land use. The research area is Nakdong River Basin in S. Korea. As a result of preliminary analysis for Pusan area, the vulnerability map and the flood-prone areas can be extracted by applying spatial analysis on GIS (geographic information system).

  3. Geomorphologic and geologic overview for water resources development: Kharit basin, Eastern Desert, Egypt

    NASA Astrophysics Data System (ADS)

    Mosaad, Sayed

    2017-10-01

    This study demonstrates the importance of geomorphologic, geologic and hydrogeologic assessment as an efficient approach for water resources development in the Kharit watershed. Kharit is one of largest watersheds in the Eastern Desert that lacks water for agricultural and drinking purposes, for the nomadic communities. This study aims to identify and evaluate the geomorphologic, geologic and hydrogeologic conditions in the Kharit watershed relative to water resource development using remote sensing and GIS techniques. The results reveal that the watershed contains 15 sub-basins and morphometric analyses show high probability for flash floods. These hazards can be managed by constructing earth dikes and masonry dams to minimize damage from flash floods and allow recharge of water to shallow groundwater aquifers. The Quaternary deposits and the Nubian sandstone have moderate to high infiltration rates and are relatively well drained, facilitating surface runoff and deep percolation into the underlying units. The sediments cover 54% of the watershed area and have high potential for groundwater extraction.

  4. Geomorphic Evidence of a Complex late-Cenozoic Uplift and Lateral Displacement History Along the 2013 M7.7 Baluchistan, Pakistan Strike-slip Rupture

    NASA Astrophysics Data System (ADS)

    Harbor, D. J.; Barnhart, W. D.

    2017-12-01

    The 2013 M7.7 Baluchistan earthquake in southern Pakistan ruptured 200 km of the north-dipping Hoshab reverse fault with dominantly lateral motion, clearly at odds with the regional topography created by previous reverse fault offsets. The kinematics of this earthquake led to the hypotheses that the Hoshab fault may alternatively slip in a reverse and lateral sense (bi-modal slip), and that the southeast Makran rotates as a uniform block around the fault (ball-and-socket rotation). Here, we use river profiles, regional relief, fault locations, and detailed geomorphic maps derived from optical imagery and DEMs to evaluate the recent uplift history of this region. We find that late Cenozoic fault zone geomorphology supports a spatially complex transition from lateral-dominated offsets in the NE to reverse-dominated offsets in the SW. Additionally, fault zone geomorphology suggests that the location of the Hoshab fault itself may change through time, leading to active incision of footwall alluvial fans and pediments. Stream profiles likewise record incision patterns that vary along the Hoshab fault. Incision and deposition in the SW are illustrative of relative footwall subsidence, consistent with recent uplift on the Hoshab fault; whereas incision and deposition in the NE are illustrative of relative footwall uplift consistent with ongoing regional uplift due to ball-and-socket rotations and dominantly lateral offsets along the northern Hoshab fault. The largest streams also record multiple, discrete, base-level drops, including the presence of convex-up river profiles in the hanging wall of the Hoshab fault. These profiles along hanging wall streams highlight a complex spatial and temporal history of reverse offset, lateral channel offset, and base-level resetting in regional streams that are altogether inconsistent with the kinematics of the 2013 earthquake alone, but that are consistent with the bi-modal slip model. Additionally, the evidence of footwall uplift in the NE is consistent with regional uplift due to ball-and-socket rotations superimposed on the Hoshab fault. These results indicate that the styles of fault slip in the Makran change in time and space in response to ongoing convergence and block rotations despite negligible uplift during the 2013 earthquake.

  5. Tree species diversity and its relationship to stand parameters and geomorphology features in the eastern Black Sea region forests of Turkey.

    PubMed

    Ozcelik, Ramazan; Gul, Altay Ugur; Merganic, Jan; Merganicova, Katarina

    2008-05-01

    We studied the effects of stand parameters (crown closure, basal area, stand volume, age, mean stand diameter number of trees, and heterogeneity index) and geomorphology features (elevation, aspect and slope) on tree species diversity in an example of untreated natural mixed forest stands in the eastern Black Sea region of Turkey. Tree species diversity and basal area heterogeneity in forest ecosystems are quantified using the Shannon-Weaver and Simpson indices. The relationship between tree species diversity basal area heterogeneity stand parameters and geomorphology features are examined using regression analysis. Our work revealed that the relationship between tree species diversity and stand parameters is loose with a correlation coefficient between 0.02 and 0.70. The correlation of basal area heterogeneity with stand parameters fluctuated between 0.004 and 0.77 (R2). According to our results, stands with higher tree species diversity are characterised by higher mean stand diameter number of diameter classes, basal area and lower homogeneity index value. Considering the effect of geomorphology features on tree species or basal area heterogeneity we found that all investigated relationships are loose with R < or = 0.24. A significant correlation was detected only between tree species diversity and aspect. Future work is required to verify the detected trends in behaviour of tree species diversity if it is to estimate from the usual forest stand parameters and topography characteristics.

  6. Applying fluvial geomorphology to river channel management: Background for progress towards a palaeohydrology protocol

    NASA Astrophysics Data System (ADS)

    Gregory, K. J.; Benito, G.; Downs, P. W.

    2008-06-01

    Significant developments have been achieved in applicable and applied fluvial geomorphology as shown in publications of the last three decades, analyzed as the basis for using results of studies of environmental change as a basis for management. The range of types of publications and of activities are more pertinent to river channel management as a result of concern with sustainability, global climate change, environmental ethics, ecosystem health concepts and public participation. Possible applications, with particular reference to river channel changes, include those concerned with form and process, assessment of channel change, urbanization, channelization, extractive industries, impact of engineering works, historical changes in land use, and restoration with specific examples illustrated in Table 1. In order to achieve general significance for fluvial geomorphology, more theory and extension by modelling methods is needed, and examples related to morphology and process characteristics, integrated approaches, and changes of the fluvial system are collected in Table 2. The ways in which potential applications are communicated to decision-makers range from applicable outputs including publications ranging from review papers, book chapters, and books, to applied outputs which include interdisciplinary problem solving, educational outreach, and direct involvement, with examples summarized in Table 3. On the basis of results gained from investigations covering periods longer than continuous records, a protocol embracing palaeohydrological inputs for application to river channel management is illustrated and developed as a synopsis version (Table 4), demonstrating how conclusions from geomorphological research can be expressed in a format which can be considered by managers.

  7. Topographic representation using DEMs and its applications to active tectonics research

    NASA Astrophysics Data System (ADS)

    Oguchi, T.; Lin, Z.; Hayakawa, Y. S.

    2016-12-01

    Identifying topographic deformations due to active tectonics has been a principal issue in tectonic geomorphology. It provides useful information such as whether a fault has been active during the recent past. Traditionally, field observations, conventional surveying, and visual interpretation of topographic maps, aerial photos, and satellite images were the main methods for such geomorphological investigations. However, recent studies have been utilizing digital elevation models (DEMs) to visualize and quantitatively analyze landforms. There are many advantages to the use of DEMs for research in active tectonics. For example, unlike aerial photos and satellite images, DEMs show ground conditions without vegetation and man-made objects such as buildings, permitting direct representation of tectonically deformed landforms. Recent developments and advances in airborne LiDAR also allow the fast creation of DEMs even in vegetated areas such as forested lands. In addition, DEMs enable flexible topographic visualization based on various digital cartographic and computer-graphic techniques, facilitating identification of particular landforms such as active faults. Further, recent progress in morphometric analyses using DEMs can be employed to quantitatively represent topographic characteristics, and objectively evaluate tectonic deformation and the properties of related landforms. This paper presents a review of DEM applications in tectonic geomorphology, with attention to historical development, recent advances, and future perspectives. Examples are taken mainly from Japan, a typical tectonically active country. The broader contributions of DEM-based active tectonics research to other fields, such as fluvial geomorphology and geochronology, will also be discussed.

  8. Soil and geomorphological parameters to characterize natural environmental and human induced changes within the Guadarrama Range (Central Spain)

    NASA Astrophysics Data System (ADS)

    Schmid, Thomas; Inclán-Cuartas, Rosa M.; Santolaria-Canales, Edmundo; Saa, Antonio; Rodríguez-Rastrero, Manuel; Tanarro-Garcia, Luis M.; Luque, Esperanza; Pelayo, Marta; Ubeda, Jose; Tarquis, Ana; Diaz-Puente, Javier; De Marcos, Javier; Rodriguez-Alonso, Javier; Hernandez, Carlos; Palacios, David; Gallardo-Díaz, Juan; Fidel González-Rouco, J.

    2016-04-01

    Mediterranean mountain ecosystems are often complex and remarkably diverse and are seen as important sources of biological diversity. They play a key role in the water and sediment cycle for lowland regions as well as preventing and mitigating natural hazards especially those related to drought such as fire risk. However, these ecosystems are fragile and vulnerable to changes due to their particular and extreme climatic and biogeographic conditions. Some of the main pressures on mountain biodiversity are caused by changes in land use practices, infrastructure and urban development, unsustainable tourism, overexploitation of natural resources, fragmentation of habitats, particularly when located close to large population centers, as well as by pressures related toclimate change. The objective of this work is to select soil and geomorphological parameters in order to characterize natural environmental and human induced changes within the newly created National Park of the Sierra de Guadarrama in Central Spain, where the presence of the Madrid metropolitan area is the main factor of impact. This is carried out within the framework of the Guadarrama Monitoring Network (GuMNet) of the Campus de ExcelenciaInternacionalMoncloa, where long-term monitoring of the atmosphere, soil and bedrock are priority. This network has a total of ten stations located to the NW of Madrid and in this case, three stations have been selected to represent different ecosystems that include: 1) an alluvial plain in a lowland pasture area (La Herreria at 920 m a.s.l.), 2) mid mountain pine-forested and pasture area (Raso del Pino at 1801 m a.s.l.) and 3) high mountain grassland and rock area (Dos Hermanas at 2225 m a.s.l.). At each station a site geomorphological description, soil profile description and sampling was carried out. In the high mountain area information was obtained for monitoring frost heave activity and downslope soil movement. Basic soil laboratory analyses have been carried out to determine the physical and chemical soil properties. The parent material is gneiss andassociated deposits and, as a result, soils are acid. The soils have a low to medium organic matter content and are non-saline. They are moderately to well drained soils and have no or slight evidence of erosion. The soil within the high mountain area has clear evidence of frost heave that has a vertical displacement of the surface in the centimeter range. The stations within the lowland and mid mountain areas represent the most degraded sites as a result of the livestock keeping, whereas the high mountain area is mainly influenced by natural environmental conditions. These soil and geomorphological parameters will constitute a basis for site characterization in future studies regarding soil degradation; determining the interaction between soil, vegetation and atmosphere with respect to human induced activities (e.g. atmospheric contamination and effects of fires); determining the nitrogen and carbon cycles; and the influence of heavy metal contaminants in the soils.

  9. Comparison between hydroacoustical and terrestrial evidence of glacially induced faulting, Lake Voxsjön, central Sweden

    NASA Astrophysics Data System (ADS)

    Smith, Colby A.; Nyberg, Johan; Bergman, Björn

    2018-01-01

    The recent availability of a terrestrial high-resolution digital elevation model in Sweden has led to the discovery of previously unknown scarps believed to be associated with bedrock faults that ruptured to the surface during the Holocene. Field investigations, however, are required to confirm these findings and determine the timing of post-glacial seismicity. Here, we present results from a unique hybrid approach, where hydroacoustical data from the sediments of Lake Voxsjön are compared to stratigraphic and geomorphologic records from nearby terrestrial settings. The hydroacoustical data are largely consistent with the terrestrial data indicating a single fault rupture shortly after deglaciation, which occurred about 11,000-10,500 cal BP.

  10. A hydrothermal seep on the Costa Rica margin: middle ground in a continuum of reducing ecosystems

    PubMed Central

    Levin, Lisa A.; Orphan, Victoria J.; Rouse, Greg W.; Rathburn, Anthony E.; Ussler, William; Cook, Geoffrey S.; Goffredi, Shana K.; Perez, Elena M.; Waren, Anders; Grupe, Benjamin M.; Chadwick, Grayson; Strickrott, Bruce

    2012-01-01

    Upon their initial discovery, hydrothermal vents and methane seeps were considered to be related but distinct ecosystems, with different distributions, geomorphology, temperatures, geochemical properties and mostly different species. However, subsequently discovered vents and seep systems have blurred this distinction. Here, we report on a composite, hydrothermal seep ecosystem at a subducting seamount on the convergent Costa Rica margin that represents an intermediate between vent and seep ecosystems. Diffuse flow of shimmering, warm fluids with high methane concentrations supports a mixture of microbes, animal species, assemblages and trophic pathways with vent and seep affinities. Their coexistence reinforces the continuity of reducing environments and exemplifies a setting conducive to interactive evolution of vent and seep biota. PMID:22398162

  11. Submarine landslides on the north continental slope of the South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Weiwei; Wang, Dawei; Wu, Shiguo; Völker, David; Zeng, Hongliu; Cai, Guanqiang; Li, Qingping

    2018-02-01

    Recent and paleo-submarine landslides are widely distributed within strata in deep-water areas along continental slopes, uplifts, and carbonate platforms on the north continental margin of the South China Sea (SCS). In this paper, high-resolution 3D seismic data and multibeam data based on seismic sedimentology and geomorphology are employed to assist in identifying submarine landslides. In addition, deposition models are proposed that are based on specific geological structures and features, and which illustrate the local stress field over entire submarine landslides in deep-water areas of the SCS. The SCS is one of the largest fluvial sediment sinks in enclosed or semi-enclosed marginal seas worldwide. It therefore provides a set of preconditions for the formation of submarine landslides, including rapid sediment accumulation, formation of gas hydrates, and fluid overpressure. A new concept involving temporal and spatial analyses is tested to construct a relationship between submarine landslides and different time scale trigger mechanisms, and three mechanisms are discussed in the context of spatial scale and temporal frequency: evolution of slope gradient and overpressure, global environmental changes, and tectonic events. Submarine landslides that are triggered by tectonic events are the largest but occur less frequently, while submarine landslides triggered by the combination of slope gradient and over-pressure evolution are the smallest but most frequently occurring events. In summary, analysis shows that the formation of submarine landslides is a complex process involving the operation of different factors on various time scales.

  12. The potential of small unmanned aircraft systems and structure-from-motion for topographic surveys: A test of emerging integrated approaches at Cwm Idwal, North Wales

    NASA Astrophysics Data System (ADS)

    Tonkin, T. N.; Midgley, N. G.; Graham, D. J.; Labadz, J. C.

    2014-12-01

    Novel topographic survey methods that integrate both structure-from-motion (SfM) photogrammetry and small unmanned aircraft systems (sUAS) are a rapidly evolving investigative technique. Due to the diverse range of survey configurations available and the infancy of these new methods, further research is required. Here, the accuracy, precision and potential applications of this approach are investigated. A total of 543 images of the Cwm Idwal moraine-mound complex were captured from a light (< 5 kg) semi-autonomous multi-rotor unmanned aircraft system using a consumer-grade 18 MP compact digital camera. The images were used to produce a DSM (digital surface model) of the moraines. The DSM is in good agreement with 7761 total station survey points providing a total vertical RMSE value of 0.517 m and vertical RMSE values as low as 0.200 m for less densely vegetated areas of the DSM. High-precision topographic data can be acquired rapidly using this technique with the resulting DSMs and orthorectified aerial imagery at sub-decimetre resolutions. Positional errors on the total station dataset, vegetation and steep terrain are identified as the causes of vertical disagreement. Whilst this aerial survey approach is advocated for use in a range of geomorphological settings, care must be taken to ensure that adequate ground control is applied to give a high degree of accuracy.

  13. KSC-05pd2409

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, the New Horizons spacecraft is shrouded in insulating blankets that were installed to serve as a heat shield. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  14. Quantifying hyporheic exchange dynamics in a highly regulated large river reach.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Zhou, T; Huang, M

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where river water and shallow groundwater mix and interact with each other. The direction, magnitude, and residence time of the hyporheic flux that penetrates the river bed are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Many approaches including field measurements and numerical methods have been developed to quantify the hyporheic exchanges in relatively small rivers. However, the spatial and temporal distributions of hyporheic exchanges in a large, regulated river reach remain less explored due to the large spatial domains,more » complexity of geomorphologic features and subsurface properties, and the great pressure gradient variations at the riverbed created by dam operations.« less

  15. KSC-05pd2407

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, a technician from the Applied Physics Laboratory adjusts part of the blanket that is being installed as a heat shield around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  16. KSC-05pd2408a

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, a technician from the Applied Physics Laboratory adjusts the blanket that is being installed as a heat shield around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  17. KSC-05pd2407a

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, a technician from the Applied Physics Laboratory adjusts the blanket that is being installed as a heat shield around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  18. KSC-05pd2625

    NASA Image and Video Library

    2005-12-15

    KENNEDY SPACE CENTER, FLA. - The mission decal for New Horizons is laid out in strips on the floor of the Payload Hazardous Servicing Facility before installation onto the spacecraft's fairing. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  19. KSC-05pd2406

    NASA Image and Video Library

    2005-11-04

    KENNEDY SPACE CENTER, FLA. - At NASA Kennedy Space Center’s Payload Hazardous Servicing Facility, technicians from the Applied Physics Laboratory are installing blankets that serve as heat shields around the New Horizons spacecraft. Carrying seven scientific instruments, the compact 1,060-pound New Horizons probe will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will fly by Pluto and Charon as early as summer 2015.

  20. Active tectonics around the Yakutat indentor: New geomorphological constraints on the eastern Denali, Totschunda and Duke River Faults

    NASA Astrophysics Data System (ADS)

    Marechal, Anaïs; Ritz, Jean-François; Ferry, Matthieu; Mazzotti, Stephane; Blard, Pierre-Henri; Braucher, Régis; Saint-Carlier, Dimitri

    2018-01-01

    The Yakutat collision in SE Alaska - SW Yukon is an outstanding example of indentor tectonics. The impinging Yakutat block strongly controls the pattern of deformation inland. However, the relationship between this collision system and inherited tectonic structures such as the Denali, Totschunda, and Duke River Faults remains debated. A detailed geomorphological analysis, based on high-resolution imagery, digital elevation models, field observations, and cosmogenic nuclide dating, allow us to estimate new slip rates along these active structures. Our results show a vertical motion of 0.9 ± 0.3 mm/yr along the whole eastern Denali Fault, while the dextral component of the fault tapers to less than 1 mm/yr ∼80 km south of the Denali-Totschunda junction. In contrast, the Totschunda Fault accommodates 14.6 ± 2.7 mm/yr of right-lateral strike-slip along its central section ∼100 km south of the junction. Further south, preliminary observations suggest a slip rate comprised between 3.5 and 6.5 mm/yr along the westernmost part of the Duke River thrust fault. Our results highlight the complex partitioning of deformation inland of the Yakutat collision, where the role and slip rate of the main faults vary significantly over distances of ∼100 km or less. We propose a schematic model of present-day tectonics that suggests ongoing partitioning and reorganization of deformation between major inherited structures, relay zones, and regions of distributed deformation, in response to the radial stress and strain pattern around the Yakutat collision eastern syntaxis.

Top