Sample records for complex geomorphological river

  1. Surficial geological tools in fluvial geomorphology: Chapter 2

    USGS Publications Warehouse

    Jacobson, Robert B.; O'Connor, James E.; Oguchi, Takashi

    2016-01-01

    Increasingly, environmental scientists are being asked to develop an understanding of how rivers and streams have been altered by environmental stresses, whether rivers are subject to physical or chemical hazards, how they can be restored, and how they will respond to future environmental change. These questions present substantive challenges to the discipline of fluvial geomorphology, especially since decades of geomorphologic research have demonstrated the general complexity of fluvial systems. It follows from the concept of complex response that synoptic and short-term historical views of rivers will often give misleading understanding of future behavior. Nevertheless, broadly trained geomorphologists can address questions involving complex natural systems by drawing from a tool box that commonly includes the principles and methods of geology, hydrology, hydraulics, engineering, and ecology.

  2. Exploring biological, chemical and geomorphological patterns in fluvial ecosystems with Structural Equation Modelling

    NASA Astrophysics Data System (ADS)

    Bizzi, S.; Surridge, B.; Lerner, D. N.:

    2009-04-01

    River ecosystems represent complex networks of interacting biological, chemical and geomorphological processes. These processes generate spatial and temporal patterns in biological, chemical and geomorphological variables, and a growing number of these variables are now being used to characterise the status of rivers. However, integrated analyses of these biological-chemical-geomorphological networks have rarely been undertaken, and as a result our knowledge of the underlying processes and how they generate the resulting patterns remains weak. The apparent complexity of the networks involved, and the lack of coherent datasets, represent two key challenges to such analyses. In this paper we describe the application of a novel technique, Structural Equation Modelling (SEM), to the investigation of biological, chemical and geomorphological data collected from rivers across England and Wales. The SEM approach is a multivariate statistical technique enabling simultaneous examination of direct and indirect relationships across a network of variables. Further, SEM allows a-priori conceptual or theoretical models to be tested against available data. This is a significant departure from the solely exploratory analyses which characterise other multivariate techniques. We took biological, chemical and river habitat survey data collected by the Environment Agency for 400 sites in rivers spread across England and Wales, and created a single, coherent dataset suitable for SEM analyses. Biological data cover benthic macroinvertebrates, chemical data relate to a range of standard parameters (e.g. BOD, dissolved oxygen and phosphate concentration), and geomorphological data cover factors such as river typology, substrate material and degree of physical modification. We developed a number of a-priori conceptual models, reflecting current research questions or existing knowledge, and tested the ability of these conceptual models to explain the variance and covariance within the dataset. The conceptual models we developed were able to explain correctly the variance and covariance shown by the datasets, proving to be a relevant representation of the processes involved. The models explained 65% of the variance in indices describing benthic macroinvertebrate communities. Dissolved oxygen was of primary importance, but geomorphological factors, including river habitat type and degree of habitat degradation, also had significant explanatory power. The addition of spatial variables, such as latitude or longitude, did not provide additional explanatory power. This suggests that the variables already included in the models effectively represented the eco-regions across which our data were distributed. The models produced new insights into the relative importance of chemical and geomorphological factors for river macroinvertebrate communities. The SEM technique proved a powerful tool for exploring complex biological-chemical-geomorphological networks, for example able to deal with the co-correlations that are common in rivers due to multiple feedback mechanisms.

  3. Cultural Resources Survey at Selected Locations, Table Rock Lake, Missouri and Arkansas,

    DTIC Science & Technology

    1986-12-01

    terrace along the river banks, and this alluvial material interfingers with fine-grained colluvium (redeposited loess) and cherty residuum washed fran...by block nhstber) Archaic Period Interfluve Meander Core Rice Complex Bluff Shelter James River Complex Mississippian Sprfld Plteu Cultural Resource...Invt Jefferson City Chert Osage Table Rock Lake Dalton Kings River Ozark Highlands White River Geomorphology Long Creek Paleo-Indian Basin 20

  4. Integrated Hydro-geomorphological Monitoring System of the Upper Bussento river basin (Cilento and Vallo Diano Geopark, S-Italy)

    NASA Astrophysics Data System (ADS)

    Guida, D.; Cuomo, A.; Longobardi, A.; Villani, P.; Guida, M.; Guadagnuolo, D.; Cestari, A.; Siervo, V.; Benevento, G.; Sorvino, S.; Doto, R.; Verrone, M.; De Vita, A.; Aloia, A.; Positano, P.

    2012-04-01

    The Mediterranean river ecosystem functionings are supported by river-aquifer interactions. The assessment of their ecological services requires interdisciplinary scientific approaches, integrate monitoring systems and inter-institutional planning and management. This poster illustrates the Hydro-geomorphological Monitoring System build-up in the Upper Bussento river basin by the University of Salerno, in agreement with the local Basin Autorities and in extension to the other river basins located in the Cilento and Vallo Diano National Park (southern Italy), recently accepted in the European Geopark Network. The Monitoring System is based on a hierarchical Hydro-geomorphological Model (HGM), improved in a multiscale, nested and object-oriented Hydro-geomorphological Informative System (HGIS, Figure 1). Hydro-objects are topologically linked and functionally bounded by Hydro-elements at various levels of homogeneity (Table 1). Spatial Hydro-geomorpho-system, HG-complex and HG-unit support respectively areal Hydro-objects, as basin, sector and catchment and linear Hydro-objects, as river, segment, reach and section. Runoff initiation points, springs, disappearing points, junctions, gaining and water losing points complete the Hydro-systems. An automatic procedure use the Pfafstetter coding to hierarchically divide a terrain into arbitrarily small hydro-geomorphological units (basin, interfluve, headwater and no-contribution areas, each with a unique label with hierarchical topological properties. To obtain a hierarchy of hydro-geomorphological units, the method is then applied recursively on each basin and interbasin, and labels of the subdivided regions are appended to the existing label of the original region. The monitoring stations are ranked consequently in main, secondary, temporary and random and located progressively at the points or sections representative for the hydro-geomorphological responses by validation control and modeling calibration. The datasets are organized into a relational geodatabase supporting tracer testings, space-time analysis and hydrological modeling. At the moment, three main station for hourly streamflow measurements are located at the terminal sections of the main basin and the two main sub-basin; secondary stations for weekly discharge measurements are located along the Upper Bussento river segment, upstream and downstream of each river reach or tributary catchments or karst spring inflow. Temporary stations are located in the representative sections of the catchments to detect stream flow losses into alluvial beds or experimental parcels in the bare karst and forested sandstone headwaters. Streamflow measurements are combined with geochemical survey and water sampling for Radon activity concentration measurements. Results of measurement campains in Radon space-time distribution within the basin are given in other contribution of same EGU session. Monitoring results confirm the hourly, daily, weekly and monthly hydrological data and validate outcomes of semi-distributed hydrological models based on previously time series, allowing both academic consultants and institutional subject to extend the Integrated Hydro-geomorphological Monitoring System to the surrounding drainage areas of the Cilento and Vallo di Diano Geopark. Keywords: River-aquifer interaction, Upper Bussento river basin, monitoring system, hydro-geomorphology, semi-distributed hydrological model. Table 1: Comparative, hierarchical Hydro-morpho-climate entities Hierarchy levelArea (Km2) Scale Orography Entity Climate Entity Morfological Entity Areal Drainage Entity Linear Drainage Entity VIII 106 1:15E6 Orogen Macroscale α Morphological Region Hydrological Region VII 105 1:10E6 Chain Sistem Macroscale β Morphological Province Hydrological Province VI 104 1:5E5 Chain Mesoscale α Morphological Sistem Basin River V 103 1:2,5E5Chain Segment Mesoscale β Morphological Sub-systemSub-Basin Torrent IV 100 1:1,0E5Orographic Group Mesoscale γ Morphological Complex Basin Sector Mid Order Channel/ Segment III 10 1: 5E4 Orographic System Microscale αMorphological Unit Watershed Low Order Channel/ Reach II 1 1:2,5E3Orographic ComplexMicroscale βMorphological ComponentCatchment Transient Channel/ Pool I 10-2 1:5E3 Orographic Unit Microscale γMorphological Element Hollow Zero Order Channel PIC

  5. Fluvial biogeomorphology in the Anthropocene: Managing rivers and managing landscapes.

    NASA Astrophysics Data System (ADS)

    Viles, Heather

    2015-04-01

    Biogeomorphology considers the many, and often complex, interactions between ecological and geomorphological processes. The concept of the Anthropocene deserves greater attention by scientists working on biogeomorphology, as will be demonstrated in this talk though a focus on fluvial environments. Rivers and river systems have been the subject of long-term human interference and management across the world, often in the form of direct manipulation of biogeomorphic interactions. Up to the present three broadly-defined phases of the Anthropocene can be identified - the Palaeoanthropocene, the Industrial Revolution and the Great Acceleration. Each of these broad phases of the Anthropocene has different implications for fluvial biogeomorphology and river management. The nature and dynamics of tufa-depositing systems provide good examples of the differing Anthropocene situations and will be focused on in this talk. We may now be entering a fourth phase of the Anthropocene called 'Earth system stewardship'. In terms of better understanding and managing the biogeomorphic interactions within rivers in such a phase, an improved conceptualisation of the Anthropocene and the complex web of interactions between human, ecological and geomorphological processes is needed.

  6. Downstream effects of the Pelton-Round Butte hydroelectric project on bedload, transport, channel morphology, and channel-bed texture, lower Deschutes River, Oregon.

    Treesearch

    Heidi Fassnacht; Ellen M. McClure; Gordon E. Grant; Peter C. Klingeman

    2003-01-01

    Field, laboratory, and historical data provide the basis for interpreting the effects of the Pelton-Round Butte dam complex on the surface water hydrology and geomorphology of the lower Deschutes River, Oregon, USA. The river's response to upstream impoundment and flow regulation is evaluated in terms of changes in predicted bedload transport rates, channel...

  7. Quaternary geology and geomorphology of the lower Deschutes River Canyon, Oregon.

    Treesearch

    Jim E. O' Connor; Janet H. Curran; Robin A. Beebee; Gordon E. Grant; Andrei Sarna-Wojcicki

    2003-01-01

    The morphology of the Deschutes River canyon downstream of the Pelton-Round Butte dam complex is the product of the regional geologic history, the composition of the geologic units that compose the valley walls, and Quaternary processes and events. Geologic units within the valley walls and regional deformation patterns control overall valley morphology. Valley bottom...

  8. Habitat use by a freshwater dolphin in the low-water season

    USGS Publications Warehouse

    Braulik, Gill T.; Reichert, Albert P.; Ehsan, Tahir; Khan, Samiullah; Northridge, Simon P.; Alexander, Jason S.; Garstang, Richard

    2012-01-01

    1. Many river dolphin populations are most vulnerable during the low-water season when habitat is limited. Indus River dolphin habitat selection in the dry season was investigated using Generalized Linear Models of dolphin distribution and abundance in relation to physical features of river geomorphology and channel geometry in cross-section. 2. Dolphins selected locations in the river with significantly greater mean depth, maximum depth, cross-sectional area, and hydraulic radius, and significantly narrower river width and a lower degree of braiding than areas where dolphins were absent. They were also recorded with higher frequency at river constrictions and at confluences. 3. Channel cross-sectional area was the most important factor affecting dolphin presence and abundance, with the area of water below 1 m in depth exerting the greatest influence. Indus dolphins avoided channels with small cross-sectional area (2), presumably owing to the risk of entrapment and reduced foraging opportunities. 4. Channel geometry had a greater ability to explain dolphin distribution than river geomorphology; however, both analyses indicated similar types of habitat selection. The dolphin–habitat relationships identified in the river geomorphology analysis were scale-dependent, indicating that dolphin distribution is driven by the occurrence of discrete small-scale features, such as confluences and constrictions, as well as by broader-scale habitat complexes. 5. There are numerous plans to impound or extract more water from the Indus River system. If low-water season flows are allowed to decrease further, the amount of deeper habitat will decline, there may be insufficient patches of suitable habitat to support the dolphin population through the low-water season, and dolphins may become isolated within deeper river sections, unable or unwilling to traverse through shallows between favourable patches of habitat.

  9. Geomorphological change detection of fluvial processes of lower Siret channel using LIDAR data

    NASA Astrophysics Data System (ADS)

    Niculita, Mihai; Obreja, Florin; Boca, Bogdan

    2015-04-01

    Geomorphological change detection is a relatively new method risen from the availability of high resolution multitemporal DEMs (James et. al., 2011; Brodu & Lague, 2012; Barnhart & Crosby, 2013). The main issue in regard with this method is the identification of real change, given by geomorphologic processes, and not by the noise, method artefacts, vegetation or various other errors (Wheaton et. al., 2009). We present the results of geomorphological change detection applied to a part of the lower Siret river channel (from 60 to 140 km above the Siret-Dunăre confluence, between Adjud and Namoloasa). The data sources used were LIDAR DEMs provided by the Siret and Prut-Barlad Water Administrations, one version for 2008, at 2 m resolution, and the other at 0.5 m resolution for 2012. The geomorphological change detection was performed at a resolution of 2 m using the methodology of Wheaton et. al., 2009, on 4 sites with a cumulated length of 47 km, with 41.6 km covering meandering channels and 5.4 km Movileni anthropic lake shore. In the studied period (2008-2012), two major flood events were registered, one in 2008 and the other in 2010 (Olariu et. al., 2009, Serbu et. al., 2009, Nedelcu et. al., 2011). The geomorphological change detection approach managed to outline the presence and the rate of process (expressed as volumetric change) for: channel erosion, channel aggradation, lateral migration of river bank, meander migration, lake bank erosion, alluvial fan deposition and anthropic excavation of channel and river bank. Barnhart T.B., Crosby B.T., 2013. Comparing Two Methods of Surface Change Detection on an Evolving Thermokarst Using High-Temporal-Frequency Terrestrial Laser Scanning, Selawik River, Alaska. Remote Sensing, 5:2813-23937. Brodu N, Lague D. 2012. 3D Terrestrial LiDAR data classification of complex natural scenes using a multi-scale dimensionality criterion: applications in geomorphology, ISPRS journal of Photogrammmetry and Remote Sensing, 68:121-134. Lague D., Brodu N., Leroux J., 2013. Accurate 3D comparison of complex topography with terrestrial laser scanner: application to the Rangitikei canyon (N-Z), ISPRS journal of Photogrammmetry and Remote Sensing, 80:10-26. James L.A., Hodgson M.E., Ghoshal S., Latiolais M.M., 2012. Geomorphic change detection using historic maps and DEM differencing: the temporal dimension of geospatial analysis. Geomorphology, 137:181-198. Nedelcu G., Borcan M., Branescu E., Petre C., Teleanu B., Preda A., Murafa R., 2011. Exceptional floods from the years 2008 and 2010 in Siret river basin, Proceedings of the Annual Scientific Conference of National Romanian Institute of Hydrology and Water Administration, 1-3 November 2011. (in Romanian) Olariu P., Obreja F., Obreja I., 2009. Some aspects regarding the sediment transit from Trotus catchment and lower sector of Siret river during the exceptional floods from 1991 and 2005, Annals of Stefan cel Mare University of Suceava, XVIII:93-104.(in Romanian) Serbu M., Obreja F., Olariu P., 2009. The 2008 floods from upper Siret catchment. Causes, effects, evaluation, Hidrotechnics, 54(12):1-38. (in Romanian) Wheaton J.M., Brasington J., Darby S., Sear D., 2009. Accounting for uncertainty in DEMs from repeat topographic surveys: improved sediment budgets. Earth Surface Processes and Landforms, 35(2):136-156.

  10. Geology and geomorphology of the Lower Deschutes River Canyon, Oregon.

    Treesearch

    Robin A. Beebee; Jim E. O' Connor; Gordon E. Grant

    2002-01-01

    This field guide is designed for geologists floating the approximately 80 kilometers (50 miles) of the Deschutes River from the Pelton-Round Butte Dam Complex west of Madras to Maupin, Oregon. The first section of the guide is a geologic timeline tracing the formation of the units that compose the canyon walls and the incision of the present canyon. The second section...

  11. A geomorphological characterisation of river systems in South Africa: A case study of the Sabie River

    NASA Astrophysics Data System (ADS)

    Eze, Peter N.; Knight, Jasper

    2018-06-01

    Fluvial geomorphology affects river character, behaviour, evolution, trajectory of change and recovery potential, and as such affects biophysical interactions within a catchment. Water bodies in South Africa, in common with many other water-stressed parts of the world, are generally under threat due to increasing natural and anthropogenic influences including aridity, siltation and pollution, as well as climate and environmental change. This study reports on a case study to characterise the geomorphology of different river systems in South Africa, with the aim of better understanding their properties, controls, and implications for biophysical interactions including water quality, biodiversity (aquatic and riparian), and human activity within the catchment. The approach adopted is based on the River Styles® framework (RSF), a geomorphology-based approach developed for rivers in New Zealand and Australia, but applied here for the first time to South Africa. Based on analysis of remote sensing imagery, SRTM-2 digital topographic data and field observations on sites through the entire river system, six geomorphic elements were identified along the Sabie River, northeast South Africa (gorge, bedrock-forced meander, low-moderate sinuosity planform controlled sand bed, meandering sand bed, low sinuosity fine grained sand bed, and floodouts), using the RSF classification scheme and based on the RSF procedural tree of Brierley and Fryirs (2005). Previous geomorphological studies along the Sabie River have shown that different reaches respond differently to episodic floods; we use these data to link river geomorphological character (as defined by the RSF) to the hydrodynamic conditions and processes giving rise to such character. This RSF approach can be used to develop a new management approach for river systems that considers their functional biophysical behaviour within individual reaches, rather than considering them as homogeneous and uniform systems.

  12. Humin to Human: Organic carbon, sediment, and water fluxes along river corridors in a changing world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sutfin, Nicholas Alan

    This is a presentation with slides on What does it mean to be human? ...humin?; River flow and Hydrographs; Snake River altered hydrograph (Marston et al., 2005); Carbon dynamics are important in rivers; Rivers and streams as carbon sink; Reservoirs for organic carbon; Study sites in Colorado; River morphology; Soil sample collection; Surveys at RMNP; Soil organic carbon content at RMNP; Abandoned channels and Cutoffs; East River channel migration and erosion; Linking hydrology to floodplain sediment flux; Impact of Extreme Floods on Floodplain Sediment; Channel Geometry: RMNP; Beavers dams and multithread channels; Geomorphology and carbon in N. St. Vrain Creek;more » Geomorphology and carbon along the East River; Geomorphology and carbon in N. St. Vrain Creek; San Marcos River, etc.« less

  13. Time and the rivers flowing: Fluvial geomorphology since 1960

    NASA Astrophysics Data System (ADS)

    Wohl, Ellen

    2014-07-01

    Fluvial geomorphology has been the largest single subdiscipline within geomorphology for many decades. Fluvial geomorphic expertise is integral to understanding and managing rivers and to developing strategies for sustainable development. This paper provides an overview of some of the significant advances in fluvial geomorphology between 1960 and 2010 with respect to: conceptual models; fluvial features and environments being studied; tools used by fluvial geomorphologists; geomorphic specialty groups within professional societies; journals in which fluvial geomorphic research is published; and textbooks of fluvial geomorphology. During this half century, fluvial geomorphology broadened considerably in scope, from a focus primarily on physical principles underlying process and form in lower gradient channels with limited grain size range, to a more integrative view of rivers as ecosystems with nonlinear behavior and great diversity of gradient, substrate composition, and grain size. The array of tools for making basic observations, analyzing data, and disseminating research results also expanded considerably during this period, as did the diversity of the fluvial geomorphic community.

  14. Feedbacks Between Bioclogging and Infiltration in Losing River Systems

    NASA Astrophysics Data System (ADS)

    Newcomer, M. E.; Hubbard, S. S.; Fleckenstein, J. H.; Schmidt, C.; Maier, U.; Thullner, M.; Ulrich, C.; Rubin, Y.

    2014-12-01

    Reduction in riverbed permeability due to biomass growth is a well-recognized yet poorly understood process associated with losing connected and disconnected rivers. Although several studies have focused on riverbed bioclogging processes at the pore-scale, few studies have quantified bioclogging feedback cycles at the scale relevant for water resources management, or at the meander-scale. At this scale, often competing hydrological-biological processes influence biomass dynamics and infiltration. Disconnection begins when declines in the water table form an unsaturated zone beneath the river maximizing seepage. Simultaneously, bioclogging reduces the point-scale infiltration flux and can either limit the nutrient flux and reduce bioclogging, or preferentially focus infiltration elsewhere and enhance bioclogging. These feedbacks are highly dependent on geomorphology and seasonal patterns of discharge and water temperature. To assess the mutual influences of disconnection, biomass growth, and temperature changes on infiltration in a geomorphologically complex river system, we built a 3D numerical model, conditioned on field data, using the reactive-transport simulator MIN3P. Results show that in disconnected regions of the river, biomass growth reduced vertical seepage downward and extended the unsaturated zone length; however these changes were contingent upon disconnection. Mid-way through the seasonal cycle, biomass declined in these same regions due to limited nutrient flux. Seepage and biomass continued to oscillate with a lag correlation of 1 month. Connected regions, however, showed the largest infiltration rates, nutrient fluxes, and concentrations of biomass. Despite the reduction in conductivity from biomass, flow remains high in connected regions because the feedback between bioclogging and infiltration is not as pronounced due to the sharpening hydraulic gradient. Bioclogging ultimately shapes the pattern of flow, however geomorphology dominates the strength of connection. Recognition of the feedbacks between geomorphological patterns and heterogeneous biomass on meander scale hydrological processes can lead to better estimates of local water volumes and capacities, especially when these systems are used as municipal and public water supply sources.

  15. Yangon River Geomorphology Identification and its Enviromental Imapacts Analsysi by Optical and Radar Sensing Techniques

    NASA Astrophysics Data System (ADS)

    Lwin, A.; Khaing, M. M.

    2012-07-01

    The Yangon river, also known as the Rangoon river, is about 40 km long (25miles), and flows from southern Myanmar as an outlet of the Irrawaddy (Ayeyarwady) river into the Ayeyarwady delta. The Yangon river drains the Pegu Mountains; both the Yangon and the Pathein rivers enter the Ayeyarwady at the delta. Fluvial geomorphology is based primarily on rivers of manageable dimensions. The emphasis is on geomorphology, sedimentology of Yangon river and techniques for their identification and management. Present techniques such as remote sensing have made it easier to investigate and interpret in details analysis of river geomorphology. In this paper, attempt has been made the complicated issues of geomorphology, sedimentation patterns and management of river system and evolution studied. The analysis was carried out for the impact of land use/ land cover (LULC) changes on stream flow patterns. The hydrologic response to intense, flood producing rainfall events bears the signatures of the geomorphic structure of the channel network and of the characteristic slope lengths defining the drainage density of the basin. The interpretation of the hydrologic response as the travel time distribution of a water particle randomly injected in a distributed manner across the landscape inspired many geomorphic insights. In 2008, Cyclone Nargis was seriously damaged to mangrove area and its biodiversity system in and around of Yangon river terraces. A combination of digital image processing techniques was employed for enhancement and classification process. It is observed from the study that middle infra red band (0.77mm - 0.86mm) is highly suitable for mapping mangroves. Two major classes of mangroves, dense and open mangroves were delineated from the digital data.

  16. Delineating riparian zones for entire river networks using geomorphological criteria

    NASA Astrophysics Data System (ADS)

    Fernández, D.; Barquín, J.; Álvarez-Cabria, M.; Peñas, F. J.

    2012-03-01

    Riparian zone delineation is a central issue for riparian and river ecosystem management, however, criteria used to delineate them are still under debate. The area inundated by a 50-yr flood has been indicated as an optimal hydrological descriptor for riparian areas. This detailed hydrological information is, however, not usually available for entire river corridors, and is only available for populated areas at risk of flooding. One of the requirements for catchment planning is to establish the most appropriate location of zones to conserve or restore riparian buffer strips for whole river networks. This issue could be solved by using geomorphological criteria extracted from Digital Elevation Models. In this work we have explored the adjustment of surfaces developed under two different geomorphological criteria with respect to the flooded area covered by the 50-yr flood, in an attempt to rapidly delineate hydrologically-meaningful riparian zones for entire river networks. The first geomorphological criterion is based on the surface that intersects valley walls at a given number of bankfull depths above the channel (BFDAC), while the second is based on the surface defined by a~threshold value indicating the relative cost of moving from the stream up to the valley, accounting for slope and elevation change (path distance). As the relationship between local geomorphology and 50-yr flood has been suggested to be river-type dependant, we have performed our analyses distinguishing between three river types corresponding with three valley morphologies: open, shallow vee and deep vee valleys (in increasing degree of valley constrainment). Adjustment between the surfaces derived from geomorphological and hydrological criteria has been evaluated using two different methods: one based on exceeding areas (minimum exceeding score) and the other on the similarity among total area values. Both methods have pointed out the same surfaces when looking for those that best match with the 50-yr flood. Results have shown that the BFDAC approach obtains an adjustment slightly better than that of path distance. However, BFDAC requires bankfull depth regional regressions along the considered river network. Results have also confirmed that unconstrained valleys require lower threshold values than constrained valleys when deriving surfaces using geomorphological criteria. Moreover, this study provides: (i) guidance on the selection of the proper geomorphological criterion and associated threshold values, and (ii) an easy calibration framework to evaluate the adjustment with respect to hydrologically-meaningful surfaces.

  17. Fluvial geomorphology and river engineering: future roles utilizing a fluvial hydrosystems framework

    NASA Astrophysics Data System (ADS)

    Gilvear, David J.

    1999-12-01

    River engineering is coming under increasing public scrutiny given failures to prevent flood hazards and economic and environmental concerns. This paper reviews the contribution that fluvial geomorphology can make in the future to river engineering. In particular, it highlights the need for fluvial geomorphology to be an integral part in engineering projects, that is, to be integral to the planning, implementation, and post-project appraisal stages of engineering projects. It should be proactive rather than reactive. Areas in which geomorphologists will increasingly be able to complement engineers in river management include risk and environmental impact assessment, floodplain planning, river audits, determination of instream flow needs, river restoration, and design of ecologically acceptable channels and structures. There are four key contributions that fluvial geomorphology can make to the engineering profession with regard to river and floodplain management: to promote recognition of lateral, vertical, and downstream connectivity in the fluvial system and the inter-relationships between river planform, profile, and cross-section; to stress the importance of understanding fluvial history and chronology over a range of time scales, and recognizing the significance of both palaeo and active landforms and deposits as indicators of levels of landscape stability; to highlight the sensitivity of geomorphic systems to environmental disturbances and change, especially when close to geomorphic thresholds, and the dynamics of the natural systems; and to demonstrate the importance of landforms and processes in controlling and defining fluvial biotopes and to thus promote ecologically acceptable engineering. Challenges facing fluvial geomorphology include: gaining full acceptance by the engineering profession; widespread utilization of new technologies including GPS, GIS, image analysis of satellite and airborne remote sensing data, computer-based hydraulic modeling and geophysical techniques; dovetailing engineering approaches to the study of river channels which emphasize reach-scale flow resistance, shear stresses, and material strength with catchment scale geomorphic approaches, empirical predictions, bed and bank processes, landform evolution, and magnitude-frequency concepts; producing accepted river channel typologies; fundamental research aimed at producing more reliable deterministic equations for prediction of bed and bank stability and bedload transport; and collaboration with aquatic biologists to determine the role and importance of geomorphologically and hydraulically defined habitats.

  18. Geomorphology, acoustic backscatter, and processes in Santa Monica Bay from multibeam mapping.

    PubMed

    Gardner, James V; Dartnell, Peter; Mayer, Larry A; Hughes Clarke, John E

    2003-01-01

    Santa Monica Bay was mapped in 1996 using a high-resolution multibeam system, providing the first substantial update of the submarine geomorphology since the initial compilation by Shepard and Emery [(1941) Geol. Soc. Amer. Spec. Paper 31]. The multibeam mapping generated not only high-resolution bathymetry, but also coregistered, calibrated acoustic backscatter at 95 kHz. The geomorphology has been subdivided into six provinces; shelf, marginal plateau, submarine canyon, basin slope, apron, and basin. The dimensions, gradients, and backscatter characteristics of each province is described and related to a combination of tectonics, climate, sea level, and sediment supply. Fluctuations of eustatic sea level have had a profound effect on the area; by periodically eroding the surface of Santa Monica plateau, extending the mouth of the Los Angeles River to various locations along the shelf break, and by connecting submarine canyons to rivers. A wetter glacial climate undoubtedly generated more sediment to the rivers that then transported the increased sediment load to the low-stand coastline and canyon heads. The trends of Santa Monica Canyon and several bathymetric highs suggest a complex tectonic stress field that has controlled the various segments. There is no geomorphic evidence to suggest Redondo Canyon is fault controlled. The San Pedro fault can be extended more than 30 km to the northwest by the alignment of a series of bathymetric highs and abrupt changes in direction of channel thalwegs.

  19. Capability of applying morphometric parameters of relief in river basins for geomorphological zoning of a territory

    NASA Astrophysics Data System (ADS)

    Ivanov, M. A.; Yermolaev, O. P.

    2018-01-01

    Information about morphometric characteristics of relief is necessary for researches devoted to geographic characteristics of territory, its zoning, assessment of erosion processes, geoecological condition and others. For the Volga Federal District for the first time a spatial database of geomorphometric parameters 1: 200 000 scale was created, based on a river basin approach. Watersheds are used as a spatial units created by semi-automated method using the terrain and hydrological modeling techniques implemented in the TAS GIS and WhiteBox GIS. As input data DEMs SRTM and Aster GDEM and hydrographic network vectorized from topographic maps were used. Using DEM highlighted above for each river basin, basic morphometric relief characteristics such as mean height, slope steepness, slope length, height range, river network density and factor LS were calculated. Basins belonging to the geomorphological regions and landscape zones was determined, according to the map of geomorphological zoning and landscape map. Analysis of variance revealed a statistically significant relationship between these characteristics and geomorphological regions and landscape zones. Consequently, spatial trends of changes of analyzed morphometric characteristics were revealed.

  20. Quantifying hyporheic exchange dynamics in a highly regulated large river reach.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Zhou, T; Huang, M

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where river water and shallow groundwater mix and interact with each other. The direction, magnitude, and residence time of the hyporheic flux that penetrates the river bed are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Many approaches including field measurements and numerical methods have been developed to quantify the hyporheic exchanges in relatively small rivers. However, the spatial and temporal distributions of hyporheic exchanges in a large, regulated river reach remain less explored due to the large spatial domains,more » complexity of geomorphologic features and subsurface properties, and the great pressure gradient variations at the riverbed created by dam operations.« less

  1. The case of Sarno River (Southern Italy): effects of geomorphology on the environmental impacts.

    PubMed

    De Pippo, Tommaso; Donadio, Carlo; Guida, Marco; Petrosino, Carmela

    2006-05-01

    Analysis of the morphological, geological and environmental characteristics of the Sarno River basin has shown the present degraded condition of the area. Over the past thirty years, the supply of untreated effluent of domestic, agricultural and industrial origin has ensured the presence of high concentrations of pollutants, including heavy metals. The geological context of the catchment area has played a major part in determining the current ecological conditions and public health problems: while human activity has modified the landscape, the natural order has indirectly contributed to increasing the environmental impact. The health situation is precarious as the basin's inhabitants feed on agricultural and animal products, and use polluted water directly or indirectly. The hazard of contracting degenerative illnesses of the digestive or respiratory apparatus, bacterial infections or some neoplasia has gradually increased, especially in the last five years. Moreover, polluted basin waters flowing into the Bay of Naples increase sea water contamination, thereby damaging tourism, public health and degrading the local littoral quality. The overview presented shows how the environmental state of the Sarno River basin gives considerable cause for concern. The basin's complex geomorphologic setting has a direct bearing on local environmental and health conditions. The analysis of the available data demonstrates how the physical aspects of the area are closely linked to the diffusion and concentration of the pollutants, and how the latter ones have a large influence on the hygienic-sanitary conditions of the local population. Specific interventions need to be undertaken to monitor and improve the chemical, physical and microbiological conditions of water and sediments, especially in light of the geomorphological vulnerability of the river basin.

  2. Characterizing worldwide patterns of fluvial geomorphology and hydrology with the Global River Widths from Landsat (GRWL) database

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.

    2015-12-01

    The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.

  3. Geomorphic analysis of large alluvial rivers

    NASA Astrophysics Data System (ADS)

    Thorne, Colin R.

    2002-05-01

    Geomorphic analysis of a large river presents particular challenges and requires a systematic and organised approach because of the spatial scale and system complexity involved. This paper presents a framework and blueprint for geomorphic studies of large rivers developed in the course of basic, strategic and project-related investigations of a number of large rivers. The framework demonstrates the need to begin geomorphic studies early in the pre-feasibility stage of a river project and carry them through to implementation and post-project appraisal. The blueprint breaks down the multi-layered and multi-scaled complexity of a comprehensive geomorphic study into a number of well-defined and semi-independent topics, each of which can be performed separately to produce a clearly defined, deliverable product. Geomorphology increasingly plays a central role in multi-disciplinary river research and the importance of effective quality assurance makes it essential that audit trails and quality checks are hard-wired into study design. The structured approach presented here provides output products and production trails that can be rigorously audited, ensuring that the results of a geomorphic study can stand up to the closest scrutiny.

  4. Unravelling recent environmental change in a lowland river valley, eastern Ireland: geoarchaeological applications

    NASA Astrophysics Data System (ADS)

    Foster, Gez; Turner, Jonathan

    2010-05-01

    This paper reports the preliminary findings of an Irish Heritage Council INSTAR funded research project on the geoarchaeology and fluvial geomorphology of the lower River Boyne valley, eastern Ireland. The nature and evolution of the contemporary Boyne floodplain at Dunmoe, Co. Meath (53° 40' 22.8" N, 6° 37' 54.7" W) has been investigated using a multi-technique approach combining field and terrestrial LiDAR-based geomorphological mapping, radiocarbon dating of channel migration activity, electrical resistivity tomography surveys of sub-surface topography and high-resolution X-ray and XRF geochemical characterisation of fine-grained sediment fill sequences. All of these lines of evidence support a tripartite sub-division of the floodplain. Valley marginal floodplain Zone 1 is characterised by a colluvial sediment fill which has buried an irregular ditch-basin-platform surface containing recent archaeological material. Subtle variations in mapped elevation suggest that the buried surface may represent the site of an abandoned river-side complex, possibly a small docking area or port. Geomorphological field relationships suggest that the possible archaeological site was connected to a former bank line position of the main River Boyne (floodplain Zone 2) via a small canal. Radiocarbon dating of Zone 2 channel gravels suggests that the channel associated with this bank position was abandoned some time before 1490-1610 AD. Subsequent vertical and lateral channel migration, the onset of which has been radiocarbon dated to the 17th or 18th century AD, led to the development of the lowest and most recent floodplain surface (Zone 3). The sedimentology and geochemistry of the Zone 2 and 3 fluvial sediment sequences suggests that recent centuries have involved an increase in fluvial flood risk, evidenced by the burial of alluvial soils by bedded, shell-rich sands. A more complete understanding of the timing and environmental drivers of increasing flood risk is anticipated from ongoing radionuclide (Pb-210 and Cs-137) and pollen analysis of the fluvial sediment sequences. However, based on the established chronology and geomorphic field relationships, it is plausible that the archaeological complex represents a late medieval site linked to Dunmoe Castle (14th to 17th century AD), which overlooks the floodplain.

  5. Hydro-geomorphological characterization and classification of Chilean river networks using horizontal, vertical and climatological properties

    NASA Astrophysics Data System (ADS)

    Pereira, A. A.; Gironas, J. A.; Passalacqua, P.; Mejia, A.; Niemann, J. D.

    2017-12-01

    Previous work has shown that lithological, tectonic and climatic processes have a major influence in shaping the geomorphology of river networks. Accordingly, quantitative classification methods have been developed to identify and characterize network types (dendritic, parallel, pinnate, rectangular and trellis) based solely on the self-affinity of their planform properties, computed from available Digital Elevation Model (DEM) data. In contrast, this research aim is to include both horizontal and vertical properties to evaluate a quantitative classification method for river networks. We include vertical properties to consider the unique surficial conditions (e.g., large and steep height drops, volcanic activity, and complexity of stream networks) of the Andes Mountains. Furthermore, the goal of the research is also to explain the implications and possible relations between the hydro-geomorphological properties and climatic conditions. The classification method is applied to 42 basins in the southern Andes in Chile, ranging in size from 208 Km2 to 8,000 Km2. The planform metrics include the incremental drainage area, stream course irregularity and junction angles, while the vertical metrics include the hypsometric curve and the slope-area relationship. We introduce new network structures (Brush, Funnel and Low Sinuosity Rectangular), possibly unique to the Andes, that can be quantitatively differentiated from previous networks identified in other geographic regions. Then, this research evaluates the effect that excluding different Strahler order streams has on the horizontal properties and therefore in the classification. We found that climatic conditions are not only linked to horizontal parameters, but also to vertical ones, finding significant correlation between climatic variables (average near-surface temperature and rainfall) and vertical measures (parameters associated with the hypsometric curve and slope-area relation). The proposed classification shows differences among basins previously classified as the same type, which are not noticeable in their horizontal properties and helps reduce misclassifications within the old clusters. Additional hydro-geomorphological metrics are to be considered in the classification method to improve the effectiveness of it.

  6. Irrigation channels of the Upper Rhone valley (Switzerland). Geomorphological analysis of a cultural heritage

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel

    2016-04-01

    The Upper Rhone valley (Canton of Valais, Switzerland) is characterised by dry climatic conditions that explain the presence of an important network (about 800 km) of irrigation channels - called Bisses in the French-speaking part of the canton or Suonen in the German-speaking area - dating back to the Middle Ages. This network constitutes a cultural heritage and during the last 30 years these agricultural infrastructures have sparked a renewed interest for tourist and cultural reasons. Indeed, the paths along the channels are used as tourist trails and several abandoned channels have been renovated for tourist use. Based on an inventory of the Bisses/Suonen of Valais, the proposed communication has three aims: (1) to analyse the geomorphological context (morphometric analysis, structural geomorphology, main processes) of various types of channels and to show the impact of the geomorphological context on the building techniques; (2) to identify particularly active processes along the channels; (3) to classify the Bisses/Suonen according to their geomorphological value and to their geomorphological sensitivity, and to propose managing measures. Structural and climatic conditions influence the geomorphological context of the channels. In a structural point of view, irrigation channels are developed in three main contexts: (1) in the Aar Massif crystalline basement; (2) in the limestone and marl cover nappes of the Helvetic Alps; (3) in the metamorphic cover nappes of the Penninic domain. The Rhone River valley is boarded by two high mountain ranges: the Penninic Alps in the South and the Bernese Alps in the North. Because of rain shadow effects, the climate is relatively dry and, between Brig and Martigny, annual rainfall is not more than 600 mm at 500 m ASL and 800 mm at 1600 m ASL. Nevertheless, due to important vertical precipitation gradients annual rainfall totals are high at high altitudes. On the southern facing tributary valleys, the dry climatic conditions are accentuated by high insulation and evaporation. Finally, foehn events are quite common. In a climatic point of view, the area can be divided in three main zones: (1) Upstream of Brig, the climate is characterised by cold and wet conditions, and irrigation is not necessary; (2) between Brig and Martigny, the rain shadow effect is responsible of irrigation needs in the lower altitudes, whereas at high altitudes rainfall is sufficient for plant growing without irrigation; (3) downstream of Martigny, the climate is wetter and irrigation is not necessary. In a palaeoclimatic point of view, the Rhone River catchment was characterised by numerous glaciations during the Quaternary. Quaternary glaciers have shaped the valleys (U-shaped valleys, hanged valleys) and the postglacial hydrographical network had to adapt to the glacial valleys (presence of numerous waterfalls, hanged valleys, postglacial gorges, alluvial fans). By crossing climatic and structural contexts, three groups of geomorphological contexts of irrigation channels can be highlighted: (1) In the tributary valleys situated South of the Rhone valley (Penninic Alps) the irrigation channels are simply dug in the valley slopes; several of them are affected by landslides typical of metamorphic rocks of Penninic Alps; (2) In the short tributary valleys of the crystalline Aar Massif - in the valleys North to the city of Visp -, the geomorphological context is characterised by steep slopes both in the tributary valleys and in the south-facing slopes dominating the Rhone River valley. In this area, water channels are cut into the rocks and in some parts they are built in wood pipes hanged along the rock walls; (3) In the tributary valleys of the Helvetic domain - North of the Rhone River between Leuk and Sion - the geological context highly influences the building techniques: due to geological dipping towards Southeast, the tributary valley are dissymmetric: in the dip slopes channels are simply cut in the soil, whereas in the steep opposite sides, they are hanged on the limestone rock walls. In the south-facing slopes of the main valley, differential erosion by the Rhone glacier has formed a complex alternation of hills, depressions and gently dipping slopes very favourable to agriculture; the irrigation network had adapted to this complex geomorphological context.

  7. Geomorphological reference condition definition as a basis for river restoration and river management: the example of Oiartzun, Oria and Urumea River basins (Basque Country)

    NASA Astrophysics Data System (ADS)

    Ibisate, Askoa; Ollero, Alfredo; Sáenz de Olazagoitia, Ana; Acín, Vanesa; Granado, David; Herrero, Xabier; Horacio, Jesús

    2017-04-01

    The application of hydrogeomorphology as a tool for river management and decision making on reference condition definition for river restoration is presented. Water Framework Directive (2000/60/CE) requires the identification of reference conditions and attainable target images, to achieve the good ecological status, taking into account the direct and indirect changes in the basin and river course. Data collection was done through an exhaustive fieldwork and GIS tools. Based on geomorphological homogeneous river reaches identification (waterfall, bedrock, step-pool, cascade, coluvial, run, riffle-pool, heavily modified), the hydrogeomorphological assessment of all of them in relation to its "natural" condition allowed the identification of those with a good or very good hydrogeomorphological condition, considered as reference condition. The loss of hydrogeomorphological quality was closely linked to sociodemographical pressure, due to artificial elements in the river course, floodplain and land use changes on the basin. The assessment done based on pressures and impacts allowed the proposal of specific restoration objectives which facilitated the identification of the elements that degrade the hydrogeomorphological quality of the reaches, and helped the identification of specific restoration actions. In addition it was possible to set the reaches with the potentiality of being restored, those reversible and those that due to its high degradation were considered irreversible, and therefore not able to be restored, except for some rehabilitation or mitigation measures. The application in two basins, Oria and Oiartzun, concluded that 36% of the reaches could recover their geomorphological good status and a 40% could be considered as reference condition for other reaches. This geomorphological based reference condition definition could be linked and complete with ecological data.

  8. Using Fluvial Geomorphology as a Physical Template in Process-Based and Recovery Enhancement Approaches to River Management

    NASA Astrophysics Data System (ADS)

    Fryirs, K.

    2016-12-01

    In an `era of river repair' fluvial geomorphology has emerged as a key science in river management practice. Geomorphologists are ideally placed to use their science in an applied manner to provide guidance on the impact of floods and droughts, landuse and climate change, and water use on river forms, processes and evolution. Increasingly, fluvial geomorphologists are also asked to make forecasts about how systems might adjust in the future, and to work with managers to implement strategies on-the-ground. Using case study material from Eastern Australia (Bega, Hunter, Wollombi and Lockyer catchments) I will focus on how process-based understanding of rivers has developed and evolved to provide a coherent physical template for effective and proactive, river management practice. I will focus on four key principles and demonstrate how geomorphology has been, and should continue to be, used in process-based, recovery enhancement approaches to river management. How understanding the difference between river behaviour and river change is used to determine how a river is `expected' to function, and how to identify anomalous processes requiring a treatment response. How understanding evolutionary trajectory is used to make future forecasts on river condition and recovery potential, and how working with processes can enhance river recovery. How geomorphic information can be used as a physical template atop which to analyse a range of biotic processes and habitat outcomes. How geomorphic information is used to effectively prioritise and plan river conservation and rehabilitation activities as part of catchment and region-scale action plans.

  9. Effects of river geomorphology on the spatial importance of aquatic energy flows into terrestrial food webs

    NASA Astrophysics Data System (ADS)

    Muehlbauer, J. D.; Doyle, M. W.; Tockner, K.

    2011-12-01

    This presentation will present the results of a meta-analysis on river-floodplain carbon/energy subsidies. This analysis combines data from the existing body of literature (ca. 100 studies) to determine a "stream signature:" a regression equation that fits the decline in aquatic-derived energy in terrestrial predator food webs as a function of distance from the river. The nature of this decay curve and its implications for river/riparian ecological dynamics will be desrcibed. Variation in this metric due to the influence of stream order, river bank characteristics, and channel geomorphology will be assessed. In addition, the implications of variation in the stream signature for terrestrial aquatic food webs under different geomorphic and anthropogenic scenarios will be discussed.

  10. Influences of Altered River Geomorphology on Channel-Floodplain Mass and Momentum Transfer

    NASA Astrophysics Data System (ADS)

    Byrne, C. F.; Stone, M. C.

    2017-12-01

    River management strategies, including both river engineering and restoration, have altered river geomorphology and associated lateral channel-floodplain connectivity throughout the world. This altered connectivity is known to drive changes in ecologic and geomorphic processes during floods, however, quantification of altered connectivity is difficult due to the highly dynamic spatial and temporal nature of flood wave conditions. The objective of this research was to quantify the physical processes of lateral mass and momentum transfer at the channel-floodplain interface. The objective was achieved with the implementation of novel scripting and high-resolution, two-dimensional hydrodynamic modeling techniques under unsteady flow conditions. The process-based analysis focused on three geomorphic feature types within the Middle Rio Grande, New Mexico, USA: (1) historical floodplain surfaces, (2) inset floodplain surfaces formed as a result of channel training and hydrologic alteration, and (3) mechanically restored floodplain surfaces. Results suggest that inset floodplain feature types are not only subject to greater mass and momentum transfer magnitudes, but those connections are also more heterogeneous in nature compared with historical feature types. While restored floodplain feature types exhibit transfer magnitudes and heterogeneity comparable to inset feature types, the surfaces are not of great enough spatial extent to substantially influence total channel-floodplain mass and momentum transfer. Mass and momentum transfer also displayed differing characteristic changes as a result of increased flood magnitude, indicating that linked hydrodynamic processes can be altered differently as a result of geomorphic and hydrologic change. The results display the potential of high-resolution modeling strategies in capturing the spatial and temporal complexities of river processes. In addition, the results have implications for other fields of river science including biogeochemical exchange at the channel-floodplain interface and quantification of process associated with environmental flow and river restoration strategies.

  11. Historical Sediment Sources and Delivery on the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    Dahl, T. A.; Biedenharn, D. S.; Little, C. D.

    2015-12-01

    The development of the Lower Mississippi River (LMR) and its floodplain for navigation and flood control has been ongoing since the 18th century, with the most concerted efforts occurring as a result of the Flood Control Act (FCA) of 1928 following the Great Flood of 1927. The Mississippi River and Tributaries (MR&T) Project that was spawned from the FCA of 1928 has produced a massive, comprehensive system for flood control and channel stabilization that includes levees, channel improvements, and floodways, as well as tributary reservoirs and other basin improvements. Additionally, the development of the river for safe and dependable navigation has generated a substantial engineering effort involving river training structures, meander cutoffs, and dredging. The historical, and present-day morphology of the LMR reflects an integration of all these engineering interventions (and the process-responses they have triggered in the fluvial system), combined with natural drivers of channel change and evolution, including floods and droughts, hurricanes, neotectonic activity, geologic outcrops, climate change, and relative sea-level rise. In response to the complex requirements in navigation, flood risk reduction, and environmental restoration, all with multiple stakeholders, the U.S. Army Corps of Engineers created the Mississippi River Geomorphology & Potamology (MRG&P) Program. The goals of the MRG&P are to advance the knowledge of the geomorphology of the LMR and to transfer this technology to improve and sustain long-term management of the system. The results presented herein come from several MRG&P studies. The historical river morphology, and particularly the sources and delivery of sediments have changed dramatically over the past two centuries. In this presentation, the changes in sediment sources, and the manner in which this sediment is delivered through the channel system from the early 1800s to present-day is described.

  12. Rapid river classification using GIS-delineated functional process zones

    EPA Science Inventory

    Traditional classification of rivers does not take into consideration how rivers function within the ecosystem. Using factors such as hydrology and geomorphology that directly affect ecosystem structure and function, provides a means of classifying river systems into hydrogeomorp...

  13. Significance of beach geomorphology on fecal indicator bacteria levels.

    PubMed

    Donahue, Allison; Feng, Zhixuan; Kelly, Elizabeth; Reniers, Ad; Solo-Gabriele, Helena M

    2017-08-15

    Large databases of fecal indicator bacteria (FIB) measurements are available for coastal waters. With the assistance of satellite imagery, we illustrated the power of assessing data for many sites by evaluating beach features such as geomorphology, distance from rivers and canals, presence of piers and causeways, and degree of urbanization coupled with the enterococci FIB database for the state of Florida. We found that beach geomorphology was the primary characteristic associated with enterococci levels that exceeded regulatory guidelines. Beaches in close proximity to marshes or within bays had higher enterococci exceedances in comparison to open coast beaches. For open coast beaches, greater enterococci exceedances were associated with nearby rivers and higher levels of urbanization. Piers and causeways had a minimal contribution, as their effect was often overwhelmed by beach geomorphology. Results can be used to understand the potential causes of elevated enterococci levels and to promote public health. Copyright © 2017 Elsevier Ltd. All rights reserved.

  14. The Study of Watershed Topography Characteristics in Vakhsh River Based on ZY3-DSM

    NASA Astrophysics Data System (ADS)

    Cui, Y.; Chen, L.; Li, M.; Men, Z.

    2018-04-01

    The Vakhsh River is one of the major rivers in Tajikistan. The quantitative analysis of watershed topography and developmental characteristics in Vakhsh River catchment can reflect the morphological characteristics of the region, which is of great significance for revealing the quantitative relationship between the hydrological and the geomorphological process. In this paper, the D8 algorithm and the spatial analysis method were used to extract the river networks, the catchment boundary profile lines and the longitudinal valley profile lines of the four major tributaries in the Vakhsh River from the ZY3-DSM of 10 meters resolution. On this basis, five quantitative indices including the frequency of wave, amplitude of wave, gully density, the longitudinal slope and roundness rate were used to analyze the watershed landform and its development degree. According to the experimental results, the catchment have a high surface complexity and a mature landform. Yovonsu river catchment which is in the downstream of Vakhsh River is oval and has low terrain complexity with large frequency and small amplitude. Among the midstream and upstream, the Mukson River has developed into geriatric terrain that is the most mature and has the highest surface complex, while the Obikhingon River and the Kizilsu River have developed into a stable maternal terrain. In terms of topography, the boundary elevation of the Obikhingon is basically in accordance with the normal distribution, while the Kizilsu and the Muksu show a peak state with elevations of 4,000-5,000 m and 5,000-5,500 m, respectively.

  15. Toward a new system approach of complexity in geomorphology

    NASA Astrophysics Data System (ADS)

    Masson, E.

    2012-04-01

    Since three decades the conceptual vision of catchment and fluvial geomorphology is strongly based on the "fluvial system" (S. A. Schumm, 1977) and the "river continuum system" (R. L. Vannote et al., 1980) concepts that can be embedded in a classical physical "four dimensions system" (C. Amoros and G.-E. Petts, 1993). Catchment and network properties, sediment and water budgets and their time-space variations are playing a major role in this geomorpho-ecological approach of hydro-geomorphosystems in which human impacts are often considered as negative externalities. The European Water Framework Directive (i.e. WFD, Directive 2000/60/EC) and its objective of good environmental status is addressing the question of fluvial/catchment/landscape geomorphology and its integration into IWRM in such a sustainable way that deeply brings back society and social sciences into the water system analysis. The DPSIR methodology can be seen as an attempt to cope with the analysis of unsustainable consequences of society's water-sediment-landscape uses, environmental pressures and their consequences on complex fluvial dynamics. Although more and more scientific fields are engaged in this WFD objective there's still a lack of a global theory that could integrate geomorphology into the multi-disciplinary brainstorming discussion about sustainable use of water resources. Our proposition is to promote and discuss a trans-disciplinary approach of catchments and fluvial networks in which concepts can be broadly shared across scientific communities. The objective is to define a framework for thinking and analyzing geomorphological issues within a whole "Environmental and Social System" (i.e. ESS, E. Masson 2010) with a common set of concepts and "meta-concepts" that could be declined and adapted in any scientific field for any purpose connected with geomorphology. We assume that geomorphological research can benefit from a six dynamic dimensions system approach based on structures, functions, connections, phases, topologies and adaptations. By combining these six dimensions one can easily understand that geomorphological features and dynamics are then considered as very complex systems in which hierarchies, information, discontinuities, openness, resilience and self-organized responses are fundamental properties emerging among many others (E. Masson 2010). This conceptual approach is consistent with many other scientific concepts used in ecological sciences (S-E. Jorgensen et al. 2007, C-S. Holling and al. 2002, I. Prigogine 1997, W-M. Elsasser 1987…) but also in human sciences (A. Dauphiné 2003, Ch.P.Péguy 2001, P. Bourdieu 1987, U. Beck 1986, J. Tricart 1968, C. Levy-Strauss 1958…), in physics (P. Bak, 1996, K-R. Popper 1982, I. Prigogine 1955…) and obviously into systemic science (E. Morin 1977, J-L. Moigne 1977, L. Von Bertalanffy 1968). Our contribution is then an encouraging attempt to expand the frontier of geomorphological theory with a new trans-disciplinary approach that deals with the huge complexity of hydrosystems considered as a whole Environmental and Social System.

  16. A Framework for the Ecogeomorphological Modelling of the Macquarie Marshes, Australia

    NASA Astrophysics Data System (ADS)

    Rodriguez, J. F.; Seoane Salazar, M.; Sandi Rojas, S.; Saco, P. M.; Riccardi, G.; Saintilan, N.; Wen, L.

    2014-12-01

    The Macquarie Marshes is a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Over the last four decades, some of the wetlands have undergone degradation, which has been attributed to flow abstraction and regulation at Burrendong Dam upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological framework that combines hydrodynamic, vegetation and channel evolution modules. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model. We perform preliminary tests by running continuous simulation over several years and compare the results to existing hydrological, vegetation and geomorphological data to assess the model capabilities and limitations. We also analyse the effects of the implementation of a number of water management strategies.

  17. Multi-scale controls on spatial variability in river biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jennifer; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Excessive nutrient concentrations are common in surface waters and groundwaters in agricultural catchments worldwide. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical cycling rates can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are largely unknown. Here, we aimed to assess: 1) how differences in river geomorphological heterogeneity control solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small scale targeted management interventions to alter geomorphic heterogeneity may be effective in creating hotspots of river biogeochemical cycling and nutrient load attenuation.

  18. Synthetic river valleys: Creating prescribed topography for form-process inquiry and river rehabilitation design

    NASA Astrophysics Data System (ADS)

    Brown, R. A.; Pasternack, G. B.; Wallender, W. W.

    2014-06-01

    The synthesis of artificial landforms is complementary to geomorphic analysis because it affords a reflection on both the characteristics and intrinsic formative processes of real world conditions. Moreover, the applied terminus of geomorphic theory is commonly manifested in the engineering and rehabilitation of riverine landforms where the goal is to create specific processes associated with specific morphology. To date, the synthesis of river topography has been explored outside of geomorphology through artistic renderings, computer science applications, and river rehabilitation design; while within geomorphology it has been explored using morphodynamic modeling, such as one-dimensional simulation of river reach profiles, two-dimensional simulation of river networks, and three-dimensional simulation of subreach scale river morphology. To date, no approach allows geomorphologists, engineers, or river rehabilitation practitioners to create landforms of prescribed conditions. In this paper a method for creating topography of synthetic river valleys is introduced that utilizes a theoretical framework that draws from fluvial geomorphology, computer science, and geometric modeling. Such a method would be valuable to geomorphologists in understanding form-process linkages as well as to engineers and river rehabilitation practitioners in developing design surfaces that can be rapidly iterated. The method introduced herein relies on the discretization of river valley topography into geometric elements associated with overlapping and orthogonal two-dimensional planes such as the planform, profile, and cross section that are represented by mathematical functions, termed geometric element equations. Topographic surfaces can be parameterized independently or dependently using a geomorphic covariance structure between the spatial series of geometric element equations. To illustrate the approach and overall model flexibility examples are provided that are associated with mountain, lowland, and hybrid synthetic river valleys. To conclude, recommended advances such as multithread channels are discussed along with potential applications.

  19. Groundwater controls on river channel pattern

    NASA Astrophysics Data System (ADS)

    Bätz, Nico; Colombini, Pauline; Cherubini, Paolo; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of vegetation. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through vegetation, that may determine the long-term geomorphic and biogeomorphic evolution of the river. It follows that with a change in disturbance frequency relative to the rate of vegetation establishment, a systematic geomorphological shift could occur. Research has addressed how changes in disturbance frequency affect river channel pattern, but has rarely addressed the way in which the stabilizing effects of biogeomorphic succession interact with disturbance frequency to maintain a river in a more dynamic or a less dynamic state. Here, we quantify how the interplay between groundwater access, disturbance frequency and vegetation succession, drive changes in channel pattern. We studied this complex interplay on a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Dendroecological analysis demonstrate that vegetation growth is driven by groundwater access. Groundwater access conditions the rate of vegetation stabilization at the sub-reach scale and, due to a reduction in flood-related disturbance frequency over the last 50 years, drives a change in channel pattern. Where groundwater is shallower, vegetation encroachment rates were high and as flood-related disturbance decreased, the river has shifted towards a meandering state. Where groundwater was deeper, vegetation growth was limited by water-access and thus vegetation encroachment rates were low. Even though there was a reduction in flood disturbance, it was still sufficient to maintain a wandering/braided state. Thus, it appears that access to groundwater can control river channel pattern through its impact upon the "engineering effects" of vegetation. The results are important for river management as they highlight the non-linearity of developing vegetation in dynamic alluvial floodplains and the importance of considering the wider environmental setting and associated feedbacks between biotic and abiotic river components in defining long-term geomorphological river response.

  20. Applying fluvial geomorphology to river channel management: Background for progress towards a palaeohydrology protocol

    NASA Astrophysics Data System (ADS)

    Gregory, K. J.; Benito, G.; Downs, P. W.

    2008-06-01

    Significant developments have been achieved in applicable and applied fluvial geomorphology as shown in publications of the last three decades, analyzed as the basis for using results of studies of environmental change as a basis for management. The range of types of publications and of activities are more pertinent to river channel management as a result of concern with sustainability, global climate change, environmental ethics, ecosystem health concepts and public participation. Possible applications, with particular reference to river channel changes, include those concerned with form and process, assessment of channel change, urbanization, channelization, extractive industries, impact of engineering works, historical changes in land use, and restoration with specific examples illustrated in Table 1. In order to achieve general significance for fluvial geomorphology, more theory and extension by modelling methods is needed, and examples related to morphology and process characteristics, integrated approaches, and changes of the fluvial system are collected in Table 2. The ways in which potential applications are communicated to decision-makers range from applicable outputs including publications ranging from review papers, book chapters, and books, to applied outputs which include interdisciplinary problem solving, educational outreach, and direct involvement, with examples summarized in Table 3. On the basis of results gained from investigations covering periods longer than continuous records, a protocol embracing palaeohydrological inputs for application to river channel management is illustrated and developed as a synopsis version (Table 4), demonstrating how conclusions from geomorphological research can be expressed in a format which can be considered by managers.

  1. A Method for Applying Fluvial Geomorphology in Support of Catchment-Scale River Restoration Planning

    NASA Astrophysics Data System (ADS)

    Sear, D.; Newson, M.; Hill, C.; Branson, J.; Old, J.

    2005-12-01

    Fluvial geomorphology is increasingly used by those responsible for conserving river ecosystems; survey techniques are used to derive conceptual models of the processes and forms that characterise particular systems and locations, with a view to making statements of `condition' or `status' and providing fundamental strategies for rehabilitation/restoration. However, there are important scale-related problems in developing catchments scale restoration plans that inevitably are implemented on a reach- by-reach basis. This paper reports on a watershed scale methodology for setting geomorphological and physical habitat reference conditions based on a science-based conceptual model of cachment:channel function. Using a case study from the River Nar, a gravel-bed groundwater dominated river in the UK with important conservation status, the paper describes the sequences of the methodology; from analysis of available evidence, process of field data capture and development of a conceptual model of catchment-wide fluvial dynamics. Reference conditions were derived from the conceptual model and gathered from the literature for the two main river types found on the river Nar, and compared with the current situation in 76 sub-reaches from source to mouth. Multi-Criteria Analysis (MCA) was used to score the extent of channel departures from `natural' and to suggest the basis for a progressive restoration strategy for the whole river system. MCA is shown to be a flexible method for setting and communicating decisions that are amenable to stakeholder and public consultation.

  2. Quantifying climatic controls on river network topology across scales

    NASA Astrophysics Data System (ADS)

    Ranjbar Moshfeghi, S.; Hooshyar, M.; Wang, D.; Singh, A.

    2017-12-01

    Branching structure of river networks is an important topologic and geomorphologic feature that depends on several factors (e.g. climate, tectonic). However, mechanisms that cause these drainage patterns in river networks are poorly understood. In this study, we investigate the effects of varying climatic forcing on river network topology and geomorphology. For this, we select 20 catchments across the United States with different long-term climatic conditions quantified by climate aridity index (AI), defined here as the ratio of mean annual potential evaporation (Ep) to precipitation (P), capturing variation in runoff and vegetation cover. The river networks of these catchments are extracted, using a curvature-based method, from high-resolution (1 m) digital elevation models and several metrics such as drainage density, branching angle, and width functions are computed. We also use a multiscale-entropy-based approach to quantify the topologic irregularity and structural richness of these river networks. Our results reveal systematic impacts of climate forcing on the structure of river networks.

  3. The potential for dams to impact lowland meandering river floodplain geomorphology.

    PubMed

    Marren, Philip M; Grove, James R; Webb, J Angus; Stewardson, Michael J

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an "environmental sediment regime" to operate alongside environmental flows.

  4. The Potential for Dams to Impact Lowland Meandering River Floodplain Geomorphology

    PubMed Central

    Marren, Philip M.; Grove, James R.; Webb, J. Angus; Stewardson, Michael J.

    2014-01-01

    The majority of the world's floodplains are dammed. Although some implications of dams for riverine ecology and for river channel morphology are well understood, there is less research on the impacts of dams on floodplain geomorphology. We review studies from dammed and undammed rivers and include influences on vertical and lateral accretion, meander migration and cutoff formation, avulsion, and interactions with floodplain vegetation. The results are synthesized into a conceptual model of the effects of dams on the major geomorphic influences on floodplain development. This model is used to assess the likely consequences of eight dam and flow regulation scenarios for floodplain geomorphology. Sediment starvation downstream of dams has perhaps the greatest potential to impact on floodplain development. Such effects will persist further downstream where tributary sediment inputs are relatively low and there is minimal buffering by alluvial sediment stores. We can identify several ways in which floodplains might potentially be affected by dams, with varying degrees of confidence, including a distinction between passive impacts (floodplain disconnection) and active impacts (changes in geomorphological processes and functioning). These active processes are likely to have more serious implications for floodplain function and emphasize both the need for future research and the need for an “environmental sediment regime” to operate alongside environmental flows. PMID:24587718

  5. A geologic approach to field methods in fluvial geomorphology

    USGS Publications Warehouse

    Fitzpatrick, Faith A.; Thornbush, Mary J; Allen, Casey D; Fitzpatrick, Faith A.

    2014-01-01

    A geologic approach to field methods in fluvial geomorphology is useful for understanding causes and consequences of past, present, and possible future perturbations in river behavior and floodplain dynamics. Field methods include characterizing river planform and morphology changes and floodplain sedimentary sequences over long periods of time along a longitudinal river continuum. Techniques include topographic and bathymetric surveying of fluvial landforms in valley bottoms and describing floodplain sedimentary sequences through coring, trenching, and examining pits and exposures. Historical sediment budgets that include floodplain sedimentary records can characterize past and present sources and sinks of sediment along a longitudinal river continuum. Describing paleochannels and floodplain vertical accretion deposits, estimating long-term sedimentation rates, and constructing historical sediment budgets can assist in management of aquatic resources, habitat, sedimentation, and flooding issues.

  6. Morphosedimentary dynamics of the Madeira River in Brazil

    NASA Astrophysics Data System (ADS)

    Bonthius, C.; Latrubesse, E. M.; Abad, J. D.

    2012-12-01

    The Madeira River, the largest tributary of the Amazon River in terms of water discharge, offers an opportunity to investigate extrinsic and intrinsic controls on channel morphology and pattern. With an average annual discharge of approximately 32,000 m3/s, the Madeira River is a mega-river with a unique anabranching channel pattern, a specific stream power of approximately 20 W/m2, and a width-depth ratio that ranges between 30 and 64 (Latrubesse 2008). Not only of interest for its size and discharge, the Madeira River is also a critical ecological component of the overall Amazon Basin. As the greatest contributor of sediment to the Amazon fluvial system, the Madeira River transports approximately 330 tons/km2 annually, which is about half of the Amazon River's total sediment output (Latrubesse et al 2005). This poster presents analyses of the morphology of the Madeira River and of data collected from a field campaign carried out in summer 2011 on a stretch between Porto Velho and Humaitá in Brazil. Using historical radar and satellite imagery of consistent spatial and temporal resolution, the stability and morphology of in-channel landforms are assessed and quantified. Stretches characterized by vegetated islands demonstrated overall stability; these features were temporally persistent and showed little, if any, change in area over a period of forty years. Sand bars, or un-vegetated sediment, are highly mutable features with numbers that vary between nine and twenty-seven in a same single stretch over time. The main channel also demonstrated stability in its morphology, while the presence and activation of secondary channels varied. Velocity maps and an analysis of secondary currents are presented from data collected from bathymetric surveys and an Acoustic Doppler Current Profiler (ADCP) from Porto Velho and Humaitá. Hydraulic factors in two complex and geologically controlled river reaches, a mainly meandering reach with a tendency to anabranch and a purely anabranching reach, are compared, offering insight into the roles of these intrinsic variables in the fluvial system. Sediment samples collected during the field campaign were analyzed for grain size composition. Connections between median grain size (d50), hydraulic variables, and channel morphology are discussed in context of the resulting channel pattern. These analyses also shed light on differences that exist between the Madeira River and other large fluvial systems. Currently endangered by impoundment with hydroelectric projects expected to be fully operational by January of 2013, the Madeira River is a mega-river that faces irreversible change due to human impact. As a result, the collection and analysis of data of current baseline conditions is of timely and necessary importance to assess geomorphologic and hydrologic changes in the fluvial system, model the river's behavior under a variety of natural and anthropogenic conditions, and inform management plans for the Madeira River and Amazon River basins. References Latrubesse, E.M. 2008. Patterns of anabranching channels: the ultimate end-member adjustment of mega-rivers. Geomorphology, 101, pp. 130-145. Latrubesse, E.M., Stevaux, J.C. and Sinha, R. 2005. Tropical Rivers. Geomorphology, 70, pp. 187-206.

  7. Spatial discontinuity and temporal evolution of channel morphology along a mixed bedrock-alluvial river, upper Drôme River, southeast France: Contingent responses to external and internal controls

    NASA Astrophysics Data System (ADS)

    Toone, J.; Rice, S. P.; Piégay, H.

    2014-01-01

    The rehabilitation of degraded river channels is often guided by assumptions of continuity, yet in response to spatial and temporal variations in controlling conditions rivers typically display discontinuous response in space and time. This study examines the development of a 5 km reach of the Drôme River, S.E. France, characterised by alternating alluvial and bedrock zones that are separated by abrupt downstream transitions. This reach is representative of the Drôme River as a whole, and other rivers in the European Alps where braided channel planforms have been replaced by more complex, discontinuous morphologies. The primary aims are to understand how this spatial complexity has developed on the Drôme; evaluate how temporal channel changes have been affected by local factors, particularly bedrock exposures, and by long-term, catchment-scale changes in sediment supply and the flood activity; and consider the implications of this discontinuous geomorphology for reach management. The development of geomorphological zonation is examined by documenting sequential changes in channel planform between seven periods, using aerial photography (1948-2006) and by analysing change in bed elevation from profiles surveyed in 1928, 2003 and 2005. Between 1948 and 2001 bedrock exposed in the channel bed and along the floodplain margins defined discontinuities in sediment connectivity that were largely responsible for the configuration of channel zones. The impact of floods on this system was not proportional to flood magnitude. A modest flood in 1978 was an important event that, by incision and avulsion at key locations, defined a pattern of zonation that persisted until the end of the study in 2006. During the final 5 years of the study, alluvial zones that previously responded to large floods by widening underwent narrowing, despite the occurrence of a large flood, and led to an overall reduction in width variance. This resulted from progressive incision beneath and disconnection from formerly active channel areas, in response to long-term, catchment-scale reductions in sediment supply and flood frequency. In 2006 the pattern of zonation remains distinct, disguising this recent change in channel response and underlining the need for long-term and sequential perspectives of channel development to fully understand the processes in operation; contemporary snapshots of channel form may be misleading. Understanding interactions between inherent channel complexity and prevailing flow and sediment conditions, and how this shapes channel response to individual floods, is essential when interpreting future trajectories of channel change and likely response to management intervention.

  8. Coevolution of hydrodynamics, vegetation and channel evolution in wetlands of a semi-arid floodplain

    NASA Astrophysics Data System (ADS)

    Seoane, Manuel; Rodriguez, Jose Fernando; Rojas, Steven Sandi; Saco, Patricia Mabel; Riccardi, Gerardo; Saintilan, Neil; Wen, Li

    2015-04-01

    The Macquarie Marshes are located in the semi-arid region in north western NSW, Australia, and constitute part of the northern Murray-Darling Basin. The Marshes are comprised of a system of permanent and semi-permanent marshes, swamps and lagoons interconnected by braided channels. The wetland complex serves as nesting place and habitat for many species of water birds, fish, frogs and crustaceans, and portions of the Marshes was listed as internationally important under the Ramsar Convention. Some of the wetlands have undergone degradation over the last four decades, which has been attributed to changes in flow management upstream of the marshes. Among the many characteristics that make this wetland system unique is the occurrence of channel breakdown and channel avulsion, which are associated with decline of river flow in the downstream direction typical of dryland streams. Decrease in river flow can lead to sediment deposition, decrease in channel capacity, vegetative invasion of the channel, overbank flows, and ultimately result in channel breakdown and changes in marsh formation. A similar process on established marshes may also lead to channel avulsion and marsh abandonment, with the subsequent invasion of terrestrial vegetation. All the previous geomorphological evolution processes have an effect on the established ecosystem, which will produce feedbacks on the hydrodynamics of the system and affect the geomorphology in return. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model.

  9. Towards integrated assessment of the northern Adriatic Sea sediment budget using remote sensing

    NASA Astrophysics Data System (ADS)

    Taramelli, A.; Filipponi, F.; Valentini, E.; Zucca, F.; Gutierrez, O. Q.; Liberti, L.; Cordella, M.

    2014-12-01

    Understanding the factors influencing sediment fluxes is a key issue to interpret the evolution of coastal sedimentation under natural and human impact and relevant for the natural resources management. Despite river plumes represent one of the major gain in sedimentary budget of littoral cells, knowledge of factors influencing complex behavior of coastal plumes, like river discharge characteristics, wind stress and hydro-climatic variables, has not been yet fully investigated. Use of Earth Observation data allows the identification of spatial and temporal variations of suspended sediments related to river runoff, seafloor erosion, sediment transport and deposition processes. Objective of the study is to investigate sediment fluxes in northern Adriatic Sea by linking suspended sediment patterns of coastal plumes to hydrologic and climatic forcing regulating the sedimentary cell budget and geomorphological evolution in coastal systems and continental shelf waters. Analysis of Total Suspended Matter (TSM) product, derived from 2002-2012 MERIS time series, was done to map changes in spatial and temporal dimension of suspended sediments, focusing on turbid plume waters and intense wind stress conditions. From the generated multi temporal TSM maps, dispersal patterns of major freshwater runoff plumes in northern Adriatic Sea were evaluated through spatial variability of coastal plumes shape and extent. Additionally, sediment supply from river distributary mouths was estimated from TSM and correlated with river discharge rates, wind field and wave field through time. Spatial based methodology has been developed to identify events of wave-generated resuspension of sediments, which cause variation in water column turbidity, occurring during intense wind stress and extreme metocean conditions, especially in the winter period. The identified resuspension events were qualitatively described and compared with to hydro-climatic variables. The identification of spatial and temporal pattern variability highlighted the presence of seasonal sediment dynamics linked to the seasonal cycle in river discharge and wind stress. Results suggest that sediment fluxes generate geomorphological variations in northern Adriatic Sea, which are mainly controlled by river discharge rates and modulated by the winds.

  10. The influence of floodplain geomorphology and hydrologic connectivity on alligator gar (Atractosteus spatula) habitat along the embanked floodplain of the Lower Mississippi River

    NASA Astrophysics Data System (ADS)

    van der Most, Merel; Hudson, Paul F.

    2018-02-01

    The floodplain geomorphology of large lowland rivers is intricately related to aquatic ecosystems dependent upon flood pulse dynamics. The alligator gar (Atractosteus spatula) is native to the Lower Mississippi River and dependent upon floodplain backwater areas for spawning. In this study we utilize a geospatial approach to develop a habitat suitability index for alligator gar that explicitly considers hydrologic connectivity and the floodplain geomorphology along a frequently inundated segment of the Lower Mississippi River. The data sets include Landsat imagery, a high-resolution LiDAR digital elevation model (DEM), National Hydrography Dataset (NHD), and hydrologic and geomorphic data. A habitat suitability index is created based on the extent and frequency of inundation, water depth, temperature, and vegetation. A comparison between the remote sensing approach and the NHD revealed substantial differences in the area and location of water bodies available for alligator gar spawning. The final habitat suitability index indicates that a modest proportion (19%) of the overall embanked floodplain is available for alligator gar spawning. Opportunities exist for management efforts to utilize engineered and natural geomorphic features to facilitate hydrologic connectivity at flow levels below flood stage that would expand the habitat of alligator gar across the floodplain. The study results have direct implications regarding environmental restoration of the Lower Mississippi, an iconic example of an embanked meandering river floodplain.

  11. A geomorphologist's dream come true: synoptic high resolution river bathymetry with the latest generation of airborne dual wavelength lidar

    NASA Astrophysics Data System (ADS)

    Lague, Dimitri; Launeau, Patrick; Michon, Cyril; Gouraud, Emmanuel; Juge, Cyril; Gentile, William; Hubert-Moy, Laurence; Crave, Alain

    2016-04-01

    Airborne, terrestrial lidar and Structure From Motion have dramatically changed our approach of geomorphology, from low density/precision data, to a wealth of data with a precision adequate to actually measure topographic change across multiple scales, and its relation to vegetation. Yet, an important limitation in the context of fluvial geomorphology has been the inability of these techniques to penetrate water due to the use of NIR laser wavelengths or to the complexity of accounting for water refraction in SFM. Coastal bathymetric systems using a green lidar can penetrate clear water up to 50 m but have a resolution too coarse and deployment costs that are prohibitive for fluvial research and management. After early prototypes of narrow aperture green lidar (e.g., EEARL NASA), major lidar manufacturer are now releasing dual wavelength laser system that offer water penetration consistent with shallow fluvial bathymetry at very high resolution (> 10 pts/m²) and deployment costs that makes the technology, finally accessible. This offers unique opportunities to obtain synoptic high resolution, high precision data for academic research as well as for fluvial environment management (flood risk mapping, navigability,…). In this presentation, we report on the deployment of the latest generation Teledyne-Optech Titan dual-wavelength lidar (1064 nm + 532 nm) owned by the University of Nantes and Rennes. The instrument has been deployed over several fluvial and lacustrine environments in France. We present results and recommendation on how to optimize the bathymetric cover as a function of aerial and aquatic vegetation cover and the hydrology regime of the river. In the surveyed rivers, the penetration depth varies from 0.5 to 4 m with discrete echoes (i.e., onboard detection), heavily impacted by water clarity and bottom reflectance. Simple post-processing of the full waveform record allows to recover an additional 20 % depth. As for other lidar techniques, the main challenge lies in the post-processing of the massive amount of data generated by the instrument (typically 10 billions points for 60 km of rivers). Yet the very high density of the raw point cloud data (40 pts/m² on topography, 20 pts/m² on bathymetry) and the full waveform nature of the signal offers new opportunities to develop classification and change detection algorithms. In this context, we present a new automated workflow to extract automatically the water surface (a critical aspect for refraction correction) and submerged data in highly complex fluvial environments based on a combined analysis of the 1064 nm and 532 nm channels. We conclude that topo-bathymetric lidar is getting close to being an operational technique for fluvial bathymetry offering a vast range of applications in hydrology, ecohydrology, geomorphology and river management.

  12. Physical Heterogeneity and Aquatic Community Function in River Networks

    EPA Science Inventory

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological...

  13. Geomorphic and substrate controls on spatial variability in river solute transport and biogeochemical cycling

    NASA Astrophysics Data System (ADS)

    Blaen, Phillip; Kurz, Marie; Knapp, Julia; Mendoza-Lera, Clara; Lee-Cullin, Joe; Klaar, Megan; Drummond, Jen; Jaeger, Anna; Zarnetske, Jay; Lewandowski, Joerg; Marti, Eugenia; Ward, Adam; Fleckenstein, Jan; Datry, Thibault; Larned, Scott; Krause, Stefan

    2016-04-01

    Nutrient concentrations in surface waters and groundwaters are increasing in many agricultural catchments worldwide as a result of anthropogenic activities. Increasing geomorphological heterogeneity in river channels may help to attenuate nutrient pollution by facilitating water exchange fluxes with the hyporheic zone; a site of intense microbial activity where biogeochemical transformation rates (e.g. denitrification) can be high. However, the controls on spatial variability in biogeochemical cycling, particularly at scales relevant for river managers, are not well understood. Here, we aimed to assess: 1) how differences in geomorphological heterogeneity control river solute transport and rates of biogeochemical cycling at sub-reach scales (102 m); and 2) the relative magnitude of these differences versus those relating to reach scale substrate variability (103 m). We used the reactive 'smart' tracer resazurin (Raz), a weakly fluorescent dye that transforms to highly fluorescent resorufin (Rru) under mildly reducing conditions, as a proxy to assess rates of biogeochemical cycling in a lowland river in southern England. Solute tracer tests were conducted in two reaches with contrasting substrates: one sand-dominated and the other gravel-dominated. Each reach was divided into sub-reaches that varied in geomorphic complexity (e.g. by the presence of pool-riffle sequences or the abundance of large woody debris). Slug injections of Raz and the conservative tracer fluorescein were conducted in each reach during baseflow conditions (Q ≈ 80 L/s) and breakthrough curves monitored using in-situ fluorometers. Preliminary results indicate overall Raz:Rru transformation rates in the gravel-dominated reach were more than 50% higher than those in the sand-dominated reach. However, high sub-reach variability in Raz:Rru transformation rates and conservative solute transport parameters suggests small-scale targeted management interventions to alter geomorphic heterogeneity may be effective in creating hotspots of river biogeochemical cycling and nutrient load attenuation.

  14. Geodiversity characterization and assessment of the Morainic Amphitheatre of Rivoli -Avigliana (NW-Italy)

    NASA Astrophysics Data System (ADS)

    Giordano, Enrico; Lucchesi, Stefania; Perotti, Luigi; Giardino, Marco

    2014-05-01

    The concept of Geodiversity in its wide sense refers specifically to particular geosystems that are in themselves complex (e.g diverse) assemblages of bedrock, landform, and soil features. Therefore, geodiversity assessment is strictly related to landscape structure, whose studies are in the field of complex Physical Geography. Moreover, Geodiversity studies provide a fundamental base for geoconservation and environmental management in a holistic way. This is particularly true within complex geomorphological environments, where many intrinsic and extrinsic factors are interconnected. Various procedures has been already applied for the creation of geodiversity maps in different geomorphological context, but especially in wide areas with a large geodiversity of landforms. Pleistocene morainic amphitheatres of the Alpine piedmont regions are indeed particular and complex environments: not only for the geological and geomorphological points of view, but also for their relationships with biotic components and human life. The aim of this study is to carry out a geodiversity characterization of the Rivoli-Avigliana Morainic Amphitheatre (AMRA; NW Italy). The AMRA separates the lower Susa Valley from the middle course of the Sangone River; it is a set of low hills and depressions related to glacial pulsations aged between 750,000 and 12,000 years ago. Earth Sciences knowledge of the area has been compared to detailed field geomorphological and territorial data in order to determine qualitative and quantitative landscape parameters and to evaluate their validity for geodiversity assessment. A first qualitative characterization of the AMRA and an estimation of its geodiversity have been performed by means of geomorphological mapping and stratigraphic studies, including geomorphosites assessment for the same area. Then, geodiversity characterization and evaluation have been performed through the definition and application of quantitative parameters (landform energy, slope, land use, roughness, and other geomorphologic, hydrologic and geologic indexes). After acquisition of vector data, satellite and aerial images, GIS procedures allowed to manage and to process images and data: this allowed to interpret morphometric indexes and to obtain thematic maps with 3D views. Finally, results from the calculation of geodiversity and geomorphosites have been compared. Results turned out to be very effective for the study and for the reconstruction of the AMRA evolutionary stages, also for interpreting scenarios of future natural hazards, land occupation and risks posed to geodiversity for natural and anthropogenic causes. Geomatics devices and digital data demonstrated to be really suitable for improved analysis and representation of the observed phenomena. They can be easily integrated within GIS for decision support requirements. In this way, field and remote sensing data, together with indexes of biotic and abiotic aspects can generate synthetic information, to produce effective spatial interpolations and impressive 3D scenarios useful for Earth Science simulations and environmental/territorial advertising.

  15. Influence of hyporheic flow and geomorphology on temperature of a large, gravel-bed river, Clackamas River, Oregon, USA

    Treesearch

    Vol. 22 Hydrological Processes

    2008-01-01

    The hyporheic zone influences the thermal regime of rivers, buffering temperature by storing and releasing heat over a range of timesscales. We examined the relationship between hyporheic exchange and temperature along a 24-km reach of the lower Clackamas River, a large gravel-bed river in northwestern Oregon (median discharge = 75·7 m3/s;...

  16. Feedback of Erosional-Depositional Processes Generating Anabranching Patterns in a Mega-River the Case of the PARANÁ River, Argentina

    NASA Astrophysics Data System (ADS)

    Latrubesse, E. M.; Pereira, M.; Ramonell, C. G.; Szupiany, R. N.

    2011-12-01

    A new category of "very large" rivers was recently proposed and defined as mega-rivers, which are those rivers with a Qmean of more than ~17,000m3/s. This category includes the nine largest rivers on Earth and the Parana River is one of the selected members of that peculiar group. The planform adjustment of mega-rivers is a variety of anabranching patterns characterized by the existence of alluvial islands. The processes and mechanisms involved in the generation of the different anabranching styles, however, are not well understood. The Paraná channel pattern has been classified as a low to moderate anabranching, low sinuosity with tendency to braided and having a meandering thalweg. We analyzed a reach of the middle Paraná in Argentina applying a combined multitemporal, hydraulic, sedimentologic and geomorphologic approach. Multitemporal geomorphologic maps, sedimentary descriptions of bars, islands and banks, volumetric calculations using multitemporal bathymetric charts, measurements with ADCP and bathymetric surveys with echosound, sediment transport estimations and the hydrological analysis of available data from gauge stations were some of the tools used in our research. The evolution of the reach was studied from 1908 to present. The reach is subdivided in two sub-reaches (named Chapeton and Curtiembre) which are comprised between nodal points. Chapeton has been in a more mature quasi-equilibrium state through the XX Century but the main channel in Curtiembre evolved from a single pattern to anabranching pattern since 1950s. We conclude that the generation of the anabranching pattern in the studied reach depends of a combination of factors such as the architecture of the floodplain and islands, the main role played by the morphodynamics and shifting of the thalweg, the availability and path of sandy sediments bedforms architecture and the temporal variability of the effective discharge among other secondary factors. A feedback system coupling erosional/depositional processes at the decadal scale seems to be the main responsible for the generation of the complex anabranching pattern in such subreaches.

  17. Lewis and Clark's observations and measurements of geomorphology and hydrology, and changes with time

    USGS Publications Warehouse

    Moody, John A.; Meade, Robert H.; Jones, David R.

    2003-01-01

    Two VERY different men, Meriwether Lewis and William Clark, joined to J, ~ake the first recorded set of scientific observations and measurements of geomorphology and hydrology west of the Mississippi River. They did not limit themselves to these two scientific topics but were true naturalists, making observations and measurements related to astronomy (Large, 1979; Bedini, 1984; Plamondon, 1991; Bergantino, 1998), biology (Cutright, 1969), ecology, ethnology (Ronda, 1984a), geology (Bluemle, 2001; Bergantino, 1998), and phenology, as well as to the general geographical understanding of the arrangements of rivers and other topographical features of the trans-Mississippi West (Allen, 1975) .

  18. Geomorphology and bank erosion of the Matanuska River, southcentral Alaska

    USGS Publications Warehouse

    Curran, Janet H.; McTeague, Monica L.

    2011-01-01

    Bank erosion along the Matanuska River, a braided, glacial river in southcentral Alaska, has damaged or threatened houses, roadways, and public facilities for decades. Mapping of river geomorphology and bank characteristics for a 65-mile study area from the Matanuska Glacier to the river mouth provided erodibility information that was assessed along with 1949-2006 erosion to establish erosion hazard data. Braid plain margins were delineated from 1949, 1962, and 2006 orthophotographs to provide detailed measurements of erosion. Bank material and height and geomorphic features within the Matanuska River valley (primarily terraces and tributary fans) were mapped in a Geographic Information System (GIS) from orthophotographs and field observations to provide categories of erodibility and extent of the erodible corridor. The braid plain expanded 861 acres between 1949 and 2006. Erosion in the highest category ranged from 225 to 1,043 feet at reaches of bank an average of 0.5 mile long, affecting 8 percent of the banks but accounting for 64 percent of the erosion. Correlation of erosion to measurable predictor variables was limited to bank height and material. Streamflow statistics, such as peak streamflow or mean annual streamflow, were not clearly linked to erosion, which can occur during the prolonged period of summer high flows where channels are adjacent to an erodible braid plain margin. The historical braid plain, which includes vegetated braid plain bars and islands and active channels, was identified as the greatest riverine hazard area on the basis of its historical occupation. In 2006, the historical braid plain was an average of 15 years old, as determined from the estimated age of vegetation visible in orthophotographs. Bank erosion hazards at the braid plain margins can be mapped by combining bank material, bank height, and geomorphology data. Bedrock bluffs at least 10 feet high (31 percent of the braid plain margins) present no erosion hazard. At unconsolidated banks (63 percent of the braid plain margins), erosion hazards are great and the distinction in hazards between banks of varying height or geomorphology is slight.

  19. Survey Report on Cooper River, S.C. (Shoaling in Charleston Harbor), Appendix A, Supplement 3. Special Geological Investigations Utilizing Diagnostic Minerals.

    DTIC Science & Technology

    CLAY, COASTAL REGIONS, CYCLES, DELTAS, DEPOSITION, DIAGNOSIS(GENERAL), FINES, FLOW, GEOLOGY, GEOMORPHOLOGY, KAOLINITE , MATHEMATICAL MODELS, MINERALS...MODELS, MONTMORILLONITE , PARAMETERS, PETROGRAPHY, PROCESSING, RATIOS, RESIDUALS, RESPONSE, RIVERS, SALINITY, SAMPLING, SAND, SCHIST, SEDIMENTS

  20. Post-project appraisals in adaptive management of river channel restoration.

    PubMed

    Downs, Peter W; Kondolf, G Mathias

    2002-04-01

    Post-project appraisals (PPAs) can evaluate river restoration schemes in relation to their compliance with design, their short-term performance attainment, and their longer-term geomorphological compatibility with the catchment hydrology and sediment transport processes. PPAs provide the basis for communicating the results of one restoration scheme to another, thereby improving future restoration designs. They also supply essential performance feedback needed for adaptive management, in which management actions are treated as experiments. PPAs allow river restoration success to be defined both in terms of the scheme attaining its performance objectives and in providing a significant learning experience. Different levels of investment in PPA, in terms of pre-project data and follow-up information, bring with them different degrees of understanding and tbus different abilities to gauge both types of success. We present four case studies to illustrate how the commitment to PPA has determined the understanding achieved in each case. In Moore's Gulch (California, USA), understanding was severely constrained by the lack of pre-project data and post-implementation monitoring. Pre-project data existed for the Kitswell Brook (Hertfordshire, UK), but the monitoring consisted only of one site visit and thus the understanding achieved is related primarily to design compliance issues. The monitoring undertaken for Deep Run (Maryland, USA) and the River Idle (Nottinghamshire, UK) enabled some understanding of the short-term performance of each scheme. The transferable understanding gained from each case study is used to develop an illustrative five-fold classification of geomorphological PPAs (full, medium-term, short-term, one-shot, and remains) according to their potential as learning experiences. The learning experience is central to adaptive management but rarely articulated in the literature. Here, we gauge the potential via superimposition onto a previous schematic representation of the adaptive management process by Haney and Power (1996). Using PPAs wisely can lead to cutting-edge, complex solutions to river restoration challenges.

  1. Changes in planform geomorphology and vegetation of the Umatilla River during a 50-year period of diminishing peak flow

    NASA Astrophysics Data System (ADS)

    Hughes, M. L.; McDowell, P. F.

    2017-12-01

    The Umatilla River of northeastern Oregon is a gravel-bedded, mixed pattern, salmonid-bearing channel-floodplain system typical of the Interior Columbia River Basin. Efforts to restore native salmonids in this region since the 1980's coupled with increased scrutiny of flood- and erosion-control activities have prompted a need for better understanding of the biogemorphic implications of flood disturbances. The goals of this study are: (1) to re-examine results of earlier studies of flood impacts on the Umatilla River in light of more recent flow records, and (2) to investigate the degree to which large floods have influenced existing patterns of channel-floodplain geomorphology and vegetation. Mapping of flowing channels, bars, scoured surfaces, and vegetation within the active channel from of aerial photos bracketing flood and inter-flood periods since 1964 indicates complex and spatially variable channel changes. In general, channel scour was the most consistent response to flooding. The direction (gain/loss) and magnitude of changes in bars and vegetation within the active channel, as well as the amount of lateral channel movement and changes in sinuosity, were generally inconsistent across flood events. The removal of vegetation by scour during floods was in many areas compensated by the capture of vegetation from the floodplain by avulsion and activation of secondary channels. To date, the geomorphic impacts of the 1964-65 flood-of-record have not been replicated, despite an overall increase in the frequency of smaller floods. Expansion of riparian vegetation in recent decades has mainly occurred in areas disturbed by scour and bar deposition during the 1964-65 floods. Vegetative succession during this period has caused contraction of the active channel such that it now appears much as it did before the 1964-65 floods. These results underscore the importance of large floods as drivers of biogeormphic processes and patterns over timescales relevant to river management and restoration.

  2. Columbia River Estuary ecosystem classification—Concept and application

    USGS Publications Warehouse

    Simenstad, Charles A.; Burke, Jennifer L.; O'Connor, Jim E.; Cannon, Charles; Heatwole, Danelle W.; Ramirez, Mary F.; Waite, Ian R.; Counihan, Timothy D.; Jones, Krista L.

    2011-01-01

    This document describes the concept, organization, and application of a hierarchical ecosystem classification that integrates saline and tidal freshwater reaches of estuaries in order to characterize the ecosystems of large flood plain rivers that are strongly influenced by riverine and estuarine hydrology. We illustrate the classification by applying it to the Columbia River estuary (Oregon-Washington, USA), a system that extends about 233 river kilometers (rkm) inland from the Pacific Ocean. More than three-quarters of this length is tidal freshwater. The Columbia River Estuary Ecosystem Classification ("Classification") is based on six hierarchical levels, progressing from the coarsest, regional scale to the finest, localized scale: (1) Ecosystem Province; (2) Ecoregion; (3) Hydrogeomorphic Reach; (4) Ecosystem Complex; (5) Geomorphic Catena; and (6) Primary Cover Class. We define and map Levels 1-3 for the entire Columbia River estuary with existing geospatial datasets, and provide examples of Levels 4-6 for one hydrogeomorphic reach. In particular, three levels of the Classification capture the scales and categories of ecosystem structure and processes that are most tractable to estuarine research, monitoring, and management. These three levels are the (1) eight hydrogeomorphic reaches that embody the formative geologic and tectonic processes that created the existing estuarine landscape and encompass the influence of the resulting physiography on interactions between fluvial and tidal hydrology and geomorphology across 230 kilometers (km) of estuary, (2) more than 15 ecosystem complexes composed of broad landforms created predominantly by geologic processes during the Holocene, and (3) more than 25 geomorphic catenae embedded within ecosystem complexes that represent distinct geomorphic landforms, structures, ecosystems, and habitats, and components of the estuarine landscape most likely to change over short time periods.

  3. Advances in the continuous monitoring of erosion and deposition dynamics: Developments and applications of the new PEEP-3T system

    NASA Astrophysics Data System (ADS)

    Lawler, D. M.

    2008-01-01

    In most episodic erosion and deposition systems, knowledge of the timing of geomorphological change, in relation to fluctuations in the driving forces, is crucial to strong erosion process inference, and model building, validation and development. A challenge for geomorphology, however, is that few studies have focused on geomorphological event structure (timing, magnitude, frequency and duration of individual erosion and deposition events), in relation to applied stresses, because of the absence of key monitoring methodologies. This paper therefore (a) presents full details of a new erosion and deposition measurement system — PEEP-3T — developed from the Photo-Electronic Erosion Pin sensor in five key areas, including the addition of nocturnal monitoring through the integration of the Thermal Consonance Timing (TCT) concept, to produce a continuous sensing system; (b) presents novel high-resolution datasets from the redesigned PEEP-3T system for river bank system of the Rivers Nidd and Wharfe, northern England, UK; and (c) comments on their potential for wider application throughout geomorphology to address these key measurement challenges. Relative to manual methods of erosion and deposition quantification, continuous PEEP-3T methodologies increase the temporal resolution of erosion/deposition event detection by more than three orders of magnitude (better than 1-second resolution if required), and this facility can significantly enhance process inference. Results show that river banks are highly dynamic thermally and respond quickly to radiation inputs. Data on bank retreat timing, fixed with PEEP-3T TCT evidence, confirmed that they were significantly delayed up to 55 h after flood peaks. One event occurred 13 h after emergence from the flow. This suggests that mass failure processes rather than fluid entrainment dominated the system. It is also shown how, by integrating turbidity instrumentation with TCT ideas, linkages between sediment supply and sediment flux can be forged at event timescales, and a lack of sediment exhaustion was evident here. Five challenges for wider geomorphological process investigation are discussed. This event-based dynamics approach, based on continuous monitoring methodologies, appears to have considerable wider potential for stronger process inference and model testing and validation in many areas of geomorphology.

  4. Identification of erosional and inundation hazard zones in Ken-Betwa river linking area, India, using remote sensing and GIS.

    PubMed

    Avtar, Ram; Singh, Chander Kumar; Shashtri, Satayanarayan; Mukherjee, Saumitra

    2011-11-01

    Ken-Betwa river link is one of the pilot projects of the Inter Linking of Rivers program of Government of India in Bundelkhand Region. It will connect the Ken and Betwa rivers through a system of dams, reservoirs, and canals to provide storage for excess rainfall during the monsoon season and avoid floods. The main objective of this study is to identify erosional and inundation prone zones of Ken-Betwa river linking site in India using remote sensing and geographic information system tools. In this study, Landsat Thematic Mapper data of year 2005, digital elevation model from the Shuttle Radar Topographic Mission, and other ancillary data were analyzed to create various thematic maps viz. geomorphology, land use/land cover, NDVI, geology, soil, drainage density, elevation, slope, and rainfall. The integrated thematic maps were used for hazard zonation. This is based on categorizing the different hydrological and geomorphological processes influencing the inundation and erosion intensity. Result shows that the southern part of the study area which lies in Panna district of Madhya Pradesh, India, is more vulnerable than the other areas.

  5. Active tectonics around the Yakutat indentor: New geomorphological constraints on the eastern Denali, Totschunda and Duke River Faults

    NASA Astrophysics Data System (ADS)

    Marechal, Anaïs; Ritz, Jean-François; Ferry, Matthieu; Mazzotti, Stephane; Blard, Pierre-Henri; Braucher, Régis; Saint-Carlier, Dimitri

    2018-01-01

    The Yakutat collision in SE Alaska - SW Yukon is an outstanding example of indentor tectonics. The impinging Yakutat block strongly controls the pattern of deformation inland. However, the relationship between this collision system and inherited tectonic structures such as the Denali, Totschunda, and Duke River Faults remains debated. A detailed geomorphological analysis, based on high-resolution imagery, digital elevation models, field observations, and cosmogenic nuclide dating, allow us to estimate new slip rates along these active structures. Our results show a vertical motion of 0.9 ± 0.3 mm/yr along the whole eastern Denali Fault, while the dextral component of the fault tapers to less than 1 mm/yr ∼80 km south of the Denali-Totschunda junction. In contrast, the Totschunda Fault accommodates 14.6 ± 2.7 mm/yr of right-lateral strike-slip along its central section ∼100 km south of the junction. Further south, preliminary observations suggest a slip rate comprised between 3.5 and 6.5 mm/yr along the westernmost part of the Duke River thrust fault. Our results highlight the complex partitioning of deformation inland of the Yakutat collision, where the role and slip rate of the main faults vary significantly over distances of ∼100 km or less. We propose a schematic model of present-day tectonics that suggests ongoing partitioning and reorganization of deformation between major inherited structures, relay zones, and regions of distributed deformation, in response to the radial stress and strain pattern around the Yakutat collision eastern syntaxis.

  6. Weak Learner Method for Estimating River Discharges using Remotely Sensed Data: Central Congo River as a Testbed

    NASA Astrophysics Data System (ADS)

    Kim, D.; Lee, H.; Yu, H.; Beighley, E.; Durand, M. T.; Alsdorf, D. E.; Hwang, E.

    2017-12-01

    River discharge is a prerequisite for an understanding of flood hazard and water resource management, yet we have poor knowledge of it, especially over remote basins. Previous studies have successfully used a classic hydraulic geometry, at-many-stations hydraulic geometry (AMHG), and Manning's equation to estimate the river discharge. Theoretical bases of these empirical methods were introduced by Leopold and Maddock (1953) and Manning (1889), and those have been long used in the field of hydrology, water resources, and geomorphology. However, the methods to estimate the river discharge from remotely sensed data essentially require bathymetric information of the river or are not applicable to braided rivers. Furthermore, the methods used in the previous studies adopted assumptions of river conditions to be steady and uniform. Consequently, those methods have limitations in estimating the river discharge in complex and unsteady flow in nature. In this study, we developed a novel approach to estimating river discharges by applying the weak learner method (here termed WLQ), which is one of the ensemble methods using multiple classifiers, to the remotely sensed measurements of water levels from Envisat altimetry, effective river widths from PALSAR images, and multi-temporal surface water slopes over a part of the mainstem Congo. Compared with the methods used in the previous studies, the root mean square error (RMSE) decreased from 5,089 m3s-1 to 3,701 m3s-1, and the relative RMSE (RRMSE) improved from 12% to 8%. It is expected that our method can provide improved estimates of river discharges in complex and unsteady flow conditions based on the data-driven prediction model by machine learning (i.e. WLQ), even when the bathymetric data is not available or in case of the braided rivers. Moreover, it is also expected that the WLQ can be applied to the measurements of river levels, slopes and widths from the future Surface Water Ocean Topography (SWOT) mission to be launched in 2021.

  7. Geomorphological Controls on Fluvial Organic Carbon Storage in Wood and Soil in the Olympic, Cascade, and Rocky Mountains

    NASA Astrophysics Data System (ADS)

    Scott, D.; Wohl, E.

    2017-12-01

    The terrestrial organic carbon (OC) pool plays a major role in impacting global climate through the storage and potential release of carbon. In particular, areas of high net primary productivity, such as mountainous regions, and high spatial complexity, such as mountain river floodplains, show potential to act as both strong OC reservoirs and potential OC emitters in a changing climate. We focus on mountain rivers as potential hot swaths of OC storage and, accordingly, as places where land management to retain OC on the landscape may be especially impactful. Mountain river OC storage magnitude and age is a function of the soil and geomorphologic conditions at a reach scale, which are in turn determined by broader characteristics, such as climate, ecology, and tectonics. We present field data on OC storage in soil and wood from three mountain ranges across the western U.S.: the Wind River Range in Wyoming and the Olympic and Central Cascade Ranges in Washington. While the Big Sandy River basin in the Wind River Range exhibits relatively low relief, a semi-arid climate, and a fire-mediated disturbance regime, the Middle Fork Snoqualmie basin in the Cascades and the Sitkum and South Fork Calawah basins in the Olympics exhibit high relief and a humid climate. In contrast to the Olympics, the study basin in the Cascades exhibits strong longitudinal disconnectivity in the form of glaciogenic lakes, whereas the study basins in the Olympics lack large depositional zones that can store sediment for long periods of time. With our expansive dataset of OC storage magnitude and age in downed wood and soil from these three disparate regions, covering a wide range of tectonic, geomorphic, climatic, and ecologic variability, we are able to evaluate both the magnitude and age of the mountain river carbon pool as well as the factors that control that magnitude and age. We present a statistical model that illuminates the dominant controls on the magnitude and age of OC storage in mountain rivers. Using this, we broadly examine mountain river carbon storage dynamics with the goal of allowing land managers to prioritize and focus management efforts to retain OC on the landscape.

  8. Assessment of flow forces on large wood in rivers

    USDA-ARS?s Scientific Manuscript database

    Large wood (LW) exerts an important influence on the geomorphology and ecology of streams and rivers. LW management activities are diverse, including placement in streams for restoring habitats or controlling bank erosion and mitigation of LW-related hazards to bridges and other structures. Flow f...

  9. Relationships between woody vegetation and geomorphological patterns in three gravel-bed rivers with different intensities of anthropogenic disturbance

    NASA Astrophysics Data System (ADS)

    Sitzia, T.; Picco, L.; Ravazzolo, D.; Comiti, F.; Mao, L.; Lenzi, M. A.

    2016-07-01

    We compared three gravel-bed rivers in north-eastern Italy (Brenta, Piave, Tagliamento) having similar bioclimate, geology and fluvial morphology, but affected by different intensities of anthropogenic disturbance related particularly to hydropower dams, training works and instream gravel mining. Our aim was to test whether a corresponding difference in the interactions between vegetation and geomorphological patterns existed among the three rivers. In equally spaced and sized plots (n = 710) we collected descriptors of geomorphic conditions, and presence-absence of woody species. In the less disturbed river (Tagliamento), spatial succession of woody communities from the floodplain to the channel followed a profile where higher elevation floodplains featured more developed tree communities, and lower elevation islands and bars were covered by pioneer communities. In the intermediate-disturbed river (Piave), islands and floodplains lay at similar elevation and both showed species indicators of mature developed communities. In the most disturbed river (Brenta), all these patterns were simplified, all geomorphic units lay at similar elevations, were not well characterized by species composition, and presented similar persistence age. This indicates that in human-disturbed rivers, channel and vegetation adjustments are closely linked in the long term, and suggests that intermediate levels of anthropogenic disturbance, such as those encountered in the Piave River, could counteract the natural, more dynamic conditions that may periodically fragment vegetated landscapes in natural rivers.

  10. Influence of hyporheic flow and geomorphology on temperature of a large, gravel-bed river, Clackamas River, Oregon, USA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burkholder, Barbara K.; Grant, Gordon E.; Haggerty, Roy

    2008-02-08

    Understanding heat fluxes within rivers is increasingly important as anthropogenic influences and changing climate alter river thermal regimes, which can lead to shifts in aquatic species composition and changing rates of biogeochemical processes (Evans, et al., 1998: Pool and Berman, 2001). Numerous and inter-related physical mechanisms influence stream temperature, making it difficult to distinguish the magnitude of impact of individual drivers (johnson, 2004).

  11. Digital geomorphological landslide hazard mapping of the Alpago area, Italy

    NASA Astrophysics Data System (ADS)

    van Westen, Cees J.; Soeters, Rob; Sijmons, Koert

    Large-scale geomorphological maps of mountainous areas are traditionally made using complex symbol-based legends. They can serve as excellent "geomorphological databases", from which an experienced geomorphologist can extract a large amount of information for hazard mapping. However, these maps are not designed to be used in combination with a GIS, due to their complex cartographic structure. In this paper, two methods are presented for digital geomorphological mapping at large scales using GIS and digital cartographic software. The methods are applied to an area with a complex geomorphological setting on the Borsoia catchment, located in the Alpago region, near Belluno in the Italian Alps. The GIS database set-up is presented with an overview of the data layers that have been generated and how they are interrelated. The GIS database was also converted into a paper map, using a digital cartographic package. The resulting largescale geomorphological hazard map is attached. The resulting GIS database and cartographic product can be used to analyse the hazard type and hazard degree for each polygon, and to find the reasons for the hazard classification.

  12. Hyporheic exchange in mountain rivers I: Mechanics and environmental effects

    Treesearch

    Daniele Tonina; John M. Buffington

    2009-01-01

    Hyporheic exchange is the mixing of surface and shallow subsurface water through porous sediment surrounding a river and is driven by spatial and temporal variations in channel characteristics (streambed pressure, bed mobility, alluvial volume and hydraulic conductivity). The significance of hyporheic exchange in linking fluvial geomorphology, groundwater, and riverine...

  13. Early Writing in the Research Mode via Digital Modeling of Rivers.

    ERIC Educational Resources Information Center

    Snow, Robin Scott

    1991-01-01

    Author describes an individual research project involving digital modeling of graded river profiles as part of a sophomore-level geomorphology class. The three-week project gives students the opportunity to choose research topics, design experiments to test ideas, interpret results, and write a research report. (PR)

  14. Geomorphology and soil survey

    Treesearch

    Laura A. Murray; Bob Eppinette; John H. Thorp

    2000-01-01

    The Coosawhatchie River, through erosion and downcutting, carved a fluvial valley through the Wicomico and Pamlico marine terraces during the late Pleistocene-Holocene period. The floodplain is relatively small and immature compared to the major river systems of the South Carolina Lower Coastal Plain. Consequently, the classic geomorphic features of a larger fluvial...

  15. Hydrology, geomorphology, and vegetation of Coastal Plain rivers in the southeastern United States

    Treesearch

    Cliff R. Hupp

    2000-01-01

    Rivers of the Coastal Plain of the southeastern United States are characteristically low-gradient meandering systems that develop broad floodplains subjected to frequent and prolonged flooding. These floodplains support a relatively unique forested wetland (Bottomland Hardwoods), which have received considerable ecological study, but distinctly less hydrogeomorphic...

  16. Influence of landscape geomorphology on large wood jams and salmonids in an old-growth river of Upper Michigan

    Treesearch

    Arthur E. L. Morris; P. Charles Goebel; Lance R. Williams; Brian J. Palik

    2006-01-01

    We investigated the structure of large wood jams (LWJ) and their use by brook trout (Salvelinus fontinalis Mitchill) and other fish in four geomorphically-distinct sections of the Little Carp River, a small river flowing through an uncut, old-growth, northern hardwood-conifer forest along the south shore of Lake Superior, Upper Michigan. We...

  17. How to find the sedimentary archive of fluvial pollution in a bedrock-confined river reach

    NASA Astrophysics Data System (ADS)

    Elznicova, Jitka; Matys Grygar, Tomas; Kiss, Timea; Lelkova, Tereza; Balogh, Marton; Sikora, Martin

    2016-04-01

    The Ohre River springs in the Eastern Germany and it is a tributary of the Labe (Elbe) River in Northwest Bohemia. The river received pollution from several sources during the last five centuries. Most of the pollution sources located along the upper and middle reaches, where the depositional and erosional pattern of the river is highly variable. The upper part of the catchment consists of mainly felsic rocks and the river has a broad floodplain. The middle reach and its right-bank tributaries are deeply incised into the Doupovske Hory Mts., which consists of mafic volcanic rocks; whereas the left-bank tributaries are incised into intrusive and metamorphic rocks of the Krusne Hory Mts. (Ore mountains) with several local ore mines (Ag, Pb and U) in particular in around Olovi and Jachymov. Due to the geologic and geomorphologic complexity, deposition of historical sediments in the middle reach has been spatially limited and uneven, and anomalous background concentrations of risk elements are expected. As a consequence, in the middle reach of the Ohre River it is difficult to find a useful sedimentary archive of historical pollution, though it is desired for two main reasons: (1) to decipher the undocumented and poorly described pollution history from the Krusne Hory Mts. and (2) to better understand the retention of pollutants in the transport zones of a confined river system. Based on historical maps we identified a side-bar (35x320 m) in the middle reach of the river near Straz on Ohre and aimed to describe its formation, its recent erosion/deposition history and to evaluate its sedimentary archive value. In the first half of the 19th century it was an island separated from the valley edge by a side channel. Since then there has been no apparent lateral accretion of the bar (its shape has not been changed), but the upstream part of the side channel aggraded by a sediment plug. We evaluated the current bar topography and geomorphology by a detailed field survey, dated the sediments by dendrology and OSL dating, and performed in situ XRF analysis of sediment cores. The data show that the downstream head of the bar is the oldest and most of fine sediments (mostly sand, minor silt) of the bar material have been historically polluted by Pb mining. The sedimentary sequences, most valuable for reconstruction of recent pollution, were found in the side channel where the fill the representing the last ca 150 years pollution history (Hg and U). The body of the bar has been formed earlier. According to our hypothesis the bar originated as a direct consequence of historical mining in the nearby Jachymov Ore Region. The use of lateral fluvial deposits as a sedimentary archive definitely requires intensive application of fluvial geomorphology. Vice versa, pollution patterns will allow delineating areas, in particular the bar bank and inlet to the side channel, where intensive reworking (erosion/redeposition) occurred as documented by the microtopography and woody debris.

  18. Geomorphology-based interpretation of sedimentation rates from radiodating, lower Passaic River, New Jersey, USA.

    PubMed

    Erickson, Michael J; Barnes, Charles R; Henderson, Matthew R; Romagnoli, Robert; Firstenberg, Clifford E

    2007-04-01

    Analysis of site geomorphology and sedimentation rates as an indicator of long-term bed stability is central to the evaluation of remedial alternatives for depositional aquatic environments. In conjunction with various investigations of contaminant distribution, sediment dynamics, and bed stability in the Passaic River Estuary, 121 sediment cores were collected in the early 1990s from the lower 9.7 km of the Passaic River and analyzed for lead-210 (210Pb), cesium-137 (137Cs), and other analytes. This paper opportunistically uses the extensive radiochemical dataset to examine the spatial patterns of long-term sedimentation rates in, and associated geomorphic aspects of, this area of the river. For the purposes of computing sedimentation rates, the utility of the 210Pb and 137Cs depositional profiles was assessed to inform appropriate interpretation. Sedimentation rates were computed for 90 datable cores by 3 different methods, depending on profile utility. A sedimentation rate of 0 was assigned to 17 additional cores that were not datable and for which evidence of no deposition exists. Sedimentation patterns were assessed by grouping results within similar geomorphic areas, delineated through inspection of bathymetric data. On the basis of channel morphology, results reflect expected patterns, with the highest sedimentation rates observed along point bars and channel margins. The lowest rates of sedimentation (and the largest percentage of undatable cores) were observed in the areas along the outer banks of channel bends. Increasing sedimentation rates from upstream to downstream were noted. Average and median sedimentation rates were estimated to be 3.8 and 3.7 cm/y, respectively, reflecting the highly depositional nature of the Passaic River estuary. This finding is consistent with published descriptions of long-term geomorphology for Atlantic Coastal Plain estuaries.

  19. Large wood dynamics and biophysical consequences for riparian forests: A comparison of an unconfined alluvial river in a temperate rainforest and a bedrock confined river in a semi-arid South African savanna.

    NASA Astrophysics Data System (ADS)

    Latterell, J. J.; Pettit, N. E.; Naiman, R. J.

    2005-05-01

    Large wood shapes the geomorphology and ecology of rivers. We determined the origin, distribution, and fate of large wood in two rivers from contrasting environments. The Queets is an unstable temperate, rainforest river running from the Olympic Mountains (USA) through a glacial valley with colossal trees. In most years, the channel erodes a variety of forested landforms which forms jams that sculpt habitats. Many are displaced in a few years. Remaining jams initiate landform development and forest renewal. Thus, wood is stockpiled in the floodplain where it may become buried. Channel movements recapture most logs within 50 years. In contrast, the Sabie is a perennial river running through a confined bedrock channel in a fire-prone semi-arid South African savanna. Riparian trees are relatively small and many sink in water. A recent flood (February 2000) devastated the riparian forest, introducing wood to the channel. Jams formed on toppled trees, transported logs, and bedrock outcrops. Many trees survived and resprouted. Jams facilitated the establishment of woody plant seedlings and the intrusion of fire into riparian areas. Sunken wood formed unique depositional features. The Queets and Sabie rivers are strikingly different systems. However, large wood appears to promote the renewal and development of complex riparian forests in both rivers.

  20. Fluvial geomorphology and suspended-sediment transport during construction of the Roanoke River Flood Reduction Project in Roanoke, Virginia, 2005–2012

    USGS Publications Warehouse

    Jastram, John D.; Krstolic, Jennifer L.; Moyer, Douglas; Hyer, Kenneth

    2015-09-30

    Results of the geomorphological and suspended-sediment monitoring components were largely in agreement and consistent with those of a related effort that monitored the logperch population before and during construction. These findings suggest that construction and sediment-control practices sufficiently protected in-stream habitat and the organisms that inhabit those locations, namely the Roanoke logperch, during the period monitored.

  1. Flood management on the lower Yellow River: hydrological and geomorphological perspectives

    NASA Astrophysics Data System (ADS)

    Shu, Li; Finlayson, Brian

    1993-05-01

    The Yellow River, known also as "China's Sorrow", has a long history of channel changes and disastrous floods in its lower reaches. Past channel positions can be identified from historical documentary records and geomorphological and sedimentological evidence. Since 1947, government policy has been aimed at containing the floods within artificial levees and preventing the river from changing its course. Flood control is based on flood-retarding dams and off-stream retention basins as well as artificial levees lining the channel. The design flood for the system has a recurrence interval of only around 60 years and floods of this and larger magnitudes can be generated downstream of the main flood control dams at Sanmenxia and Xiaolangdi. Rapid sedimentation along the river causes problems for storage and has raised the bed of the river some 10 m above the surrounding floodplain. The present management strategy is probably not viable in the long term and to avoid a major disaster a new management approach is required. The most viable option would appear to be to breach the levees at predetermined points coupled with advanced warning and evacuation of the population thus put at risk.

  2. Geomorphology of the Elwha River and its Delta: Chapter 3 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Warrick, Jonathan A.; Draut, Amy E.; McHenry, Michael L.; Miller, Ian M.; Magirl, Christopher S.; Beirne, Matthew M.; Stevens, Andrew Stevens; Logan, Joshua B.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    The removal of two dams on the Elwha River will introduce massive volumes of sediment to the river, and this increase in sediment supply in the river will likely modify the shapes and forms of the river and coastal landscape downstream of the dams. This chapter provides the geologic and geomorphologic background of the Olympic Peninsula and the Elwha River with emphasis on the present river and shoreline. The Elwha River watershed was formed through the uplift of the Olympic Mountains, erosion and movement of sediment throughout the watershed from glaciers, and downslope movement of sediment from gravitational and hydrologic forces. Recent alterations to the river morphology and sediment movement through the river include the two large dams slated to be removed in 2011, but also include repeated bulldozing of channel boundaries, construction and maintenance of flood plain levees, a weir and diversion channel for water supply purposes, and engineered log jams to help enhance river habitat for salmon. The shoreline of the Elwha River delta has changed in location by several kilometers during the past 14,000 years, in response to variations in the local sea-level of approximately 150 meters. Erosion of the shoreline has accelerated during the past 80 years, resulting in landward movement of the beach by more than 200 meters near the river mouth, net reduction in the area of coastal wetlands, and the development of an armored low-tide terrace of the beach consisting primarily of cobble. Changes to the river and coastal morphology during and following dam removal may be substantial, and consistent, long-term monitoring of these systems will be needed to characterize the effects of the dam removal project.

  3. Morphology and evolution of salmonid habitats in a recently deglaciated river basin, Washington state, USA.

    Treesearch

    L Benda; T.J. Beechie; R.C. Wissmar; A. Johnson

    1992-01-01

    Morphology and distribution of salmonid habitats were related to the geomorphology of a river basin at three spatial scales including reach (l02-103 m2), subbasin (2-26 km2), and the watershed (240 km2). Stream reaches on a young fluvial terrace (1700 yr...

  4. Development and Testing of Physically-Based Methods for Filling Gaps in Remotely Sensed River Data

    DTIC Science & Technology

    2011-09-30

    Filling Gaps in Remotely Sensed River Data Jonathan M. Nelson US Geological Survey National Research Program Geomorphology and Sediment Transport...the research work carried out under this grant are to develop and test two methods for filling in gaps in remotely sensed river data. The first...information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215

  5. After the disaster: the hydrogeomorphic, ecological, and biological responses to the 1980 eruption of Mount St. Helens, Washington

    USGS Publications Warehouse

    Major, Jon J.; Crisafulli, Charlie; Bishop, John

    2009-01-01

    The 1980 eruption of Mount St. Helens caused instantaneous landscape disturbance on a grand scale. On 18 May 1980, an ensemble of volcanic processes, including a debris avalanche, a directed pyroclastic density current, voluminous lahars, and widespread tephra fall, abruptly altered landscape hydrology and geomorphology, and created distinctive disturbance zones having varying impacts on regional biota. Response to the geological and ecological disturbances has been varied and complex. In general, eruption-induced alterations in landscape hydrology and geomorphology led to enhanced stormflow discharge and sediment transport. Although the hydrological response to landscape perturbation has diminished, enhanced sediment transport persists in some basins. In the nearly 30 years since the eruption, 350 million (metric) tons of suspended sediment has been delivered from the Toutle River watershed to the Cowlitz River (roughly 40 times the average annual preeruption suspended-sediment discharge of the Columbia River). Such prodigious sediment loading has wreaked considerable socioeconomic havoc, causing significant channel aggradation and loss of flood conveyance capacity. Significant and ongoing engineering efforts have been required to mitigate these problems. The overall biological evolution of the eruption-impacted landscape can be viewed in terms of a framework of survivor legacies. Despite appearances to the contrary, a surprising number of species survived the eruption, even in the most heavily devastated areas. With time, survivor “hotspots” have coalesced into larger patches, and have served as stepping stones for immigrant colonization. The importance of biological legacies will diminish with time, but the intertwined trajectories of geophysical and biological successions will influence the geological and biological responses to the 1980 eruption for decades to come.

  6. Evaluating the use of augmented reality to support undergraduate student learning in geomorphology

    NASA Astrophysics Data System (ADS)

    Ockelford, A.; Bullard, J. E.; Burton, E.; Hackney, C. R.

    2016-12-01

    Augmented Reality (AR) supports the understanding of complex phenomena by providing unique visual and interactive experiences that combine real and virtual information and help communicate abstract problems to learners. With AR, designers can superimpose virtual graphics over real objects, allowing users to interact with digital content through physical manipulation. One of the most significant pedagogic features of AR is that it provides an essentially student-centred and flexible space in which students can learn. By actively engaging participants using a design-thinking approach, this technology has the potential to provide a more productive and engaging learning environment than real or virtual learning environments alone. AR is increasingly being used in support of undergraduate learning and public engagement activities across engineering, medical and humanities disciplines but it is not widely used across the geosciences disciplines despite the obvious applicability. This paper presents preliminary results from a multi-institutional project which seeks to evaluate the benefits and challenges of using an augmented reality sand box to support undergraduate learning in geomorphology. The sandbox enables users to create and visualise topography. As the sand is sculpted, contours are projected onto the miniature landscape. By hovering a hand over the box, users can make it `rain' over the landscape and the water `flows' down in to rivers and valleys. At undergraduate level, the sand-box is an ideal focus for problem-solving exercises, for example exploring how geomorphology controls hydrological processes, how such processes can be altered and the subsequent impacts of the changes for environmental risk. It is particularly valuable for students who favour a visual or kinesthetic learning style. Results presented in this paper discuss how the sandbox provides a complex interactive environment that encourages communication, collaboration and co-design.

  7. A global review on the influence of beavers (Castor fiber, Castor canadensis) on river and floodplain dynamics

    NASA Astrophysics Data System (ADS)

    Larsen, Annegret; Lane, Stuart; Larsen, Joshua

    2017-04-01

    Beavers (Castor fiber, Castor canadensis) have the ability to actively engineer their habitat, which they can do most effectively in lower order streams and their floodplains. Hence, this engineering has the potential to alter the hydrology, geomorphology, biogeochemistry, and ecology of river systems and the feedbacks between them. Thus, the beaver is often referred to as an 'ecosystem engineer' and is reflected in their recognition as a key species when restoring ecosystems. This capacity to engineer low order streams also shapes a range of positive and negative perceptions on their influence. On the one hand they may be perceived as capable of undermining existing river engineering schemes and the land use of associated floodplains, and on the other hand beavers may provide an alternative to traditional 'hard' engineering, potentially improving river restoration success. The aim of this review is to summarize research to date on the impacts of beavers on stream and floodplain hydrology, geomorphology, water-quality and ecology, and the feedbacks between them. Our review shows that: (1) research has been focused heavily on North American streams, with far less research outside this North American context; (2) there is a tendency to investigate beaver impacts from the perspective of individual disciplines, to the detriment of considering broader process feedbacks, notably at the interface of hydro-geomorphology and riparian ecology; (3) it remains unclear to which extent beavers genuinely engineered streams prior to human impact, pointing to the need for longer term (millennium scale) studies on how beavers have changed river-floodplain systems. Crucially, we conclude that the investigation of the effects of beavers on streams and floodplains, especially in a longer-term, and their use for river restoration can only be understood through the thorough investigation of antecedent hydro-geomorphic conditions which takes account of the ways in which beavers and humans have interacted together over many centuries.

  8. The utilization of ERTS-1 data for the study of the French Atlantic Littoral. [coastal water and geomorphology

    NASA Technical Reports Server (NTRS)

    Demathieu, P. G.; Verger, F. H.

    1974-01-01

    The French Atlantic Littoral (FRALIT) program uses ERTS-1 data to study coastal geomorphology and waters. ERTS-1 gives an overall picture of the phenomena for the first time due mainly to channel 4 data, but the other channels also contribute valuable complementary data on superficial waters. These studies have already resulted in accurate maps of the mud transported south-westwards from the mouth of the River Loire.

  9. The Cultural Resources and Geomorphology of Coralville Lake, Johnson County, Iowa. Volume 1. Technical Report.

    DTIC Science & Technology

    1984-04-01

    PERIOD COVERED THE CULTURAL RESOURCES AND GEOMORPHOLOGY OF FINAL 1984 CORALVILLE LAKE, JOHNSON COUNTY. IOWA 6 PERORMINGORG.REPORTNMBER 7. AUTHOR() 0...County, Iowa (see Figure 1). Coralville Dam Is located on the Iowa River approximately 7 miles above Iowa City, and inundates an area, at maximum flood...landform regions in Iowa . Two of these regions, namely, the Iowan Surface and the Southern Iowa Drift Plain, are in the Coralville Lake area. The

  10. Hyperspectral remote sensing and GIS techniques application for the evaluation and monitoring of interactions between natural risks and industrial hazards

    NASA Astrophysics Data System (ADS)

    Marino, Alessandra; Ludovisi, Giancarlo; Moccaldi, Antonio; Damiani, Fiorenzo

    2001-02-01

    The aim of this paper is to outline the potential of imaging spectroscopy and GIS techniques as tool for the management of data rich environments, as complex fluvial areas, exposed to geological, geomorphological, and hydrogeological risks. The area of study, the Pescara River Basin is characterized by the presence of important industrial sites and by the occurrence of floods, landslides and seismic events. Data were collected, during a specific flight, using an hyperspectral MIVIS sensor. Images have been processed in order to obtain updated and accurate land-cover and land-use maps that have been inserted in a specific GIS database and integrated with further information like lithology, geological structure, geomorphology, hydrogeological features, productive plants location and characters. The processing of data layers was performed, using a dedicated software, through typical GIS operators like indexing, recording, matrix analysis, proximity analysis. The interactions between natural risks, industrial installations, agricultural areas, water resources and urban settlements have been analyzed. This allowed the creation and processing of thematic layers like vulnerability, risk and impact maps.

  11. Re-meandering of lowland streams: will disobeying the laws of geomorphology have ecological consequences?

    PubMed

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems.

  12. Re-Meandering of Lowland Streams: Will Disobeying the Laws of Geomorphology Have Ecological Consequences?

    PubMed Central

    Pedersen, Morten Lauge; Kristensen, Klaus Kevin; Friberg, Nikolai

    2014-01-01

    We evaluated the restoration of physical habitats and its influence on macroinvertebrate community structure in 18 Danish lowland streams comprising six restored streams, six streams with little physical alteration and six channelized streams. We hypothesized that physical habitats and macroinvertebrate communities of restored streams would resemble those of natural streams, while those of the channelized streams would differ from both restored and near-natural streams. Physical habitats were surveyed for substrate composition, depth, width and current velocity. Macroinvertebrates were sampled along 100 m reaches in each stream, in edge habitats and in riffle/run habitats located in the center of the stream. Restoration significantly altered the physical conditions and affected the interactions between stream habitat heterogeneity and macroinvertebrate diversity. The substrate in the restored streams was dominated by pebble, whereas the substrate in the channelized and natural streams was dominated by sand. In the natural streams a relationship was identified between slope and pebble/gravel coverage, indicating a coupling of energy and substrate characteristics. Such a relationship did not occur in the channelized or in the restored streams where placement of large amounts of pebble/gravel distorted the natural relationship. The analyses revealed, a direct link between substrate heterogeneity and macroinvertebrate diversity in the natural streams. A similar relationship was not found in either the channelized or the restored streams, which we attribute to a de-coupling of the natural relationship between benthic community diversity and physical habitat diversity. Our study results suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers. Documentation of restoration efforts should be intensified with continuous monitoring of geomorphological and ecological changes including surveys of reference river systems. PMID:25264627

  13. Numerical modelling of river morphodynamics: Latest developments and remaining challenges

    NASA Astrophysics Data System (ADS)

    Siviglia, Annunziato; Crosato, Alessandra

    2016-07-01

    Numerical morphodynamic models provide scientific frameworks for advancing our understanding of river systems. The research on involved topics is an important and socially relevant undertaking regarding our environment. Nowadays numerical models are used for different purposes, from answering questions about basic morphodynamic research to managing complex river engineering problems. Due to increasing computer power and the development of advanced numerical techniques, morphodynamic models are now more and more used to predict the bed patterns evolution to a broad spectrum of spatial and temporal scales. The development and the success of application of such models are based upon a wide range of disciplines from applied mathematics for the numerical solution of the equations to geomorphology for the physical interpretation of the results. In this light we organized this special issue (SI) soliciting multidisciplinary contributions which encompass any aspect needed for the development and applications of such models. Most of the papers in the SI stem from contributions to session HS9.5/GM7.11 on numerical modelling and experiments in river morphodynamics at the European Geosciences Union (EGU) General Assembly held in Vienna, April 27th to May 2nd 2014.

  14. BANK STABILIZATION, SHORELINE LAND-USE, AND THE DISTRIBUTION OF LARGE WOODY DEBRIS IN A REGULATED REACH OF THE UPPER MISSOURI RIVER, NORTH DAKOTA, USA

    EPA Science Inventory

    Large woody debris (LWD) is an important component of ecosystem function in floodplain rivers. We examined the effects on LWD distribution of shoreline land use, bank stabilization, local channel geomorphology, and distance from the dam in the Garrison Reach, a regulated reach of...

  15. Synthesis of Upper Verde River research and monitoring 1993-2008

    Treesearch

    Daniel G. Neary; Alvin L. Medina; John N. Rinne

    2012-01-01

    This volume is a state-of-knowledge synthesis of monitoring and research conducted on the Upper Verde River (UVR) of Arizona. It contains information on the history, hydrology, soils, geomorphology, vegetation, and fish fauna of the area that can help land managers and other scientists in successfully conducting ecosystem management and future monitoring and research...

  16. Overview of geology, hydrology, geomorphology, and sediment budget of the Deschutes River Basin, Oregon.

    Treesearch

    Jim E. O' Connor; Gordon E. Grant; Tana L. Haluska

    2003-01-01

    Within the Deschutes River basin of central Oregon, the geology, hydrology, and physiography influence geomorphic and ecologic processes at a variety of temporal and spatial scales. Hydrologic and physiographic characteristics of the basin are related to underlying geologic materials. In the southwestern part of the basin, Quaternary volcanism and tectonism has created...

  17. Rangeland management and fluvial geomorphology in northern Tanzania.

    PubMed

    Miller, Brian W; Doyle, Martin W

    2014-06-01

    Researchers have independently documented the effects of land use on rivers and threats to river management institutions, but the relationship between changes in institutional context and river condition is not well described. This study assesses the connections between resource management institutions, land use, and rivers by integrating social science, geospatial analysis, and geomorphology. In particular, we measured hydraulic geometry, sediment size distributions, and estimated sediment yield for four rivers in northern Tanzania and conducted semistructured interviews that assessed corresponding resource management institutions. Communities managed rivers through both customary (traditional, nonstate) and government institutions, but the differences in the resource management policies and practices of the study rivers themselves were fairly subtle. Clearer differences were found at broader scales; the four watersheds exhibited substantial differences in land cover change and sediment yield associated with the location of settlements, roadways, and cultivation. Unexpectedly, these recent land use changes did not initiate a geomorphic response in rivers. The long history of grazing by domestic and wild ungulates may have influenced water and sediment supplies such that river channel dimensions are more resistant to changes in land use than other systems or have already adjusted to predominant changes in boundary conditions. This would suggest that not all rivers will have the anticipated responses to contemporary land use changes because of antecedent land use patterns; over long time scales (centuries to millennia), the presence of grazers may actually increase the ability of rivers to withstand changes in land use. Our findings point to a need for further interdisciplinary study of dryland rivers and their shifts between system states, especially in areas with a long history of grazing, relatively recent changes in land use, and a dynamic social and institutional context.

  18. Rangeland management and fluvial geomorphology in northern Tanzania

    PubMed Central

    Miller, Brian W.; Doyle, Martin W.

    2014-01-01

    Researchers have independently documented the effects of land use on rivers and threats to river management institutions, but the relationship between changes in institutional context and river condition is not well described. This study assesses the connections between resource management institutions, land use, and rivers by integrating social science, geospatial analysis, and geomorphology. In particular, we measured hydraulic geometry, sediment size distributions, and estimated sediment yield for four rivers in northern Tanzania and conducted semistructured interviews that assessed corresponding resource management institutions. Communities managed rivers through both customary (traditional, nonstate) and government institutions, but the differences in the resource management policies and practices of the study rivers themselves were fairly subtle. Clearer differences were found at broader scales; the four watersheds exhibited substantial differences in land cover change and sediment yield associated with the location of settlements, roadways, and cultivation. Unexpectedly, these recent land use changes did not initiate a geomorphic response in rivers. The long history of grazing by domestic and wild ungulates may have influenced water and sediment supplies such that river channel dimensions are more resistant to changes in land use than other systems or have already adjusted to predominant changes in boundary conditions. This would suggest that not all rivers will have the anticipated responses to contemporary land use changes because of antecedent land use patterns; over long time scales (centuries to millennia), the presence of grazers may actually increase the ability of rivers to withstand changes in land use. Our findings point to a need for further interdisciplinary study of dryland rivers and their shifts between system states, especially in areas with a long history of grazing, relatively recent changes in land use, and a dynamic social and institutional context. PMID:24932057

  19. Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources

    USGS Publications Warehouse

    Williams, S. Jeffress; Kulp, Mark; Penland, Shea; Kindinger, Jack L.; Flocks, James G.; Buster, Noreen A.; Holmes, Charles W.

    2009-01-01

    Extending nearly 400 km from Sabine Pass on the Texas-Louisiana border east to the Chandeleur Islands, the Louisiana coastal zone (Fig. 11.1) along the north-central Gulf of Mexico is the southern terminus of the largest drainage basin in North America (>3.3 million km2), which includes the Mississippi River delta plain where approximately 6.2 million kilograms per year of sediment is delivered to the Gulf of Mexico (Coleman 1988). The Mississippi River, active since at least Late Jurassic time (Mann and Thomas 1968), is the main distributary channel of this drainage system and during the Holocene has constructed one of the largest delta plains in the world, larger than 30,000 km2 (Coleman and Prior 1980; Coleman 1981; Coleman et al. 1998). The subsurface geology and geomorphology of the Louisiana coastal zone reffects a complex history of regional tectonic events and fluvial, deltaic, and marine sedimentary processes affected by large sea-level fluctuations. Despite the complex geology of the north-central Gulf basin, a long history of engineering studies and Scientific research investigations (see table 11.1) has led to substantial knowledge of the geologic framework and evolution of the delta plain region (see also Bird et al., chapter 1 in this volume). Mississippi River delta plain, Louisiana coast, and inner shelf Holocene geologic framework, processes, and resources. Available from: https://www.researchgate.net/publication/262802561_Mississippi_River_delta_plain_Louisiana_coast_and_inner_shelf_Holocene_geologic_framework_processes_and_resources [accessed Sep 13, 2017].

  20. Habitat Hydrology and Geomorphology Control the Distribution of Malaria Vector Larvae in Rural Africa

    PubMed Central

    Hardy, Andrew J.; Gamarra, Javier G. P.; Cross, Dónall E.; Macklin, Mark G.; Smith, Mark W.; Kihonda, Japhet; Killeen, Gerry F.; Ling’ala, George N.; Thomas, Chris J.

    2013-01-01

    Background Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. Methods We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Results Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Conclusion Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools. PMID:24312606

  1. Habitat hydrology and geomorphology control the distribution of malaria vector larvae in rural Africa.

    PubMed

    Hardy, Andrew J; Gamarra, Javier G P; Cross, Dónall E; Macklin, Mark G; Smith, Mark W; Kihonda, Japhet; Killeen, Gerry F; Ling'ala, George N; Thomas, Chris J

    2013-01-01

    Larval source management is a promising component of integrated malaria control and elimination. This requires development of a framework to target productive locations through process-based understanding of habitat hydrology and geomorphology. We conducted the first catchment scale study of fine resolution spatial and temporal variation in Anopheles habitat and productivity in relation to rainfall, hydrology and geomorphology for a high malaria transmission area of Tanzania. Monthly aggregates of rainfall, river stage and water table were not significantly related to the abundance of vector larvae. However, these metrics showed strong explanatory power to predict mosquito larval abundances after stratification by water body type, with a clear seasonal trend for each, defined on the basis of its geomorphological setting and origin. Hydrological and geomorphological processes governing the availability and productivity of Anopheles breeding habitat need to be understood at the local scale for which larval source management is implemented in order to effectively target larval source interventions. Mapping and monitoring these processes is a well-established practice providing a tractable way forward for developing important malaria management tools.

  2. Preface to the volume Large Rivers

    NASA Astrophysics Data System (ADS)

    Latrubesse, Edgardo M.; Abad, Jorge D.

    2018-02-01

    The study and knowledge of the geomorphology of large rivers increased significantly during the last years and the factors that triggered these advances are multiple. On one hand, modern technologies became more accessible and their disseminated usage allowed the collection of data from large rivers as never seen before. The generalized use of high tech data collection with geophysics equipment such as acoustic Doppler current profilers-ADCPs, multibeam echosounders, plus the availability of geospatial and computational tools for morphodynamics, hydrological and hydrosedimentological modeling, have accelerated the scientific production on the geomorphology of large rivers at a global scale. Despite the advances, there is yet a lot of work ahead. Good parts of the large rivers are in the tropics and many are still unexplored. The tropics also hold crucial fluvial basins that concentrate good part of the gross domestic product of large countries like the Parana River in Argentina and Brazil, the Ganges-Brahmaputra in India, the Indus River in Pakistan, and the Mekong River in several countries of South East Asia. The environmental importance of tropical rivers is also outstanding. They hold the highest biodiversity of fluvial fauna and alluvial vegetation and many of them, particularly those in Southeast Asia, are among the most hazardous systems for floods in the entire world. Tropical rivers draining mountain chains such as the Himalaya, the Andes and insular Southeast Asia are also among the most heavily sediment loaded rivers and play a key role in both the storage of sediment at continental scale and the transference of sediments from the continent to the Ocean at planetary scale (Andermann et al., 2012; Latrubesse and Restrepo, 2014; Milliman and Syvitski, 1992; Milliman and Farsnworth, 2011; Sinha and Friend, 1994).

  3. Survival of cyanobacteria in rivers following their release in water from large headwater reservoirs.

    PubMed

    Williamson, Nicholas; Kobayashi, Tsuyoshi; Outhet, David; Bowling, Lee C

    2018-05-01

    Cyanobacterial survival following their release in water from major headwaters reservoirs was compared in five New South Wales rivers. Under low flow conditions, cyanobacterial presence disappeared rapidly with distance downstream in the Cudgegong and Hunter Rivers, whereas the other three rivers were contaminated for at least 300 km. Cyanobacterial survival is likely to be impacted by the geomorphology of each river, especially the extent of gravel riffle reaches (cells striking rocks can destroy them) and by the different turbulent flow conditions it produces within each. Flow conditions at gauging stations were used to estimate the turbulent strain rate experienced by suspended cyanobacteria. These indicate average turbulent strain rates in the Cudgegong and Hunter Rivers can be above 33 and 83 s -1 while for the Murray, Edward and Macquarie Rivers average strain rate was estimated to be less than 30 s -1 . These turbulent strain rate estimates are substantially above published thresholds of approximately 2 s -1 for impacts indicated from laboratory tests. Estimates of strain rate were correlated with changes in cyanobacterial biovolume at stations along the rivers. These measurements indicate a weak but significant negative linear relationship between average strain rate and change in cyanobacterial biomass. River management often involves releasing cold deep water with low cyanobacterial presence from these reservoirs, leading to ecological impacts from cold water pollution downstream. The pollution may be avoided if cyanobacteria die off rapidly downstream of the reservoir, allowing surface water to be released instead. However high concentrations of soluble cyanotoxins may remain even after the cyanobacterial cells have been destroyed. The geomorphology of the river (length of riffle reaches) is an important consideration for river management during cyanobacterial blooms in headwater reservoirs. Copyright © 2018 Elsevier B.V. All rights reserved.

  4. Geomorphological Investigation of the Atchafalaya Basin, Area West, Atchafalaya Delta, and Terrebonne Marsh. Volume 1.

    DTIC Science & Technology

    1986-04-01

    creating the recent alluvial valley and deltaic plain of southeastern Louisiana . Each time the Mississippi River has built a major delta lobe seaward...exposure during lowered sea level, relatively high bulk density , and low water content. Entrenchment of the ancestral Mississippi River into the...down to Houma, Louisiana . The exact time interval of Teche occupation by the Red River is not known, but it ended sometime between early and middle

  5. On the control of riverbed incision induced by run-of-river power plant

    NASA Astrophysics Data System (ADS)

    Bizzi, Simone; Dinh, Quang; Bernardi, Dario; Denaro, Simona; Schippa, Leonardo; Soncini-Sessa, Rodolfo

    2015-07-01

    Water resource management (WRM) through dams or reservoirs is worldwide necessary to support key human-related activities, ranging from hydropower production to water allocation and flood risk mitigation. Designing of reservoir operations aims primarily to fulfill the main purpose (or purposes) for which the structure has been built. However, it is well known that reservoirs strongly influence river geomorphic processes, causing sediment deficits downstream, altering water, and sediment fluxes, leading to riverbed incision and causing infrastructure instability and ecological degradation. We propose a framework that, by combining physically based modeling, surrogate modeling techniques, and multiobjective (MO) optimization, allows to include fluvial geomorphology into MO optimization whose main objectives are the maximization of hydropower revenue and the minimization of riverbed degradation. The case study is a run-of-the-river power plant on the River Po (Italy). A 1-D mobile-bed hydro-morphological model simulated the riverbed evolution over a 10 year horizon for alternatives operation rules of the power plant. The knowledge provided by such a physically based model is integrated into a MO optimization routine via surrogate modeling using the response surface methodology. Hence, this framework overcomes the high computational costs that so far hindered the integration of river geomorphology into WRM. We provided numerical proof that river morphologic processes and hydropower production are indeed in conflict but that the conflict may be mitigated with appropriate control strategies.

  6. Global Bedload Flux Modeling and Analysis in Large Rivers

    NASA Astrophysics Data System (ADS)

    Islam, M. T.; Cohen, S.; Syvitski, J. P.

    2017-12-01

    Proper sediment transport quantification has long been an area of interest for both scientists and engineers in the fields of geomorphology, and management of rivers and coastal waters. Bedload flux is important for monitoring water quality and for sustainable development of coastal and marine bioservices. Bedload measurements, especially for large rivers, is extremely scarce across time, and many rivers have never been monitored. Bedload measurements in rivers, is particularly acute in developing countries where changes in sediment yields is high. The paucity of bedload measurements is the result of 1) the nature of the problem (large spatial and temporal uncertainties), and 2) field costs including the time-consuming nature of the measurement procedures (repeated bedform migration tracking, bedload samplers). Here we present a first of its kind methodology for calculating bedload in large global rivers (basins are >1,000 km. Evaluation of model skill is based on 113 bedload measurements. The model predictions are compared with an empirical model developed from the observational dataset in an attempt to evaluate the differences between a physically-based numerical model and a lumped relationship between bedload flux and fluvial and basin parameters (e.g., discharge, drainage area, lithology). The initial study success opens up various applications to global fluvial geomorphology (e.g. including the relationship between suspended sediment (wash load) and bedload). Simulated results with known uncertainties offers a new research product as a valuable resource for the whole scientific community.

  7. Historic fluvial development of the Alpine-foreland Tagliamento River, Italy, and consequences for floodplain management

    NASA Astrophysics Data System (ADS)

    Spaliviero, Mathias

    2003-06-01

    The fluvial geomorphological development of the Tagliamento River and its flooding history is analysed using historical documents and maps, remote-sensed data and hydrological information. The river has been building a complex alluvial fan starting from the middle part of its alluvial course in the Venetia-Friuli alluvial plain. The riverbed is aggrading over its entire braided length. The transition from braiding to meandering near Madrisio has shifted downstream where the river width determined by the dikes becomes narrower, causing major problems. The flood hazard concentrates at those places and zones where flooding occurred during historical times. Prior to the agrarian and industrial revolution, land use was adjusted to the flooding regime of the river. Subsequent land-use pressure led to a confinement of the river by dikes to such an extent that the flood risk in the floodplain downstream of Madrisio has increased consistently, and represents nowadays a major territorial planning issue. The planned retention basins upstream of the middle Tagliamento will alleviate the problem, but not solve it in the medium and long term. Therefore, fluvial corridors in the lower-middle parts (from Pinzano to the sea) have been identified on the basis of the flooding history in relation to fluvial development during historical times. The result should be used for hydraulic simulation studies and land-use planning.

  8. Spatial relationships in a dendritic network: the herpetofaunal metacommunity of the Mattole River catchment of northwest California.

    Treesearch

    Hartwell Welsh; Garth Hodgson

    2010-01-01

    We investigated the aquatic and riparian herpetofauna in a 789 km² river catchment in northwest California to examine competing theories of biotic community structuring in catchment stream networks. Research in fluvial geomorphology has resulted in multi-scale models of dynamic processes that cyclically create, maintain, and destroy environments in stream...

  9. Role of climate and invasive species in structuring trout distributions in the interior Columbia River Basin, USA

    Treesearch

    Seth J. Wenger; Daniel J. Isaak; Jason B. Dunham; Kurt D. Fausch; Charlie Luce; Helen M. Neville; Bruce E. Rieman; Michael K. Young; David E. Nagel; Dona L. Horan; Gwynne L. Chandler

    2011-01-01

    Recent and projected climate warming trends have prompted interest in impacts on coldwater fishes. We examined the role of climate (temperature and flow regime) relative to geomorphology and land use in determining the observed distributions of three trout species in the interior Columbia River Basin, USA. We considered two native species, cutthroat trout (Oncorhynchus...

  10. The Copper River Delta pulse study: an interdisciplinary survey of aquatic habitats.

    Treesearch

    M.D. Bryant

    1991-01-01

    In July 1987, a 2-week synoptic survey was conducted on the wetlands of the Copper River Delta by an interdisciplinary team of scientists. Disciplines included geomorphology, limnology—water chemistry and nutrients, plankton and macroinvertebrates, anadromous fish populations, and wetland plant ecology. The purpose of this report is to present a summary of the findings...

  11. The Columbia River--on the Leading Edge

    NASA Astrophysics Data System (ADS)

    O'Connor, J. E.

    2005-05-01

    On the leading edge of the North American plate, the Columbia River is the largest of the world's 40 or so rivers with drainage areas greater than 500,000 square kilometers to drain toward a convergent plate boundary. This unique setting results in a unique continental river basin; marked by episodic and cataclysmic geologic disturbance, but also famously fecund with perhaps 10 to 16 million salmon historically spawning in its waters each year. Now transformed by dams, transportation infrastructure, dikes and diversions, the Columbia River presents an expensive conundrum for management of its many values. Inclusion of river ecology and geomorphology in discussions of river management is generally limited to observations of the last 200 years-a time period of little natural disturbance and low sediment transport. However, consideration of longer timescales provides additional perspective of historical ecologic and geomorphic conditions. Only 230 km from its mouth, the Columbia River bisects the volcanic arc of the Cascade Range, forming the Columbia River Gorge. Cenozoic lava flows have blocked the river, forcing diversions and new canyon cutting. Holocene eruptions of Mount Mazama (Crater Lake), Mount Hood, Mount St. Helens, and Mount Rainier have shed immense quantities of sediment into the lower Columbia River, forming a large percentage of the Holocene sediment transported through the lower river. Quaternary landslides, perhaps triggered by great earthquakes, have descended from the 1000-m-high gorge walls, also blocking and diverting the river, one as recently as 550 years ago. These geologic disturbances, mostly outside the realm of historical observation and operating at timescales of 100s to 1000s of years in the gorge and elsewhere, have clearly affected basin geomorphology, riverine ecology, and past and present cultural utilization of river resources. The historic productivity of the river, however, hints at extraordinary resilience (and perhaps dependence) of the Columbia River system to such disturbances, many of which are similar to engineered disturbances of the last 200 years.

  12. Assessment of geomorphological and hydrological changes produced by Pleistocene glaciations in a Patagonian basin

    NASA Astrophysics Data System (ADS)

    Scordo, Facundo; Seitz, Carina; Melo, Walter D.; Piccolo, M. Cintia; Perillo, Gerardo M. E.

    2018-04-01

    This work aims to assess how Pleistocene glaciations modeled the landscape in the upper Senguer River basin and its relationship to current watershed features (drainage surface and fluvial hydrological regime). During the Pleistocene six glacial lobes developed in the upper basin of the Senguer River localized east of the Andean range in southern Argentinean Patagonia between 43° 36' - 46° 27‧ S. To describe the topography and hydrology, map the geomorphology, and propose an evolution of the study area during the Pleistocene we employed multitemporal Landsat images, national geological sheets and a mosaic of the digital elevation model (Shuttle Radar Topography Mission) along with fieldwork. The main conclusion is that until the Middle Pleistocene, the drainage divide of the Senguer River basin was located to the west of its current limits and its rivers drained the meltwater of the glaciers during interglacial periods. However, processes of drainage inversion and drainage surface reduction occurred in the headwater of most rivers of the basin during the Late Pleistocene. Those processes were favored by a relative shorter glacial extension during LGM and the dam effect produced by the moraines of the Post GPG I and III glaciations. Thus, since the Late Pleistocene, the headwaters of several rivers in the basin have been reduced, and the moraines corresponding to the Middle Pleistocene glaciations currently divide the watersheds that drain towards the Senguer River from those that flow west towards the Pacific Ocean.

  13. A hydromorphological framework for the evaluation of e-flows

    NASA Astrophysics Data System (ADS)

    Bussettini, Martina; Rinaldi, Massimo; Grant, Gordon

    2017-04-01

    Anthropogenic alteration of hydromorphological processes in rivers is a major factor that diminishes river health and undermines environmental objectives envisaged by river protection policies. Specifying environmental flows to address those impacts can be a key strategy for the maintenance of functional river processes and the achievement of those objectives. Environmental flows are determined by various methods and approaches, based primarily on hydrological and/or hydraulic evaluations, although holistic methodologies, considering the many interacting factors that structure aquatic ecosystems, including sediments, are increasingly used. Hydrological and geomorphological processes are highly coupled and any change in one typically affects the other. The coupling varies over different spatial and temporal scales, and changing either hydrological or geomorphological processes can result in alteration of river habitats, ultimately impacting ecological processes. In spite of these linkages, current restoration approaches typically focus only on changes on hydrological regime as a means promoting ecological enhancements. Neglecting sediment transport and its interaction with flow in shaping riverine habitats is likely to results not only in minor or no enhancements in the ecology, but may also increase the costs of water use. A more integrated view of how human activities jointly affect sediment regime, river morphology and river flows is therefore needed in order to determine the most effective actions to rehabilitate river processes to desired states. These states involve considerations of the combination of intrinsic ("natural") conditions (e.g. river sensitivity and morphological potential, off-site conditions) and socio-economic constraints. The evaluation of such factors, the analysis of different scenarios, and the selection of appropriate actions require the contextualization of river reaches within a wider spatial-temporal hydromorphological framework. Here we present such a general multiscale, process-based hydromorphological framework, and discuss its application to the problem of how best to analyse and estimate e-flows.

  14. Hydrodynamic and sedimentological controls governing formation of fluvial levees

    NASA Astrophysics Data System (ADS)

    Johnston, G. H.; Edmonds, D. A.; David, S. R.; Czuba, J. A.

    2017-12-01

    Fluvial levees are familiar features found on the margins of river channels, yet we know little about what controls their presence, height, and shape. These attributes of levees are important because they control sediment transfer from channel to floodplain and flooding patterns along a river system. Despite the familiarity and importance of levees, there is a surprising lack of basic geomorphic data on fluvial levees. Because of this we seek to understand: 1) where along rivers do levees tend to occur?; 2) what geomorphic and hydrodynamic variables control cross-sectional shape of levees? We address these questions by extracting levee shape from LiDAR data and by collecting hydrodynamic and sedimentological data from reaches of the Tippecanoe River, the White River, and the Muscatatuck River, Indiana, USA. Fluvial levees are extracted from a 1.5-m resolution LiDAR bare surface model and compared to hydrological, sedimentological, and geomorphological data from USGS stream gages. We digitized banklines and extracted levee cross-sections to calculate levee slope, taper, height, e-folding length, and e-folding width. To answer the research questions, we performed a multivariable regression between the independent variables—channel geometry, sediment grain size and concentration, flooding conditions, and slope—and the dependent levee variables. We find considerable variation in levee presence and shape in our field data. On the Muscatatuck River levees occur on 30% of the banks compared to 10% on the White River. Moreover, levees on the Muscatatuck are on average 3 times wider than the White River. This is consistent with the observation that the Muscatatuck is finer-grained compared to the White River and points to sedimentology being an important control on levee geomorphology. Future work includes building a morphodynamic model to understand how different hydrodynamic and geomorphic conditions control levee geometry.

  15. The geomorphology of the Mississippi River chenier plain

    USGS Publications Warehouse

    Penland, S.; Suter, J.R.

    1989-01-01

    The chenier plain of the Mississippi River is a shore-parallel zone of alternating transgressive clastic ridges separated by progradational mudflats. The term chenier is derived from the cajun term chene for oak, the tree species that colonizes the crests of the higher ridges. The Mississippi River chenier plain stretches 200 km from Sabine Pass, Texas, to Southwest Point, Louisiana and ranges between 20 and 30 km wide, with elevations of 2-6 m. The timing and the process of formation could be re-evaluated in the light of new chronostratigraphic findings in the Mississippi River delta plain. The stratigraphic relationship between the Teche and Lafourche delta complexes and Ship Shoal offshore indicates that these delta complexes belong to different delta plains that developed at different sealevels. It appears that the Teche delta complex is associated with the late Holocene delta plain which developed 7000 to 3000 yrs B.P. when sealevel stood 5-6 m lower than present. A regional transgression occurred between approximately 3000 BP and 2500 yrs B.P., leading to the transgressive submergence of the late Holocene delta plain, producing the regional Teche shoreline. The timing of this transgression conforms to the age of the most landward ridge in the chenier plain, the Little Chenier-Little Pecan Island trend, which dates at about 2500 yrs B.P. This ridge trend was originally interpreted as representing the Teche delta complex switching event with the landward Holocene/Pleistocene contact representing the high stand shoreline. The implication of this new interpretation is that the Little Chenier-Little Pecan Island trend represents the high stand shoreline, a continuation of the Teche shoreline separating the late Holocene and Recent delta plains, and that the Holocene/Pleistocene contact represents the leading edge of the marshes transgressing onto the Prairie Terrace. Significant mudflat progradation seems to require a westerly position of the Mississippi River, but the numerous different forms and ages of cheniers do not correspond well to the timing of major delta complex switching. Progradation of the chenier plain appears to be associated with building of the Recent delta plain and not the Teche complex of the late Holocene delta plain. The occurrence of individual ridges appears to be primarily tied to delta lobe switching within the Lafourche complex and variations in sediment supply from local rivers. The recent development of the Atchafalaya delta complex to the west is the closest position of an active distributary to the chenier plain since sealevel stabilization; a new episode of rapid mudflat progradation is thus taking place. ?? 1989.

  16. Do weirs affect the physical and geochemical mobility of toxic metals in mining-impacted floodplain sediments?

    NASA Astrophysics Data System (ADS)

    Bulcock, Amelia; Coleman, Alexandra; Whitfield, Elizabeth; Andres Lopez-Tarazon, Jose; Byrne, Patrick; Whitfield, Greg

    2015-04-01

    Weirs are common river structures designed to modify river channel hydraulics and hydrology for purposes of navigation, flood defence, irrigation and hydrometry. By design, weirs constrain natural flow processes and affect sediment flux and river channel forms leading to homogenous river habitats and reduced biodiversity. The recent movement towards catchment-wide river restoration, driven by the EU Water Framework Directive, has recognised weirs as a barrier to good ecological status. However, the removal of weirs to achieve more 'natural' river channels and flow processes is inevitably followed by a period of adjustment to the new flow regime and sediment flux. This period of adjustment can have knock-on effects that may increase flood risk, sedimentation and erosion until the river reaches a state of geomorphological equilibrium. Many catchments in the UK contain a legacy of toxic metals in floodplain sediments due to historic metal mining activities. The consequences of weir removal in these catchments may be to introduce 'stored' mine wastes into the river system with severe implications for water quality and biodiversity. The purpose of this study is to investigate the potential impact of a weir on the physical and geochemical mobilisation of mine wastes in the formerly mined River Twymyn catchment, Wales. Our initial investigations have shown floodplain and riverbed sediments to be grossly contaminated (up to 15,500 mg/kg Pb) compared to soil from a pre-mining Holocene terrace (180 mg/kg Pb). Geomorphological investigations also suggest that weir removal will re-establish more dynamic river channel processes resulting in lateral migration of the channel and erosion of contaminated floodplain sediments. These data will be used as a baseline for more detailed investigations of the potential impact of weirs on the physical and geochemical mobilisation of contaminated sediments. We have two specific objectives. (1) Geomorphological assessments will use unmanned aerial vehicle (UAV) photographic surveys, historical aerial photographs, ground-based topographic surveys, surface and subsurface particle size determination, bed stability and sediment entrainment assessment, together with discharge and sediment (both suspended and bedload) monitoring to establish the effect of the weir on patterns of sediment flux and the physical transport of metal contaminants. 2D and 1D models (IBER, HEC-RAS) of the weir-affected reach will investigate sediment and metal flux following weir removal. (2) The physicochemical speciation and geochemical stability of contaminated floodplain sediments will be characterised using bulk chemistry, mineralogical (XRD, SEM) and speciation methods (sequential extractions, electron microprobe analysis).

  17. Ecological-geomorphological assessment of the suburban area of Astana

    NASA Astrophysics Data System (ADS)

    Akiyanova, F. Zh; Zinabdin, N. B.; Kenzhebayeva, A. Zh; Adilbekova, F. G.; Ilyassova, A. T.; Karakulov, E. M.

    2018-01-01

    The results of ecological-geomorphological assessment of the suburban zone of Astana is presented in the paper. Climatic and hydrological factors, which are the agents of pollutants’ transport and caused the development of exogenous processes in the suburban area of Astana were studied and mapped. On the base of the geoinformation technologies and field studies the geomorphologic structure and morphogenetic processes were studied. The analysis of the data complex led to assess ecological-geomorphological conditions of the suburban area of Astana.

  18. Morphology of the Middle Rio Grande from Cochiti Dam to Bernalillo Bridge, New Mexico

    Treesearch

    Claudia Leon Salazar

    1998-01-01

    The continuous geomorphologic changes in the Middle Rio Grande in New Mexico have been of interest for many governmental agencies involved with the management and operation of this river system. Due to sedimentation problems along this river, highly developed plans for sediment detention and flood control have been carried out. Cochiti Dam was built as a part of these...

  19. Do predator-prey relationships on the river bed affect fine sediment ingress?

    NASA Astrophysics Data System (ADS)

    Mathers, Kate; Rice, Stephen; Wood, Paul

    2016-04-01

    Ecosystem engineers are organisms that alter their physical environment and thereby influence the flow of resources through ecosystems. In rivers, several ecosystem engineers are also important geomorphological agents that modify fluvial sediment dynamics. By altering channel morphology and bed material characteristics, such modifications can affect the availability of habitats for other organisms, with implications for ecosystem health and wider community composition. In this way geomorphological and ecological systems are intimately interconnected. This paper focuses on one element of this intricate abiotic-biotic coupling: the interaction between fine sediment ingress into the river bed and the predator-prey relationships of aquatic organisms living on and in the river bed. Signal crayfish (Pacifastacus leniusculus) have been shown to modify fine sediment fluxes in rivers, but their effect on fine sediment ingress into riverbeds remains unclear. Many macroinvertebrate taxa have adapted avoidance strategies to avoid predation by crayfish, with one example being the freshwater shrimp (Gammarus pulex) which relies on open interstitial spaces within subsurface sediments as a refuge from crayfish predation. Fine sedimentation that fills gravelly frameworks may preclude access to those spaces, therefore leaving freshwater shrimp susceptible to predation. Ex-situ experiments were conducted which sought to examine: i) if freshwater shrimps and signal crayfish, alone and in combination, influenced fine sediment infiltration rates; and ii) whether modifications to substratum composition, specifically the introduction of fine sediment, modified predator-prey interactions. The results demonstrate that crayfish are significant geomorphic agents and that fine sediment ingress rates were significantly enhanced in their presence compared to control conditions or the presence of only freshwater shrimps. The combination of both organisms (i.e. allowing the interaction between predator and prey) resulted in intermediate fine sediment infiltration rates. The results suggest that reductions in prey availability may enhance crayfish foraging behaviour and therefore their impact on fine sediment ingress into river beds. Consequently, as invading species become more established and prey resources are depleted, the implications of invasive crayfish on fine sediment dynamics may become more prominent. These experiments demonstrate the importance of abiotic-biotic coupling in fluvial systems for both geomorphological and ecological understanding.

  20. Synthetic River Valleys

    NASA Astrophysics Data System (ADS)

    Brown, R.; Pasternack, G. B.

    2011-12-01

    The description of fluvial form has evolved from anecdotal descriptions to artistic renderings to 2D plots of cross section or longitudinal profiles and more recently 3D digital models. Synthetic river valleys, artificial 3D topographic models of river topography, have a plethora of potential applications in fluvial geomorphology, and the earth sciences in general, as well as in computer science and ecology. Synthetic river channels have existed implicitly since approximately the 1970s and can be simulated from a variety of approaches spanning the artistic and numerical. An objective method of synthesizing 3D stream topography based on reach scale attributes would be valuable for sizing 3D flumes in the physical and numerical realms, as initial input topography for morphodynamic models, stream restoration design, historical reconstruction, and mechanistic testing of interactions of channel geometric elements. Quite simply - simulation of synthetic channel geometry of prescribed conditions can allow systematic evaluation of the dominant relationships between river flow and geometry. A new model, the control curve method, is presented that uses hierarchically scaled parametric curves in over-lapping 2D planes to create synthetic river valleys. The approach is able to simulate 3D stream geometry from paired 2D descriptions and can allow experimental insight into form-process relationships in addition to visualizing past measurements of channel form that are limited to two dimension descriptions. Results are presented that illustrate the models ability to simulate fluvial topography representative of real world rivers as well as how channel geometric elements can be adjusted. The testing of synthetic river valleys would open up a wealth of knowledge as to why some 3D attributes of river channels are more prevalent than others as well as bridging the gap between the 2D descriptions that have dominated fluvial geomorphology the past century and modern, more complete, 3D treatments.

  1. Floodplain complexity and surface metrics: influences of scale and geomorphology

    USGS Publications Warehouse

    Scown, Murray W.; Thoms, Martin C.; DeJager, Nathan R.

    2015-01-01

    Many studies of fluvial geomorphology and landscape ecology examine a single river or landscape, thus lack generality, making it difficult to develop a general understanding of the linkages between landscape patterns and larger-scale driving variables. We examined the spatial complexity of eight floodplain surfaces in widely different geographic settings and determined how patterns measured at different scales relate to different environmental drivers. Floodplain surface complexity is defined as having highly variable surface conditions that are also highly organised in space. These two components of floodplain surface complexity were measured across multiple sampling scales from LiDAR-derived DEMs. The surface character and variability of each floodplain were measured using four surface metrics; namely, standard deviation, skewness, coefficient of variation, and standard deviation of curvature from a series of moving window analyses ranging from 50 to 1000 m in radius. The spatial organisation of each floodplain surface was measured using spatial correlograms of the four surface metrics. Surface character, variability, and spatial organisation differed among the eight floodplains; and random, fragmented, highly patchy, and simple gradient spatial patterns were exhibited, depending upon the metric and window size. Differences in surface character and variability among the floodplains became statistically stronger with increasing sampling scale (window size), as did their associations with environmental variables. Sediment yield was consistently associated with differences in surface character and variability, as were flow discharge and variability at smaller sampling scales. Floodplain width was associated with differences in the spatial organization of surface conditions at smaller sampling scales, while valley slope was weakly associated with differences in spatial organisation at larger scales. A comparison of floodplain landscape patterns measured at different scales would improve our understanding of the role that different environmental variables play at different scales and in different geomorphic settings.

  2. Classical and generalized Horton laws for peak flows in rainfall-runoff events.

    PubMed

    Gupta, Vijay K; Ayalew, Tibebu B; Mantilla, Ricardo; Krajewski, Witold F

    2015-07-01

    The discovery of the Horton laws for hydrologic variables has greatly lagged behind geomorphology, which began with Robert Horton in 1945. We define the classical and the generalized Horton laws for peak flows in rainfall-runoff events, which link self-similarity in network geomorphology with river basin hydrology. Both the Horton laws are tested in the Iowa River basin in eastern Iowa that drains an area of approximately 32 400 km(2) before it joins the Mississippi River. The US Geological Survey continuously monitors the basin through 34 stream gauging stations. We select 51 rainfall-runoff events for carrying out the tests. Our findings support the existence of the classical and the generalized Horton laws for peak flows, which may be considered as a new hydrologic discovery. Three different methods are illustrated for estimating the Horton peak-flow ratio due to small sample size issues in peak flow data. We illustrate an application of the Horton laws for diagnosing parameterizations in a physical rainfall-runoff model. The ideas and developments presented here offer exciting new directions for hydrologic research and education.

  3. Quaternary landscape evolution of tectonically active intermontane basins: the case of the Middle Aterno River Valley (Abruzzo, Central Italy)

    NASA Astrophysics Data System (ADS)

    Falcucci, Emanuela; Gori, Stefano; Della Seta, Marta; Fubelli, Giandomenico; Fredi, Paola

    2014-05-01

    The Middle Aterno River Valley is characterised by different Quaternary tectonic depressions localised along the present course of the Aterno River (Central Apennine) .This valley includes the L'Aquila and Paganica-Castelnuovo-San Demetrio tectonic basins, to the North, the Middle Aterno Valley and the Subequana tectonic basin, to the South. The aim of this contribution is to improve the knowledge about the Quaternary geomorphological and tectonic evolution of this portion of the Apennine chain. A synchronous lacustrine depositional phase is recognized in all these basins and attributed to the Early Pleistocene by Falcucci et al. (2012). At that time, this sector of the chain showed four distinct closed basins, hydrologically separated from each other and from the Sulmona depression. This depression, actually a tectonic basin too, was localized South of the Middle Aterno River Valley and it was drained by an endorheic hydrographic network. The formation of these basins was due to the activity of different fault systems, namely the Upper Aterno River Valley-Paganica system and San Pio delle Camere fault, to the North, and the Middle Aterno River Valley-Subequana Valley fault system to the South. These tectonic structures were responsible for the origin of local depocentres inside the depressions which hosted the lacustrine basins. Ongoing surveys in the uppermost sectors of the Middle Aterno River Valley revealed the presence of sub-horizontal erosional surfaces that are carved onto the carbonate bedrock and suspended several hundreds of metres over the present thalweg. Gently dipping slope breccias referred to the Early Pleistocene rest on these surfaces, thus suggesting the presence of an ancient low-gradient landscape adjusting to the local base level.. Subsequently, this ancient low relief landscape underwent a strong erosional phase during the Middle Pleistocene. This erosional phase is testified by the occurrence of valley entrenchment and of coeval fluvial deposition within the Middle Aterno River Valley. These fluvial deposits are deeply embedded into the lacustrine sequence, thus suggesting the happening of a hydrographic connection among the originally separated tectonic depressions. This was probably due to the headward erosion by streams draining the Sulmona depression that progressively captured the hydrological networks of the Subequana basin, the Middle Aterno Valley, the L'Aquila and Paganica-Castelnuovo-San Demetrio basins to the North. Stream piracy was probably helped by an increase of the regional uplift rate, occurred between the Lower and the Middle Pleistocene. To reconstruct the paleo-landscape that characterised the early stages of these basins formation we sampled the remnants of the Quaternary erosinal/depositional surfaces and reconstructed the ancient topographic surfaces using the Topo to Raster tool of ArcGIS 10.0 package. Finally we have cross-checked the geological and geomorphological data with the model of the Middle Aterno River paleo-drainage basin obtained through the GIS based method. References Falcucci E., Scardia G., Nomade S., Gori S., Giaccio B., Guillou H., Fredi P. (2012). Geomorphological and Quaternary tectonic evolution of the Subequana basin and the Middle Aterno Valley (central Apennines).16th Joint Geomorphological Meeting Morphoevolution of Tectonically Active Belts Rome, July 1-5, 2012

  4. Perfection and complexity in the lower Brazos River

    NASA Astrophysics Data System (ADS)

    Phillips, Jonathan D.

    2007-11-01

    The "perfect landscape" concept is based on the notion that any specific geomorphic system represents the combined, interacting effects of a set of generally applicable global laws and a set of geographically and historically contingent local controls. Because the joint probability of any specific combination of local and global controls is low, and the local controls are inherently idiosyncratic, the probability of existence of any given landscape is vanishingly small. A perfect landscape approach to geomorphic complexity views landscapes as circumstantial, contingent outcomes of deterministic laws operating in a specific environmental and historical context. Thus, explaining evolution of complex landscapes requires the integration of global and local approaches. Because perfection in this sense is the most important and pervasive form of complexity, the study of geomorphic complexity is not restricted to nonlinear dynamics, self-organization, or any other aspects of complexity theory. Beyond what can be achieved via complexity theory, the details of historical and geographic contexts must be addressed. One way to approach this is via synoptic analyses, where the relevant global laws are applied in specific situational contexts. A study of non-acute tributary junctions in the lower Brazos River, Texas illustrates this strategy. The application of generalizations about tributary junction angles, and of relevant theories, does not explain the unexpectedly high occurrence or the specific instances of barbed or straight junctions in the study area. At least five different causes for the development of straight or obtuse junction angles are evident in the lower Brazos. The dominant mechanism, however, is associated with river bank erosion and lateral channel migration which encroaches on upstream-oriented reaches of meandering tributaries. Because the tributaries are generally strongly incised in response to Holocene incision of the Brazos, the junctions are not readily reoriented to the expected acute angle. The findings are interpreted in the context of nonlinear divergent evolution, geographical and historical contingency, synoptic frameworks for generalizing results, and applicability of the dominant processes concept in geomorphology.

  5. Influence of topographic complexity on solar insolation estimates for the Colorado River, Grand Canyon, AZ

    USGS Publications Warehouse

    Yard, M.D.; Bennett, G.E.; Mietz, S.N.; Coggins, L.G.; Stevens, L.E.; Hueftle, S.; Blinn, D.W.

    2005-01-01

    Rugged topography along the Colorado River in Glen and Grand Canyons, exemplifies features common to canyon-bound streams and rivers of the arid southwest. Physical relief influences regulated river systems, especially those that are altered, and have become partially reliant on aquatic primary production. We measured and modeled instantaneous solar flux in a topographically complex environment to determine where differences in daily, seasonal and annual solar insolation occurred in this river system. At a system-wide scale, topographic complexity generates a spatial and temporal mosaic of varying solar insolation. This solar variation is a predictable consequence of channel orientation, geomorphology, elevation angles and viewshed. Modeled estimates for clear conditions corresponded closely with observed measurements for both instantaneous photosynthetic photon flux density (PPFD: ??mol m-2 s-1) and daily insolation levels (relative error 2.3%, CI ??0.45, S.D. 0.3, n = 29,813). Mean annual daily insolation levels system-wide were estimated to be 36 mol m-2 d -1 (17.5 S.D.), and seasonally varied on average from 13.4-57.4 mol m-2 d-1, for winter and summer, respectively. In comparison to identical areas lacking topographic effect (idealized plane), mean daily insolation levels were reduced by 22% during summer, and as much as 53% during winter. Depending on outlying topography, canyon bound regions having east-west (EW) orientations had higher seasonal variation, averaging from 8.1 to 61.4 mol m-2 d-1, for winter and summer, respectively. For EW orientations, 70% of mid-channel sites were obscured from direct incidence during part of the year; and of these sites, average diffuse light conditions persisted for 19.3% of the year (70.5 days), and extended upwards to 194 days. This predictive model has provided an initial quantitative step to estimate and determine the importance of autotrophic production for this ecosystem, as well as a broader application for other canyon systems. ?? 2004 Published by Elsevier B.V.

  6. Geomorphology and American dams: The scientific, social, and economic context

    NASA Astrophysics Data System (ADS)

    Graf, William L.

    2005-10-01

    American geomorphologic research related to dams is embedded in a complicated context of science, policy, economics, and culture. Research into the downstream effects of large dams has progressed to the point of theory-building, but generalization and theory-building are from this research because (1) it is highly focused on a few locations, (2) it concerns mostly very large dams rather than a representative sample of sizes, (3) the available record of effects is too short to inform us on long-term changes, (4) the reversibility of changes imposed by dam installation and operation is unknown, and (5) coordinated funding for the needed research is scarce. In the scientific context, present research is embedded in a history of geomorphology in government service, with indistinct boundaries between "basic and applied" research. The federal policy that most strongly influences present geomorphological investigations connected with dams is related to habitat for endangered species, because the biological aspects of ecosystems are directly dependent on the substrate formed by the sediments and landforms that are influenced by dams. The economic context for research includes large amounts of public funds for river restoration, along with substantial private investments in dams; and geomorphology is central to these expensive issues. The cultural context for research is highly contentious and dominated by advocacy procedures that include intense scrutiny of any geomorphologic research related to dams. Advocates are likely to use the products of geomorphological research to make cases for their own positions.

  7. Metabolic principles of river basin organization.

    PubMed

    Rodriguez-Iturbe, Ignacio; Caylor, Kelly K; Rinaldo, Andrea

    2011-07-19

    The metabolism of a river basin is defined as the set of processes through which the basin maintains its structure and responds to its environment. Green (or biotic) metabolism is measured via transpiration and blue (or abiotic) metabolism through runoff. A principle of equal metabolic rate per unit area throughout the basin structure is developed and tested in a river basin characterized by large heterogeneities in precipitation, vegetation, soil, and geomorphology. This principle is suggested to have profound implications for the spatial organization of river basin hydrologic dynamics, including the minimization of energy expenditure known to control the scale-invariant characteristics of river networks over several orders of magnitude. Empirically derived, remarkably constant rates of average transpiration per unit area through the basin structure lead to a power law for the probability distribution of transpiration from a randomly chosen subbasin. The average runoff per unit area, evaluated for subbasins of a wide range of topological magnitudes, is also shown to be remarkably constant independently of size. A similar result is found for the rainfall after accounting for canopy interception. Allometric scaling of metabolic rates with size, variously addressed in the biological literature and network theory under the label of Kleiber's law, is similarly derived. The empirical evidence suggests that river basin metabolic activity is linked with the spatial organization that takes place around the drainage network and therefore with the mechanisms responsible for the fractal geometry of the network, suggesting a new coevolutionary framework for biological, geomorphological, and hydrologic dynamics.

  8. Hydrodynamics, vegetation transition and geomorphology coevolution in a semi-arid floodplain wetland.

    NASA Astrophysics Data System (ADS)

    Sandi, Steven; Rodriguez, Jose F.; Saco, Patricia M.; Riccardi, Gerardo; Wen, Li; Saintilan, Neil

    2016-04-01

    The Macquarie Marshes is a complex system of marshes, swamps and lagoons interconnected by a network of streams in the semi-arid region in north western NSW, Australia. The low-gradient topography of the site leads to channel breakdown processes where the river network becomes practically non-existent. As a result, the flow extends over large areas of wetland that later re-join and reform channels exiting the system. Vegetation in semiarid wetlands are often water dependent and flood tolerant species that rely on periodical floods in order to maintain healthy conditions. The detrimental state of vegetation in the Macquarie Marshes over the past few decades has been linked to decreasing inundation frequencies. Spatial distribution of flood tolerant overstory species such as River Red Gum and Black Box has not greatly changed since early 1990's, however; the condition of the vegetation patches shows a clear deterioration evidenced by terrestrial species encroachment on the wetland understory. On the other hand, areas of flood dependent species such as Water Couch and Common Reed have undergone complete succession to terrestrial species and dryland. In order to simulate the complex dynamics of the marshes we have developed an ecogeomorphological modelling framework that combines hydrodynamic, vegetation and channel evolution modules and in this presentation we provide an update on the status of the model. The hydrodynamic simulation provides spatially distributed values of inundation extent, duration, depth and recurrence to drive a vegetation model based on species preference to hydraulic conditions. It also provides velocities and shear stresses to assess geomorphological changes. Regular updates of stream network, floodplain surface elevations and vegetation coverage provide feedbacks to the hydrodynamic model. We presents also the development and assessment of transitional rules to determine if the water conditions have been met for different vegetation associations in the patches known to have undergone succession to terrestrial species and dry-land.

  9. Geographic location, network patterns and population distribution of rural settlements in Greece

    NASA Astrophysics Data System (ADS)

    Asimakopoulos, Avraam; Mogios, Emmanuel; Xenikos, Dimitrios G.

    2016-10-01

    Our work addresses the problem of how social networks are embedded in space, by studying the spread of human population over complex geomorphological terrain. We focus on villages or small cities up to a few thousand inhabitants located in mountainous areas in Greece. This terrain presents a familiar tree-like structure of valleys and land plateaus. Cities are found more often at lower altitudes and exhibit preference on south orientation. Furthermore, the population generally avoids flat land plateaus and river beds, preferring locations slightly uphill, away from the plateau edge. Despite the location diversity regarding geomorphological parameters, we find certain quantitative norms when we examine location and population distributions relative to the (man-made) transportation network. In particular, settlements at radial distance ℓ away from road network junctions have the same mean altitude, practically independent of ℓ ranging from a few meters to 10 km. Similarly, the distribution of the settlement population at any given ℓ is the same for all ℓ. Finally, the cumulative distribution of the number of rural cities n(ℓ) is fitted to the Weibull distribution, suggesting that human decisions for creating settlements could be paralleled to mechanisms typically attributed to this particular statistical distribution.

  10. A centennial tribute to G.K. Gilbert's Hydraulic Mining Débris in the Sierra Nevada

    NASA Astrophysics Data System (ADS)

    James, L. A.; Phillips, J. D.; Lecce, S. A.

    2017-10-01

    G.K. Gilbert's (1917) classic monograph, Hydraulic-Mining Débris in the Sierra Nevada, is described and put into the context of modern geomorphic knowledge. The emphasis here is on large-scale applied fluvial geomorphology, but other key elements-e.g., coastal geomorphology-are also briefly covered. A brief synopsis outlines key elements of the monograph, followed by discussions of highly influential aspects including the integrated watershed perspective, the extreme example of anthropogenic sedimentation, computation of a quantitative, semidistributed sediment budget, and advent of sediment-wave theory. Although Gilbert did not address concepts of equilibrium and grade in much detail, the rivers of the northwestern Sierra Nevada were highly disrupted and thrown into a condition of nonequilibrium. Therefore, concepts of equilibrium and grade-for which Gilbert's early work is often cited-are discussed. Gilbert's work is put into the context of complex nonlinear dynamics in geomorphic systems and how these concepts can be used to interpret the nonequilibrium systems described by Gilbert. Broad, basin-scale studies were common in the period, but few were as quantitative and empirically rigorous or employed such a range of methodologies as PP105. None demonstrated such an extreme case of anthropogeomorphic change.

  11. Geomorphology, active tectonics, and landscape evolution in the Mid-Atlantic region: Chapter

    USGS Publications Warehouse

    Pazzaglia, Frank J.; Carter, Mark W.; Berti, Claudio; Counts, Ronald C.; Hancock, Gregory S.; Harbor, David; Harrison, Richard W.; Heller, Matthew J.; Mahan, Shannon; Malenda, Helen; McKeon, Ryan; Nelson, Michelle S.; Prince, Phillip; Rittenour, Tammy M.; Spotilla, James; Whittecar, G. Richard

    2015-01-01

    In 2014, the geomorphology community marked the 125th birthday of one of its most influential papers, “The Rivers and Valleys of Pennsylvania” by William Morris Davis. Inspired by Davis’s work, the Appalachian landscape rapidly became fertile ground for the development and testing of several grand landscape evolution paradigms, culminating with John Hack’s dynamic equilibrium in 1960. As part of the 2015 GSA Annual Meeting, the Geomorphology, Active Tectonics, and Landscape Evolution field trip offers an excellent venue for exploring Appalachian geomorphology through the lens of the Appalachian landscape, leveraging exciting research by a new generation of process-oriented geomorphologists and geologic field mapping. Important geomorphologic scholarship has recently used the Appalachian landscape as the testing ground for ideas on long- and short-term erosion, dynamic topography, glacial-isostatic adjustments, active tectonics in an intraplate setting, river incision, periglacial processes, and soil-saprolite formation. This field trip explores a geologic and geomorphic transect of the mid-Atlantic margin, starting in the Blue Ridge of Virginia and proceeding to the east across the Piedmont to the Coastal Plain. The emphasis here will not only be on the geomorphology, but also the underlying geology that establishes the template and foundation upon which surface processes have etched out the familiar Appalachian landscape. The first day focuses on new and published work that highlights Cenozoic sedimentary deposits, soils, paleosols, and geomorphic markers (terraces and knickpoints) that are being used to reconstruct a late Cenozoic history of erosion, deposition, climate change, and active tectonics. The second day is similarly devoted to new and published work documenting the fluvial geomorphic response to active tectonics in the Central Virginia seismic zone (CVSZ), site of the 2011 M 5.8 Mineral earthquake and the integrated record of Appalachian erosion preserved on the Coastal Plain. The trip concludes on Day 3, joining the Kirk Bryan Field Trip at Great Falls, Virginia/ Maryland, to explore and discuss the dramatic processes of base-level fall, fluvial incision, and knickpoint retreat.

  12. Incorporating ecogeomorphic feedbacks to better understand resiliency in streams: A review and directions forward

    NASA Astrophysics Data System (ADS)

    Atkinson, Carla L.; Allen, Daniel C.; Davis, Lisa; Nickerson, Zachary L.

    2018-03-01

    Decades of interdisciplinary research show river form and function depends on interactions between the living and nonliving world, but a dominant paradigm underlying ecogeomorphic work consists of a top-down, unidirectional approach with abiotic forces driving biotic systems. Stream form and location within the stream network does dictate the habitat and resources available for organisms and overall community structure. Yet this traditional hierarchal framework on its own is inadequate in communicating information regarding the influence of biological systems on fluvial geomorphology that lead to changes in channel morphology, sediment cycling, and system-scale functions (e.g., sediment yield, biogeochemical nutrient cycling). Substantial evidence that organisms influence fluvial geomorphology exists, specifically the ability of aquatic vegetation and lotic animals to modify flow velocities and sediment deposition and transport - thus challenging the traditional hierarchal framework. Researchers recognize the need for ecogeomorphic frameworks that conceptualize feedbacks between organisms, sediment transport, and geomorphic structure. Furthermore, vital ecosystem processes, such as biogeochemical nutrient cycling represent the conversations that are occurring between geomorphological and biological systems. Here we review and synthesize selected case studies highlighting the role organisms play in moderating geomorphic processes and likely interact with these processes to have an impact on an essential ecosystem process, biogeochemical nutrient recycling. We explore whether biophysical interactions can provide information essential to improving predictions of system-scale river functions, specifically sediment transport and biogeochemical cycling, and discuss tools used to study these interactions. We suggest that current conceptual frameworks should acknowledge that hydrologic, geomorphologic, and ecologic processes operate on different temporal scales, generating bidirectional feedback loops over space and time. Hydro- and geomorphologic processes, operating episodically during bankfull conditions, influence ecological processes (e.g., biogeochemical cycling) occurring over longer time periods during base-flow conditions. This ecological activity generates the antecedent conditions that influence the hydro- and geomorphologic processes occurring during the next high flow event, creating a bidirectional feedback. This feedback should enhance the resiliency of fluvial landforms and ecosystem processes, allowing physical and biological processes to pull and push against each other over time.

  13. Coastal and lower Elwha River, Washington, prior to dam removal--history, status, and defining characteristics: Chapter 1 in Coastal habitats of the Elwha River, Washington--biological and physical patterns and processes prior to dam removal

    USGS Publications Warehouse

    Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.; Duda, Jeffrey J.; Warrick, Jonathan A.; Magirl, Christopher S.

    2011-01-01

    Characterizing the physical and biological characteristics of the lower Elwha River, its estuary, and adjacent nearshore habitats prior to dam removal is essential to monitor changes to these areas during and following the historic dam-removal project set to begin in September 2011. Based on the size of the two hydroelectric projects and the amount of sediment that will be released, the Elwha River in Washington State will be home to the largest river restoration through dam removal attempted in the United States. Built in 1912 and 1927, respectively, the Elwha and Glines Canyon Dams have altered key physical and biological characteristics of the Elwha River. Once abundant salmon populations, consisting of all five species of Pacific salmon, are restricted to the lower 7.8 river kilometers downstream of Elwha Dam and are currently in low numbers. Dam removal will reopen access to more than 140 km of mainstem, flood plain, and tributary habitat, most of which is protected within Olympic National Park. The high capture rate of river-borne sediments by the two reservoirs has changed the geomorphology of the riverbed downstream of the dams. Mobilization and downstream transport of these accumulated reservoir sediments during and following dam removal will significantly change downstream river reaches, the estuary complex, and the nearshore environment. To introduce the more detailed studies that follow in this report, we summarize many of the key aspects of the Elwha River ecosystem including a regional and historical context for this unprecedented project.

  14. Role of neotectonics and climate in development of the Holocene geomorphology and soils of the Gangetic Plains between the Ramganga and Rapti rivers

    NASA Astrophysics Data System (ADS)

    Srivastava, Pankaj; Parkash, B.; Sehgal, J. L.; Kumar, Sudhir

    1994-12-01

    Fifteen soil-geomorphic units have been delineated from the Gangetic Plains between the Ramganga and Rapti rivers. They were identified by remote sensing and field checks. On the basis of degree of profile development, their soils are grouped into five members (QGH1 to QGH5, QGH5 being the oldest) of a soil chrono-association. Tentative ages assigned to QGH1 to QGH5 are <500, > 500, > 2500, 8000 and 13,5000 yr B.P., respectively. From the early Holocene to about 6500 yr. B.P. a cold, arid to semi-arid climate prevailed and pedogenic calcrete developed over large areas in the Gangetic Plains. Later, a warm and humid climate and improved drainage resulted in complete removal of calcrete from soil profiles in some areas or its dissolution and re-precipitation in lower horizons in other areas. Neotectonics seems to have played a significant role in the evolution of the geomorphology and soils of the area. It determined areas of active sedimentation, pedogenesis and erosion (in upland regions). It led to tilting and sagging of large blocks resulting in shifting and increase in sinuosity of the rivers. Tectonic slopes/faults determined the courses of large rivers.

  15. Channel changes in the Jarama and Tagus rivers (central Spain) over the past 500 years

    NASA Astrophysics Data System (ADS)

    Uribelarrea, D.; Pérez-González, A.; Benito, G.

    2003-10-01

    Long-term channel changes of the Tagus and the Jarama Rivers in central Spain were studied in relation to variations in hydroclimatic factors, such as rainfall and flooding, and also with respect to human activities undertaken in their valleys. Data were taken from historical (1580-1823) and topographical (1877-1988) maps, as well as aerial photographs (1945-1999). The available hydroclimatic data consists of a series of monthly rainfall totals (1859-1994) and mean river flow values recorded at gauging stations (1911-1985). In addition, a historical flood record (1550-1947) was produced from documentary sources. Some of the data was incorporated into a geographical information system (GIS) to quantify the changes in the course of the rivers. The results show there have been two distinct periods: before and after human intervention in the river system, which took place around 1950. During the earlier period (1550-1950), a correlation exists between climate, frequency and magnitude of flooding and changes in fluvial geomorphology. Between 1860 and 1892 an increase in flood frequency and magnitude occurred, which produced half of the cut-offs recorded in the study area between 1823 and 1877. The meanders length ( L), width ( W) and radius of curvature (RC) of the Tagus River have decreased since 1750. However, those of the Jarama reached their maximum values during flood periods. Both rivers have different geomorphological responses during flood events, which can explain these different trends. Floods in the Jarama not only led to the cut-offs, but also enlarged the channel size ( L, W and RC). In the second period (1956—present), flow regulation via dams and gravel mining modified the system completely and impeded the natural development of these rivers.

  16. Quaternary geology and geomorphology of the Dinosaur Provincial Park area and surrounding plains, Alberta, Canada: the identification of former glacial lobes, drainage diversions and meltwater flood tracks

    NASA Astrophysics Data System (ADS)

    Evans, David J. A.

    2000-06-01

    The Quaternary geology and geomorphology of the lower Red Deer River drainage basin, centred on the Dinosaur Provincial Park badlands, provides information on pre-Late Wisconsinan drainage patterns and the dynamics of former lobes of the Laurentide Ice Sheet in western Canada. Patterns of deglaciation, proglacial lake evolution and spillway incision are also reconstructed based upon the distribution of surface materials and glacial/glaciofluvial landforms. The Empress Group fluvial and glaciolacustrine sediments, which could be as young as 27 ka BP, infill the precursor Red Deer River and its tributaries and document the initial advance of glacier ice into southern Alberta. Glaciotectonic disturbance of older sediments and bedrock, the production of deformation tills and the construction of a megafluting complex and cupola hills record the advances of a glacier lobe centred over the study area. Stratified inter- and intra-till beds record pulses of subglacial meltwater between phases of subsole deformation. The thickening of tills towards the margin of the lobe represents a till wedge, an expected product of sediment advection by glaciers moving over deformable beds. The eastern margin of the glacier lobe is demarcated by the interlobate Suffield hummocky moraine belt which contains overprinted thrust ridges, which record diachronous oscillations of neighbouring lobes within the ice sheet. Proglacial and glaciofluvial sediments were deposited in the area in association with proglacial Lake Bassano/Patricia, which drained eastwards when the Suffield moraine was dissected by spillways. Changes in the size of glacial lake Bassano/Patricia are clearly documented by a sequence of spillway incisions which culminated in the erosion of scabland topography and the initiation of a new course for the Red Deer River, a 15 km southward diversion of the main channel. In distinct contrast to the documented incision histories of other small rivers in Alberta, One Tree Creek and Little Sandhill Creek did not start major incisions of the Quaternary sediments over buried valley positions until the late-Holocene when environmental conditions were characterized by higher precipitation.

  17. Analysis of spatial-temporal patterns of water table change as a tool for conjunctive water management in the Upper Central Plain of the Chao Phraya River Basin, Thailand

    NASA Astrophysics Data System (ADS)

    Vasconcelos, Vitor Vieira; Koontanakulvong, Sucharit; Suthidhummajit, Chokchai; Junior, Paulo Pereira Martins; Hadad, Renato Moreira

    2017-03-01

    A sustainable strategy for conjunctive water management must include information on the temporal and spatial availability of this natural resource. Because of water shortages in the dry seasons, farmers on the Upper Plain of the Chao Phraya River basin, Thailand, are increasingly using groundwater to meet their irrigation needs. To evaluate the possibilities of conjunctive water management in the area, the spatial-temporal changes in the water table of the Younger Terrace Aquifer were investigated. First, a regional geomorphological map based on field surveys, remote sensing and previous environmental studies was developed. Then, the well data were analyzed in relation to rainfall, streamflow, yield and pumpage, and the data were interpolated using geostatistical techniques. The results were analyzed via integrated zoning based on color theory as applied to multivariate visualization. The analysis results indicate areas that would be more suitable for groundwater extraction in a conjunctive management framework with regard to the natural hydrogeological processes and the effects of human interaction. The kriging results were compared with the geomorphological map, and the geomorphological areas exhibit distinct hydrogeological patterns. The western fans exhibit the best potential for the expansion of conjunctive use, whereas the borders of the northern fans exhibit the lowest potential.

  18. Upscaling river biomass using dimensional analysis and hydrogeomorphic scaling

    NASA Astrophysics Data System (ADS)

    Barnes, Elizabeth A.; Power, Mary E.; Foufoula-Georgiou, Efi; Hondzo, Miki; Dietrich, William E.

    2007-12-01

    We propose a methodology for upscaling biomass in a river using a combination of dimensional analysis and hydro-geomorphologic scaling laws. We first demonstrate the use of dimensional analysis for determining local scaling relationships between Nostoc biomass and hydrologic and geomorphic variables. We then combine these relationships with hydraulic geometry and streamflow scaling in order to upscale biomass from point to reach-averaged quantities. The methodology is demonstrated through an illustrative example using an 18 year dataset of seasonal monitoring of biomass of a stream cyanobacterium (Nostoc parmeloides) in a northern California river.

  19. Geomorphological and geotechnical issues affecting the seismic slope stability of the Duwamish River Delta, Port of Seattle, Washington

    USGS Publications Warehouse

    Kayen, Robert E.; Barnhardt, Walter A.; Palmer, Stephen P.

    1999-01-01

    Young Holocene deposits of the Duwamish River valley underlie a highly developed transportation-industrial corridor, extending from the City of Kent to the Elliott Bay-Harbor Island marine terminal facilities. The deposits have been shaped by relative sea-level rise, but also by episodic volcanism and seismicity. A geologic and geotechnical investigation of these river-mouth deposits indicates high initial liquefaction susceptibility during earthquakes, and possibly the potential for unlimited-strain disintegrative flow failure of the delta front.

  20. On the relation between fluvio-deltaic flood basin geomorphology and the wide-spread occurrence of arsenic pollution in shallow aquifers.

    PubMed

    Donselaar, Marinus E; Bhatt, Ajay G; Ghosh, Ashok K

    2017-01-01

    Pollution of groundwater with natural (geogenic) arsenic occurs on an enormous, world-wide scale, and causes wide-spread, serious health risks for an estimated more than hundred million people who depend on the use of shallow aquifers for drinking and irrigation water. A literature review of key studies on arsenic concentration levels yields that Holocene fluvial and deltaic flood basins are the hotspots of arsenic pollution, and that the dominant geomorphological setting of the arsenic-polluted areas consists of shallow-depth meandering-river deposits with sand-prone fluvial point-bar deposits surrounded by clay-filled (clay plug) abandoned meander bends (oxbow lakes). Analysis of the lithofacies distribution and related permeability contrasts of the geomorphological elements in two cored wells in a point bar and adjacent clay plug along the Ganges River, in combination with data of arsenic concentrations and organic matter content reveals that the low-permeable clay-plug deposits have a high organic matter content and the adjacent permeable point-bar sands show high but spatially very variable arsenic concentrations. On the basis of the geomorphological juxtaposition, the analysis of fluvial depositional processes and lithofacies characteristics, inherent permeability distribution and the omnipresence of the two geomorphological elements in Holocene flood basins around the world, a generic model is presented for the wide-spread arsenic occurrence. The anoxic deeper part (hypolimnion) of the oxbow lake, and the clay plugs are identified as the loci of reactive organic carbon and microbial respiration in an anoxic environment that triggers the reductive dissolution of iron oxy-hydroxides and the release of arsenic on the scale of entire fluvial floodplains and deltaic basins. The adjacent permeable point-bar sands are identified as the effective trap for the dissolved arsenic, and the internal permeability heterogeneity is the cause for aquifer compartmentalization, with large arsenic concentration differences between neighboring compartments. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Excursions in fluvial (dis)continuity

    NASA Astrophysics Data System (ADS)

    Grant, Gordon E.; O'Connor, Jim; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences. In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.

  2. Quantifying the Influence of Waves and Tides in Shaping Delta Morphologies with the Use of Numerical Modelling.

    NASA Astrophysics Data System (ADS)

    Adam, A.; Avdis, A.; Allison, P. A.

    2016-12-01

    Deltas form at river mouths with a geomorphology that is controlled by the energy level of the river and the water body into which it is flowing and sedimentation rate. Modern deltas are often areas of high productivity and thus important fisheries and diversity hotspots and also home to millions of people. Geologically ancient deltas are important hydrocarbon prospects that can include both source rocks and reservoirs. Deltas around the world show considerable variability in their geomorphology,but can be geomorphologically classified based on the dominant physical processes controlling sedimentation (wave, fluvial and tidal). There is clear value in being able to determine the relative importance of these processes on geologically ancient deltas, as this information can inform hydrocarbon exploitation strategies. The interaction of these processes, however, is complex and/or temporal and spatially variable. One approach is the use of numerical modelling. Earth system models are now used to study the Earth's climate, either to reconstruct the past and understand the forces that shaped Earth, or to predict the future. Atmospheric and oceanic models are used in conjunction to calculate the propagation and evolution of winds, waves and tides over long periods of time. Using this information to study the coastal geophysical processes can be very useful, since both the temporal variabilities and temporal ranges of the dominant forces can be accounted for.Herein we outline a research strategy and initial results that quantify the wave and tidal influences on some of the largest deltas and study their relative impact on delta morphologies. First an ocean circulation model (Fluidity) and a spectral wave model (SWAN) are used to simulate the waves and tides in modern Earth, globally. The results are then validated against measurements and the tidal- and wave- induced bed shear stresses are calculated for a wide range of deltas. The utility of numerical modelling as a classification metric is then tested by comparing the results with well known morphologies. Finally the models are applied to the Mesozoic deltas in an effort to evaluate the impact of these processes on geologically ancient deltas.

  3. Excursions in fluvial (dis)continuity

    USGS Publications Warehouse

    Grant, Gordon E.; O'Connor, James E.; Safran, Elizabeth

    2017-01-01

    Lurking below the twin concepts of connectivity and disconnectivity are their first, and in some ways, richer cousins: continuity and discontinuity. In this paper we explore how continuity and discontinuity represent fundamental and complementary perspectives in fluvial geomorphology, and how these perspectives inform and underlie our conceptions of connectivity in landscapes and rivers. We examine the historical roots of continuum and discontinuum thinking, and how much of our understanding of geomorphology rests on contrasting views of continuity and discontinuity. By continuum thinking we refer to a conception of geomorphic processes as well as geomorphic features that are expressed along continuous gradients without abrupt changes, transitions, or thresholds. Balance of forces, graded streams, and hydraulic geometry are all examples of this perspective. The continuum view has played a prominent role in diverse disciplinary fields, including ecology, paleontology, and evolutionary biology, in large part because it allows us to treat complex phenomena as orderly progressions and invoke or assume equilibrium processes that introduce order and prediction into our sciences.In contrast the discontinuous view is a distinct though complementary conceptual framework that incorporates non-uniform, non-progressive, and non-equilibrium thinking into understanding geomorphic processes and landscapes. We distinguish and discuss examples of three different ways in which discontinuous thinking can be expressed: 1) discontinuous spatial arrangements or singular events; 2) specific process domains generally associated with thresholds, either intrinsic or extrinsic; and 3) physical dynamics or changes in state, again often threshold-linked. In moving beyond the continuous perspective, a fertile set of ideas comes into focus: thresholds, non-equilibrium states, heterogeneity, catastrophe. The range of phenomena that is thereby opened up to scientific exploration similarly expands: punctuated episodes of cutting and filling, discretization of landscapes into hierarchies of structure and control, the work of extreme events. Orderly and progressive evolution towards a steady or ideal state is replaced by chaotic episodes of disturbance and recovery. Recent developments in the field of geomorphology suggest that we may be on the cusp of a new paradigm that recognizes that both continuous and discontinuous processes and mechanisms play a role in fluvial processes and landscape evolution with neither holding sway over the other and both needed to see rivers as they are.

  4. Riverbed Hydrologic Exchange Dynamics in a Large Regulated River Reach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Bao, Jie; Huang, Maoyi

    Hydrologic exchange flux (HEF) is an important hydrologic component in river corridors that includes both bidirectional (hyporheic) and unidirectional (gaining/losing) surface water – groundwater exchanges. Quantifying HEF rates in a large regulated river is difficult due to the large spatial domains, complexity of geomorphologic features and subsurface properties, and the great stage variations created by dam operations at multiple time scales. In this study, we developed a method that combined numerical modeling and field measurements for estimating HEF rates across the river bed in a 7‐km long reach of the highly regulated Columbia River. A high‐resolution computational fluid dynamics (CFD)more » modeling framework was developed and validated by field measurements and other modeling results to characterize the HEF dynamics across the river bed. We found that about 85% of the time from 2008‐2014 the river was losing water with an annual average net HEF rates across the river bed (Qz) of ‐2.3 m3 s−1 (negative indicating downwelling). June was the only month that the river gained water, with monthly averaged Qz of 0.8 m3 s−1. We also found that the daily dam operations increased the hourly gross gaining and losing rate over an average year of 8% and 2%, respectively. By investigating the HEF feedbacks at various time scales, we suggest that the dam operations could reduce the HEF at seasonal time scale by decreasing the seasonal flow variations, while also enhance the HEF at sub‐daily time scale by generating high frequency discharge variations. These changes could generate significant impacts on biogeochemical processes in the hyporheic zone.« less

  5. Spatial and temporal dynamics of suspended particle characteristics and composition in Navigation Pool 19 of the Upper Mississippi River

    USGS Publications Warehouse

    Milde, Amanda S.; Richardson, William B.; Strauss, Eric A.; Larson, James H.; Vallazza, Jon; Knights, Brent C.

    2017-01-01

    Suspended particles are an essential component of large rivers influencing channel geomorphology, biogeochemical cycling of nutrients, and food web resources. The Upper Mississippi River is a large floodplain river that exhibits pronounced spatiotemporal variation in environmental conditions and biota, providing an ideal environment for investigating dynamics of suspended particles in large river ecosystems. Here we investigated two questions: (i) How do suspended particle characteristics (e.g. size and morphology) vary temporally and spatially? and (ii) What environmental variables have the strongest association with particle characteristics? Water sampling was conducted in June, August, and September of 2013 and 2014 in Navigation Pool 19 of the Upper Mississippi River. A FlowCAM® (Flow Cytometer and Microscope) particle imaging system was used to enumerate and measure particles 53–300 μm in diameter for size and shape characteristics (e.g. volume, elongation, and symmetry). Suspended particle characteristics varied considerably over space and time and were strongly associated with discharge and concentrations of nitrate + nitrite (NO3−) and soluble reactive phosphorus. Particle characteristics in backwaters were distinct from those in other habitats for most of the study period, likely due to reduced hydrologic connectivity and higher biotic production in backwaters. During low discharge, phytoplankton and zooplankton made up relatively greater proportions of the observed particles. Concurrently during low discharge, concentrations of chlorophyll, volatile suspended solids, and total phosphorus were higher. Our results suggest that there are complex interactions among space, time, discharge, and other environmental variables (e.g. water nutrients), which drive suspended particle dynamics in large rivers.

  6. Can we follow the neotectonic activity of the Hluboká-fault by reconstructing the evolution of the Vltava river course? - Mapping of fluvial terraces around the Budejovice-basin using historic maps

    NASA Astrophysics Data System (ADS)

    Homolova, Dana; Lomax, Johanna; Prachar, Ivan; Spacek, Petr; Zamolyi, Andras; Decker, Kurt

    2010-05-01

    The Budějovice Basin in the Bohemian Massif (Czech Republic) is a fault-bounded sedimentary basin with a multiple subsidence history overlying Variscan crystalline basement. Permian, Cretaceous and Miocene sediments record repeated reactivations of faults at or close to the basin margin, which may have continued into the Quaternary. The latter is indicated by geomorphological features such as linear topographic scarps, which characterize part of the faults within and at the border of the Budějovice Basin. In a current study we assess possible Quaternary displacements along the faults delimiting the basin using geomorphological data, analyses of river planform patterns and correlations of Quaternary terraces of the Vltava River, which crosses the basin and its boundary faults. The regionally most important tectonic feature - the Hluboká fault -forms the northeastern margin of the Budějovice basin. The fault crosses the course of the river Vltava, a fact that guided our research to take a more precise look at the character and distribution of fluvial sediments in this area. Our main focus is on dating of terrace bodies around the Hluboká fault. According to the scheme used in most European regions, influences by the Pleistocene glacial cycles, the Vltava river terraces were assigned by most scientists to the 4(5) main alpine glacial periods. This dating is not straightforward as terraces are not connected to moraine bodies like in the Alps. The terraces were basically correlated by their altitude above the river and by their lithology (clastic content and grain size composition), but mostly without any numerical age determination. Our studies include several field and laboratory methods, supported by computer analyses of various types of spatial data. Data sources include: (i) modern topographic maps, (ii) geological maps, (iii) georeferenced historic map sheets of the Austrian Second Military Survey (provided by the Geoinformatics Laboratory of the University J. E. Purkyně, 2005). The georeferenced map sheets of the Second Military Survey provide a very exact base map (Timár et al., 2006) for investigating the location of possible terrace bases. Since the georeferencing accuracy is < 10 m, data from these map sheets can be integrated into the geomorphologic studies providing information about the geomorphologic situation in the study area of the years 1836-1842, i.e., with less anthropogenic impact on geomorphological features than today. These data sources are combined with data from boreholes and thus help us identifying potential terrace bodies and choosing appropriate investigation sites. In the field, morphological, sedimentological and pedological methods are used to obtain relevant data about the sediment stratigraphy. Several laboratory analyses were carried out to gain information on the age of the terraces. We use OSL-dating in combination with the analysis of heavy minerals and clay minerals, as well as grain size analysis. After gathering information about the absolute ages of the terrace bodies upstream and downstream the Hluboká fault, we may be able to declare if the building of terrace staircases was influenced by tectonic activity of the fault or not. Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p. ISBN 963-7374-33-7

  7. A multi-disciplinary approach to study coastal complex landslides: the case of Torino di Sangro (Central Italy)

    NASA Astrophysics Data System (ADS)

    Sciarra, Marco; Carabba, Luigi; Urbano, Tullio; Calista, Monia

    2016-04-01

    This work illustrates the studies carried out on a complex landslide phenomenon between the Sangro and Osento River's mouths, near Torino di Sangro village in Southern Abruzzo Region (Italy). Historical activity of this landslide is well-documented since 1916; the activation/reactivation of the movements caused several interruptions of a national railway and the damage of few houses. The Torino di Sangro case study can be regarded as representative of many large landslides distributed along the central Adriatic coast (e.g., Ancona, Ortona, Vasto and Petacciato Landslides) that affect densely populated urban areas with a large amount of man-made infrastructure. The main controlling factors of these large and deep-seated landslides are still debated. From the geological and geomorphological viewpoint, the central Adriatic coast is characterized by a low-relief landscape (mesa) carved on clay-sandstone-conglomerate bedrock belonging to the Upper Pliocene - Lower Pleistocene marine deposits and locally to the Middle Pleistocene marine to continental transitional deposits. This high coast is widely affected by slope instability (rock falls, rotational, complex and shallow landslides) on both active and inactive sea cliffs, the first being mainly affected by wave-cut erosion and the latter influenced by heavy rainfall and changes of pore pressure. The main landslide has the typical characteristics of a deep-seated gravitation deformation. The landslide study was based on a multidisciplinary approach including: 1) definition and GIS mapping of geology and geomorphology factors (slope, aspect, topographic curvature, bedrock lithology, near-surface deposits, deposit thickness and land use), by means of DTM processing, multi-temporal analysis, and large-scale geomorphological field survey; 2) monitoring system in the landslide; 3) application of empiric models for the analysis of unstable sandstone-conglomerate escarpments; 4) slope stability analysis performed using a stress-strain numerical modeling solved by a Finite Difference Method (FLAC 2D). This study suggests that rock falls and shallow landslide are hazardous phenomenal that involve the near-surface cover of a bigger and more complex landslide. The distinction between secondary processes, which appear to be the most hazardous in the short-term, and deep-seated one, demonstrated that accurate multi-approach analysis provide important information that can be supportive for local administration and decision makers, and for the comprehension of the factors controlling large and deep-seated landslide affecting the Adriatic coastal slopes.

  8. Holocene river history of the Danube: human-environment interactions on its islands in Hungary

    NASA Astrophysics Data System (ADS)

    Viczián, István; Balogh, János; Kis, Éva; Szeberényi, József

    2016-04-01

    A change in the frequency and magnitude of floods is the main response of river systems to climatic change. Natural floods are highly sensitive to even modest changes of climate. The discharge and the characteristics of floods basically determine the floodplain evolution and the feasibility of human land use and inhabitation on the islands and floodplains. The study revealed that those small islands of large rivers which have the surface rising only some meters above the river are particularly suitable research objects of Holocene climate variability as they are exposed to floods, react sensitively to environmental changes and their evolution may be paralleled with human history. The research area covers the islands of the Danube along the river between Komárom and Paks in Hungary, which is about 250 km, includes more than 50 smaller or formerly existing islands and two extensive islands: the Szentendre Island and Csepel Island. Data gathered from 570 archaeological sites of those islands from Neolithic to Modern Ages were analysed and interpreted in accordance with climate history and floodplain evolution. Nevertheless, the study is not only about river and its environmental history but it demonstrates the role of river and climatic variability in the history of mankind. The environment of the floodplain, the river hydrology, the sedimentation, the formation of islands and the incision and aggradation of surrounding riverbeds, the frequency of devastating floods have significantly changed through the historical time periods, which is reflected in the number and locations of archaeological sites on the islands. Their occupation history reflects the changes in discharge, climate, geomorphology, floods and human impacts and indicates historical periods with low or high probability of inundation. The most favourable periods for an island's occupation concerning the flood risk of its surfaces - and consequently of the banks along the river - are the first parts of a stable, warmer and drier period after a humid period, which is usually linked with revolutionary development of cultures and societies. The Middle Neolithic, the Late Copper Age, the Early and Late Bronze Ages, the Late Iron Age and the first part of the Roman Period, the High Middle Age are among the favourable periods, while the periods in between are characterised by frequent floods, higher water level and unfavourable environmental conditions. Archaeological sites known on small islands are found exactly from the above mentioned periods. The aim of the study was to present the Holocene river history of the Danube, improve a climatic-geomorphological model and reveal the variability of fluvial dynamics and geomorphological processes primarily affected by climate changes.

  9. studying coastal geomorphological changes on beaches located near of the Rio Grande de Manatí Watershed, Puerto Rico (1977-2015): and its management implications.

    NASA Astrophysics Data System (ADS)

    Barreto, M.; Cabrera, N.; Torres, J.; Caraballo Álvarez, I. O.

    2016-02-01

    A study of beach geomorphology changes was conducted in beach systems located near to the river mouth of the Rio Grande de Manatí in the north-central coast of Puerto Rico Island (1977-2015). The main objective of this study was identify the role of river and land cover and land use changes (LCLUC) over changes in beach geomorphology. An integration of field work, remote sensing (historical aerial photos and multispectral images), Global Positioning Systems (GPS), Geographic Information Systems (GIS) and evaluation of published databanks (USGS water data, LCLUC) were used to generate and analyze data in this study. Results showed three different beach geomorphic systems along the study site. These are: 1) a wider terrigenous beach located westward to the river mouth; 2) a narrow mixed terrigenous and biogenic beach on the eastward site of the river mouth; and 3) a wide biogenic beach on the eastern site of the coastline. Historical shoreline changes showed that major loss of sand was observed along all beaches from 1995 to 1997 period (10 to 50 meters). Shift from accretion to erosion and vice versa were found in beach segments from 1971 to 1977, 1977-1985, 1985-1991, 1997-2003 and 2003-2010 periods, where major shoreline changes were identified mainly in the biogenic beach. LCLUC distribution showed a major reduction in agriculture land use (from 58% to 6%) from 1977 to 2010. This land was converted mainly to forest and rangeland during this period. Major flood events occurred in the study site from 1992 to 1995 may associated with major loss of sand on beaches in the study area. Detail association between shoreline changes and LCLUC/hydrological process will be defined during the second year of the project. This assessment is important to generate information to develop coastal management plans that helps community and ecosystems planners to be proactive during risk events in the area.

  10. Hydrology and Geomorphology of Tallgrass Prairie Intermittent Headwater Streams

    NASA Astrophysics Data System (ADS)

    Daniels, M. D.; Grudzinski, B.

    2011-12-01

    The arid to semi-arid Great Plains region of the United States covers more than 1 million km2, yet virtually nothing is known about the geomorphology of its intermittent headwater streams. These streams and the perennial rivers they feed support a unique and increasingly endangered assemblage of endemic fish species. While human impacts in the region are not at first glace significant, the reality is that the Great Plains are an intensively managed landscape, with pervasive cattle grazing, channelization, and groundwater over-pumping affecting these systems. These stresses will only increase with potential climate and related land use changes. Few natural remnants of native grassland remain today, limiting opportunities to study the natural dynamics of these systems in contrast to the anthropogenically modified systems. This paper presents a review of the existing geomorphological and hydrological knowledge of Great Plains headwater streams and presents the initial analysis of an 18 year intermittent headwater stream record from the tallgrass Konza Prairie LTER, Kansas. Results suggest that fire frequency and grazing and the resultant riparian vegetation composition strongly influence stream flow dynamics as well as stream geomorphology.

  11. What if we took a global look?

    NASA Astrophysics Data System (ADS)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    Freshwater resources are facing unprecedented pressures. In hope to cope with this, Environmental Hydrology, Freshwater Biology, and Fluvial Geomorphology have defined conceptual approaches such as "environmental flow requirements", "instream flow requirements" or "normative flow regime" to define appropriate flow regime to maintain a given ecological status. These advances in the fields of freshwater resources management are asking scientists to create bridges across disciplines. Holistic and multi-scales approaches are becoming more and more common in water sciences research. The intrinsic nature of river systems demands these approaches to account for the upstream-downstream link of watersheds. Before recent technological developments, large scale analyses were cumbersome and, often, the necessary data was unavailable. However, new technologies, both for information collection and computing capacity, enable a high resolution look at the global scale. For rivers around the world, this new outlook is facilitated by the hydrologically relevant geo-spatial database HydroSHEDS. This database now offers more than 24 millions of kilometers of rivers, some never mapped before, at the click of a fingertip. Large and, even, global scale assessments can now be used to compare rivers around the world. A river classification framework was developed using HydroSHEDS called GloRiC (Global River Classification). This framework advocates for holistic approach to river systems by using sub-classifications drawn from six disciplines related to river sciences: Hydrology, Physiography and climate, Geomorphology, Chemistry, Biology and Human impact. Each of these disciplines brings complementary information on the rivers that is relevant at different scales. A first version of a global river reach classification was produced at the 500m resolution. Variables used in the classification have influence on processes involved at different scales (ex. topography index vs. pH). However, all variables are computed at the same high spatial resolution. This way, we can have a global look at local phenomenon.

  12. Impacts of river management on low energy rivers in Normandy (France) over 3000 years, first results of a geomorphological and geoarchaeological approach.

    NASA Astrophysics Data System (ADS)

    Beauchamp, Axel; Lespez, Laurent; Le Gaillard, Ludovic; Bernard, Vincent; Delahaye, Daniel

    2014-05-01

    The European Water Framework Directive (WFD), issued in 2000 has the objective of improving the quality of water and aquatic environments. In France, the application of this law requires the dismantling and razing of structures built across waterways (mill valve, mill dam…) which no longer have any use today. The first archaeological results in Normandy show evidence of river management since the Iron Age (800 BC.). They also show that during the last 4000 years, floodplains have been affected by a significant vertical aggradation resulting from soil erosion in the catchment related to the development of agro- pastoral activities. However, these results say nothing about consequences of the proliferation of mill dams for hydrosedimentary flow for low energy rivers and their role in the development of sedimentary stocks in valley beds. The aim of this work is to measure the impact of the implementation of major hydraulic structures (mill inlet, mill dam, millrace, mill valve, drainage ditches...) on the rivers functioning in the past millennia to (1) propose a long term modeling Human/Ecosystem interaction for Lower-Normandy river systems and (2) to anticipate the geomorphological consequences related to dam-removal policy. This research is based on study sites located in the valley bed, most of them have been investigated by archaeologists and have revealed old hydraulic structures. Today, five sites have been identified in varied archaeological and hydromorphological contexts. Trenching was carried out upstream and downstream of hydraulic structures to uncover the Holocene sedimentary infilling of the valley floor. First results from the antique and medieval sites Montaigu-la-Brisette (Manche, FRANCE ) and Colomby (Manche, FRANCE ) show the influence of river management on the evolution of sedimentation in valley bed.

  13. Quantifying hyporheic exchange dynamics in a highly regulated large river reach

    NASA Astrophysics Data System (ADS)

    Zhou, T.; Bao, J.; Huang, M.; Hou, Z.; Arntzen, E.; Mackley, R.; Harding, S.; Crump, A.; Xu, Y.; Song, X.; Chen, X.; Stegen, J.; Hammond, G. E.; Thorne, P. D.; Zachara, J. M.

    2016-12-01

    Hyporheic exchange is an important mechanism taking place in riverbanks and riverbed sediments, where the river water and shallow groundwater mix and interact with each other. The direction and magnitude of hyporheic flux that penetrates the river bed and residence time of river water in the hyporheic zone are critical for biogeochemical processes such as carbon and nitrogen cycling, and biodegradation of organic contaminants. Hyporheic flux can be quantified using many direct and indirect measurements as well as analytical and numerical modeling tools. However, in a relatively large river, these methods can be limited by the accessibility, spatial constraints, complexity of geomorphologic features and subsurface properties, and computational power. In rivers regulated by hydroelectric dams, quantifying hyporheic fluxes becomes more challenging due to frequent hydropeaking events created by dam operations. In this study, we developed and validated methods that combined field measurements and numerical modeling for estimating hyporheic fluxes across the river bed in a 7-km long reach of the highly regulated Columbia River. The reach has a minimum width of about 800 meters and variations in river stage within a day could be up to two meters due to the upstream dam operations. In shallow water along the shoreline, vertical thermal profiles measured by self-recording thermistors were combined with time series of hydraulic gradient derived from river stage and water level at in-land wells to estimate the hyporheic flux rate. For the deep section, a high resolution computational fluid dynamics (CFD) modeling framework was developed to characterize the spatial distribution of flux rates at the river bed and the residence time of hyporheic flow at different river flow conditions. Our modeling results show that the rates of hyporheic exchange and residence time are controlled by (1) hydrostatic pressure induced by river stage fluctuations, and (2) hydrodynamic drivers associated with flow velocity variations, which also to certain extent dependent on flow conditions.

  14. A New Approach to Quantify Shallow Water Hydrologic Exchanges in a Large Regulated River Reach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Tian; Huang, Maoyi; Bao, Jie

    Hyporheic exchange is a crucial component in the water cycle. The strength of the exchange directly affects the biogeochemical and ecological processes occurred in the hyporheic zone from micro to reach scale. Hyporheic fluxes can be quantified using many direct and indirect measurements as well as analytical and numerical modeling tools. However, in a relatively large river, these methods are limited by accessibility, the difficulty of performing representative sampling, and complexity of geomorphologic features and subsurface properties. In rivers regulated by hydroelectric dams, quantifying hyporheic fluxes becomes more challenging due to frequent hydropeaking events, featured by hourly to daily variationsmore » in flow and river stages created by dam operations(Hancock 2002). In this study, we developed and validated methods that based on field measurements to estimate shallow water hyporheic fluxes across the river bed at five locations along the shoreline of the Columbia River. Vertical thermal profiles measured by self-recording thermistors were combined with time series of hydraulic gradients derived from river stage and water level at in-land wells to estimate the hyporheic flux rate. The results suggested that the hyporheic exchange rate had high spatial and temporal heterogeneities over the riverbed, with predicted flux rate varies from +1×10 -6 m s-1 to -1.5×10 -6 m s -1 under various flow conditions at the some locations, and with a magnitude of fluxes 6-9 times higher in the primary channel than that in the secondary channel. Furthermore, the variations on shallow water hyporheic flow dynamics may further lead to different biogeochemical and ecological consequences at different river segments.« less

  15. A New Approach to Quantify Shallow Water Hydrologic Exchanges in a Large Regulated River Reach

    DOE PAGES

    Zhou, Tian; Huang, Maoyi; Bao, Jie; ...

    2017-09-15

    Hyporheic exchange is a crucial component in the water cycle. The strength of the exchange directly affects the biogeochemical and ecological processes occurred in the hyporheic zone from micro to reach scale. Hyporheic fluxes can be quantified using many direct and indirect measurements as well as analytical and numerical modeling tools. However, in a relatively large river, these methods are limited by accessibility, the difficulty of performing representative sampling, and complexity of geomorphologic features and subsurface properties. In rivers regulated by hydroelectric dams, quantifying hyporheic fluxes becomes more challenging due to frequent hydropeaking events, featured by hourly to daily variationsmore » in flow and river stages created by dam operations(Hancock 2002). In this study, we developed and validated methods that based on field measurements to estimate shallow water hyporheic fluxes across the river bed at five locations along the shoreline of the Columbia River. Vertical thermal profiles measured by self-recording thermistors were combined with time series of hydraulic gradients derived from river stage and water level at in-land wells to estimate the hyporheic flux rate. The results suggested that the hyporheic exchange rate had high spatial and temporal heterogeneities over the riverbed, with predicted flux rate varies from +1×10 -6 m s-1 to -1.5×10 -6 m s -1 under various flow conditions at the some locations, and with a magnitude of fluxes 6-9 times higher in the primary channel than that in the secondary channel. Furthermore, the variations on shallow water hyporheic flow dynamics may further lead to different biogeochemical and ecological consequences at different river segments.« less

  16. Variance-based Sensitivity Analysis of Large-scale Hydrological Model to Prepare an Ensemble-based SWOT-like Data Assimilation Experiments

    NASA Astrophysics Data System (ADS)

    Emery, C. M.; Biancamaria, S.; Boone, A. A.; Ricci, S. M.; Garambois, P. A.; Decharme, B.; Rochoux, M. C.

    2015-12-01

    Land Surface Models (LSM) coupled with River Routing schemes (RRM), are used in Global Climate Models (GCM) to simulate the continental part of the water cycle. They are key component of GCM as they provide boundary conditions to atmospheric and oceanic models. However, at global scale, errors arise mainly from simplified physics, atmospheric forcing, and input parameters. More particularly, those used in RRM, such as river width, depth and friction coefficients, are difficult to calibrate and are mostly derived from geomorphologic relationships, which may not always be realistic. In situ measurements are then used to calibrate these relationships and validate the model, but global in situ data are very sparse. Additionally, due to the lack of existing global river geomorphology database and accurate forcing, models are run at coarse resolution. This is typically the case of the ISBA-TRIP model used in this study.A complementary alternative to in-situ data are satellite observations. In this regard, the Surface Water and Ocean Topography (SWOT) satellite mission, jointly developed by NASA/CNES/CSA/UKSA and scheduled for launch around 2020, should be very valuable to calibrate RRM parameters. It will provide maps of water surface elevation for rivers wider than 100 meters over continental surfaces in between 78°S and 78°N and also direct observation of river geomorphological parameters such as width ans slope.Yet, before assimilating such kind of data, it is needed to analyze RRM temporal sensitivity to time-constant parameters. This study presents such analysis over large river basins for the TRIP RRM. Model output uncertainty, represented by unconditional variance, is decomposed into ordered contribution from each parameter. Doing a time-dependent analysis allows then to identify to which parameters modeled water level and discharge are the most sensitive along a hydrological year. The results show that local parameters directly impact water levels, while discharge is more affected by parameters from the whole upstream drainage area. Understanding model output variance behavior will have a direct impact on the design and performance of the ensemble-based data assimilation platform, for which uncertainties are also modeled by variances. It will help to select more objectively RRM parameters to correct.

  17. The use of historical maps for reconstructing landforms before river damming. The case of the Swiss Rhone River

    NASA Astrophysics Data System (ADS)

    Reynard, E.; Laigre, L.; Baud, D.

    2012-04-01

    The Swiss Rhone River was systematically embanked during the period 1864-1893. The Swiss Rhone River valley is a glacial valley filled by glaciolacustrine, fluvioglacial and fluvial sediments. Torrential tributaries contribute to a large extent to the sedimentation in the valley and have built large alluvial fans in the main valley. The period before the river damming corresponds to the Little Ice Age, and it is supposed that the torrential behaviour of the river and its tributaries was very active during that period. In parallel to a large hydraulic project (Third Rhone River Correction), aiming at enlarging the river for security and environmental reasons, this project aims at reconstructing the palaeogeomorphology of the river floodplain before and also during the 30-year long embankment project developed during the last decades of the 19th century. The objective is to better know the geomorphological behaviour of the river, and also to localize palaolandforms (meanders, braided patterns, sandstone dunes, wetlands, etc.), present in the floodplain in the first part of the 19th century and that have now totally disappeared. The project is carried out in close collaboration with the Cantonal Archives of Valais and with a group of historians working on the relations between the river and the communities. It should contribute to a better knowledge of the Swiss Rhone River history (Reynard et al., 2009). Both published official maps (Dufour maps, Siegfried maps) and unpublished maps and plans are systematically collected, digitized, and organised in a database managed by a Geographical Information System. Other data are collected (place names, geomorphological, hydrological and hydraulic data, information about land-use and vegetation, paintings and photographs, etc.) and localised. A high-resolution digital terrain model and areal photographs are also used and allow us to map palaeolandforms (meanders, filled oxbow lakes, former channels, etc.). In a second step maps of the palaeogeomorphology of the river floodplain are produced and analysed in collaboration with the historian colleagues. Reference Reynard E., Evéquoz-Dayen M., Dubuis P. (eds) (2009). Le Rhône : dynamique, histoire et société. Sion, Cahiers de Vallesia 21, 238 p.

  18. Abiotic controls of emergent macrophyte density in a bedrock channel - The Cahaba River, AL (USA)

    NASA Astrophysics Data System (ADS)

    Vaughn, Ryan S.; Davis, Lisa

    2015-10-01

    Research examining bedrock channels is growing. Despite this, biotic-abiotic interactions remain a topic mostly addressed in alluvial systems. This research identified hydrogeomorphic factors operating at the patch-scale (100-102 m) in bedrock shoals of the Cahaba River (AL) that help determine the distribution of the emergent aquatic macrophyte, Justicia americana. Macrophyte patch density (number of stems/m2) and percent bedrock void surface area (rock surface area/m2 occupied by joints, fractures, and potholes) were measured (n = 24 within two bedrock shoals) using stem counts and underwater photography, respectively. One-dimensional hydrologic modeling (HEC-RAS 4.1.0) was completed for a section within a shoal to examine velocity and channel depth as controlling variables for macrophyte patch density. Results from binary logistic regression analysis identified depth and velocity as good predictors of the presence or absence of Justicia americana within shoal structures (depth p = 0.001, velocity p = 0.007), which is a similar finding to previous research conducted in alluvial systems. Correlation analysis between bedrock surface void area and stem density demonstrated a statistically significant positive correlation (r = 0.665, p = 0.01), elucidating a link between abiotic-biotic processes that may well be unique to bedrock channels. These results suggest that the amount of void space present in bedrock surfaces, in addition to localized depth and velocity, helps control macrophyte patch density in bedrock shoal complexes. The utility of geomorphology in explaining patch-scale habitat heterogeneity in this study highlights geomorphology's potential to help understand macrophyte habitat heterogeneity at the reach scale, while also demonstrating its promise for mapping and understanding habitat heterogeneity at the system scale.

  19. HYDROSCAPE: A SCAlable and ParallelizablE Rainfall Runoff Model for Hydrological Applications

    NASA Astrophysics Data System (ADS)

    Piccolroaz, S.; Di Lazzaro, M.; Zarlenga, A.; Majone, B.; Bellin, A.; Fiori, A.

    2015-12-01

    In this work we present HYDROSCAPE, an innovative streamflow routing method based on the travel time approach, and modeled through a fine-scale geomorphological description of hydrological flow paths. The model is designed aimed at being easily coupled with weather forecast or climate models providing the hydrological forcing, and at the same time preserving the geomorphological dispersion of the river network, which is kept unchanged independently on the grid size of rainfall input. This makes HYDROSCAPE particularly suitable for multi-scale applications, ranging from medium size catchments up to the continental scale, and to investigate the effects of extreme rainfall events that require an accurate description of basin response timing. Key feature of the model is its computational efficiency, which allows performing a large number of simulations for sensitivity/uncertainty analyses in a Monte Carlo framework. Further, the model is highly parsimonious, involving the calibration of only three parameters: one defining the residence time of hillslope response, one for channel velocity, and a multiplicative factor accounting for uncertainties in the identification of the potential maximum soil moisture retention in the SCS-CN method. HYDROSCAPE is designed with a simple and flexible modular structure, which makes it particularly prone to massive parallelization, customization according to the specific user needs and preferences (e.g., rainfall-runoff model), and continuous development and improvement. Finally, the possibility to specify the desired computational time step and evaluate streamflow at any location in the domain, makes HYDROSCAPE an attractive tool for many hydrological applications, and a valuable alternative to more complex and highly parametrized large scale hydrological models. Together with model development and features, we present an application to the Upper Tiber River basin (Italy), providing a practical example of model performance and characteristics.

  20. Fusion of Remote Sensing Methods, UAV Photogrammetry and LiDAR Scanning products for monitoring fluvial dynamics

    NASA Astrophysics Data System (ADS)

    Lendzioch, Theodora; Langhammer, Jakub; Hartvich, Filip

    2015-04-01

    Fusion of remote sensing data is a common and rapidly developing discipline, which combines data from multiple sources with different spatial and spectral resolution, from satellite sensors, aircraft and ground platforms. Fusion data contains more detailed information than each of the source and enhances the interpretation performance and accuracy of the source data and produces a high-quality visualisation of the final data. Especially, in fluvial geomorphology it is essential to get valuable images in sub-meter resolution to obtain high quality 2D and 3D information for a detailed identification, extraction and description of channel features of different river regimes and to perform a rapid mapping of changes in river topography. In order to design, test and evaluate a new approach for detection of river morphology, we combine different research techniques from remote sensing products to drone-based photogrammetry and LiDAR products (aerial LiDAR Scanner and TLS). Topographic information (e.g. changes in river channel morphology, surface roughness, evaluation of floodplain inundation, mapping gravel bars and slope characteristics) will be extracted either from one single layer or from combined layers in accordance to detect fluvial topographic changes before and after flood events. Besides statistical approaches for predictive geomorphological mapping and the determination of errors and uncertainties of the data, we will also provide 3D modelling of small fluvial features.

  1. Depositional and erosional architectures of gravelly braid bar formed by a flood in the Abe River, central Japan, inferred from a three-dimensional ground-penetrating radar analysis

    NASA Astrophysics Data System (ADS)

    Okazaki, Hiroko; Kwak, Youngjoo; Tamura, Toru

    2015-07-01

    We conducted a ground-penetrating radar (GPR) survey of gravelly braid bars in the Abe River, central Japan, to clarify the three-dimensional (3D) variations in their depositional facies under various geomorphologic conditions. In September 2011, a ten-year return-period flood in the study area reworked and deposited braid bars. After the flood, we surveyed three bars with different geomorphologies using a GPR system with a 250-MHz antenna and identified seven fundamental radar depositional facies: Inclined reflections (facies Ia and Ib), horizontal to subhorizontal reflections (facies IIa and IIb), discontinuous reflections (facies IIIa and IIIb), and facies assemblage with a large-scale channel-shaped lower boundary (facies IV). Combinations of these facies indicate bar formation processes: channel filling, lateral aggradation, and lateral and downstream accretion. In the Abe River, aerial photographs and airborne laser scanning data were obtained before and after the flood. The observed changes of the surface topography are consistent with the subsurface results seen in the GPR sections. This study demonstrated that the erosional and depositional architecture observed among bars with different channel styles was related to river width and represented depositional processes for high-sediment discharge. The quantitative characterizations of the sedimentary architecture will be useful for interpreting gravelly fluvial deposits in the rock record.

  2. Geographic Information System and Geoportal «River basins of the European Russia»

    NASA Astrophysics Data System (ADS)

    Yermolaev, O. P.; Mukharamova, S. S.; Maltsev, K. A.; Ivanov, M. A.; Ermolaeva, P. O.; Gayazov, A. I.; Mozzherin, V. V.; Kharchenko, S. V.; Marinina, O. A.; Lisetskii, F. N.

    2018-01-01

    Geographic Information System (GIS) and Geoportal with open access «River basins of the European Russia» were implemented. GIS and Geoportal are based on the map of basins of small rivers of the European Russia with information about natural and anthropogenic characteristics, namely geomorphometry of basins relief; climatic parameters, representing averages, variation, seasonal variation, extreme values of temperature and precipitation; land cover types; soil characteristics; type and subtype of landscape; population density. The GIS includes results of spatial analysis and modelling, in particular, assessment of anthropogenic impact on river basins; evaluation of water runoff and sediment runoff; climatic, geomorphological and landscape zoning for the European part of Russia.

  3. Geomorphology and flood-plain vegetation of the Sprague and lower Sycan Rivers, Klamath Basin, Oregon

    USGS Publications Warehouse

    O'Connor, James E.; McDowell, Patricia F.; Lind, Pollyanna; Rasmussen, Christine G.; Keith, Mackenzie K.

    2015-01-01

    Despite these effects of human disturbances, many of the fundamental physical processes forming the Sprague River fluvial systems over the last several thousand years still function. In particular, flows are unregulated, sediment transport processes are active, and overbank flooding allows for floodplain deposition and erosion. Therefore, restoration of many of the native physical conditions and processes is possible without substantial physical manipulation of current conditions for much of the Sprague River study area. An exception is the South Fork Sprague River, where historical trends are not likely to reverse until it attains a more natural channel and flood-plain geometry and the channel aggrades to the extent that overbank flow becomes common.

  4. A geomorphology-based ANFIS model for multi-station modeling of rainfall-runoff process

    NASA Astrophysics Data System (ADS)

    Nourani, Vahid; Komasi, Mehdi

    2013-05-01

    This paper demonstrates the potential use of Artificial Intelligence (AI) techniques for predicting daily runoff at multiple gauging stations. Uncertainty and complexity of the rainfall-runoff process due to its variability in space and time in one hand and lack of historical data on the other hand, cause difficulties in the spatiotemporal modeling of the process. In this paper, an Integrated Geomorphological Adaptive Neuro-Fuzzy Inference System (IGANFIS) model conjugated with C-means clustering algorithm was used for rainfall-runoff modeling at multiple stations of the Eel River watershed, California. The proposed model could be used for predicting runoff in the stations with lack of data or any sub-basin within the watershed because of employing the spatial and temporal variables of the sub-basins as the model inputs. This ability of the integrated model for spatiotemporal modeling of the process was examined through the cross validation technique for a station. In this way, different ANFIS structures were trained using Sugeno algorithm in order to estimate daily discharge values at different stations. In order to improve the model efficiency, the input data were then classified into some clusters by the means of fuzzy C-means (FCMs) method. The goodness-of-fit measures support the gainful use of the IGANFIS and FCM methods in spatiotemporal modeling of hydrological processes.

  5. Investigation and monitoring in support of the structural mitigation of large slow moving landslides: an example from Ca' Lita (Northern Apennines, Reggio Emilia, Italy)

    NASA Astrophysics Data System (ADS)

    Corsini, A.; Borgatti, L.; Caputo, G.; de Simone, N.; Sartini, G.; Truffelli, G.

    2006-01-01

    The Ca' Lita landslide is a large and deep-seated mass movement located in the Secchia River Valley, in the sector of the Northern Apennines falling into Reggio Emilia Province, about 70 km west of Bologna (Northern Italy). It consists of a composite landslide system that affects Cretaceous to Eocene flysch rock masses and chaotic complexes. Many of the components making up the landslide system have resumed activity between 2002 and 2004, and are now threatening some hamlets and an important road serving the upper watershed area of River Secchia, where many villages and key industrial facilities are located. This paper presents the analysis and the quantification of displacement rates and depths of the mass movements, based on geological and geomorphological surveys, differential DEM analysis, interpretation of underground stratigraphic and monitoring data collected during the investigation campaign that has been undertaken in order to design cost-effective mitigation structures, and that has been conducted with the joint collaboration between public offices and research institutes.

  6. Cultural Resources and Geomorphological Reconnaissance of the McClellan-Kerr, Arkansas River Navigation System. Pools 1 through 9

    DTIC Science & Technology

    1989-01-01

    either the Petit Jean or Maumelle reaches as it flows out of the Ouachita Mountains into the unconsolidated sediments of the Mississippi River valley...small breaks, each depositing its load of coarser sediments in its own way. This results in sharply contrasting lenses of very small dimensions and...reflected in the channel size which decreases with increasing amounts of sediment deposited in the channel. Additionally, the amount of sediment deposited

  7. Preliminary Cultural Resource Survey and Geomorphological Assessment of Selected Areas in Navigation Pool 16, Mississippi River.

    DTIC Science & Technology

    1982-06-01

    Dated Sites in Pool 16 .............. 28 OR 2. Stream Gauge Data for Historical - Floods, Illinois and Mississippi Canal Lock 32 (U. S. Corps of...the ridge was 30 TABLE 2 STREAM GAUGE DATA FOR HISTORICAL FLOODS, ILLINOIS AND MISSISSIPPI CANAL LOCK 32 (U. S. CORPS OF ENGINEERS 1981) Rank Order of...result of back- water activity rather than active throughflow similar to that experienced in the 1890s. Judging from river gauge records dating from

  8. Advances in river ice hydrology 1999-2003

    NASA Astrophysics Data System (ADS)

    Morse, Brian; Hicks, Faye

    2005-01-01

    In the period 1999 to 2003, river ice has continued to have important socio-economic impacts in Canada and other Nordic countries. Concurrently, there have been many important advances in all areas of Canadian research into river ice engineering and hydrology. For example: (1) River ice processes were highlighted in two special journal issues (Canadian Journal of Civil Engineering in 2003 and Hydrological Processes in 2002) and at five conferences (Canadian Committee on River Ice Processes and the Environment in 1999, 2001 and 2003, and International Association of Hydraulic Research in 2000 and 2002). (2) A number of workers have clearly advanced our understanding of river ice processes by bringing together disparate information in comprehensive review articles. (3) There have been significant advances in river ice modelling. For example, both one-dimensional (e.g. RIVICE, RIVJAM, ICEJAM, HEC-RAS, etc.) and two-dimensional (2-D; www.river2d.ca) public-domain ice-jam models are now available. Work is ongoing to improve RIVER2D, and a commercial 2-D ice-process model is being developed. (4) The 1999-2003 period is notable for the number of distinctly hydrological and ecological studies. On the quantitative side, many are making efforts to determine streamflow during the winter period. On the ecological side, some new publications have addressed the link to water quality (temperature, dissolved oxygen, nutrients and pollutants), and others have dealt with sediment transport and geomorphology (particularly as it relates to break-up), stream ecology (plants, food cycle, etc.) and fish habitat.There is the growing recognition, that these types of study require collaborative efforts. In our view, the main areas requiring further work are: (1) to interface geomorphological and habitat models with quantitative river ice hydrodynamic models; (2) to develop a manager's toolbox (database management, remote sensing, forecasting, intervention methodologies, etc.) to enable agencies to intervene better at the time of ice-jam-induced floods; and (3) finalize ice-jam prevention methods on the St Lawrence River to safeguard its $2 billion commercial navigation industry. Copyright

  9. Summary of oceanographic and water-quality measurements in Rachel Carson National Wildlife Refuge, Wells, Maine, in 2013

    USGS Publications Warehouse

    Montgomery, Ellyn T.; Ganju, Neil K.; Dickhudt, Patrick J.; Borden, Jonathan; Martini, Marinna A.; Brosnahan, Sandra M.

    2015-01-01

    Suspended-sediment transport is a critical element controlling the geomorphology of tidal wetland complexes. Wetlands rely on organic material and inorganic sediment deposition to maintain their elevation relative to sea level. The U.S. Geological Survey performed observational deployments to measure suspended-sediment concentration and water flow rates in the tidal channels of the wetlands in the Rachel Carson National Wildlife Refuge in Wells, Maine. The objective was to characterize the sediment-transport mechanisms that contribute to the net sediment budget of the wetland complex. We deployed a meteorological tower, optical turbidity sensors, and acoustic velocity meters at sites on Stephens Brook and the Ogunquit River between March 27 and December 9, 2013. This report presents the time-series oceanographic and atmospheric data collected during those field studies. The oceanographic parameters include water velocity, depth, turbidity, salinity, temperature, and pH. The atmospheric parameters include wind direction, speed, and gust; air temperature; air pressure; relative humidity; short wave radiation; and photosynthetically active radiation.

  10. Tipping points in Anthropocene fluvial dynamics

    NASA Astrophysics Data System (ADS)

    Notebaert, Bastiaan; Broothaerts, Nils; Verstraeten, Gert; Berger, Jean-François; Houbrechts, Geoffrey

    2016-04-01

    Many rivers have undergone dramatic changes over the last millennia due to anthropogenic on- and offsite impacts. These changes have important implications for the geomorphic and hydrological functioning of the river. In this study we compare the influence of large-scaled off-site anthropogenic impact on three European river systems. We do this using traditional geomorphological methods, combined with palynological and archaeological data; for each catchment a Holocene sediment budget was constructed. The Dijle catchment is located in the central Belgian loess belt, and has undergone intense agriculture for at least the last 2000 year. Pre-Anthropocene floodplain are big marshes lacking a well-established river channel. Anthropogenic deforestation in the headwaters resulted in a sediment pulse from the Bronze Age on. In the main floodplain sediments gradually covered the peat layer, starting near a newly formed river channel and expanding over time towards the floodplain edges. In contrast, this transition is abrupt in the smaller tributary floodplains. Comparison with palynological data shows that this abrupt transition occurs when human impact reaches a certain threshold. The Valdaine region is located in the French Pre-Alps. Floodplain deposition increased over time since the Neolithic time period due to human induced and fire related soil erosion. This general aggradation trend is however interrupted by three major river incision phases which are caused by human land abandonment and dry periods. A second major change in floodplain geomorphology occurs during the High Roman Period and the last 800 year: the fine-grained meandering river changes to a gravel loaded braided river. During this period the upstream mountain reaches became a major sediment source due to deforestation, possibly combined with climate change. During the last century reforestation and land abandonment has led to a new incision phases, and floodplain are now a major source of gravel while the river partially maintains its braided pattern. The Amblève River in the Belgian Ardennes uplands underwent less dramatic changes. Large parts of the catchment are deforested during the last 700 years, leading to an increase in floodplain sedimentation. Despite this major sediment pulse, change in floodplain morphology remained limited to an increase in bank height. We argue that a combination of floodplain and channel morphology, the fine texture of supplied sediment and the high stream power of channel forming events result is a system that is less sensitive to change. Also the relative short time of impact may play a role. These three examples demonstrate the varying impact of human deforestation on floodplain geomorphology. For the Dijle and Valdaine region this lead to dramatic changes once a certain tipping point is reached. In contrast the Amblève river is more resilient to human impact due to its specific morphological setting. The morphology of the catchments and the nature of supplied sediments plays a major role in the sensitivity of fluvial systems to environmental impact. Once the tipping points are reached, it is difficult for the river to revert to its original state and floodplains remain highly impacted.

  11. Geomorphic Evidence of a Complex late-Cenozoic Uplift and Lateral Displacement History Along the 2013 M7.7 Baluchistan, Pakistan Strike-slip Rupture

    NASA Astrophysics Data System (ADS)

    Harbor, D. J.; Barnhart, W. D.

    2017-12-01

    The 2013 M7.7 Baluchistan earthquake in southern Pakistan ruptured 200 km of the north-dipping Hoshab reverse fault with dominantly lateral motion, clearly at odds with the regional topography created by previous reverse fault offsets. The kinematics of this earthquake led to the hypotheses that the Hoshab fault may alternatively slip in a reverse and lateral sense (bi-modal slip), and that the southeast Makran rotates as a uniform block around the fault (ball-and-socket rotation). Here, we use river profiles, regional relief, fault locations, and detailed geomorphic maps derived from optical imagery and DEMs to evaluate the recent uplift history of this region. We find that late Cenozoic fault zone geomorphology supports a spatially complex transition from lateral-dominated offsets in the NE to reverse-dominated offsets in the SW. Additionally, fault zone geomorphology suggests that the location of the Hoshab fault itself may change through time, leading to active incision of footwall alluvial fans and pediments. Stream profiles likewise record incision patterns that vary along the Hoshab fault. Incision and deposition in the SW are illustrative of relative footwall subsidence, consistent with recent uplift on the Hoshab fault; whereas incision and deposition in the NE are illustrative of relative footwall uplift consistent with ongoing regional uplift due to ball-and-socket rotations and dominantly lateral offsets along the northern Hoshab fault. The largest streams also record multiple, discrete, base-level drops, including the presence of convex-up river profiles in the hanging wall of the Hoshab fault. These profiles along hanging wall streams highlight a complex spatial and temporal history of reverse offset, lateral channel offset, and base-level resetting in regional streams that are altogether inconsistent with the kinematics of the 2013 earthquake alone, but that are consistent with the bi-modal slip model. Additionally, the evidence of footwall uplift in the NE is consistent with regional uplift due to ball-and-socket rotations superimposed on the Hoshab fault. These results indicate that the styles of fault slip in the Makran change in time and space in response to ongoing convergence and block rotations despite negligible uplift during the 2013 earthquake.

  12. Assessment of bedload equations using data obtained with tracers in two coarse-bed mountain streams (Narcea River basin, NW Spain)

    NASA Astrophysics Data System (ADS)

    Vázquez-Tarrío, Daniel; Menéndez-Duarte, Rosana

    2015-06-01

    This paper evaluates the predictive power of nine bedload equations, comparing the results provided by the equations with the bedload rates obtained in a previous field-based tracer experiment accomplished in River Pigüeña and River Coto, two coarse bed streams from NW Spain. Rivers from NW Spain draining the northern watershed of the Cantabrian Mountain range flow into the Bay of Biscay in a short path (50-60 km). In this region, they are developed forested catchments featured by fluvial networks with relatively steep slopes, single-thread sinuous channels, and where bed sediment is typically coarse (cobble and gravel). Tagged stones were used to trace bed sediment movement during flood events in River Pigüeña and River Coto, the two main tributaries of the Narcea River basin. With the tracer results, bedload transport rates between 0.2 and 4.0 kg/s were estimated for six flood episodes. The tracer-based bedload discharges were compared with the bedload rates estimated with the bedload formulae (DuBoys-Straub, Schoklitsch, Meyer Peter-Müller, Bagbold, Einstein, Parker-Klingeman-McLean, Parker-Klingeman, Parker and Wilcock-Crowe). Our assessment shows that all of the bedload equations tend to overestimate when compared with the tracer-based results, with the Wilcock and Crowe (2003) equation the only exception in River Pigüeña. We linked these results to the particular geomorphology of coarse-bed rivers in humid and forested mountain environments. Within these rivers, armored textures and structural arrangements in the bed are ubiquitous; these features, together with a low sediment supply coming from upstream forested reaches, define a supply-limited condition for these channels limiting the potential use of bedload equations. The Wilcock and Crowe (2003) equation introduces complex corrections into the 'hiding function', and this could explain why it performs better.

  13. Monitoring and Research of the Colorado River Ecosystem: When Is Enough Enough?

    NASA Astrophysics Data System (ADS)

    Schmidt, J. C.

    2014-12-01

    The Glen Canyon Dam Adaptive Management Program (GCDAMP) is a well-funded ( $10 million/yr.) river rehabilitation program with long-term monitoring and research focused on 400 km of the Colorado River in Glen, Marble, and Grand Canyons downstream from Lake Powell. More than 15 years of substantive science concerning hydrology, hydraulics, sediment transport, geomorphology, aquatic and fish ecology, riparian ecology, and socio-economics has yielded significant insights that guide experimental river management initiatives, such as a new protocol to annually release sediment-triggered controlled floods; administratively called the High Flow Experimental Protocol (HFEP). Implementation of the HFEP requires nearly real-time monitoring of sediment delivery from key sand producing tributaries, transport in and calculation of sand mass balance in segments of the Colorado River, and defined uncertainty of those processes and conditions (see: http://www.gcmrc.gov/). The HFEP aims to rebuild sandbars within the active channel, but many stakeholders remain focused on other aquatic ecosystem, riparian ecosystem, archaeological resources, or cultural values that are linked in complex ways to active channel conditions. Tension exists within the GCDAMP about how funding is allocated for innovative data collection, analysis, and publication strategies that allow implementation of the HFEP, and to also measure derivative resource conditions about which some stakeholders have concern. Monitoring and research initiatives that attempt to incorporate traditional cultural values also have high uncertainty when resource condition is linked with the simple implementation paradigm of the HFEP. Thus, the GCDAMP is faced with the complex challenge of allocating sufficient resources to monitor active channel processes and characteristics, resolve remaining scientific uncertainties, and develop new strategies for incorporating science insights into engineering and policy decisions, while also monitoring terrestrial resources supported by stakeholders but only indirectly linked with dam operations. The challenge of balancing these scientific and adaptive management objectives is substantial.

  14. GEOMORPHOLOGICAL STUDIES IN THE LITTLE MIAMI RIVER (INITIALLY, OTHER STREAM SYSTEMS TO BE ADDED LATER)

    EPA Science Inventory

    Changes in the amount and types of land use in a watershed can destabilize stream channel structure, increase sediment loading and degrade in-stream habitat. Stream classification systems (e.g., Rosgen) may be useful for determining the susceptibility of stream channel segments t...

  15. Hyporheic Cooling with Implications for Support of Fish Habitat in the Willamette Valley, Oregon

    EPA Science Inventory

    It has been hypothesized that groundwater flow which originates from a river and then returns to it could result in a temperature buffering benefit, resulting from dissipation of heat during porous media flow. We installed 50 monitoring wells in a geomorphologically active area a...

  16. Characterization of eco-hydraulic habitats for examining biogeochemical processes in rivers

    NASA Astrophysics Data System (ADS)

    McPhillips, L. E.; O'Connor, B. L.; Harvey, J. W.

    2009-12-01

    Spatial variability in biogeochemical reaction rates in streams is often attributed to sediment characteristics such as particle size, organic material content, and biota attached to or embedded within the sediments. Also important in controlling biogeochemical reaction rates are hydraulic conditions, which influence mass transfer of reactants from the stream to the bed, as well as hyporheic exchange within near-surface sediments. This combination of physical and ecological variables has the potential to create habitats that are unique not only in sediment texture but also in their biogeochemical processes and metabolism rates. In this study, we examine the two-dimensional (2D) variability of these habitats in an agricultural river in central Iowa. The streambed substratum was assessed using a grid-based survey identifying dominant particle size classes, as well as aerial coverage of green algae, benthic organic material, and coarse woody debris. Hydraulic conditions were quantified using a calibrated 2D model, and hyporheic exchange was assessed using a scaling relationship based on sediment and hydraulic characteristics. Point-metabolism rates were inferred from measured sediment dissolved oxygen profiles using an effective diffusion model and compared to traditional whole-stream measurements of metabolism. The 185 m study reach had contrasting geomorphologic and hydraulic characteristics in the upstream and downstream portions of an otherwise relatively straight run of a meandering river. The upstream portion contained a large central gravel bar (50 m in length) flanked by riffle-run segments and the downstream portion contained a deeper, fairly uniform channel cross-section. While relatively high flow velocities and gravel sediments were characteristic of the study river, the upstream island bar separated channels that differed with sandy gravels on one side and cobbley gravels on the other. Additionally, green algae was almost exclusively found in riffle portions of the cobbley gravel channel sediments while fine benthic organic material was concentrated at channel margins, regardless of the underlying sediments. A high degree of spatial variability in hyporheic exchange potential was the result of the complex 2D nature of topography and hydraulics. However, sediment texture classifications did a reasonable job in characterizing variability in hyporheic exchange potential because sediment texture mapping incorporates qualitative aspects of bed shear stress and hydraulic conductivity that control hyporheic exchange. Together these variables greatly influenced point-metabolism measurements in different sediment texture habitats separated by only 1 to 2 m. Results from this study suggest that spatial variability and complex interactions between geomorphology, hydraulics, and biological communities generate eco-hydraulic habitats that control variability in biogeochemical processes. The processes controlling variability are highly two-dimensional in nature and are not often accounted for in traditional one-dimensional analysis approaches of biogeochemical processes.

  17. Geomorphological Characterization of Atenquique Basin in the Eastern Sector of the Volcan-Nevado-Colima, Jalisco, Mexico, As an Input to the Risk Assessment of Debris Flows.

    NASA Astrophysics Data System (ADS)

    Flores-Pena, S.; Suarez-Plascencia, C.

    2014-12-01

    The Atenquique river basin drains the eastern sector of the Volcanic Complex (VC) Volcan-Nevado de Colima, located on the border of the states of Jalisco and Colima. To use the digital geomorphological analysis 1:50000 scale mapping provided by INEGI and Landsat images, manipulating it in ArcGIS 10.2 developing the DEM that was the basis for morphometric characterization. The results show that the basin is divided into five sub-basins, with the main Atenquique (SAT) and Arroyo Seco (SAS), calculating the compactness coefficient (Kc) and the coefficient of sinuosity indicate that SAT is the most prone to floods due to straight and slightly sinuous channels. However, the density of dissection shows a more developed drainage network on the SAT, with slopes up to 84° and 600 m deep. The drainage basin has its source at an altitude of 4260 m and its mouth is in the Tuxpan River at 1040 m, which has a relative height of 2800 m; has a funnel-shaped elongated west-east, its outstanding average in the sector are Mountain 44° and 10° the piedmont. The SAT has a total area of 81.8 km2, with a dendritic river network, where the first order streams reach an 82.99%, and second order streams are the 13.4% of the total, these values show that most of the slopes of the basin have incipient development valleys and steep slopes. The basin has had 3 debris flows in recent 58 years; these are formed by large volumes of rock and mud that covered the town of Atenquique and paper mill located at the mouth of the Tuxpan River, caused deaths and significant economic damage. Its genesis is associated with the end of the summer rainy season, so he also worked in the hydrological analysis in order to determine the volume of runoff in the basin. The results of this work are used as input for the determining the risk levels in the study area, and may also be used by the municipality of Tuxpan, in order to define policies to manage risk and reduce future risks to the industrial town of Atenquique.

  18. Mackenzie River Delta morphological change based on Landsat time series

    NASA Astrophysics Data System (ADS)

    Vesakoski, Jenni-Mari; Alho, Petteri; Gustafsson, David; Arheimer, Berit; Isberg, Kristina

    2015-04-01

    Arctic rivers are sensitive and yet quite unexplored river systems to which the climate change will impact on. Research has not focused in detail on the fluvial geomorphology of the Arctic rivers mainly due to the remoteness and wideness of the watersheds, problems with data availability and difficult accessibility. Nowadays wide collaborative spatial databases in hydrology as well as extensive remote sensing datasets over the Arctic are available and they enable improved investigation of the Arctic watersheds. Thereby, it is also important to develop and improve methods that enable detecting the fluvio-morphological processes based on the available data. Furthermore, it is essential to reconstruct and improve the understanding of the past fluvial processes in order to better understand prevailing and future fluvial processes. In this study we sum up the fluvial geomorphological change in the Mackenzie River Delta during the last ~30 years. The Mackenzie River Delta (~13 000 km2) is situated in the North Western Territories, Canada where the Mackenzie River enters to the Beaufort Sea, Arctic Ocean near the city of Inuvik. Mackenzie River Delta is lake-rich, productive ecosystem and ecologically sensitive environment. Research objective is achieved through two sub-objectives: 1) Interpretation of the deltaic river channel planform change by applying Landsat time series. 2) Definition of the variables that have impacted the most on detected changes by applying statistics and long hydrological time series derived from Arctic-HYPE model (HYdrologic Predictions for Environment) developed by Swedish Meteorological and Hydrological Institute. According to our satellite interpretation, field observations and statistical analyses, notable spatio-temporal changes have occurred in the morphology of the river channel and delta during the past 30 years. For example, the channels have been developing in braiding and sinuosity. In addition, various linkages between the studied explanatory variables, such as land cover, precipitation, evaporation, discharge, snow mass and temperature, were found. The significance of this research is emphasised by the growing population, increasing tourism, and economic actions in the Arctic mainly due to the ongoing climate change and technological development.

  19. Geomorphology of the Trinity River floodplain in Dallas County, Texas

    NASA Astrophysics Data System (ADS)

    Haugen, B. D.; Roig-Silva, C.; Manning, A. R.; Harrelson, D. W.; Olsen, R. S.; Dunbar, J. P.; Pearson, M. L.

    2010-12-01

    Data from more than 1,800 geologic borings and over 500 cone penetrometer tests (CPTs) were used to characterize the geomorphology of the Trinity River floodplain in the Dallas Metropolitan Area. Historical maps, aerial photographs and other published information were used to prepare a preliminary geomorphic map. Boring logs and CPT data were then used to refine the preliminary map, produce a series of two-dimensional (2D) and three-dimensional (3D) cross sections, and interpret the recent geologic history of the area. Geomorphologic interpretations - most importantly the locations of paleo-channel deposits of sands and gravels - were used to identify reaches of the levees managed by the United States Army Corps of Engineers (USACE) and the City of Dallas that may be at significant risk for under-seepage. Boring logs and CPT data collected atop the levees were used to assess through-seepage risks. Local bedrock is comprised of cretaceous-age Eagle Ford Shale and Austin Chalk. Depth to bedrock in the study area averaged 14.6 m (47.8 ft). The uppermost surface of bedrock has been deeply incised by a meandering river. Vertical relief between the shallowest bedrock sections and deepest portion of the incised paleo-channel is more than 15 m (50 ft). In places the incised paleo-channel is more than 0.8 km (0.5 mi) wide. These data confirm the presence of an erosional unconformity between local bedrock and overlying quaternary floodplain deposits. The observed erosional unconformity is attributed to a higher-energy fluvial environment that occurred as a result of a drop in base level. Recent floodplain deposits consist of interlobate point bar, channel and overbank sediments that are generally distributed in a fining-upward sequence. Buried channel dimensions vary widely, but are more than 250 m (820 ft) in some areas - much larger than the current channel. A semi-continuous basal layer of quaternary sands and gravels approximately 2 to 5 m (7 to 16 ft) thick exists in much of the study area. These data indicate that the discharge rate of the Trinity River today is at its lowest since quaternary deposition began. Large terraces of varying geometry and elevation observed at the edge of the floodplain show that the Trinity River has been geographically constrained to its current floodplain since the late Cretaceous, and perhaps even earlier.

  20. A Study on the Assessment of Multi-Factors Affecting Urban Floods Using Satellite Image: A Case Study in Nakdong Basin, S. Korea

    NASA Astrophysics Data System (ADS)

    Kwak, Youngjoo; Kondoh, Akihiko

    2010-05-01

    Floods are also related to the changes in social economic conditions and land use. Recently, floods increased due to rapid urbanization and human activity in the lowland. Therefore, integrated management of total basin system is necessary to get the secure society. Typhoon ‘Rusa’ swept through eastern and southern parts of South Korea in the 2002. This pity experience gave us valuable knowledge that could be used to mitigate the future flood hazards. The purpose of this study is to construct the digital maps of the multi-factors related to urban flood concerning geomorphologic characteristics, land cover, and surface wetness. Parameters particularly consider geomorphologic functional unit, geomorphologic parameters derived from DEM (digital elevation model), and land use. The research area is Nakdong River Basin in S. Korea. As a result of preliminary analysis for Pusan area, the vulnerability map and the flood-prone areas can be extracted by applying spatial analysis on GIS (geographic information system).

  1. Sprague River geomorphology studies, Klamath Basin, Oregon

    NASA Astrophysics Data System (ADS)

    McDowell, P. F.; O'Connor, J. E.; Lind, P.

    2005-12-01

    The Sprague River drains 4050 square kilometers with a mean annual discharge of 16.3 m3/s before emptying into the Williamson River and then upper Klamath Lake in southcentral Oregon. The alternating wide alluvial segments and narrow canyon reaches of this 135-km-long westward flowing river provide for a variety of valued ecologic conditions and human uses along the river corridor, notably fisheries (including two endangered species of suckers, and formerly salmon), timber harvest, agriculture, and livestock grazing. The complex history of land ownership and landuse, water control and diversion structures, and fishery alterations, provides several targets for attributing historic changes to channel and floodplain conditions. Recently, evolving societal values (as well as much outside money) are inspiring efforts by many entities to 'restore' the Sprague River watershed. In cooperation with the U.S. Fish and Wildlife Service, the Klamath Tribes, and many local landowners, we are launching an analysis of Sprague River channel and floodplain processes. The overall objective is to guide restoration activities by providing sound understanding of local geomorphic processes and conditions. To do this we are identifying key floodplain and channel processes, and investigating how they have been affected by historic floodplain activites and changes to the watershed. This is being accomplished by analysis of historic aerial photographs and maps, stratigraphic analysis of floodplain soils and geologic units, mapping of riparian vegetation conditions and changes, and quantitative analysis of high resolution LiDAR topography acquired for the entire river course in December 2004. Preliminary results indicate (1) much of the coarser (and more erodible) floodplain soils are largely composed of pumice deposited in the basin by the 7700 year BP eruption of Mount Mazama; and (2) the LiDAR digital elevation models provide a ready means of subdividing the river into segments with quantifiably different characteristics of channel width, sinuosity, slope, and incision (relative to adjacent floodplain elevations).

  2. Unraveling the controls on biogeomorphic succession: the influence of groundwater, soil and geomorphic setting on bio-geomorphic channel evolution

    NASA Astrophysics Data System (ADS)

    Bätz, Nico; Verrecchia, Eric P.; Lane, Stuart N.

    2017-04-01

    Braided rivers are characterized by high rates of morphological change. However, despite the potential for frequent disturbance, vegetated patches may develop within this system and influence long-term channel dynamics and channel patterns through the "engineering effects" of biogeomorphic succession. The stabilizing effect of developing vegetation on morphological change has been widely shown by flume experiments and (historic) aerial pictures analysis. Thus, there is a balance between disturbance and stabilization, mediated through biogeomorphic succession, that may determine the long-term geomorphic and biogeomorphic evolution of the river. Research has addressed how changes in disturbance frequency affect river channel pattern, but much less has been done to understand what influences the rate of biogeomorphic succession and how it affects river morphodynamics. This study explores the complex pattern of ambient conditions in braided river systems driving the rate of biogeomorphic succession. In particular, we focus on the interplay between groundwater access, soil formation, disturbance frequency and geomorphic setting, in defining what drives vegetation succession rates and its long-term implications on channel pattern evolution. We studied these feedbacks in a transitional gravel-bed river system (braided, wandering, meandering) close to Geneva (Switzerland) - the Allondon River. Results show that, at the beginning of the succession, humification plays a negative role on local ambient conditions necessary for sprouting. Successful vegetation establishment is then related positively to humification, but also to higher disturbance rates. The third biogeomorphic phase, with the highest feedbacks on river morphology, appears to be mainly driven by groundwater access, which in turn defines the rates of humification in this gravelly environment. This in turn defines the decadal morphological response of the channel after a reduction in disturbance frequency over the last 50 years. Overall, these results show how the functioning and the developing ecosystem at local scale affect the ecosystem resilience at a larger scale, and thus affects the long-term geomorphological river response.

  3. Application of field geophysics in geomorphology: Advances and limitations exemplified by case studies

    NASA Astrophysics Data System (ADS)

    Schrott, Lothar; Sass, Oliver

    2008-01-01

    During the last decade, the use of geophysical techniques has become popular in many geomorphological studies. However, the correct handling of geophysical instruments and the subsequent processing of the data they yield are difficult tasks. Furthermore, the description and interpretation of geomorphological settings to which they apply can significantly influence the data gathering and subsequent modelling procedure ( e.g. achieving a maximum depth of 30 m requires a certain profile length and geophone spacing or a particular frequency of antenna). For more than three decades geophysical techniques have been successfully applied, for example, in permafrost studies. However, in many cases complex or more heterogeneous subsurface structures could not be adequately interpreted due to limited computer facilities and time consuming calculations. As a result of recent technical improvements, geophysical techniques have been applied to a wider spectrum of geomorphological and geological settings. This paper aims to present some examples of geomorphological studies that demonstrate the powerful integration of geophysical techniques and highlight some of the limitations of these techniques. A focus has been given to the three most frequently used techniques in geomorphology to date, namely ground-penetrating radar, seismic refraction and DC resistivity. Promising applications are reported for a broad range of landforms and environments, such as talus slopes, block fields, landslides, complex valley fill deposits, karst and loess covered landforms. A qualitative assessment highlights suitable landforms and environments. The techniques can help to answer yet unsolved questions in geomorphological research regarding for example sediment thickness and internal structures. However, based on case studies it can be shown that the use of a single geophysical technique or a single interpretation tool is not recommended for many geomorphological surface and subsurface conditions as this may lead to significant errors in interpretation. Because of changing physical properties of the subsurface material ( e.g. sediment, water content) in many cases only a combination of two or sometimes even three geophysical methods gives sufficient insight to avoid serious misinterpretation. A "good practice guide" has been framed that provides recommendations to enable the successful application of three important geophysical methods in geomorphology and to help users avoid making serious mistakes.

  4. Ecological requirements for pallid sturgeon reproduction and recruitment in the Missouri River—Annual report 2013

    USGS Publications Warehouse

    Delonay, Aaron J.; Jacobson, Robert B.; Chojnacki, Kimberly A.; Braaten, Patrick J.; Buhl, Kevin J.; Eder, Brandon L; Elliott, Caroline M.; Erwin, Susannah O.; Fuller, David B.; Haddix, Tyler M.; Ladd, Hallie L.A.; Mestl, Gerald E.; Papoulias, Diana M.; Rhoten, Jason C.; Wesolek, Christopher J.; Wildhaber, Mark L.

    2016-01-20

    The research tasks in the 2013 scope of work emphasized understanding reproductive migrations and spawning of adult pallid sturgeon, and hatch and drift of free embryos and larvae. These tasks were addressed in four study sections located in three hydrologically and geomorphologically distinct parts of the Missouri River Basin: the Upper Missouri River downstream from Fort Peck Dam, including downstream reaches of the Milk River, the Lower Yellowstone River, and the Lower Missouri River downstream from Gavins Point Dam. The research is designed to inform management decisions related to channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River, and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2013.

  5. Complex patterns of glacier advances during the Lateglacial in the Chagan-Uzun Valley, Russian Altai

    NASA Astrophysics Data System (ADS)

    Gribenski, Natacha; Lukas, Sven; Jansson, Krister N.; Stroeven, Arjen P.; Preusser, Frank; Harbor, Jonathan M.; Blomdin, Robin; Ivanov, Mikhail N.; Heyman, Jakob; Petrakov, Dmitry; Rudoy, Alexei; Clifton, Tom; Lifton, Nathaniel A.; Caffee, Marc W.

    2016-04-01

    Over the last decades, numerous paleoglacial reconstructions have been carried out in Central Asian mountain ranges because glaciers in this region are sensitive to climate change, and thus their associated glacial deposits can be used as proxies for paleoclimate inference. However, non-climatic factors can complicate the relationship between glacier fluctuation and climate change. Careful investigations of the geomorphological and sedimentological context are therefore required to understand the mechanisms behind glacier retreat and expansion. In this study we present the first detailed paleoglacial reconstruction of the Chagan Uzun valley, located in the Russian Altai. This reconstruction is based on detailed geomorphological mapping, sedimentological logging, in situ cosmogenic 10Be and 26Al surface exposure dating of glacially transported boulders, and Optically Stimulated Luminescence (OSL) dating. The Chagan Uzun valley includes extensive lobate moraine belts (>100 km2) deposited in the intramontane Chuja basin, reflecting a series of pronounced former glacial advances. Observation of "hillside-scale" folding and extensive faulting of pre-existing soft sediments within the outer moraine belts, together with the geomorphology, indicate that these moraine belts were formed during glacier-surge like events. In contrast, the inner (up-valley) glacial landforms of the Chagan Uzun valley indicate that they were deposited by retreat of temperate valley glaciers and do not include features indicative of surging. Cosmogenic ages associated with the outermost, innermost and intermediary stages, all indicate deposition times clustered around 19.5 ka, although the 10Be ages of the outermost margin are likely slightly underestimated due to brief episode of glacial lake water coverage. Such close deposition timings are consistent with periods of fast or surge advances, followed by active glacier retreat. OSL dating yields significantly older ages of thick lacustrine accumulation along the Chagan Uzun River, which confirms the presence of lacustrine sediments in the Chagan Uzun glacier foreland before the glacier advances. Such sediments could have acted as a soft bed over which fast or unstable glacier flow occurred. This is the first study reporting surge-like behaviour of former glaciers in the Altai mountain range, supported by detailed geomorphological and sedimentological evidences. Such findings are crucial for paleoclimate inference, as the surge-related features cannot be attributed to a glacier system in equilibrium with the contemporary climate, and cannot be interpreted with traditional ELA reconstructions. This study also highlights the complexity of establishing robust paleoglacial chronologies in highly dynamic environments, with interactions between glacial events and the formation and drainage of lakes.

  6. Effects of global change on hydro-geomorphological hazards in Mediterranean rivers

    NASA Astrophysics Data System (ADS)

    Andres Lopez-Tarazon, Jose

    2015-04-01

    Mediterranean river basins are characterized by high (often extreme) temporal variability in precipitation, and hence discharge. Mediterranean countries are considered sensitive to so-called global change, considered as the combination of climate and land use changes. All panels on climate evolution predict future scenarios of increasing frequency and magnitude of floods and extended droughts in the Mediterranean region; both floods and droughts are likely to lead to huge geomorphic adjustments of river channels so, major metamorphosis of fluvial systems is expected as a result of global change. Water resources in the Mediterranean region is subjected to rising pressures, becoming a key issue for all governments (i.e. clear imbalance between the available water resources and the increasing water demand related to increasing human population). Such pressures are likely to give rise to major ecological and economic changes and challenges that governments need to address as a matter of priority. Changes in river flow regimes associated with global change are therefore ushering in a new era, where there is a critical need to evaluate hydro-geomorphological hazard from headwaters to lowland areas (flooding can be not just a problem related to being under the water). A key question is how our understanding of these hazards associated with global change can be improved; improvement has to come from integrated research which includes all physical conditions that influence the conveyance of water and sediments, and the river's capacity (i.e. amount of sediment) and competence (i.e. channel deformation) that, in turn, will influence physical conditions of a given point in the river network. This is the framework of the present work; it is directed to develop an integrated approach which both improves our understanding of how rivers are likely to evolve as a result of global change, and addresses the associated hazards of fluvial environmental change.

  7. Cataclysms and controversy -- aspects of the geomorphology of the Columbia River Gorge

    USGS Publications Warehouse

    O'Connor, Jim; Burns, Scott; Madin, Ian; Dorsey, Rebecca

    2009-01-01

    Landslides and floods of lava and water tremendously affected the Columbia River during its long history of transecting the Cascade Volcanic Arc. This field trip touches on aspects of the resulting geology of the scenic Columbia River Gorge, including the river-blocking Bonneville landslide of ~550 years ago and the great late- Pleistocene Missoula floods. Not only did these events create great landscapes, but they inspired great geologists. Mid-nineteenth century observations of the Columbia River and Pacific Northwest by James Dwight Dana and John Strong Newberry helped germinate the “school of fluvial” erosion later expanded upon by the southwestern United States topographic and geologic surveys. Later work on features related to the Missoula floods framed the career of J Harlen Bretz in one of the great geologic controversies of the twentieth century.

  8. Natural curiosities of the Bug river valley near Janów Podlaski as a chance of the specialized tourism development

    NASA Astrophysics Data System (ADS)

    Kusznerczuk, Marta

    2009-01-01

    This paper presents the most precious natural curiosities of the Bug river valley near Janów Podlaski (between Zaczopki and Gnojno). This area is protected as the landscape park - "Podlasie Bug Water Gap". The natural abiotic elements, among others geomorphological ones significantly conditioning unrepeatable charms of the Bug river valley landscape, are regarded as marginal in many papers concerning the unique values of this valley. The presented natural curiosities are arranged in genetic and chronological order. These main relief elements of the Bug river valley are associated with different morphogenetic processes, i.e. the gap formation, the Bug river metamorphosis and gully erosion. These elements can be a chance of the development of specialised tourism, which will influence the economic mobilization of this undeveloped region.

  9. Fragmentation of Andes-to-Amazon connectivity by hydropower dams

    PubMed Central

    Anderson, Elizabeth P.; Jenkins, Clinton N.; Heilpern, Sebastian; Maldonado-Ocampo, Javier A.; Carvajal-Vallejos, Fernando M.; Encalada, Andrea C.; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M.; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A.

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems—the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services. PMID:29399629

  10. Fragmentation of Andes-to-Amazon connectivity by hydropower dams.

    PubMed

    Anderson, Elizabeth P; Jenkins, Clinton N; Heilpern, Sebastian; Maldonado-Ocampo, Javier A; Carvajal-Vallejos, Fernando M; Encalada, Andrea C; Rivadeneira, Juan Francisco; Hidalgo, Max; Cañas, Carlos M; Ortega, Hernan; Salcedo, Norma; Maldonado, Mabel; Tedesco, Pablo A

    2018-01-01

    Andes-to-Amazon river connectivity controls numerous natural and human systems in the greater Amazon. However, it is being rapidly altered by a wave of new hydropower development, the impacts of which have been previously underestimated. We document 142 dams existing or under construction and 160 proposed dams for rivers draining the Andean headwaters of the Amazon. Existing dams have fragmented the tributary networks of six of eight major Andean Amazon river basins. Proposed dams could result in significant losses in river connectivity in river mainstems of five of eight major systems-the Napo, Marañón, Ucayali, Beni, and Mamoré. With a newly reported 671 freshwater fish species inhabiting the Andean headwaters of the Amazon (>500 m), dams threaten previously unrecognized biodiversity, particularly among endemic and migratory species. Because Andean rivers contribute most of the sediment in the mainstem Amazon, losses in river connectivity translate to drastic alteration of river channel and floodplain geomorphology and associated ecosystem services.

  11. Discrete choice modeling of shovelnose sturgeon habitat selection in the Lower Missouri River

    USGS Publications Warehouse

    Bonnot, T.W.; Wildhaber, M.L.; Millspaugh, J.J.; DeLonay, A.J.; Jacobson, R.B.; Bryan, J.L.

    2011-01-01

    Substantive changes to physical habitat in the Lower Missouri River, resulting from intensive management, have been implicated in the decline of pallid (Scaphirhynchus albus) and shovelnose (S. platorynchus) sturgeon. To aid in habitat rehabilitation efforts, we evaluated habitat selection of gravid, female shovelnose sturgeon during the spawning season in two sections (lower and upper) of the Lower Missouri River in 2005 and in the upper section in 2007. We fit discrete choice models within an information theoretic framework to identify selection of means and variability in three components of physical habitat. Characterizing habitat within divisions around fish better explained selection than habitat values at the fish locations. In general, female shovelnose sturgeon were negatively associated with mean velocity between them and the bank and positively associated with variability in surrounding depths. For example, in the upper section in 2005, a 0.5 m s-1 decrease in velocity within 10 m in the bank direction increased the relative probability of selection 70%. In the upper section fish also selected sites with surrounding structure in depth (e.g., change in relief). Differences in models between sections and years, which are reinforced by validation rates, suggest that changes in habitat due to geomorphology, hydrology, and their interactions over time need to be addressed when evaluating habitat selection. Because of the importance of variability in surrounding depths, these results support an emphasis on restoring channel complexity as an objective of habitat restoration for shovelnose sturgeon in the Lower Missouri River.

  12. Inferring tidal wetland stability from channel sediment fluxes: observations and a conceptual model

    USGS Publications Warehouse

    Ganju, Neil K.; Nidzieko, Nicholas J.; Kirwan, Matthew L.

    2013-01-01

    Anthropogenic and climatic forces have modified the geomorphology of tidal wetlands over a range of timescales. Changes in land use, sediment supply, river flow, storminess, and sea level alter the layout of tidal channels, intertidal flats, and marsh plains; these elements define wetland complexes. Diagnostically, measurements of net sediment fluxes through tidal channels are high-temporal resolution, spatially integrated quantities that indicate (1) whether a complex is stable over seasonal timescales and (2) what mechanisms are leading to that state. We estimated sediment fluxes through tidal channels draining wetland complexes on the Blackwater and Transquaking Rivers, Maryland, USA. While the Blackwater complex has experienced decades of degradation and been largely converted to open water, the Transquaking complex has persisted as an expansive, vegetated marsh. The measured net export at the Blackwater complex (1.0 kg/s or 0.56 kg/m2/yr over the landward marsh area) was caused by northwesterly winds, which exported water and sediment on the subtidal timescale; tidally forced net fluxes were weak and precluded landward transport of suspended sediment from potential seaward sources. Though wind forcing also exported sediment at the Transquaking complex, strong tidal forcing and proximity to a turbidity maximum led to an import of sediment (0.031 kg/s or 0.70 kg/m2/yr). This resulted in a spatially averaged accretion of 3.9 mm/yr, equaling the regional relative sea level rise. Our results suggest that in areas where seaward sediment supply is dominant, seaward wetlands may be more capable of withstanding sea level rise over the short term than landward wetlands. We propose a conceptual model to determine a complex's tendency toward stability or instability based on sediment source, wetland channel location, and transport mechanisms. Wetlands with a reliable portfolio of sources and transport mechanisms appear better suited to offset natural and anthropogenic loss.

  13. Long-term entrenchment and consequences in present flood hazard in Garona River (Val d'Aran, central Pyrenees)

    NASA Astrophysics Data System (ADS)

    Victoriano-Lamariano, Ane; Garcia-Silvestre, Marta; Furdada-Bellavista, Gloria

    2015-04-01

    Flood risk is one of the most dangerous natural disasters in mountainous areas. Risk management and mitigation have to be based on exhaustive risk evaluation. Moreover, hazard analysis requires a multidisciplinary approach to achieve a complete understanding of the dynamics of the phenomena. The Val d'Aran valley is located in the axial part of the Pyrenees and is drained by the Garona River. Flooding events are relatively frequent there. The last extraordinary episode occurred in June 2013. Considering both the main effects of this flooding and the geomorphology, the long-term dynamics of the Garona River was studied in two different areas (Arties-Vielha and Era Bordeta-Les), which are representative of the whole length along the Val d'Aran. In fact, present short-term processes can be partly explained as a result of the long-term fluvial tendency. During the analysis of the 2013 flood effects, several entrenchment and incision indicators were found. Under the hypothesis that the fluvial network tends to incise, an entrenchment indicator analysis was carried out. Firstly, we considered the geomorphologic features, such as two generations of alluvial fans, two generations of alluvial terraces and, incisions on geomorphologic features and in Paleozoic bedrock. Secondly, we found out that erosion dominated over overflow and deposition during the 2013 flooding. Finally, great erosion was identified in engineering structures, for instance, in bridges, channelization dikes, gauging stations and dams. The geomorphologic analysis and the entrenchment indicators are essential to perform a post-glacial evolution interpretation. During the last Pleistocene glacial retreat, a fluvio-torrential network was developed at the bottom of the ancient glacial valley. An early post-glacial phase with a high sediment transport lead to the formation of first generation alluvial fans and alluvial terraces (nowadays located ≈15m above the channel). As sediment transport decreased, fluvial incision became preponderant while second generation alluvial fans and floodplains were formed. Therefore, the specific analysis of entrenchment indicators shows evidence of a vertical incision tendency of the drainage network. The obtained data allowed us to estimate an approximate mean entrenchment rate of 1,07 mm/year since the end of the Pleistocene glacial period. Compared with the 0,08-0,19 mm/year regional uplift rate, the dynamics of the Garona River is probably a combination of climatic (interglacial period), tectonic (uplift and erosional tendency of the axial Pyrenees since the Miocene), topographic (high gradients) and anthropic (engineering structures) factors, and also an intense glacial deposits erosion. In conclusion, the incision tendency hypothesis was confirmed, which is directly related to the geomorphological response after the last glaciation and is probably related to the evolution of the Pyrenean axial zone. Moreover, the long-term entrenchment dynamics determines present short-term fluvial processes, produces changes in flood hazard and controls the flood effects (see Garcia-Silvestre et al., also presented in EGU 2015). Thereby, this entrenchment tendency has consequences that must be considered when designing structural mitigation measures against flooding events.

  14. Geomorphological response of a landscape to long-term tectonic and glacial processes: the upper Rhône basin, Central Swiss Alps

    NASA Astrophysics Data System (ADS)

    Stutenbecker, Laura; Schlunegger, Fritz

    2015-04-01

    The Rhône River in the Central Swiss Alps drains a 5380 km2 large basin that shows a high spatial variability of bedrock lithology, exhumation rate, glacial conditioning and climate. All of these factors were recently discussed to control erosion rates in orogenic settings in general, and particularly in the Alps (e.g. Wittmann et al. 2007, Vernon et al. 2008, Norton et al. 2010a). Thanks to various and densely distributed data, the upper Rhône basin located between the Aar massif and Lake Geneva is a suitable natural laboratory to analyze the landscape's geomorphological state and controlling factors at a basin-scale. In this study, we extract geomorphological parameters along the channels of ca. 50 tributary basins of various sizes that contribute to the sediment budget of the Rhône River either through sediment supply by torrents or debris flows. Their catchments are located in either granitic basement rocks (External Massifs), oceanic meta-sedimentary and ophiolitic rocks (Penninic nappes) or fine-grained continental-margin sediments (Helvetic nappes). The analysis of longitudinal river profiles from DEMs and slope/area relationships show that all tributary rivers within the Rhône basin are in topographic transient state that is expressed by mainly convex or concave-convex channel shapes with several knickpoints of either tectonic-lithological or glacial origin. Furthermore, the frequency distribution of elevations (hypsometry) along the river channel allows identifying glacially inherited morphologies and the recent erosional front. The combination of those different geomorphological data yields to a categorization of the tributary rivers into three endmember groups: (1) streams with highly convex profiles, testifying to a strong glacial inheritance, (2) concave-convex channels with several knickzones and inherited morphologies of past glaciations, (3) predominantly concave, relatively steep rivers with minor knickpoints and inner gorges. Assuming that increasing concavity is an expression of advancing topographic equilibration (Wobus et al. 2006, and others), tributaries within the Rhône basin are in different states of equilibrium. Interestingly, the three groups correspond with distinct litho-tectonic units: Tributaries of group 1 are frequently found in the External Massifs, whereas channels of group 2 and 3 are located in the Penninic and Helvetic nappes, respectively. Fission-track data from the Alps (Vernon et al. 2008) also suggest a spatially variable exhumation history closely related to the different litho-tectonic units, ranging from youngest exhumation in the External Massifs, intermediate in the Helvetic units and oldest in the Penninic units. Non-equilibrated river profiles in the External Massifs can be explained by a combination of recent glaciation and exhumation. In contrast, river profiles in the Helvetic nappes appear to be closer to topographic steady state. Rivers located in the Penninic nappes, which show much older exhumation ages, were probably perturbed mainly by multiple glaciations and have not equilibrated yet. These observations suggest that differences in response times of river channels are probably conditioned by the differences in lithologies and tectonic histories of the three litho-tectonic domains. Norton, K.P., Abbühl, L.M. and Schlunegger, F., 2010a, Glacial conditioning as an erosional driving force in the Central Alps: Geology, v.38, p. 655-658 Vernon, A.J., van der Beek, P.A., Sinclair, H.D., Rahn, M.K., 2008, Increase in late Neogene denudation of the European Alps confirmed by analysis of a fission-track thermochronology database. EPSL, v. 270, p. 316-329. Wittmann, H., von Blanckenburg, F., Kruesmann, T., Norton, K.P., and Kubik, P.W., 2007, Relation between rock uplift and denudation from cosmogenic nuclides in river sediment in the Central Alps of Switzerland: J. Geophys. Res., v. 112, p. F04010 Wobus, C., Whipple, K.X, Kirby, E., Snyder, E., Johnson, J., Spyropolou, K., Crosby, B., and Sheehan, D., 2006, Tectonics from topography: Procedures, promise, and pitfalls, in Willett, S.D. et al., eds., Tectonics, climate, and landscape evolution: GSA Spec. Paper 398, p. 55-74

  15. Groundwater arsenic contamination from parts of the Ghaghara Basin, India: influence of fluvial geomorphology and Quaternary morphostratigraphy

    NASA Astrophysics Data System (ADS)

    Shah, Babar Ali

    2017-09-01

    A groundwater arsenic (As) distribution in Faizabad, Gonda, and Basti districts of Uttar Pradesh is shown in the entrenched channels and floodplains of the Ghaghara River. Tubewell water samples were analysed for As through flow injection hydride generation atomic absorption spectrometry (FI-HG-AAS) system. About 38, 61, and 42 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, have As >10 µg/l (WHO guideline). Moreover, 15, 45, and 26 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, have As above 50 µg/l. About 86, 69, and 35 % of tubewells in Faizabad, Gonda, and Basti districts, respectively, are from shallow depth (21-45 m), and it is worth noticing that 47 % As-contaminated (As >10 µg/l) tubewells in these three districts are located within the depth of 10-35 m in Holocene Newer Alluvium aquifers. The high content of As (7.11 mg/kg) is measured in suspended river sediments of the Ghaghara River. Most of the As-contaminated villages in the Ghaghara Basin are located close to abandoned or present meander channels and floodplains of the Ghaghara River. In contrast, tubewells in Faizabad, Ayodhya, and Nawabganj towns are As-safe because of their positions on the Pleistocene Older Alluvium upland surfaces. Quaternary geomorphology plays an important role in groundwater arsenic contamination in the Ghaghara Basin. The sources of groundwater arsenic are geogenic and perennial mountainous rivers in the Ghaghara Basin supplied high sediment loads. The arsenic in groundwater of Ghaghara Basin is getting released from associated sediments which were likely deposited from the Himalayas. The process of release of groundwater arsenic is reductive dissolution of iron hydroxides.

  16. Dam busy: beavers and their influence on the structure and function of river systems

    NASA Astrophysics Data System (ADS)

    Larsen, J.; Larsen, A.; Lane, S. N.

    2017-12-01

    Beavers (Castor fiber, Castor canadensis) are the most influential mammalian ecosystem engineer, heavily modifying rivers and floodplains and influencing the hydrology, geomorphology, carbon and nutrient cycling, and ecology. They do this by constructing dams, digging canals and burrows, felling trees and introducing wood into streams, which in turn impounds water, raises shallow water tables, and alters the partitioning of the water balance, sediment transport and channel patters, biogeochemical cycling, and aquatic and terrestrial habitats. However, largely in the absence of predators, beaver numbers have been rapidly increasing throughout Europe since the 1980s, but also in parts of the US and South America, prompting a need to comprehensively review the current state of knowledge on how beavers influence the structure and function of river systems. Here, we synthesize the overall impacts on hydrology, geomorphology, biogeochemistry, and aquatic and terrestrial ecosystems. We then examine the key feedbacks and overlaps between these changes induced by beavers, finding that modifications to the longitudinal connectivity drive many key process feedbacks. However, the magnitude of these feedbacks is also heavily dependent on the landscape and climatic context, with the ability to promote lateral connectivity determining the extent of beaver impacts as stream order increases. Crucially, beavers shape a river corridor, introducing distinct processes and feedbacks that would have existed prior to the historical collapse of beaver populations. There is thus a need to adapt current river management and restoration practices such that they can accommodate and enhance the ecosystem engineering services provided by beavers. We summarize key knowledge gaps that remain in our understanding of beaver impacts, which help map an interdisciplinary future research agenda.

  17. Fluvial drainage networks: the fractal approach as an improvement of quantitative geomorphic analyses

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Liucci, Luisa; Vergari, Francesca; Ciccacci, Sirio; Del Monte, Maurizio

    2014-05-01

    Drainage basins are primary landscape units for geomorphological investigations. Both hillslopes and river drainage system are fundamental components in drainage basins analysis. As other geomorphological systems, also the drainage basins aim to an equilibrium condition where the sequence of erosion, transport and sedimentation approach to a condition of minimum energy effort. This state is revealed by a typical geometry of landforms and of drainage net. Several morphometric indexes can measure how much a drainage basin is far from the theoretical equilibrium configuration, revealing possible external disarray. In active tectonic areas, the drainage basins have a primary importance in order to highlight style, amount and rate of tectonic impulses, and morphometric indexes allow to estimate the tectonic activity classes of different sectors in a study area. Moreover, drainage rivers are characterized by a self-similarity structure; this promotes the use of fractals theory to investigate the system. In this study, fractals techniques are employed together with quantitative geomorphological analysis to study the Upper Tiber Valley (UTV), a tectonic intermontane basin located in northern Apennines (Umbria, central Italy). The area is the result of different tectonic phases. From Late Pliocene until present time the UTV is strongly controlled by a regional uplift and by an extensional phase with different sets of normal faults playing a fundamental role in basin morphology. Thirty-four basins are taken into account for the quantitative analysis, twenty on the left side of the basin, the others on the right side. Using fractals dimension of drainage networks, Horton's laws results, concavity and steepness indexes, and hypsometric curves, this study aims to obtain an evolutionary model of the UTV, where the uplift is compared to local subsidence induced by normal fault activity. The results highlight a well defined difference between western and eastern tributary basins, suggesting a greater disequilibrium in the last ones. The quantitative analysis points out the segments of the basin boundaries where the fault activity is more efficient and the resulting geomorphological implications.

  18. The anthropogenic nature of present-day low energy rivers in western France and implications for current restoration projects

    NASA Astrophysics Data System (ADS)

    Lespez, L.; Viel, V.; Rollet, A. J.; Delahaye, D.

    2015-12-01

    As in other European countries, western France has seen an increase in river restoration projects. In this paper, we examine the restoration goals, methods and objectives with respect to the long-term trajectory and understanding of the contemporary dynamics of the small low energy rivers typical of the lowlands of Western Europe. The exhaustive geomorphological, paleoenvironmental and historical research conducted in the Seulles river basin (Normandy) provides very accurate documentation of the nature and place of the different legacies in the fluvial systems we have inherited. The sedimentation rate in the Seulles valley bottom has multiplied by a factor of 20 since the end of the Bronze Age and has generated dramatic changes in fluvial forms. Hydraulic control of the rivers and valley bottoms drainage throughout the last millennium has channelized rivers within these deposits. The single meandering channel which characterizes this river today is the legacy of the delayed and complex effects of long term exploitation of the river basin and the fluvial system. Bring to light that the "naturalness" of the restored rivers might be questioned. Our research emphasizes the gap between the poor knowledge of the functioning of these rivers and the concrete objectives of the restoration works undertaken, including dam and weir removal. Account of the long-term history of fluvial systems is required, not only to produce a pedagogic history of the "river degradation" but more fundamentally (i) to situate the current functioning of the fluvial system in a trajectory to try to identify thresholds and anticipate the potential turning points in a context of climate and land use change, (ii) to understand the role of morphosedimentary legacies on the current dynamics, (iii) to open the discussion on reference functioning or expected states and (iv) to open discussion on the sustainability of ecological restoration. To conclude, we point out the necessity to take into account the hybrid nature of low energy rivers in rural environments and to develop specific evaluation protocols which would include both biophysical processes and usual human activities which could be a way to share the evaluation and overcome conflicts between socioeconomic needs and environmental issues.

  19. Morphology and spacing of river meander scrolls

    NASA Astrophysics Data System (ADS)

    Strick, Robert J. P.; Ashworth, Philip J.; Awcock, Graeme; Lewin, John

    2018-06-01

    Many of the world's alluvial rivers are characterised by single or multiple channels that are often sinuous and that migrate to produce a mosaicked floodplain landscape of truncated scroll (or point) bars. Surprisingly little is known about the morphology and geometry of scroll bars despite increasing interest from hydrocarbon geoscientists working with ancient large meandering river deposits. This paper uses remote sensing imagery, LiDAR data-sets of meandering scroll bar topography, and global coverage elevation data to quantify scroll bar geometry, anatomy, relief, and spacing. The analysis focuses on preserved scroll bars in the Mississippi River (USA) floodplain but also compares attributes to 19 rivers of different scale and depositional environments from around the world. Analysis of 10 large scroll bars (median area = 25 km2) on the Mississippi shows that the point bar deposits can be categorised into three different geomorphological units of increasing scale: individual 'scrolls', 'depositional packages', and 'point bar complexes'. Scroll heights and curvatures are greatest near the modern channel and at the terminating boundaries of different depositional packages, confirming the importance of the formative main channel on subsequent scroll bar relief and shape. Fourier analysis shows a periodic variation in signal (scroll bar height) with an average period (spacing) of 167 m (range 150-190 m) for the Mississippi point bars. For other rivers, a strong relationship exists between the period of scroll bars and the adjacent primary channel width for a range of rivers from 55 to 2042 mis 50% of the main channel width. The strength of this correlation over nearly two orders of magnitude of channel size indicates a scale independence of scroll bar spacing and suggests a strong link between channel migration and scroll bar construction with apparent regularities despite different flow regimes. This investigation of meandering river dynamics and floodplain patterns shows that it is possible to develop a suite of metrics that describe scroll bar morphology and geometry that can be valuable to geoscientists predicting the heterogeneity of subsurface meandering deposits.

  20. Geotourist itineraries along the Italian territory: examples of mapping the geoheritage in different geomorphological and historical contexts

    NASA Astrophysics Data System (ADS)

    Panizza, Valeria; Brandolini, Pierluigi; Laureti, Lamberto; Nesci, Olivia; Russo, Filippo; Savelli, Daniele

    2016-04-01

    In the framework of the studies dealing with geomorphosites mapping, many researches were carried out in the last years presenting both applied examples and proposals for tourist fruition. Researchers had to face many different challenges in transferring the knowledge about the geomorphological heritage on maps. The most relevant are those concerning the use of maps for tourist promotion, taking into account the requirements of clearness of representation of landforms and also the need of pointing out possible geomorphological hazards along tourist paths. Within the activity of the Working Group "Geomorphosites and Cultural Landscape" of AIGeo (Italian Association of Physical Geography and Geomorphology), some Italian itineraries, focused on the promotion of the geomorphological heritage by means of geotourist maps, are presented. They have the goal of: promoting landscape through its geomorphological and geological heritage; disseminating geoheritage knowledge focusing its relationships with cultural landscape and human history; assessing geomorphological hazards and possible risk situations The proposed itineraries are localised in different Italian regions and they concern: - the area around the remains of the Roman town of Ostra. The town is placed on the left side of the Misa River (Marche region, Italy), atop a stream terrace dating back to the uppermost Pleistocene-early Holocene. Detailed geomorphological field and remote-sensing mapping started in 2015. The surveying is aimed at focusing the geomorphological evolution as well as at assessing possible geomorphological hazard for both conservation and exploitation scopes. A geotourist trail is proposed with the aim of highlighting and integrating geomorphological and archaeological elements and information. - a geotourist trail along the coastal terraced slopes of Cinque Terre (Liguria, NW Italy): worldwide considered as one of the most outstanding examples of human integration with the natural landscape within the Mediterranean region. The Cinque Terre are has been recognized since 1997 as a World Heritage Site by UNESCO and are currently affected by high geomorphological risk. - the territory of the town of Bosa, north-western Sardinia (Italy). From a geological point of view the area is characterized by the outcropping of the Oligo-Miocene volcanic sequence related to the rotational tectonic. The geomorphological survey allowed the reconstruction of the Quaternary evolution and the assessment of the geomorphological heritage. The itinerary proposed wants to promote, by means of a geo-tourist map, the geomorphological heritage in its relationship with the rich cultural context and give all information for a correct and conscious fruition of the landscape. - the vacant railway tract Avellino-Rocchetta S. Antonio (Campania region, Italy): an inland area of the southern Italian Apennine. Here the great diversity of landforms give rise to a rich variety of landscapes, strictly linked with the long archaeological and cultural history, protected, in part, by the institution of regional Parks and other kind of protected areas. - abandoned or deactivated old mines in the Eastern Italian Alps, in order to promote their recovery for tourist or didactic purposes. The aim of the proposed itinerary is to organize its specific fruition as well as the preservation of their environmental and historic heritage.

  1. Geomorphic change and sediment transport during a small artificial flood in a transformed post-dam delta: The Colorado River delta, United States and Mexico

    USGS Publications Warehouse

    Mueller, Erich R.; Schmidt, John C.; Topping, David J.; Shafroth, Patrick B.; Rodríguez-Burgueño, Jesús Eliana; Ramírez-Hernández, Jorge; Grams, Paul E.

    2017-01-01

    The Colorado River delta is a dramatically transformed landscape. Major changes to river hydrology and morpho-dynamics began following completion of Hoover Dam in 1936. Today, the Colorado River has an intermittent and/or ephemeral channel in much of its former delta. Initial incision of the river channel in the upstream ∼50 km of the delta occurred in the early 1940s in response to spillway releases from Hoover Dam under conditions of drastically reduced sediment supply. A period of relative quiescence followed, until the filling of upstream reservoirs precipitated a resurgence of flows to the delta in the 1980s and 1990s. Flow releases during extreme upper basin snowmelt in the 1980s, flood flows from the Gila River basin in 1993, and a series of ever-decreasing peak flows in the late 1990s and early 2000s further incised the upstream channel and caused considerable channel migration throughout the river corridor. These variable magnitude post-dam floods shaped the modern river geomorphology. In 2014, an experimental pulse-flow release aimed at rejuvenating the riparian ecosystem and understanding hydrologic dynamics flowed more than 100 km through the length of the delta’s river corridor. This small artificial flood caused localized meter-scale scour and fill of the streambed, but did not cause further incision or significant bank erosion because of its small magnitude. Suspended-sand-transport rates were initially relatively high immediately downstream from the Morelos Dam release point, but decreasing discharge from infiltration losses combined with channel widening downstream caused a rapid downstream reduction in suspended-sand-transport rates. A zone of enhanced transport occurred downstream from the southern U.S.-Mexico border where gradient increased, but effectively no geomorphic change occurred beyond a point 65 km downstream from Morelos Dam. Thus, while the pulse flow connected with the modern estuary, deltaic sedimentary processes were not restored, and relatively few new open surfaces were created for establishment of native riparian vegetation. Because water in the Colorado River basin is completely allocated, exceptional floods from the Gila River basin are the most likely mechanism for major changes to delta geomorphology for the foreseeable future.

  2. Geochronology and Geomorphology of the Pioneer Archaeological Site (10BT676), Upper Snake River Plain, Idaho

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Keene, Joshua L.

    2015-04-01

    The Pioneer site in southeastern Idaho, an open-air, stratified, multi-component archaeological locality on the upper Snake River Plain, provides an ideal situation for understanding the geomorphic history of the Big Lost River drainage system. We conducted a block excavation with the goal of understanding the geochronological context of both cultural and geomorphological components at the site. The results of this study show a sequence of five soil formation episodes forming three terraces beginning prior to 7200 cal yr BP and lasting until the historic period, preserving one cultural component dated to ~3800 cal yr BP and multiple components dating tomore » the last 800 cal yr BP. In addition, periods of deposition and stability at Pioneer indicate climate fluctuation during the middle Holocene (~7200-3800 cal yr BP), minimal deposition during the late Holocene, and a period of increased deposition potentially linked to the Little Ice Age. In addition, evidence for a high-energy erosion event dated to ~3800 cal yr BP suggest a catastrophic flood event during the middle Holocene that may correlate with volcanic activity at the Craters of the Moon lava fields to the northwest. This study provides a model for the study of alluvial terrace formations in arid environments and their potential to preserve stratified archaeological deposits.« less

  3. Fishes in paleochannels of the Lower Mississippi River alluvial valley: A national treasure

    USGS Publications Warehouse

    Miranda, Leandro E.

    2016-01-01

    Fluvial geomorphology of the alluvial valley of the Lower Mississippi River reveals a fascinating history. A prominent occupant of the valley was the Ohio River, estimated to have flowed 25,000 years ago over western Tennessee and Mississippi to join the Mississippi River north of Baton Rouge, Louisiana, 750–800 km south of the present confluence. Over time, shifts in the Mississippi and Ohio rivers toward their contemporary positions have left a legacy of abandoned paleochannels supportive of unique fish assemblages. Relative to channels abandoned in the last 500 years, paleochannels exhibit harsher environmental conditions characteristic of hypereutrophic lakes and support tolerant fish assemblages. Considering their ecological, geological, and historical importance, coupled with their primordial scenery, the hundreds of paleochannels in the valley represent a national treasure. Altogether, these waterscapes are endangered by human activities and would benefit from the conservation attention afforded to our national parks and wildlife refuges.

  4. On the Topologic Properties of River Networks

    NASA Astrophysics Data System (ADS)

    Sarker, S.; Singh, A.

    2017-12-01

    River network is an important landscape feature and has been studied extensively from a range of geomorphological and hydrological perspective. However, quantifying topologic dynamics and reorganization of river networks is becoming more and more challenging under changing natural and anthropogenic forcings. Here, we use a graph-theoretical approach to study topologic properties of natural and simulated river networks for a range of climatic and tectonic conditions. Among other metrics, we use betweeness and eigenvector centrality distributions computed using adjacency matrix of river networks and show their dependence on energy exponent γ that characterizes mechanism of erosional processes on a landscape. We further compare these topologic characteristics of landscape to geomorphic features such as slope-area curve and drainage density. Furthermore, we identify locations of critical nodes and links on a network as a function of energy exponent γ to understand network robustness and vulnerability under external attacks.

  5. A practical scientific approach to riparian vegetation rehabilitation in Australia.

    PubMed

    Webb, Ashley A; Erskine, Wayne D

    2003-08-01

    The clearance of indigenous riparian vegetation and removal of large woody debris (LWD) from streams combined with the planting of exotic plant species has resulted in widespread detrimental impacts on the fluvial geomorphology and aquatic ecology of Australian rivers. Vegetation exerts a significant influence on fluvial geomorphology by affecting resistance to flow, bank strength, sediment storage, bed stability and stream morphology and is important for aquatic ecosystem function. As the values of indigenous riparian vegetation are becoming better recognised by Australian river managers, large amounts of money and resources are being invested in the planting of indigenous riparian vegetation as part of river rehabilitation programs. This paper summarises the results of an investigation into the survival, growth and regeneration rates of a series of trial native riparian vegetation plantings on in-channel benches in the Hunter Valley of southeastern Australia. The trials were poorly designed for statistical analysis and the paper highlights a number of shortcomings in the methods used. As a result, a new approach to riparian vegetation rehabilitation is outlined that promotes the use of scientific principles and understanding. Appropriate species should be selected using a combination of remnant vegetation surveys, historical records, palynology and field trials. A number of important factors should be considered in the rehabilitation of riparian vegetation to achieve worthwhile results. These include flood disturbance, vegetation zonation, vegetation succession, substrate composition, corridor planting width, planting techniques, native plant regeneration, LWD recruitment and adaptive ecosystem management. This approach, if adopted, revised and improved by river managers, should result in greater success than has been achieved by previous riparian vegetation rehabilitation efforts in Australia.

  6. Regional controls on geomorphology, hydrology, and ecosystem integrity in the Orinoco Delta, Venezuela

    USGS Publications Warehouse

    Warne, A.G.; Meade, R.H.; White, W.A.; Guevara, E.H.; Gibeaut, J.; Smyth, R.C.; Aslan, A.; Tremblay, T.

    2002-01-01

    Interacting river discharge, tidal oscillation, and tropical rainfall across the 22,000 km2 Orinoco delta plain support diverse fresh and brackish water ecosystems. To develop environmental baseline information for this largely unpopulated region, we evaluate major coastal plain, shallow marine, and river systems of northeastern South America, which serves to identify principal sources and controls of water and sediment flow into, through, and out of the Orinoco Delta. The regional analysis includes a summary of the geology, hydrodynamics, sediment dynamics, and geomorphic characteristics of the Orinoco drainage basin, river, and delta system. Because the Amazon River is a major source of sediment deposited along the Orinoco coast, we summarize Amazon water and sediment input to the northeastern South American littoral zone. We investigate sediment dynamics and geomorphology of the Guiana coast, where marine processes and Holocene history are similar to the Orinoco coast. Major factors controlling Orinoco Delta water and sediment dynamics include the pronounced annual flood discharge; the uneven distribution of water and sediment discharge across the delta plain; discharge of large volumes of water with low sediment concentrations through the Rio Grande and Araguao distributaries; water and sediment dynamics associated with the Guayana littoral current along the northeastern South American coast; inflow of large volumes of Amazon sediment to the Orinoco coast; development of a fresh water plume seaward of Boca Grande; disruption of the Guayana Current by Trinidad, Boca de Serpientes, and Gulf of Paria; and the constriction at Boca de Serpientes. ?? 2002 Elsevier Science B.V. All rights reserved.

  7. 3D granulometry: grain-scale shape and size distribution from point cloud dataset of river environments

    NASA Astrophysics Data System (ADS)

    Steer, Philippe; Lague, Dimitri; Gourdon, Aurélie; Croissant, Thomas; Crave, Alain

    2016-04-01

    The grain-scale morphology of river sediments and their size distribution are important factors controlling the efficiency of fluvial erosion and transport. In turn, constraining the spatial evolution of these two metrics offer deep insights on the dynamics of river erosion and sediment transport from hillslopes to the sea. However, the size distribution of river sediments is generally assessed using statistically-biased field measurements and determining the grain-scale shape of river sediments remains a real challenge in geomorphology. Here we determine, with new methodological approaches based on the segmentation and geomorphological fitting of 3D point cloud dataset, the size distribution and grain-scale shape of sediments located in river environments. Point cloud segmentation is performed using either machine-learning algorithms or geometrical criterion, such as local plan fitting or curvature analysis. Once the grains are individualized into several sub-clouds, each grain-scale morphology is determined using a 3D geometrical fitting algorithm applied on the sub-cloud. If different geometrical models can be conceived and tested, only ellipsoidal models were used in this study. A phase of results checking is then performed to remove grains showing a best-fitting model with a low level of confidence. The main benefits of this automatic method are that it provides 1) an un-biased estimate of grain-size distribution on a large range of scales, from centimeter to tens of meters; 2) access to a very large number of data, only limited by the number of grains in the point-cloud dataset; 3) access to the 3D morphology of grains, in turn allowing to develop new metrics characterizing the size and shape of grains. The main limit of this method is that it is only able to detect grains with a characteristic size greater than the resolution of the point cloud. This new 3D granulometric method is then applied to river terraces both in the Poerua catchment in New-Zealand and along the Laonong river in Taiwan, which point clouds were obtained using both terrestrial lidar scanning and structure from motion photogrammetry.

  8. Application of effective discharge analysis to environmental flow decision-making

    USGS Publications Warehouse

    McKay, S. Kyle; Freeman, Mary C.; Covich, A.P.

    2016-01-01

    Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.

  9. Application of Effective Discharge Analysis to Environmental Flow Decision-Making.

    PubMed

    McKay, S Kyle; Freeman, Mary C; Covich, Alan P

    2016-06-01

    Well-informed river management decisions rely on an explicit statement of objectives, repeatable analyses, and a transparent system for assessing trade-offs. These components may then be applied to compare alternative operational regimes for water resource infrastructure (e.g., diversions, locks, and dams). Intra- and inter-annual hydrologic variability further complicates these already complex environmental flow decisions. Effective discharge analysis (developed in studies of geomorphology) is a powerful tool for integrating temporal variability of flow magnitude and associated ecological consequences. Here, we adapt the effectiveness framework to include multiple elements of the natural flow regime (i.e., timing, duration, and rate-of-change) as well as two flow variables. We demonstrate this analytical approach using a case study of environmental flow management based on long-term (60 years) daily discharge records in the Middle Oconee River near Athens, GA, USA. Specifically, we apply an existing model for estimating young-of-year fish recruitment based on flow-dependent metrics to an effective discharge analysis that incorporates hydrologic variability and multiple focal taxa. We then compare three alternative methods of environmental flow provision. Percentage-based withdrawal schemes outcompete other environmental flow methods across all levels of water withdrawal and ecological outcomes.

  10. Assessment of fluvial geomorphological change in the confluence of Chindwin and Ayeyarwady Rivers in Myanmar using remote sensing

    NASA Astrophysics Data System (ADS)

    Piman, T.; Vasconcelos, V. V.; Apirumanekul, C.; Krittasudthacheewa, C.

    2017-12-01

    Bank erosion along the braided stretches of Ayeyarwady and Chindwin Rivers has been one of the main concerns at Sagaing region, in Myanmar, because it threatens villages, infrastructure and farmland, while the consequent sedimentation hampers boat transportation. This study assesses the changes on these two river channels and its sandbanks, in their confluence area. A special focus is given to infer the risk of villages to bank erosion. Landsat images from 1973, 1989, and annual series from 1998 to 2015 were used to evaluate frequency and rates of erosion, deposition and vegetation restabilization. Maps showed where the channels maintained stable and which areas faced bank erosion more frequently. From 1973 to 2015, 30% of the river valley in the studied area faced bank erosion. Although the summed area of the river channel remained relatively stable throughout the period, the rates of bank erosion vs. bank restabilization were higher after 2004. Most of the village area in the in the river valley within the bluffs (89% - 71km2) have not faced bank erosion since 1973, while 8.9% (7 km2) are in vulnerable areas that faced erosion before 2012, and bank erosion destroyed 1.3% (1 km2) of the villages from 2012 to 2015. The average rate of village land loss from bank erosion within the river valley from 1973 to 2012 was 0.18 km2/year, but increased to 0.33km2/year during 2012-2015. The villages located just downstream from the confluence of Chindwin and Ayeyarwady River faced higher problems with bank erosion. Approximately half of the village area (51.5% - 87km2) adjacent to the bluffs (outside the river valley) were facing stable land since 1973 (lowest risk), while 5.8% (10 km2) were facing stable river channel (low risk) and 42.7% (73 km2) were facing areas of unstable river channel (possible risk). As for the biggest urban sites, Monywa and Pakokku face areas of unstable river channel, while Sagaing and Myingyan are safer, facing areas of stable land. A detailed assessment of remote sensing images also showed how Chindwin channel widened progressively due to bank erosion in the direction of Su Lay Kon and Ah Myning villages, in Monywa district. The rapid changes in river geomorphology calls for public's attention on alternative ways to live with these dynamic but important rivers.

  11. Impacts of Declining Mississippi River Sediment Load on Subaqueous Delta Front Sedimentation and Geomorphology

    NASA Astrophysics Data System (ADS)

    Maloney, J. M.; Bentley, S. J.; Xu, K.; Georgiou, I. Y.; Miner, M. D.

    2016-02-01

    The Mississippi River delta system is undergoing unprecedented changes due to the effects of climate change and anthropogenic alterations to the river and its delta. Since the 1950s, the suspended sediment load of the Mississippi River has decreased by approximately 50% due to the construction of >50,000 dams in the Mississippi basin. The impact of this decreased sediment load has been observed in subaerial environments, but the impact on sedimentation and geomorphology of the subaqueous delta front has yet to be examined. To identify historic trends in sedimentation patterns, we compiled bathymetric datasets, including historical charts, industry and academic surveys, and NOAA data, collected between 1764 and 2009. Sedimentation rates are variable across the delta front, but are highest near the mouth of Southwest Pass, which carries the largest percentage of Mississippi River flow and sediment into the Gulf of Mexico. The progradation rate of Southwest Pass (measured at the 10 m depth contour) has slowed from 67 m/yr between 1764 and 1940 to 26 m/yr between 1940 and 1979, with evidence of further deceleration from 1979-2009. Decreased rates of progradation are also observed at South Pass and Pass A Loutre, with the 10 m contour retreating at rates >20 m/yr at both passes. Advancement of the delta front also decelerated in deeper water (15-90 m) offshore from Southwest Pass. In this area, from 1940-1979, depth contours advanced seaward 30 m/yr, but rates declined from 1979-2005. Furthermore, over the same area, the sediment accumulation rate decreased by 81% for the same period. The Mississippi River delta front appears to be entering a phase of decline, which will likely be accelerated by future upstream management practices. This decline has implications for offshore ecosystems, biogeochemical cycling, pollutant dispersal, mudflow hazard, and the continued use of the delta as an economic and population center.

  12. Fluvial geomorphological response along the upland sediment cascade during the record-breaking December 2015 floods, Cumbria, UK

    NASA Astrophysics Data System (ADS)

    Russell, Andrew; Perks, Matthew; Large, Andrew; Dunning, Stuart; Warburton, Jeff

    2016-04-01

    Between 0900 GMT on 4th December and 0900 GMT on 6th December 2015, Atlantic Storm Desmond produced over 260 mm of rainfall in Cumbria, northwest England, representing a new UK 48 hour rainfall maximum, and breaking previous records set in 2005 and 2009. The December 2015 event resulted in a number of rivers significantly exceeding their 2009 levels, over-topping recently-commissioned flood defences, destroying bridges and flooding thousands of homes. Our research aim is to identify factors controlling significant geomorphological and sedimentary response during Storm Desmond along the upland sediment cascade including: Rattling Beck (Glenridding), a high gradient upland stream draining the flanks of Helvellyn (950 m.a.o.d.), and a 25km extended reach of the lower gradient piedmont Derwent River corridor downstream of Bassenthwaite Lake. Rattling Beck descends steeply from the eastern slopes of the Helvellyn massif draining across an alluvial fan into Lake Ullswater. On 5th December 2015 the village of Glenridding was severely impacted by flooding which deposited boulder-sized sediment within the centre of the village, completely blocking the pre-existing stream course and causing avulsion of waning stage flows through riverside properties. A major new sediment lobe was deposited on the existing alluvial fan downstream of the village, grading to the temporarily raised lake water level. Although a number of hillslope failures occurred in the higher catchment, the majority of the sediment transported by Rattling Beck and impacting the village was acquired within a 2km reach upstream of Glenridding through erosion of older glacial and alluvial sediments. Lateral channel erosion was enhanced by inability of flood flows to rework highly resistant boulder bar lag deposits related to a previous mine tailings dam failure in 1927. The River Derwent corridor extends for 30km downstream of Bassenthwaite Lake to the Irish Sea at Workington and has a sinuous course ranging in maximum width from 500m to <150m in reaches narrowed by human modification. Despite the Derwent's relatively low gradient, significant erosional and depositional impacts occurred as a result of Storm Desmond, often reactivating discrete areas along the river corridor that saw major sediment shift and channel alteration in the 2009 floods. 2015 channel avulsions are associated with floodplain erosion principally initiated by the ploughing of, and scour around, large woody debris. Large gravel sheets (< 0.5 km2) characterised by distal slip faces up to 1m high were deposited at river corridor expansions downstream of actively eroding hillslopes and artificially narrowed reaches. Overall, major geomorphological response to Storm Desmond floods in Rattling Beck and the River Derwent is seen to be amplified by centennial-scale human modifications to river corridors and alluvial fans. River corridor engineering on the River Derwent and village construction on Rattling Beck's depositional fan at Glenridding moved both systems out of their natural equilibrium exacerbating the effects of storm-generated flooding on the Derwent (2009, 2015) and Rattling Beck (2015).

  13. Effects of a natural dam-break flood on geomorphology and vegetation on the Elwha River, Washington, U.S.A.

    USGS Publications Warehouse

    Acker, S.A.; Beechie, T.J.; Shafroth, P.B.

    2008-01-01

    Ephemeral dams caused by landslides have been observed around the world, yet little is known about the effects of their failure on landforms and vegetation. In 1967, a landslide-dam-break flood in a pristine reach of the Elwha River valley filled the former channel and diverted the river. The reach is a reference site for restoration following the planned removal of dams on the river. We identified five surfaces on the 25 ha debris fan deposited by the flood. Based on tree ages and historic air photos, three of the surfaces formed in 1967, while two formed later. The surfaces varied in substrate (silt and sand, to boulders), and height above the river channel. Tree mortality resulted from tree removal and burial by sediment, the latter leaving snags and some surviving trees. Tree species composition was generally consistent within each surface. Dominant species included red alder (Alnus rubra) and Sitka willow (Salix sitchensis), alone or in combination, a combination of Douglas-fir (Pseudotsuga menziesii) and black cottonwood (Populus balsamifera ssp. trichocarpa), or a combination of alder and Cottonwood. There were significant differences between surfaces in stem density, basal area, and rate of basal area growth. The large degree of heterogeneity in forest structure, composition, and productivity within a relatively small floodplain feature is in part due to spatial variability in the intensity of a single disturbance event, and in part due to the occurrence of subsequent, smaller events. To recreate natural diversity of riparian forests may require mimicking the variety of physical and biotic habitats that a single, complex disturbance event may create.

  14. Characterization and quantification of suspended sediment sources to the Manawatu River, New Zealand.

    PubMed

    Vale, S S; Fuller, I C; Procter, J N; Basher, L R; Smith, I E

    2016-02-01

    Knowledge of sediment movement throughout a catchment environment is essential due to its influence on the character and form of our landscape relating to agricultural productivity and ecological health. Sediment fingerprinting is a well-used tool for evaluating sediment sources within a fluvial catchment but still faces areas of uncertainty for applications to large catchments that have a complex arrangement of sources. Sediment fingerprinting was applied to the Manawatu River Catchment to differentiate 8 geological and geomorphological sources. The source categories were Mudstone, Hill Subsurface, Hill Surface, Channel Bank, Mountain Range, Gravel Terrace, Loess and Limestone. Geochemical analysis was conducted using XRF and LA-ICP-MS. Geochemical concentrations were analysed using Discriminant Function Analysis and sediment un-mixing models. Two mixing models were used in conjunction with GRG non-linear and Evolutionary optimization methods for comparison. Discriminant Function Analysis required 16 variables to correctly classify 92.6% of sediment sources. Geological explanations were achieved for some of the variables selected, although there is a need for mineralogical information to confirm causes for the geochemical signatures. Consistent source estimates were achieved between models with optimization techniques providing globally optimal solutions for sediment quantification. Sediment sources was attributed primarily to Mudstone, ≈38-46%; followed by the Mountain Range, ≈15-18%; Hill Surface, ≈12-16%; Hill Subsurface, ≈9-11%; Loess, ≈9-15%; Gravel Terrace, ≈0-4%; Channel Bank, ≈0-5%; and Limestone, ≈0%. Sediment source apportionment fits with the conceptual understanding of the catchment which has recognized soft sedimentary mudstone to be highly susceptible to erosion. Inference of the processes responsible for sediment generation can be made for processes where there is a clear relationship with the geomorphology, but is problematic for processes which occur within multiple terrains. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Landslides in the Central Coalfield (Cantabrian Mountains, NW Spain): Geomorphological features, conditioning factors and methodological implications in susceptibility assessment

    NASA Astrophysics Data System (ADS)

    Domínguez-Cuesta, María José; Jiménez-Sánchez, Montserrat; Berrezueta, Edgar

    2007-09-01

    A geomorphological study focussing on slope instability and landslide susceptibility modelling was performed on a 278 km 2 area in the Nalón River Basin (Central Coalfield, NW Spain). The methodology of the study includes: 1) geomorphological mapping at both 1:5000 and 1:25,000 scales based on air-photo interpretation and field work; 2) Digital Terrain Model (DTM) creation and overlay of geomorphological and DTM layers in a Geographical Information System (GIS); and 3) statistical treatment of variables using SPSS and development of a logistic regression model. A total of 603 mass movements including earth flow and debris flow were inventoried and were classified into two groups according to their size. This study focuses on the first group with small mass movements (10 0 to 10 1 m in size), which often cause damage to infrastructures and even victims. The detected conditioning factors of these landslides are lithology (soils and colluviums), vegetation (pasture) and topography. DTM analyses show that high instabilities are linked to slopes with NE and SW orientations, curvature values between - 6 and - 0.7, and slope values from 16° to 30°. Bedrock lithology (Carboniferous sandstone and siltstone), presence of Quaternary soils and sediments, vegetation, and the topographical factors were used to develop a landslide susceptibility model using the logistic regression method. Application of "zoom method" allows us to accurately detect small mass movements using a 5-m grid cell data even if geomorphological mapping is done at a 1:25,000 scale.

  16. The human role in changing river channels

    NASA Astrophysics Data System (ADS)

    Gregory, K. J.

    2006-09-01

    Direct consequences of the human role, where human activity affects river channels through engineering works including channelization, dam construction, diversion and culverting, have been long recognised [Marsh, G.P., 1864. Man and Nature or Physical Geography as Modified by Human Action. Charles Scribner, New York; Thomas Jr., W.L., (ed.) 1956. Man's Role in Changing the Face of the Earth. Chicago, University of Chicago Press, Chicago.]. The less obvious indirect effects of point and reach changes occurring downstream and throughout the basin, however, are much more recently appreciated, dating from key contributions by Strahler [Strahler, A.N., 1956. The nature of induced erosion and aggradation. In W. L. Thomas (Ed.), Man's Role in Changing the Face of the Earth. University of Chicago Press, Chicago, 621-638.], Wolman [Wolman, M.G., 1967. A cycle of sedimentation and erosion in urban river channels. Geografiska Annaler 49A, 385-95.], Schumm [Schumm, S.A., 1969. River metamorphosis. Proceedings American Society of Civil Engineers, Journal Hydraulics Division 95, 255-73.], and Graf [Graf, W.L., 1977. The rate law in fluvial geomorphology. American Journal of Science, 277, 178-191.]. These are complemented by effects of alterations of land use, such as deforestation, intensive agriculture and incidence of fire, with the most extreme effects produced by building activity and urbanisation. Changing river channels are most evident in the channel cross-section where changes of size, shape and composition are now well-established, with up to tenfold increases or decreases illustrated by results from more than 200 world studies. In addition the overall channel planform, the network and the ecology have changed. Specific terms have become associated with changing river channels including enlargement, shrinkage and metamorphosis. Although the scope of adjustment has been established, it has not always been possible to predict what will happen in a particular location, because of complex response and contingency. The ways in which changes in cross-section relate to reach and network changes are less clear, despite investigations showing the distribution of changes along segmented channels. When considering the human role in relation to changing river channels, at least five challenges persist. First, because prediction of the nature and amount of likely change at a particular location is not certain, and because the contrasting responses of humid and arid systems needs to be considered, modelling is required to reduce uncertainty, as was first emphasised by Burkham [Burkham, D.E., 1981. Uncertainties resulting from changes in river form. American Society Civil Engineers Proceedings, Journal Hydraulics Division 107, 593-610.]. Second, feedback effects incorporated within the relationship between changes at channel, reach and network scales can have considerable implications, especially because changes now evident may have occurred, or have been initiated, under different environmental conditions. Third, consideration of global climate change is imperative when considering channel sensitivity and responses to threshold conditions. Fourth, channel design involving geomorphology should now be an integral part of restoration procedures. This requires, fifthly, greater awareness of different cultures as a basis for understanding constraints imposed by legislative frameworks. Better understanding of the ways in which the perception of the human role in changing river channels varies with culture as well as varying over time should enhance application of design for river channel landscapes.

  17. What do you mean, 'resilient geomorphic systems'?

    NASA Astrophysics Data System (ADS)

    Thoms, M. C.; Piégay, H.; Parsons, M.

    2018-03-01

    Resilience thinking has many parallels in the study of geomorphology. Similarities and intersections exist between the scientific discipline of geomorphology and the scientific concept of resilience. Many of the core themes fundamental to geomorphology are closely related to the key themes of resilience. Applications of resilience thinking in the study of natural and human systems have expanded, based on the fundamental premise that ecosystems, economies, and societies must be managed as linked social-ecological systems. Despite geomorphology and resilience sharing core themes, appreciation is limited of the history and development of geomorphology as a field of scientific endeavor by many in the field of resilience, as well as a limited awareness of the foundations of the former in the more recent emergence of resilience. This potentially limits applications of resilience concepts to the study of geomorphology. In this manuscript we provide a collective examination of geomorphology and resilience as a means to conceptually advance both areas of study, as well as to further cement the relevance and importance of not only understanding the complexities of geomorphic systems in an emerging world of interdisciplinary challenges but also the importance of viewing humans as an intrinsic component of geomorphic systems rather than just an external driver. The application of the concepts of hierarchy and scale, fundamental tenets of the study of geomorphic systems, provide a means to overcome contemporary scale-limited approaches within resilience studies. Resilience offers a framework for geomorphology to expand its application into the broader social-ecological domain.

  18. Heavy mineral analyses as a powerful tool in fluvial geomorphology

    NASA Astrophysics Data System (ADS)

    von Suchodoletz, Hans; Gärtner, Andreas; Faust, Dominik

    2014-05-01

    The Marneuli depression is a tectonic sub-basin of the Transcaucasian depression in eastern Georgia, filled with several decametres of fluvial, lacustrine and aeolian Quaternary sediments. In order to reconstruct past landscape evolution of the region we studied Late Quaternary fluvial sediments found along several rivers that flow through that depression. Whereas Holocene river sediments could generally easily be assigned to corresponding rivers, this was not always the case for older fluvial sediments. For this reason, we studied the heavy mineral contents of five recent rivers and of four sedimentary deposits of potential precursors. A total of 4088 analysed heavy mineral grains enabled us to set up the characteristic heavy mineral distribution pattern for each sample. Using these data, we were able to reconstruct the most likely source areas of the Late Pleistocene fluvial sediments and to link them with the catchment areas of recent rivers. This allowed us to identify and to substantiate significant Late Quaternary river diversions that could at least partly be assigned to ongoing tectonic processes.

  19. Historic (1940 to present) changes in Lillooet River planform (BC, Canada)

    NASA Astrophysics Data System (ADS)

    Zei, Caterina

    2017-04-01

    Historic (1940 to present) changes in Lillooet River planform (BC, Canada) Zei C.*, Giardino M.*, Perotti L.*, Roberti G.***, **Ward B.C.**, Clague J.J.** *Department of Earth Sciences, Geositlab, Università degli Studi di Torino, Torino, Italia; **Department of Earth Sciences, Simon Fraser University, Burnaby, British Columbia, Canada ***Université Blaise Pascal - Laboratoire Magmas et Volcans Clermont-Ferrand, France We conducted a geomorphological study of changes in the planform of Lillooet River (Coast Mountain, British Columbia, Canada) over the past 75 years. The study involved identification and interpretations of channel changes in the reach of the river between Mount Meager (the source of the landslide) and Pemberton Meadows. Lillooet River flows about 95 km southeast from its headwaters at Lillooet Glacier to Lillooet Lake near Pemberton, the largest community in the valley. Between the mouth of Meager Creek and Pemberton Meadows, the river is unregulated and has a braided planform resulting from the very high delivery of sediment due to frequent landslides and debris flows sourced on the Mount Meager volcanic complex. Below Pemberton Meadows, the river occupies a single channel confined between dikes. A rich archive of historical vertical aerial photographs exists for the study area, In addition, a high-resolution digital elevation model was produced from LiDAR data acquired in 2015. We processed each set of photos dating back to 1940 with the software Agisoft Photoscan to produce high resolution orthophotos. Analysis of these datasets, complemented with field investigation, showed that the river channel in the braided reach shifted laterally up to 550 m between 1981 and 2010; likely caused in part by five floods with peak discharges of more than 800 m^3/s and four landslides on the flanks of Mount Meager massif with volumes up to 13 x 106 m^3. Channel avulsions were probably triggered by accumulation of in-channel rafts of coarse woody debris and are particularly evident in photos taken soon after floods. We conclude that significant changes in river morphology and sediment supply are episodic and related to large landslides and floods. This study is providing information that is relevant for managing flood hazards in the Lillooet River valley.

  20. Recent sediment studies refute Glen Canyon Dam hypothesis

    USGS Publications Warehouse

    Rubin, David M.; Topping, David J.; Schmidt, John C.; Hazel, Joe; Kaplinski, Matt; Melis, Theodore S.

    2002-01-01

    Recent studies of sedimentology hydrology, and geomorphology indicate that releases from Glen Canyon Dam are continuing to erode sandbars and beaches in the Colorado River in Grand Canyon National Park, despite attempts to restore these resources. The current strategy for dam operations is based on the hypothesis that sand supplied by tributaries of the Colorado River downstream from the dam will accumulate in the channel during normal dam operations and remain available for restoration floods. Recent work has shown that this hypothesis is false, and that tributary sand inputs are exported downstream rapidly typically within weeks or months under the current flow regime.

  1. Dynamics of Bottomland Geomorphology and Vegetation Along a Dammed, Arid Region River: Implications for Streamflow Management

    NASA Astrophysics Data System (ADS)

    Shafroth, P. B.; House, P. K.

    2007-05-01

    In arid and semiarid western North America, floodplain forests dominated by native cottonwood and willow trees are highly valued as wildlife habitat and preferred recreation sites and are thus the focus of conservation efforts. The Bill Williams River harbors some of the most extensive native floodplain forests in the lower Colorado River region. Our work is aimed at understanding the dynamics of the Bill Williams River floodplain forests, in the context of pre- and post-dam hydrology and geomorphology. We have mapped bottomland geomorphology and vegetation using seven sets of orthorectified aerial photographs spanning more than 50 years. Two sets of photos (1953 and 1964) pre-date the completion of Alamo Dam, a large flood control structure; and three sets of photos (1996, 2002, and 2005) are from an era during which streamflow downstream of the dam has been managed to promote the establishment and survival of native floodplain forest. Comparison of the aerial photographs to LiDAR data collected in 2005 is providing a framework for quantifying changes in valley bottom morphology and estimating reach-scale changes in volumes of stored and evacuated sediment between 1953 and 2005. Furthermore, comparison of the extent of pre-dam active channel in 1953 with the extent of floodwaters from a regulated moderate flood in 2005 provides an approximation of the predominant patterns of aggradation and degradation in the system over this interval of time. Flood magnitude on the Bill Williams has been dramatically reduced since the closure of Alamo Dam in 1968, and low flows have increased considerably since 1979. Channels along the Bill Williams R. narrowed an average of 111 m (71 %) between 1953 and 1987, with most narrowing occurring after dam closure. Multiple regression analysis revealed significant relationships among flood power, summer flows, intermittency (independent variables) and channel width (dependent variable). Concurrent with channel narrowing was an expansion of dense floodplain vegetation, consisting primarily of native cottonwood and willow and non-native tamarisk shrubs. Moderate flood releases (~7000 ft3/s) from Alamo Dam in the early 1990's widened the river channel and resulted in the establishment of new woody vegetation. For the following nine years, relatively steady, low discharges were released from the dam, resulting in channel narrowing, extensive beaver pond creation, and dense vegetation growth. Moderate flood releases in 2005 again widened channels, destroyed beaver ponds, and created conditions suitable for new vegetation establishment. In addition to understanding the specific conditions along the Bill Williams River, our work should contribute to a more general understanding of connections between fluvial processes and floodplain vegetation, in the contexts of geomorphic response downstream of a large dam and efforts to manage streamflow for ecological benefits downstream.

  2. Hyporheic zone hydrologic science: A historical account of its emergence and a prospectus

    NASA Astrophysics Data System (ADS)

    Cardenas, M. Bayani

    2015-05-01

    The hyporheic zone, defined by shallow subsurface pathways through river beds and banks beginning and ending at the river, is an integral and unique component of fluvial systems. It hosts myriad hydrologically controlled processes that are potentially coupled in complex ways. Understanding these processes and the connections between them is critical since these processes are not only important locally but integrate to impact increasingly larger scale biogeochemical functioning of the river corridor up to the river network scale. Thus, the hyporheic zone continues to be a growing research focus for many hydrologists for more than half the history of Water Resources Research. This manuscript partly summarizes the historical development of hyporheic zone hydrologic science as gleaned from papers published in Water Resources Research, from the birth of the concept of the hyporheic zone as a hydrologic black box (sometimes referred to as transient storage zone), to its adolescent years of being torn between occasionally competing research perspectives of interrogating the hyporheic zone from a surface or subsurface view, to its mature emergence as an interdisciplinary research field that employs the wide array of state-of-the-art tools available to the modern hydrologist. The field is vibrant and moving in the right direction of addressing critical fundamental and applied questions with no clear end in sight in its growth. There are exciting opportunities for scientists that are able to tightly link the allied fields of geology, geomorphology, hydrology, geochemistry, and ecology to tackle the many open problems in hyporheic zone science.

  3. Towards sustainable management of Louisiana's coastal wetland forests: problems, constraints, and a new beginning

    Treesearch

    J.L. Chambers; W.H. Conner; R.F. Keim; S.P. Faulkner; J.W. Day; E.S. Gardiner; M.S. Hughes; S.L. King; K.W. McLeod; C.A. Miller; J.A. Nyman; G.P. Shaffer

    2006-01-01

    Over 345,000 ha of forested swamps occur throughout the Mississippi River Deltaic Plain. Natural and anthropogenic changes in hydrology and geomorphology at local and landscape levels have reduced the productivity in many of these coastal wetland forests areas and have caused the complete loss of forest cover in some places. A summary and interpretation of the...

  4. Merriwether Cherokee Potamology Study

    DTIC Science & Technology

    2017-05-01

    reference only and do not directly correlate to flow hydrographs created and utilized for this study . MRG&P Report No. 9 58 Figure 2-30...Mississippi Valley Division Engineer Research and Development Center Merriwether-Cherokee Potamology Study MRG&P Report No. 9 • May 2017...Mississippi River Geomorphology & Potamology (MRG&P) Program MRG&P Report No. 9 May 2017 Merriwether-Cherokee Potamology Study Brian M. Hall

  5. Archaeology, Geomorphology and Historic Surveys in Pools 13-14, Upper Mississippi River. Volume 1

    DTIC Science & Technology

    1989-09-01

    sold for $5, $10, or $50 an acre. Townsites were platted by the hundreds: In some embryo towns, corner lots sold for $500 in the morning might be sold...Mexico in the name of "Manifest Destiny " secures California and much of northern Mex ico for the United I States. 1848 California Gold Rush., Gold is

  6. [Mangrove dynamics in the Cispata lagoon system (Colombian Caribbean) during last 900 years].

    PubMed

    Castaño, Ana; Urrego, Ligia; Bernal, Gladys

    2010-12-01

    The lagoon complex of Cispatá (old Sinú river delta) located at the Northwestern coast of the Colombian Caribbean, encloses one of the biggest mangrove areas in this region. This area has changed during the last 330 years because of several environmental and climatic causes, mainly changes in the position of the delta (Sinú River), which is the main freshwater source in this area, and sea level rise. We hypothesized that the climatic and geomorphologic dynamics has caused changes in the extension and composition of mangrove vegetation, especially during last 150 years. The dynamics of mangroves during the last 900 years was reconstructed based on the changes in the stratigraphy, pollen record, calcite concentrations (CaCO3) and C/N ratio, along two sediment cores from La Flotante and Navio lagoons, located in Cispatá complex. The age model was built based on lineal interpolation of 210Pb ages and changes in granulometry. Establishment and expansion of mangrove forests during the last 900 years were related to fluviomarine dynamics in the area and the lagoon formation. During the period encompassed between 1064 and 1762 A.D., the Mestizos spit was formed when marine conditions predominated in the surroundings of La Flotante Lagoon. At the site of Navío, a river dominated lagoon, terrigenous conditions dominated since 1830. Although the colonization of herbaceous pioneer vegetation started between 1142 and 1331 A.D., mangrove colonization only took place since 1717 A.D. Mangrove colonization was a result of the delta progradation. In 1849 A.D. the Sinú river delta migrated to the Cispatá bay. The eustatic sea level rise, the increase in river discharges and sedimentation rates produced the establishment of mangrove forests dominated by Rhizophora since 1849. Since 1900 a marine intrusion was recorded in both lagoons. In 1938, the migration of the delta toward its actual location in Tinajones gave place to the formation of the present lagoon system and to the expansion of mangrove forests, which reflects the balance between the high alluvial sediment input and the current sea level rise as has been recorded in similar ecosystems.

  7. Landscape trajectories during the Lateglacial and the Holocene in the Loir River Valley (France) : the contribution of Geoarchaeology

    NASA Astrophysics Data System (ADS)

    Piana, Juliene

    2015-04-01

    A multidisciplinary research has been initiated in the Loir River valley where investigations revealed high-potential fluvial records and landforms for environmental and socio-environmental reconstructions. Investigations provide the opportunity to reconstruct landscape trajectories between climate, environmental and societal changes during the last 16000 years, using geoarchaeological and archaeogeographical approaches: sedimentology, soil micromorphology, geochemistry, archaeology, geomatics, geochronology (AGES Program: Ancient Geomorphological EvolutionS of Loire Basin hydrosystem). In the sector of Vaas (Sarthe, France) the research on the Lateglacial and the Holocene sedimentary sequences from the alluvial plain leads to a general overview of the valley evolution from the end of the Weichselian Upper Pleniglacial to the Present. Joined to archaeological (Protohistoric and Antic sites) and historical data (engineering archives, 18th century cadastral registers) this research highlights the importance of anthropogenic and geomorphological heritages in the current fluvial landscape (microtopography, wetlands, archaeological remains, land use). This knowledge constitutes a basis for skills transfer to planners and managers, in sustainable management of hydrological resources (reducing the vulnerability to flooding and low flows), preservation of biodiversity (wetlands protection) and valorization of landscapes (cultural tourism development).

  8. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil

    PubMed Central

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J.

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns. PMID:27171522

  9. Geomorphology Drives Amphibian Beta Diversity in Atlantic Forest Lowlands of Southeastern Brazil.

    PubMed

    Luiz, Amom Mendes; Leão-Pires, Thiago Augusto; Sawaya, Ricardo J

    2016-01-01

    Beta diversity patterns are the outcome of multiple processes operating at different scales. Amphibian assemblages seem to be affected by contemporary climate and dispersal-based processes. However, historical processes involved in present patterns of beta diversity remain poorly understood. We assess and disentangle geomorphological, climatic and spatial drivers of amphibian beta diversity in coastal lowlands of the Atlantic Forest, southeastern Brazil. We tested the hypothesis that geomorphological factors are more important in structuring anuran beta diversity than climatic and spatial factors. We obtained species composition via field survey (N = 766 individuals), museum specimens (N = 9,730) and literature records (N = 4,763). Sampling area was divided in four spatially explicit geomorphological units, representing historical predictors. Climatic descriptors were represented by the first two axis of a Principal Component Analysis. Spatial predictors in different spatial scales were described by Moran Eigenvector Maps. Redundancy Analysis was implemented to partition the explained variation of species composition by geomorphological, climatic and spatial predictors. Moreover, spatial autocorrelation analyses were used to test neutral theory predictions. Beta diversity was spatially structured in broader scales. Shared fraction between climatic and geomorphological variables was an important predictor of species composition (13%), as well as broad scale spatial predictors (13%). However, geomorphological variables alone were the most important predictor of beta diversity (42%). Historical factors related to geomorphology must have played a crucial role in structuring amphibian beta diversity. The complex relationships between geomorphological history and climatic gradients generated by the Serra do Mar Precambrian basements were also important. We highlight the importance of combining spatially explicit historical and contemporary predictors for understanding and disentangling major drivers of beta diversity patterns.

  10. Combining historical and geomorphological information to investigate earthquake induced landslides

    NASA Astrophysics Data System (ADS)

    Cardinali, M.; Ferrari, G.; Galli, M.; Guidoboni, E.; Guzzetti, F.

    2003-04-01

    Landslides are caused by many different triggers, including earthquakes. In Italy, a detailed new generation catalogue of information on historical earthquakes for the period 461 B.C to 1997 is available (Catalogue of Strong Italian Earthquakes from 461 B.C. to 1997, ING-SGA 2000). The catalogue lists 548 earthquakes and provides information on a total of about 450 mass-movements triggered by 118 seismic events. The information on earthquake-induced landslides listed in the catalogue was obtained through the careful scrutiny of historical documents and chronicles, but was rarely checked in the field. We report on an attempt to combine the available historical information on landslides caused by earthquakes with standard geomorphological techniques, including the interpretation of aerial photographs and field surveys, to better determine the location, type and distribution of seismically induced historical slope failures. We present four examples in the Central Apennines. The first example describes a rock slide triggered by the 1279 April 30 Umbria-Marche Apennines earthquake (Io = IX) at Serravalle, along the Chienti River (Central Italy). The landslide is the oldest known earthquake-induced slope failure in Italy. The second example describes the location of 2 large landslides triggered by the 1584 September 10 earthquake (Io = IX) at San Piero in Bagno, along the Savio River (Northern Italy). The landslides were subsequently largely modified by mass movements occurred on 1855 making the recognition of the original seismically induced failures difficult, if not impossible. In the third example we present the geographical distribution of the available information on landslide events triggered by 8 earthquakes in Central Valnerina, in the period 1703 to 1979. A comparison with the location of landslides triggered by the September-October 1997 Umbria-Marche earthquake sequence is presented. The fourth example describes the geographical distribution of the available information on landslides triggered by the great 1915 January 13 Marsica (Central Italy) earthquake (Io = XI) mostly along the Liri River valley. Problems encountered in matching the recent historical information with the local geomorphological setting are discussed. A critical analysis of the four studied examples allows general considerations on the advantages and limitations of a combined historical and geomorphological approach to investigate past earthquake induced landslides. Lastly, a preliminary analysis of the relationship between the earthquake intensity and the distance of the known slope failures to the triggering earthquake epicentres is presented, for the four investigated areas and for the entire catalogue of historical earthquakes.

  11. Geomorphic changes in Ras Al-Subiyah area, Kuwait

    NASA Astrophysics Data System (ADS)

    Al Hurban, A.; El-Gamily, H.; El-Sammak, A.

    2008-06-01

    The Ras Al-Subiyah area is considered one of the most promising areas in Kuwait for future development. This development will include a new town called Subiyah and its associated infrastructure. This area is also being considered as the location for connection between Boubyan Island, which is now undergoing major development and the Kuwait mainland. The present study investigates the geomorphology of the Ras Al-Sabiyah area in the northern sector of Kuwait. The study area is generally flat, and it is located west of the Jal Az-Zor escarpment. It is bordered on the east by the Khor Al-Sabiyah tidal channel and on the south by Kuwait Bay. The area receives sediments from several sources; currently the most important are aeolian sediments and the deposition of mud delivered through the Khor Al-Sabiyah from the Iraqi marshes. The study area has been subjected to severe environmental changes due to the Gulf wars and the drainage of Iraqi marshes and the associated artificial changes in fluvial system. Twenty-two surface sediments were collected from the Ras Al-Subiyah area. Samples were collected to include the main geomorphologic characteristic features of the study area. Field observations and remote sensing images from 1990 and 2001 were used to produce an updated geomorphologic map for the Ras Al-Subiyah and a map showing geomorphic changes between 1990 and 2001. Grain size of the surface sediment ranges from gravel to medium sand. In general, grain size statistical analysis indicates that most of the areas are composed of two or more classes of sands transported and deposited from different sources including aeolian, sabkhas, river and the bays. The variability in the grain size statistical parameters may be attributed to the complexity of surface morphology as well as the diversity in the type of depositional environment in the Ras Al-Subiyah area. The total area subjected to change during the 12-year period (1990 2001) is about 32 km2 as calculated using GIS techniques.

  12. The role of rivers in ancient societies, or how man transformed the alluvial landscapes of Khuzestan (SW Iran)

    NASA Astrophysics Data System (ADS)

    Walstra, J.; Heyvaert, V.; Verkinderen, P.

    2012-04-01

    For many thousands of years the alluvial plains of Khuzestan (SW Iran) have been subject to intensive settlement and agriculture. Ancient societies depended on the position of major rivers for their economic survival and hence, there is ample evidence of human activities trying to control the distribution of water. Throughout the plains ancient irrigation and settlement patterns are visible, although traces are rapidly disappearing due to expanding modern land use. Aim of this study is to unlock and integrate the rich information on landscape and archaeology, which only survives through the available historical imagery and some limited archaeological surveys. A GIS-based geomorphological mapping procedure was developed, using a variety of imagery, including historical aerial photographs, CORONA, Landsat and SPOT images. In addition, supported by the evidence from previous geological field surveys, archaeological elements were identified, mapped and included in a GIS database. The resulting map layers display the positions of successive palaeochannel belts and extensive irrigation networks, together indicating a complex alluvial history characterized by avulsions and significant human impact. As shown in several case-studies, integrating information from multiple disciplines provides valuable insights in the complex landscape evolution of this region, both from geological and historical perspectives. Remote sensing and GIS are essential tools in such a research context. The presented work was undertaken within the framework of the Interuniversity Attraction Pole "Greater Mesopotamia: Reconstruction of its Environment and History" (IAP 6/34), funded by the Belgian Science Policy.

  13. How big of an effect do small dams have? Using geomorphological footprints to quantify spatial impact of low-head dams and identify patterns of across-dam variation

    USGS Publications Warehouse

    Fencl, Jane S.; Mather, Martha E.; Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams.

  14. Seasonal and inter-annual dynamics of suspended sediment at the mouth of the Amazon river: The role of continental and oceanic forcing, and implications for coastal geomorphology and mud bank formation

    NASA Astrophysics Data System (ADS)

    Gensac, Erwan; Martinez, Jean-Michel; Vantrepotte, Vincent; Anthony, Edward J.

    2016-04-01

    Fine-grained sediments supplied to the Ocean by the Amazon River and their transport under the influence of continental and oceanic forcing drives the geomorphic change along the 1500 km-long coast northward to the Orinoco River delta. The aim of this study is to give an encompassing view of the sediment dynamics in the shallow coastal waters from the Amazon River mouth to the Capes region (northern part of the Amapa region of Brazil and eastern part of French Guiana), where large mud banks are formed. Mud banks are the overarching features in the dynamics of the Amazon-Orinoco coast. They start migrating northward in the Capes region. Suspended Particulate Matter (SPM) concentrations were calculated from satellite products (MODIS Aqua and Terra) acquired over the period 2000-2013. The Census-X11 decomposition method used to discriminate short-term, seasonal and long-term time components of the SPM variability has rendered possible a robust analysis of the impact of continental and oceanic forcing. Continental forcing agents considered are the Amazon River water discharge, SPM concentration and sediment discharge. Oceanic forcing comprises modelled data of wind speed and direction, wave height and direction, and currents. A 150 km-long area of accretion is detected at Cabo Norte that may be linked with a reported increase in the river's sediment discharge concurrent with the satellite data study period. We also assess the rate of mud bank migration north of Cabo Norte, and highlight its variability. Although we confirm a 2 km y-1 migration rate, in agreement with other authors, we show that this velocity may be up to 5 km y-1 along the Cabo Orange region, and we highlight the effect of water discharge by major rivers debouching on this coastal mud belt in modulating such rates. Finally, we propose a refined sediment transport pattern map of the region based on our results and of previous studies in the area such as the AMASSEDS programme, and discuss the relationship between sediment transport and accumulation patterns and the coastal geomorphology of this region.

  15. How Big of an Effect Do Small Dams Have? Using Geomorphological Footprints to Quantify Spatial Impact of Low-Head Dams and Identify Patterns of Across-Dam Variation

    PubMed Central

    Costigan, Katie H.; Daniels, Melinda D.

    2015-01-01

    Longitudinal connectivity is a fundamental characteristic of rivers that can be disrupted by natural and anthropogenic processes. Dams are significant disruptions to streams. Over 2,000,000 low-head dams (<7.6 m high) fragment United States rivers. Despite potential adverse impacts of these ubiquitous disturbances, the spatial impacts of low-head dams on geomorphology and ecology are largely untested. Progress for research and conservation is impaired by not knowing the magnitude of low-head dam impacts. Based on the geomorphic literature, we refined a methodology that allowed us to quantify the spatial extent of low-head dam impacts (herein dam footprint), assessed variation in dam footprints across low-head dams within a river network, and identified select aspects of the context of this variation. Wetted width, depth, and substrate size distributions upstream and downstream of six low-head dams within the Upper Neosho River, Kansas, United States of America were measured. Total dam footprints averaged 7.9 km (3.0–15.3 km) or 287 wetted widths (136–437 wetted widths). Estimates included both upstream (mean: 6.7 km or 243 wetted widths) and downstream footprints (mean: 1.2 km or 44 wetted widths). Altogether the six low-head dams impacted 47.3 km (about 17%) of the mainstem in the river network. Despite differences in age, size, location, and primary function, the sizes of geomorphic footprints of individual low-head dams in the Upper Neosho river network were relatively similar. The number of upstream dams and distance to upstream dams, but not dam height, affected the spatial extent of dam footprints. In summary, ubiquitous low-head dams individually and cumulatively altered lotic ecosystems. Both characteristics of individual dams and the context of neighboring dams affected low-head dam impacts within the river network. For these reasons, low-head dams require a different, more integrative, approach for research and management than the individualistic approach that has been applied to larger dams. PMID:26540105

  16. Geology and geomorphology of Bear Lake Valley and upper Bear River, Utah and Idaho

    USGS Publications Warehouse

    Reheis, M.C.; Laabs, B.J.C.; Kaufman, D.S.

    2009-01-01

    Bear Lake, on the Idaho-Utah border, lies in a fault-bounded valley through which the Bear River flows en route to the Great Salt Lake. Surficial deposits in the Bear Lake drainage basin provide a geologic context for interpretation of cores from Bear Lake deposits. In addition to groundwater discharge, Bear Lake received water and sediment from its own small drainage basin and sometimes from the Bear River and its glaciated headwaters. The lake basin interacts with the river in complex ways that are modulated by climatically induced lake-level changes, by the distribution of active Quaternary faults, and by the migration of the river across its fluvial fan north of the present lake. The upper Bear River flows northward for ???150 km from its headwaters in the northwestern Uinta Mountains, generally following the strike of regional Laramide and late Cenozoic structures. These structures likely also control the flow paths of groundwater that feeds Bear Lake, and groundwater-fed streams are the largest source of water when the lake is isolated from the Bear River. The present configuration of the Bear River with respect to Bear Lake Valley may not have been established until the late Pliocene. The absence of Uinta Range-derived quartzites in fluvial gravel on the crest of the Bear Lake Plateau east of Bear Lake suggests that the present headwaters were not part of the drainage basin in the late Tertiary. Newly mapped glacial deposits in the Bear River Range west of Bear Lake indicate several advances of valley glaciers that were probably coeval with glaciations in the Uinta Mountains. Much of the meltwater from these glaciers may have reached Bear Lake via groundwater pathways through infiltration in the karst terrain of the Bear River Range. At times during the Pleistocene, the Bear River flowed into Bear Lake and water level rose to the valley threshold at Nounan narrows. This threshold has been modified by aggradation, downcutting, and tectonics. Maximum lake levels have decreased from as high as 1830 m to 1806 m above sea level since the early Pleistocene due to episodic downcutting by the Bear River. The oldest exposed lacustrine sediments in Bear Lake Valley are probably of Pliocene age. Several high-lake phases during the early and middle Pleistocene were separated by episodes of fluvial incision. Threshold incision was not constant, however, because lake highstands of as much as 8 m above bedrock threshold level resulted from aggradation and possibly landsliding at least twice during the late-middle and late Pleistocene. Abandoned stream channels within the low-lying, fault-bounded region between Bear Lake and the modern Bear River show that Bear River progressively shifted northward during the Holocene. Several factors including faulting, location of the fluvial fan, and channel migration across the fluvial fan probably interacted to produce these changes in channel position. Late Quaternary slip rates on the east Bear Lake fault zone are estimated by using the water-level history of Bear Lake, assuming little or no displacement on dated deposits on the west side of the valley. Uplifted lacustrine deposits representing Pliocene to middle Pleistocene highstands of Bear Lake on the footwall block of the east Bear Lake fault zone provide dramatic evidence of long-term slip. Slip rates during the late Pleistocene increased from north to south along the east Bear Lake fault zone, consistent with the tectonic geomorphology. In addition, slip rates on the southern section of the fault zone have apparently decreased over the past 50 k.y. Copyright ?? 2009 The Geological Society of America.

  17. Growth, Uplift and Truncation of Indo-Burman Anticlines Paced By Glacial-Interglacial Sea Level Change

    NASA Astrophysics Data System (ADS)

    Gale, J.; Steckler, M. S.; Sousa, D.; Seeber, L.; Goodbred, S. L., Jr.; Ferguson, E. K.

    2014-12-01

    The Ganges-Brahmaputra Delta abuts the Indo-Burman Arc on the east. Subduction of the thick delta strata has generated a large subaerial accretionary prism, up to 250 km wide, with multiple ranges of anticlines composed of the folded and faulted delta sediments. As the wedge has grown, the exposed anticlines have become subject to erosion by the rivers draining the Himalaya, a local Indo-Burman drainage network, and coastal processes. Multiple lines of geophysical, geologic, and geomorphologic evidence indicate anticline truncation as a result of interaction with the rivers of the delta and sea level. Seismic lines, geologic mapping, and geomorphology reveal truncated anticlines with angular unconformities that have been arched due to continued growth of the anticline. Buried, truncated anticlines have been identified by seismic lines, tube well logs, and resistivity measurements. The truncation of these anticlines also appears to provide a pathway for high-As Holocene groundwater into the generally low-As Pleistocene groundwater. Overall, the distribution of anticline erosion and elevation in the fold belt appears to be consistent with glacial-interglacial changes in river behavior in the delta. The anticline crests are eroded during sea level highstands as rivers and the coastline sweep across the region, and excavated by local drainage during lowstands. With continued growth, the anticlines are uplifted above the delta and "survive" as topographic features. As a result, the maximum elevations of the anticlines are clustered in a pattern suggesting continued growth since their last glacial highstand truncation. An uplift rate is calculated from this paced truncation and growth that is consistent with other measurements of Indo-Burman wedge advance. This rate, combined with the proposed method of truncation, give further evidence of dynamic fluvial changes in the delta between glacial and interglacial times.

  18. Is there enough sand? Evaluating the fate of Grand Canyon sandbars

    USGS Publications Warehouse

    Wright, S.A.; Schmidt, J.C.; Meles, T.S.; Topping, D.J.; Rubin, D.M.

    2008-01-01

    Large dams have the potential to dramatically alter the flow regime, geomorphology, and aquatic ecosystem of downstream river reaches. Development of flow release regimes in order to meet multiple objectives is a challenge facing dam operators, resource managers, and scientists. Herein, we review previous work and present new analyses related to the effects of Glen Canyon Dam on the downstream reach of the Colorado River in Marble and Grand Canyons. The dam traps the entire incoming sediment load in Lake Powell and modulates the hydrologic regime by, for example, eliminating spring snowmelt floods, resulting in changes in the geomorphology of the river downstream. The primary geomorphic impact has been the erosion of sandbars along the banks of the river. Recognition of this impact has led to many scientific studies and a variety of experimental operations of Glen Canyon Dam with the goal of rebuilding the eroding sandbars. These efforts have thus far been generally unsuccessful and the question remains as to whether or not the dam can be operated such that sandbars can be rebuilt and maintained over extended periods with the existing sediment supply. We attempt to answer this question by evaluating a dam operation that may be considered a "best-case scenario" for rebuilding and maintaining eroded sandbars. Our analysis suggests that this best-case scenario may indeed have viability for rebuilding sandbars, and that the initial rate at which sandbars could be rebuilt is comparable to the rate at which sandbars have been eroded since dam construction. The question remains open as to the viability of operations that deviate from the best-case scenario that we have defined.

  19. Physical heterogeneity and aquatic community function in river networks: A case study from the Kanawha River Basin, USA

    NASA Astrophysics Data System (ADS)

    Thoms, M. C.; Delong, M. D.; Flotemersch, J. E.; Collins, S. E.

    2017-08-01

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) - large tracts of river with a similar geomorphic character -in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show that the same basal resources were present throughout the Kanawha River but that their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of higher consumers (fish) were also recorded between FPZs. Overall, the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity. The result of this study does not support the current paradigm that ecosystem size is the primary determinant of food web character in river ecosystems.

  20. High-Altitude Aeolian Research on the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Dong, Zhibao; Hu, Guangyin; Qian, Guangqiang; Lu, Junfeng; Zhang, Zhengcai; Luo, Wanyin; Lyu, Ping

    2017-12-01

    Aeolian processes and their role in desertification have been studied extensively at low elevations but have been rarely studied at high elevations in areas such as the Tibetan Plateau, where aeolian processes were active in the geologic past and remain active today. In this review, we summarize research that improves our understanding of aeolian processes on the Tibetan Plateau, including the distribution, characteristics, and provenance of aeolian sediments; the history of aeolian activity; aeolian geomorphology; and wind-driven land degradation. Contemporary aeolian processes primarily occur in dry basins, in wide river valleys, on lakeshores, on mountain slopes, and on gravel pavements. Sediment characteristics suggest a local origin and provide interesting contrasts with those of China's Loess Plateau. The history of aeolian activity and its paleoclimatic implications, reconstructed based on aeolian archives, is short (mostly since the Late Glacial) and shows wide regional differences. Aeolian geomorphology is simple and suggests short formation time. Wind-driven land degradation is less severe than previously thought, driven by different factors in different areas, and exhibited complex interactions with freeze-thaw processes. Aeolian research has been conducted within the general framework of aeolian science but addresses issues specific to the Tibetan Plateau that arise due to the low air temperature, low air density, and the presence of a cryosphere. We propose six priorities for future research: aeolian physics, the effect of freeze-thaw cycles, comparisons with other areas, regional differences, effects of wind-driven land degradation, and integrated observation and monitoring.

  1. Bedrock channel reaches morphology: examples from the Northern Marche Region (Italy)

    NASA Astrophysics Data System (ADS)

    Tiberi, V.; di Agostino, V.; Troiani, F.; Nesci, O.; Savelli, D.

    2009-04-01

    The Northern Marche rivers, on account of a significant variability of their catchment geology, geodynamics and geomorphology, can be regarded as excellent natural laboratories for the study of the morphology, dynamics and evolution of bedrock channel reaches. Hence a geomorphologic study has been carried on in order to map and describe -from qualitative and quantitative point of view- some bedrock channel types of this area, to detect morphological controls at different scales (from the local scale up to the catchment one), and to assess human perturbations on the drainage systems. The study is based on detailed field surveying concerning channel shape and dynamics, floodplain configurations, slope geomorphologic processes, bedrock structure and composition. In addiction, a good aero photograph documentation dating back to the 1955 allowed a reliable reconstruction of the main evolution trends of bedrock channel reaches in the latest past. In the reported rivers the bedrock channel reaches vary in length from a few tens to hundreds of meters, and alternate with alluvial and mixed bedrock-alluvial channel reaches. In many cases specific numerical relations among geometric parameters of bedrock channels have been discovered and some similarities in both morphology and dynamics of rock-cut channels with alluvial channel reaches have been pointed out. Specifically, with regard of their morphologic arrangement, geometric parameters, and flow dynamics several bedrock channels are quite similar to step pool channels found along gravelly channel reaches. Nonetheless, along a given segment of the hydrographical network where an individual alluvial-channel pattern (e.g. a wandering) is found both upstream and downstream a rock-cut channel reach, the occurrence of this latter (e.g. planar bedrock-floored channel) simply breaks the along-stream continuity of the alluvial-bed morphology.

  2. Influences of micro-geomorphology on the stoichiometry of C, N and P in Chenier Island soils and plants in the Yellow River Delta, China

    PubMed Central

    Yu, Junbao; Liu, Jingtao; Sun, Jingkuan; Yang, Hongjun; Dong, Linshui

    2017-01-01

    Studies have indicated that consistent or well-constrained (relatively low variability) carbon:nitrogen:phosphorus (C:N:P) ratios exist in large-scale ecosystems, including both marine and terrestrial ecosystems. Little is known about the C, N and P stoichiometric ratios that exist in the soils and plants of Chenier Island in the Yellow River Delta (YRD). We examined the distribution patterns and relationships of C, N and P stoichiometry in the soils and plants of Chenier Island, as well as the potential influences of the island’s micro-geomorphology. Based on a study of four soil profile categories and Phragmites australis and Suaeda heteroptera plant tissues, our results showed that micro-geomorphology could leave a distinct imprint on the soil and plant elemental stoichiometry of Chenier Island; significant variation in the atomic C:N:P ratios (RCNP) existed in soils and plants, indicating that the RCNP values in both the soil and plants are not well constrained at the Chenier Island scale. RCN and RCP in Chenier Island soils were high, whereas the RNP values were comparatively low, indicating that the ecosystems of Chenier Island are nutrient-limited by N and P. However, the RNP values in P. australis and S. heteroptera plant tissues were high, suggesting that the plants of Chenier Island are nutrient-limited by P. Finally, we suggest that soil and plant N:P ratios may be good indicators of the soil and plant nutrient status during soil development and plant growth, which could be a useful reference for restoring the degraded soils of Chenier Island. PMID:29236766

  3. Linear programming model to develop geodiversity map using utility theory

    NASA Astrophysics Data System (ADS)

    Sepehr, Adel

    2015-04-01

    In this article, the classification and mapping of geodiversity based on a quantitative methodology was accomplished using linear programming, the central idea of which being that geosites and geomorphosites as main indicators of geodiversity can be evaluated by utility theory. A linear programming method was applied for geodiversity mapping over Khorasan-razavi province located in eastern north of Iran. In this route, the main criteria for distinguishing geodiversity potential in the studied area were considered regarding rocks type (lithology), faults position (tectonic process), karst area (dynamic process), Aeolian landforms frequency and surface river forms. These parameters were investigated by thematic maps including geology, topography and geomorphology at scales 1:100'000, 1:50'000 and 1:250'000 separately, imagery data involving SPOT, ETM+ (Landsat 7) and field operations directly. The geological thematic layer was simplified from the original map using a practical lithologic criterion based on a primary genetic rocks classification representing metamorphic, igneous and sedimentary rocks. The geomorphology map was provided using DEM at scale 30m extracted by ASTER data, geology and google earth images. The geology map shows tectonic status and geomorphology indicated dynamic processes and landform (karst, Aeolian and river). Then, according to the utility theory algorithms, we proposed a linear programming to classify geodiversity degree in the studied area based on geology/morphology parameters. The algorithm used in the methodology was consisted a linear function to be maximized geodiversity to certain constraints in the form of linear equations. The results of this research indicated three classes of geodiversity potential including low, medium and high status. The geodiversity potential shows satisfied conditions in the Karstic areas and Aeolian landscape. Also the utility theory used in the research has been decreased uncertainty of the evaluations.

  4. Influences of micro-geomorphology on the stoichiometry of C, N and P in Chenier Island soils and plants in the Yellow River Delta, China.

    PubMed

    Qu, Fanzhu; Meng, Ling; Yu, Junbao; Liu, Jingtao; Sun, Jingkuan; Yang, Hongjun; Dong, Linshui

    2017-01-01

    Studies have indicated that consistent or well-constrained (relatively low variability) carbon:nitrogen:phosphorus (C:N:P) ratios exist in large-scale ecosystems, including both marine and terrestrial ecosystems. Little is known about the C, N and P stoichiometric ratios that exist in the soils and plants of Chenier Island in the Yellow River Delta (YRD). We examined the distribution patterns and relationships of C, N and P stoichiometry in the soils and plants of Chenier Island, as well as the potential influences of the island's micro-geomorphology. Based on a study of four soil profile categories and Phragmites australis and Suaeda heteroptera plant tissues, our results showed that micro-geomorphology could leave a distinct imprint on the soil and plant elemental stoichiometry of Chenier Island; significant variation in the atomic C:N:P ratios (RCNP) existed in soils and plants, indicating that the RCNP values in both the soil and plants are not well constrained at the Chenier Island scale. RCN and RCP in Chenier Island soils were high, whereas the RNP values were comparatively low, indicating that the ecosystems of Chenier Island are nutrient-limited by N and P. However, the RNP values in P. australis and S. heteroptera plant tissues were high, suggesting that the plants of Chenier Island are nutrient-limited by P. Finally, we suggest that soil and plant N:P ratios may be good indicators of the soil and plant nutrient status during soil development and plant growth, which could be a useful reference for restoring the degraded soils of Chenier Island.

  5. Hydrological and geomorphological controls of malaria transmission

    NASA Astrophysics Data System (ADS)

    Smith, M. W.; Macklin, M. G.; Thomas, C. J.

    2013-01-01

    Malaria risk is linked inextricably to the hydrological and geomorphological processes that form vector breeding sites. Yet environmental controls of malaria transmission are often represented by temperature and rainfall amounts, ignoring hydrological and geomorphological influences altogether. Continental-scale studies incorporate hydrology implicitly through simple minimum rainfall thresholds, while community-scale coupled hydrological and entomological models do not represent the actual diversity of the mosquito vector breeding sites. The greatest range of malaria transmission responses to environmental factors is observed at the catchment scale where seemingly contradictory associations between rainfall and malaria risk can be explained by hydrological and geomorphological processes that govern surface water body formation and persistence. This paper extends recent efforts to incorporate ecological factors into malaria-risk models, proposing that the same detailed representation be afforded to hydrological and, at longer timescales relevant for predictions of climate change impacts, geomorphological processes. We review existing representations of environmental controls of malaria and identify a range of hydrologically distinct vector breeding sites from existing literature. We illustrate the potential complexity of interactions among hydrology, geomorphology and vector breeding sites by classifying a range of water bodies observed in a catchment in East Africa. Crucially, the mechanisms driving surface water body formation and destruction must be considered explicitly if we are to produce dynamic spatial models of malaria risk at catchment scales.

  6. Damage and Site Effects of the May 2012 Emilia-Romagna and Lombardia Earthquake, with Particular Reference to the "Oltrepò Mantovano" (Mantua) Territory

    NASA Astrophysics Data System (ADS)

    Daminelli, R.; Marcellini, A.; Tento, A.

    2014-12-01

    The seismic sequence that struck the Lombardia and Emilia-Romagna in May 2012 consisted of seven main events of magnitude greater than 5 followed by numerous aftershocks. The strongest earthquakes occurred on May 20 (M=5.9) and May 29 (M=5.8) near the border between Lombardia and Emilia-Romagna. The epicenters of the main events are aligned in east-west direction in a segment of approx. 50 km just south of the Po river. The area was considered a low to medium seismicity: the seismic hazard in the epicentral area, and in the whole damaged area, was estimated to be less than 0.15 g PGA for 10% exceedance in 50 years. Significant damage occurred over an area greater than 1000 km2, which is extremely large for earthquakes of magnitude less than 6, bearing in mind the low vulnerability level of the structures. As seen in detailed geological investigations the degree of damage and its areal extent is largely attributable to the particular conditions of the soil. We focus on the relationship between damage and soil conditions in the area of Oltrepò Mantovano, situated between the Po River and the epicentral area. The soil is largely composed of Quaternary deposits of sands, silty-clay and clay with a very deep bedrock (greater than 100 m) and Vs30 generally less than 500 m/s. According to the cards Aedes (official forms of the Italian Government to assess the state of damage of buildings) houses declared uninhabitable because of the earthquake were mainly concentrated in a few small towns: Moglia, Gonzaga, Quistello and San Giacomo delle Segnate (located approximately at 20 km, 27 km, 20 km and 14 km from the epicenters of the two main shocks, respectively) which reported 73% of the total of all uninhabitable buildings; Moglia 27 %, Gonzaga 14%, Quistello 20% and San Giacomo delle Segnate 12%. The hydrographic system has evolved considerably since the Middle Bronze Age with the result that the area is characterized by a complex geomorphology with the presence of fluvial paleochannels, fluvial ridges and abandoned river channels where numerous cases of soil liquefaction have been observed. The May 2012 earthquake has highlighted a close relationship between the sites where the damage was concentrated and the geological and geomorphological characteristics of the area.

  7. A philosophy of rivers: Equilibrium states, channel evolution, teleomatic change and least action principle

    NASA Astrophysics Data System (ADS)

    Nanson, Gerald C.; Huang, He Qing

    2018-02-01

    Until recently no universal agreement as to a philosophical or scientific methodological framework has been proposed to guide the study of fluvial geomorphology. An understanding of river form and process requires an understanding of the principles that govern the behaviour and evolution of alluvial rivers at the most fundamental level. To date, the investigations of such principles have followed four approaches: develop qualitative unifying theories that are usually untested; collect and examine data visually and statistically to define semi-quantitative relationships among variables; apply Newtonian theoretical and empirical mechanics in a reductionist manner; resolve the primary flow equations theoretically by assuming maximum or minimum outputs. Here we recommend not a fifth but an overarching philosophy to embrace all four: clarifying and formalising an understanding of the evolution of river channels and iterative directional changes in the context of least action principle (LAP), the theoretical basis of variational mechanics. LAP is exemplified in rivers in the form of maximum flow efficiency (MFE). A sophisticated understanding of evolution in its broadest sense is essential to understand how rivers adjust towards an optimum state rather than towards some other. Because rivers, as dynamic contemporary systems, flow in valleys that are commonly historical landforms and often tectonically determined, we propose that most of the world's alluvial rivers are over-powered for the work they must do. To remain stable they commonly evolve to expend surplus energy via a variety of dynamic equilibrium forms that will further adjust, where possible, to maximise their stability as much less common MFE forms in stationary equilibrium. This paper: 1. Shows that the theory of evolution is derived from, and applicable to, both the physical and biological sciences; 2. Focusses the development of theory in geomorphology on the development of equilibrium theory; 3. Proposes that river channels, like organisms, evolve teleomatically (progression towards an end-state by following natural laws) and iteratively (one stage forming the basis for the next) towards an optimal end-state; 4. Describes LAP as the methodological basis for understanding the self-adjustment alluvial channels towards MFE. 5. Acknowledges that whereas river channels that form within their unmodified alluvium evolve into optimal minimum-energy systems, exogenic variables, such as riparian or aquatic vegetation, can cause significant variations in resultant river-styles. We specifically attempt to address Luna Leopold's lament in 1994 that no clearly expressed philosophy explains the remarkable self-adjustment of alluvial channels.

  8. Geomorphological processes in a semiarid badland area using new technologies: TLS, terrestrial and aerial SfM photogrammetry

    NASA Astrophysics Data System (ADS)

    Ferrer, Victor; Errea, Paz; Alonso, Esteban; Gómez-Gutiérrez, Álvaro; Nadal-Romero, Estela

    2017-04-01

    We used three different methods Terrestrial Laser Scanner (TLS), terrestrial Structure from Motion photogrammetry (SfM) and aerial SfM photogrammetry with an Unmanned Aerial Vehicle (UAV) to analyse geomorphological processes in a semiarid badland landscape. Los Aguarales badlands, located in the Ebro Depression (Spain), occur in the Holocene sediment accumulated in a wide valley infilled with silt and clay. The morphology of Los Aguarales badlands is complex, making the geomorphological interpretation a difficult task. Los Aguarales badlands are characterized by the sequence of incision and piping processes developing an abrupt and complex landscape. Three different representative and small study sites were selected to carry out a detailed analysis of the geomorphological processes. Moreover, the capability of the three methods to produce high resolution point clouds was evaluated. The obtained topographical changes were very low during the first 6 months (March-October 2016). Measured topographical changes, with TLS and terrestrial SfM, were very low, and these values fall within the range of the acquisition error of the devices used (2-6 cm). The preliminary results indicated the possibilities of a multiscale approach using new technologies to study geomorphological and erosion processes, although long-term studies will be necessary to obtain erosion rates in this semiarid badland area. Acknowledgement This research was supported by ESPAS and eTERA 3D projects (CGL2015- 65569-R and CGL2014-54822-R, funded by the MINECO-FEDER). Estela Nadal-Romero is the recipient of a Ramón y Cajal postdoctoral contract (Spanish Ministry of Economy and Competitiveness).

  9. Effectiveness evaluation of flood defence structures in different geomorphological contexts

    NASA Astrophysics Data System (ADS)

    Morelli, Stefano; Pazzi, Veronica; Fanti, Riccardo

    2017-04-01

    The flood risk in different geomorphological contexts of two less developed countries are investigated in order to evaluate the efficacy of the existing flood defence structures. In particular, a recent floodplain crossed by a wide meandering river and a narrow mountain valley flowed by creek with a torrential regime have been chosen for such analysis in North Albania and central Mexico, respectively. Both areas have been affected by disastrous floods in past years with considerable damages to properties and people. Some safety countermeasures have been performed over time, even if in a non-systematic way. For this reason, the current inclination to flood risk was assessed by means of a freeware software designed to perform one-dimensional (1D) hydraulic modelling for a full network of natural and anthropic channels (HEC-RAS software by Hydrologic Engineering Center River Analysis System). This new analyses take into account: i) the natural morphological variability along the river path, ii) the anthropic interventions on the fluvial dynamics, iii) the landscape appearance after the soil exploitation in the past years, and iv) all the changes induced by an exceeded informal urbanization. The reconstruction of the river and bordering areas geometric data was carried out according to the physical characteristics of the local environment: a bathymetric survey and near-river DGPS acquisitions for the open spaces of the Albanian floodplain, and traditional topographic methods for the highly vegetated Mexican valley. In both cases, the results show that the existing works are, on their own, poorly efficient in containing the predictable floods. Albanians levees seem underdimensioned, while the channelling works are too narrow to contain large amounts of water and solid transport as typical of the Mexican study area. Evidently, a new territorial planning is required in these areas, and some projects are now in place. However, it would be desirable that local authorities were profitably inspired by the criticalities here mentioned.

  10. Niche construction within riparian corridors. Part I: Exploring biogeomorphic feedback windows of three pioneer riparian species (Allier River, France)

    NASA Astrophysics Data System (ADS)

    Hortobágyi, Borbála; Corenblit, Dov; Steiger, Johannes; Peiry, Jean-Luc

    2018-03-01

    Within riparian corridors, biotic-abiotic feedback mechanisms occur between woody vegetation strongly influenced by hydrogeomorphic constraints (e.g., sediment transport and deposition, shear stress, hydrological variability), fluvial landforms, and morphodynamics, which in turn are modulated by the established vegetation. During field investigations in spring 2015, we studied 16 alluvial bars (e.g., point and lateral bars) within the dynamic riparian corridor of the Allier River (France) to assess the aptitude of three pioneer riparian Salicaceae species (Populus nigra L., Salix purpurea L., and Salix alba L.) to establish and act as ecosystem engineers by trapping sediment and constructing fluvial landforms. Our aim is to empirically identify the preferential establishment area (EA; i.e., the local areas where species become established) and the preferential biogeomorphic feedback window (BFW; i.e., where and to what extent the species and geomorphology interact) of these three species on alluvial bars within a 20-km-long river reach. Our results show that the EA and BFW of all three species vary significantly along the longitudinal profile, i.e., upstream-downstream exposure on the alluvial bars, as well as transversally, i.e., the main hydrological connectivity gradient from the river channel toward the floodplain. In the present-day context of the Allier River, P. nigra is the most abundant species, appearing to act as the main engineer species affecting landform dynamics at the bar scale; S. purpurea is established and acts as an ecosystem engineer at locations on alluvial bars that are most exposed to hydrosedimentary flow dynamics, while S. alba is established on the bar tail close to secondary channels and affects the geomorphology in mixed patches along with P. nigra. Our study highlights the role of functional trait diversity of riparian engineer species in controlling the extent of fluvial landform construction along geomorphic gradients within riparian corridors exposed to frequent hydrogeomorphic disturbances.

  11. Spatio-temporal variation in bed-material load using dune topography collected during a severe flood on the coastal Trinity River, east TX, USA

    NASA Astrophysics Data System (ADS)

    Mason, J.; Mohrig, D. C.

    2015-12-01

    A series of six repeat surveys along 27 kilometers of the coastal Trinity River in east Texas, USA, reveal the temporal and spatial changes in bed material load during and following a historically large flood. The river event was above the National Weather Service flood stage for 55 days at the Liberty USGS station, and had a maximum discharge of about 80,000 cfs. As a community, we are beginning to understand how fluvial geomorphology is influenced by the backwater effect, but we still lack an understanding of how the bed-material transport adjusts to accommodate larger-scale changes in river bend pattern and kinematics. Survey data from this project includes sidescan sonar along the channel centerline, multibeam bathymetry, and channel bed sediment samples. In combination, this data set provides new insight into how and when bed material, primarily medium sand with some pebbles, moves through this region, and how this connects to previously observed changes in channel geometry (including downstream decreases in channel width to depth ratio, bar form volume and surface area, and lateral migration rates of river bends). Preliminary examination of sidescan sonar of two bends within the survey area, one upstream and one downstream, reveal a striking difference in bedform behavior in response to the changing hydrograph. Upstream, bedforms decrease 80% in height and 83% in length and increase in 3-dimensionality throughout the extended peak flow. During the falling limb of the flood these same bedforms increase in size as they become more laterally continuous and straight-crested. Downstream, 3-dimensional bedforms decrease 80% in height and 87% in length throughout the extended peak flow and then remain this size during the falling limb of the flood. This presentation will discuss these results with respect to backwater dynamics, sediment supply and transport, implications for coastal geomorphology as well as sediment delivery into deltaic systems.

  12. Large wood in the Snowy River estuary, Australia

    NASA Astrophysics Data System (ADS)

    Hinwood, Jon B.; McLean, Errol J.

    2017-02-01

    In this paper we report on 8 years of data collection and interpretation of large wood in the Snowy River estuary in southeastern Australia, providing quantitative data on the amount, sources, transport, decay, and geomorphic actions. No prior census data for an estuary is known to the authors despite their environmental and economic importance and the significant differences between a fluvial channel and an estuarine channel. Southeastern Australian estuaries contain a significant quantity of large wood that is derived from many sources, including river flood flows, local bank erosion, and anthropogenic sources. Wind and tide are shown to be as important as river flow in transporting and stranding large wood. Tidal action facilitates trapping of large wood on intertidal bars and shoals; but channels are wider and generally deeper, so log jams are less likely than in rivers. Estuarine large wood contributes to localised scour and accretion and hence to the modification of estuarine habitat, but in the study area it did not have large-scale impacts on the hydraulic gradients nor the geomorphology.

  13. Communicating Coastal Risk Analysis in an Age of Climate Change

    DTIC Science & Technology

    2011-10-01

    extratropical storm systems); the geometry and geomorphology of the area (regional and local bathymetry and topography, including rivers, marshes, and...at risk from coastal hazards including storm surge inundation, precipitation driven flooding, waves, and coastal erosion. This population segment...will likely be exposed to increased risk as impacts of a changing climate are felt through elevated sea levels and potentially increased storm

  14. Geomorphology of the north flank of the Uinta Mountains

    USGS Publications Warehouse

    Bradley, W.H.

    1936-01-01

    beds now form hogbacks ranked along the sides of the fold. In places large faults, approximating the regional strike, cut these steeply inclined beds. Gently warped Tertiary sediments, mostly of Eocene age, fill the large Green River Basin, which lies north of the range, to a depth of several thousand feet and lap up on the flanks of the mountains, from which they were chiefly derived.

  15. Stream network geomorphology mediates predicted vulnerability of anadromous fish habitat to hydrologic change in southeast Alaska

    Treesearch

    Matthew R. Sloat; Gordon H. Reeves; Kelly R. Christiansen

    2016-01-01

    In rivers supporting Pacific salmon in southeast Alaska, USA, regional trends toward a warmer, wetter climate are predicted to increase mid- and late-21st-century mean annual flood size by 17% and 28%, respectively. Increased flood size could alter stream habitats used by Pacific salmon for reproduction, with negative consequences for the substantial economic, cultural...

  16. Lacustrine-fluvial interactions in Australia's Riverine Plains

    NASA Astrophysics Data System (ADS)

    Kemp, Justine; Pietsch, Timothy; Gontz, Allen; Olley, Jon

    2017-06-01

    Climatic forcing of fluvial systems has been a pre-occupation of geomorphological studies in Australia since the 1940s. In the Riverine Plain, southeastern Australia, the stable tectonic setting and absence of glaciation have combined to produce sediment loads that are amongst the lowest in the world. Surficial sediments and landforms exceed 140,000 yr in age, and geomorphological change recorded in the fluvial, fluvio-lacustrine and aeolian features have provided a well-studied record of Quaternary environmental change over the last glacial cycle. The region includes the Willandra Lakes, whose distinctive lunette lakes preserve a history of water-level variations and ecological change that is the cornerstone of Australian Quaternary chronostratigraphy. The lunette sediments also contain an ancient record of human occupation that includes the earliest human fossils yet found on the Australian continent. To date, the lake-level and palaeochannel records in the Lachlan-Willandra system have not been fully integrated, making it difficult to establish the regional significance of hydrological change. Here, we compare the Willandra Lakes environmental record with the morphology and location of fluvial systems in the lower Lachlan. An ancient channel belt of the Lachlan, Willandra Creek, acted as the main feeder channel to Willandra Lakes before channel avulsion caused the lakes to dry out in the late Pleistocene. Electromagnetic surveys, geomorphological and sedimentary evidence are used to reconstruct the evolution of the first new channel belt following the avulsion. Single grain optical dating of floodplain sediments indicates that sedimentation in the new Middle Billabong Palaeochannel had commenced before 18.4 ± 1.1 ka. A second avulsion shifted its upper reaches to the location of the present Lachlan River by 16.2 ± 0.9 ka. The timing of these events is consistent with palaeohydrological records reconstructed from Willandra Lakes and with the record of palaeochannels on the Lachlan River upstream. Willandra Lakes shows high inflows during the Last Glacial Maximum (∼22 ka), but their subsequent drying between 20.5 ka and 19 ka was caused by river avulsion rather than regional aridity. This case study highlights the benefits of combining fluvial with lacustrine archives to build complementary records of hydrological change in lowland riverine plains.

  17. Holocene alluvium around Lefkosia (Nicosia), Cyprus: An archive of land-use, tectonic processes, and climate change

    USGS Publications Warehouse

    Newell, Wayne L.; Stone, B.; Harrison, R.; ,

    2004-01-01

    Holocene alluvium of the Pedhicos River around Lefkosia (Nicosia), Cyprus, was studied. Alluvial stratigraphy was found to present serial flood deposits underlying river terraces and an extensive alluvial fan. It was found that the stratigraphy and geomorphology of the alluvium can be interpreted to distinguish not only the effects of climate change, but also land-use change, and the impact of particular engineering works. It was suggested that details of the physical properties of the flood deposit sequences and paleosols can contribute to modeling various geophysical and engineering properties and in predicting response to vertical acceleration during earthquakes.

  18. A comprehensive fluvial geomorphology study of riverbank erosion on the Red River in Winnipeg, Manitoba, Canada

    NASA Astrophysics Data System (ADS)

    Kimiaghalam, Navid; Goharrokhi, Masoud; Clark, Shawn P.; Ahmari, Habib

    2015-10-01

    Riverbank erosion on the Red River in Winnipeg, Manitoba has raised concerns over the last 20 years and more. Although several recent studies have shown that fluvial erosion can reduce riverbank stability and promote geotechnical slope failure, there are too few that have focused on this phenomenon. The present study includes field measurements, experimental testing, and numerical modelling to quantify fluvial erosion through a 10 km reach of the Red River. Results have shown that seasonal freeze-thaw processes can dramatically reduce the critical shear stress and increase erodibility of the riverbanks. Moreover, a simple method has been employed using hydrodynamic numerical models to define the applied shear stresses on the river banks based on the river water level, which will be useful for further research and design purposes. The TEMP/W numerical model was used to define seasonal frost depth to estimate freeze-thaw effects. Finally all field measurements, experimental and numerical models results were used to predict annual fluvial erosion through this reach of the river.

  19. Complex interaction of dendritic connectivity and hierarchical patch size on biodiversity in river-like landscapes.

    PubMed

    Carrara, Francesco; Rinaldo, Andrea; Giometto, Andrea; Altermatt, Florian

    2014-01-01

    Habitat fragmentation and land use changes are causing major biodiversity losses. Connectivity of the landscape or environmental conditions alone can shape biodiversity patterns. In nature, however, local habitat characteristics are often intrinsically linked to a specific connectivity. Such a link is evident in riverine ecosystems, where hierarchical dendritic structures command related scaling on habitat capacity. We experimentally disentangled the effect of local habitat capacity (i.e., the patch size) and dendritic connectivity on biodiversity in aquatic microcosm metacommunities by suitably arranging patch sizes within river-like networks. Overall, more connected communities that occupy a central position in the network exhibited higher species richness, irrespective of patch size arrangement. High regional evenness in community composition was found only in landscapes preserving geomorphological scaling properties of patch sizes. In these landscapes, some of the rarer species sustained regionally more abundant populations better tracking their own niche requirements compared to landscapes with homogeneous patch size or landscapes with spatially uncorrelated patch size. Our analysis suggests that altering the natural link between dendritic connectivity and patch size strongly affects community composition and population persistence at multiple scales. The experimental results are demonstrating a principle that can be tested in theoretical metacommunity models and eventually be projected to real riverine ecosystems.

  20. GIS Toolsets for Planetary Geomorphology and Landing-Site Analysis

    NASA Astrophysics Data System (ADS)

    Nass, Andrea; van Gasselt, Stephan

    2015-04-01

    Modern Geographic Information Systems (GIS) allow expert and lay users alike to load and position geographic data and perform simple to highly complex surface analyses. For many applications dedicated and ready-to-use GIS tools are available in standard software systems while other applications require the modular combination of available basic tools to answer more specific questions. This also applies to analyses in modern planetary geomorphology where many of such (basic) tools can be used to build complex analysis tools, e.g. in image- and terrain model analysis. Apart from the simple application of sets of different tools, many complex tasks require a more sophisticated design for storing and accessing data using databases (e.g. ArcHydro for hydrological data analysis). In planetary sciences, complex database-driven models are often required to efficiently analyse potential landings sites or store rover data, but also geologic mapping data can be efficiently stored and accessed using database models rather than stand-alone shapefiles. For landings-site analyses, relief and surface roughness estimates are two common concepts that are of particular interest and for both, a number of different definitions co-exist. We here present an advanced toolset for the analysis of image and terrain-model data with an emphasis on extraction of landing site characteristics using established criteria. We provide working examples and particularly focus on the concepts of terrain roughness as it is interpreted in geomorphology and engineering studies.

  1. Analysis the flash floods occurred in the South Tyne river watershed (United Kingdom) on the 17th of July 2007

    NASA Astrophysics Data System (ADS)

    Bain, V.; Milan, D.; Preciso, E.; Gaume, E.

    2009-04-01

    On the 17th, 19th and 23rd of July 2007, a series of local thunderstorms induced flash floods in the upper part of the South Tyne river in Northumberland, a rural area located near the border between England and Scotland. These events led to moderate damages in the villages and losses of livestock in local farms. They were shadowed in comparison to the widespread lowland floods that occurred throughout the UK during the same period but were nevertheless extreme events for the region. One of the affected streams, the Thinhope Burn, has been surveyed by the University of Gloucestershire during recent years. It is an active river from a geomorphological point of view. A survey conducted after the 2007 flood revealed that many of the boulders along the banks of the river, which had been deposited 50 to 100 years before, had been displaced, indicating a high return period for the flood (see EGU abstract EGU2008-A-04713). A complementary survey was conducted in July 2008 with the objective of gathering information on the discharges, the rainfall amounts and the active runoff processes. 14 cross-sections were surveyed, pictures were collected enabling a validation of peak discharge estimates, 5 witnesses were interviewed and additional rainfall data and geomorphological evidence were collected. This survey revealed that the peak discharges exceeded 5 m3/s/km2 in the most affected areas. Unfortunately, no rainfall measurements are available that would enable further analysis, including the computation of runoff rates. Nevertheless, witness accounts and field observations give a good insight into the hydrological processes indicating a significant initial storage capacity of the peat layer covering the affected watersheds. Concerning the boulders, the field observations suggest surprising and unexplained transport processes. Blocks of up to one meter diameter were displaced over short distances and deposited on the river banks without any sign of established debris flow, as if short debris pulses occurred along the river course. This work is conducted within the European research project HYDRATE (Contract GOCE 037024).

  2. Influence of land use on hyporheos in catchment of the Jarama River (central Spain)

    NASA Astrophysics Data System (ADS)

    Iepure, S.; Martínez-Hernández, V.; Herrera, S.; de Bustamante, I.; Rasines, R.

    2012-04-01

    The Water Framework Directive (2000) requires integrated assessment of water bodies based on water resources but also the evaluation of land-use catchment effect on chemical and ecological conditions of aquatic ecosystems. The hyporheic zone (HZ) supporting obligate subterranean species are particularly vulnerable in river ecosystems when environmental stress occurs at surface and require management strategies to protect both the stream catchment and the aquifer that feed the stream channel. The influence of catchment land-use in the Jarama basin (central Spain) on river geomorphology and hyporheic zone granulometry, chemical and biological variables inferred from crustacean community biodiversity (species richness, taxonomic distinctness) and ecology was assessed. The study was conducted in four streams from the Madrid metropolitan area under distinct local land-use and water resource protection: i) a preserved forested natural sites where critical river ecosystem processes were unaltered or less altered by human activities, and ii) different degree of anthropogenic impact sites from agriculture, urban industrial and mining activities. The river bed permeability reduction and the increase of low sediment size input associated with changes in geomorphology of the stream channels are greatly affected by land-use changes in the Jarama watershed. Water chemical parameters linked to land-use increase from the natural stream to the urban industrial and agricultural dominated catchment. Principal coordinate analysis (PCO) and multidimensional scaling (MDS) clearly discriminate the pristine sites from forested areas by those under anthropogenic stressors. In streams draining forested areas, groundwater discharge and regular exchange between groundwater and surface water occur due to relatively high permeability of the sediments. Consequently, forested land-use produce sites of high water quality and crustacean richness (both groundwater dwellers and surface-benthos species), as indicate the expected diversity pattern after the simulation procedure for taxonomic distinctness. Crustacean diversity (Shannon index) was greatest in less extensive agricultural land-use sites where riparian zone is slightly developed, while intensive agricultural activities cause a decline of water quality and therefore of crustacean richness. Intensively urban industrial land-use yield highly contaminated hyporheic water with heavy metals and VOC (i.e. toluene, benzene). Complementarily, the streams geomorphology and low rates of water flow favour the deposition of fine sediments that clog the interstices, generate a reverse dynamic of river channel and induce a reduction of groundwater discharge. In results, the hyporheic is unsuitable for hyporheos that are missing or harbour reduced populations of exclusively surface-water taxa. There are sites of intermediate biodiversity including hypogeans, located in natural regional parks thriving well-established riparian zone and relatively good water quality. The differences among sites in the Jarama basin indicate the impact that changes in land-use have upon the hyporheic ecology as shown the pattern of crustacean community distribution, diversity and ecological structure. We suggest that in rehabilitation processes of streams sectors require the understanding and recognition of the potential roles of the hyporheic zone and its biota in the whole stream ecosystem.

  3. Rapid changes in glacier surface processes and downstream river basin in the Central Himalayan region

    NASA Astrophysics Data System (ADS)

    Haritashya, U. K.; Strattman, K.; Kargel, J. S.

    2017-12-01

    A high altitude glacierized region in the central Himalaya hosts thousands of glaciers and originates major rivers like the Ganges and Yamuna. This region has seen significant changes in last few decades due to climate system coupling involving the westerlies and the monsoon, high seismic activities, complex topography, extensive glacier debris cover, and widespread mass movement. Consequently, we analyzed regional variability in hundreds of glacier surface processes and downstream river basins of varying geomorphology using a variety of satellite imagery from the early 1990s to 2017. Our results indicate a massive increase in supraglacial ponds in south facing glaciers. Several of these ponds are either seasonal and forms exactly at the same location every year or forms at the beginning of the melt season and drains out as the season progresses from April to July/August. We also observed evolution in size of these ponds in the last two decades to the point where some of them now seem to be stationary and might increase in size and develop large lake in the future. To understand our result and melting pattern in the region, we also analyzed ice velocity and surface temperature; both of which reveals a temporal shift in the pattern. Glacier surface temperatures, especially show a warming pattern in recent years and strong correlation with debris cover. Additionally, we also observed changes in the downstream region both around the river bed and steep slopes where massive erosion of Himalayan glaciers are depositing and transporting excessive amount of sediments. Overall, our results are discussed in the context of better landscape evolution modeling from the top of the glacier to the several km downstream from the glacier terminus.

  4. Integrating Flow, Form, and Function for Improved Environmental Water Management

    NASA Astrophysics Data System (ADS)

    Albin Lane, Belize Arela

    Rivers are complex, dynamic natural systems. The performance of river ecosystem functions, such as habitat availability and sediment transport, depends on the interplay of hydrologic dynamics (flow) and geomorphic settings (form). However, most river restoration studies evaluate the role of either flow or form without regard for their dynamic interactions. Despite substantial recent interest in quantifying environmental water requirements to support integrated water management efforts, the absence of quantitative, transferable relationships between river flow, form, and ecosystem functions remains a major limitation. This research proposes a novel, process-driven methodology for evaluating river flow-form-function linkages in support of basin-scale environmental water management. This methodology utilizes publically available geospatial and time-series data and targeted field data collection to improve basic understanding of river systems with limited data and resource requirements. First, a hydrologic classification system is developed to characterize natural hydrologic variability across a highly altered, physio-climatically diverse landscape. Next, a statistical analysis is used to characterize reach-scale geomorphic variability and to investigate the utility of topographic variability attributes (TVAs, subreach-scale undulations in channel width and depth), alongside traditional reach-averaged attributes, for distinguishing dominant geomorphic forms and processes across a hydroscape. Finally, the interacting roles of flow (hydrologic regime, water year type, and hydrologic impairment) and form (channel morphology) are quantitatively evaluated with respect to ecosystem functions related to hydrogeomorphic processes, aquatic habitat, and riparian habitat. Synthetic river corridor generation is used to evaluate and isolate the role of distinct geomorphic attributes without the need for intensive topographic surveying. This three-part methodology was successfully applied in the Sacramento Basin of California, USA, a large, heavily altered Mediterranean-montane basin. A spatially-explicit hydrologic classification of California distinguished eight natural hydrologic regimes representing distinct flow sources, hydrologic characteristics, and rainfall-runoff controls. A hydro-geomorphic sub-classification of the Sacramento Basin based on stratified random field surveys of 161 stream reaches distinguished nine channel types consisting of both previously identified and new channel types. Results indicate that TVAs provide a quantitative basis for interpreting non-uniform as well as uniform geomorphic processes to better distinguish linked channel forms and functions of ecological significance. Finally, evaluation of six ecosystem functions across alternative flow-form scenarios in the Yuba River watershed highlights critical tradeoffs in ecosystem performance and emphasizes the significance of spatiotemporal diversity of flow and form for maintaining ecosystem integrity. The methodology developed in this dissertation is broadly applicable and extensible to other river systems and ecosystem functions, where findings can be used to characterize complex controls on river ecosystems, assess impacts of proposed flow and form alterations, and inform river restoration strategies. Overall, this research improves scientific understanding of the linkages between hydrology, geomorphology, and river ecosystems to more efficiently allocate scare water resources for human and environmental objectives across natural and built landscapes.

  5. Geomorphological diversity of Dong-Sha Atoll based on spectrum and texture analysis in high resolution remote sensing imagery

    NASA Astrophysics Data System (ADS)

    Chen, Jianyu; Mao, Zhihua; He, Xianqiang

    2009-01-01

    Coral reefs are complex marine ecosystems that are constructed and maintained by biological communities that thrive in tropical oceans. The Dong-Sha Atoll is located at the northern continental margin of the South China Sea. It has being abused by destructive activity of human being and natural event during recent decades. Remote sensing offers a powerful tool for studying coral reef geomorphology and is the most cost-effective approach for large-scale reef survey. In this paper, the high-resolution Quickbird2 imageries which covered the full atoll are used to categorize the current distribution of coral reefs geomorphological structure therein with the auxiliary SPOT5 and ASTER imageries. Spectral and texture analysis are used to distinguish the geomorphological diversity during data processing. The Gray Level Co-occurrence Matrices is adopted for texture feature extraction and atoll geomorphology mapping in the high-resolution pan-color image of Quickbird2. Quickbird2 is considered as the most appropriate image source for coral reefs studies. In the Dong-Sha Atoll, various dynamical geomorphologic units are developed according to wave energy zones. There the reef frame types are classified to 3 different types according as its diversity at the image. The radial structure system is the most characteristic and from high resolution imagery we can distinguish the discrepancy between them.

  6. River history.

    PubMed

    Vita-Finzi, Claudio

    2012-05-13

    During the last half century, advances in geomorphology-abetted by conceptual and technical developments in geophysics, geochemistry, remote sensing, geodesy, computing and ecology-have enhanced the potential value of fluvial history for reconstructing erosional and depositional sequences on the Earth and on Mars and for evaluating climatic and tectonic changes, the impact of fluvial processes on human settlement and health, and the problems faced in managing unstable fluvial systems. This journal is © 2012 The Royal Society

  7. Archaeology and Geomorphology of Red Oak Ridge Island, Navigation Pool 7, Upper Mississippi River Valley.

    DTIC Science & Technology

    1986-02-01

    1884c, 1884d, 1885, 1887a, 1887b, 1889a, 1889b, 1889c , 1889d, 1889e, 1890, 1891a, 1891b, 1891c, 1892a, 1892b, 1892c, and 1895). Two Minnesota pioneer...Antiquarian and Oriental Journal. Vol. 11: 139-163. 1889c Burial Mounds Viewed as Monuments. The American Antiquarian and Oriental Journal. Vol. 11: 359-378

  8. Hydrology and geomorphology of the Snake River in Grand Teton National Park

    USGS Publications Warehouse

    Nelson, Nicholas C.; Schmidt, John C.

    2007-01-01

    Flood magnitudes have decreased throughout the study area as a result of regulation, but these decreases are mitigated downstream from tributaries. Dam operations have not resulted in long-term progressive channel change or the development and abandonment of floodplain deposits. However, channel change is now dependant on the frequency of high-magnitude floods, and the frequency with which the two floodplains are inundated has been reduced.

  9. A conceptual model for the blooming behavior and persistence of the benthic mat-forming diatom Didymosphenia geminata in oligotrophic streams

    NASA Astrophysics Data System (ADS)

    Cullis, James D. S.; Gillis, Carole-Anne; Bothwell, Max L.; Kilroy, Cathy; Packman, Aaron; Hassan, Marwan

    2012-06-01

    The benthic, mat-forming diatomDidymosphenia geminata has the unique ability to produce large amounts of algal biomass under oligotrophic conditions in cold, fast flowing streams and rivers. This presents an ecological paradox that challenges our current understanding of stream ecosystem dynamics. Our understanding of the drivers of D. geminata ecology is still limited. Here we present a conceptual model for the blooming behavior and persistence of this species to advance scientific understanding of strategies for life in fast flowing oligotrophic waters and support the design of future research and mitigation measures for nuisance algal blooms. The conceptual model is based on a synthesis of data and ideas from a range of disciplines including hydrology, geomorphology, biogeochemistry, and ecology. The conceptual model highlights the role of water chemistry, river morphology, and flow thresholds in defining the habitat window for D. geminata. We propose that bed disturbance is a primary control on accumulation and persistence of D. geminataand that the removal threshold can be determined by synthesizing site-specific information on hydrology and geomorphology. Further, we propose that a key to understanding the didymo paradox is the separation of cellular reproduction and mat morphology with specific controls acting in respect of the different processes.

  10. Effects of alluvial knickpoint migration on floodplain ecology and geomorphology

    NASA Astrophysics Data System (ADS)

    Larsen, Annegret; May, Jan-Hendrick

    2016-04-01

    Alluvial knickpoints are well described as erosional mechanism within discontinuous ephemeral streams in the semi-arid SW USA. However, alluvial knickpoints occur globally in a wide range of settings and of climate zones, including temperate SE Australia, subtropical Africa, and tropical Australia. Much attention has been given in the scientific literature to the trigger mechanisms of alluvial knickpoints, which can be summarized as: i) threshold phenomena, ii) climate variability and iii) land-use change, or to a combination of these factors. Recently, studies have focused on the timescale of alluvial knickpoint retreat, and the processes, mechanisms and feedbacks with ecology, geomorphology and hydrology. In this study, we compile data from a global literature review with a case study on a tropical river system in Australia affected by re-occurring, fast migrating (140 myr-1) alluvial knickpoint. We highlight the importance of potential water table declines due to channel incision following knickpoint migration, which in turn leads to the destabilization of river banks, and a shift in floodplain vegetation and fire incursion. We hypothesize that the observed feedbacks might also help to understand the broader impacts of alluvial knickpoint migration in other regions, and might explain the drastic effects of knickpoint migration on land cover and land-use in semi-arid areas.

  11. Urban geomorphological heritage - A new field of research

    NASA Astrophysics Data System (ADS)

    Reynard, Emmanuel; Pica, Alessia; Coratza, Paola

    2017-04-01

    Urbanization is one of the major challenges that the world faces. In 2015, 54% of the world population was living in urban areas and in some countries this percentage is close to 100% (Singapore 100%; Qatar 99%; Belgium 98%). In several parts of the world annual urbanization rates exceed 5% (e.g. Oman 8.54%; Rwanda 6.43%; Burkina Faso 5.87%), which means that urban sprawl is a widespread phenomenon. Urbanization and correlated infrastructure building highly impact and sometimes completely destroy natural landforms. Geomorphological heritage research has traditionally focused on rural or natural regions, in particular protected areas (nature parks, geoparks). We consider that urban areas, which have been poorly investigated until now, are particularly interesting in a geomorphological heritage point of view for almost three reasons: (i) The geomorphological context (site) of some cities is part of their "image" and their fame (e.g. the sugarloaf of Rio de Janeiro); (ii) Urban sprawl often interacts with landforms, which addresses the challenge of geoheritage protection in fast urbanizing areas; (iii) Cities are often tourist destinations, which creates a potential for a geotourist promotion of their geomorphological heritage. This study addresses the main challenges research on geomorphological heritage is facing in urban contexts: (i) the complex interrelationships between natural landforms and urban forms; (ii) the partial or total invisibility of landforms and sediments that are covered or destroyed by urban infrastructures; (iii) man-made landforms as part of urban geomorphological heritage; (iv) the suitability of some landforms (valleys, gullies, mounts) for specific urban uses; (v) the geomorphic constraints of landforms on urban development; and (vi) the importance of some landforms for the urban landscape and the image of the cities. To address these challenges a methodological framework is proposed, which combines: (i) the geomorphological analysis of the urban landscape through geomorphological mapping (with use of a specific legend for man-made landforms) and geohistorical analysis of landscape evolution (historical maps processing); (ii) the selection, characterization and assessment of urban geomorphosites; (iii) proposals for the conservation and promotion (geotourism) of the urban geomorphological heritage.

  12. Reconstruction of Late Quaternary climate and landscape changes in Southern Africa based on integrative analyses of geoarchives

    NASA Astrophysics Data System (ADS)

    Hürkamp, Kerstin; Völkel, Jörg; Winkelbauer, Jennifer; Leopold, Matthias; Bens, Oliver; Heine, Klaus

    2010-05-01

    Many studies deal with geoarchives such as dunes, fluvial and slope sediments, pans, speleothems and paleosoils, but often investigations are spatially limited or carried out on isolated landforms. Large-scaled, geochronologic and geomorphologic stratigraphies as well as generally accepted reconstructions of the paleoclimate are still missing for the southern African subcontinent. Only combining records of all geoarchives, and particularly the analysis of sediment interstratifications, would promise good results. For several relief generations of southern Africa, lots of sediment dating already exists, even if methodological and environmental problems delimit the radiocarbon (14C), optic stimulated or thermic luminescence (OSL/TL) chronologies. They illustrate fluctuating climates with a general trend to increasing aridity throughout the Quaternary. Periods of less precipitation led to the development of eolian sediments, while moister periods led to the development of lacustrine-fluvial sediments. Other investigations indicate both processes coexisted, as they did in the SW-Kalahari during the last glacial maximum (LGM). The study areas will be selected according to results of the authors' former field trips and using remote sensing methods. The Molopo River catchment in the south Kalahari is already selected as one major study site. It is highly applicable for paleoclimate research because of its location within the semi-arid to semi-humid Kalahari, which is a region with enormous climatic fluctuations due to recent and former shifts of tropical and subtropical circulation patterns and changing climatic factors. During the Last Glacial Maximum at approximately 24°S, a transition zone existed that was characterized by the overlap of alternating dry and cool climates in the north (summer rains), and cold and moist winters in the south. In the Late Glacial and Holocene period this boundary was shifted southwards. Here dunes and pans coexist as major Kalahari geomorphological types in an ideal way, with the Molopo River valley, including different fluvial sediment facies, interbedded with slope and eolian sediments, as well as the confluence of the Molopo and Orange River systems. Regarding the methods, a combination of sedimentologic, pedologic and geomorphologic field and laboratory work, as well as geophysical prospection of the shallow subsurface and remote sensing will be carried out. Chronological records of erosion and accumulation processes will be obtained by 14C- and OSL sediment datings. The combination of remote sensing methods by the means of aerial photographs (hyperspectral data of HyMAP and CHRIS-Proba) and geomorphological/sedimentological field and laboratory work (ground truth) provides diagnostic parameters of the sediments which will help to differentiate the geoarchives to improve the paleoenvironmental interpretation. The results of two first field campaigns in 2009 are presented including sediment descriptions, laboratory analyses and 14C-ages. The results of OSL dating are not yet available.

  13. High-resolution topography and geomorphology of select archeological sites in Glen Canyon National Recreation Area, Arizona

    USGS Publications Warehouse

    Collins, Brian D.; Corbett, Skye C.; Sankey, Joel B.; Fairley, Helen C.

    2014-01-01

    Along the Colorado River corridor between Glen Canyon Dam and Lees Ferry, Arizona, located some 25 km downstream from the dam, archaeological sites dating from 8,000 years before present through the modern era are located within and on top of fluvial and alluvial terraces of the prehistorically undammed river. These terraces are known to have undergone significant erosion and retreat since emplacement of Glen Canyon Dam in 1963. Land managers and policy makers associated with managing the flow of the Colorado River are interested in understanding how the operations of Glen Canyon Dam have affected the archeological sites associated with these terraces and how dam-controlled flows currently interact with other landscape-shaping processes. In 2012, the U.S. Geological Survey initiated a research project in Glen Canyon to study the types and causes of erosion of the terraces. This report provides the first step towards this understanding by presenting comparative analyses on several types of high-resolution topographic data (airborne lidar, terrestrial lidar, and airborne photogrammetry) that can be used in the future to document and analyze changes to terrace-based archaeological sites. Herein, we present topographic and geomorphologic data of four archaeological sites within a 14 km segment of Glen Canyon using each of the three data sources. In addition to comparing each method’s suitability for adequately representing the topography of the sites, we also analyze the data within each site’s context and describe the geomorphological processes responsible for erosion. Our results show that each method has its own strengths and weaknesses, and that terrestrial and airborne lidar are essentially interchangeable for many important topographic characterization and monitoring purposes. However, whereas terrestrial lidar provides enhanced capacity for feature recognition and gully morphology delineation, airborne methods (whether by way of laser or optical sensors) are better suited for reach- and regional-scale mapping. Our site-specific geomorphic analyses of the four archeological sites indicate that their current topographical conditions are a result of different and sometimes competing erosional agents, including bedrock- and terrace-based overland flow, fluvial-induced terrace bank collapse, and alluvial-fan-generated debris flows. Although the influences of anthropogenic-induced erosion from dam operations are not specifically analyzed in this report, we do identify geomorphic settings where dam operations are either more or less likely to affect archeological site stability. This information can be used to assist with future monitoring efforts of these sites and identification of similar conditions for other archeological sites along the Colorado River corridor in Glen Canyon.

  14. Relations between rainfall–runoff-induced erosion and aeolian deposition at archaeological sites in a semi-arid dam-controlled river corridor

    USGS Publications Warehouse

    Collins, Brian D.; Bedford, David; Corbett, Skye C.; Fairley, Helen C.; Cronkite-Ratcliff, Collin

    2016-01-01

    Process dynamics in fluvial-based dryland environments are highly complex with fluvial, aeolian, and alluvial processes all contributing to landscape change. When anthropogenic activities such as dam-building affect fluvial processes, the complexity in local response can be further increased by flood- and sediment-limiting flows. Understanding these complexities is key to predicting landscape behavior in drylands and has important scientific and management implications, including for studies related to paleoclimatology, landscape ecology evolution, and archaeological site context and preservation. Here we use multi-temporal LiDAR surveys, local weather data, and geomorphological observations to identify trends in site change throughout the 446-km-long semi-arid Colorado River corridor in Grand Canyon, Arizona, USA, where archaeological site degradation related to the effects of upstream dam operation is a concern. Using several site case studies, we show the range of landscape responses that might be expected from concomitant occurrence of dam-controlled fluvial sand bar deposition, aeolian sand transport, and rainfall-induced erosion. Empirical rainfall-erosion threshold analyses coupled with a numerical rainfall–runoff–soil erosion model indicate that infiltration-excess overland flow and gullying govern large-scale (centimeter- to decimeter-scale) landscape changes, but that aeolian deposition can in some cases mitigate gully erosion. Whereas threshold analyses identify the normalized rainfall intensity (defined as the ratio of rainfall intensity to hydraulic conductivity) as the primary factor governing hydrologic-driven erosion, assessment of false positives and false negatives in the dataset highlight topographic slope as the next most important parameter governing site response. Analysis of 4+ years of high resolution (four-minute) weather data and 75+ years of low resolution (daily) climate records indicates that dryland erosion is dependent on short-term, storm-driven rainfall intensity rather than cumulative rainfall, and that erosion can occur outside of wet seasons and even wet years. These results can apply to other similar semi-arid landscapes where process complexity may not be fully understood.

  15. Today's sediment budget of the Rhine River channel, focusing on the Upper Rhine Graben and Rhenish Massif

    NASA Astrophysics Data System (ADS)

    Frings, Roy M.; Gehres, Nicole; Promny, Markus; Middelkoop, Hans; Schüttrumpf, Holger; Vollmer, Stefan

    2014-01-01

    The river bed of the Rhine River is subject to severe erosion and sedimentation. Such high geomorphological process rates are unwanted for economical, ecological, and safety reasons. The objectives of this study were (1) to quantify the geomorphological development of the Rhine River between 1985 and 2006; (2) to investigate the bed erosion process; and (3) to distinguish between tectonic, hydrological, and human controls. We used a unique data set with thousands of bedload and suspended-load measurements and quantified the fluxes of gravel, sand, silt, and clay through the northern Upper Rhine Graben and the Rhenish Massif. Furthermore, we calculated bed level changes and evaluated the sediment budget of the channel. Sediment transport rates were found to change in the downstream direction: silt and clay loads increase because of tributary supply; sand loads increase because of erosion of sand from the bed; and gravel loads decrease because of reduced sediment mobility caused by the base-level control exerted by the uplifting Rhenish Massif. This base-level control shows tectonic setting, in addition to hydrology and human interventions, to represent a major control on morphodynamics in the Rhine. The Rhine bed appears to be in a state of disequilibrium, with an average net bed degradation of 3 mm/a. Sand being eroded from the bed is primarily washed away in suspension, indicating a rapid supply of sand to the Rhine delta. The degradation is the result of an increased sediment transport capacity caused by nineteenth and twentieth century's river training works. In order to reduce degradation, huge amounts of sediment are fed into the river by river managers. Bed degradation and artificial sediment feeding represent the major sources of sand and gravel to the study area; only small amounts of sediment are supplied naturally from upstream or by tributaries. Sediment sinks include dredging, abrasion, and the sediment output to the downstream area. Large uncertainties exist about the amounts of sediment deposited on floodplains and in groyne fields. Compared to the natural situation during the middle Holocene, the present-day gravel and sand loads seem to be lower, whereas the silt and clay loads seem to be higher. This is probably caused by the present-day absence of meander migration, the deforestation, and the reduced sediment trapping efficiency of the floodplains. Even under natural conditions no equilibrium bed level existed.

  16. Connectivity of Multi-Channel Fluvial Systems: A Comparison of Topology Metrics for Braided Rivers and Delta Networks

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Marra, W. A.; Addink, E. A.; Foufoula-Georgiou, E.; Kleinhans, M. G.

    2016-12-01

    Advancing quantitative understanding of the structure and dynamics of complex networks has transformed research in many fields as diverse as protein interactions in a cell to page connectivity in the World Wide Web and relationships in human societies. However, Geosciences have not benefited much from this new conceptual framework, although connectivity is at the center of many processes in hydro-geomorphology. One of the first efforts in this direction was the seminal work of Smart and Moruzzi (1971), proposing the use of graph theory for studying the intricate structure of delta channel networks. In recent years, this preliminary work has precipitated in a body of research that examines the connectivity of multiple-channel fluvial systems, such as delta networks and braided rivers. In this work, we compare two approaches recently introduced in the literature: (1) Marra et al. (2014) utilized network centrality measures to identify important channels in a braided section of the Jamuna River, and used the changes of bifurcations within the network over time to explain the overall river evolution; and (2) Tejedor et al. (2015a,b) developed a set of metrics to characterize the complexity of deltaic channel networks, as well as defined a vulnerability index that quantifies the relative change of sediment and water delivery to the shoreline outlets in response to upstream perturbations. Here we present a comparative analysis of metrics of centrality and vulnerability applied to both braided and deltaic channel networks to depict critical channels in those systems, i.e., channels where a change would contribute more substantially to overall system changes, and to understand what attributes of interest in a channel network are most succinctly depicted in what metrics. Marra, W. A., Kleinhans, M. G., & Addink, E. A. (2014). Earth Surface Processes and Landforms, doi:10.1002/esp.3482Smart, J. S., and V. L. Moruzzi (1971), Quantitative properties of delta channel networks, Tech. Rep. 3, 27 pp., IBM Thomas J. Watson Res. Cent., Yorktown, NYTejedor, A., Longjas, A., Zaliapin, I., & Foufoula-Georgiou, E. (2015a/b). Water Resources Research, doi:10.1002/2014WR016259 & doi:10.1002/2014WR016604

  17. Large dams and alluvial rivers in the Anthropocene: The impacts of the Garrison and Oahe Dams on the Upper Missouri River

    USGS Publications Warehouse

    Skalak, Katherine; Benthem, Adam J.; Schenk, Edward R.; Hupp, Cliff R.; Galloway, Joel M.; Nustad, Rochelle A.; Wiche, Gregg J.

    2013-01-01

    The Missouri River has had a long history of anthropogenic modification with considerable impacts on river and riparian ecology, form, and function. During the 20th century, several large dam-building efforts in the basin served the needs for irrigation, flood control, navigation, and the generation of hydroelectric power. The managed flow provided a range of uses, including recreation, fisheries, and habitat. Fifteen dams impound the main stem of the river, with hundreds more on tributaries. Though the effects of dams and reservoirs are well-documented, their impacts have been studied individually, with relatively little attention paid to their interaction along a river corridor. We examine the morphological and sedimentological changes in the Upper Missouri River between the Garrison Dam in ND (operational in 1953) and Oahe Dam in SD (operational in 1959). Through historical aerial photography, stream gage data, and cross sectional surveys, we demonstrate that the influence of the upstream dam is still a major control of river dynamics when the backwater effects of the downstream reservoir begin. In the “Anthropocene”, dams are ubiquitous on large rivers and often occur in series, similar to the Garrison Dam Segment. We propose a conceptual model of how interacting dams might affect river geomorphology, resulting in distinct and recognizable morphologic sequences that we term “Inter-Dam sequence” characteristic of major rivers in the US.

  18. Glacier meltwater flow paths and storage in a geomorphologically complex glacial foreland: The case of the Tapado glacier, dry Andes of Chile (30°S)

    NASA Astrophysics Data System (ADS)

    Pourrier, J.; Jourde, H.; Kinnard, C.; Gascoin, S.; Monnier, S.

    2014-11-01

    The Tapado catchment is located in the upper Elqui river basin (4000-5550 m) in northern Chile. It comprises the Tapado glacial complex, which is an assemblage of the Tapado glacier and the glacial foreland (debris-covered glacier, rock glacier, and moraines). Although the hydrological functioning of this catchment is poorly known, it is assumed to actively supply water to the lower semi-arid areas of the Elqui river basin. To improve our knowledge of the interactions and water transfers between the cryospheric compartment (glacier, debris-covered glacier, and rock glacier) and the hydrological compartment (aquifers, streams), the results of monitoring of meteorological conditions, as well as discharge, conductivity and temperature of streams and springs located in the Tapado catchment were analyzed. The hydrological results are compared to results inferred from a ground penetrating radar (GPR) survey of the underground structure of the glacial foreland. Water production from the Tapado glacier was shown to be highly correlated with daily and monthly weather conditions, particularly solar radiation and temperature. The resulting daily and monthly streamflow cycles were buffered by the glacial foreland, where underground transfers took place through complex flow paths. However, the development of a thermokarst drainage network in a portion of the glacial foreland enabled rapid concentrated water transfers that reduced the buffer effect. The glacial foreland was shown to act as a reservoir, storing water during high melt periods and supplying water to downstream compartments during low melt periods. GPR observations revealed the heterogeneity of the internal structure of the glacial foreland, which is composed of a mixture of ice and rock debris mixture, with variable spatial ice content, including massive ice lenses. This heterogeneity may explain the abovementioned hydrological behaviors. Finally, calculation of a partial hydrological budget confirmed the importance of the Tapado catchment in supplying water to lower areas of the Elqui river basin. Water production from, and transfer through, cryospheric compartments, and its subsequent interactions with hydrological compartments are key processes driving the summer water supply from the Tapado catchment.

  19. Map Showing Quaternary Geology and Geomorphology of the Granite Park Area, Grand Canyon, Arizona

    USGS Publications Warehouse

    Hereford, Richard; Burke, Kelly J.; Thompson, Kathryn S.

    2000-01-01

    View to west-northwest showing map area and setting of Granite Park; Grand Canyon, Arizona. The Colorado River flows from right to left. Granite Park Wash is the light-colored area in foreground of photograph. The debris fan of 209 Mile Canyon is at left center. Pleistocene gravel is exposed in the steep, light-colored bank above 209 Mile Rapids at left edge of photograph. The black-colored ledge that forms the dark cliff at upper right of photograph is the basalt flow of Hamblin (1994). Sand dunes, debris fans, and terraces of the Colorado River cover the lower half of this area shown in this photograph.

  20. Social-ecological resilience and geomorphic systems

    NASA Astrophysics Data System (ADS)

    Chaffin, Brian C.; Scown, Murray

    2018-03-01

    Governance of coupled social-ecological systems (SESs) and the underlying geomorphic processes that structure and alter Earth's surface is a key challenge for global sustainability amid the increasing uncertainty and change that defines the Anthropocene. Social-ecological resilience as a concept of scientific inquiry has contributed to new understandings of the dynamics of change in SESs, increasing our ability to contextualize and implement governance in these systems. Often, however, the importance of geomorphic change and geomorphological knowledge is somewhat missing from processes employed to inform SES governance. In this contribution, we argue that geomorphology and social-ecological resilience research should be integrated to improve governance toward sustainability. We first provide definitions of engineering, ecological, community, and social-ecological resilience and then explore the use of these concepts within and alongside geomorphology in the literature. While ecological studies often consider geomorphology as an important factor influencing the resilience of ecosystems and geomorphological studies often consider the engineering resilience of geomorphic systems of interest, very few studies define and employ a social-ecological resilience framing and explicitly link the concept to geomorphic systems. We present five key concepts-scale, feedbacks, state or regime, thresholds and regime shifts, and humans as part of the system-which we believe can help explicitly link important aspects of social-ecological resilience inquiry and geomorphological inquiry in order to strengthen the impact of both lines of research. Finally, we discuss how these five concepts might be used to integrate social-ecological resilience and geomorphology to better understand change in, and inform governance of, SESs. To compound these dynamics of resilience, complex systems are nested and cross-scale interactions from smaller and larger scales relative to the system of interest can play formative roles during periods of collapse and reorganization. Large- and small-scale disturbances as well as large-scale system memory/capacity and small-scale innovation can have significant impacts on the trajectory of a reorganizing system (Gunderson and Holling, 2002; Chaffin and Gunderson, 2016). Attempts to measure the property of ecological resilience across complex systems amounts to attempts to measure the persistence of system-controlling variables, including processes, parameters, and important feedbacks, when the system is exposed to varying degrees of disturbance (Folke, 2016).

  1. Spreading Geodiversity awareness in schools through field trips and ICT

    NASA Astrophysics Data System (ADS)

    Magagna, Alessandra; Giardino, Marco; Ferrero, Elena

    2014-05-01

    Geodiversity, unlike Biodiversity, is not a topic included in the Italian schools curriculum. Nevertheless, Geomorphology is taught at all levels, and it seems to be the right tool for introducing the students to the concepts related to Geodiversity. In this context, a research on the use of field trips and Information and Communication Technologies (ICT) is being carried out for spreading the value of Geodiversity in Secondary Schools. Relevant international literature states that field trips are effective didactic tools for Earth Science education, because they stimulate an active learning process and allow students to appreciate the geological complexity of an area. On the other side, ICT allow students to get knowledge about the variety of landforms of their own territory by staying indoor, using virtual field trips and free software like Google Earth, Google Maps, Bing etc. In order to connect the two strategies, an innovative educational project is proposed here; it involves both the indoor and the outdoor activities, by enhancing a critical approach to the complexity of geological processes. As a starting point, a multimedia product on 20 Italian geological tours, designed for analyzing Geodiversity at a regional scale, has been tested with teachers and students, in order to understand its effectiveness by using it solely indoor. In a second phase, teachers and students have been proposed to compare and integrate indoor and outdoor activities to approach Geodiversity directly at a local scale, by means of targeted field trips. For achieving this goal, during the field trips, students used their mobile devices (smartphone and tablet) equipped with free and/or open source applications (Epicollect, Trimble Outdoor Navigator). These tools allow to track field trips, to gather data (geomorphological observations and related photographs), and to elaborate them in the laboratory; a process useful for reasoning on concepts such as spatial and temporal scales and for comparing the real and the virtual experience. Particularly, the geological history of an Alpine Piedmont area West of Torino (NW Italy) has been investigated. A one-day educational field trip has been performed starting from the man-made features of the Sangano town, walking on the present-day, historical and pre-historical fluvial landforms of the Sangone River, and finally climbing up the Pleistocene glacial landforms of the Rivoli-Avigliana Morainic Amphitheatre. The track offers samples of the Geodiversity of the area by showing a variety of landforms and including panoramic views to the Alpine chain. Students collected geomorphological data and carried out research-type activities, such as mapping and describing landforms, making hypotheses on geomorphic processes and gathering useful elements for the reconstruction of the geological history of the area. By taking awareness of the spatial and temporal scales related to landforms and geomorphic processes, as well as to the Man-Nature interactions, students realize the "dynamic dimension" of Geodiversity. As a consequence, students can perceive the geomorphological landscape as a changeable system over time, and therefore worthy of protection.

  2. Reconstructing spatial and temporal patterns of paleoglaciation along the Tian Shan

    NASA Astrophysics Data System (ADS)

    Harbor, J.; Stroeven, A. P.; Beel, C.; Blomdin, R.; Caffee, M. W.; Chen, Y.; Codilean, A.; Gribenski, N.; Hattestrand, C.; Heyman, J.; Ivanov, M.; Kassab, C.; Li, Y.; Lifton, N. A.; Liu, G.; Petrakov, D.; Rogozhina, I.; Usubaliev, R.

    2012-12-01

    Testing and calibrating global climate models require well-constrained information on past climates of key regions around the world. Particularly important are transitional regions that provide a sensitive record of past climate change. Central Asia is an extreme continental location with glaciers and rivers that respond sensitively to temporal variations in the dominance of several major climate systems. As an international team initiative, we are reconstructing the glacial history of the Kyrgyz and Chinese Tian Shan, based on mapping and dating of key localities along the range. Remote-sensing-based geomorphological mapping, building on previous maps produced by Kyrgyz, Russian, Chinese and German scholars, is being augmented with field observations of glacial geomorphology and the maximum distribution of erratics. We are using cosmogenic nuclide (CN) 10Be dating of moraines and other landforms that constrain the former maximum extents of glaciers. Study sites include the Ala-Archa, Ak-Shyrak and Inylchek/Sary-Dzaz areas in Kyrgyzstan and the Urumqi valley (as well as its upland and southern slopes), and the Tumur and Bogeda peak areas in China. Comparing consistently dated glacial histories along and across the range will allow us to examine potential shifts in the dominance patterns of climate systems over time in Central Asia. We are also comparing ages based on CN with optically stimulated luminescence (OSL) and electron spin resonance (ESR) dates. The final stage of this project will use intermediate complexity glacier flow models to examine paleoclimatic implications of the observed spatial and temporal patterns of glacier changes across Central Asia and eastern Tibet, focused in particular on the last glacial cycle.

  3. Recent Geomorphological Evolution in the Southern Part of the Middle Russian Upland (Russia)

    NASA Astrophysics Data System (ADS)

    Romanovskaya, Maria; Sukhanova, Tatyana; Krilkov, Nikita

    2017-04-01

    The Middle Russian Upland occupies the central part of the East European Plain. Our structural and geomorphological study of the Upland's southern segment (mostly of the Ostrogozhsk Uplift) exposed the presence of differently aged erosion-shaped denudational, erosion-shaped accumulational and purely accumulational surfaces, each with its own complex of recent deposits. The entire landscape is a system of altitudinal 'steps', or 'levels', which we believe were formed by uneven neotectonic movements and also influenced by climate fluctuations. The highest (220 - 230 m above sea level) and the oldest day light surface of the Ostrogozhsk Uplift lies on Poltava- and Shapkino-type deposit suites and dates from the Late Miocene. A surface at about 200 m dates from the Late Miocene and the Pliocene. Surfaces at 180 m and 150 m date from the Eopleistocene and the Early Pleistocene, respectively. The former lies on Kiev-type deposits, and the latter - on fluvioglacial deposits from the time of the maximum Dnepr (or Don) Glaciations. The valleys of the rivers Don and Tikhaya Sosna have fluvial terraces above their floodplains all formed under the influence of the Don, Dnepr, Moscow and, Valdai Glaciations. Terrace IV (at about 60 m above river level) formed in the opening half of the Middle Neopleistocene. Terrace III (40 m), formed in the closing half of the Middle Neopleistocene. Terrace II (30 m), formed in the opening half of the Late Neopleistocene. Terrace II (at 10 to 12 m), formed in the closing half of the Late Neopleistocene. The floodplain (at 2 to 4 m), formed in the Holocene. There is ample evidence of neotectonic activity in the surveyed area, namely: changes in the flow direction of the rivers Don and Tikhaya Sosna, forced to bypass the growing upland forming tectonic meanders; instances of damming up, which have led to waterlogging in floodplains; increase in the density of the erosion grid; fall of the groundwater table; intensification of erosion and slope wash processes, forming numerous canyon-shaped ravines, very steep slopes, bastion-like relief forms and a very peculiar relief type - chalk outliers (Romanovskaya et al, 2015; 2016). Thus the beginning of the modern topography of the study area falls in the Late Miocene, after the end of the Late Oligocene-Early Miocene sea regressed, and marine sediments were covered by continental sediments of Poltava type deposit. During the recent phase of lifting the area developed unevenly, as evidenced by the steplike on the slopes of the watershed. Neotectonic movements, are the major cause of the lifting of the study area and its modern geomorphological features. Romanovskaya M.A., Bessudnov A.N., Kuznetsova T.V. The Role of Neotectonics in Landscape Formation in What Is Now the Divnogorie Nature Park (Southern East European Plain). AGU Fall Meeting, 14-18 December, 2015, San Francisco, USA. Romanovskaya M.A., Kosevich N.I. Geomorphic Response to Neotectonic Rise of the Middle Russian Upland: the case of the Ostrogozhsk Uplift (European Russia). EGU General Assembly 2016, 17-22 April, 2016, Vienna, Austria.

  4. A Modeling Approach for Evaluating the Coupled Riparian Vegetation-Geomorphic Response to Altered Flow Regimes

    NASA Astrophysics Data System (ADS)

    Manners, R.; Wilcox, A. C.; Merritt, D. M.

    2016-12-01

    The ecogeomorphic response of riparian ecosystems to a change in hydrologic properties is difficult to predict because of the interactions and feedbacks among plants, water, and sediment. Most riparian models of community dynamics assume a static channel, yet geomorphic processes strongly control the establishment and survival of riparian vegetation. Using a combination of approaches that includes empirical relationships and hydrodynamic models, we model the coupled vegetation-topographic response of three cross-sections on the Yampa and Green Rivers in Dinosaur National Monument, to a shift in the flow regime. The locations represent the variable geomorphology and vegetation composition of these canyon-bound rivers. We account for the inundation and hydraulic properties of vegetation plots surveyed over three years within International River Interface Cooperative (iRIC) Fastmech, equipped with a vegetation module that accounts for flexible stems and plant reconfiguration. The presence of functional groupings of plants, or those plants that respond similarly to environmental factors such as water availability and disturbance are determined from flow response curves developed for the Yampa River. Using field measurements of vegetation morphology, distance from the channel centerline, and dominant particle size and modeled inundation properties we develop an empirical relationship between these variables and topographic change. We evaluate vegetation and channel form changes over decadal timescales, allowing for the integration of processes over time. From our analyses, we identify thresholds in the flow regime that alter the distribution of plants and reduce geomorphic complexity, predominately through side-channel and backwater infilling. Simplification of some processes (e.g., empirically-derived sedimentation) and detailed treatment of others (e.g., plant-flow interactions) allows us to model the coupled dynamics of riparian ecosystems and evaluate the impact of small to large shifts in the flow regime. This approach will be useful to river managers and scientists, as they try to understand the potential changes to riparian ecosystems with uncertain changes to hydrologic regimes as a result of a changing climate and human demands.

  5. Landscape scale prediction of earthquake-induced landsliding based on seismological and geomorphological parameters.

    NASA Astrophysics Data System (ADS)

    Marc, O.; Hovius, N.; Meunier, P.; Rault, C.

    2017-12-01

    In tectonically active areas, earthquakes are an important trigger of landslides with significant impact on hillslopes and river evolutions. However, detailed prediction of landslides locations and properties for a given earthquakes remain difficult.In contrast we propose, landscape scale, analytical prediction of bulk coseismic landsliding, that is total landslide area and volume (Marc et al., 2016a) as well as the regional area within which most landslide must distribute (Marc et al., 2017). The prediction is based on a limited number of seismological (seismic moment, source depth) and geomorphological (landscape steepness, threshold acceleration) parameters, and therefore could be implemented in landscape evolution model aiming at engaging with erosion dynamics at the scale of the seismic cycle. To assess the model we have compiled and normalized estimates of total landslide volume, total landslide area and regional area affected by landslides for 40, 17 and 83 earthquakes, respectively. We have found that low landscape steepness systematically leads to overprediction of the total area and volume of landslides. When this effect is accounted for, the model is able to predict within a factor of 2 the landslide areas and associated volumes for about 70% of the cases in our databases. The prediction of regional area affected do not require a calibration for the landscape steepness and gives a prediction within a factor of 2 for 60% of the database. For 7 out of 10 comprehensive inventories we show that our prediction compares well with the smallest region around the fault containing 95% of the total landslide area. This is a significant improvement on a previously published empirical expression based only on earthquake moment.Some of the outliers seems related to exceptional rock mass strength in the epicentral area or shaking duration and other seismic source complexities ignored by the model. Applications include prediction on the mass balance of earthquakes and this model predicts that only earthquakes generated on a narrow range of fault sizes may cause more erosion than uplift (Marc et al., 2016b), while very large earthquakes are expected to always build topography. The model could also be used to physically calibrate hillslope erosion or perturbations to river network within landscape evolution model.

  6. What role do hurricanes play in sediment delivery to subsiding river deltas?

    USGS Publications Warehouse

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg; White, Crawford

    2015-01-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50–100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  7. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    NASA Astrophysics Data System (ADS)

    Smith, James E.; Bentley, Samuel J.; Snedden, Gregg A.; White, Crawford

    2015-12-01

    The Mississippi River Delta (MRD) has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply and delta geomorphology. In the MRD, hurricanes have been paradoxically identified as both substantial agents of widespread land loss, and vertical marsh sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the MRD that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  8. Physical Heterogeneity and Aquatic Community Function in ...

    EPA Pesticide Factsheets

    The geomorphological character of a river network provides the template upon which evolution acts to create unique biological communities. Deciphering commonly observed patterns and processes within riverine landscapes resulting from the interplay between physical and biological components is a central tenet for the interdisciplinary field of river science. Relationships between the physical heterogeneity and food web character of functional process zones (FPZs) – large tracts of river with a similar geomorphic character - in the Kanawha River (West Virginia, USA) are examined in this study. Food web character was measured as food chain length (FCL), which reflects ecological community structure and ecosystem function. Our results show the same basal resources were present throughout the Kanawha River but their assimilation into the aquatic food web by primary consumers differed between FPZs. Differences in the trophic position of secondary consumers – fish - were also recorded between FPZs. Overall, both the morphological heterogeneity and heterogeneity of the river bed sediment of FPZs were significantly correlated with FCL. Specifically, FCL increases with greater FPZ physical heterogeneity, supporting tenet 8 of the river ecosystem synthesis. In previous research efforts, we delineated the functional process zones (FPZs) of the Kanawha River. In this study, we examined the relationship between the hydrogeomorphically-derived zones with food webs.

  9. Monitoring suspended sediment transport in an ice-affected river using acoustic Doppler current profilers

    NASA Astrophysics Data System (ADS)

    Moore, S. A.; Ghareh Aghaji Zare, S.; Rennie, C. D.; Ahmari, H.; Seidou, O.

    2013-12-01

    Quantifying sediment budgets and understanding the processes which control fluvial sediment transport is paramount to monitoring river geomorphology and ecological habitat. In regions that are subject to freezing there is the added complexity of ice. River ice processes impact flow distribution, water stage and sediment transport. Ice processes typically have the largest impact on sediment transport and channel morphodynamics when ice jams occur during ice cover formation and breakup. Ice jams may restrict flow and cause local acceleration when released. Additionally, ice can mechanically scour river bed and banks. Under-ice sediment transport measurements are lacking due to obvious safety and logistical reasons, in addition to a lack of adequate measurement techniques. Since some rivers can be covered in ice during six months of the year, the lack of data in winter months leads to large uncertainty in annual sediment load calculations. To address this problem, acoustic profilers are being used to monitor flow velocity, suspended sediment and ice processes in the Lower Nelson River, Manitoba, Canada. Acoustic profilers are ideal for under-ice sediment flux measurements since they can be operated autonomously and continuously, they do not disturb the flow in the zone of measurement and acoustic backscatter can be related to sediment size and concentration. In March 2012 two upward-facing profilers (1200 kHz acoustic Doppler current profiler, 546 KHz acoustic backscatter profiler) were installed through a hole in the ice on the Nelson River, 50 km downstream of the Limestone Generating Station. Data were recorded for four months, including both stable cover and breakup periods. This paper presents suspended sediment fluxes calculated from the acoustic measurements. Velocity data were used to infer the vertical distribution of sediment sizes and concentrations; this information was then used in the interpretation of the backscattered intensity data. It was found that the maximum concentration observed during breakup was more than an order of magnitude larger than the typical values observed under stable ice cover (>300 mg/L, versus 5 - 15 mg/L). This result is consistent with the few historic studies of river ice breakup in which water samples were collected. This study shows that acoustic profilers can be used to monitor suspended sediment fluxes under ice, ultimately reducing the uncertainty in sediment budget computations for ice-affected rivers.

  10. Dissolved organic matter dynamics in the oligo/meso-haline zone of wetland-influenced coastal rivers

    NASA Astrophysics Data System (ADS)

    Maie, Nagamitsu; Sekiguchi, Satoshi; Watanabe, Akira; Tsutsuki, Kiyoshi; Yamashita, Youhei; Melling, Lulie; Cawley, Kaelin M.; Shima, Eikichi; Jaffé, Rudolf

    2014-08-01

    Wetlands are key components in the global carbon cycle and export significant amounts of terrestrial carbon to the coastal oceans in the form of dissolved organic carbon (DOC). Conservative behavior along the salinity gradient of DOC and chromophoric dissolved organic matter (CDOM) has often been observed in estuaries from their freshwater end-member (salinity = 0) to the ocean (salinity = 35). While the oligo/meso-haline (salinity < 10) tidal zone of upper estuaries has been suggested to be more complex and locally influenced by geomorphological and hydrological features, the environmental dynamics of dissolved organic matter (DOM) and the environmental drivers controlling its source, transport, and fate have scarcely been evaluated. Here, we investigated the distribution patterns of DOC and CDOM optical properties determined by UV absorbance at 254 nm (A254) and excitation-emission matrix (EEM) fluorescence coupled with parallel factor analysis (PARAFAC) along the lower salinity range (salinity < 10) of the oligo/meso-haline zone for three distinct wetland-influenced rivers; namely the Bekanbeushi River, a cool-temperate river with estuarine lake in Hokkaido, Japan, the Harney River, a subtropical river with tidally-submerged mangrove fringe in Florida, USA, and the Judan River, a small, acidic, tropical rainforest river in Borneo, Malaysia. For the first two rivers, a clear decoupling between DOC and A254 was observed, while these parameters showed similar conservative behavior for the third. Three distinct EEM-PARAFAC models established for each of the rivers provided similar spectroscopic characteristics except for some unique fluorescence features observed for the Judan River. The distribution patterns of PARAFAC components suggested that the inputs from plankton and/or submerged aquatic vegetation can be important in the Bekanbeushi River. Further, DOM photo-products formed in the estuarine lake were also found to be transported upstream. In the Harney River, whereas upriver-derived terrestrial humic-like components were mostly distributed conservatively, some of these components were also derived from mangrove inputs in the oligo/meso-haline zone. Interestingly, fluorescence intensities of some terrestrial humic-like components increased with salinity for the Judan River possibly due to changes in the dissociation state of acidic functional groups and/or increase in the fluorescence quantum yield along the salinity gradient. The protein-like and microbial humic-like components were distributed differently between three wetland rivers, implying that interplay between loss to microbial degradation and inputs from diverse sources are different for the three wetland-influenced rivers. The results presented here indicate that upper estuarine oligo/meso-haline regions of coastal wetland rivers are highly dynamic with regard to the biogeochemical behavior of DOM.

  11. Time-series studies of drainage pattern and morphological features along the Leitha river (Eastern Austria)

    NASA Astrophysics Data System (ADS)

    Zámolyi, A.; Draganits, E.; Doneus, M.; Fera, M.; Griebl, M.

    2009-04-01

    Geomorphologic mapping and drainage network analysis was conducted in the Southern Vienna Basin on the Leitha and Fischa rivers. The study area belongs to an active pull-apart basin between the Eastern Alps and the Carpathians that started to subside in Karpatian times (~ 17 Ma), but with still active faults, proven by fault scarps and earth quakes. The investigated rivers are important tributaries to the Danube river and run through a region that has been subject to settlement since Neoltihic times. Thus, interaction between land use, settlement pattern and river dynamics can be studied. Several datasets are integrated to perform a comprehensive overview of geomorphological, as well as river dynamic changes in the landscape. During an earlier stage of this investigation a map of paleochannel distribution including the location and shape of the paleochannels was extracted from color-infrared and RGB digital orthophotos. Based on this map the location, character and shape of palaeomeanders is studied on different georeferenced historic maps (Timár et al., 2006; Biszak et al., 2007) in order to derive a time-series study. The paleochannels extracted from the digital orthophotos show a good coincidence with the depicted rivers on the historic maps. This partly allows quite well constrained age estimates of the paleochannel sections. The investigated maps are the Walter maps, the First, Second and Third Military Survey of the Habsburg/Austro-Hungarian Empire. Mapping of the Walter maps was conducted 1754-56 (Ulbrich, 1952), the First, Second and Third Military Surveys were mapped in this area in the time-span of 1782-1785, 1819-1869, and 1872-1873, respectively (Kretschmer et al., 2004). This sequence of georeferenced historical maps allows to study only a very short time-span (1755 - 1873) compared to the geological time scale. However, the characteristics of river dynamics special for the study area can be derived and, considering certain assumptions, extrapolated to a wider time range. Within the observable time period the Leitha river preserved its meandering characteristics. Small shifts of the mean channel towards E or W can be detected. A disadvantage of the maps previous to the Third Military Survey is the lack of contour lines. On these maps, variation in terrain elevation was mapped „a la vue" and rather depicted as changes in slope of the terrain by applying hatchures showing a density increase with higher slope. This method provided a very plastic overview of changes in the terrain, but the reading of absolute or relative elevations is not possible. According to this, geomorphologic observations from these maps are constricted to the comparison of the horizontal position of elevated areas and the change of their outline. This study shows that historical maps provide an essential tool to investigate younger river dynamics and sensitively show the impact of anthropological modifications as well as active tectonics. Biszak, S., Timár, G., Molnár, G., Jankó, A. (2007): Digitized maps of the Habsburg Empire - The third military survey, Österreichisch-Ungarische Monarchie, 1869-1887, 1:75000. DVD-issue, Arcanum, Budapest. ISBN 978-963-73-7451-7 Kretschmer, I., Dörflinger, J., Wawrick, F. (2004): Österreichische Kartographie. Wiener Schiften zur Geographie und Kartographie - Band 15. Institut für Geographie und Regionalforschung der Universität Wien, Wien. Timár, G., Molnár, G., Székely, B., Biszak, S., Varga, J., Jankó, A. (2006): Digitized maps of the Habsburg Empire - The map sheets of the second military survey and their georeferenced version. Arcanum, Budapest, 59 p. ISBN 963-7374-33-7 Ulbrich K. (1952): Die Grenzkarte Ungarn-Niederösterreich von C. J. Walter (1754 - 56). Burgenländische Heimatblätter, 14, 108-121

  12. Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of December 1909 in Iberia

    NASA Astrophysics Data System (ADS)

    Pereira, S.; Ramos, A. M.; Zêzere, J. L.; Trigo, R. M.; Vaquero, J. M.

    2015-09-01

    According to the DISASTER database the 20-28 December 1909 was the hydro-geomorphologic event with the highest number of flood and landslide cases occurred in Portugal in the period 1865-2010 (Zêzere et al., 2014). This event also caused important social impacts over the Spanish territory, especially in the Douro basin, having triggered the highest floods in more than 100 years at the river's mouth in the city of Oporto. This work aims to characterize the spatial distribution and social impacts of the December 1909 hydro-geomorphologic event over Iberia. In addition, the meteorological conditions that triggered the event are analysed using the 20 Century Reanalysis dataset from NOAA and precipitation data from Iberian meteorological stations. The Iberian Peninsula was spatially affected during this event along the SW-NE direction spanning from Lisbon, Santarém, Oporto and Guarda (in Portugal), until Salamanca, Valladolid, Zamora, Orense, León and Palencia (in Spain). In Iberia, 134 DISASTER cases were recorded (130 flood cases; 4 landslides cases) having caused a total of 89 casualties (57 in floods and 32 in landslides) and a total of 3876 people were affected, including fatalities, injured, missing, evacuated and homeless people. This event was associated with some outstanding precipitation values at Guarda station (Portugal) in 22 December 1909 and unusual meteorological conditions characterized by the presence of a deep low pressure system located over NW Iberian Peninsula with a stationary frontal system striking the Western Iberian Peninsula. The presence of an upper-level jet (250 hPa) and low-level jet (900 hPa) located on SW-NE oriented towards the Iberia along with upper-level divergence and lower-level convergence favoured large-scale precipitation. Finally, associated with these features it is possible to state that this extreme event was clearly associated to the presence of an elongated Atmospheric River, crossing the entire northern Atlantic basin and providing a continuous supply of moisture that contributed to enhance precipitation. This work contributes to a comprehensive and systematic synoptic evaluation of the second most deadly hydro-geomorphologic Disaster event occurred in Portugal since 1865 and will help to better understand the meteorological system that was responsible for triggering the event.

  13. Geomorphology of the Southern Gulf of California Seafloor

    NASA Astrophysics Data System (ADS)

    Eakins, B. W.; Lonsdale, P. F.; Fletcher, J. M.; Ledesma, J. V.

    2004-12-01

    A Spring 2004 multibeam sonar survey defined the seafloor geomorphology of the southern part of Gulf of California and the intersection of the East Pacific Rise with the North American continent. Survey goals included mapping structural patterns formed during the rifting that opened the Gulf and identifying the spatial transition from continental rifting to seafloor spreading. Multibeam sonar imagery, augmented with archival data and a subaerial DEM of Mexico, illuminates the principal features of this boundary zone between obliquely diverging plates: (i) active and inactive oceanic risecrests within young oceanic basins that are rich in evidence for off-axis magmatic eruption and intrusion; (ii) transforms with pull-apart basins and transpressive ridges along shearing continental margins and within oceanic crust; (iii) orphaned blocks of continental crust detached from sheared and rifted continental margins; and (iv) young, still-extending continental margins dissected by submarine canyons that in many cases are deeply drowned river valleys. Many of the canyons are conduits for turbidity currents that feed deep-sea fans on oceanic and subsided continental crust, and channel sediment to spreading axes, thereby modifying the crustal accretion process. We present a series of detailed bathymetric and seafloor reflectivity maps of this MARGINS Rupturing Continental Lithosphere focus site illustrating geomorphologic features of the southern part of the Gulf, from Guaymas Basin to the Maria Magdalena Rise.

  14. Global Drainage Patterns to Modern Terrestrial Sedimentary Basins and its Influence on Large River Systems

    NASA Astrophysics Data System (ADS)

    Nyberg, B.; Helland-Hansen, W.

    2017-12-01

    Long-term preservation of alluvial sediments is dependent on the hydrological processes that deposit sediments solely within an area that has available accomodation space and net subsidence know as a sedimentary basin. An understanding of the river processes contributing to terrestrial sedimentary basins is essential to fundamentally constrain and quantify controls on the modern terrestrial sink. Furthermore, the terrestrial source to sink controls place constraints on the entire coastal, shelf and deep marine sediment routing systems. In addition, the geographical importance of modern terrestrial sedimentary basins for agriculture and human settlements has resulted in significant upstream anthropogenic catchment modification for irrigation and energy needs. Yet to our knowledge, a global catchment model depicting the drainage patterns to modern terrestrial sedimentary basins has previously not been established that may be used to address these challenging issues. Here we present a new database of 180,737 global catchments that show the surface drainage patterns to modern terrestrial sedimentary basins. This is achieved by using high resolution river networks derived from digital elevation models in relation to newly acquired maps on global modern sedimentary basins to identify terrestrial sinks. The results show that active tectonic regimes are typically characterized by larger terrestrial sedimentary basins, numerous smaller source catchments and a high source to sink relief ratio. To the contrary passive margins drain catchments to smaller terrestrial sedimentary basins, are composed of fewer source catchments that are relatively larger and a lower source to sink relief ratio. The different geomorphological characteristics of source catchments by tectonic setting influence the spatial and temporal patterns of fluvial architecture within sedimentary basins and the anthropogenic methods of exploiting those rivers. The new digital database resource is aimed to help the geoscientific community to contribute further to our quantitative understanding of source-to-sink systems and its allogenic and autogenic controls, geomorphological characteristics, terrestrial sediment transit times and the anthropogenic impact on those systems.

  15. Establishment area and biogeomorphic feedback window of three pioneer riparian Salicaceae species within a dynamic riparian corridor (Allier River, France)

    NASA Astrophysics Data System (ADS)

    Hortobágyi, Borbála; Corenblit, Dov; Steiger, Johannes; Peiry, Jean-Luc

    2017-04-01

    Within riparian corridors, biotic-abiotic feedback mechanisms occur between woody vegetation which is highly influenced by hydrogeomorphic constraints (e.g. sediment transport and deposition, shear stress, hydrological variability), fluvial landforms and morphodynamics, which in turn are modulated by established vegetation. During field investigations in spring 2015 we analysed on 16 alluvial bars (e.g. point and lateral bars) within the dynamic riparian corridor of the Allier River, France, the aptitude of three pioneer riparian Salicaceae tree species (Populus nigra L., Salix purpurea L. and Salix alba L.) to establish and to act as ecosystem engineers by trapping sediment and constructing fluvial landforms. Our aim was to empirically identify the preferential establishment area (EA; i.e. the local areas where species establish) and the preferential biogeomorphic feedback window (BFW; i.e. where and to what extent the species affect geomorphology) of these three species on alluvial bars within a river reach of a length of 20 km. Our results show that the EA and BFW of all three species significantly varied along the longitudinal, i.e. upstream-downstream exposure on the alluvial bars, and the transverse gradient, i.e. main channel-floodplain gradient of hydrological connectivity. In the current context of the Allier River it appeared that P. nigra, which is the most abundant species, acts as the main engineer species affecting landform dynamics at the bar scale; S. purpurea establishes and acts as an ecosystem engineer in the locations on the alluvial bars which are the most exposed to hydrosedimentary flow dynamics, while S. alba establishes on the bar tail in the vicinity of secondary channels and affects geomorphology in mixed patches with P. nigra. Thus, our study underlines the role of functional trait diversity of riparian engineer species in controlling the extent of fluvial landform construction along geomorphic gradients within riparian corridors exposed to frequent hydrogeomorphic disturbances.

  16. SwathProfiler and NProfiler: Two new ArcGIS Add-ins for the automatic extraction of swath and normalized river profiles

    NASA Astrophysics Data System (ADS)

    Pérez-Peña, J. V.; Al-Awabdeh, M.; Azañón, J. M.; Galve, J. P.; Booth-Rea, G.; Notti, D.

    2017-07-01

    The present-day great availability of high-resolution Digital Elevation Models has improved tectonic geomorphology analyses in their methodological aspects and geological meaning. Analyses based on topographic profiles are valuable to explore the short and long-term landscape response to tectonic activity and climate changes. Swath and river longitudinal profiles are two of the most used analysis to explore the long and short-term landscape responses. Most of these morphometric analyses are conducted in GIS software, which have become standard tools for analyzing drainage network metrics. In this work we present two ArcGIS Add-Ins to automatically delineate swath and normalized river profiles. Both tools are programmed in Visual Basic . NET and use ArcObjects library-architecture to access directly to vector and raster data. The SwathProfiler Add-In allows analyzing the topography within a swath or band by representing maximum-minimum-mean elevations, first and third quartile, local relief and hypsometry. We have defined a new transverse hypsometric integral index (THi) that analyzes hypsometry along the swath and offer valuable information in these kind of graphics. The NProfiler Add-In allows representing longitudinal normalized river profiles and their related morphometric indexes as normalized concavity (CT), maximum concavity (Cmax) and length of maximum concavity (Lmax). Both tools facilitate the spatial analysis of topography and drainage networks directly in a GIS environment as ArcMap and provide graphical outputs. To illustrate how these tools work, we analyzed two study areas, the Sierra Alhamilla mountain range (Betic Cordillera, SE Spain) and the Eastern margin of the Dead Sea (Jordan). The first study area has been recently studied from a morphotectonic perspective and these new tools can show an added value to the previous studies. The second study area has not been analyzed by quantitative tectonic geomorphology and the results suggest a landscape in transient state due to a continuous base-level fall produced by the formation of the Dead Sea basin.

  17. Noise is the new signal: Moving beyond zeroth-order geomorphology (Invited)

    NASA Astrophysics Data System (ADS)

    Jerolmack, D. J.

    2010-12-01

    The last several decades have witnessed a rapid growth in our understanding of landscape evolution, led by the development of geomorphic transport laws - time- and space-averaged equations relating mass flux to some physical process(es). In statistical mechanics this approach is called mean field theory (MFT), in which complex many-body interactions are replaced with an external field that represents the average effect of those interactions. Because MFT neglects all fluctuations around the mean, it has been described as a zeroth-order fluctuation model. The mean field approach to geomorphology has enabled the development of landscape evolution models, and led to a fundamental understanding of many landform patterns. Recent research, however, has highlighted two limitations of MFT: (1) The integral (averaging) time and space scales in geomorphic systems are sometimes poorly defined and often quite large, placing the mean field approximation on uncertain footing, and; (2) In systems exhibiting fractal behavior, an integral scale does not exist - e.g., properties like mass flux are scale-dependent. In both cases, fluctuations in sediment transport are non-negligible over the scales of interest. In this talk I will synthesize recent experimental and theoretical work that confronts these limitations. Discrete element models of fluid and grain interactions show promise for elucidating transport mechanics and pattern-forming instabilities, but require detailed knowledge of micro-scale processes and are computationally expensive. An alternative approach is to begin with a reasonable MFT, and then add higher-order terms that capture the statistical dynamics of fluctuations. In either case, moving beyond zeroth-order geomorphology requires a careful examination of the origins and structure of transport “noise”. I will attempt to show how studying the signal in noise can both reveal interesting new physics, and also help to formalize the applicability of geomorphic transport laws. Flooding on an experimental alluvial fan. Intensity is related to the cumulative amount of time flow has visited an area of the fan over the experiment. Dark areas represent an emergent channel network resulting from stochastic migration of river channels.

  18. Mapping Drought Sensitivity of Ecosystem Functioning in Mountainous Watersheds: Spatial Heterogeneity and Geological-Geomorphological Control

    NASA Astrophysics Data System (ADS)

    Wainwright, H. M.; Steefel, C. F.; Williams, K. H.; Hubbard, S. S.; Enquist, B. J.; Steltzer, H.; Sarah, T.

    2016-12-01

    Mountainous watersheds in the Upper Colorado River Basin play a critical role in supplying water and nutrients to western North America. Ecosystem functioning in those regions - including plant dynamics and biogeochemical cycling - is known to be limited by water availability. Under the climate change, early snowmelt and increasing temperature are expected to intensify the drought conditions in early growing seasons. Although the impact of early-season drought has been documented in plot-scale experiments, ascertaining its significance in mountainous watersheds is challenging given the highly heterogeneous nature of the systems with complex terrain and diverse plant functional types (PFTs). The objectives of this study are (1) to map the regions where the plant dynamics are relatively more sensitive to drought conditions based on historical satellite and climate data, and (2) to identify the environmental controls (e.g., geomorphology, elevation, geology, snow and PFT) on drought sensitivity. We characterize the spatial heterogeneity of drought sensitivity in four watersheds (a 15 x 15 km domain) near the Rocky Mountain Biological Laboratory in Colorado, USA. Following previous plot-scale studies, we first define the drought sensitivity based on annual peak NDVI (Landsat 5) and climatic datasets. Non-parametric tree-based machine learning methods are used to identify the significant environmental controls, using high-resolution LiDAR digital elevation map and peak snow-water-equivalent distribution from NASA airborne snow observatory. Results show that the drought sensitivity is negatively correlated with elevation, suggesting increased water limitations in lower elevation (less snow, higher temperature). The drought sensitivity is more spatially variable in shallow-rooted plant types, affected by local hydrological conditions. We also found geomorphological and geological controls, such as high sensitivity in the steep well-drained glacial moraine regions. Our results highlight the importance of geology and subsurface flow conditions, in addition to snow accumulation. In parallel, the remotely-sensed drought sensitivity can be used as a scalable metric to identify the vulnerable regions to the future climate change, as well as to inform future sampling and characterization.

  19. African humid periods triggered the reactivation of a large river system in Western Sahara.

    PubMed

    Skonieczny, C; Paillou, P; Bory, A; Bayon, G; Biscara, L; Crosta, X; Eynaud, F; Malaizé, B; Revel, M; Aleman, N; Barusseau, J-P; Vernet, R; Lopez, S; Grousset, F

    2015-11-10

    The Sahara experienced several humid episodes during the late Quaternary, associated with the development of vast fluvial networks and enhanced freshwater delivery to the surrounding ocean margins. In particular, marine sediment records off Western Sahara indicate deposition of river-borne material at those times, implying sustained fluvial discharges along the West African margin. Today, however, no major river exists in this area; therefore, the origin of these sediments remains unclear. Here, using orbital radar satellite imagery, we present geomorphological data that reveal the existence of a large buried paleodrainage network on the Mauritanian coast. On the basis of evidence from the literature, we propose that reactivation of this major paleoriver during past humid periods contributed to the delivery of sediments to the Tropical Atlantic margin. This finding provides new insights for the interpretation of terrigenous sediment records off Western Africa, with important implications for our understanding of the paleohydrological history of the Sahara.

  20. Quantifying and Predicting Three-Dimensional Heterogeneity in Transient Storage Using Roving Profiling

    NASA Astrophysics Data System (ADS)

    Kaplan, D. A.; Reaver, N.; Hensley, R. T.; Cohen, M. J.

    2017-12-01

    Hydraulic transport is an important component of nutrient spiraling in streams. Quantifying conservative solute transport is a prerequisite for understanding the cycling and fate of reactive solutes, such as nutrients. Numerous studies have modeled solute transport within streams using the one-dimensional advection, dispersion and storage (ADS) equation calibrated to experimental data from tracer experiments. However, there are limitations to the information about in-stream transient storage that can be derived from calibrated ADS model parameters. Transient storage (TS) in the ADS model is most often modeled as a single process, and calibrated model parameters are "lumped" values that are the best-fit representation of multiple real-world TS processes. In this study, we developed a roving profiling method to assess and predict spatial heterogeneity of in-stream TS. We performed five tracer experiments on three spring-fed rivers in Florida (USA) using Rhodamine WT. During each tracer release, stationary fluorometers were deployed to measure breakthrough curves for multiple reaches within the river. Teams of roving samplers moved along the rivers measuring tracer concentrations at various locations and depths within the reaches. A Bayesian statistical method was used to calibrate the ADS model to the stationary breakthrough curves, resulting in probability distributions for both the advective and TS zone as a function of river distance and time. Rover samples were then assigned a probability of being from either the advective or TS zone by comparing measured concentrations to the probability distributions of concentrations in the ADS advective and TS zones. A regression model was used to predict the probability of any in-stream position being located within the advective versus TS zone based on spatiotemporal predictors (time, river position, depth, and distance from bank) and eco-geomorphological feature (eddies, woody debris, benthic depressions, and aquatic vegetation). Results confirm that TS is spatially variable as a function of spatiotemporal and eco-geomorphological features. A substantial number of samples with nearly equivalent chances of being from the advective or TS zones suggests that the distinction between zones is often poorly defined.

  1. Seasonal Changes in Connectivity and Nitrate Processing in Deltaic Floodplains

    NASA Astrophysics Data System (ADS)

    Christensen, A.; Twilley, R.; Castaneda, E.

    2017-12-01

    Hydrological connectivity (HC) describes the exchange between distributary channels and floodplains in river-dominated systems, and ultimately controls delivery of nitrate-enriched water to floodplain wetlands. Within a river delta, HC is controlled by several biophysical processes including tides, wind events, river discharge, vegetation, and geomorphology that operate at different temporal and spatial scales. We quantified seasonal changes in vegetation density and river flooding, to better understand HC in Wax Lake Delta (WLD), a prograding delta in southeastern Louisiana. Previous results from our hydrodynamic model indicate longer residences times in intertidal zones (1-3 days) than in subtidal zones (<1.5 days) of WLD islands. This model also showed increases in HC during the flood season, despite vegetation growth. Residence time plays a large role in nitrate removal as it allows for biogeochemical processes such as denitrification and biological uptake to occur. Thus, our model results led us to investigate seasonal variations in nitrate removal rates through WLD. First, to improve model simulations of water flow through the deltaic floodplain, we conducted a vegetation survey to measure stem density and diameter. We found a relationship between floodplain geomorphology (bed elevation relative to the tidal datum and distance from island apex) and vegetation structure. These findings are incorporated into the model by representing vegetation as rigid rods and new results are directly coupled with a Delft3d Water Quality model to simulate changes in nitrate concentrations. Moreover, results from nitrogen tracer field experiments are used to parameterize reaction rates. These field experiments highlight the importance of spatially explicit data as nitrate concentrations varied from 6 umol/L to 88 umol/L at two sites with distinct environmental conditions. The model is calibrated using field data from six stations recording continuous hourly water quality data within a deltaic island since March 2014 and several field campaigns focused on sampling distributary channels. These initial attempts to understand the fate of nitrate in this system highlight the nitrate removal capacity of deltaic floodplains and the control of HC by river pulsing events, vegetation dynamics, and local hydrology.

  2. Geomorphological Monitoring of a Sediment Injection Experimentation: the Old Rhine between Kembs and Breisach dams (France, Germany)

    NASA Astrophysics Data System (ADS)

    Béal, D.; Arnaud, F.; Piégay, H.; Rollet, A.-J.; Schmitt, L.

    2012-04-01

    A sediments injection test has been realized within the river Rhine in the frame of the French and German INTERREG project 'Revitalisation of the Old Rhine'. The project aims at establishing sediment transport restoration modalities and recreating a variety of ecological habitats that feeds the reach biodiversity. 22,000 m3 of sediments have been injected in late 2010 within the by-passed 45 km reach between Kembs and Breisach, forming a 600 m long deposit disconnected from the bank. A geomorphological survey of the deposit has been done to study the mass spreading and river transport capacity. Geomorphological monitoring of recharge, before and after flood is based on 4 types of measures: • monitoring radio frequency of 1500 tracer pebbles inserted into the surface of the deposit: the trajectories of movement were analyzed using the particle size and initial position; • grain size monitoring: immersed and emerged samples allow to characterize injected sediment -nearby excavated for retention area purposes without any sorting- and to learn about the sorting effect of the recharge spreading; • topographic and bathymetric monitoring: it is used to determine changes in channel geometry by comparison of cross sections; • surveys by very high spatial aerial imagery using an ultra light aircraft: bathymetric models calibrated with field surveys are generated to track the front of the wave dispersion and morphological changes of the bed in the study area. These complementary measures confirmed the estimates according to experts of transport capacity (20,000 m3/year), spread the risk of revegetation of the initial deposit, and allow calibration of hydraulic sedimentary and physical models. Three after flood states and initial conditions are analyzed in this study featured by the largest number of tracers used in a river restoration experiment as well as the amount of aerial data (multi temporal and multi resolution). In a second step, measures will feed scenarios of recommendations for a sustainable sediment dynamics restoration. The injection test provides concrete elements for construction of scenarios of evolution, and for guiding future restoration strategies to diversify aquatic and riparian habitats of the Old Rhine. Moreover equivalent injections performed soon by the local hydroelectric manager (Electricité De France) have already the feedback of this life test.

  3. Assessment of present day geomorphological dynamics to decipher landscape evolution around the Paleolithic sites of Melka Kunture, Ethiopia

    NASA Astrophysics Data System (ADS)

    Maerker, Michael; Schillaci, Calogero; Melis, Rita; Mussi, Margherita

    2014-05-01

    The area of Melka Kunture (central Ethiopia) is one of the most important clusters of Paleolithic sites in Eastern Africa. The archaeological record spans from c. 1.7 Ma onwards, with a number of stratified occurrences of Oldowan, Acheulean, Middle Stone Age and Late Stone Age industries, together with faunal remains and human fossils. However, the archaeological sites are endangered by flooding and soil erosion. The main excavation area lies close to the convergence of the Awash river with the Atabella river, one of the main tributaries of the upper Awash catchment. In the semi-arid Ethiopian highlands, gully networks develop especially in the vicinity of the active and inactive river meanders. Various erosion processes are linked to specific driving factors such as the rainfall regime, the land use/cover changes and vertic soils with a specific hydrological behaviour. It was documented in the field and by previous research that the origin of most of the man made erosion channels is due to animal pathways and car tracks. However, paleolandscape features increase the general erosion risk. Former wetland areas and deposition zones are particularly affected by soil erosion processes. Hence, the spatial distribution and characteristics of present day geomorphic processes also reveal information on the paleolandscape. In order to assess landscape evolution and present day geomorphologic dynamics, we mapped the geomorphology describing in detail the present-day slope processes at a 10.000 scale. We performed a detailed terrain analysis based on high resolution DEMs such as SRTM-X with 25m resolution and ALOS/PRISM with 10m resolution to characterize the main erosion processes and surface runoff dynamics. The latter ones are simulated using a Soil Conservation Service Curve Number method. Landuse was delineated for a larger area using ASTER 25m multispectral data. Finally, using calibrated topographic indices and a simple hydrological model we were able to detect and quantify the major present day soil erosion and surface runoff processes. Based on the analysis of the processes and the respective terrain features derived from the digital elevation models we also identified the major paelolandscape features. This will be the basis for assessing conservation risks related to modern land use and climate.

  4. Coastal geomorphological study of pocket beaches in Crete, with the use of planview indices.

    NASA Astrophysics Data System (ADS)

    Alexandrakis, George; Karditsa, Aikaterini; Poulos, Serafim; Kampanis, Nikos

    2013-04-01

    The formation of pocket beaches is a result of a large number of processes and mechanisms that vary on space and time scales. This study aims in defining the planform characteristics of pocket beaches in Crete Isl. and to determine their sheltering effect, embaymentization and their status of equilibrium. Thus, data from 30 pocket beaches along the coastline of Crete, with different geomorphological and hydrodynamical setting, were collected. Planform parameters were applied and coastal planview indices from the bibliography were applied. The parameters included: length and orientation of the headlands between the pocket beach; length between the bay entrance and the center of the beach; lengths of the i) embayed shoreline, ii) embayed beach, iii) beach segment located at the shadow of a headland; linear distance and orientation between the edges of the embayed beach; direction of the incident wave energy flux; wave crest obliquity to the control line; beach area, maximum beach width and headland orientation and river/ torrent catchment areas in beach zones that an active river system existed (Bowman et al.2009). For the morphological mapping of the study areas, 1:5000 orthophoto maps were used. Wave regime has been calculated with the use of prognostic equations and utilising local wind data (mean annual frequency of wind speed and direction), provided by the Wind and Wave Atlas of the Eastern Mediterranean Sea. The diffraction and refraction of the waves has been simulated with the use of numerical models. The study shows that Cretan pocket beaches display a wide range of indentation, suggesting that is the result of several parameters that include tectonics, coastal hydrodynamics and river catchment areas. The more indented bays are, the shorter their beaches become, while low-indented pocket beaches are the widest and the longest ones. Beaches with headland with large length appear to be more protected and receive smaller amount of wave energy. Most of the Cretan pocket beaches have limited sediment supply for the mainland, while they appear to be in an unstable status. D. Bowman, J. Guillén, L. López, V. Pellegrino (2009), Planview Geometry and morphological characteristics of pocket beaches on the Catalan coast (Spain). Geomorphology, 108, 191-199

  5. Geomorphological processes and frozen ground conditions in Elephant Point (Livingston Island, South Shetland Islands, Antarctica)

    NASA Astrophysics Data System (ADS)

    Oliva, Marc; Ruiz-Fernández, Jesús

    2017-09-01

    Elephant Point is an ice-free area in the SW corner of Livingston Island (Maritime Antarctica). The retreat of Rotch Dome glacier during the Holocene has exposed a land area of 1.16 km2. Up to 17.3% of this surface has become ice-free between 1956 and 2010. A detailed geomorphological mapping of this ice-free environment was conducted in late January 2014. A wide range of active periglacial landforms show that periglacial processes are widespread. From the glacier to the coast four different geomorphological areas are identified: proglacial environment, moraine complex, bedrock plateaus and marine terraces. In situ measurements of the thawed soil depth show evidence of the widespread frozen ground conditions in the area. Field observations of permafrost exposures suggest that these frost conditions may be related to a soil permafrost regime, almost down to sea level. The activity of penguin colonies and elephant seals has created minor geomorphological features in the raised marine terraces. Here, several archaeological sites related to early human colonization of Antarctica were also found in natural shelters.

  6. The influence of fluvial dynamics and North Atlantic swells on the beach habitat of leatherback turtles at Grande Riviere Trinidad.

    PubMed

    Darsan, Junior; Jehu, Adam; Asmath, Hamish; Singh, Asha; Wilson, Matthew

    2016-09-15

    Grande Riviere beach, located on the north coast of Trinidad, West Indies, is internationally recognised as a critical habitat/nesting ground for the endangered leatherback turtles (Dermochelys coriacea). Episodic extreme flooding of the Grande Riviere River led to the shifting of the river mouth and resulted in backshore beach erosion, with the most recent recorded event occurring in 2012. Following this event, the construction of a sand dam to arrest further erosion which threatened coastal infrastructure, precipitated a host of new problems ranging from beach instability to public health threats. In January 2013, high energy swell waves naturally in-filled the erosion channel, and the beach recovery continued over the successive months, thereby rendering the intervention in the previous year questionable. This paper presents a geomorphological analysis of beach dynamics for Grande Riviere, within the context of this erosion event. Data on beach profiles, sediment and coastal processes were collected using standard geomorphological techniques. Beach topographic analysis and water quality tests on impounded water in the erosion channel were conducted. Results indicate that the event created an erosion channel of 4843.42 m(3) over a contiguous area of 2794.25 m(2). While swell waves were able to naturally infill the channel, they also eroded 17,762 m(3) of sand overall across the beach. Water quality tests revealed that the impounded water was classified as a pollutant, and created challenges for remediation. Hydrologic and coastal geomorphologic interplay is responsible for the existence and sustainability of this coastal system. It is also evident that the beach system is able to recover naturally following extreme events. Our results demonstrate that effective and integrated management of such critical habitats remains dependent upon continuous monitoring data which should be used to inform policy and decision making. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Pleistocene and Holocene geomorphological development in the Algarve, southern Portugal

    NASA Astrophysics Data System (ADS)

    Chester, David K.

    2012-06-01

    A detailed chronological framework for Pleistocene and Holocene geomorphology and landscape evolution in the Algarve is proposed. With regards to the Pleistocene, attention has focused on the origin, dating and stratigraphy of the Ludo Formation. Subsuming the classifications of earlier writers, it is now proposed that during the Pliocene a marine transgression occurred across a tectonically controlled basin that was constrained by the mountains of the Algarve interior to the north. Fluvial sands were then deposited in a regressive phase during the late Pliocene/early Pleistocene, while braided streams operating under semi-arid conditions subsequently laid down sands and gravels in the middle and upper Pleistocene. Lying unconformably over the Ludo Formation is an alluvial deposit (Odiáxere gravels and Loulé sands) of late Pleistocene/early Holocene date that is found within the river valleys of the Algarve. In the early-Holocene (ca.10, 000-ca.7000 BP) and early late-Holocene (ca.5000-ca.3000 BP), the situation in the Algarve was one of climatic amelioration (i.e., warmer and wetter conditions), rising sea levels, vegetation colonization, soil development and towards the end of this period trenching of the Odiáxere gravels and Loulé sands. From ca.3000 BP evidence is abundant that humans became important geomorphological agents either acting on their own or in combination with climatic factors. From around 5000 BP, conditions became dryer and, between ca.3000 BP and ca.700 BP, clearance of land by pre-Roman, Roman, and especially Islamic agricultural settlers caused widespread erosion and the deposition of extensive spreads of topsoil dominated sediment within river valleys (i.e., the Holocene terrace) and in coastal estuaries. A period followed up to 1900 CE when agricultural practices were less damaging to the soil, erosion was reduced and the Holocene terrace - together with coastal and estuarine deposits - was incised. In the past century and under increased human pressure, renewed erosion is in evidence in the interior valleys and at the coast.

  8. Water quality assessment of the Sinos River, Southern Brazil.

    PubMed

    Blume, K K; Macedo, J C; Meneguzzi, A; Silva, L B; Quevedo, D M; Rodrigues, M A S

    2010-12-01

    The Sinos River basin is located Northeast of the state of Rio Grande do Sul (29º 20' to 30º 10' S and 50º 15' to 51º20'W), Southern Brazil, covering two geomorphologic provinces: the Southern plateau and central depression. It is part of the Guaíba basin and has an area of approximately 800 km², encompassing 32 municipalities. The objective of this study was to monitor water quality in the Sinos River, the largest river in this basin. Water samples were collected at four selected sites in the Sinos River, and the following parameters were analysed: pH, dissolved oxygen, biochemical oxygen demand (BOD₅), turbidity, fecal coliforms, total dissolved solids, temperature, nitrate, nitrite, phosphorous, chromium, lead, aluminum, zinc, iron, and copper. The results were analysed based on Resolution No. 357/2005 of the Brazilian National Environmental Council (CONAMA) regarding regulatory limits for residues in water. A second analysis was performed based on a water quality index (WQI) used by the Sinos River Basin Management Committee (COMITESINOS). Poor water quality in the Sinos River presents a worrying scenario for the region, since this river is the main source of water supply for the urban core. Health conditions found in the Sinos River, mainly in its lower reaches, are worrying and a strong indicator of human activities on the basin.

  9. Ecological requirements for pallid sturgeon reproduction and recruitment in the Missouri River: annual report 2011

    USGS Publications Warehouse

    DeLonay, Aaron J.; Jacobson, Robert B.; Chojnacki, Kimberly A.; Annis, Mandy L.; Braaten, P. J.; Elliott, Caroline M.; Fuller, D. B.; Haas, Justin D.; Haddix, Tyler M.; Ladd, Hallie L.A.; McElroy, Brandon J.; Mestl, Gerald E.; Papoulias, Diana M.; Rhoten, Jason C.; Wildhaber, Mark L.

    2014-01-01

    The Comprehensive Sturgeon Research Project is a multiyear, multiagency collaborative research framework developed to provide information to support pallid sturgeon recovery and Missouri River management decisions. The project strategy integrates field and laboratory studies of sturgeon reproductive ecology, early life history, habitat requirements, and physiology. The project scope of work is developed annually with cooperating research partners and in collaboration with the U.S. Army Corps of Engineers, Missouri River Recovery—Integrated Science Program. The research consists of several interdependent and complementary tasks that engage multiple disciplines. The research tasks in the 2011 scope of work emphasized understanding of reproductive migrations and spawning of adult sturgeon, and hatch and drift of larvae. These tasks were addressed in three hydrologically and geomorphologically distinct parts of the Missouri River Basin: the Lower Missouri River downstream from Gavins Point Dam, the Upper Missouri River downstream from Fort Peck Dam and including downstream reaches of the Milk River, and the Lower Yellowstone River. The research is designed to inform management decisions related to channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River, and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2011.

  10. Laboratory and Field Application of River Depth Estimation Techniques Using Remotely Sensed Data: Annual Report Year 1

    DTIC Science & Technology

    2013-09-30

    coordinates locally oriented in the streamwise and cross-stream directions, respectively. To test the expressions and investigate potential errors, we...Survey Geomorphology and Sediment Transport Laboratory (GSTL). The IR camera was mounted on a rack ~1m above the surface of the flow and oriented so that...MD_SWMS, American Society for Photogrammetry and Remote Sensing, Proceedings of the 2008 Annual Conference –PNAMP Special Session: Remote Sensing

  11. Archaeological Survey of Cooper Lake, Number 6, 1989. Cultural Resource Studies for Cooper Lake, Hopkins and Delta Counties, Texas

    DTIC Science & Technology

    1989-01-01

    area in the Cooper Lake project are-a, ca. 145 kmf (90 mi) northerst of Dallas, Texas. The study area includes two recreatioa’al areas, South Sulphur...Number 6 study area, Delta and Hopkins counties, Texas, showing the locations of project segments defined for the geomorphological investigations...32 Figure 6-5 Representative stratigraphic profiles from the Finley Iranch, Branam Creek, and South Sulphur River floodplain project segments

  12. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands.

    PubMed

    Cobb, Alexander R; Hoyt, Alison M; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su'ut, Nur Salihah; Harvey, Charles F

    2017-06-27

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage.

  13. How temporal patterns in rainfall determine the geomorphology and carbon fluxes of tropical peatlands

    PubMed Central

    Hoyt, Alison M.; Gandois, Laure; Eri, Jangarun; Dommain, René; Abu Salim, Kamariah; Kai, Fuu Ming; Haji Su’ut, Nur Salihah; Harvey, Charles F.

    2017-01-01

    Tropical peatlands now emit hundreds of megatons of carbon dioxide per year because of human disruption of the feedbacks that link peat accumulation and groundwater hydrology. However, no quantitative theory has existed for how patterns of carbon storage and release accompanying growth and subsidence of tropical peatlands are affected by climate and disturbance. Using comprehensive data from a pristine peatland in Brunei Darussalam, we show how rainfall and groundwater flow determine a shape parameter (the Laplacian of the peat surface elevation) that specifies, under a given rainfall regime, the ultimate, stable morphology, and hence carbon storage, of a tropical peatland within a network of rivers or canals. We find that peatlands reach their ultimate shape first at the edges of peat domes where they are bounded by rivers, so that the rate of carbon uptake accompanying their growth is proportional to the area of the still-growing dome interior. We use this model to study how tropical peatland carbon storage and fluxes are controlled by changes in climate, sea level, and drainage networks. We find that fluctuations in net precipitation on timescales from hours to years can reduce long-term peat accumulation. Our mathematical and numerical models can be used to predict long-term effects of changes in temporal rainfall patterns and drainage networks on tropical peatland geomorphology and carbon storage. PMID:28607068

  14. Pike Esox Lucius Distribution and Feeding Comparisons in Natural and Historically Channelized River Sections

    NASA Astrophysics Data System (ADS)

    Ivanovs, Kaspars

    2016-12-01

    During the last century a large portion of small and medium-sized rivers in Latvia were channelized, hydroelectric power stations were also built, which led to changes in the hydrodynamic conditions, geomorphological structure, as well as a change in the fish fauna. Fish are an integral part of any community in natural or man-made bodies of water. They actively participate in maintaining the system, balancing/equilibrium, energy, substance transformation and biomass production. They are able to influence other organisms in the ecosystem in which they live. The aim of the paper "Pike distribution and feeding comparisons in natural and historically channelized river sections" is to find out what pike feed on in different environments in Latvian rivers, such as natural and straightened river sections, as well as what main factors determine the composition of their food. Several points were assessed during the course of the study: the impact of environmental conditions on the feeding habits and the distribution of pike; the general feeding habits of predators in Latvian rivers; the feeding differences of predators in natural and straightened river sections; and lastly, rhithral and pothamal habitats were compared. The study was based on data from 2014 and 2015 on fish fauna monitoring. During the study, 347 pike were collected from 136 plots using electrofishing method.

  15. Geospatial Modelling Approach for Interlinking of Rivers: A Case Study of Vamsadhara and Nagavali River Systems in Srikakulam, Andhra Pradesh

    NASA Astrophysics Data System (ADS)

    Swathi Lakshmi, A.; Saran, S.; Srivastav, S. K.; Krishna Murthy, Y. V. N.

    2014-11-01

    India is prone to several natural disasters such as floods, droughts, cyclones, landslides and earthquakes on account of its geoclimatic conditions. But the most frequent and prominent disasters are floods and droughts. So to reduce the impact of floods and droughts in India, interlinking of rivers is one of the best solutions to transfer the surplus flood waters to deficit/drought prone areas. Geospatial modelling provides a holistic approach to generate probable interlinking routes of rivers based on existing geoinformatics tools and technologies. In the present study, SRTM DEM and AWiFS datasets coupled with land-use/land -cover, geomorphology, soil and interpolated rainfall surface maps have been used to identify the potential routes in geospatial domain for interlinking of Vamsadhara and Nagavali River Systems in Srikakulam district, Andhra Pradesh. The first order derivatives are derived from DEM and road, railway and drainage networks have been delineated using the satellite data. The inundation map has been prepared using AWiFS derived Normalized Difference Water Index (NDWI). The Drought prone areas were delineated on the satellite image as per the records declared by Revenue Department, Srikakulam. Majority Rule Based (MRB) aggregation technique is performed to optimize the resolution of obtained data in order to retain the spatial variability of the classes. Analytical Hierarchy Process (AHP) based Multi-Criteria Decision Making (MCDM) is implemented to obtain the prioritization of parameters like geomorphology, soil, DEM, slope, and land use/land-cover. A likelihood grid has been generated and all the thematic layers are overlaid to identify the potential grids for routing optimization. To give a better routing map, impedance map has been generated and several other constraints are considered. The implementation of canal construction needs extra cost in some areas. The developed routing map is published into OGC WMS services using open source GeoServer and proposed routing service can be visualized over Bhuvan portal (http://www.bhuvan.nrsc.gov.in/).Thus the obtained routing map of proposed canals focuses on transferring the surplus waters to drought prone areas to solve the problem of water scarcity, to properly utilize the flood waters for irrigational purposes and also help in recharging of groundwater. Similar methodology can be adopted in other interlinking of river systems.

  16. A critical review of field techniques employed in the survey of large woody debris in river corridors: a central European perspective.

    PubMed

    Máčka, Zdeněk; Krejčí, Lukáš; Loučková, Blanka; Peterková, Lucie

    2011-10-01

    In forested watersheds, large woody debris (LWD) is an integral component of river channels and floodplains. Fallen trees have a significant impact on physical and ecological processes in fluvial ecosystems. An enormous body of literature concerning LWD in river corridors is currently available. However, synthesis and statistical treatment of the published data are hampered by the heterogeneity of methodological approaches. Likewise, the precision and accuracy of data arising out of published surveys have yet to be assessed. For this review, a literature scrutiny of 100 randomly selected research papers was made to examine the most frequently surveyed LWD variables and field procedures. Some 29 variables arose for individual LWD pieces, and 15 variables for wood accumulations. The literature survey revealed a large variability in field procedures for LWD surveys. In many studies (32), description of field procedure proved less than adequate, rendering the results impossible to reproduce in comparable fashion by other researchers. This contribution identifies the main methodological problems and sources of error associated with the mapping and measurement of the most frequently surveyed variables of LWD, both as individual pieces and in accumulations. The discussion stems from our own field experience with LWD survey in river systems of various geomorphic styles and types of riparian vegetation in the Czech Republic in the 2004-10 period. We modelled variability in terms of LWD number, volume, and biomass for three geomorphologically contrasting river systems. The results appeared to be sensitive, in the main, to sampling strategy and prevailing field conditions; less variability was produced by errors of measurement. Finally, we propose a comprehensive standard field procedure for LWD surveyors, including a total of 20 variables describing spatial position, structural characteristics and the functions and dynamics of LWD. However, resources are only rarely available for highly time-demanding surveys. We therefore include a set of core LWD metrics for routine baseline surveys of individual LWD pieces (diameter, length, rootwad size, preservation of branches and rootwad, geomorphological/ecological function, stability/mobility) and wood accumulations (number of LWD pieces, geometrical dimensions, channel blockage, wood/air ratio), which may provide useful background information for river management, hydromorphological assessment, habitat evaluation, and inter-regional comparisons.

  17. Petrogenesis and depositional history of felsic pyroclastic rocks from the Melka Wakena archaeological site-complex in South central Ethiopia

    NASA Astrophysics Data System (ADS)

    Resom, Angesom; Asrat, Asfawossen; Gossa, Tegenu; Hovers, Erella

    2018-06-01

    The Melka Wakena archaeological site-complex is located at the eastern rift margin of the central sector of the Main Ethiopian Rift (MER), in south central Ethiopia. This wide, gently sloping rift shoulder, locally called the "Gadeb plain" is underlain by a succession of primary pyroclastic deposits and intercalated fluvial sediments as well as reworked volcaniclastic rocks, the top part of which is exposed by the Wabe River in the Melka Wakena area. Recent archaeological survey and excavations at this site revealed important paleoanthropological records. An integrated stratigraphic, petrological, and major and trace element geochemical study has been conducted to constrain the petrogenesis of the primary pyroclastic deposits and the depositional history of the sequence. The results revealed that the Melka Wakena pyroclastic deposits are a suite of mildly alkaline, rhyolitic pantellerites (ash falls, pumiceous ash falls and ignimbrites) and slightly dacitic ash flows. These rocks were deposited by episodic volcanic eruptions during early to middle Pleistocene from large calderas along the Wonji Fault Belt (WFB) in the central sector of the MER and from large silicic volcanic centers at the eastern rift shoulder. The rhyolitic ash falls, pumiceous ash falls and ignimbrites have been generated by fractional crystallization of a differentiating basaltic magma while the petrogenesis of the slightly dacitic ash flows involved some crustal contamination and assimilation during fractionation. Contemporaneous fluvial activities in the geomorphologically active Gadeb plain deposited overbank sedimentary sequences (archaeology bearing conglomerates and sands) along meandering river courses while a dense network of channels and streams have subsequently down-cut through the older volcanic and sedimentary sequences, redepositing the reworked volcaniclastic sediments further downstream.

  18. Architecture and development of a multi-stage Baiyun submarine slide complex in the Pearl River Canyon, northern South China Sea

    NASA Astrophysics Data System (ADS)

    Wang, Lei; Wu, Shi-Guo; Li, Qing-Ping; Wang, Da-Wei; Fu, Shao-Ying

    2014-08-01

    The Baiyun submarine slide complex (BSSC) along the Pearl River Canyon of the northern South China Sea has been imaged by multibeam bathymetry and 2D/3D seismic data. By means of maximum likelihood classification with slope aspect and gradient as inputs, the BSSC is subdivided into four domains, denoted as slide area I, II, III and IV. Slide area I is surrounded by cliffs on three sides and has been intensely reshaped by turbidity currents generated by other kinds of mass movement outside the area; slide area II incorporates a shield volcano with a diameter of approximately 10 km and unconfined slides possibly resulting from the toe collapse of inter-canyon ridges; slide area III is dominated by repeated slides that mainly originated from cliffs constituting the eastern boundary of the BSSC; slide area IV is distinguished by a conical seamount with a diameter of 6.5 km and a height of 375 m, and two slides probably having a common source that are separated from each other by a suite of residual strata. The BSSC is interpreted to be composed of numerous slide events, which occurred in the period from 10.5 to 5.5 Ma BP. Six specific factors may have contributed to the development of the BSSC, i.e., gas hydrate dissociation, gas-bearing sediments, submarine volcanic activity, seismicity, sedimentation rate and seafloor geomorphology. A 2D conceptual geological model combining these factors is proposed as a plausible mechanism explaining the formation of the BSSC. However, the BSSC may also have been affected by the Dongsha event (10 Ma BP) as an overriding factor.

  19. Relationships between recent channel adjustments, present morphological state and river corridor vegetation in the Fortore River (southern Italy)

    NASA Astrophysics Data System (ADS)

    Rosskopf, Carmen Maria; Scorpio, Vittoria; Calabrese, Valentina; Frate, Ludovico; Loy, Anna; Stanisci, Angela

    2017-04-01

    The Fortore River, as many other rivers in Italy, has experienced huge channel adjustments during the last 60 years that were mainly caused by anthropic interventions, especially in-channel mining and the closure of the Occhito dam in 1966. Such changes deeply modified extension and morphological characteristics of the river corridor and, consequently, also its ecological features. The present study aims to better understand the relationships between channel adjustments and river corridor vegetation changes and those between morphological features and environmental quality of the present-day river corridor. The study has been carried out by means of a multi-temporal GIS analysis of topographic maps and aerial photographs integrated with topographic, geomorphological and ecological field surveys. Results highlight that channel adjustments occurred through two distinct phases. Most of the channel changes occurred from the 1950s until the end of the 1990s (phase 1) and led to an overall channel narrowing (from 81 to 96%) and channel bed lowering (1-4 m). These changes were accompanied by pattern shifts from multithread to single-thread configurations. The reaches located downstream of the Occhito dam were affected by more intense modifications, especially channel narrowing, with respect to upstream reaches. From 2000 to 2016 (phase 2), a trend inversion occurred. Downstream reaches remained essentially stable, while upstream reaches were affected even by some channel widening and bed aggradation and slight increase of the extension of floodplain areas giving more space to the potential development of the riparian vegetation. The evolution and the present geomorphological conditions of the river corridor are also reflected by the state of the riparian vegetation. Upstream reaches are characterized by a higher richness in riparian vegetation types and vegetation cover with respect to downstream reaches. Best conditions occur especially in the upper Fortore valley. In the downstream reaches, riparian vegetation only consists of narrow bands of trees squeezed between the river channel and the cultivated areas. Consequently, the ecological functionality of the river corridor is highest in the upper valley and decreases gradually downstream. Anyway, along the Fortore River, several habitats and species of European interest (Habitats Directive 92/43/ECC) have been found, such as EC habitats 92A0, 3260, 3270, 3280 and the European otter. However, the conservation status of these habitats and species is critical particularly in the medium-lower valley where a buffer zone between the river channel and the cultivated land should be restored for enhancing the natural recovery of the channel system and allowing the local retreat of river banks during flood events. On overall, the present-day geomorphic-ecological characteristics of the Fortore River corridor show that the reaches located in the medium-upper valley, upstream of the dam, present a good morphological quality, a high richness in vegetation and elevated recovery potentials. Instead, the reaches located in the lower valley, downstream of the dam, are characterized by overall bad morphological and ecological conditions and scarce to nil recovery potentials.

  20. Highlighting landslides and other geomorphological features using sediment connectivity maps

    NASA Astrophysics Data System (ADS)

    Bossi, Giulia; Crema, Stefano; Cavalli, Marco; Marcato, Gianluca; Pasuto, Alessandro

    2016-04-01

    Landslide identification is usually made through interpreting geomorphological features in the field or with remote sensing imagery. In recent years, airborne laser scanning (LiDAR) has enhanced the potentiality of geomorphological investigations by providing a detailed and diffuse representation of the land surface. The development of algorithms for geomorphological analysis based on LiDAR derived high-resolution Digital Terrain Models (DTMs) is increasing. Among them, the sediment connectivity index (IC) has been used to quantify sediment dynamics in alpine catchments. In this work, maps of the sediment connectivity index are used for detecting geomorphological features and processes not exclusively related to water-laden processes or debris flows. The test area is located in the upper Passer Valley in South Tyrol (Italy). Here a 4 km2 Deep-seated Gravitational Slope Deformation (DGSD) with several secondary phenomena has been studied for years. The connectivity index was applied to a well-known study area in order to evaluate its effectiveness as an interpretative layer to assist geomorphological analysis. Results were cross checked with evidence previously identified by means of in situ investigations, photointerpretation and monitoring data. IC was applied to a 2.5 m LiDAR derived DTM using two different scenarios in order to test their effectiveness: i) IC derived on the hydrologically correct DTM; ii) IC derived on the original DTM. In the resulting maps a cluster of low-connectivity areas appears as the deformation of the DGSD induce a convexity in the central part of the phenomenon. The double crests, product of the sagging of the landslide, are extremely evident since in those areas the flow directions diverge from the general drainage pattern, which is directed towards the valley river. In the crown area a rock-slab that shows clear evidence of incumbent detachment is clearly highlighted since the maps emphasize the presence of traction trenches and reverse slope. In the second scenario, rockfall activity is more evident since the collapse path induces scars in the slope that locally are identified as flow paths, moreover the presence of the block remnants creates an obstruction (i.e., a sink) for the algorithm. On the other hand, the presence of a smaller rotational landslide at the toe of the DGSD is more detectable in the map derived from the first scenario that shows a rapid change in slope together with a high drainage concentration. An integrated approach that assists the geomorphologic analysis based on aerial images and shaded relief maps with an IC map has proven to be a valuable tool as it allows to highlight different gravitational processes.

  1. Geomorphosites and the history of geomorphology

    NASA Astrophysics Data System (ADS)

    Giusti, Christian

    2013-04-01

    Geomorphosites are geosites of geomorphological significance, with a now well admitted distinction between central or scientific values on the one hand, and additional values such as ecological, economical or aesthetical values on the other hand. Among the scientific values, some are directly linked to the climatic forcings through geomorphological processes in the case of active geomorphosites, for example the meaning of a waterfall in a post-glacial trough valley. In the case of passive geomorphosites, the central values rather lie in structural features, ancient landforms, inherited regoliths such as the clay-with-flints of the Chalklands of Southern England and Northern France. Sometimes, the scientific value is not fully determined by the type of geomorphosite, active or passive, but rather by the fact this geosite has a special importance concerning the history of the Earth sciences, especially in geomorphology. This is well exemplified with the famous case of the Nant d'Arpenaz waterfall S-folds in the lower Arve valley between Geneva and Chamonix, first described by Horace Benedict de Saussure in 1774 and invoked to explain the formation of the Alps by folding. This structural geosite (history of tectonics) is also a geomorphosite. Concerning geomorphology, the current Nant d'Arpenaz waterfall is quite similar to the Pissevache waterfall in the Rhone valley: they are both examples of postglacial geomorphosites due to hanging valleys. When erosion is more advanced narrow gorges appear, for example Diosaz gorge (Haute-Savoie, France) or Dailley, Trient and Triège gorges (Valais, Switzerland). All these geomorphosites (main trough valleys, tributary valleys, waterfalls and postglacial gorges) were studied by pionneers of fluvial and glacial geomorphology such as Jean Bruhnes and Emmanuel de Martonne before World War I. The former has played an important role at the University of Fribourg (Switzerland) and has devoted many studies about the potholes and eddies of rivers, particularly in the Alps (e.g. Maigrauge dam and Sarine valley, Fribourg). The latter has left many sketchbooks preserved in a restricted repository at the Geographic Institute library in Paris, which are the illustrated part (e.g., The Châtelard Valley from Finhaut, Valais, Switzerland) of a huge archive of his theory of glacial erosion in alpine mountains. Both were scientific editors (with E. Chaix) of the first Atlas Photographique des Formes du Relief, published by Boissonas in Geneva, 1914. The presentation will focus on the scientific importance of some geomorphosites for the knowledge on the history of geomorphology and Earth sciences in general.

  2. Channel planform evolution: Spatial and temporal aspect

    NASA Astrophysics Data System (ADS)

    Rusnák, M.; Frandofer, M.; Lehotský, M.

    2012-04-01

    The recent period is characterized by impacts of climate change. Increasing magnitude and frequency of flood events results in morphological and morphodynamical changes of river channels. It is a challenge for the fluvial geomorphology to highlight the morphological response to these events, because the knowledge of the morphological-sedimentological attributes of the river channel is the first step in pursue of a comprehensive knowledge of the riverine landscape and impact on its sustainable management. Research of the spatial variability of landforms and the regime of processes creates an appropriate knowledge base for other sciences interested in the riverine as well as terrestrial systems. The contribution deals with the morphological changes of the channel pattern of the River Topľa (115 km in total length, 1506 km2 of catchment area, average annual discharge 8.08 m3.s-1 in mouth). The 72.5 km long segment has been studied (Strahler ord. 4-7). It represents a transient from the mountain cobble-bed to the basin fine gravel-bed river. The Topľa is a less regulated and laterally partly confined river in northeastern Slovakia, with flysch geology. Three time horizons of the remote sensing imagery (1987, 2002 and 2009) have been analyzed using the GIS, with the reference time horizon of 1987. The analysis consists of identification and delimitation of an active channel bank line and the delimitation of the channel bars in the mentioned series of imageries. The active channel width, area of channel bars, lateral channel shift and area stricken by bank erosion were studied via overlaying layers. The last attribute showed a significant increase: during the 1987-2002 period the area of 32.6 ha was eroded, whereas during the following period (2002-2009) of frequent and intensive floods up to 70.0 ha was eroded. Likewise, the maximum channel shift was 260 m and 443 m in 1987-2002 and in 2002-2009 respectively. The key results are not only the values of these parameters, but mostly their spatial distribution, which corresponds with the distribution of the geomorphological processes. The study reach has a piedmont character where these processes increase in the longitudinal direction, reach a morphodynamic apex and decrease afterwards. This river segment is represented by the presence of gravel bars and flow bifurcation, thus the river approaches a braided style, but does not reach it due to the insufficient slope. The contemporary flood events elongated this hyperactive segment delivering excessive sediment loads downstream. On the river reach level, the spatial distribution of increased processes is constricted by the tectonic and structural predispositions, which control them. Keywords: channel planform, lateral shift, bank erosion, extreme flood events, the River Topľa

  3. Effect of slope failures on river-network pattern: A river piracy case study from the flysch belt of the Outer Western Carpathians

    NASA Astrophysics Data System (ADS)

    Baroň, Ivo; Bíl, Michal; Bábek, Ondřej; Smolková, Veronika; Pánek, Tomáš; Macur, Lukáš

    2014-06-01

    Landslides are important geomorphic agents in various mountainous settings. We document here a case of river piracy from the upper part of the Malá Brodská Valley in the Vsetínské Mts., Czech Republic (Rača Unit of the flysch Magura Group of Nappes, flysch belt of the Outer Western Carpathians) controlled by mass movement processes. Based on the field geological, geomorphological and geophysical data, we found out that the landslide accumulations pushed the more active river of out of two subparallel river channels with different erosion activity westwards and forced intensive lateral erosion towards the recently abandoned valley. Apart from the landslide processes, the presence of the N-striking fault, accentuated by higher flow rates of the eastern channel as a result of its larger catchment area, were the most critical factors of the river piracy. As a consequence of the river piracy, intensive retrograde erosion in the elbow of capture and also within the upper portion of the western catchment occurred. Deposits of two landslide dams document recent minimum erosion rates to be 18.8 mm.ky- 1 in the western (captured) catchment, and 3.6 mm.ky- 1 in the eastern catchment respectively. The maximum age of the river piracy is estimated to be of the late Glacial and/or the early Holocene.

  4. Ecological requirements for pallid sturgeon reproduction and recruitment in the Missouri River—Annual report 2014

    USGS Publications Warehouse

    Delonay, Aaron J.; Chojnacki, Kimberly A.; Jacobson, Robert B.; Braaten, Patrick J.; Buhl, Kevin J.; Elliott, Caroline M.; Erwin, Susannah O.; Faulkner, Jacob D.A.; Candrl, James S.; Fuller, David B.; Backes, Kenneth M.; Haddix, Tyler M.; Rugg, Matthew L.; Wesolek, Christopher J.; Eder, Brandon L.; Mestl, Gerald E.

    2016-03-16

    The Comprehensive Sturgeon Research Project is a multiyear, multiagency collaborative research framework developed to provide information to support pallid sturgeon recovery and Missouri River management decisions. The project strategy integrates field and laboratory studies of sturgeon reproductive ecology, early life history, habitat requirements, and physiology. The project scope of work is developed annually with collaborating research partners and in cooperation with the U.S. Army Corps of Engineers, Missouri River Recovery Program–Integrated Science Program. The project research consists of several interdependent and complementary tasks that involve multiple disciplines.The project research tasks in the 2014 scope of work emphasized understanding of reproductive migrations and spawning of adult pallid sturgeon and hatch and drift of larvae. These tasks were addressed in three hydrologically and geomorphologically distinct parts of the Missouri River Basin: the Lower Missouri River downstream from Gavins Point Dam, the Upper Missouri River downstream from Fort Peck Dam and downstream reaches of the Milk River, and the Lower Yellowstone River. The project research is designed to inform management decisions related to channel re-engineering, flow modification, and pallid sturgeon population augmentation on the Missouri River and throughout the range of the species. Research and progress made through this project are reported to the U.S. Army Corps of Engineers annually. This annual report details the research effort and progress made by the Comprehensive Sturgeon Research Project during 2014.

  5. Applying NASA Imaging Radar Datasets to Investigate the Geomorphology of the Amazon's Planalto

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Campbell, K.; Islam, R.; Alexander, P. M.; Cracraft, J.

    2016-12-01

    The Amazon basin is a biodiversity rich biome and plays a significant role into shaping Earth's climate, ocean and atmospheric gases. Understanding the history of the formation of this basin is essential to our understanding of the region's biodiversity and its response to climate change. During March 2013, the NASA/JPL L-band polarimetric airborne imaging radar, UAVSAR, conducted airborne studies over regions of South America including portions of the western Amazon basin. We utilize UAVSAR imagery acquired during that time over the Planalto, in the Madre de Dios region of southeastern Peru in an assessment of the underlying geomorphology, its relationship to the current distribution of vegetation, and its relationship to geologic processes through deep time. We employ UAVSAR data collections to assess the utility of these high quality imaging radar data for use in identifying geomorphologic features and vegetation communities within the context of improving the understanding of evolutionary processes, and their utility in aiding interpretation of datasets from Earth-orbiting satellites to support a basin-wide characterization across the Amazon. We derive maps of landcover and river branching structure from UAVSAR imagery. We compare these maps to those derived using imaging radar datasets from the Japanese Space Agency's ALOS PALSAR and Digital Elevation Models (DEMs) from NASA's Shuttle Radar Topography Mission (SRTM). Results provide an understanding of the underlying geomorphology of the Amazon planalto as well as its relationship to geologic processes and will support interpretation of the evolutionary history of the Amazon Basin. Portions of this work have been carried out within the framework of the ALOS Kyoto & Carbon Initiative. PALSAR data were provided by JAXA/EORC and the Alaska Satellite Facility.This work is carried out with support from the NASA Biodiversity Program and the NSF DIMENSIONS of Biodiversity Program.

  6. Enhancing rescue-archaeology using geomorphological approaches: Archaeological sites in Paredes (Asturias, NW Spain)

    NASA Astrophysics Data System (ADS)

    Jiménez-Sánchez, M.; González-Álvarez, I.; Requejo-Pagés, O.; Domínguez-Cuesta, M. J.

    2011-09-01

    Palaeolithic remnants, a Necropolis (Roman villa), and another minor archaeological site were discovered in Paredes (Spain). These sites were the focus of multidisciplinary research during the construction of a large shopping centre in Asturias (NW Spain). The aims of this study are (1) to contribute to archaeological prospection in the sites and (2) to develop evolutionary models of the sites based on geomorphological inferences. Detailed archaeological prospection (103 trenches), geomorphologic mapping, stratigraphic studies (36 logs) and ground penetration radar (GPR) surveys on five profiles indicate that the location of the settlement source of the Necropolis is outside the construction perimeter, farther to the southeast. The Pre-Holocene evolution of the fluvial landscape is marked by the development of two terraces (T1 and T2) that host the Early Palaeolithic remains in the area (ca 128-71 ka). The Holocene evolution of the landscape was marked by the emplacement of the Nora River flood plain, covered by alluvial fans after ca. 9 ka BP (cal BC 8252-7787). Subsequently, Neolithic pebble pits dated ca. 5.3 ka BP (cal BC 4261-3963 and 4372-4051) were constructed on T2, at the area reoccupied as a Necropolis during the Late Roman period, 1590 ± 45 years BP (cal AD 382-576). Coeval human activity during the Late Roman period at 1670 ± 60 years BP (cal AD 320-430) is also recorded by channel infill sediments in a minor site at the margin of an alluvial fan located to the southeast. This work shows that a rescue-archaeological study can be significantly enhanced by the implementation of multidisciplinary scientific studies, in which the holistic view of geomorphologic settings provide key insights into the geometry and evolution of archaeological sites.

  7. Modeling Surface Water Dynamics in the Amazon Basin Using Mosart-Inundation-v1.0: Impacts of Geomorphological Parameters and River Flow Representation

    NASA Technical Reports Server (NTRS)

    Luo, Xiangyu; Li, Hong-Yi; Leung, Ruby; Tesfa, Teklu K.; Getirana, Augusto; Papa, Fabrice; Hess, Laura L.

    2017-01-01

    Surface water dynamics play an important role in water, energy and carbon cycles of the Amazon Basin. A macro-scale inundation scheme was integrated with a surface-water transport model and the extended model was applied in this vast basin. We addressed the challenges of improving basin-wide geomorphological parameters and river flow representation for 15 large-scale applications. Vegetation-caused biases embedded in the HydroSHEDS DEM data were alleviated by using a vegetation height map of about 1-km resolution and a land cover dataset of about 90-m resolution. The average elevation deduction from the DEM correction was about 13.2 m for the entire basin. Basin-wide empirical formulae for channel cross-sectional geometry were adjusted based on local information for the major portion of the basin, which could significantly reduce the cross-sectional area for the channels of some subregions. The Manning roughness coefficient of the channel 20 varied with the channel depth to reflect the general rule that the relative importance of riverbed resistance in river flow declined with the increase of river size. The entire basin was discretized into 5395 subbasins (with an average area of 1091.7 km2), which were used as computation units. The model was driven by runoff estimates of 14 years (1994 2007) generated by the ISBA land surface model. The simulated results were evaluated against in situ streamflow records, and remotely sensed Envisat altimetry data and GIEMS inundation data. The hydrographs were reproduced fairly well for the majority of 25 13 major stream gauges. For the 11 subbasins containing or close to 11 of the 13 gauges, the timing of river stage fluctuations was captured; for most of the 11 subbasins, the magnitude of river stage fluctuations was represented well. The inundation estimates were comparable to the GIEMS observations. Sensitivity analyses demonstrated that refining floodplain topography, channel morphology and Manning roughness coefficients, as well as accounting for backwater effects could evidently affect local and upstream inundation, which consequently affected flood waves and inundation of the downstream 30 area. It was also shown that the river stage was sensitive to local channel morphology and Manning roughness coefficients, as well as backwater effects. The understanding obtained in this study could be helpful to improving modeling of surface hydrology in basins with evident inundation, especially at regional or larger scales.

  8. "HIP" new software: The Hydroecological Integrity Assessment Process

    USGS Publications Warehouse

    Henriksen, Jim; Wilson, Juliette T.

    2006-01-01

    Center (FORT) have developed the Hydroecological Integrity Assessment Process (HIP) and a suite of software tools for conducting a hydrologic classification of streams, addressing instream flow needs, and assessing past and proposed hydrologic alterations on streamflow and other ecosystem components. The HIP recognizes that streamflow is strongly related to many critical physiochemical components of rivers, such as dissolved oxygen, channel geomorphology, and habitats. Streamflow is considered a “master variable” that limits the distribution, abundance, and diversity of many aquatic plant and animal species.

  9. Archaeological and Geomorphological Data Recovery at Saylorville Lake, Polk County, Iowa. Volume 1. Technical Report.

    DTIC Science & Technology

    1984-12-01

    IOWA I .1 0 VOLUME! TECHNICAL REPORT Prepared Under the Supervision of With the Assistance of Patricia M. Emerson Harlan R. Finney Principal...POLK COUNTY, IOWA VOLUME I o TECHNICAL REPORT DECEMBER 1984 V Prepared Under the Supervision of Patricia M. Emerson, Principal Investigator With the...U.S. Army Corps of Engineers flood-control reservoir located on the Des Moines River In Polk County, Iowa . The work reported herein was done as a

  10. The Danube Bend, Hungary - proposal for its recognition as a geoheritage

    NASA Astrophysics Data System (ADS)

    Karátson, Dávid

    2016-04-01

    The Danube Bend in North Hungary is a river curvature along the Danube river, cut into a rocky section that reveals Miocene volcanic sucessions. The deepest and narrowest part of the curvature, 5 km in diameter (called Visegrád Gorge), is one of the most picturesque landscapes in Hungary. There, the Danube, before changing its direction toward the south, forms a U-shaped valley in planform - a peculiar shape that has been an enigmatic issue in Hungarian earth sciences since the 19th century. A number of geomorphological theories have been put forward for the origin of the valley, which is incised between remnants of ca. 16 Ma old, small-sized dacitic stratovolcanoes of the Börzsöny Mts to the north, and the ~15 Ma Keserűs Hill lava dome complex to the south, all of which emerged in a contemporaneous archipelago (existent up to Pannonian times). According to Karátson et al. (2006), the U-shaped loop is partly inherited from a late-stage horseshoe caldera morphology of Keserűs Hill volcano, open to the north. Several Ma later, the formation of the Danube Bend was initiated by river incision, removing the post-volcanic sedimentary cover in mid- or rather, late Pleistocene times. Fluvial processes and erosion in turn were triggered by mountain uplift, climate changes, and drop of remote erosion base level. The present curvature of the river was controlled by the exhumation of the horseshoe caldera as well as the surrounding resistant volcaniclastic rocks (e.g. Visegrád Castle Hill) and a hilltop lava dome (Szent Mihály Hill). Moreover, an early-stage meander of Danube may have also inherited. The accelerated Late Quaternary erosion and intense dissection has resulted in a "re-birth" of the volcanic relief, which exhibits again steep slopes to form the spectacular gorge. At present, exposed rock formations (e.g. Vadálló-kövek) tower above the Danube Bend, making the area one of the most scenic landscape in East-Central Europe. Therefore, in 1997, the Danube-Ipoly National Park was established on 60,000 hectares, including the Pilis (a karst landscape made up of limestone and dolomite), as well as the Visegrád and Börzsöny Mountains. In addition to the volcanic landforms, caves, paleolithic and Bronze Age finds, and some ruins of the Roman Empire are the major features of the area. However, although the popularity (e.g. tourism, hiking) of the mountains, especially the Danube Bend, is increasing, the dissemination of relevant geological, geomorphological, botanical and historical information is still a must. Karátson, D., Németh, K., Székely, B., Ruszkiczay-Rüdiger, Zs., Pécskay, Z. 2006: Incision of a river curvature due to exhumed Miocene volcanic landforms: Danube Bend, Hungary. Int. J. Earth Sci. 95 (5), 929-944 Karátson, D. 2015: Danube Bend: Miocene Half-Caldera and Pleistocene Gorge. In: Lóczy, D. (ed.), Landscapes and landforms in Hungary, Springer, pp. 129-137

  11. Geomorphological origin of recession curves

    NASA Astrophysics Data System (ADS)

    Biswal, Basudev; Marani, Marco

    2010-12-01

    We identify a previously undetected link between the river network morphology and key recession curves properties through a conceptual-physical model of the drainage process of the riparian unconfined aquifer. We show that the power-law exponent, α, of -dQ/dt vs. Q curves is related to the power-law exponent of N(l) vs. G(l) curves (which we show to be connected to Hack's law), where l is the downstream distance from the channel heads, N(l) is the number of channel reaches exactly located at a distance l from their channel head, and G(l) is the total length of the network located at a distance greater or equal to l from channel heads. Using Digital Terrain Models and daily discharge observations from 67 US basins we find that geomorphologic α estimates match well the values obtained from recession curves analyses. Finally, we argue that the link between recession flows and network morphology points to an important role of low-flow discharges in shaping the channel network.

  12. Assessing Restoration Effects on River Hydromorphology Using the Process-based Morphological Quality Index in Eight European River Reaches

    NASA Astrophysics Data System (ADS)

    Belletti, B.; Nardi, L.; Rinaldi, M.; Poppe, M.; Brabec, K.; Bussettini, M.; Comiti, F.; Gielczewski, M.; Golfieri, B.; Hellsten, S.; Kail, J.; Marchese, E.; Marcinkowski, P.; Okruszko, T.; Paillex, A.; Schirmer, M.; Stelmaszczyk, M.; Surian, N.

    2018-01-01

    The Morphological Quality Index (MQI) and the Morphological Quality Index for monitoring (MQIm) have been applied to eight case studies across Europe with the objective of analyzing the hydromorphological response to various restoration measures and of comparing the results of the MQI and MQIm as a morphological assessment applied at the reach scale, with a conventional site scale physical-habitat assessment method. For each restored reach, the two indices were applied to the pre-restoration and post-restoration conditions. The restored reach was also compared to an adjacent, degraded reach. Results show that in all cases the restoration measures improved the morphological quality of the reach, but that the degree of improvement depends on many factors, including the initial morphological conditions, the length of the restored portion in relation to the reach length, and on the type of intervention. The comparison with a conventional site scale physical-habitat assessment method shows that the MQI and MQIm are best suited for the evaluation of restoration effects on river hydromorphology at the geomorphologically-relevant scale of the river reach.

  13. Assessing Restoration Effects on River Hydromorphology Using the Process-based Morphological Quality Index in Eight European River Reaches.

    PubMed

    Belletti, B; Nardi, L; Rinaldi, M; Poppe, M; Brabec, K; Bussettini, M; Comiti, F; Gielczewski, M; Golfieri, B; Hellsten, S; Kail, J; Marchese, E; Marcinkowski, P; Okruszko, T; Paillex, A; Schirmer, M; Stelmaszczyk, M; Surian, N

    2018-01-01

    The Morphological Quality Index (MQI) and the Morphological Quality Index for monitoring (MQIm) have been applied to eight case studies across Europe with the objective of analyzing the hydromorphological response to various restoration measures and of comparing the results of the MQI and MQIm as a morphological assessment applied at the reach scale, with a conventional site scale physical-habitat assessment method. For each restored reach, the two indices were applied to the pre-restoration and post-restoration conditions. The restored reach was also compared to an adjacent, degraded reach. Results show that in all cases the restoration measures improved the morphological quality of the reach, but that the degree of improvement depends on many factors, including the initial morphological conditions, the length of the restored portion in relation to the reach length, and on the type of intervention. The comparison with a conventional site scale physical-habitat assessment method shows that the MQI and MQIm are best suited for the evaluation of restoration effects on river hydromorphology at the geomorphologically-relevant scale of the river reach.

  14. Some examples of geomorphodiversity in Italy

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    2014-05-01

    The concept of geomorphodiversity (Panizza, 2009) is presented: "the critical and specific assessment of the geomorphological features of a territory, by comparing them in a way both extrinsic (comparison of the geomorphological characteristics with those from other territories) and intrinsic (comparison of the geomorphological characteristics with other areas within the territory itself) and taking into account the level of their scientific quality, the scale of investigation and the purpose of the research". A first example concerns the Dolomites: they have been included in the UNESCO World Heritage List because of their exceptional beauty and unique landscape, together with their scientific importance from the geological and geomorphological point of view. They are of international significance for geomorphodiversity, as the classic site for the development of mountains in dolomite limestone and present a wide range of landforms related to erosion, tectonics and glaciation. They represent a kind of high altitude, open air laboratory of geomorphological heritage of exceptional global value, among the most extraordinary and accessible in the world and ideal for researching, teaching, understanding and developing Earth Science theories. The second example concerns the Emilia-Romagna Apennines, candidate for enrolment in the List of European Geoparks: they show a multifaceted and complex image from the international and regional geomorphological (extrinsic and intrinsic geomorphodiversity) point of view and are an educational example for illustrating morphotectonic evolution, stratigraphic and sedimentological sequences and morpholithological peculiarities connected with gypsum karst and clay mass wasting phenomena. The third example concerns the Vesuvius, one of the National Italian Parks: it shows an extrinsic geomorphodiversity mainly referred to the type of eruptions, with some exemplary processes inserted in international volcanic nomenclature; it makes up an important geoheritage that can be considered a field laboratory for research on volcanic geomorphology. At a regional level, intrinsic geomorphodiversity includes typical examples ascribable to lahars, relief inversion and pseudo-karst morphology.

  15. Detailed geomorphological mapping from high resolution DEM data (LiDAR, TanDEM-X): two case studies from Germany and SE Tibet

    NASA Astrophysics Data System (ADS)

    Loibl, D.

    2012-04-01

    Two major obstacles are hampering the production of high resolution geomorphological maps: the complexity of the subject that should be depicted and the enormous efforts necessary to obtain data by field work. The first factor prevented the establishment of a generally accepted map legend; the second hampered efforts to collect comprehensive sets of geomorphological data. This left geomorphologists to produce applied maps, focusing on very few layers of information and often not sticking to any of the numerous standards proposed in the second half of the 20th century. Technological progress of the recent years, especially in the fields of digital elevation models, GIS environments, and computational hardware, today offers promising opportunities to overcome the obstacles and to produce detailed geomorphological maps even for remote or inhospitable regions. The feasibility of detailed geomorphological mapping from two new sets of digital elevation data, the 1 m LiDAR DTM provided by Germany's State Surveying Authority and the upcoming TanDEM-X DEM, has been evaluated in two case studies from a low mountain range in Germany and a high mountain range in SE Tibet. The results indicate that most layers of information of classical geomorphological maps (e.g. the German GMK) can be extracted from this data at appropriate scales but that significant differences occur concerning the quality and the grades of certainty of key contents. Generally, an enhancement of the geomorphographical, especially the geomorphometrical, and a weakening of geomorphogenetical contents was observed. From these findings, theoretical, methodological, and cartographical remarks on detailed geomorphological mapping from DEM data in GIS environments were educed. As GIS environments decouple data and design and enable the geomorphologist to choose information layer combinations freely to fit research topics, a general purpose legend becomes obsolete. Yet, a unified data structure is demanded to ensure that data collected by different scientists or in different studies can be exchanged and reused.

  16. Intrinsic vs. extrinsic controls on channel evolution in a sub-tropical river, Australia

    NASA Astrophysics Data System (ADS)

    Daley, James; Croke, Jacky; Thompson, Chris; Cohen, Tim; Macklin, Mark; Sharma, Ashneel

    2016-04-01

    Palaeohydrological research provides valuable insights to the understanding of short- and long-term fluvial dynamics in response to climate change and tectonic activity. In landscapes where tectonic activity is minimal fluvial archives record long-term changes in sediment and discharge dynamics related to either intrinsic or extrinsic controls. Isolating the relative controls of these factors is an important frontier in this area of research. Advances in geochronology, the acquisition of high resolution topographic data and geomorphological techniques provide an opportunity to assess the relative importance of intrinsic and extrinsic controls on terrace and floodplain formation. This study presents the results of detailed chrono-stratigraphic research in a partly confined river valley in subtropical southeast Queensland. River systems within this region are characterized by high hydrological variability and have a near-ubiquitous compound channel morphology (macrochannel) where Holocene deposits are inset within late Pleistocene terraces. These macrochannels can accommodate floods up to and beyond the predicted 100-year flood. Using single grain optically stimulated luminescence and radiocarbon analyses, combined with high resolution spatial datasets, we demonstrate the nature of fluvial response to major late Quaternary climate change. A large proportion of the valley floor is dominated by terrace alluvium deposited after the Last Glacial Maximum (LGM) (17 - 13 ka) and overlies basal older Pleistocene alluvium. Preliminary results suggest a phase of incision occurred at 10 ka with the formation of the large alluvial trench. The Holocene floodplain is dominated by processes of catastrophic vertical accretion and erosion (cut-and-fill) and oblique accretion at the macrochannel margins. The consistency in ages for the terraces and subsequent incision suggests a uniform network response. Alluvial sediments and channel configuration in this compound and complex landscape represent a discernable response to long-term climate change, high climate variability and extreme weather events.

  17. Recurrent landsliding of a high bank at Dunaszekcső, Hungary: Geodetic deformation monitoring and finite element modeling

    NASA Astrophysics Data System (ADS)

    Bányai, László; Mentes, Gyula; Újvári, Gábor; Kovács, Miklós; Czap, Zoltán; Gribovszki, Katalin; Papp, Gábor

    2014-04-01

    Five years of geodetic monitoring data at Dunaszekcső, Hungary, are processed to evaluate recurrent landsliding, which is a characteristic geomorphological process affecting the high banks of the Middle Danube valley in Hungary. The integrated geodetic observations provide accurate three dimensional coordinate time series, and these data are used to calculate the kinematic features of point movements and the rigid body behavior of point blocks. Additional datasets include borehole tiltmeter data and hydrological recordings of the Danube and soil water wells. These data, together with two dimensional final element analyses, are utilized to gain a better understanding of the physical, soil mechanical background and stability features of the high bank. Here we indicate that the main trigger of movements is changing groundwater levels, whose effect is an order of magnitude higher than that of river water level changes. Varying displacement rates of the sliding blocks are interpreted as having been caused by basal pore water pressure changes originating from shear zone volume changes, floods of the River Danube through later seepage and rain infiltration. Both data and modeling point to the complex nature of bank sliding at Dunaszekcső. Some features imply that the movements are rotational, some reveal slumping. By contrast, all available observational and modeling data point to the retrogressive development of the high bank at Dunaszekcső. Regarding mitigation, the detailed analysis of three basic parameters (the direction of displacement vectors, tilting, and the acceleration component of the kinematic function) is suggested because these parameters indicate the zone where the largest lateral displacements can be expected and point to the advent of the rapid landsliding phase that affects high banks along the River Danube.

  18. River restoration: separating myths from reality

    NASA Astrophysics Data System (ADS)

    Friberg, N.; Woodward, G.

    2015-12-01

    River restorations are a social construct where degraded systems are physically modified to obtain a pre-disturbance set of attributes. These can be purely esthetic but are often linked to some kind of biotic recovery or the provision of important ecosystem services such as flood control or self-purification. The social setting of restoration projects, with a range of potential conflicts, significantly reduces scale of most interventions to a size with little room, or wish, for natural processes. We show that projects sizes are still very small and that the restoration target is not to recover natural geomorphic processes but rather to fulfil human perception of what a nice stream looks like. One case from Danish lowland streams, using a space-for-time substitution approach, shows excess use of pebble and gravel when restoring channelized sandy bottom streams, de-coupling the link between energy and substrate characteristics that are found in natural lowland systems. This has implication for both the biological structure and functioning of these systems as a direct link between substrate heterogeneity and macroinvertebrate diversity was not found in restored streams, while the density of grazer increased indicating an increased use of periphyton as a basal resource. Another case of adding woody debris to UK lowland streams, using a BACI study design, showed very little effect on the macroinvertebrate community even after a 100-year flood, which indicate that added tree trunks did not provide additional flow refugia. We suggest that restoration schemes should aim at restoring the natural physical structural complexity in the streams and at the same time enhance the possibility of re-generating the natural geomorphological processes sustaining the habitats in streams and rivers.

  19. Considering direct and indirect habitat influences on stream biota in eco-geomorphology research to better understand, model, and manage riverine ecosystems

    NASA Astrophysics Data System (ADS)

    Cienciala, P.; Nelson, A. D.

    2017-12-01

    The field of fluvial eco-geomorphology strives to improve the understanding of interactions between physical and biological processes in running waters. This body of research has greatly contributed to the advancement of integrated river science and management. Arguably, the most popular research themes in eco-geomorphology include hydrogemorphic controls of habitat quality and effects of disturbances such as floods, sediment transport events or sediment accumulation. However, in contrast to the related field of ecology, the distinction between direct and indirect mechanisms which may affect habitat quality and biotic response to disturbance has been poorly explored in eco-geomorphic research. This knowledge gap poses an important challenge for interpretations of field observations and model development. In this research, using the examples of benthic invertebrates and fish, we examine the importance of direct and indirect influences that geomorphic and hydraulic processes may exert on stream biota. We also investigate their implications for modeling of organism-habitat relationships. To achieve our goal, we integrate field and remote sensing data from montane streams in the Pacific Northwest region with habitat models. Preliminary results indicate that indirect hydrogeomorphic influences of stream organisms, such as those mediated by altered availability of food resources, can be as important as direct influences (e.g. physical disturbance). We suggest that these findings may also have important implications for modeling of riverine habitat.

  20. An ecohydraulic view on stream resilience and ecosystem functioning - what can science teach management?

    NASA Astrophysics Data System (ADS)

    Battin, Tom J.; Dzubakova, Katharina; Boodoo, Kyle; Ulseth, Amber

    2017-04-01

    Streams and rivers are increasingly exposed to environmental change across various spatial and temporal scales. Consequently, ecosystem health and integrity are becoming compromised. Most management strategies designed to recover and maintain stream ecosystem health involve engineering measures of geomorphology. The success of such engineering measures relies on a thorough understanding of the underlying physical, chemical and biological process coupling across scales. First, we present results from experimental work unraveling the relevance of streambed heterogeneity for the resilience of phototrophic biofilms. This is critical as phototrophic biofilms are key for nutrient removal and hence for keeping the water clean. These biofilms are also the machinery of primary production and related carbon fluxes in stream ecosystems. Next, we show how climate change may affect primary production, including CO2, in streams and the networks they form. In fact, streams are now recognized as major sources of CO2 to the atmosphere and contributors to the global carbon cycle. Despite this, we do not yet understand how geomorphological features, themselves continuously reworked by hydrology and sedimentary dynamics, affect CO2 fluxes in streams. We show that gravel bars, clearly conspicuous geomorphological features, are hotspots of CO2 fluxes compared to the streamwater itself. This has major implications for carbon cycling and stream ecosystem functioning. Finally, we discuss what stream management could learn from ecohydraulic insights from young scientists doing excellent basic research.

  1. Development of a statistical model for the determination of the probability of riverbank erosion in a Meditteranean river basin

    NASA Astrophysics Data System (ADS)

    Varouchakis, Emmanouil; Kourgialas, Nektarios; Karatzas, George; Giannakis, Georgios; Lilli, Maria; Nikolaidis, Nikolaos

    2014-05-01

    Riverbank erosion affects the river morphology and the local habitat and results in riparian land loss, damage to property and infrastructures, ultimately weakening flood defences. An important issue concerning riverbank erosion is the identification of the areas vulnerable to erosion, as it allows for predicting changes and assists with stream management and restoration. One way to predict the vulnerable to erosion areas is to determine the erosion probability by identifying the underlying relations between riverbank erosion and the geomorphological and/or hydrological variables that prevent or stimulate erosion. A statistical model for evaluating the probability of erosion based on a series of independent local variables and by using logistic regression is developed in this work. The main variables affecting erosion are vegetation index (stability), the presence or absence of meanders, bank material (classification), stream power, bank height, river bank slope, riverbed slope, cross section width and water velocities (Luppi et al. 2009). In statistics, logistic regression is a type of regression analysis used for predicting the outcome of a categorical dependent variable, e.g. binary response, based on one or more predictor variables (continuous or categorical). The probabilities of the possible outcomes are modelled as a function of independent variables using a logistic function. Logistic regression measures the relationship between a categorical dependent variable and, usually, one or several continuous independent variables by converting the dependent variable to probability scores. Then, a logistic regression is formed, which predicts success or failure of a given binary variable (e.g. 1 = "presence of erosion" and 0 = "no erosion") for any value of the independent variables. The regression coefficients are estimated by using maximum likelihood estimation. The erosion occurrence probability can be calculated in conjunction with the model deviance regarding the independent variables tested (Atkinson et al. 2003). The developed statistical model is applied to the Koiliaris River Basin in the island of Crete, Greece. The aim is to determine the probability of erosion along the Koiliaris' riverbanks considering a series of independent geomorphological and/or hydrological variables. Data for the river bank slope and for the river cross section width are available at ten locations along the river. The riverbank has indications of erosion at six of the ten locations while four has remained stable. Based on a recent work, measurements for the two independent variables and data regarding bank stability are available at eight different locations along the river. These locations were used as validation points for the proposed statistical model. The results show a very close agreement between the observed erosion indications and the statistical model as the probability of erosion was accurately predicted at seven out of the eight locations. The next step is to apply the model at more locations along the riverbanks. In November 2013, stakes were inserted at selected locations in order to be able to identify the presence or absence of erosion after the winter period. In April 2014 the presence or absence of erosion will be identified and the model results will be compared to the field data. Our intent is to extend the model by increasing the number of independent variables in order to indentify the key factors favouring erosion along the Koiliaris River. We aim at developing an easy to use statistical tool that will provide a quantified measure of the erosion probability along the riverbanks, which could consequently be used to prevent erosion and flooding events. Atkinson, P. M., German, S. E., Sear, D. A. and Clark, M. J. 2003. Exploring the relations between riverbank erosion and geomorphological controls using geographically weighted logistic regression. Geographical Analysis, 35 (1), 58-82. Luppi, L., Rinaldi, M., Teruggi, L. B., Darby, S. E. and Nardi, L. 2009. Monitoring and numerical modelling of riverbank erosion processes: A case study along the Cecina River (central Italy). Earth Surface Processes and Landforms, 34 (4), 530-546. Acknowledgements This work is part of an on-going THALES project (CYBERSENSORS - High Frequency Monitoring System for Integrated Water Resources Management of Rivers). The project has been co-financed by the European Union (European Social Fund - ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: THALES. Investing in knowledge society through the European Social Fund.

  2. Redd Site Selection and Spawning Habitat Use by Fall Chinook Salmon: The Importance of Geomorphic Features in Large Rivers

    PubMed

    Geist; Dauble

    1998-09-01

    / Knowledge of the three-dimensional connectivity between rivers and groundwater within the hyporheic zone can be used to improve the definition of fall chinook salmon (Oncorhynchus tshawytscha) spawning habitat. Information exists on the microhabitat characteristics that define suitable salmon spawning habitat. However, traditional spawning habitat models that use these characteristics to predict available spawning habitat are restricted because they can not account for the heterogeneous nature of rivers. We present a conceptual spawning habitat model for fall chinook salmon that describes how geomorphic features of river channels create hydraulic processes, including hyporheic flows, that influence where salmon spawn in unconstrained reaches of large mainstem alluvial rivers. Two case studies based on empirical data from fall chinook salmon spawning areas in the Hanford Reach of the Columbia River are presented to illustrate important aspects of our conceptual model. We suggest that traditional habitat models and our conceptual model be combined to predict the limits of suitable fall chinook salmon spawning habitat. This approach can incorporate quantitative measures of river channel morphology, including general descriptors of geomorphic features at different spatial scales, in order to understand the processes influencing redd site selection and spawning habitat use. This information is needed in order to protect existing salmon spawning habitat in large rivers, as well as to recover habitat already lost.KEY WORDS: Hyporheic zone; Geomorphology; Spawning habitat; Large rivers; Fall chinook salmon; Habitat management

  3. River channel adjustments in Southern Italy over the past 150 years and implications for channel recovery

    NASA Astrophysics Data System (ADS)

    Scorpio, Vittoria; Aucelli, Pietro P. C.; Giano, Salvatore I.; Pisano, Luca; Robustelli, Gaetano; Rosskopf, Carmen M.; Schiattarella, Marcello

    2015-12-01

    Multi-temporal GIS analysis of topographic maps and aerial photographs along with topographic and geomorphological surveys are used to assess evolutionary trends and key control factors of channel adjustments for five major rivers in southern Italy (the Trigno, Biferno, Volturno, Sinni and Crati rivers) to support assessment of channel recovery and river restoration. Three distinct phases of channel adjustment are identified over the past 150 years primarily driven by human disturbances. Firstly, slight channel widening dominated from the last decades of the nineteenth century to the 1950s. Secondly, from the 1950s to the end of the 1990s, altered sediment fluxes induced by in-channel mining and channel works brought about moderate to very intense incision (up to 6-7 m) accompanied by strong channel narrowing (up to 96%) and changes in channel configuration from multi-threaded to single-threaded patterns. Thirdly, the period from around 2000 to 2015 has been characterized by channel stabilization and local widening. Evolutionary trajectories of the rivers studied are quite similar to those reconstructed for other Italian rivers, particularly regarding the second phase of channel adjustments and ongoing transitions towards channel recovery in some reaches. Analyses of river dynamics, recovery potential and connectivity with sediment sources of the study reaches, framed in their catchment context, can be used as part of a wider interdisciplinary approach that views effective river restoration alongside sustainable and risk-reduced river management.

  4. River predisposition to ice jams: a simplified geospatial model

    NASA Astrophysics Data System (ADS)

    De Munck, Stéphane; Gauthier, Yves; Bernier, Monique; Chokmani, Karem; Légaré, Serge

    2017-07-01

    Floods resulting from river ice jams pose a great risk to many riverside municipalities in Canada. The location of an ice jam is mainly influenced by channel morphology. The goal of this work was therefore to develop a simplified geospatial model to estimate the predisposition of a river channel to ice jams. Rather than predicting the timing of river ice breakup, the main question here was to predict where the broken ice is susceptible to jam based on the river's geomorphological characteristics. Thus, six parameters referred to potential causes for ice jams in the literature were initially selected: presence of an island, narrowing of the channel, high sinuosity, presence of a bridge, confluence of rivers, and slope break. A GIS-based tool was used to generate the aforementioned factors over regular-spaced segments along the entire channel using available geospatial data. An ice jam predisposition index (IJPI) was calculated by combining the weighted optimal factors. Three Canadian rivers (province of Québec) were chosen as test sites. The resulting maps were assessed from historical observations and local knowledge. Results show that 77 % of the observed ice jam sites on record occurred in river sections that the model considered as having high or medium predisposition. This leaves 23 % of false negative errors (missed occurrence). Between 7 and 11 % of the highly predisposed river sections did not have an ice jam on record (false-positive cases). Results, limitations, and potential improvements are discussed.

  5. Study of morphometry to debit drainage basin (DAS) arau Padang city

    NASA Astrophysics Data System (ADS)

    Utama, Lusi; Amrizal, Berd, Isril; Zuherna

    2017-11-01

    High intensity rain that happened in Padang city cause the happening of floods at DAS Arau. Floods that happened in Padang besides caused high rain intensity, require to be by research about morphometry that is cause parameter the happening of floods. Morphometry drainage basin physical network (DAS) quantitatively related to DAS geomorphology that is related to form of DAS, river network, closeness of stream, ramp, usage of farm, high and gradient steepness of river. Form DAS will influence rain concentration to outlet. Make an index to closeness of stream depict closeness of river stream at one particular DAS. Speed of river stream influenced by storey, level steepness of river. Steepness storey, level is comparison of difference height of river downstream and upstream. Ever greater of steepness of river stream, excelsior speed of river stream that way on the contrary. High to lower speed of river stream influence occurrence of floods, more than anything else if when influenced by debit big. Usage of farm in glove its link to process of infiltration where if geology type which is impermeable, be difficult the happening of infiltration, this matter will enlarge value of run off. Research by descriptive qualitative that is about characteristic of DAS. Method the used is method survey with data collecting, in the form of rainfall data of year 2005 until year 2015 and Image of DEM IFSAR with resolution 5 meter, analyzed use Software ARGIS. Result of research got by DAS reside in at condition of floods gristle.

  6. The Usumacinta-Grijalva beach-ridge plain in southern Mexico: a high-resolution archive of river discharge and precipitation

    NASA Astrophysics Data System (ADS)

    Nooren, Kees; Hoek, Wim Z.; Winkels, Tim; Huizinga, Annika; Van der Plicht, Hans; Van Dam, Remke L.; Van Heteren, Sytze; Van Bergen, Manfred J.; Prins, Maarten A.; Reimann, Tony; Wallinga, Jakob; Cohen, Kim M.; Minderhoud, Philip; Middelkoop, Hans

    2017-09-01

    The beach-ridge sequence of the Usumacinta-Grijalva delta borders a 300 km long section of the southern Gulf of Mexico coast. With around 500 beach ridges formed in the last 6500 years, the sequence is unsurpassed in the world in terms of numbers of individual ridges preserved, continuity of the record, and temporal resolution. We mapped and dated the most extensively accreted part of the sequence, linking six phases of accretion to river mouth reconfigurations and constraining their ages with 14C and OSL dating. The geomorphological and sedimentological reconstruction relied on lidar data, coring transects, GPR measurements, grain-size analyses, and chemical fingerprinting of volcanic glass and pumice encountered within the beach and dune deposits. We demonstrate that the beach-ridge complex was formed under ample long-term fluvial sediment supply and shorter-term wave- and aeolian-modulated sediment reworking. The abundance of fluvially supplied sand is explained by the presence of easily weatherable Los Chocoyos ignimbrites from the ca. 84 ka eruption of the Atitlán volcano (Guatemala) in the catchment of the Usumacinta River. Autocyclic processes seem responsible for the formation of ridge-swale couplets. Fluctuations in their periodicity (ranging from 6-19 years) are governed by progradation rate, and are therefore not indicative of sea level fluctuations or variability in storm activity. The fine sandy beach ridges are mainly swash built. Ridge elevation, however, is strongly influenced by aeolian accretion during the time the ridge is located next to the beach. Beach-ridge elevation is negatively correlated with progradation rate, which we relate to the variability in sediment supply to the coastal zone, reflecting decadal-scale precipitation changes within the river catchment. In the southern Mexican delta plain, the coastal beach ridges therefore appear to be excellent recorders of hinterland precipitation.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hammond, Glenn Edward; Bao, J; Huang, M

    Hyporheic exchange is a critical mechanism shaping hydrological and biogeochemical processes along a river corridor. Recent studies on quantifying the hyporheic exchange were mostly limited to local scales due to field inaccessibility, computational demand, and complexity of geomorphology and subsurface geology. Surface flow conditions and subsurface physical properties are well known factors on modulating the hyporheic exchange, but quantitative understanding of their impacts on the strength and direction of hyporheic exchanges at reach scales is absent. In this study, a high resolution computational fluid dynamics (CFD) model that couples surface and subsurface flow and transport is employed to simulate hyporheicmore » exchanges in a 7-km long reach along the main-stem of the Columbia River. Assuming that the hyporheic exchange does not affect surface water flow conditions due to its negligible magnitude compared to the volume and velocity of river water, we developed a one-way coupled surface and subsurface water flow model using the commercial CFD software STAR-CCM+. The model integrates the Reynolds-averaged Navier-Stokes (RANS) equation solver with a realizable κ-ε two-layer turbulence model, a two-layer all y + wall treatment, and the volume of fluid (VOF) method, and is used to simulate hyporheic exchanges by tracking the free water-air interface as well as flow in the river and the subsurface porous media. The model is validated against measurements from acoustic Doppler current profiler (ADCP) in the stream water and hyporheic fluxes derived from a set of temperature profilers installed across the riverbed. The validated model is then employed to systematically investigate how hyporheic exchanges are influenced by surface water fluid dynamics strongly regulated by upstream dam operations, as well as subsurface structures (e.g. thickness of riverbed and subsurface formation layers) and hydrogeological properties (e.g. permeability). The results suggest that the thickness of riverbed alluvium layer is the dominant factor for reach-scale hyporheic exchanges, followed by the alluvium permeability, the depth of the underlying impermeable layer, and the assumption of hydrostatic pressure.« less

  8. Change detection of riverbed movements using river cross-sections and LiDAR data

    NASA Astrophysics Data System (ADS)

    Vetter, Michael; Höfle, Bernhard; Mandlburger, Gottfried; Rutzinger, Martin

    2010-05-01

    Today, Airborne LiDAR derived digital terrain models (DTMs) are used for several aspects in different scientific disciplines, such as hydrology, geomorphology or archaeology. In the field of river geomorphology, LiDAR data sets can provide information on the riverine vegetation, the level and boundary of the water body, the elevation of the riparian foreland and their roughness. The LiDAR systems in use for topographic data acquisition mainly operate with wavelengths of at least 1064nm and, thus, are not able to penetrate water. LiDAR sensors with two wavelengths are available (bathymetric LiDAR), but they can only provide elevation information of riverbeds or lakes, if the water is clear and the minimum water depth exceeds 1.5m. In small and shallow rivers it is impossible to collect information of the riverbed, regardless of the used LiDAR sensor. In this article, we present a method to derive a high-resolution DTM of the riverbed and to combine it with the LiDAR DTM resulting in a watercourse DTM (DTM-W) as a basis for calculating the changes in the riverbed during several years. To obtain such a DTM-W we use river cross-sections acquired by terrestrial survey or echo-sounding. First, a differentiation between water and land has to be done. A highly accurate water surface can be derived by using a water surface delineation algorithm, which incorporates the amplitude information of the LiDAR point cloud and additional geometrical features (e.g. local surface roughness). The second step is to calculate a thalweg line, which is the lowest flow path in the riverbed. This is achieved by extracting the lowest point of each river cross section and by fitting a B-spline curve through those points. In the next step, the centerline of the river is calculated by applying a shrinking algorithm of the water boundary polygon. By averaging the thalweg line and the centerline, a main flow path line can be computed. Subsequently, a dense array of 2D-profiles perpendicular to the flow path line is defined and the heights are computed by linear interpolation of the original cross sections. Thus, a very dense 3D point cloud of the riverbed is obtained from which a grid model of the river bed can be calculated applying any suitable interpolation technique like triangulation, linear prediction or inverse distance mapping. In a final step, the river bed model and the LiDAR DTM are combined resulting in a watercourse DTM. By computing different DTM-Ws from multiple cross section data sets, the volume and the magnitude of changes in the riverbed can be estimated. Hence, the erosion or accumulation areas and their volume changes during several years can be quantified.

  9. The Grain-size Patchiness of Braided Gravel-Bed Streams - example of the Urumqi River (northeast Tian Shan, China)

    NASA Astrophysics Data System (ADS)

    Guerit, L.; Barrier, L.; Narteau, C.; Métivier, F.; Liu, Y.; Lajeunesse, E.; Gayer, E.; Meunier, P.; Malverti, L.; Ye, B.

    2014-02-01

    In gravel-bed rivers, sediments are often sorted into patches of different grain-sizes, but in braided streams, the link between this sorting and the channel morpho-sedimentary elements is still unclear. In this study, the size of the bed sediment in the shallow braided gravel-bed Urumqi River is characterized by surface-count and volumetric sampling methods. Three morpho-sedimentary elements are identified in the active threads of the river: chutes at flow constrictions, which pass downstream to anabranches and bars at flow expansions. The surface and surface-layer grain-size distributions of these three elements show that they correspond to only two kinds of grain-size patches: (1) coarse-grained chutes, coarser than the bulk river bed, and (2) finer-grained anabranches and bars, consistent with the bulk river bed. In cross-section, the chute patches are composed of one coarse-grained top layer, which can be interpreted as a local armour layer overlying finer deposits. In contrast, the grain size of the bar-anabranch patches is finer and much more homogeneous in depth than the chute patches. Those patches, which are features of lateral and vertical sorting associated to the transport dynamics that build braided patterns, may be typical of active threads in shallow gravel-bed rivers and should be considered in future works on sorting processes and their geomorphologic and stratigraphic results.

  10. Assessing changes in extreme river flow regulation from non-stationarity in hydrological scaling laws

    NASA Astrophysics Data System (ADS)

    Rodríguez, Estiven; Salazar, Juan Fernando; Villegas, Juan Camilo; Mercado-Bettín, Daniel

    2018-07-01

    Extreme flows are key components of river flow regimes that affect manifold hydrological, geomorphological and ecological processes with societal relevance. One fundamental characteristic of extreme flows in river basins is that they exhibit scaling properties which can be identified through scaling (power) laws. Understanding the physical mechanisms behind such scaling laws is a continuing challenge in hydrology, with potential implications for the prediction of river flow regimes in a changing environment and ungauged basins. After highlighting that the scaling properties are sensitive to environmental change, we develop a physical interpretation of how temporal changes in scaling exponents relate to the capacity of river basins to regulate extreme river flows. Regulation is defined here as the basins' capacity to either dampen high flows or to enhance low flows. Further, we use this framework to infer temporal changes in the regulation capacity of five large basins in tropical South America. Our results indicate that, during the last few decades, the Amazon river basin has been reducing its capacity to enhance low flows, likely as a consequence of pronounced environmental change in its south and south-eastern sub-basins. The proposed framework is widely applicable to different basins, and provides foundations for using scaling laws as empirical tools for inferring temporal changes of hydrological regulation, particularly relevant for identifying and managing hydrological consequences of environmental change.

  11. Spatial impact and triggering conditions of the exceptional hydro-geomorphological event of December 1909 in Iberia

    NASA Astrophysics Data System (ADS)

    Pereira, S.; Ramos, A. M.; Zêzere, J. L.; Trigo, R. M.; Vaquero, J. M.

    2016-02-01

    According to the DISASTER database the 20-28 December 1909 event was the hydro-geomorphologic event with the highest number of flood and landslide cases that occurred in Portugal in the period 1865-2010 (Zêzere et al., 2014). This event also caused important social impacts over the Spanish territory, especially in the Douro Basin, having triggered the highest floods in more than 100 years at the river's mouth in the city of Oporto. This work has a dual purpose: (i) to characterize the spatial distribution and social impacts of the December 1909 hydro-geomorphologic DISASTER event over Portugal and Spain; (ii) to analyse the meteorological conditions that triggered the event and the spatial distribution of the precipitation anomalies. Social impacts that occurred in Portugal were obtained from the Disaster database (Zêzere et al., 2014) whereas the data collection for Spain was supported by the systematic analysis of Spanish daily newspapers. In addition, the meteorological conditions that triggered the event are analysed using the 20th Century Reanalysis data set from NOAA and precipitation data from Iberian meteorological stations. The Iberian Peninsula was spatially affected during this event along the SW-NE direction spanning from Lisbon, Santarém, Oporto, and Guarda (in Portugal), to Salamanca, Valladolid, Zamora, Orense, León, and Palencia (in Spain). In Iberia, 134 DISASTER cases were recorded (130 flood cases; 4 landslides cases) having caused 89 casualties (57 due to floods and 32 due to landslides) and a further total of 3876 affected people, including fatalities, injured, missing, evacuated, and homeless people. This event was associated with outstanding precipitation registered at Guarda (Portugal) on 22 December 1909 and unusual meteorological conditions characterized by the presence of a deep low-pressure system located over the NW Iberian Peninsula with a stationary frontal system striking the western Iberian Peninsula. The presence of an upper-level jet (250 hPa) and low-level jet (900 hPa) located SW-NE oriented towards Iberia along with upper-level divergence and lower-level convergence favoured large-scale precipitation. Finally, associated with these features it is possible to state that this extreme event was clearly associated with the presence of an elongated Atmospheric River, crossing the entire northern Atlantic Basin and providing a continuous supply of moisture that contributed to enhance precipitation. This work contributes to a comprehensive and systematic synoptic evaluation of the second most deadly hydro-geomorphologic DISASTER event that has occurred in Portugal since 1865 and will help to better understand the meteorological system that was responsible for triggering the event.

  12. RELATIONSHIPS AMONG GEOMORPHOLOGY, HYDROLOGY, AND VEGETATION IN RIPARIAN MEADOWS: RESTORATION IMPLICATIONS

    EPA Science Inventory

    Vegetation patterns and dynamics within riparian corridors are controlled largely by geomorphic position, substrate characteristics and hydrologic regimes. Understanding management and restoration options for riparian meadow complexes exhibiting stream incision requires knowledge...

  13. The rockfall observatory in the Reintal, Wetterstein Massif, German Alps

    NASA Astrophysics Data System (ADS)

    Schöpa, Anne; Turowski, Jens M.; Hovius, Niels

    2017-04-01

    The Reintal is an Alpine valley in the Wetterstein Massif close to the Zugspitze, Germany's highest mountain. Due to the variety of active geomorphic processes, including rockfalls off the steep limestone cliffs, debris flows, and snow avalanches, and the river Partnach, the Reintal has been the field area of many geomorphological and hydrological research campaigns over the last few decades. In 2014, the Geomorphology Section of the GFZ Potsdam started to install a monitoring network to detect and classify rockfalls in the Reintal. The network includes six seismic stations, optical and infrared cameras, and two weather stations measuring air and rock temperature, air pressure and relative humidity, precipitation, wind speed and direction, and solar radiation. The continuous observations of the network are supplemented by repeated field campaigns including terrestrial laser scans of a prominent rockfall niche at the Hochwanner mountain. The about 1,500 m high north face of the Hochwanner experienced the detachment of a 2.8 Mio m3 rockfall about 500 years ago that created the so-called Steingerümpel (German for rock debris deposit) and dammed the river Partnach. The cliff still shows high rockfall activity, and an 80,000 m3 block can be expected to fall in the near future. In this contribution, the layout of the observatory and details of the seismic network centered around the Hochwanner north face are described. Furthermore, the network data of a severe thunderstorm event in June 2016, that triggered many rockfalls and debris flows in the Reintal, is presented.

  14. Historical and contemporary imagery to assess ecosystem change on the Arctic coastal plain of northern Alaska

    USGS Publications Warehouse

    Tape, Ken D.; Pearce, John M.; Walworth, Dennis; Meixell, Brandt W.; Fondell, Tom F.; Gustine, David D.; Flint, Paul L.; Hupp, Jerry W.; Schmutz, Joel A.; Ward, David H.

    2014-01-01

    In this report, we describe and make available a set of 61 georectified aerial images of the Arctic Coastal Plain (taken from 1948 to 2010) that were obtained by the USGS to inform research objectives of the USGS CAE Initiative. Here, we describe the origins, metadata, and public availability of these images that were obtained within four main study areas on the Arctic Coastal Plain: Teshekpuk Lake Special Area, Chipp River, the Colville River Delta, and locations along the Dalton Highway Corridor between the Brooks Range and Deadhorse. We also provide general descriptions of observable changes to the geomorphology of landscapes that are apparent by comparing historical and contemporary images. These landscape changes include altered river corridors, lake drying, coastal erosion, and new vegetation communities. All original and georectified images and metadata are available through the USGS Alaska Science Center Portal (search under ‘Project Name’ using title of this report) or by contacting ascweb@usgs.gov.

  15. African humid periods triggered the reactivation of a large river system in Western Sahara

    PubMed Central

    Skonieczny, C.; Paillou, P.; Bory, A.; Bayon, G.; Biscara, L.; Crosta, X.; Eynaud, F.; Malaizé, B.; Revel, M.; Aleman, N.; Barusseau, J. -P.; Vernet, R.; Lopez, S.; Grousset, F.

    2015-01-01

    The Sahara experienced several humid episodes during the late Quaternary, associated with the development of vast fluvial networks and enhanced freshwater delivery to the surrounding ocean margins. In particular, marine sediment records off Western Sahara indicate deposition of river-borne material at those times, implying sustained fluvial discharges along the West African margin. Today, however, no major river exists in this area; therefore, the origin of these sediments remains unclear. Here, using orbital radar satellite imagery, we present geomorphological data that reveal the existence of a large buried paleodrainage network on the Mauritanian coast. On the basis of evidence from the literature, we propose that reactivation of this major paleoriver during past humid periods contributed to the delivery of sediments to the Tropical Atlantic margin. This finding provides new insights for the interpretation of terrigenous sediment records off Western Africa, with important implications for our understanding of the paleohydrological history of the Sahara. PMID:26556052

  16. Definition of Pluviometric Thresholds For A Real Time Flood Forecasting System In The Arno Watershed

    NASA Astrophysics Data System (ADS)

    Amadio, P.; Mancini, M.; Mazzetti, P.; Menduni, G.; Nativi, S.; Rabuffetti, D.; Ravazzani, G.; Rosso, R.

    The pluviometric flood forecasting thresholds are an easy method that helps river flood emergency management collecting data from limited area meteorologic model or telemetric raingauges. The thresholds represent the cumulated rainfall depth which generate critic discharge for a particular section. The thresholds were calculated for different sections of Arno river and for different antecedent moisture condition using the flood event distributed hydrologic model FEST. The model inputs were syntethic hietographs with different shape and duration. The system realibility has been verified by generating 500 year syntethic rainfall for 3 important subwatersheds of the studied area. A new technique to consider spatial variability of rainfall and soil properties effects on hydrograph has been investigated. The "Geomorphologic Weights" were so calculated. The alarm system has been implemented in a dedicated software (MIMI) that gets measured and forecast rainfall data from Autorità di Bacino and defines the state of the alert of the river sections.

  17. Large thermo-erosional tunnel for a river in northeast Greenland

    NASA Astrophysics Data System (ADS)

    Docherty, Catherine L.; Hannah, David M.; Riis, Tenna; Rosenhøj Leth, Simon; Milner, Alexander M.

    2017-12-01

    Thermo-erosional river bank undercutting is caused by the combined action of thermal and mechanical erosion of the permafrost by Arctic rivers whilst the overlying sediment withstands collapse temporarily. Here, we report the discovery of a large thermo-erosional tunnel that formed in the banks of a meltwater-fed stream in northeast Greenland in summer 2015. The tunnel was observed over eight days (14-22 July), during which period the tunnel remained open but bank-side slumping increased. Stream solute load increased immediately downstream and remained high 800 m from the tunnel. Whilst this field observation was opportunistic and information somewhat limited, our study provides a rare insight into an extreme event impacting permafrost, local geomorphology and stream habitat. With accelerated climate change in Arctic regions, increased permafrost degradation and warmer stream water temperature are predicted thereby enhancing potential for thermo-erosional niche development and associated stream bank slumping. This change could have significant implications for stream physicochemical habitat and, in turn, stream benthic communities, through changes in aquatic habitat conditions.

  18. A Limnological Examination of the Southwestern Amazon, Madre de Dios, Peru

    NASA Astrophysics Data System (ADS)

    Belcon, Alana Urnesha

    This dissertation investigates the limnology of the southwestern Peruvian Amazon centered on the Madre de Dios department by examining first the geomorphology and then the ecology and biogeochemistry of the region's fluvial systems. Madre de Dios, Peru is world renowned for its prolific biodiversity and its location within the Andes biodiversity hotspot. It is also a site of study regarding the development of the Fitzcarrald Arch and that feature's geomorphological importance as the drainage center for the headwaters of the Madeira River---the Amazon's largest tributary and as well as its role as a physical divider of genetic evolution in the Amazon. Though each of these has been studied by a variety of prominent researchers, the ability to investigate all the aspects of this unique region is hampered by the lack of a regional geomorphological map. This study aims to fill that gap by using remote sensing techniques on digital elevation models, satellite imagery and soil, geology and geoecological maps already in publication to create a geomorphological map. The resulting map contains ten distinct landform types that exemplify the dominance of fluvial processes in shaping this landscape. The river terraces of the Madre de Dios River are delineated in their entirety as well as the various dissected relief units and previously undefined units. The demarcation of the boundaries of these geomorphic units will provide invaluable assistance to the selection of field sites by future researchers as well as insights into the origin of the high biodiversity indices of this region and aid in planning for biodiversity conservation. Secondly this study examines 25 tropical floodplain lakes along 300 km of the Manu River within the Manu National Park in the Madre de Dios department. Alternative stable state and regime shifts in shallow lakes typically have been examined in lakes in temperate and boreal regions and within anthropogenically disturbed basins but have rarely been studied in tropical or in undisturbed regions. In contrast this study focuses on a tropical region of virtually no human disturbance and evaluates the effects of hydrological variability on ecosystem structure and dynamics. Using satellite imagery a 23 yr timeline of ecological regime shifts in Amazon oxbow lakes or "cochas" is reconstructed. The study shows that almost 25% of the river's floodplain lakes experience periodic abrupt vegetative changes with an average 3.4% existing in an alternative stable state in any given year. State changes typically occur from a stable phytoplankton-dominated state to a short lived, <3 yr, floating macrophytic state and often occur independent of regional flooding. We theorize that multiple dynamics, both internal and external, drive vegetative regime shifts in the Manu but insufficient data yet exists in this remote region to identify the key processes. To complete the investigation of tropical limnology the third study compares and contrasts the nutrient-productivity ration of floodplain and non-floodplain lakes globally and regionally. For over 70 years a strong positive relationship between sestonic chlorophyll-a (Chl-a) and total phosphorus (TP) has been established with phosphorus generally viewed as the most limiting factor to productivity. Most of these studies, however, have focused on northern, temperate regions where the lakes are typically postglacial, isolated and fed by small streams. Relatively little work has been done on floodplain lakes which are semi or permanently connected to the river. This study examines the relationship between nutrients and productivity in floodplain lakes globally through an extensive literature synthesis. Values for total phosphorus, total nitrogen and chlorophyll-a were collected for 523 floodplain lakes, represented by 288 data points while 551 data points were collected for 5444 non-floodplain lakes. Analysis revealed that globally, floodplain lakes do not show any significant difference in the total phosphorus/chlorophyll-a relationship from that found in non-floodplain lakes but significant differences are seen between tropical and temperate lakes. We propose that the term 'floodplain' lake should serve as purely a geographical descriptor and that it is lacking as an ecological indicator. Instead factors such as precipitation seasonality, hydrological connectivity and regional flooding regimes are better indicators of high or low productivity in floodplain lakes.

  19. Response of megabenthic assemblages to different scales of habitat heterogeneity on the Mauritanian slope

    NASA Astrophysics Data System (ADS)

    Jones, Daniel O. B.; Brewer, Michael E.

    2012-09-01

    The topographically complex deep seabed on the Mauritanian slope, from 990 to 1460 m water depth, was imaged with video in an extensive quantitative survey of 17,199 m2 of seafloor using a Remote Operated Vehicle (ROV). This study investigated the influence of habitat heterogeneity at two scales on the megafaunal assemblages observed by ROV. Changes in megafaunal assemblages on the Mauritanian slope were assessed at a broad scale, within depth zones, and at a finer scale, in response to changes in local geomorphology associated with submarine landslides. Geomorphology was determined by classification of habitat parameters (slope, aspect, bathymetric position, curvature, fractal dimension and ruggedness) derived from an autonomous underwater vehicle-based multibeam bathymetry survey. Habitat parameters were classified by Iterative Self Organizing Clustering into six major geomorphological groups, four of which were assessed in the ROV video survey. A total of 29 megafaunal taxa were observed along the entire survey, with an overall average faunal density of 0.344 ind m-2. Megafaunal assemblage density, species richness and evenness varied significantly across the depth range of the survey in the most common geomorphological zone (sedimentary plains of low slope and complexity). Characteristic species inhabited the shallow areas (asteroid, ophiuroid, anemone, small macrourid), intermediate areas (Benthothuria funabris, black cerianthid, squat lobster) and deeper areas (the holothurians Enypniastes eximia and Elipidia echinata). Megafaunal density, species richness and evenness were not significantly different between geomorphogical groups within one depth zone (1300-1400 m). However, the steepest zone, on the edge of a major headwall feature, had four unique taxa (Parapagurus pilosimanus, a comatulid crinoid, a gorgonian and its associated ophiuroid).

  20. The Mobility and Dispersal of Augmented Gravel in Upland Channels: a Knowledge-limited Practise in Supply-limited Channels

    NASA Astrophysics Data System (ADS)

    Downs, P. W.; Gilvear, D. J.

    2017-12-01

    Most river restoration research has been directed at rivers in the highly populated alluvial lowlands: significantly less is known about effectively rehabilitating upland channels, in part because the dynamics of sediment transfer are less well understood. Upland gravel augmentation is thus both a somewhat unproven method for rehabilitating degraded aquatic habitats in sediment-poor reaches, but also a natural experiment in better understanding sediment dynamics in steep, hydraulically-complex river channels. Monitoring on the River Avon in SW England since Water Year (WY) 2015 uses seismic impact plates, RFID-tagged particles and detailed channel bed mapping to establish the mobility rates of augmented particles, their dispersal distances and settling locations relative to flows received. Particles are highly, and equally, mobile: in WY2015, 17 sub-bankfull flows moved at least 60% of augmented particles with volumetric movement non-linearly correlated to flow energy but not to particle size. Waning rates of transport over the year suggest supply limitations. This relationship breaks down early in WY2017 where a two-year flow event moved 40% of the particles in just two months - confounding factors may include particle mass differences and particle supplies from upstream. Median particle travel distances correlate well to energy applied and suggest a long-tailed fan of dispersal with supplemental controls including channel curvature, boulder presence and stream power. Locally, particles are deposited preferentially around boulders and in sheltered river margins but also perched in clusters above the low-flow channel. High tracer mobility makes median transport distances highly dependent on the survey length - in WY2017 some particles travelled 300 m in a 3-month period that included the two-year flood event. Further, in WY2017 median transport distance as a function of volumetric transport suggested significant transport beyond the target reach. The observed particle dynamics thus have implications both for the biological effectiveness of gravel augmentation and the efficacy criterion of `minimum mobility'. They also reflect the challenges inherent to constraint-limited natural experiments that are, conversely, important in proving the value of geomorphology to resource managers.

  1. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain.

    PubMed

    Reinhold, Ann Marie; Poole, Geoffrey C; Bramblett, Robert G; Zale, Alexander V; Roberts, David W

    2018-04-24

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small "anthropogenic plugs" (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  2. Effects of Jackson Lake dam and Tributaries on the Hydrology and Geomorphology of the Snake River, Grand Teton National Park, Wyoming

    NASA Astrophysics Data System (ADS)

    Nelson, N. C.; Schmidt, J. C.

    2006-05-01

    Geomorphic and hydrologic analyses of the Snake River in Grand Teton National Park (GTNP) indicate that flow contributions of tributaries mitigate impacts of regulation. Since a flow regime change in 1958, regulation resulted in a 43 and 35% decrease in estimated unregulated flows immediately downstream of Jackson Lake Dam (JLD) and at Moose (43 km and 5 tributaries downstream of JLD), respectively. Geomorphic evidence indicates that some channel characteristics are more sensitive than others to this decreasing influence of flow regulation. First, entrainment of tracer rocks suggests that the ability of the Snake River to mobilize its bed increases downstream. A greater proportion of the bed became active, and the mobilized clasts moved further, in the two study reaches furthest downstream. Second, repeat mapping from aerial photographs suggest that some changes in channel form are the result of flow regulation and some are the result of climatically driven changes in runoff determined by tributaries. Initial decreases in flows due to regulation may have caused the observed channel narrowing between 1945 and 1969, and greater precipitation causing greater natural flows may have resulted in the subsequent channel widening between 1969 and 1990. Third, flow models were used to obtain the magnitudes of flows necessary to inundate two floodplain surfaces in 4 reaches from JLD to Moose. Recurrence intervals and inundation periods were similar for a narrow, inset floodplain in all 4 reaches, suggesting that this surface developed due to regulation. Recurrence intervals for a much broader and higher floodplain decreased downstream from 9 to 3.2 years and inundation periods increased downstream from 1.1 to 3 days immediately below JLD and at Moose, respectively. This suggests the upper floodplain was formed prior to regulation of the Snake River. Thus, the effects of flow regulation on bed mobility and connectivity between the channel and the upper floodplain decrease downstream as tributaries supply additional streamflow. However, the development of the inset floodplain associated with regulated flows has occurred throughout the study area. These studies indicate that tributaries may reduce most but not necessarily all of the impacts of flow regulation on the geomorphology of the Snake River in GTNP.

  3. Soilscapes in the dynamic tropical environments: The case of Sierra Madre del Sur

    NASA Astrophysics Data System (ADS)

    Krasilnikov, P. V.; García-Calderón, N. E.; Ibáñez-Huerta, A.; Bazán-Mateos, M.; Hernández-Santana, J. R.

    2011-12-01

    The paper gives an analysis of the pattern of soil cover of the Sierra Madre del Sur, one of the most complex physiographic regions of Mexico. It presents the results of the study of four latitudinal traverses across the region. We show that the distribution of soils in the Sierra Madre del Sur is associated with major climatic gradients, namely by vertical bioclimatic zonality in the mountains and by the effect of mountain shadow. Altitudinal distribution of soil-bioclimatic belts is complex due to non-uniform gradients of temperature and rainfall, and varies with the configuration of the mountain range. The distribution of soils is associated with the erosion and accumulation rates both on mountain slopes and in river valleys. The abundance of poorly developed soils in (semi)arid areas was ascribed to high erosion rate rather than to low pedogenetic potential. The formation of soil mosaic at a larger scale might be ascribed to the complex net of gully erosion and to the system of seismically triggered landslides of various ages. In the valleys, the distribution of soils depends upon the dynamics of sedimentation and erosion, which eventually exposes paleosols. Red-colored clayey sediments are remains of ancient weathering and pedogenesis. Their distribution is associated mainly with the intensity of recent slope processes. The soil cover pattern of the Sierra Madre del Sur cannot be explained by simplified schemes of bioclimatic zonality. The soil ranges can be explained by the distribution of climates, lithology, complex geological history of the region, and recent geomorphological processes.

  4. Distribution of Holocene Sediment in Chesapeake Bay as Interpreted from Submarine Geomorphology of the Submerged Landforms, Selected Core Holes, Bridge Borings and Seismic Profiles

    USGS Publications Warehouse

    Newell, Wayne L.; Clark, Inga; Bricker, Owen

    2004-01-01

    Overview -- We have interpreted the geomorphology of the submerged landforms to show thick Holocene sediment that accumulated from three different sources during on-going sea level rise that began 10,000 - 12,000 years ago at the end of Pleistocene. We used a variety of subsurface data from the literature and unpublished information to document thicknesses, materials, dates and duration of processes. Although the details of the true extent and thicknesses are unknown, the deposits of different sources have affinity for particular geographic and submerged geomorphic regions of the Chesapeake Bay and its tidal tributaries. During the last Pleistocene glacial event (Wisconsian), the area now occupied by the Chesapeake Bay was exposed, sea level being about 100 m lower than present. The Susquehanna River valley extended beyond the Bay well out on the exposed Atlantic Shelf. The Susquehanna transported glacial outwash from northern Pennsylvania and New York; the glacio-fluvial deposits were graded to the edge of the continental shelf (Colman et al., 1990; Hack, 1957). Other Piedmont and Appalachian Rivers including the Potomac and James Rivers transported large volumes of sediment to confluence with the Susquehanna channel. Locally, across the encompasing coastal plain landscape, intensive headward erosion, gullies, and slope failure, generated extensive debris flows, sheet wash, and terraces of braided alluvial channel deposits. Large volumes of sediment were moved through the river system to the continental shelf. This was accomplished by a cold, wet climate that included much freezing and thawing; steep eroding slopes resulted from the lowering of sea level from the previous high stand (Stage 5e) between glacial events. Across the Delmarva peninsula extensive wind-blown deposits of sand and loess were recycled onto low terraces and uplands from the unvegetated glacio-fluvial sediments moving through the system (Denny et al., 1979). The volume and distribution of sediment eroded and transported from the watershed surrounding the area of the Bay was several orders of magnitude greater than generally observed in transport and storage on the present day landscape.

  5. Environmental changes in the central Po Plain (northern Italy) due to fluvial modifications and anthropogenic activities

    NASA Astrophysics Data System (ADS)

    Marchetti, Mauro

    2002-05-01

    The fluvial environment of the central Po Plain, the largest plain in Italy, is discussed in this paper. Bounded by the mountain chains of the Alps and the Apennines, this plain is a link between the Mediterranean environment and the cultural and continental influences of both western and eastern Europe. In the past decades, economic development has been responsible for many changes in the fluvial environment of the area. This paper discusses the changes in fluvial dynamics that started from Late Pleistocene and Early Holocene due to distinct climatic changes. The discussion is based on geomorphological, pedological, and archaeological evidences and radiocarbon dating. In the northern foothills, Late Pleistocene palaeochannels indicate several cases of underfit streams among the northern tributaries of the River Po. On the other hand, on the southern side of the Po Plain, no geomorphological evidence of similar discharge reduction has been found. Here, stratigraphic sections, together with archaeological remains buried under the fluvial deposits, show a reduction in the size of fluvial sediments after the 10th millennium BC. During the Holocene, fluvial sedimentation became finer, and was characterised by minor fluctuations in the rate of deposition, probably related to short and less intense climatic fluctuations. Given the high rate of population growth and the development of human activities since the Neolithic Age, human influence on fluvial dynamics, especially since the Roman Age, prevailed over other factors (i.e., climate, tectonics, vegetation, etc.). During the Holocene, the most important changes in the Po Plain were not modifications in water discharge but in sediment. From the 1st to 3rd Century AD, land grants to war veterans caused almost complete deforestation, generalised soil erosion, and maximum progradation of the River Po delta. At present, land abandonment in the mountainous region has led to reafforestation. Artificial channel control in the mountain sector of the basins and in-channel gravel extraction (now illegal but very intense in the 1960s and 1970s) are causing erosion along the rivers and along large sectors of the Adriatic coast. These changes are comparable with those occurring in basins of other Mediterranean rivers.

  6. The environmental and geomorphological impacts of historical gold mining in the Ohinemuri and Waihou river catchments, Coromandel, New Zealand

    NASA Astrophysics Data System (ADS)

    Clement, Alastair J. H.; Nováková, Tereza; Hudson-Edwards, Karen A.; Fuller, Ian C.; Macklin, Mark G.; Fox, Elizabeth G.; Zapico, Ignacio

    2017-10-01

    Between 1875 and 1955 approximately 250,000 Mg yr- 1 of mercury-, arsenic-, and cyanide-contaminated mine tailings were discharged directly into the Ohinemuri River and its tributaries, in the Coromandel Region, North Island, New Zealand. A devastating flood on 14 January 1907 deposited large amounts of mine waste across the floodplain of the Ohinemuri and Waihou rivers in the vicinity of the township of Paeroa. The 1907 mine-waste flood deposit was located as a dirty yellow silt in cores and floodplain profiles, with a thickness ranging from 0.15-0.50 m. Geochemical analysis of the mine waste shows elevated concentrations of Pb ( 200-570 mg kg- 1) and As ( 30-80 mg kg- 1), compared to early Holocene background concentrations (Pb < 30 mg kg- 1; As < 17 mg kg- 1). Bulk sediment samples recovered from the river channel and overbank deposits also show elevated concentrations of Pb ( 110 mg kg- 1), Zn ( 140-320 mg kg- 1), Ag ( 3 mg kg- 1), and Hg ( 0.4 mg kg- 1). Using the mine-waste deposit as a chronological marker shows that sedimentation rates increased from 0.2 mm yr- 1 in the early Holocene, to 5.5-26.8 mm yr- 1 following the 1907 flood. Downstream trends in the thickness of the flood deposit show that local-scale geomorphic factors are a significant influence on the deposition of mine waste in such events. Storage of mine waste is greatest in the upstream reaches of the floodplain. The volume of mine waste estimated to be stored in the Ohinemuri floodplain is 1.13 M m3, an order of magnitude larger than recent well-publicised tailings-dam failures, such as the 1996 South America Porco, 2000 Romanian Baia Mare and Baia Borsa accidents, and constituted, and was recognised at the time, a significant geomorphological and environmental event. The mine-waste material remains in the floodplain today, representing a sizable legacy store of contaminant metals and metalloids that pose a long-term risk to the Ohinemuri and Waihou ecosystems.

  7. The Maya Tropical Forest: Cascading Human impacts from Hillslopes to Floodplains

    NASA Astrophysics Data System (ADS)

    Beach, Timothy; Luzzadder-Beach, Sheryl; Doyle, Colin; Krause, Samantha; Brokaw, Nicholas; Yaeger, Jason

    2016-04-01

    We review the long-term human impact on fluvial systems in the Maya tropical forest region. Although most of this karstic region is drained by groundwater, the southern and coastal margins have several river systems that drain volcanic and metamorphic as well as sedimentary terrains. Some positive environmental impacts of Maya Civilization were the long-term impacts of both landesque capital, like wetland field systems, and other land uses that have enriched many soils. Some negative impacts included stripped soils and eutrophic rivers, both playing out again today with recent deforestation and intensive agriculture. We review trends in the region's fluvial systems, present new evidence on beneficial and detrimental impacts of Maya civilization, and present a new study using LiDAR mapping of fluvial geomorphology of the Belize River. Our new field research comes from the transboundary Rio Bravo watershed of Belize and Guatemala near the border with Mexico. This watershed today is mainly a well preserved tropical forest but from 3,000 to 1000 years ago was partly deforested by Maya cities, farms, roads, fires, and fields. We present studies of soils and sediment movement along slopes, floodplains, and water quality impacts of high dissolved loads of sulfate and calcium. We use AMS dates and soil stratigraphy to date slope and floodplain flux, and we use multiple proxies like pollen and carbon isotopes to reconstruct ancient land use. Aggradation in the floodplain and colluvial deposits began by at least 3,000 years ago and continued until 1100 years ago in several study sites. Some Classic period sites with peak human population and land use intensity experienced less soil erosion, perhaps due to soil conservation, post urban construction, and source reduction. Additional evidence suggests that ancient terraced sites and colluvial slopes that gained upslope sediment and soil nutrients from ancient Maya erosion had greater biodiversity. Lastly, we map fluvial geomorphology with LiDAR in the Belize River Valley, connect the LiDAR with aggradation and erosion evidence, and develop a model to field test the timing of erosion and aggradation in summer 2016.

  8. A Dataset of Rock Strength Along the Mixed Bedrock-alluvial Colorado River-Quantifying a Fundamental Control in Geomorphology

    NASA Astrophysics Data System (ADS)

    Pederson, J. L.; Bursztyn, N.

    2014-12-01

    Bedrock strength is a key parameter in slope stability, landscape erosion, and fluvial incision, though it is typically ignored or at best indirectly constrained in models, as with the k erodability parameter in stream-power formulations. Indeed, empirical datasets of rock strength suited to address geomorphic questions are rare, in part because of the difficulty in measuring those rocks that are heterolithic, weak, or poorly exposed. We have completed a large dataset of measured bedrock strength organized by rock units exposed along the length of the trunk Colorado-Green river through the Colorado Plateau of the western U.S. Measurements include Selby RMS, fracturing, and field compressive tests at 168 localities, as well as 672 individual-sample tensile-strength tests in the laboratory. These rock strength results are compared to geomorphic metrics of unit stream power, river gradient, valley-bottom width, and local relief through the arid Colorado Plateau. Our measurements trend coherently and logically with bedrock type and age/induration, especially in the case of tensile strength and when the influence of fracturing is also considered, signs that the dataset is robust. Focusing on bedrock (rather than alluvial) reaches of the fluvial transect and tensile strength, there is a positive rank-correlation and a strong power-law correlation between reach-averaged rock strength and unit stream power, as well as an elegant linear relation between tensile strength and river gradient. To address the problem of immeasureable rock types, we utilize the inverse power-law scaling between tensile strength and valley-bottom width to estimate the "effective" tensile strength of heterolithic, shale-rich bedrock in alluvial reaches. These results suggest that tensile strength varies to at least an order-of-magnitude smaller values than evident with directly testable rocks in this landscape, with implications for scaling erodibility parameters. Overall, results lead to the conclusion that bedrock strength is, in fact, the first-order control on large-scale fluvial geomorphology in the Colorado Plateau. On one hand this is intuitive, yet it highlights the erroneous but common assumption that bedrock erodibility is uniform or of secondary importance in fluvial morphology and landscape evolution.

  9. A Quantitative Characterization and Classification of Martian Valley Networks: New Constraints on Mars' Early Climate and Its Variability in Space and Time

    NASA Astrophysics Data System (ADS)

    Grau Galofre, A.; Jellinek, M.

    2014-12-01

    Valley networks and outflow channels are among the most arresting features of Mars' surface. Remarkable similarities between the structure and complexity of individual Martian channels with certain fluvial systems on Earth supports a popular picture of a warm wet early Mars. A key assumption in this picture is that "typical" Martian examples adequately capture the average character of the majority of all valley networks. However, a full catalog of the distribution of geomorphologic variability of valley networks over Mars' surface geometry has never been established. Accordingly, we present the first planet-wide map in which we use statistical methods and theoretical arguments to classify Martian channels in terms of the mechanics governing their formation. Using new metrics for the size, shape and complexity of channel networks, which we ground truth against a large suite of terrestrial examples, we distinguish drainage patterns related to glacial, subglacial, fluvial and lava flows. Preliminary results separate lava flows from other flow features and show that these features can be divided into three different groups of increasing complexity. The characteristics of these groups suggest that they represent fluvial, subglacial and glacial features. We show also that the relative proportions of the different groups varies systematically, with higher density of river-like features located in low longitudes and increasing glacial-like features as we move east or west. Our results suggest that the early Martian climate and hydrologic cycle was richer and more diverse than originally thought.

  10. Resolving Large Pre-glacial Valleys Buried by Glacial Sediment Using Electric Resistivity Imaging (ERI)

    NASA Astrophysics Data System (ADS)

    Schmitt, D. R.; Welz, M.; Rokosh, C. D.; Pontbriand, M.-C.; Smith, D. G.

    2004-05-01

    Two-dimensional electric resistivity imaging (ERI) is the most exciting and promising geological tool in geomorphology and stratigraphy since development of ground-penetrating radar. Recent innovations in 2-D ERI provides a non-intrusive mean of efficiently resolving complex shallow subsurface structures under a number of different geological scenarios. In this paper, we test the capacity of ERI to image two large pre-late Wisconsinan-aged valley-fills in central Alberta and north-central Montana. Valley-fills record the history of pre-glacial and glacial sedimentary deposits. These fills are of considerable economical value as groundwater aquifers, aggregate resources (sand and gravel), placers (gold, diamond) and sometime gas reservoirs in Alberta. Although the approximate locations of pre-glacial valley-fills have been mapped, the scarcity of borehole (well log) information and sediment exposures make accurate reconstruction of their stratigraphy and cross-section profiles difficult. When coupled with borehole information, ERI successfully imaged three large pre-glacial valley-fills representing three contrasting geological settings. The Sand Coulee segment of the ancestral Missouri River, which has never been glaciated, is filled by electrically conductive pro-glacial lacustrine deposits over resistive sandstone bedrock. By comparison, the Big Sandy segment of the ancestral Missouri River valley has a complex valley-fill composed of till units interbedded with glaciofluvial gravel and varved clays over conductive shale. The fill is capped by floodplain, paludal and low alluvial fan deposits. The pre-glacial Onoway Valley (the ancestral North Saskatchewan River valley) is filled with thick, resistive fluvial gravel over conductive shale and capped with conductive till. The cross-sectional profile of each surveyed pre-glacial valley exhibits discrete benches (terraces) connected by steep drops, features that are hard to map using only boreholes. Best quality ERI results were obtained along the Sand Coulee and Onoway transects where the contrast between the bedrock and valley-fill was large and the surficial sediment was homogeneous. The effects of decreasing reliability with depth, 3-D anomalies, principles of equivalence and suppression, and surface inhomogeneity on the image quality are discussed.

  11. Hydro-geomorphic connectivity and landslide features extraction to identifying potential threats and hazardous areas

    NASA Astrophysics Data System (ADS)

    Tarolli, Paolo; Fuller, Ian C.; Basso, Federica; Cavalli, Marco; Sofia, Giulia

    2017-04-01

    Hydro-geomorphic connectivity has significantly emerged as a new concept to understand the transfer of surface water and sediment through landscapes. A further scientific challenge is determining how the concept can be used to enable sustainable land and water management. This research proposes an interesting approach to integrating remote sensing techniques, connectivity theory, and geomorphometry based on high-resolution digital terrain model (HR-DTMs) to automatically extract landslides crowns and gully erosion, to determine the different rate of connectivity among the main extracted features and the river network, and thus determine a possible categorization of hazardous areas. The study takes place in two mountainous regions in the Wellington Region (New Zealand). The methodology is a three step approach. Firstly, we performed an automatic detection of the likely landslides crowns through the use of thresholds obtained by the statistical analysis of the variability of landform curvature. After that, the research considered the Connectivity Index to analyse how a complex and rugged topography induces large variations in erosion and sediment delivery in the two catchments. Lastly, the two methods have been integrated to create a unique procedure able to classify the different rate of connectivity among the main features and the river network and thus identifying potential threats and hazardous areas. The methodology is fast, and it can produce a detailed and updated inventory map that could be a key tool for erosional and sediment delivery hazard mitigation. This fast and simple method can be a useful tool to manage emergencies giving priorities to more failure-prone zones. Furthermore, it could be considered to do a preliminary interpretations of geomorphological phenomena and more in general, it could be the base to develop inventory maps. References Cavalli M, Trevisani S, Comiti F, Marchi L. 2013. Geomorphometric assessment of spatial sediment connectivity in small Alpine catchments. Geomorphology 188: 31-41 DOI: 10.1016/j.geomorph.2012.05.007 Sofia G, Dalla Fontana G, Tarolli P. 2014. High-resolution topography and anthropogenic feature extraction: testing geomorphometric parameters in floodplains. Hydrological Processes 28 (4): 2046-2061 DOI: 10.1002/hyp.9727 Tarolli P, Sofia G, Dalla Fontana G. 2012. Geomorphic features extraction from high-resolution topography: landslide crowns and bank erosion. Natural Hazards 61 (1): 65-83 DOI: 10.1007/s11069-010-9695-2

  12. A large eruption convulsed in prehistoric times an extensive area of Catamarca, Southern Central Andes, NW Argentina

    NASA Astrophysics Data System (ADS)

    Fernandez-Turiel, Jose-Luis; Ratto, Norma; Perez-Torrado, Francisco-Jose; Rodriguez-Gonzalez, Alejandro; Rejas, Marta; Lobo, Agustin

    2016-04-01

    Geomorphological, stratigraphical, mineralogical and chemical characteristics of many recent 30-160 cm ash deposits occurring at the Bolsón de Fiambalá in Catamarca, NW Argentina, allow their correlation. This lithostratigraphic unit is named Fiambalá Ash and it is uncovered or covered by colluvial deposits and present-day aeolian deposits, reworked products of the primary fall deposits. The grain size of these ash deposits is gritty rather than silty. They are nearly unique among regional ashes in containing hornblende phenocrysts. In addition, they are made up of glass (subangular blocky shards), feldspars, biotite, and quartz; magnetite, ilmenite, apatite and titanite are scarce. The glass is rhyolitic (˜75 to 79 % m/m SiO2; ˜3 to 4 % m/m Na2O; ˜3 to 5 % m/m K2O; 1 to 2 % m/m CaO; normalized to 100 %). On the other hand, in northern margins of Fiambalá basin, extensive remnants of fines-poor pumiceous debris flows and hyperconcentrated sandflow deposits as thick as 10 m are exposed on the walls of the river gorges, where the base is usually covered, e.g., Chuquisaca River. There is no significant unconformity or intercalation of other materials, thus suggesting rapid emplacement after a single eruptive event. A preliminary age of Fiambalá Ash based on archaeological studies bracket it between 1400-1270 and 1270-980 cal a BP (OxCal 4.2.4, SHCal13, 2 sigma). The geographical distribution, the geomorphological features observed in satellite images and the information on the main trends of the stratigraphy, the abundance of hornblende and biotite in the younger proximal ash fall deposits, ignimbrites and lava-domes of the Nevado Tres Cruces complex, favours this edifice as the strongest candidate to be the source of the Upper Holocene pyroclastic deposits found in the Fiambalá basin. The archaeological records seem to evidence the abrupt environmental and societal changes associated with this major eruption. Significant areas of Catamarca were likely rendered uninhabitable, being dramatic the socio-economic and environmental consequences for generations. However, the resilience was high, as evidenced by the relatively quick reintroduction of cultivated fields. The understanding of these impacts could provide valuable insights to manage volcanic hazards related to large explosive eruptions. Financial support was provided by the QUECA Project (MINECO, CGL2011-23307).

  13. The geomorphic effects of dams on rivers: some examples from southern Italy

    NASA Astrophysics Data System (ADS)

    Rosskopf, Carmen Maria; Scorpio, Vittoria

    2017-04-01

    During the second half of the last century, many rivers in southern Italy have experienced huge channel adjustments mainly induced by anthropic interventions. Particularly, in several cases dams were built along them mainly to meet the growing need for energy and water for irrigation purposes. The present study investigates the cases of Fortore and Biferno rivers, whose lower courses are regulated respectively since 1966 and 1976 by the Occhito and Ponteliscione dams, with the aim to verify possible impacts of the dams on channel morphology and adjustments over the last 60 years. Channel changes were analyzed by means of a multi-temporal GIS analysis of topographic maps and aerial photographs integrated with topographic and geomorphological field. The obtained evolutionary trajectories highlight that channel adjustments occurred through two distinct phases and led to an overall channel narrowing and channel bed lowering accompanied by pattern changes in prevalence from multithread to single-thread channel configurations. Major channel adjustments occurred in the first phase, from the 1950s until the end of the 1990s, under the dominant control of in-channel mining, channel works and hydraulic interventions. Regarding this phase, the impact of the dams is highlighted by net differences in the amount of channel adjustments of the reaches located respectively upstream and downstream of them. Especially channel narrowing was more intense in downstream reaches (up to 98% in the Fortore River and up to 96% in the Biferno River) than in upstream reaches (up to 81% in the Fortore and up to 86% in the Biferno). With respectively 7.4 m y-1 and -7.8 m y-1, averages rates of narrowing are very similar for the Fortore and Biferno in downstream reaches. Observed differences suggest that, besides the control factors that guided the evolution of the entire fluvial systems, the closure of the two dams had additional and permanent effects on downstream reaches through overall discharge regulation and permanent sediment trapping as also confirmed by the progressive retreat of the river mouth areas. From 2000 to 2016 (phase 2), a trend inversion is observed: channel narrowing is replaced by channel stabilization or widening and partial aggradation of upstream reaches and total stabilization of downstream reaches. Besides the cessation of in-channel mining, channel recovery appears favored by several major flood events, occurred from 2003 to 2015. The ongoing trend to recovery of upstream reaches is well evident for the Fortore River, whilst for the Biferno River, due to the presence of several secondary hydraulic structures (small hydropower reservoirs and check-dams), only some localized resumption of river dynamics can be observed evidenced by bank retreat, channel widening and sediment deposition. Regarding downstream reaches of both rivers, their stabilization can be interpreted as an amelioration of their condition with respect to the precedent period (phase 1). Nevertheless, their very scarce dynamics due to the permanent disturbance created by the dams along with the very low diversity of geomorphological and ecological river corridor features, the scarce to nil recovery potentials and associated high flood risks, strongly contrast possible restorative actions.

  14. Using Braid Plain Ecology and Geomorphology to Inform Bank Erosion Management along a Braided River, Matanuska River, Alaska

    NASA Astrophysics Data System (ADS)

    Curran, J. H.; McTeague, M. L.

    2010-12-01

    Braided rivers are inherently dynamic but quantifying the nature and implications of this dynamism can contribute to more comprehensive understanding of these systems and management of the river corridor. Bank erosion along the glacial, braided Matanuska River in southcentral Alaska has challenged generations of officials and generated a host of proposed solutions such as riprapped banks, dikes, gravel mining, and trenching. Increasingly, assessment of the technical feasibility of these methods has been accompanied by consideration of ecological factors and nonstructural solutions. The Matanuska River is braided over 85 percent of its course and clearwater side channels in abandoned braid plain areas provide as much as 90 percent of the spawning habitat in the basin for chum and sockeye salmon (Oncorhynchus keta and O. nerka). An assessment of braid plain vegetation, bank erosion rates, effects of a large flood, and distribution of clearwater side channels establishes a scientific basis for ecological and geomorphological considerations and recently helped guide development of a management plan for the river corridor. A historical analysis of braid plain features, marginal positions, and vegetation patterns from 1949, 1962, and 2006 orthophotographs showed that the 2006 braid plain was 43 percent vegetated and had an average age of 16 years. Only about 4 percent of the braid plain contained vegetated islands and over 60 percent of these were young and sparsely vegetated, implying that a suite of active channels migrated frequently across the braid plain and that vegetation did not appreciably limit channel movement. Rates of erosion to the braid plain margins averaged 0.3 m/yr from 1949 to 2006 but erosion was localized, with 64 percent of the erosion at only 8 percent of the banks. Cumulative bank change was twice as great along banks consisting of Holocene fluvial deposits (fans and terraces) identified during Geographic Information System (GIS) mapping than on other features. River-long erosion rates were twice as great for 1949-62 than for 1962-2006, despite a flood with a less than 0.002 percent exceedance probability in 1971 and slightly higher average peak flood magnitudes in the latter period. Of the 20 areas with erosion greater than 70 m from 1949-2006, only 9 were eroded in both periods and only one had detectable erosion in the sub-period from 2004 to 2006. This disconnect of erosion with flooding and the variable timing of historical erosion suggests that erosion was sporadic and more related to the presence of the river against the bank and bank erodibility than to more readily monitored variables. Clearwater side channels were frequently reworked in the braid plain but the cumulative length of channels appeared to be stable within the historical time period. This dynamic nature implies that the aquatic ecosystems have evolved within a high disturbance regime.

  15. Nitrous oxide emission from cropland and adjacent riparian buffers in contrasting hydrogeomorphic settings.

    PubMed

    Fisher, K; Jacinthe, P A; Vidon, P; Liu, X; Baker, M E

    2014-01-01

    Riparian buffers are important nitrate (NO) sinks in agricultural watersheds, but limited information is available regarding the intensity and control of nitrous oxide (NO) emission from these buffers. This study monitored (December 2009-May 2011) NO fluxes at two agricultural riparian buffers in the White River watershed in Indiana to assess the impact of land use and hydrogeomorphologic (HGM) attributes on emission. The study sites included a riparian forest in a glacial outwash/alluvium setting (White River [WR]) and a grassed riparian buffer in tile-drained till plains (Leary Weber Ditch [LWD]). Adjacent corn ( L.) fields were monitored for land use assessment. Analysis of variance identified season, land use (riparian buffer vs. crop field), and site geomorphology as major drivers of NO fluxes. Strong relationships between N mineralization and NO fluxes were found at both sites, but relationships with other nutrient cycling indicators (C/N ratio, dissolved organic C, microbial biomass C) were detected only at LWD. Nitrous oxide emission showed strong seasonal variability; the largest NO peaks occurred in late spring/early summer as a result of flooding at the WR riparian buffer (up to 27.8 mg NO-N m d) and N fertilizer application to crop fields. Annual NO emission (kg NO-N ha) was higher in the crop fields (WR: 7.82; LWD: 6.37) than in the riparian areas. A significant difference ( < 0.02) in annual NO emission between the riparian buffers was detected (4.32 vs. 1.03 kg NO-N ha at WR and LWD, respectively), and this difference was attributed to site geomorphology and flooding (WR is flood prone; no flooding occurred at tile-drained LWD). The study results demonstrate the significance of landscape geomorphology and land-stream connection (i.e., flood potential) as drivers of NO emission in riparian buffers and therefore argue that an HGM-based approach should be especially suitable for determination of regional NO budget in riparian ecosystems. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  16. Integrated analysis of differential interferometric synthetic aperture radar (DInSAR) and geological data for measuring deformation movement of Kaligarang fault, Semarang-Indonesia

    NASA Astrophysics Data System (ADS)

    Prasetyo, Y.; Fakhrudin, Warasambi, S. M.

    2016-05-01

    Semarang is one of the densely populated city in Central Java which is has Kaligarang's fault. It is lie in Kaligarang River and across several dense urban settlement. The position of Kaligarang's river itself divides in the direction nearly north-south city of Semarang. The impact of the fault can be seen in severals indication such as a land subsidence phenomenon in Tinjomoyo village area which is make impact to house and road destruction. In this research, we have used combination methods between InSAR, DinSAR and geomorphology (geology data) where is this techniques used to identity the fault area and estimate Kaligarang's fault movement velocity. In fault movement velocity observation, we only compute the movement in vertical with neglect horizontal movement. The data used in this study of one pair ALOS PALSAR level 1.0 which was acquired on June 8, 2007and 10 of September 2009. Besides that third ALOS PALSAR earlier, also used data of SRTM DEM 4th version, is used for the correction of the topography. The use of the three methods already mentioned earlier have different functions. For the lnSAR method used for the establishment of a digital model in Semarang. After getting high models digital city of Semarang, the identification process can be done layout, length, width and area of the Kaligarang fault using geomorphology. Results of such identification can be calculated using the rate of deformation and fault movement. From the result generated DinSAR method of land subsidence rate between 3 em to II em. To know the truth measurement that used DinSAR method, is performed with the decline of validation that measured using GPS. After validating obtained standard deviation of 3,073 em. To estimate the Kaligarang's fault pattern and direction is using the geomorphology method. The results that Kaligarang's is an active fault that has fault strike slip as fault pattern. It makes this research is useful because could be used as an inquick assessment in fault identification and deformation movement observation.

  17. Evaluative Testing of the Bent Canyon Stage Station on the Pinon Canyon Maneuver Site, Las Animas County, Colorado

    DTIC Science & Technology

    2005-01-01

    de Cristo Range to the west and the Raton Mesa uplift to the south), and the American Desert Southwest (Weber 1980). Geology and Geomorphology The...Purgatoire River which flows along the eastern edge of the maneuver area from its headwaters in the Sangre de Cristo mountains to its confluence with...peoples were now mounted , and raided for livestock as much as for food. The dominance that the Comanche came to have over the Apache in the 1700s is often

  18. Landforms and Landform Evolution in West Germany: International Conference on Geomorphology (2nd) Held in Frankfurt am Main on 3-9 September 1989. CATENA Supplement 15

    DTIC Science & Technology

    1989-01-01

    and their subsequent modification by non -glacial processes. In the Central Uplands north of the rivers Main and Nahe’ W Andres directs attention to the...terraces. In the South German Scarplands,A+i: Bremer focuses on the role of structural and climatic controls in the long-term evolution of cuestas and...eastwards rainfall. The natural or quasi -natural to the Frankenwald in the northeast of vegetation is dense. Consequently, Bavaria. present-day

  19. Impacts of Colville River dynamics on river navigability near Nuiqsut, Alaska: 1955-present

    NASA Astrophysics Data System (ADS)

    Whitley, M. A.; Panda, S. K.; Prakash, A.; Brinkman, T. J.

    2016-12-01

    Climate-driven changes in river systems are challenging access to ecosystem services such as access to traditional hunting grounds and other subsistence food sources on the North Slope of Alaska. This work studies the dynamics of the Colville River and assesses the impacts on traditional harvest practices and subsistence travel of the Native community of Nuiqsut. Recent reports from Nuiqsut residents indicate accelerated changes in the environment, limiting river travel and their ability to harvest subsistence food. This study explores how channel migration, gravel bars, and bank erosion have evolved since the 1950s, and their impact on water depth and navigability. In an area of ice-rich permafrost, warmer summer temperatures exacerbate lateral bank erosion, resulting in river siltation. The study focuses on selected key areas south of Nuiqsut that have shown significant change in river geomorphology. Since 1955, some areas proximate to ice wedge exposures show channel migration in excess of 1 km. Panchromatic aerial photography acquired by US Geological Surveys in the mid 1950s, color infrared aerial photography from 1979 and 1982 acquired by the Alaska High Altitude Photography (AHAP) mission, and high resolution satellite images from Digital Globe, Inc. were used in this study. We mapped water, vegetation, and gravel/non-vegetated classes to identify risk areas for river navigability. River bathymetry was also mapped using a multispectral ratio-based water depth retrieval algorithm to identify problem sites for boat travel. Remote sensing products and analyses were validated with field data for mapping risk areas along the river. This study has the potential to be implemented on a larger scale for predictive mapping to aid river navigation. Findings from this study will provide insight whether recent changes are anomalies, or if they are part of a directional trend that will require local adaptation.

  20. Drainage-basis-scale geomorphic analysis to determine refernce conditions for ecologic restoration-Kissimmee River, Florida

    USGS Publications Warehouse

    Warne, A.G.; Toth, L.A.; White, W.A.

    2000-01-01

    Major controls on the retention, distribution, and discharge of surface water in the historic (precanal) Kissimmee drainage basin and river were investigated to determine reference conditions for ecosystem restoration. Precanal Kissimmee drainage-basin hydrology was largely controlled by landforms derived from relict, coastal ridge, lagoon, and shallow-shelf features; widespread carbonate solution depressions; and a poorly developed fluvial drainage network. Prior to channelization for flood control, the Kissimmee River was a very low gradient, moderately meandering river that flowed from Lake Kissimmee to Lake Okeechobee through the lower drainage basin. We infer that during normal wet seasons, river discharge rapidly exceeded Lake Okeechobee outflow capacity, and excess surface water backed up into the low-gradient Kissimmee River. This backwater effect induced bankfull and peak discharge early in the flood cycle and transformed the flood plain into a shallow aquatic system with both lacustrine and riverine characteristics. The large volumes of surface water retained in the lakes and wetlands of the upper basin maintained overbank flow conditions for several months after peak discharge. Analysis indicates that most of the geomorphic work on the channel and flood plain occurred during the frequently recurring extended periods of overbank discharge and that discharge volume may have been significant in determining channel dimensions. Comparison of hydrogeomorphic relationships with other river systems identified links between geomorphology and hydrology of the precanal Kissimmee River. However, drainage-basin and hydraulic geometry models derived solely from general populations of river systems may produce spurious reference conditions for restoration design criteria.

  1. The long-term legacy of geomorphic and riparian vegetation feedbacks on the dammed Bill Williams River, Arizona, USA

    USGS Publications Warehouse

    Kui, Li; Stella, John C.; Shafroth, Patrick B.; House, P. Kyle; Wilcox, Andrew C.

    2017-01-01

    On alluvial rivers, fluvial landforms and riparian vegetation communities codevelop as a result of feedbacks between plants and abiotic processes. The influence of vegetation on river channel and floodplain geomorphology can be particularly strong on dammed rivers with altered hydrology and reduced flood disturbance. We used a 56-year series of aerial photos on the dammed Bill Williams River (Arizona, USA) to investigate how (a) different woody riparian vegetation types influence river channel planform and (b) how different fluvial landforms drive the composition of riparian plant communities over time. We mapped vegetation types and geomorphic surfaces and quantified how relations between fluvial and biotic processes covaried over time using linear mixed models. In the decades after the dam was built, woody plant cover within the river's bottomland nearly doubled, narrowing the active channel by 60% and transforming its planform from wide and braided to a single thread and more sinuous channel. Compared with native cottonwood–willow vegetation, nonnative tamarisk locally induced a twofold greater reduction in channel braiding. Vegetation expanded at different rates depending on the type of landform, with tamarisk cover on former high-flow channels increasing 17% faster than cottonwood–willow. Former low-flow channels with frequent inundation supported a greater increase in cottonwood–willow relative to tamarisk. These findings give insight into how feedbacks between abiotic and biotic processes in river channels accelerate and fortify changes triggered by dam construction, creating river systems increasingly distinct from predam ecological communities and landforms, and progressively more resistant to restoration of predam forms and processes.

  2. Morphometric analysis of the Marmara Sea river basins, Turkey

    NASA Astrophysics Data System (ADS)

    Elbaşı, Emre; Ozdemir, Hasan

    2014-05-01

    The drainage basin, the fundamental unit of the fluvial landscape, has been focus of research aimed at understanding the geometric characteristics of the master channel and its tributary network. This geometry is referred to as the basin morphometry and is nicely reviewed by Abrahams (1984). A great amount of research has focused on geometric characteristic of drainage basins, including the topology of the stream networks, and quantitative description of drainage texture, pattern, shape, and relief characteristics. Evaluation of morphometric parameters necessitates the analysis of various drainage parameters such as ordering of the various streams, measurement of basin area and perimeter, length of drainage channels, drainage density (Dd), stream frequency (Fs), bifurcation ratio (Rb), texture ratio (T), basin relief (Bh), Ruggedness number (Rn), time of concentration (Tc), hypsometric curve and integral (Hc and Hi) (Horton, 1932, Schumn, 1956, Strahler, 1957; Verstappen 1983; Keller and Pinter, 2002; Ozdemir and Bird, 2009). These morphometric parameters have generally been used to predict flood peaks, to assess sediment yield, and to estimate erosion rates in the basins. River basins of the Marmara Sea, has an area of approximately 40,000 sqkm, are the most important basins in Turkey based on their dense populations, industry and transportation systems. The primary aim of this study is to determine and analyse of morphometric characteristics of the Marmara Sea river basins using 10 m resolution Digital Elevation Model (DEM) and to evaluate of the results. For these purposes, digital 10 m contour maps scaled 1:25000 and geological maps scaled 1:100000 were used as the main data sources in the study. 10 m resolution DEM data were created using the contour maps and then drainage networks and their watersheds were extracted using D8 pour point model. Finally, linear, areal and relief morphometries were applied to the river basins using Geographic Information Systems (GIS). This study shows that morphometric analysis of the basins in regional level are very important to understand general morphological characteristics of the basins. In this case, tectonic and lithological conditions of the basins have greatly affected the morphometric characteristics of the north and south basins of the Marmara Sea. References Abrahams, AD. 1984. Channel Networks: A Geomorphological Perspective. Water Resources Research, Volume 20, Issue 2, pages 161-188. Horton, R.E. 1932. Drainage basin characteristics. Trans Am Geophys Union 13:350-361. Keller, E.A., Pinter, N. 2002. Active Tectonics Earthquakes, Uplift, and Landscape, Second Edition, Prentice Hall, New Jersey. Ozdemir H., Bird D. 2009. Evaluation of morphometric parameters of drainage networks derived from topographic maps and DEM in point of floods, Environmental Geology, vol.56, pp.1405-1415. Schumm, S.A. 1956. Evolution of drainage systems and slopes in badlands at Perth Amboy, New Jersey. Geol Soc Am Bull 67:597-646. Strahler, A.N. 1957. Quantitative geomorphology of drainage and channel networks. In: Chow YT (ed) Handbook of appliecl hydrology. Me Graw Hill Book Company, New York. Verstappen, H.Th. 1983. Applied geomorphology. ITC, Enschede.

  3. Stochastic Geomorphology: A Framework for Creating General Principles on Erosion and Sedimentation in River Basins (Invited)

    NASA Astrophysics Data System (ADS)

    Benda, L. E.

    2009-12-01

    Stochastic geomorphology refers to the interaction of the stochastic field of sediment supply with hierarchically branching river networks where erosion, sediment flux and sediment storage are described by their probability densities. There are a number of general principles (hypotheses) that stem from this conceptual and numerical framework that may inform the science of erosion and sedimentation in river basins. Rainstorms and other perturbations, characterized by probability distributions of event frequency and magnitude, stochastically drive sediment influx to channel networks. The frequency-magnitude distribution of sediment supply that is typically skewed reflects strong interactions among climate, topography, vegetation, and geotechnical controls that vary between regions; the distribution varies systematically with basin area and the spatial pattern of erosion sources. Probability densities of sediment flux and storage evolve from more to less skewed forms downstream in river networks due to the convolution of the population of sediment sources in a watershed that should vary with climate, network patterns, topography, spatial scale, and degree of erosion asynchrony. The sediment flux and storage distributions are also transformed downstream due to diffusion, storage, interference, and attrition. In stochastic systems, the characteristically pulsed sediment supply and transport can create translational or stationary-diffusive valley and channel depositional landforms, the geometries of which are governed by sediment flux-network interactions. Episodic releases of sediment to the network can also drive a system memory reflected in a Hurst Effect in sediment yields and thus in sedimentological records. Similarly, discreet events of punctuated erosion on hillslopes can lead to altered surface and subsurface properties of a population of erosion source areas that can echo through time and affect subsequent erosion and sediment flux rates. Spatial patterns of probability densities have implications for the frequency and magnitude of sediment transport and storage and thus for the formation of alluvial and colluvial landforms throughout watersheds. For instance, the combination and interference of probability densities of sediment flux at confluences creates patterns of riverine heterogeneity, including standing waves of sediment with associated age distributions of deposits that can vary from younger to older depending on network geometry and position. Although the watershed world of probability densities is rarified and typically confined to research endeavors, it has real world implications for the day-to-day work on hillslopes and in fluvial systems, including measuring erosion, sediment transport, mapping channel morphology and aquatic habitats, interpreting deposit stratigraphy, conducting channel restoration, and applying environmental regulations. A question for the geomorphology community is whether the stochastic framework is useful for advancing our understanding of erosion and sedimentation and whether it should stimulate research to further develop, refine and test these and other principles. For example, a changing climate should lead to shifts in probability densities of erosion, sediment flux, storage, and associated habitats and thus provide a useful index of climate change in earth science forecast models.

  4. Retrieval of suspended sediment concentrations using Landsat-8 OLI satellite images in the Orinoco River (Venezuela)

    NASA Astrophysics Data System (ADS)

    Yepez, Santiago; Laraque, Alain; Martinez, Jean-Michel; De Sa, Jose; Carrera, Juan Manuel; Castellanos, Bartolo; Gallay, Marjorie; Lopez, Jose L.

    2018-01-01

    In this study, 81 Landsat-8 scenes acquired from 2013 to 2015 were used to estimate the suspended sediment concentration (SSC) in the Orinoco River at its main hydrological station at Ciudad Bolivar, Venezuela. This gauging station monitors an upstream area corresponding to 89% of the total catchment area where the mean discharge is of 33,000 m3·s-1. SSC spatial and temporal variabilities were analyzed in relation to the hydrological cycle and to local geomorphological characteristics of the river mainstream. Three types of atmospheric correction models were evaluated to correct the Landsat-8 images: DOS, FLAASH, and L8SR. Surface reflectance was compared with monthly water sampling to calibrate a SSC retrieval model using a bootstrapping resampling. A regression model based on surface reflectance at the Near-Infrared wavelengths showed the best performance: R2 = 0.92 (N = 27) for the whole range of SSC (18 to 203 mg·l-1) measured at this station during the studied period. The method offers a simple new approach to estimate the SSC along the lower Orinoco River and demonstrates the feasibility and reliability of remote sensing images to map the spatiotemporal variability in sediment transport over large rivers.

  5. Bathymetric and underwater video survey of Lower Granite Reservoir and vicinity, Washington and Idaho, 2009-10

    USGS Publications Warehouse

    Williams, Marshall L.; Fosness, Ryan L.; Weakland, Rhonda J.

    2012-01-01

    The U.S. Geological Survey conducted a bathymetric survey of the Lower Granite Reservoir, Washington, using a multibeam echosounder, and an underwater video mapping survey during autumn 2009 and winter 2010. The surveys were conducted as part of the U.S. Army Corps of Engineer's study on sediment deposition and control in the reservoir. The multibeam echosounder survey was performed in 1-mile increments between river mile (RM) 130 and 142 on the Snake River, and between RM 0 and 2 on the Clearwater River. The result of the survey is a digital elevation dataset in ASCII coordinate positioning data (easting, northing, and elevation) useful in rendering a 3×3-foot point grid showing bed elevation and reservoir geomorphology. The underwater video mapping survey was conducted from RM 107.73 to 141.78 on the Snake River and RM 0 to 1.66 on the Clearwater River, along 61 U.S. Army Corps of Engineers established cross sections, and dredge material deposit transects. More than 900 videos and 90 bank photographs were used to characterize the sediment facies and ground-truth the multibeam echosounder data. Combined, the surveys were used to create a surficial sediment facies map that displays type of substrate, level of embeddedness, and presence of silt.

  6. Tokunaga river networks: New empirical evidence and applications to transport problems

    NASA Astrophysics Data System (ADS)

    Tejedor, A.; Zaliapin, I. V.

    2013-12-01

    The Tokunaga self-similarity has proven to be an important constraint for the observed river networks. Notably, various Horton laws are naturally satisfied by the Tokunaga networks, which makes this model of considerable interest for theoretical analysis and modeling of environmental transport. Recall that Horton self-similarity is a weaker property of a tree graph that addresses its principal branching; it is a counterpart of the power-law size distribution for system's elements. The stronger Tokunaga self-similarity addresses so-called side branching; it ensures that different levels of a hierarchy have the same probabilistic structure (in a sense that can be rigorously defined). We describe an improved statistical framework for testing self-similarity in a finite tree and estimating the related parameters. The developed inference is applied to the major river basins in continental United States and Iberian Peninsula. The results demonstrate the validity of the Tokunaga model for the majority of the examined networks with very narrow (universal) range of parameter values. Next, we explore possible relationships between the Tokunaga parameter anomalies (deviations from the universal values) and climatic and geomorphologic characteristics of a region. Finally, we apply the Tokunaga model to explore vulnerability of river networks, defined via reaction of the river discharge to a storm.

  7. Trace elements in seep waters along Whitewood Creek, South Dakota, and their toxicity to fathead minnows

    USGS Publications Warehouse

    Hamilton, S.J.; Buhl, K.J.

    2000-01-01

    Whitewood Creek, located in the Black Hills of southwestern South Dakota, has a long history of contamination from mining activity. Gold exploration began in the 1870s, and has continued since that time. Whitewood Creek received direct releases of tailings from 1870 to 1977 from Gold Run Creek in Lead, SD. It has been estimated that approximately 100 million to 1 billion tons of mining, milling, and ore processing wastes have been released by mining activity in the last century in to Whitewood Creek, the Belle Fourche river, and the Cheyenne River (Fox Consultants, Inc. 1984). Tailings deposition has altered the geomorphology of Whitewood Creek, and deposits up to 4.6 m. deep, have become stabilized by vegetation. Several other streams in the Black Hills also have been adversely affected by mining operations (Rahn 1996).As water leaches through rock strata that are disturbed by surface and subsurface mining, it dissolves inorganic elements and carries them to the groundwater.  Groundwater movement through the extensive tailings deposits in the Whitewood Creek valley enter the creek at various seeps along its downstream course to the Belle Fourche river, and the Belle Fourche River itself, which empties into the Cheyenne River and eventually into Lake Oahe.

  8. Late Quaternary drainage evolution in response to fold growth in the northern Chinese Tian Shan foreland

    NASA Astrophysics Data System (ADS)

    Lu, Honghua; Wu, Dengyun; Cheng, Lu; Zhang, Tianqi; Xiong, Jianguo; Zheng, Xiangmin; Li, Youli

    2017-12-01

    Alluvial units are important in understanding the interactions of antecedent drainage evolution with fold growth along the flanks of active orogenic belts. This is demonstrated by the Anjihai River in the northern Chinese Tian Shan foreland, which at present flows northward cutting sequentially through the Nananjihai anticline, the Huoerguos anticline, and the Anjihai anticline. Three episodes of alluviation designated as fans Fa, Fb, and Fc are identified for the Anjihai River. These three alluvial terrain features comprise a series of terraces, where the topographic characteristics, geomorphologic structure, and up-warped longitudinal profiles indicate continuous uplift and lateral propagation of the Halaande anticline and the Anjihai anticline over the past 50 ky. Shortly after 3.6 ka when the oldest terrace during the period of the fan Fb sedimentation was formed, significant rock uplift at the overlapping zone of the Anjihai anticline and the Halaande anticline led to the eastward deflection of the antecedent Anjihai River. A series of local terraces with elevation decreasing eastward indicate the gradual eastward migration of the channel of the Anjihai River during the period of the fan Fc sedimentation. Finally the Anjihai River occupied the previous course of the Jingou River when the latter was deflected eastward in response to rock uplift of the Anjihai anticline, presently flowing across the eastern tip of the Anjihai anticline.

  9. Preparing for uncertainty: toward managing fluvial geomorphic assessment of Massachusetts rivers

    NASA Astrophysics Data System (ADS)

    Hatch, C. E.; Mabee, S. B.; Slovin, N. B.; Vogel, E.

    2014-12-01

    Climate scientists predict (and have already observed) that in the Northeastern U.S., individual storms may be more intense, and that there will be more precipitation on an annual basis. In steep post-glacial terrain, erosion caused by floodwaters is the largest destructive force during high-intensity storm events, and the force most likely to drive major morphological changes to riverbanks and channels. What remains uncertain is which watersheds or river reaches may be subjected to increased damage from more intense storms. This presents a challenge for scientific outreach and management. Many New England states have developed systems for delineating the potentially geomorphically active zones adjacent to rivers, and Vermont has an excellent assessment and land use management system informed by process-based fluvial geomorphologic science. To date, however, Massachusetts has neither. In this project we survey existing protocols for accurately predicting locations of fluvial erosion hazard, including using LiDAR and DEM models to extract basic morphologic metrics. Particularly in states or landscapes with high river density, and during a time of tight fiscal constraints, managers need automated methods that require a minimum of expert input. We test these methods in the Deerfield river watershed in Massachusetts and Vermont, and integrate our knowledge with that of the basin's agricultural and floodplain stakeholders. The results will inform development of a comprehensive river assessment and land use management system for the state of Massachusetts.

  10. Spatially explicit modeling of particulate nutrient flux in Large global rivers

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.

    2017-12-01

    Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.

  11. Invisible geomorphosites. A case study in the Rhone River valley (Switzerland)

    NASA Astrophysics Data System (ADS)

    Clivaz, Mélanie; Reynard, Emmanuel

    2016-04-01

    During the last two decades, numerous inventories of geosites have been carried out at various scales. As all kinds of inventory, they aim at documenting the state of the geological heritage, which is the basis for management strategies (geoconservation, geoeducation, geotourism, etc.). In very humanized regions, where the original geomorphology has been highly modified by human infrastructures, agriculture, urban sprawling, and various modifications of the landforms, it is interesting to inventory not only the landforms visible today but also former landforms that have been destroyed or hidden by human activities. To address the issue of the inventory of invisible geomorphosites, two approaches have been tested in the Rhone River valley, in Switzerland. For centuries the river was flowing quite freely on the floodplain and alternated - both in time and space - braided and meandering sectors. Tributaries fed by glaciers and snow-melting as well as torrential systems were building alluvial fans at their confluence with the Rhone River, and more or less extensive wetlands were isolated by these alluvial fans and the braided sectors of the main river. Floods were frequent and temporary lakes were formed during the snow-melting season and during intensive rainfall events, especially in autumn. Even sand dunes were visible in several places due to the remobilisation of fine fluvial deposits by wind processes. During the second half of the 19th century, the Rhone River and the majority of its tributaries was channelized, the sand dunes were completely destroyed - partly for filling the depressions -, and most wetlands were drained during the first half of the 20th century and replaced by intensive agricultural crops. The first study consisted to inventory the geomorphosites of the research area. Not only the visible landforms but also the landforms that had completely disappeared were evaluated using the assessment method of Reynard et al. (2015). A total of 28 geomorphosites were evaluated, including 4 missing sites (two sand dune areas, a braided sector of the Rhone River, and a former marsh). These invisible geomorphosites were assessed, and their "management" was discussed. In particular, proposals for their interpretation within education programs and their usefulness for improving the awareness of former landscapes by the public were discussed. The second study was a multi-method analysis of former landscapes of the 19th century. Several data (historical maps, place names, written archives, DTM, and iconographic sources) were combined and allowed the reconstruction of ancient landscapes and landforms. Reference Reynard E., Perret A., Bussard J., Grangier L., Martin S. (2015). Integrated approach for the inventory and management of geomorphological heritage at the regional scale. Geoheritage, doi: 10.1007/s12371-015-0153-0

  12. Development of an Integrated Suspended Sediment Sampling System - Prototype Results

    NASA Astrophysics Data System (ADS)

    Nerantzaki, Sofia; Moirogiorgou, Konstantia; Efstathiou, Dionissis; Giannakis, George; Voutsadaki, Stella; Zervakis, Michalis; Sibetheros, Ioannis A.; Zacharias, Ierotheos; Karatzas, George P.; Nikolaidis, Nikolaos P.

    2015-04-01

    The Mediterranean region is characterized by a unique micro-climate and a complex geologic and geomorphologic environment caused by its position in the Alpine orogenesis belt. Unique features of the region are the temporary rivers that are dry streams or streams with very low flow for most of the time over decadal time scales. One of their key characteristics is that they present flashy hydrographs with response times ranging from minutes to hours. It is crucial to monitor flash-flood events and observe their behavior since they can cause environmental degradation of the river's wider location area. The majority of sediment load is transferred during these flash events. Quantification of these fluxes through the development of new measuring devices is of outmost importance as it is the first step for a comprehensive understanding of the water quality, the soil erosion and erosion sources, and the sediment and nutrient transport routes. This work proposes an integrated suspended sediment sampling system which is implemented in a complex semi-arid Mediterranean watershed (i.e. the Koiliaris River Basin of Crete) with temporary flow tributaries and karstic springs. The system consists of sensors monitoring water stage and turbidity, an automated suspended sediment sampler, and an online camera recording video sequence of the river flow. Water stage and turbidity are continuously monitored and stage is converted to flow with the use of a rating curve; when either of these variables exceeds certain thresholds, the pump of the sediment sampler initiates sampling with a rotation proportional to the stage (flow weighted sampling). The water passes through a filter that captures the sediment, the solids are weighted after each storm and the data are converted to a total sediment flux. At the same time, the online camera derives optical measurements for the determination of the two-dimensional river flow velocity and the spatial sediment distribution by analyzing the Hue, Saturation and Intensity (HSI color model) components of the image. Suspended sediment concentration is correlated to both turbidity and image color analysis output data, while the suspended sediment sampler offers the possibility of laboratory analysis for the retained sediment. Each component cooperates with the others in an integrated manner, aiming for the quantification of the suspended sediment and the determination of its spatial distribution throughout a flood event. The innovative system, which has been made compact and portable, is currently tested at the Koiliaris River Basin and the results of the first trials will be presented. This work is elaborated through an on-going THALES project (CYBERSENSORS - High Frequency Monitoring System for Integrated Water Resources Management of Rivers). The project has been co-financed by the European Social Fund - ESF and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social fund.

  13. Depositional aspects and a guide to Paleocene coal-bearing sequences, Powder River Basin

    USGS Publications Warehouse

    Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Flores, Romeo M.; Warwick, Peter D.; Moore, Timothy A.; Glass, Gary; Smith, Archie; Nichols, Douglas J.; Wolfe, Jack A.; Stanton, Ronald W.; Weaver, Jean

    1989-01-01

    The Paleocene coal-bearing sequences in the northern Powder River Basin are contained in the Tongue River Member of the Fort Union Formation and include anomalously thick (54 m) subbituminous coals. These thick coals have been the target of exploration and development for the past few decades. For the past decade, these coals have also been the object of depositional modeling studies [Law, 1976; Galloway, 1979; Flores, 1981, 1983, 1986; Ethridge and others, 1981; Ayers and Kaiser, 1984; Warwick, 1985; Ayers, 1986; Moore, 1986; Warwick and Stanton, 1988].Intensive modeling of these coals has resulted in two major schools of thought. Firstly, Galloway [1979], Flores [1981, 1983, 1986], Ethridge and others [1981], Warwick [1985], Moore [1986], and Warwick and Stanton [1988] believe that the coals formed from peat that accumulated in swamps of fluvial systems. The fluvial systems are interpreted as a basin axis trunktributary complex that drained to the north-northeast into the Williston Basin. Secondly, Ayers and Kaiser [1984] and Ayers [1986] believe that the coals formed from peat swamps of deltaic systems. These deltas are envisioned to have prograded east to west from the Black Hills and infilled Lebo lake that was centrally located along the basin axis.In order to explain the low ash content of the thick coals, Flores [1981] proposed that they are formed as domed peats, similar in geomorphology to swamps associated with the modern fluvial systems in Borneo as described by Anderson [1964]. Ethridge and others [1981] suggested that these fluvial-related swamps are platforms well above drainage systems and are fed by ground water that is recharged from surrounding highlands. Warwick [1985], Warwick and Stanton [1988], Satchell [1984], and Pocknall and Flores [1987] confirmed the domed peat hypothesis by investigating the petrology and palynology of the thick coals.The purpose of this paper is to provide a guide to the depositional aspects of the thick coals in the Tongue River Member of the Fort Union Formation and, because of the biases of the field trip leaders, it elaborates on the fluvial origin of the swamps in which the thick coals formed. Case histories of these thick coals and associated sediments in the Gillette, Powder River, and Kaycee-Linch areas of Wyoming and in the Decker-Tongue River area of Montana (fig. 1) are highlighted on this field trip.

  14. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: An example from the Ethiopian Highlands

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-05-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constraints on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  15. Evolution of continental-scale drainage in response to mantle dynamics and surface processes: an example from the Ethiopian Highlands.

    NASA Astrophysics Data System (ADS)

    Sembroni, Andrea; Molin, Paola; Pazzaglia, Frank J.; Faccenna, Claudio; Abebe, Bekele

    2016-04-01

    Ethiopia offers an excellent opportunity to study the effects and linkage between mantle dynamics and surface processes on landscape evolution. The Ethiopian Highlands (NW Ethiopia), characterized by a huge basaltic plateau, is part of the African Superswell, a wide region of dynamically-supported anomalously high topography related to the rising of the Afar plume. The initiation and steadiness of dynamic support beneath Ethiopia has been explored in several studies. However the presence, role, and timing of dynamic support beneath Ethiopia and its relationship with continental flood basalts volcanism and surface processes are poorly defined. Here, we present a geomorphological analysis of the Ethiopian Highlands supplying new constrains on the evolution of river network. We investigated the general topographic features (filtered topography, swath profiles, local relief) and the river network (river longitudinal profiles) of the study area. We also apply a knickpoint celerity model in order to provide a chronological framework to the evolution of the river network. The results trace the long-term progressive capture of the Ethiopian Highlands drainage system and confirm the long-term dynamic support of the area, documenting its impact on the contrasting development of the Blue Nile and Tekeze basins.

  16. Geodiversity of the Umbria region (central Italy): a GIS-based quantitative index

    NASA Astrophysics Data System (ADS)

    Melelli, Laura; Pica, Alessia; Del Monte, Maurizio

    2014-05-01

    The measure of natural range related to geological bedrock, landforms and geomorphological processes is the necessary starting point to geodiversity evaluation. Geodiversity plays a strategic role in landscape management. Whereas geotourism and geosites are identified as a driving power for the scientific and economic promotion of an area, the geodiversity knowledge is required for a complete and accurate research. For example, high values of this abiotic parameter identify and support the foundation of geoparks. According to this perspective, the geodiversity is the unifying factor for these areas of interest. While a subjective and qualitative approach may be adequate for geosites definition, identification and cultural promotion, the geodiversity concept needs a different evaluation method. A quantitative procedure allows achieving an objective and repeatable process exportable in different geographic units. Geographical Information Systems and spatial analysis techniques are the base to quantitative evaluation involving topographic, geological and geomorphological data. Therefore, the assessment of a numerical index derived from the overlay of spatial parameters can be conveniently computed in GIS environment. In this study, a geodiversity index is proposed where geological, geomorphological and landcover factors deriving mainly from maps and field survey; topographic ones are employed from DEM and remote sensed data. Each abiotic parameter is modelled in a grid format; focal functions do provide neighbourhood analysis and computing variety statistics. A particular extent is dedicated to topographic information and terrain roughness, that are strictly related to efficiency of geomorphological processes and generally corresponding to the abiotic components variability. The study area is located in central Italy and is characterized by a well known natural heritage. Thirty-seven geosites are detected in the Umbria region, where seven regional and one natural parks are present. All the area shows a strong correlation between the geological setting and the relief energy associated to topography assessment. Three main outcrop complexes are present: a fluvial lacustrine, where the lowest slope values and plain area are widespread; a terrigenous one, with a medium slope value; and a calcareous complex corresponding to the mountain areas and the highest amplitude of relief. This partition matches different geomorphological processes and landforms, ensuring a widespread distribution of geodiversity. The final map is a digital data that localizes areas with, respectively, null or minimum, medium, and high geodiversity values. The highest class overlaps to geosites areas, to high values of amplitude of relief and where the geomorphological processes are more effective and various. This confirms the method accuracy. The results obtained represent an important advancement in geodiversity research and a significant instrument for economic development and conservation management.

  17. The impact of channel capture on estuarine hydro-morphodynamics and water quality in the Amazon delta.

    PubMed

    Silva Dos Santos, Eldo; Pinheiro Lopes, Paula Patrícia; da Silva Pereira, Hyrla Herondina; de Oliveira Nascimento, Otávio; Rennie, Colin David; da Silveira Lobo O'Reilly Sternberg, Leonel; Cavalcanti da Cunha, Alan

    2018-05-15

    Due to progressive erosion of the new Urucurituba Channel, the Amazon River has recently captured almost all discharge from the lower Araguari River (Amapá-AP, Brazil), which previously flowed directly to the Atlantic Ocean. These recent geomorphological changes have caused strong impacts on the landscape and hydrodynamic patterns near the Araguari River mouth, especially the alteration of the riverine drainage system and its water quality. Landsat images were used to assess the estuarine landscape morphodynamic, particularly the expansion of the Urucurituba Channel, 80km from the Araguari River mouth, chronicling its connection to the Amazon River. The results suggest that the Urucurituba developed by headward migration across the Amazon delta; this is perhaps the first observation of estuarine distributary network development by headward channel erosion. The rate of Urucurituba Channel width increase has been ≈5m/month since 2011, increasing drainage capacity of the channel. We also collected in situ hydrodynamic measurements and analyzed 17 water quality parameters. Having 2011 as baseline, the flowrate of Araguari River has been diverted by up to 98% through Urucurituba Channel, with substantial changes in net discharge recorded at 3 monitoring stations. Statistically significant differences in water quality (p<0.05) were observed between 2011 and 2015, associated with the change in the flow pattern. Estuarine salinity and solids concentrations have increased. Overall, we demonstrate changes in landscape, hydrodynamics and water quality of the lower Araguari River. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Modern geomorphology in a post-glacial landscape and implications for river restoration, eastern Yosemite Valley, Yosemite National Park, USA

    NASA Astrophysics Data System (ADS)

    Minear, J. T.; Wright, S. A.; Roche, J. W.

    2011-12-01

    Yosemite National Park, USA, is one of the most popular national parks in the country with over 3.9 million visitors annually. The majority of tourists visit a relatively small area around the Merced River in scenic eastern Yosemite Valley, which has resulted in degradation to the river and streambanks. The National Park Service is updating the long-term management plan for the Merced River which includes river restoration. A key component determining the success of future river restoration efforts is the transport and supply of sediment. For this study, we investigate the modern geomorphology of the eastern Yosemite Valley region. For the watershed and reach analyses, we draw from a variety of topographic and hydrologic records, including 20-years of data from permanent cross sections, aerial and ground-based LiDAR surveys, and a nearly 100-year hydrologic record. In addition, we utilize hydraulic and sediment transport models to investigate channel velocities, bed shear stress and sediment transport at the reach scale. From the watershed-scale analysis, it is likely that large-scale remnant glacial features exert a primary control on the sediment supply to the study area with relatively small volumes of both suspended and bedload sediment being contributed to the study site. Two of the three major watersheds, Tenaya Creek and the upper Merced River, likely contribute only small amounts of bedload downstream due to low-gradient depositional reaches. Though little-known, the third major watershed, Illilouette Creek, is the only watershed capable of contributing larger amounts of bedload material, though the bedload material is likely contributed only during high flow events. High flows in the Yosemite Valley region have two different distributions: large early winter storm events above the 20-year return interval, and moderate snowmelt flows at and below the 20-year return interval. Sediment transport analyses indicate that bedload transport is dominated by relatively frequent (<2 year) snowmelt flow events and that the coarsest material in the reach (>110 mm) is mobile during these flows. The permanent cross sections record large topographic changes, including infilling at key bars, associated with the 1997 flood, the largest recorded early winter event (100-year return interval). Following snowmelt events post-1997, cross sections are returning to near pre-1997 levels. The cross section data suggest there is likely a disconnect between sediment supplied to the reach and sediment transport, with the majority of sediment supply occurring during large early winter events while the majority of sediment transport occurs during snowmelt events. An implication of our findings for river restoration in this area of the Merced River is that the ability of the channel to rebuild streambanks is relatively low, given the low suspended sediment supply. In contrast, bedload transport is relatively frequent and occurs in significant quantities, suggesting that river restoration involving bed recovery (e.g. recovery of pools formed by riprap or bridges) should be relatively rapid if obstructions are removed.

  19. Factors influencing bank geomorphology and erosion of the Haw River, a high order river in North Carolina, since European settlement.

    PubMed

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2-3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows.

  20. Factors Influencing Bank Geomorphology and Erosion of the Haw River, a High Order River in North Carolina, since European Settlement

    PubMed Central

    Macfall, Janet; Robinette, Paul; Welch, David

    2014-01-01

    The Haw River, a high order river in the southeastern United States, is characterized by severe bank erosion and geomorphic change from historical conditions of clear waters and connected floodplains. In 2014 it was named one of the 10 most threatened rivers in the United States by American Rivers. Like many developed areas, the region has a history of disturbance including extensive upland soil loss from agriculture, dams, and upstream urbanization. The primary objective of this study was to identify the mechanisms controlling channel form and erosion of the Haw River. Field measurements including bank height, bankfull height, bank angle, root depth and density, riparian land cover and slope, surface protection, river width, and bank retreat were collected at 87 sites along 43.5 km of river. A Bank Erosion Hazard Index (BEHI) was calculated for each study site. Mean bank height was 11.8 m, mean width was 84.3 m, and bank retreat for 2005/2007-2011/2013 was 2.3 m. The greatest bank heights, BEHI values, and bank retreat were adjacent to riparian areas with low slope (<2). This is in contrast to previous studies which identify high slope as a risk factor for erosion. Most of the soils in low slope riparian areas were alluvial, suggesting sediment deposition from upland row crop agriculture and/or flooding. Bank retreat was not correlated to bank heights or BEHI values. Historical dams (1.2–3 m height) were not a significant factor. Erosion of the Haw River in the study section of the river (25% of the river length) contributed 205,320 m3 of sediment and 3759 kg of P annually. Concentration of suspended solids in the river increased with discharge. In conclusion, the Haw River is an unstable system, with river bank erosion and geomodification potential influenced by riparian slope and varied flows. PMID:25302956

  1. Role of ground water in geomorphology, geology, and paleoclimate of the Southern High Plains, USA.

    PubMed

    Wood, Warren W

    2002-01-01

    Study of ground water in the Southern High Plains is central to an understanding of the geomorphology, deposition of economic minerals, and climate change record in the area. Ground water has controlled the course of the Canadian and Pecos rivers that isolated the Southern High Plains from the Great Plains and has contributed significantly to the continuing retreat of the westward escarpment. Evaporative and dissolution processes are responsible for current plateau topography and the development of the signature 20,000 small playa basins and 40 to 50 large saline lake basins in the area. In conjunction with eolian processes, ground water transport controls the mineralogy of commercially valuable mineral deposits and sets up the distribution of fine efflorescent salts that adversely affect water quality. As the water table rises and retreats, lunette and tufa formation provides valuable paleoclimate data for the Southern High Plains. In all these cases, an understanding of ground water processes contributes valuable information to a broad range of geological topics, well beyond traditional interest in water supply and environmental issues.

  2. Sediment flocculation in the Mekong River estuary, Vietnam, an important driver of geomorphological changes

    NASA Astrophysics Data System (ADS)

    Gratiot, Nicolas; Bildstein, Audrey; Anh, Tran Tuan; Thoss, Heiko; Denis, Hervé; Michallet, Hervé; Apel, Heiko

    2017-10-01

    Over the past several decades, major hydro-sedimentary changes have occurred in both continental and coastal regions of the Mekong Delta, and this has severely impacted coastal erosion. A good characterization of floc properties and of their changes over time is necessary to gain comprehensive understanding and modelling of hydrodynamics and of the associated geomorphological changes. This paper quantifies the influence of sediment concentration, turbulence and differential particle settling on flocculation through field and laboratory investigations of the Mekong estuary. For concentrations lower than 200 mg·L-1, the particles do not exhibit a dynamic response to their environment, while for higher concentrations (up to 3-4 g·L-1), particle size and settling velocity increased by more than one order of magnitude. Flocculation by differential settling has not been sufficiently investigated yet, but this study reveals it as a predominant factor for siltation in quiescent environments such as the ones existing in the inner mangrove fringe. Such results are important to provide realistic simulations of the coastal evolution.

  3. Geomorphology and Ice Content of Glacier - Rock Glacier &ndash; Moraine Complexes in Ak-Shiirak Range (Inner Tien Shan, Kyrgyzstan)

    NASA Astrophysics Data System (ADS)

    Bolch, Tobias; Kutuzov, Stanislav; Rohrbach, Nico; Fischer, Andrea; Osmonov, Azamat

    2015-04-01

    Meltwater originating from the Tien Shan is of high importance for the runoff to the arid and semi-arid region of Central Asia. Previous studies estimate a glaciers' contribution of about 40% for the Aksu-Tarim Catchment, a transboundary watershed between Kyrgyzstan and China. Large parts of the Ak-Shiirak Range drain into this watershed. Glaciers in Central and Inner Tien Shan are typically polythermal or even cold and surrounded by permafrost. Several glaciers terminate into large moraine complexes which show geomorphological indicators of ice content such as thermo-karst like depressions, and further downvalley signs of creep such as ridges and furrows and a fresh, steep rock front which are typical indicators for permafrost creep ("rock glacier"). Hence, glaciers and permafrost co-exist in this region and their interactions are important to consider, e.g. for the understanding of glacial and periglacial processes. It can also be assumed that the ice stored in these relatively large dead-ice/moraine-complexes is a significant amount of the total ice storage. However, no detailed investigations exist so far. In an initial study, we investigated the structure and ice content of two typical glacier-moraine complexes in the Ak-Shiirak-Range using different ground penetrating radar (GPR) devices. In addition, the geomorphology was mapped using high resolution satellite imagery. The structure of the moraine-rock glacier complex is in general heterogeneous. Several dead ice bodies with different thicknesses and moraine-derived rock glaciers with different stages of activities could be identified. Few parts of these "rock glaciers" contain also massive ice but the largest parts are likely characterised by rock-ice layers of different thickness and ice contents. In one glacier forefield, the thickness of the rock-ice mixture is partly more than 300 m. This is only slightly lower than the maximum thickness of the glacier ice. Our measurements revealed that up to 20% of the total ice of the entire glacier-rock glacier-moraine-complex could be stored in the moraine-rock glacier parts.

  4. Landscape assessment of side channel plugs and associated cumulative side channel attrition across a large river floodplain

    USGS Publications Warehouse

    Reinhold, Ann Marie; Poole, Geoffrey C.; Bramblett, Robert G.; Zale, Alexander V.; Roberts, David W.

    2018-01-01

    Determining the influences of anthropogenic perturbations on side channel dynamics in large rivers is important from both assessment and monitoring perspectives because side channels provide critical habitat to numerous aquatic species. Side channel extents are decreasing in large rivers worldwide. Although riprap and other linear structures have been shown to reduce side channel extents in large rivers, we hypothesized that small “anthropogenic plugs” (flow obstructions such as dikes or berms) across side channels modify whole-river geomorphology via accelerating side channel senescence. To test this hypothesis, we conducted a geospatial assessment, comparing digitized side channel areas from aerial photographs taken during the 1950s and 2001 along 512 km of the Yellowstone River floodplain. We identified longitudinal patterns of side channel recruitment (created/enlarged side channels) and side channel attrition (destroyed/senesced side channels) across n = 17 river sections within which channels were actively migrating. We related areal measures of recruitment and attrition to the density of anthropogenic side channel plugs across river sections. Consistent with our hypothesis, a positive spatial relationship existed between the density of anthropogenic plugs and side channel attrition, but no relationship existed between plug density and side channel recruitment. Our work highlights important linkages among side channel plugs and the persistence and restoration of side channels across floodplain landscapes. Specifically, management of small plugs represents a low-cost, high-benefit restoration opportunity to facilitate scouring flows in side channels to enable the persistence of these habitats over time.

  5. Navigability Potential of Washington Rivers and Streams Determined with Hydraulic Geometry and a Geographic Information System

    USGS Publications Warehouse

    Magirl, Christopher S.; Olsen, Theresa D.

    2009-01-01

    Using discharge and channel geometry measurements from U.S. Geological Survey streamflow-gaging stations and data from a geographic information system, regression relations were derived to predict river depth, top width, and bottom width as a function of mean annual discharge for rivers in the State of Washington. A new technique also was proposed to determine bottom width in channels, a parameter that has received relatively little attention in the geomorphology literature. These regression equations, when combined with estimates of mean annual discharge available in the National Hydrography Dataset, enabled the prediction of hydraulic geometry for any stream or river in the State of Washington. Predictions of hydraulic geometry can then be compared to thresholds established by the Washington State Department of Natural Resources to determine navigability potential of rivers. Rivers with a mean annual discharge of 1,660 cubic feet per second or greater are 'probably navigable' and rivers with a mean annual discharge of 360 cubic feet per second or less are 'probably not navigable'. Variance in the dataset, however, leads to a relatively wide range of prediction intervals. For example, although the predicted hydraulic depth at a mean annual discharge of 1,660 cubic feet per second is 3.5 feet, 90-percent prediction intervals indicate that the actual hydraulic depth may range from 1.8 to 7.0 feet. This methodology does not determine navigability - a legal concept determined by federal common law - instead, this methodology is a tool for predicting channel depth, top width, and bottom width for rivers and streams in Washington.

  6. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    USGS Publications Warehouse

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy; Fairley, Helen C.

    2018-01-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  7. The response of source-bordering aeolian dunefields to sediment-supply changes 1: Effects of wind variability and river-valley morphodynamics

    NASA Astrophysics Data System (ADS)

    Sankey, Joel B.; Kasprak, Alan; Caster, Joshua; East, Amy E.; Fairley, Helen C.

    2018-06-01

    Source-bordering dunefields (SBDs), which are primarily built and maintained with river-derived sediment, are found in many large river valleys and are currently impacted by changes in sediment supply due to climate change, land use changes, and river regulation. Despite their importance, a physically based, applied approach for quantifying the response of SBDs to changes in sediment supply does not exist. To address this knowledge gap, here we develop an approach for quantifying the geomorphic responses to sediment-supply alteration based on the interpretation of dunefield morphodynamics from geomorphic change detection and wind characteristics. We use the approach to test hypotheses about the response of individual dunefields to variability in sediment supply at three SBDs along the Colorado River in Grand Canyon, Arizona, USA during the 11 years between 2002 and 2013 when several river floods rebuilt some river sandbars and channel margin deposits that serve as sediment source areas for the SBDs. We demonstrate that resupply of fluvially sourced aeolian sediment occurred at one of the SBDs, but not at the other two, and attribute this differential response to site-specific variability in geomorphology, wind, and sediment source areas. The approach we present is applied in a companion study to shorter time periods with high-resolution topographic data that bracket individual floods in order to infer the resupply of fluvially sourced aeolian sediment to SBDs by managed river flows. Such an applied methodology could also be useful for measuring sediment connectivity and anthropogenic alterations of connectivity in other coupled fluvial-aeolian environments.

  8. Active Faulting, Earthquakes and Geomorphological Changes from Archaeoseismic Data and High-Resolution Topography: Effects on the Urban Evolution of the Roman Town of Sybaris, Ionian Sea (Southern Italy).

    NASA Astrophysics Data System (ADS)

    Alfonsi, L.; Brunori, C. A.; Cinti, F. R.

    2014-12-01

    The Sybaris town was founded by the Greeks in 720 B.C and its life went on up to the late Roman time (VI-VII century A.D.). The town was located within the Sibari Plain near the Crati River mouth (Ionian northern Calabria, southern Italy). Sybaris occurs in area repeatedly affected by natural damaging phenomena, as frequent flooding, high local subsidence, marine storms, and earthquakes. The 2700 year long record of history of Sybaris stores the traces of these natural events and their influence on the human ancient environment through time. Among the natural disasters, we recognize two Roman age earthquakes striking the town. We isolate the damaging of these seismic events, set their time of occurrence, and map a shear zone crossing the site. These results were obtained through i) survey of coseismic features on the ruins, ii) geoarchaeological stratigraphy analysis, and TL and C14 dating, iii) analysis of high-resolution topographic data (1m pixel LiDAR DEM). The Sybaris town showed a persistent resilience to the earthquakes, and following their occurrences the site was not abandoned but underwent remodeling of the urban topography. The interaction of the different approaches reveals the presence of a previously unknown fault crossing the archeological site, the Sybaris fault. The high-resolution topography allows the characterization of subtle geomorphological features and hydrological anomalies, tracing the fault extension, whose Holocene activity is controlling the local morphology and the present Crati river course.

  9. A non-conventional watershed partitioning method for semi-distributed hydrological modelling: the package ALADHYN

    NASA Astrophysics Data System (ADS)

    Menduni, Giovanni; Pagani, Alessandro; Rulli, Maria Cristina; Rosso, Renzo

    2002-02-01

    The extraction of the river network from a digital elevation model (DEM) plays a fundamental role in modelling spatially distributed hydrological processes. The present paper deals with a new two-step procedure based on the preliminary identification of an ideal drainage network (IDN) from contour lines through a variable mesh size, and the further extraction of the actual drainage network (AND) from the IDN using land morphology. The steepest downslope direction search is used to identify individual channels, which are further merged into a network path draining to a given node of the IDN. The contributing area, peaks and saddles are determined by means of a steepest upslope direction search. The basin area is thus partitioned into physically based finite elements enclosed by irregular polygons. Different methods, i.e. the constant and variable threshold area methods, the contour line curvature method, and a topologic method descending from the Hortonian ordering scheme, are used to extract the ADN from the IDN. The contour line curvature method is shown to provide the most appropriate method from a comparison with field surveys. Using the ADN one can model the hydrological response of any sub-basin using a semi-distributed approach. The model presented here combines storm abstraction by the SCS-CN method with surface runoff routing as a geomorphological dispersion process. This is modelled using the gamma instantaneous unit hydrograph as parameterized by river geomorphology. The results are implemented using a project-oriented software facility for the Analysis of LAnd Digital HYdrological Networks (ALADHYN).

  10. HYDROLOGY OF CENTRAL GREAT BASIN MEADOW ECOSYSTEMS – EFFECTS OF STREAM INCISION

    EPA Science Inventory

    Riparian wet meadow complexes in the mountains of the central Great Basin are scarce, ecologically important systems that are threatened by stream incision. Our interdisciplinary group has investigated 1) the interrelationships of geomorphology, hydrology, and vegetation; and 2) ...

  11. Magnitude and frequency analysis on river width widening caused by Typhoon Morakot in the Kaoping River watershed, Taiwan

    NASA Astrophysics Data System (ADS)

    Yang, S. Y.; Jan, C. D.; Wang, Y. C.

    2014-12-01

    Active evolving rivers are some of the most dynamic and sensitive parts of landscapes. From geologic and geomorphic perspectives, a stable river channel can adjust its width, depth, and slope to prevent significant aggradation or degradation caused by external triggers, e.g., hydrologic events caused by typhoon storms. In particular, the processes of lateral riverbank erosion play a majorly important role in forming horizontal river geomorphology, dominating incised river widens and meanders. Sediment materials produced and mobilized from riverbanks can also be substantial sediment supplying into river channel networks, affecting watershed sediment yield. In Taiwan, the geological and climatic regimes usually combine to generate severely lateral erosion and/or riverbed deposition along river channels, causing the significant change in river width. In the August of 2009, Typhoon Morakot brought severe rainfall of about 2000 mmin Southern Taiwan during three days at the beginning of Aug. 5, leading to significant changes in geomorphic system. Here we characterized river width widening (including Cishan, Laonong, and Ilao Rivers) in the Kaoping River watershed after Typhoon Morakot disturbance interpreted through a power law. On the basis of a temporal pair (2008 and 2009) of Formosat-II (Formosa satellite II) images analysis, the river channels were digitalized within geographic information system (GIS), and river widths were extracted per 100 m along the rivers, then differentiating the adjustment of river width before and after Typhoon Morkot. The river width adjusted from -83 m (contracting) to 1985 m (widening), with an average of 170 m. The noncumulative frequency-magnitude distribution for river width adjustment caused by Typhoon Morakot in the study area satisfies a power-law relation with a determined coefficient (r2) of 0.95, over the range from 65 m to 2373m in the study area. Moreover, the value of the power-law exponent is equal to -2.09. This pattern suggests that river channel widening caused by large, infrequent hydrologic episodes has self-organized criticality. This study can provide useful information to river and watershed management, thereby refining the prevention and mitigation of hazard risks due to the effect of river width widening.

  12. Insights from analyzing and modelling cascading multi-lake outburst flood events in the Santa Cruz Valley (Cordillera Blanca, Perú)

    NASA Astrophysics Data System (ADS)

    Emmer, Adam; Mergili, Martin; Juřicová, Anna; Cochachin, Alejo; Huggel, Christian

    2016-04-01

    Since the end of Little Ice Age, the Cordillera Blanca of Perú has experienced tens of lake outburst floods (LOFs), resulting in the loss of thousands of lives and significant material damages. Most commonly involving glacial lakes, such events are often directly or indirectly related to glacier retreat. Here we analyze an event on 8th February 2012 involving four lakes and affecting two valleys (Santa Cruz and Artizón) in the northern part of the Cordillera Blanca. Using the combination of field data, satellite images, digital elevation model (DEM) and GIS-based modelling approaches, the main objectives are: (i) to better understand complex multi-lake outburst flood and related foregoing and induced geomorphological processes; and (ii) to evaluate and discuss the suitability, potentials and limitations of the r.avaflow model for modelling such complex process chains. Analyzing field geomorphological evidence and remotely-sensed images, we reconstruct the event as follows: a landslide from the recently deglaciated left lateral moraine of Lake Artizón Alto (4 639 m a.s.l.), characterized by steep slopes and a height of more than 200 m produced a displacement wave which overtopped the bedrock dam of the lake. The resulting flood wave breached the dam of the downstream moraine-/landslide-dammed Lake Artizón Bajo (4 477 m a.s.l.), decreasing the lake level by 10 m and releasing 3 x 105 m3 of water. Significant amounts of material were eroded from the steeper parts of the Artizón Valley (mean slope >15°) and deposited further downstream in the flatter part of the Santa Cruz Valley (mean slope <2°; confluence of the two valleys at 3 985 m a.s.l.). The flood affected two debris cone-dammed lakes (Jatuncocha and Ichiccocha) in the Santa Cruz Valley. Some minor damages to the dam of Lake Jatuncocha were documented. Geomprohological evidence of the event was observed more than 20 km downstream from Lake Artizón Alto. The described multi-LOF event was employed as a particularly challenging test case for the currently developed, GIS-based two-phase dynamic mass flow model r.avaflow. Whilst the test results are very promising, lessons learned for r.avaflow model are the need for (i) an improved concept to determine the flow boundaries; and (ii) thorough parameter tests. High demands on the resolution and quality of the DEM are revealed. From our event and modelling analysis we conclude the following: mass movements in the headwaters of hydrologically connected lake and river systems may affect the catchment in complex and cascading ways. Flood and mass flow magnitudes can be both intensified or attenuated along the pathway. Geomorphological analysis and related modelling efforts may elucidate the related hazards as a basis to reduce the associated risks to downstream communities and infrastructures. Keywords: cascading processes, dam failure, glacial lake outburst flood (GLOF), high-mountain lakes, r.avaflow

  13. Intensity of geomorphological processes in NW sector of Pacific rim marginal mountain belts

    NASA Astrophysics Data System (ADS)

    Lebedeva, Ekaterina; Shvarev, Sergey; Gotvansky, Veniamin

    2014-05-01

    Continental marginal mountains, including the mountain belts of Russian Far East, are characterized by supreme terrain contrast, mosaic structure of surface and crust, and rich complex of modern endogenous processes - volcanism, seismicity, and vertical movements. Unstable state of geomorphological systems and activity of relief forming processes here is caused also by deep dissected topography and the type and amount of precipitation. Human activities further stimulate natural processes and increase the risk of local disasters. So these territories have high intensity (or tension) of geomorphological processes. Intensity in the authors' understanding is willingness of geomorphological system to be out of balance, risk of disaster under external and internal agent, both natural and human. Mapping with quantitative accounting of intensity of natural and human potential impact is necessary for indication the areal distribution trends of geomorphological processes intensity and zones of potential risk of disasters. Methods of map drowning up are based on several criteria analyzing: 1) total terrain-form processes and their willingness to be a hazard-like, 2) existence, peculiarity and zoning of external agents which could cause extreme character of base processes within the territory, 3) peculiarity of terrain morphology which could cause hazard way of terrain-form processes. Seismic activity is one of the most important factors causing activation of geomorphological processes and contributing to the risk of dangerous situations. Earthquake even small force can provoke many catastrophic processes: landslides, mudslides, avalanches and mudflows, tsunami and others. Seismic gravitational phenomenons of different scale accompany almost all earthquakes of intensity 7-8 points and above, and some processes, such as avalanches, activated by seismic shocks intensity about 1-3 points. In this regard, we consider it important selection of high intensity seismic zones in marginal-continental mountain systems and also offer to give them extra points of tension, the number of which increases depending on the strength of the shock. Such approach allows to identify clearly the most potentially hazardous areas where there may be various, sometimes unpredictable scale catastrophic processes, provoked intense underground tremors. We also consider the impact of the depth of topography dissection and the total amount of precipitation. The marginal-continental mountain systems have often radically different moistening of coastal and inland slopes. And this difference can be 500, 1000 mm and more, that, undoubtedly, affects the course and intensity of geomorphological processes on slopes of different exposures. The total evaluation of intensity of geomorphologic processes exceeding 15 points is considered to be potentially catastrophic. At 10-15 points tension geomorphologic processes is extremely high, and at 5-10 points - high, less than 5 points - low. The maps of the key areas of the Russian Far East - Kamchatka and the north of Kuril Islands, Sakhalin and the Western Okhotsk region were compiled. These areas have differences in geodynamic regimes, landscape-climatic and anthropogenic conditions and highly significant in relation to the differentiated estimation of geomorphologic tension. The growth of intensity of geomorphological processes toward the Pacific Ocean was recorded: from 7-10 points in Western Okhotsk region to 10-13 at Sakhalin and to 13-15 points for Kamchatka.

  14. Coupling habitat suitability and ecosystem health with AEHRA to estimate E-flows under intensive human activities

    NASA Astrophysics Data System (ADS)

    Zhao, C. S.; Yang, S. T.; Zhang, H. T.; Liu, C. M.; Sun, Y.; Yang, Z. Y.; Zhang, Y.; Dong, B. E.; Lim, R. P.

    2017-08-01

    Sustaining adequate environmental flows (e-flows) is a key principle for maintaining river biodiversity and ecosystem health, and for supporting sustainable water resource management in basins under intensive human activities. But few methods could correctly relate river health to e-flows assessment at the catchment scale when they are applied to rivers highly impacted by human activities. An effective method is presented in this study to closely link river health to e-flows assessment for rivers at the catchment scale. Key fish species, as indicators of ecosystem health, were selected by using the foodweb model. A multi-species-based habitat suitability model (MHSI) was improved, and coupled with dominance of the key fish species as well as the Index of Biological Integrity (IBI) to enhance its accuracy in determining the fish-preferred key hydrologic habitat variables related to ecosystem health. Taking 5964 fish samples and concurrent hydrological habitat variables as the basis, the combination of key variables of flow-velocity and water-depth were determined and used to drive the Adapted Ecological Hydraulic Radius Approach (AEHRA) to study e-flows in a Chinese urban river impacted by intensive human activities. Results showed that upstream urbanization resulted in abnormal river-course geomorphology and consequently abnormal e-flows under intensive human activities. Selection of key species based on the foodweb and trophic levels of aquatic ecosystems can reflect a comprehensive requirement on e-flows of the whole aquatic ecosystem, which greatly increases its potential to be used as a guidance tool for rehabilitation of degraded ecosystems at large spatial scales. These findings have significant ramifications for catchment e-flows assessment under intensive human activities and for river ecohealth restoration in such rivers globally.

  15. River Networks and Human Activities: Global Fractal Analysis Using Nightlight Data

    NASA Astrophysics Data System (ADS)

    McCurley, K. 4553; Fang, Y.; Ceola, S.; Paik, K.; McGrath, G. S.; Montanari, A.; Rao, P. S.; Jawitz, J. W.

    2016-12-01

    River networks hold an important historical role in affecting human population distribution. In this study, we link the geomorphological structure of river networks to the pattern of human activities at a global scale. We use nightlights as a valuable proxy for the presence of human settlements and economic activity, and we employ HydroSHEDS as the main data source on river networks. We test the hypotheses that, analogous to Horton's laws, human activities (magnitude of nightlights) also show scaling relationship with stream order, and that the intensity of human activities decrease as the distance from the basin outlet increase. Our results demonstrate that the distribution of human activities shows a fractal structure, with power-law scaling between human activities and stream order. This relationship is robust among global river basins. Human activities are more concentrated in larger order basins, but show large variation in equivalent order basins, with higher population density emergent in the basins connected with high-order rivers. For all global river basins longer than 400km, the average intensity of human activities decrease as the distance to the outlets increases, albeit with signatures of large cities at varied distances. The power spectrum of human width (area) function is found to exhibit power law scaling, with a scaling exponent that indicates enrichment of low frequency variation. The universal fractal structure of human activities may reflect an optimum arrangement for humans in river basins to better utilize the water resources, ecological assets, and geographic advantages. The generalized patterns of human activities could be applied to better understand hydrologic and biogeochemical responses in river basins, and to advance catchment management.

  16. Geomorphology of the Burnt River, eastern Oregon, USA: Topographic adjustments to tectonic and dynamic deformation

    NASA Astrophysics Data System (ADS)

    Morriss, Matthew Connor; Wegmann, Karl W.

    2017-02-01

    Eastern Oregon contains the deepest gorge in North America, where the Snake River cuts vertically down 2300 m. This deep gorge is known as Hells Canyon. A landscape containing such a topographic feature is likely undergoing relatively recent deformation. Study of the Burnt River, a tributary to the Snake River at the upstream end of Hells Canyon, yields data on active river incision in eastern Oregon, indicating that Quaternary faults are a first order control on regional landscape development. Through 1:24,000-scale geologic mapping, a 500,000-year record of fluvial incision along the Burnt River was constructed and is chronologically anchored by optically stimulated luminescence dating and tephrochronology analyses. A conceptual model of fluvial terrace formation was developed using these ages and likely applies to other non-glaciated catchments in eastern Oregon. Mapped terraces, inferred to have formed during glacial-interglacial cycles, provide constraints on rates of incision of the Burnt River. Incision through these terraces indicates that the Burnt River is down-cutting at 0.15 to 0.57 m kyr- 1. This incision appears to reflect a combination of local base-level adjustments tied to movement along the newly mapped Durkee fault and regional base-level control imposed by the downcutting of the Snake River. Deformation of terraces as young as 38.7 ± 5.1 ka indicates Quaternary activity along the Durkee fault, and when combined with topographic metrics (slope, relief, hypsometry, and stream-steepness), reveals a landscape in disequilibrium. Longer wavelength lithospheric dynamics (delamination and crustal foundering) that initiated in the Miocene may also be responsible for continued regional deformation of the Earth's surface.

  17. Modeling small-scale and large-scale flood wave processes as indicators of channel-floodplain connectivity

    NASA Astrophysics Data System (ADS)

    Byrne, C. F.; Stone, M. C.

    2016-12-01

    Anthropogenic alterations to rivers and floodplains, either in the context of river engineering or river restoration efforts, have no doubt impacted channel-floodplain connectivity in the majority of developed river systems. River management strategies now often strive to retain or improve ecological integrity of floodplains. Therefore, there is a need to quantify the hydrodynamic processes that have implications for river geomorphology and ecology within the channel-floodplain interface. Because field quantification of these processes is extremely difficult, new methods in hydrodynamic modeling can help to inform river science. This research focused on the assessment of channel-floodplain flow dynamics using two-dimensional hydrodynamic modeling and presents various methods of hydrodynamic process quantification in unsteady flow scenarios. The objectives of this research were to: (1) quantify the small-scale processes of mass and momentum transfer from the main channel to the floodplain; and (2) assess how these processes accrue to meaningful levels to affect the large-scale process of flood wave attenuation. This was achieved by modeling the heavily manipulated Albuquerque Reach of the Rio Grande in New Mexico. Results are presented as mass and momentum fluxes along the channel-floodplain boundaries with a focus on the application of these methods to unsteady flood wave modeling. In addition, quantification of downstream flood wave attenuation is presented as attenuation ratios of discharge and stage, as well as wave celerity. Mass and momentum fluxes during flood waves are shown to be highly variable over spatial and temporal scales and demonstrate the implications of lateral surface connectivity. Results from this research and further application of the methods presented here can help river scientists better understand the dynamics of flood processes especially in the context of process-based river restoration.

  18. Managing Tradeoffs between Hydropower and the Environment in the Mekong River Basin

    NASA Astrophysics Data System (ADS)

    Loucks, Daniel P.; Wild, Thomas B.

    2015-04-01

    Hydropower dams are being designed and constructed at a rapid pace in the Mekong/Lancang River basin in Southeast Asia. These reservoirs are expected to trap significant amounts sediment, decreasing much of the river's capability to transport nutrients and maintain its geomorphology and habitats. We apply a simulation model for identifying and evaluating alternative dam siting, design and operating policy (SDO) options that could help maintain more natural sediment regimes downstream of dams and for evaluating the effect of these sediment-focused SDO strategies on hydropower production and reliability. We apply this approach to the planned reservoirs that would prevent a significant source of sediment from reaching critical Mekong ecosystems such as Cambodia's Tonle Sap Lake and the Mekong delta in Vietnam. Model results suggest that various SDO modifications could increase sediment discharge from this site by 300-450% compared to current plans, but a 30-55% loss in short-term annual energy production depending on various configurations of upstream reservoirs. Simulation results also suggest that sediment management-focused reservoir operating policies could cause ecological damage if they are not properly implemented.

  19. Channel Processes and Sedimentology of a Boulder-Bed Ephemeral Stream

    NASA Astrophysics Data System (ADS)

    Billi, Paolo

    2014-05-01

    Very few papers report about the geomorphology and sedimentology of modern very coarse-grained, ephemeral streams. Other than the relevance of shedding some light on fluvial processes in dryland, boulder-bed rivers, this paper aims to provide some insight on their sedimentological characteristics as a diagnostic tool in the interpretation of old deposits. A field study on such topics is carried out on the Golina River, a sandy boulder-bed ephemeral stream of the Kobo basin in northern Ethiopia, subjected to intermittent flow generated by isolated, high intensity rainfall. Though the main gemorphological characteristics of the braid bars and channels are apparently similar to those of perennial counterparts, field investigations show the general physiographic setting and the sedimentology of the study reach result from very different depositional/erosion processes. A model based on the superimposition of coarse-grained bedload sheets, with the characteristics described by Whiting et la. (1988), and subsequent dissection during the receding flood flow is considered. This model was found to well explain the morphological and sedimentological features of the study river reach.

  20. Riparian vegetation recovery patterns following stream channelization: a geomorphic perspective

    USGS Publications Warehouse

    Hupp, C.R.

    1992-01-01

    Hundreds of kilometres of West Tennessee streams have been channelized since the turn of the century. After a stream is straightened, dredged, or cleared, basin-wide ecologic, hydrologic, and geomorphic processes bring about an integrated, characteristic recovery sequence. The rapid pace of channel responses to channelization provides an opportunity to document and interpret vegetation recovery patterns relative to otherwise long-term, concomitant evolution of river geomorphology. The linkage of channel bed aggradation, woody vegetation establishment, and bank accretion all lead to recovery of the channel. Pioneer species are hardy and fast growing, and can tolerate moderate amounts of slope instability and sediment deposition; these species include river birch (Betula nigra), black willow (Salix nigra), boxelder (Acer negundo), and silver maple (Acer saccharinum). High stem densities and root-mass development appear to enhance bank stability. Tree-ring analyses suggest that on average 65 yr may be required for recovery after channelization. -from Author

  1. Benthic plastic debris in marine and fresh water environments.

    PubMed

    Corcoran, Patricia L

    2015-08-01

    This review provides a discussion of the published literature concerning benthic plastic debris in ocean, sea, lake, estuary and river bottoms throughout the world. Although numerous investigations of shoreline, surface and near-surface plastic debris provide important information on plastic types, distribution, accumulation, and degradation, studies of submerged plastic debris have been sporadic in the past and have become more prominent only recently. The distribution of benthic debris is controlled mainly by combinations of urban proximity and its association with fishing-related activities, geomorphology, hydrological conditions, and river input. High density plastics, biofouled products, polymers with mineral fillers or adsorbed minerals, and plastic-metal composites all have the potential to sink. Once deposited on the bottoms of water basins and channels, plastics are shielded from UV light, thus slowing the degradation process significantly. Investigations of the interactions between benthic plastic debris and bottom-dwelling organisms will help shed light on the potential dangers of submerged plastic litter.

  2. Why is the central area of the Alburni Mts in southern Italy so full of caves?

    NASA Astrophysics Data System (ADS)

    Cafaro, Simona; Gueguen, Erwan; Parise, Mario; Schiattarella, Marcello

    2016-04-01

    The Alburni Mts represent one of the most important karst area of southern Italy, with about 250 registered caves. Located in the southern Apennines, they constitute an impressive carbonate massif within the Mesozoic-Cenozoic Campania-Lucania platform. The study area is located inside the National Park of Cilento, Vallo di Diano and Alburni, and is bounded by two major rivers: the Calore and Tanagro rivers. This area has been repeatedly affected during Pleistocene by the activity of a regional, partly blind, NW-SE-striking fault system responsible for several huge earthquakes. The massif is limited to the north by an important normal fault zone (Alburni Line), whereas towards the E-SE it is bounded by a complex fault system linking the Alburni Mts to the Maddalena Mts across the Auletta basin and the Vallo di Diano valley. The entire massif is structured by NW-SE trending transtensional faults delimiting half-graben basins, and offset also by NE-SW trending faults. In particular, structural and geomorphological data have shown that the central area of the calcareous ridge is characterized by a relative structural low rhombic-shaped in planimetric view. Approximately 180 karst caves of the known 250, including some of the most significant from a speleological viewpoint, are located in this area. Is this simply due to repeated exploration activity in the last 25 years in this specific sector or might it be related to geological matter? New morphometric and structural data suggest that a relevant transversal structure, consisting of a complex NE-SW fault system, responsible for the genesis of the downthrown area in the central sector of the flat-topped ridge, was able to create the tectonic framework for the development of a great number of karst caves which present peculiar features and hydrological behaviour due to such structural controls. In this contribution we present and discuss these data, aimed at contributing to increase the knowledge on an area of sure karst and speleological interest.

  3. Hydrological and Geomorphological impacts of land cover changes at different spatial scales. An introduction to ecosystem services from Mediterranean mountainous landscapes

    NASA Astrophysics Data System (ADS)

    García-Ruiz, J. M.; Lana-Renault, N.

    2012-04-01

    The main characteristic of the Mediterranean mountainous areas is the dramatic land use/land cover change that has significant hydrological and geomorphic consequences regardless of the scale considered. At the end of the 19th Century, depopulation and the modernization of the agricultural systems resulted in a generalized farmland abandonment in the hillslopes (both sloping and bench terraced fields, and shifting agriculture fields), and a reduction in livestock numbers, leading to a complex process of plant re-colonization, depending on soil characteristics, climate and the pre- and post-management of the hillslopes. The primary consequences are evident at the plot scale, where plant re-colonization has caused a rapid decrease in overland flow and soil loss. At the catchment scale, a decrease in sediment sources and channel incision in the secondary streams have been detected. At the regional scale, forests and shrubs cover a large part of the territory, where fifty or eighty years ago the cereal fields and communities of open shrubs prevailed on steep slopes. The most relevant consequences include the progressive lowering in the discharge of rivers, the lower sediment silting in the reservoirs (what increases the useful life of such infrastructures), the improvement of the water quality in the rivers, the decrease in the frequency of the most frequent floods, and changes in channel morphology, with, in general, the enlargement of riparian forests. Moreover, plant re-colonization results in a large homogeneous expansion of forests, favouring the risk of wildfires and a lowering of livestock production. All these processes occurring in the mountain areas have a great impact on the lowlands, where urban, industrial and irrigated areas, as well as tourist resorts are growing. The spatial interactions among land use and runoff generation, soil erosion, sediment yield and fluvial channel dynamics are complex and highlight the need of land management strategies with a multiscalar approach.

  4. Landscape changes as a factor affecting the course and consequences of extreme floods in the Otava river basin, Czech Republic.

    PubMed

    Langhammer, Jakub; Vilímek, Vít

    2008-09-01

    The paper presents the analysis of anthropogenical modifications of the landscape in relation to the course and consequences of floods. The research was conducted in the Otava river basin which represents the core zone of the extreme flood in August 2002 in Central Europe. The analysis was focused on the key indicators of landscape modification potentially affecting the runoff process - the long-term changes of land-use, changes of land cover structure, land drainage, historical shortening of the river network and the modifications of streams and floodplains. The information on intensity and spatial distribution of modifications was derived from different data sources--historical maps, available GIS data, remote sensing and field mapping. The results revealed a high level of spatial diversity of anthropogenical modifications in different parts of the river basin. The intensive modifications in most of indicators were concentrated in the lowland region of the river basin due to its agricultural use; however important changes were also recorded in the headwater region of the basin. The high spatial diversity of the modifications may result in their varying effect on the course and consequences of floods in different parts of the river basin. This effect is demonstrated by the cluster analysis based on the matrix of indicators of stream and floodplain modification, physiogeographical characteristics and geomorphological evidences of the flood in August 2002, derived from the individual thematic layers using GIS.

  5. Fluvial Geomorphology and River Restoration: Uneasy Allies (Invited)

    NASA Astrophysics Data System (ADS)

    Kondolf, G. M.

    2009-12-01

    A growing body of literature demonstrates that river restoration based on understanding of geomorphic and ecological process is more likely to be sustainable than form-based approaches. In the early days of river ‘restoration’ in North America, most projects involved bank stabilization, habitat structure placement, or construction of rocked meandering channels, at odds with restoration of the dynamic processes we now see as fundamental to effective, sustainable restoration. Recent years have seen a growing body of restoration programs emphasizing restoration of connectivity and geomorphic process. This evolution has been reflected in publications, from the form-based approach advocated in the early 1990s by an NRC panel (which did not include a geomorphologist) to more recent works by interdisciplinary panels emphasizing process restoration. Large-scale river restoration came later to Europe, motivated by the EU Water Framework Directive (2000) requirements that member states implement measures to improve ecological status of degraded rivers. Interestingly, European approaches to restoration have often reflected a more nuanced understanding of process, including deliberate recreation of unstable braided channels, removal of bank protection, and reconnecting floodplains. In part this may reflect a reaction to the more thorough post-war channelization of rivers in western Europe. In part it may also reflect a greater influence of academic and research laboratories upon practitioners than in the US, where a strong anti-intellectual strain, cultural preference for easy fixes, and reluctance to conduct objective post-project assessments have contributed to the adoption of form-based approaches by many public agencies.

  6. Potential interaction between transport and stream networks over the lowland rivers in Eastern India.

    PubMed

    Roy, Suvendu; Sahu, Abhay Sankar

    2017-07-15

    Extension of transport networks supports good accessibility and associated with the development of a region. However, transport lines have fragmented the regional landscape and disturbed the natural interplay between rivers and their floodplains. Spatial analysis using multiple buffers provides information about the potential interaction between road and stream networks and their impact on channel morphology of a small watershed in the Lower Gangetic Plain. Present study is tried to understand the lateral and longitudinal disconnection in headwater stream by rural roads with the integration of geoinformatics and field survey. Significant (p < 0.001) growth of total road length and number of road-stream crossing in the last five decades (1970s-2010s) contribute to making longitudinal and lateral disconnection in the fluvial system of Kunur River Basin. Channel geometry from ten road-stream crossings shows significant (p = 0.01) differences between upstream and downstream of crossing structure and created problems like downstream scouring, increased drop height at outlet, formation of stable bars, severe bank erosion, and make barriers for river biota. The hydro-geomorphic processes are also adversely affected due to lateral disconnection and input of fine to coarse sediments from the river side growth of unpaved road (1922%). Limited streamside development, delineation of stream corridor, regular monitoring and engineering efficiency for the construction of road and road-stream crossing might be effective in managing river geomorphology and riverine landscape. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    NASA Astrophysics Data System (ADS)

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-04-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  8. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska.

    PubMed

    Lara, Mark J; Nitze, Ingmar; Grosse, Guido; McGuire, A David

    2018-04-10

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10-100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km 2 ) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999-2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling.

  9. Lifespan of mountain ranges scaled by feedbacks between landsliding and erosion by rivers.

    PubMed

    Egholm, David L; Knudsen, Mads F; Sandiford, Mike

    2013-06-27

    An important challenge in geomorphology is the reconciliation of the high fluvial incision rates observed in tectonically active mountain ranges with the long-term preservation of significant mountain-range relief in ancient, tectonically inactive orogenic belts. River bedrock erosion and sediment transport are widely recognized to be the principal controls on the lifespan of mountain ranges. But the factors controlling the rate of erosion and the reasons why they seem to vary significantly as a function of tectonic activity remain controversial. Here we use computational simulations to show that the key to understanding variations in the rate of erosion between tectonically active and inactive mountain ranges may relate to a bidirectional coupling between bedrock river incision and landslides. Whereas fluvial incision steepens surrounding hillslopes and increases landslide frequency, landsliding affects fluvial erosion rates in two fundamentally distinct ways. On the one hand, large landslides overwhelm the river transport capacity and cause upstream build up of sediment that protects the river bed from further erosion. On the other hand, in delivering abrasive agents to the streams, landslides help accelerate fluvial erosion. Our models illustrate how this coupling has fundamentally different implications for rates of fluvial incision in active and inactive mountain ranges. The coupling therefore provides a plausible physical explanation for the preservation of significant mountain-range relief in old orogenic belts, up to several hundred million years after tectonic activity has effectively ceased.

  10. The river Ganga of northern India: an appraisal of its geomorphic and ecological changes.

    PubMed

    Sarkar, S K; Bhattacharya, A; Bhattacharya, B

    2003-01-01

    The Ganga is the most important perennial river originating from Gangotri in the snow-bound Himalayas about 3,900 m above mean sea level. Gorging a distance of about 220 km in the Himalayas, it enters the plain at Hardwar and after meandering and braiding over a distance of about 2,525 km through the Indo-Gangetic plains, ultimately joins the Bay of Bengal. The course of this river has been changed due to: (i) subsurface geotectonic movement leading to change in slope of the deltaic plain and subsidence of the Bengal basin; (ii) changing pattern of water discharge with time; (iii) variations in sediment load. The environment of Ganga basin is also deteriorating with time due to severe natural episodes of periodic floods and storms as well as anthropogenic factors such as population growth, deforestation, agricultural activities, urbanisation, fertiliser and fossil fuel consumption and construction activities such as dams and bridges. All these have inconceivable adverse impacts on the health and natural regeneration capacity of the river basin. The presence of micropollutants in water and sediments of this river turns the system into being unsustainable to the biota. The present study synthesises the available information on the changes of its geological, geomorphological and ecological aspects and suggests some remedial measures to be adopted now and in future.

  11. Morphotectonic study of the Brahmaputra basin using geoinformatics

    NASA Astrophysics Data System (ADS)

    Nath Sarma, Jogendra; Acharjee, Shukla; murgante, Beniamino

    2013-04-01

    The Brahmaputra River basin occupies an area of 580,000 km2 lying in Tibet (China), Bhutan, India and Bangladesh. It is bounded on the north by the Nyen-Chen-Tanghla mountains, on the east by the Salween River basin and Patkari range of hills, on the south by Nepal Himalayas and the Naga Hills and on the west by the Ganga sub-basin. Brahmaputra river originates at an elevation of about 5150 m in south-west Tibet and flows for about 2900 km through Tibet (China), India and Bangladesh to join the Ganga.. The Brahmaputra River basin is investigated to examine the influence of active structures by applying an integrated study on geomorphology, morphotectonics, Digital Elevation Model (DEM) using topographic map, satellite data, SRTM, and seismic data. The indices for morphotectonic analysis, viz. basin elongation ratio (Re) indicated tectonically active, transverse topographic symmetry (T = 0.018-0.664) indicated asymmetric nature, asymmetric factor (AF=33) suggested tilt, valley floor width to valley height ratio (Vf = 0.0013-2.945) indicated active incision and mountain-front sinuosity (Smf = 1.11-1.68) values indicated active tectonics in the area. A great or major earthquake in the modern times, in this region may create havoc with huge loss of life and property due to high population density and rapidly developing infrastructure. Keywords: .Morphotectonic, Brahmaputra river, earthquake

  12. Geomorphology Influencing the Diversification of Fish in Small-Order Rivers of Neighboring Basins.

    PubMed

    Morais-Silva, João P; Oliveira, Alessandra V de; Fabrin, Thomaz M C; Diamante, Nathália Alves; Prioli, Sônia M A P; Frota, Augusto; Graça, Weferson J da; Prioli, Alberto J

    2018-03-13

    The current analysis investigates whether the uplift of the Serra da Esperança and the Ponta Grossa Arch in the Serra Geral resulted in ichthyofaunistic changes in adjacent basins. For this, we describe the phylogeographic structure among populations of Trichomycterus collected in hydrographic basins in southern Brazil by using partial nucleotide sequences of the mitochondrial gene Cytochrome C Oxidase subunit I. Analyses revealed that the nomenclature Trichomycterus davisi fails to contain the whole genetic diversity range found in the collected specimens and indicates at least six genetic lineages in Trichomycterus. Diagnostic morphological characteristics not associated to T. davisi could be identified in some specimens from the Iguaçu Piquiri haplogroup, indicating the occurrence of species Trichomycterus stawiarski. The lack of morphological differences among the other clades clearly suggests a cryptic species case. Molecular analyses revealed at least five new species besides T. davisi in the hydrographic basins and support the interpretation that genetic structure in T. davisi species complex is explained by tectonic events intrinsic to the areas of influence of Serra da Esperança and the Ponta Grossa Arch which occurred around 1.7 My.

  13. Estuaries of the northeastern United States: Habitat and land use signatures

    USGS Publications Warehouse

    Roman, C.T.; Jaworski, N.; Short, F.T.; Findlay, S.; Warren, R.S.

    2000-01-01

    Geographic signatures are physical, chemical, biotic, and human-induced characteristics or processes that help define similar or unique features of estuaries along latitudinal or geographic gradients. Geomorphologically, estuaries of the northeastern U.S., from the Hudson River estuary and northward along the Gulf of Maine shoreline, are highly diverse because of a complex bedrock geology and glacial history. Back-barrier estuaries and lagoons occur within the northeast region, but the dominant type is the drowned-river valley, often with rocky shores. Tidal range and mean depth of northeast estuaries are generally greater when compared to estuaries of the more southern U.S. Atlantic coast and Gulf of Mexico. Because of small estuarine drainage basins, low riverine flows, a bedrock substrate, and dense forest cover, sediment loads in northeast estuaries are generally quite low and water clarity is high. Tidal marshes, seagrass meadows, intertidal mudflats, and rocky shores represent major habitat types that fringe northeast estuaries, supporting commercially-important fauna, forage nekton and benthos, and coastal bird communities, while also serving as links between deeper estuarine waters and habitats through detritus-based pathways. Regarding land use and water quality trends, portions of the northeast have a history of over a century of intense urbanization as reflected in increased total nitrogen and total phosphorus loadings to estuaries, with wastewater treatment facilities and atmospheric deposition being major sources. Agricultural inputs are relatively minor throughout the northeast, with relative importance increasing for coastal plain estuaries. Identifying geographic signatures provides an objective means for comparing the structure function, and processes of estuaries along latitudinal gradients.

  14. Multi-Scale and Object-Oriented Analysis for Mountain Terrain Segmentation and Geomorphological Assessment

    NASA Astrophysics Data System (ADS)

    Marston, B. K.; Bishop, M. P.; Shroder, J. F.

    2009-12-01

    Digital terrain analysis of mountain topography is widely utilized for mapping landforms, assessing the role of surface processes in landscape evolution, and estimating the spatial variation of erosion. Numerous geomorphometry techniques exist to characterize terrain surface parameters, although their utility to characterize the spatial hierarchical structure of the topography and permit an assessment of the erosion/tectonic impact on the landscape is very limited due to scale and data integration issues. To address this problem, we apply scale-dependent geomorphometric and object-oriented analyses to characterize the hierarchical spatial structure of mountain topography. Specifically, we utilized a high resolution digital elevation model to characterize complex topography in the Shimshal Valley in the Western Himalaya of Pakistan. To accomplish this, we generate terrain objects (geomorphological features and landform) including valley floors and walls, drainage basins, drainage network, ridge network, slope facets, and elemental forms based upon curvature. Object-oriented analysis was used to characterize object properties accounting for object size, shape, and morphometry. The spatial overlay and integration of terrain objects at various scales defines the nature of the hierarchical organization. Our results indicate that variations in the spatial complexity of the terrain hierarchical organization is related to the spatio-temporal influence of surface processes and landscape evolution dynamics. Terrain segmentation and the integration of multi-scale terrain information permits further assessment of process domains and erosion, tectonic impact potential, and natural hazard potential. We demonstrate this with landform mapping and geomorphological assessment examples.

  15. Geomorphological evolution of western Sicily, Italy

    NASA Astrophysics Data System (ADS)

    Di Maggio, Cipriano; Madonia, Giuliana; Vattano, Marco; Agnesi, Valerio; Monteleone, Salvatore

    2017-02-01

    This paper proposes a morphoevolutionary model for western Sicily. Sicily is a chain-foredeep-foreland system still being built, with tectonic activity involving uplift which tends to create new relief. To reconstruct the morphoevolutionary model, geological, and geomorphological studies were done on the basis of field survey and aerial photographic interpretation. The collected data show large areas characterized by specific geological, geomorphological, and topographical settings with rocks, landforms, and landscapes progressively older from south to north Sicily. The achieved results display: (1) gradual emersion of new areas due to uplift, its interaction with the Quaternary glacio-eustatic oscillations of the sea level, and the following production of a flight of stair-steps of uplifted marine terraces in southern Sicily, which migrates progressively upward and inwards; in response to the uplift (2) triggering of down-cutting processes that gradually dismantle the oldest terraces; (3) competition between uplift and down-cutting processes, which is responsible for the genesis of river valleys and isolated rounded hills in central Sicily; (4) continuous deepening over time that results in the exhumation of older and more resistant rocks in northern Sicily, where the higher heights of Sicily are realized and the older forms are retained; (5) extensional tectonic event in the northern end of Sicily, that produces the collapse of large blocks drowned in the Tyrrhenian Sea and sealed by coastal-marine deposits during the Calabrian stage; (6) trigger of uplift again in the previously subsiding blocks and its interaction with coastal processes and sea level fluctuations, which produce successions of marine terraces during the Middle-Upper Pleistocene stages.

  16. Channel-planform evolution in four rivers of Olympic National Park, Washington, U.S.A.: The roles of physical drivers and trophic cascades

    USGS Publications Warehouse

    East, Amy E.; Jenkins, Kurt J.; Happe, Patricia J.; Bountry, Jennifer A.; Beechie, Timothy J.; Mastin, Mark C.; Sankey, Joel B.; Randle, Timothy J.

    2017-01-01

    Identifying the relative contributions of physical and ecological processes to channel evolution remains a substantial challenge in fluvial geomorphology. We use a 74-year aerial photographic record of the Hoh, Queets, Quinault, and Elwha Rivers, Olympic National Park, Washington, U.S.A., to investigate whether physical or trophic-cascade-driven ecological factors—excessive elk impacts after wolves were extirpated a century ago—are the dominant controls on channel planform of these gravel-bed rivers. We find that channel width and braiding show strong relationships with recent flood history. All four rivers have widened significantly in recent decades, consistent with increased flood activity since the 1970s. Channel planform also reflects sediment-supply changes, evident from landslide response on the Elwha River. We surmise that the Hoh River, which shows a multi-decadal trend toward greater braiding, is adjusting to increased sediment supply associated with rapid glacial retreat. In this sediment-routing system with high connectivity, such climate-driven signals appear to propagate downstream without being buffered substantially by sediment storage. Legacy effects of anthropogenic modification likely also affect the Quinault River planform. We infer no correspondence between channel geomorphic evolution and elk abundance, suggesting that trophic-cascade effects in this setting are subsidiary to physical controls on channel morphology. Our findings differ from previous interpretations of Olympic National Park fluvial dynamics and contrast with the classic example of Yellowstone National Park, where legacy effects of elk overuse are apparent in channel morphology; we attribute these differences to hydrologic regime and large-wood availability.

  17. Interplay between spatially explicit sediment sourcing, hierarchical river-network structure, and in-channel bed material sediment transport and storage dynamics

    NASA Astrophysics Data System (ADS)

    Czuba, Jonathan A.; Foufoula-Georgiou, Efi; Gran, Karen B.; Belmont, Patrick; Wilcock, Peter R.

    2017-05-01

    Understanding how sediment moves along source to sink pathways through watersheds—from hillslopes to channels and in and out of floodplains—is a fundamental problem in geomorphology. We contribute to advancing this understanding by modeling the transport and in-channel storage dynamics of bed material sediment on a river network over a 600 year time period. Specifically, we present spatiotemporal changes in bed sediment thickness along an entire river network to elucidate how river networks organize and process sediment supply. We apply our model to sand transport in the agricultural Greater Blue Earth River Basin in Minnesota. By casting the arrival of sediment to links of the network as a Poisson process, we derive analytically (under supply-limited conditions) the time-averaged probability distribution function of bed sediment thickness for each link of the river network for any spatial distribution of inputs. Under transport-limited conditions, the analytical assumptions of the Poisson arrival process are violated (due to in-channel storage dynamics) where we find large fluctuations and periodicity in the time series of bed sediment thickness. The time series of bed sediment thickness is the result of dynamics on a network in propagating, altering, and amalgamating sediment inputs in sometimes unexpected ways. One key insight gleaned from the model is that there can be a small fraction of reaches with relatively low-transport capacity within a nonequilibrium river network acting as "bottlenecks" that control sediment to downstream reaches, whereby fluctuations in bed elevation can dissociate from signals in sediment supply.

  18. What Role do Hurricanes Play in Sediment Delivery to Subsiding River Deltas?

    NASA Astrophysics Data System (ADS)

    Smith, J. E., IV

    2016-02-01

    James E. Smith IV1, Samuel J. Bentley, Sr.1, Gregg A. Snedden2, Crawford White1 Department of Geology and Geophysics and Coastal Studies Institute, Louisiana State University, Baton Rouge, LA 70803 USA United States Geological Survey, National Wetlands Research Center, Baton Rouge LA 70803 USA The Mississippi River Delta has undergone tremendous land loss over the past century due to natural and anthropogenic influences, a fate shared by many river deltas globally. A globally unprecedented effort to restore and sustain the remaining subaerial portions of the delta is now underway, an endeavor that is expected to cost $50-100B over the next 50 yr. Success of this effort requires a thorough understanding of natural and anthropogenic controls on sediment supply, accumulation, and delta geomorphology. In the Mississippi River Delta, hurricanes have been paradoxically identified as both agents of widespread land loss, and positive influences for marsh vertical sediment accretion. We present the first multi-decadal chronostratigraphic assessment of sediment supply for a major coastal basin of the Mississippi River Delta that assesses both fluvial and hurricane-induced contributions to sediment accumulation in deltaic wetlands. Twenty seven cores have been analyzed for radioisotope geochronology and organic content to establish the chronology of mineral sediment supply to the wetlands over the past 70 years. Our findings indicate that over multidecadal timescales, hurricane-induced sediment delivery may be an important contributor for deltaic wetland vertical accretion, but the contribution from hurricanes to long-term sediment accumulation is substantially less than sediment delivery supplied by existing and planned river-sediment diversions at present-day river-sediment loads.

  19. The Changing Geomorphic Template of Native Fish Habitat of the Lower San Rafael River, Utah

    NASA Astrophysics Data System (ADS)

    Fortney, S. T.; Dean, D. J.; Schmidt, J. C.

    2010-12-01

    The physical template of the aquatic ecosystem of the lower San Rafael River (UT) changed dramatically during the 20th century. 1938 aerial photographs depict a channel comprised of multiple threads with numerous bars. The river has since been transformed into a single-thread channel with a low width-to-depth ratio. The drastic changes in the channel geometry have resulted in severely degraded habitat conditions. Despite these changes in habitat quality and quantity, roundtail chub, flannelmouth sucker, and bluehead sucker are still found in isolated patches of complex habitat. Three factors are primarily responsible for changes in the channel geomorphology: (1) reduced magnitude and duration of the spring snowmelt flood, (2) dense establishment of tamarisk (Tamarix spp) throughout the alluvial valley, and (3) continued supply of fine sediment from ephemeral tributaries. We determined the degree and rate of geomorphic change by analyzing spatially-rich data extracted from aerial photographs and temporally-rich data recorded at USGS gage 09328500. We evaluated channel morphologic processes by interpreting stratigraphy in floodplain trenches and dated these alluvial deposits using dendro-geomorphic techniques. We correlated the flood record to floodplain deposits, thus determining the role of floods in shaping the present channel. Aerial photography analysis shows that a 10-km reach cumulatively narrowed 62% during a span of 44 years. Between 1949 and 1970, the channel cross-section at USGS gage 09328500 narrowed by 60% and incised its bed approximately 1.2 m. Rating relations since the 1980’s provide corroborative evidence that channel narrowing and reduction in channel capacity continues; today, parts of the channel bed are on bedrock, thereby preventing further incision. Stratigraphy observed in a 40-m long trench demonstrates that the channel has narrowed by oblique and vertical accretion processes. Dendrogeomorphic results elucidate the relative role of channel forming mechanisms; and the combination of spatially extensive and temporally rich analyses reveals that feedback mechanisms facilitate in channel adjustment. These results will guide efforts to restore fish habitat and rehabilitate the San Rafael River by tamarisk eradication, in-stream flow augmentation, and reconnection of channel and floodplain habitats.

  20. Geomorphological hazards and environmental impact: Assessment and mapping

    NASA Astrophysics Data System (ADS)

    Panizza, Mario

    In five sections the author develops the methods for the integration of geomorphological concepts into Environmental Impact and Mapping. The first section introduces the concepts of Impact and Risk through the relationships between Geomorphological Environment and Anthropical Element. The second section proposes a methodology for the determination of Geomorphological Hazard and the identification of Geomorphological Risk. The third section synthesizes the procedure for the compilation of a Geomorphological Hazards Map. The fourth section outlines the concepts of Geomorphological Resource Assessment for the analysis of the Environmental Impact. The fifth section considers the contribution of geomorphological studies and mapping in the procedure for Environmental Impact Assessment.

  1. Detectability and geomorphometry of tufa barrages in a small forested karstic river using airborne LiDAR topo-bathymetry

    NASA Astrophysics Data System (ADS)

    Profe, Jörn; Höfle, Bernhard

    2017-04-01

    Tufas are secondary carbonate precipitations which occur ubiquitously in karstic environments. Thus, freshwater tufas are increasingly noticed as a high-resolution terrestrial paleoclimate archive. However, complex interactions between climate, hydrology and geomorphology drive tufa landscapes as a self-organizing system that creates a patchy transition zone between land and water at the decimeter scale. These feedbacks challenge the modern analogue technique to understand paleo-tufa evolution and require a detailed 3D characterization of tufa geomorphometry to better understand their shaping processes in relation to channel bed morphology. Due to the complex geometric nature of tufa landscapes and predominant land-water transition zones, new remote sensing techniques such as airborne sub-meter footprint LiDAR topo-bathymetry (ALTB) are necessary to enable a detailed 3D description. Using the Riegl VQ-820-G at the Kaisinger Brunnenbach, Germany, we successfully detected submerged and subaerial tufas with maximum total dam heights from 0.3 m up to 1.6 m (cf. Profe et al. 2016). In addition, slope and openness derived from a high-resolution digital terrain model (DTM) with 0.2 m spatial resolution provide insights into barrage morphology and orientation. We found that longitudinal slope analysis along the river course relates tufa morphology to channel bed morphology. Raster-based data quality control of the LiDAR topo-bathymetric DTM reveals an overall vertical data precision of 3 cm and an overall vertical data accuracy of 15.4 cm (1σ) (Profe et al. 2016). The 3D characterization of tufa landscapes facilitates the identification of monitoring and drilling sites for subsequent hydrological and geochemical studies that deepen our knowledge about the complex barrage formation processes. In the advent of UAV-borne LiDAR platforms, we are convinced that it becomes possible to reduce data uncertainty and to better represent e.g. tufa overhangs, vegetation cover and incorporated plant material. Furthermore, our findings may foster research in other disciplines that work on small-scale land-water transition zones and are interested in a detailed 3D geomorphometric description derived from 3D point clouds directly. Reference: Profe, J., Höfle, B., Hämmerle, M., Steinbacher, F., Yang, M.-S., Schröder-Ritzrau, A., Frank, N., 2016. Characterizing tufa barrages in relation to channel bed morphology in a small karstic river by airborne LiDAR topo-bathymetry. Proceedings of the Geologists' Association 127: 664-675. doi:10.1016/j.pgeola.2016.10.004

  2. Evaluation of Elevation, Slope and Stream Network Quality of SPOT Dems

    NASA Astrophysics Data System (ADS)

    El Hage, M.; Simonetto, E.; Faour, G.; Polidori, L.

    2012-07-01

    Digital elevation models are considered the most useful data for dealing with geomorphology. The quality of these models is an important issue for users. This quality concerns position and shape. Vertical accuracy is the most assessed in many studies and shape quality is often neglected. However, both of them have an impact on the quality of the final results for a particular application. For instance, the elevation accuracy is required for orthorectification and the shape quality for geomorphology and hydrology. In this study, we deal with photogrammetric DEMs and show the importance of the quality assessment of both elevation and shape. For this purpose, we produce several SPOT HRV DEMs with the same dataset but with different template size, that is one of the production parameters from optical images. Then, we evaluate both elevation and shape quality. The shape quality is assessed with in situ measurements and analysis of slopes as an elementary shape and stream networks as a complex shape. We use the fractal dimension and sinuosity to evaluate the stream network shape. The results show that the elevation accuracy as well as the slope accuracy are affected by the template size. Indeed, an improvement of 1 m in the elevation accuracy and of 5 degrees in the slope accuracy has been obtained while changing this parameter. The elevation RMSE ranges from 7.6 to 8.6 m, which is smaller than the pixel size (10 m). For slope, the RMSE depends on the sampling distance. With a distance of 10 m, the minimum slope RMSE is 11.4 degrees. The stream networks extracted from these DEMs present a higher fractal dimension than the reference river. Moreover, the fractal dimension of the extracted networks has a negligible change according to the template size. Finally, the sinuosity of the stream networks is slightly affected by the change of the template size.

  3. Micro-geomorphology Surveying and Analysis of Xiadian Fault Scarp, China

    NASA Astrophysics Data System (ADS)

    Ding, R.

    2014-12-01

    Historic records and field investigations reveal that the Mw 8.0 Sanhe-Pinggu (China) earthquake of 1679 produced a 10 to 18 km-long surface rupture zone, with dominantly dip-slip accompanied by a right-lateral component along the Xiadian fault, resulting in extensive damage throughout north China. The fault scarp that was coursed by the co-seismic ruptures from Dongliuhetun to Pangezhang is about 1 to 3 meters high, and the biggest vertical displacement locates in Pangezhuang, it is easily to be seen in the flat alluvial plain. But the 10 to 18 km-long surface rupture couldn't match the Mw 8.0 earthquake scale. After more than 300 years land leveling, the fault scarps in the meizoseismal zone which is farmland are retreat at different degree, some small scarps are becoming disappeared, so it is hard to identify by visual observation in the field investigations. The meizoseismal zone is located in the alluvial plain of the Chaobai river and Jiyun river, and the fault is perpendicular to the river. It is easy to distinguish fault scarps from erosion scarps. Land leveling just changes the slope of the fault scarp, but it can't eliminate the height difference between two side of the fault. So it is possible to recover the location and height of the fault scarp by using Digital Elevation Model (DEM) analysis and landform surveying which is constrained by 3D centimeter-precision RTK GPS surveying method in large scale crossing the fault zone. On the base of the high-precision DEM landform analysis, we carried out 15 GPS surveying lines which extends at least 10km for each crossing the meizoseismal zone. Our findings demonstrate that 1) we recover the complete rupture zone of the Sanhe-Pinggu earthquake in 1679, and survey the co-seismic displacement at 15 sites; 2) we conform that the Xiadian fault scarp is consist of three branches with left stepping. Height of the scarp is from 0.5 to 4.0 meters, and the total length of the scarp is at least 50km; 3) Combined with the analysis of offset strata of the trench, we conform that the middle segment of the fault scarp is made by 1679 earthquake; 4) The fault scarp strikes along with the Ju river at the northeast segment of the Xiadian fault which course the asymmetrical valley geomorphology.

  4. Geomorphology and failure history of the earthquake-induced Farmington Siding landslide complex, Davis County, Utah

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lowe, M.; Harty, K.M.

    1993-04-01

    The Farmington Siding landslide complex covers an area of 19.5 km[sup 2] in central Davis County. First identified and mapped in the 1970s, the feature was classified by previous researchers as a liquefaction-induced lateral spread based on surface geomorphology and exposures on the landslide complex. This was the first landslide in Utah to be attributed to earthquake-induced liquefaction. Geomorphic and geologic evidence indicate that the Farmington Sliding landslide complex likely consists of liquefaction-induced landslides that failed by means of both flow failure and lateral spreading. The landslide complex is located in an area underlain primarily by fine-grained deposits of Pleistocenemore » Lake Bonneville and Holocene Great Salt Lake. Geomorphic features of the landslide complex include main and minor scarps, hummocks, closed depressions, and transverse lineaments. The main scarp consists mostly of a series of arcuate scallops near the left flank of the landslide, but it is a relatively linear, single scarp near the right flank of the landslide. Hummocks and closed depressions are most common near the head region of the landslide complex. Failure of the Farmington Sliding landslide complex has occurred at least twice. The older, distal portion of the landslide complex is cut by the Gilbert shoreline of the Bonneville lake cycle, indicating that landsliding occurred more than 10,000 years ago. In the younger portion of the landslide complex, landsliding has disrupted the Gilbert shoreline. Radiocarbon age estimates from trenches on a hummock near the main scarp of the younger landslide indicate that slope failure occurred sometime between about 2,730 [+-] 370 cal. yr B.P. and 4,530 [+-] 300 cal. yr B.P., possibly during the penultimate or antepenultimate surface-faulting earthquake on the Weber segment of the Wasatch fault zone.« less

  5. Linking hydrology, morphodynamics and ecology to assess the restoration potential of the heavily regulated Sarca River, NE Italy

    NASA Astrophysics Data System (ADS)

    Carolli, Mauro; Zolezzi, Guido; Pellegrini, Stefano; Gelmini, Francesca; Deriu, Micaela

    2017-04-01

    We develop an integrated eco-hydro-morphological quantitative investigation of the upper course of the Alpine Sarca River (NE Italy), for the purpose of assessing its potential in terms of environmental restoration. The Sarca River has been subject to heavy exploitation for hydropower production since the 1950s through a complex infrastructural system. As for many regulated Alpine rivers, increasing local interest has recently been developing to design and implement river restoration measures to improve the environmental conditions and ecosystem services that the river can provide. The aim of the work is to develop and apply a quantitative approach for a preliminary assessment of the successful potential of different river restoration options in the light of the recent eco-hydro-morphological dynamics of the Sarca river system at the catchment scale. The proposed analysis consists of three main steps: (1) detection of the main drivers of flow and sediment supply regimes alteration and characterization of such alteration; (2) a quantification of the effects of those alterations on geomorphic processes and fish habitat conditions; (3) the analysis of the restoration potential in the light of the results of the previous assessment. The analysis is tailored to the existing data availability, which is relatively high as for most river systems of comparable size in Europe, but not as much as in the case of a targeted research project, thus providing a representative case for many other regulated river catchments. Hydrological alteration is quantified by comparing recent (20 years) streamflow time series with a reconstructed series of analogous length, using a hydrological model that has been run excluding any man-made water abstraction, release and artificial reservoirs. upstream and downstream a large dam in the middle course of the river. By choosing the adult marble trout as target (endemic) fish species, effects of the alterations on the temporal and spatial habitat suitability have been assessed by applying a hydraulic-habitat method combined with the streamflow time series. Geomorphological trajectories of the last decades have been reconstructed through the analysis of aerial photos, and the geomorphic effects of flow regime alteration have been assessed in terms of the changes in frequency and duration of gravel-transporting flood events. Results indicate hydropower as one of the drivers of hydro-morphological alteration, with widespread torrent control works in the catchment playing a relevant role in reducing sediment supply. Recent changes in flow management related to the imposition of a Minimum Environmental Flow correspond to significant increase in the continuous duration of suitable habitat events, despite representing only a first step towards a dynamic ecological flow regime. While floods able to drive morphological changes still occurred after regulation, their frequency and duration have dramatically decreased, contributing to channel narrowing and morphological simplification. Overall, the analysis suggests that: (i) morphological river restoration aimed at restoring self-formed morphodynamics can only be effective if designed together with a dynamic geomorphic flow regime, and (ii) dynamic ecological flows should designed with a twofold objective of improving habitat and spawning sites conditions together with recreational uses of the river.

  6. Variability Matters: New Insights into Mechanics of River Avulsions on Deltas and Their Deposits

    NASA Astrophysics Data System (ADS)

    Ganti, V.

    2015-12-01

    River deltas are highly dynamic, often fan-shaped depositional systems that form when rivers drain into a standing body of water. They host over a half billion people and are currently under threat of drowning and destruction by relative sea-level rise, subsidence, and anthropogenic interference. Deltas often develop planform fan shapes through avulsions, whereby major river channel shifts occur via "channel jumping" about a spatial node, thus determining their fundamental length scale. Emerging theories suggest that the size of delta lobes is set by backwater hydrodynamics; however, these ideas are difficult to test on natural deltas, which evolve on centennial to millennial timescales. In this presentation, I will show results from the first laboratory delta built through successive deposition of lobes that maintain a constant size that scales with backwater hydrodynamics. The characteristic size of deltas emerges because of a preferential avulsion node that remains fixed spatially relative to the prograding shoreline, and is a consequence of multiple river floods that produce persistent morphodynamic river-bed adjustment within the backwater zone. Moreover, river floods cause erosion in the lowermost reaches of the alluvial river near their coastline, which may leave erosional boundaries in the sedimentary record that may appear similar to those previously interpreted to be a result of relative sea-level fall. I will discuss the implications of these findings in the context of sustainability management of deltas, decoding their stratigraphic record, and identifying ancient standing bodies of water on other planets such as Mars. Finally, I will place this delta study in a broader context of recent work that highlights the importance of understanding and quantifying variability in sedimentology and geomorphology.

  7. Insight on the Peruvian Amazon River: A Planform Metric Characterization of its Morphodynamics

    NASA Astrophysics Data System (ADS)

    Garcia, A. M. P.; Ortals, C.; Frias, C. E.; Abad, J. D.; Vizcarra, J.

    2014-12-01

    Starting in Peru, the Amazon River flows through Colombia and Brazil; additionally, tributaries from Bolivia, Venezuela, and Ecuador contribute to the massive river and its unique geomorphic features. Accordingly, the Amazon Basin has become an important aspect of South America; it is an area of extraordinary biodiversity, rich resources, and unique cultures. However, due to the sheer magnitude and exceptionality of the Amazon River, research regarding the morphodynamic processes that shape and define the river has been difficult. Consequently, current research has not completely understood the planform dynamics of some portions of this river that present a main channel and secondary channels known as "anabranching structures". The purpose of this research was to gain an understanding of the geomorphology of the upper Amazon, the Peruvian section, by obtaining migration rates and planform metrics, including channel count, length, width, and sinuosity, as well as island count, area, and shape. With this data, the morphodynamics of the Peruvian Amazon, especially the relationship between the main channel and its secondary channels in each "anabranching structure" along the river, could be analyzed according to correlations found between various metrics. This analysis was carried out for 5-year time spans over a period of 25 years. Preliminary results showed that the average migration rate versus channel bend radius envelope peak is lower for the secondary channels than for the main channel. However, the maximum migration rate was not always found in the main channel; for several structures, the most dynamic channels were the secondary ones. This implies a certain periodicity to the river's migratory patterns that could be related to the valley boundaries, the local channel sinuosity or geological formations in the study area.

  8. Tagliamento, the king of Alpine rivers

    NASA Astrophysics Data System (ADS)

    Imbriani, Nadia

    2016-04-01

    The Tagliamento river is usually described as the king of the Alpine rivers because it is an extraordinary example of braided gravel-bed river in Europe. It flows in Friuli Venezia Giulia, a region in north-eastern Italy. It has preserved its original ecosystem which has never been changed significantly by irresponsible human interference. Therefore, vegetated islands and braid bars, due to the typical network of channels the river creates, have always been an uncontaminated natural habitat for a wide variety of species of flora and fauna. The Pinzano Bridge, near San Daniele del Friuli, collapsed on 4th November 1966 because of an overflow of water from Tagliamento. From that time, lowlands territorial authorities would like to build retention basins to prevent the river from floodings. A study about the bio-geological survey carried out from a Manzini High School project, chiefly aims to study this ecosystem, which combines the dynamic nature of the Tagliamento with the biodiversity of the whole area where it flows. In the previous years, some classes were involved in this school project. After visiting the river area and taking several photographs of it, the students had the opportunity to reflect upon the devastating environmental impact which the construction of retention basins would cause. They illustrated and analyzed both the solutions offered by some local governors and the objections raised by the World Wide Fund For Nature (WWF). In the near future, other students will continue studying the Tagliamento river so as to be able to appreciate one of the local rarities nature offers, in the hope that the unique geomorphological features of this site of undoubted scientific interest could be kept intact for a very long time.

  9. Fluvial landscapes - human societies interactions during the last 2000 years: the Middle Loire River and its embanking since the Middle Ages (France)

    NASA Astrophysics Data System (ADS)

    Castanet, Cyril; Carcaud, Nathalie

    2015-04-01

    This research deals with the study of fluvial landscapes, heavily and precociously transformed by societies (fluvial anthroposystems). It aims to characterize i), fluvial responses to climate, environmental and anthropogenic changes ii), history of hydraulical constructions relative to rivers iii), history of fluvial origin risks and their management - (Program: AGES Ancient Geomorphological EvolutionS of the Loire River hydrosystem). The Middle Loire River valley in the Val d'Orléans was strongly and precociously occupied, particularly during historical periods. Hydrosedimentary flows are there irregular. The river dykes were built during the Middle Ages (dykes named turcies) and the Modern Period, but ages and localizations of the oldest dykes were not precisely known. A systemic and multi-scaled approach aimed to characterize i), palaeo-hydrographical, -hydrological and -hydraulical evolutions of the Loire River, fluvial risks (palaeo-hazards and -vulnerabilities) and their management. It is based on an integrated approach, in and out archaeological sites: morpho-stratigraphy, sedimentology, geophysics, geochemistry, geomatics, geochronology, archaeology. Spatio-temporal variability of fluvial hazards is characterized. A model of the Loire River fluvial activity is developed: multicentennial scale variability, with higher fluvial activity episodes during the Gallo-Roman period, IX-XIth centuries and LIA. Fluvial patterns changes are indentified. Settlement dynamics and hydraulical constructions of the valley are specified. We establish the ages and localizations of the oldest discovered dikes of the Middle Loire River: after the Late Antiquity and before the end of the Early Middle Ages (2 dated dykes), between Bou and Orléans cities. During historical periods, we suggest 2 main thresholds concerning socio-environmental interactions: the first one during the Early Middle Ages (turcies: small scattered dykes), the second during the Modern Period (levees: high quasi-continuous dykes).

  10. Stream hierarchy defines riverscape genetics of a North American desert fish.

    PubMed

    Hopken, Matthew W; Douglas, Marlis R; Douglas, Michael E

    2013-02-01

    Global climate change is apparent within the Arctic and the south-western deserts of North America, with record drought in the latter reflected within 640,000 km(2) of the Colorado River Basin. To discern the manner by which natural and anthropogenic drivers have compressed Basin-wide fish biodiversity, and to establish a baseline for future climate effects, the Stream Hierarchy Model (SHM) was employed to juxtapose fluvial topography against molecular diversities of 1092 Bluehead Sucker (Catostomus discobolus). MtDNA revealed three geomorphically defined evolutionarily significant units (ESUs): Bonneville Basin, upper Little Colorado River and the remaining Colorado River Basin. Microsatellite analyses (16 loci) reinforced distinctiveness of the Bonneville Basin and upper Little Colorado River, but subdivided the Colorado River Basin into seven management units (MUs). One represents a cline of three admixed gene pools comprising the mainstem and its lower-gradient tributaries. Six others are not only distinct genetically but also demographically (i.e. migrants/generation <9.7%). Two of these (i.e. Grand Canyon and Canyon de Chelly) are defined by geomorphology, two others (i.e. Fremont-Muddy and San Raphael rivers) are isolated by sharp declivities as they drop precipitously from the west slope into the mainstem Colorado/Green rivers, another represents an isolated impoundment (i.e. Ringdahl Reservoir), while the last corresponds to a recognized subspecies (i.e. Zuni River, NM). Historical legacies of endemic fishes (ESUs) and their evolutionary potential (MUs) are clearly represented in our data, yet their arbiter will be the unrelenting natural and anthropogenic water depletions that will precipitate yet another conservation conflict within this unique but arid region. © 2012 Blackwell Publishing Ltd.

  11. Télédétection par satellite et SIG pour l'analyse des déplacements des chenaux dans le delta actif de la Rivière Jaune en ChineTeledetección satelitária y SIG para analizar cambios en el desplazamiento de causes en el delta activo del Río Amarillo, China

    NASA Astrophysics Data System (ADS)

    Yang, Xiaojun; Damen, Michiel C. J.; van Zuidam, Robert A.

    Channel migration in deltaic lowlands tends to be complicated by marine processes and intensified cultural practices. Understanding the ways in which river channels have migrated through time is critical to tackling many geomorphologic and river management problems. Because of large magnitude and rapid rates of change, special surveillance systems are needed to efficiently measure and monitor channel migration. This study presents an application of geographic information technologies for the study of channel migration in the active Yellow River Delta, China. The main source of data was a series of time-sequential Landsat images spanning a period of approximately 19 years. A geographic information system (GIS) was used to support modernized channel position mapping and measurement. The spatio-temporal changes of river banks and channel centerlines were systematically examined, and an attempt was made to relate these computational results with appropriate natural and human processes affecting the delta. This study demonstrates the utility of satellite remote sensing integrated with a GIS in investigating channel migration.

  12. Effect of a levee setback on aquatic resources using two-dimensional flow and bioenergetics models

    USGS Publications Warehouse

    Black, Robert W.; Czuba, Christiana R.; Magirl, Christopher S.; McCarthy, Sarah; Berge, Hans; Comanor, Kyle

    2016-04-05

    Watershed restoration is the focus of many resource managers and can include a multitude of restoration actions each with specific restoration objectives. For the White River flowing through the cities of Pacific and Sumner, Washington, a levee setback has been proposed to reconnect the river with its historical floodplain to help reduce flood risks, as well as provide increased habitat for federally listed species of salmonids. The study presented here documents the use of a modeling framework that integrates two-dimensional hydraulic modeling with process-based bioenergetics modeling for predicting how changes in flow from reconnecting the river with its floodplain affects invertebrate drift density and the net rate of energy intake of juvenile salmonids. Modeling results were calculated for flows of 25.9 and 49.3 cubic meters per second during the spring, summer, and fall. Predicted hypothetical future mean velocities and depths were significantly lower and more variable when compared to current conditions. The abundance of low energetic cost and positive growth locations for salmonids were predicted to increase significantly in the study reach following floodplain reconnection, particularly during the summer. This modeling framework presents a viable approach for evaluating the potential fisheries benefits of reconnecting a river to its historical floodplain that integrates our understanding of hydraulic, geomorphology, and organismal biology.

  13. Denitrification in a large river: consideration of geomorphic controls on microbial activity and community structure.

    PubMed

    Tatariw, Corianne; Chapman, Elise L; Sponseller, Ryan A; Mortazavi, Behzad; Edmonds, Jennifer W

    2013-10-01

    Ecological theory argues that the controls over ecosystem processes are structured hierarchically, with broader-scale drivers acting as constraints over the interactions and dynamics at nested levels of organization. In river ecosystems, these interactions may arise from broadscale variation in channel form that directly shapes benthic habitat structure and indirectly constrains resource supply and biological activity within individual reaches. To evaluate these interactions, we identified sediment characteristics, water chemistry, and denitrifier community structure as factors influencing benthic denitrification rates in a sixth-order river that flows through two physiographic provinces and the transitional zone between them, each with distinct geomorphological properties. We found that denitrification rates tracked spatial changes in sediment characteristics and varied seasonally with expected trends in stream primary production. Highest rates were observed during the spring and summer seasons in the physiographic province dominated by fine-grained sediments, illustrating how large-scale changes in river structure can constrain the location of denitrification hotspots. In addition, nirS and nirK community structure each responded differently to variation in channel form, possibly due to changes in dissolved oxygen and organic matter supply. This shift in denitrifier community structure coincident with higher rates of N removal via denitrification suggests that microbial community structure may influence biogeochemical processes.

  14. Risk assessment of flash floods in central Pyrenees (Spain) through land use change analysis

    NASA Astrophysics Data System (ADS)

    Serrano-Notivoli, Roberto; Mora, Daniel; Sánchez-Fabre, Miguel; Ángel Saz, Miguel; Ollero, Alfredo

    2015-04-01

    Nowadays, the main cause of the damages to human areas is the increased risk exposure. The urbanization in touristic areas in Pyrenees has increased enormously in last 25 years, and the most of urban development have been made on land occupied by the stream channel. We present two different case studies in central Pyrenees: one in Aragón river and one in Ésera river. We made a land use analysis from 1956 to 2013 in the headwaters of these two rivers delimiting the channel in different flash floods events, and analysing the amount and distribution of precipitation at the same time. The results show that the risk exposure is one of the main factors of the impact of flash floods. We found that most of the damage on urbanization and human activities was caused by the urban occupation of areas that were located on the floodplain of the river. For both Aragon and Esera headwaters precipitation events were considered extreme in their time series. However, the amount of precipitation of these extreme events does not support the consequences in geomorphological and human environments. The events of high intensity rainfall over the last years could be expected, yet, it had unexpected consequences that could be predictable by land managers through an appropriate regional planning.

  15. Urbanization Impacts on River Landscapes in a Global Context

    NASA Astrophysics Data System (ADS)

    Chin, A.

    2005-12-01

    A half century ago, Strahler (1956) and Leopold (1956) pointed attention to the reality of human impacts on river systems, outlining erosion and aggradation as system responses when steady state is disturbed by human activity, and linking river channel adjustments to changes in sediment yield owing to land use alterations. Significant advances have been made along these lines in the years since, with intensified research efforts producing a voluminous literature documenting a range of human impacts on fluvial geomorphology. This paper summarizes the progress made on understanding the impacts of urban development on river landscapes, with emphasis on the distribution of such impacts in a global context. Drawing from a database developed from published literature representing a range of world areas, the analysis quantifies the magnitude and direction of urban-induced change in a comparative context, evaluates how impacts vary with locale and scale, and assesses the persistence of such impacts across locales and scales. Results indicate high variability both in magnitude and persistence of impacts. The spatial distribution of research investigations has also been markedly uneven, with input to theory development having come from a limited number of sites. Substantial areas across the earth surface remain blind spots in this context; future investigations might serve the science best if they are conducted in some of these locations.

  16. Annual glacier dammed lake drainage in Zackenberg, Northeast Greenland

    NASA Astrophysics Data System (ADS)

    Lane, Timothy; Adamson, Kathryn; Matthews, Tom

    2016-04-01

    A.P. Olsen is a 295 km2 ice cap in the Zackenberg region of Northeast Greenland (74.6° N, 21.5° W), 35 km from the ZERO Zackenberg Research Station. The ice cap lies on a gneissic plateau, covering an elevation of 200 to 1450 m a.s.l. A.P. Olsen mass balance has been monitored since 2008 and reconstructed for the period 1995-2007. Meltwater from this ice cap drains into the Zackenberg River, and into Young Sund via the Zackenberg Delta. One outlet dams a c. 0.8 km2 lake fed by the northern part of the ice cap. Observational data suggests this lake drains annually, flooding subglacially into the Zackenberg River. But the impacts of these flood events on the hydrology, sediment transfer, and geomorphology of the proglacial zone downstream have not been examined in detail. Understanding the impacts of glacial lake outburst flood events is important in the sensitive Arctic environment, where glacial change is rapid. We use Landsat scenes to reconstruct lake extent from 1999-2015. This is compared to Zackenberg River discharge measurements, available from the ZERO Zackenberg monitoring programme. These datasets are used to examine the nature and timing of flood events, and assess the impacts on the Zackenberg river downstream.

  17. The Wavelet ToolKat: A set of tools for the analysis of series through wavelet transforms. Application to the channel curvature and the slope control of three free meandering rivers in the Amazon basin.

    NASA Astrophysics Data System (ADS)

    Vaudor, Lise; Piegay, Herve; Wawrzyniak, Vincent; Spitoni, Marie

    2016-04-01

    The form and functioning of a geomorphic system result from processes operating at various spatial and temporal scales. Longitudinal channel characteristics thus exhibit complex patterns which vary according to the scale of study, might be periodic or segmented, and are generally blurred by noise. Describing the intricate, multiscale structure of such signals, and identifying at which scales the patterns are dominant and over which sub-reach, could help determine at which scales they should be investigated, and provide insights into the main controlling factors. Wavelet transforms aim at describing data at multiple scales (either in time or space), and are now exploited in geophysics for the analysis of nonstationary series of data. They provide a consistent, non-arbitrary, and multiscale description of a signal's variations and help explore potential causalities. Nevertheless, their use in fluvial geomorphology, notably to study longitudinal patterns, is hindered by a lack of user-friendly tools to help understand, implement, and interpret them. We have developed a free application, The Wavelet ToolKat, designed to facilitate the use of wavelet transforms on temporal or spatial series. We illustrate its usefulness describing longitudinal channel curvature and slope of three freely meandering rivers in the Amazon basin (the Purus, Juruá and Madre de Dios rivers), using topographic data generated from NASA's Shuttle Radar Topography Mission (SRTM) in 2000. Three types of wavelet transforms are used, with different purposes. Continuous Wavelet Transforms are used to identify in a non-arbitrary way the dominant scales and locations at which channel curvature and slope vary. Cross-wavelet transforms, and wavelet coherence and phase are used to identify scales and locations exhibiting significant channel curvature and slope co-variations. Maximal Overlap Discrete Wavelet Transforms decompose data into their variations at a series of scales and are used to provide smoothed descriptions of the series at the scales deemed relevant.

  18. Headwater Capture Evidenced by Paleo-Rivers Reconstruction and Population Genetic Structure of the Armored Catfish (Pareiorhaphis garbei) in the Serra do Mar Mountains of Southeastern Brazil

    PubMed Central

    Lima, Sergio M. Q.; Berbel-Filho, Waldir M.; Araújo, Thais F. P.; Lazzarotto, Henrique; Tatarenkov, Andrey; Avise, John C.

    2017-01-01

    Paleo-drainage connections and headwater stream-captures are two main historical processes shaping the distribution of strictly freshwater fishes. Recently, bathymetric-based methods of paleo-drainage reconstruction have opened new possibilities to investigate how these processes have shaped the genetic structure of freshwater organisms. In this context, the present study used paleo-drainage reconstructions and single-locus cluster delimitation analyses to examine genetic structure on the whole distribution of Pareiorhaphis garbei, a ‘near threatened’ armored catfish from the Fluminense freshwater ecoregion in Southeastern Brazil. Sequences of two mitochondrial genes (cytochrome b and cytochrome c oxidase subunit 1) were obtained from five sampling sites in four coastal drainages: Macaé (KAE), São João (SJO), Guapi-Macacu [sub-basins Guapiaçu (GAC) and Guapimirim (GMI)], and Santo Aleixo (SAL). Pronounced genetic structure was found, involving 10 haplotypes for cytB and 6 for coi, with no haplotypes shared between localities. Coalescent-based delineation methods as well as distance-based methods revealed genetic clusters corresponding to each sample site. Paleo-drainage reconstructions showed two putative paleo-rivers: an eastern one connecting KAE and SJO; and a western one merging in the Guanabara Bay (GAC, GMI, and SAL). A disagreement was uncovered between the inferred past riverine connections and current population genetic structure. Although KAE and SJO belong to the same paleo-river, the latter is more closely related to specimens from the Guanabara paleo-river. This discordance between paleo-drainage connections and phylogenetic structure may indicate an ancient stream-capture event in headwaters of this region. Furthermore, all analyses showed high divergence between KAE and the other lineages, suggesting at least one cryptic species in the latter, and that the nominal species should be restricted to the Macaé river basin, its type locality. In this drainage, impacts such as the invasive species and habitat loss can be especially threatening for such species with a narrow range. Our results also suggest that freshwater fishes from headwaters in the Serra do Mar mountains might have different biogeographical patterns than those from the lowlands, indicating a complex and dynamic climatic and geomorphological history. PMID:29259623

  19. Headwater Capture Evidenced by Paleo-Rivers Reconstruction and Population Genetic Structure of the Armored Catfish (Pareiorhaphis garbei) in the Serra do Mar Mountains of Southeastern Brazil.

    PubMed

    Lima, Sergio M Q; Berbel-Filho, Waldir M; Araújo, Thais F P; Lazzarotto, Henrique; Tatarenkov, Andrey; Avise, John C

    2017-01-01

    Paleo-drainage connections and headwater stream-captures are two main historical processes shaping the distribution of strictly freshwater fishes. Recently, bathymetric-based methods of paleo-drainage reconstruction have opened new possibilities to investigate how these processes have shaped the genetic structure of freshwater organisms. In this context, the present study used paleo-drainage reconstructions and single-locus cluster delimitation analyses to examine genetic structure on the whole distribution of Pareiorhaphis garbei , a 'near threatened' armored catfish from the Fluminense freshwater ecoregion in Southeastern Brazil. Sequences of two mitochondrial genes (cytochrome b and cytochrome c oxidase subunit 1) were obtained from five sampling sites in four coastal drainages: Macaé (KAE), São João (SJO), Guapi-Macacu [sub-basins Guapiaçu (GAC) and Guapimirim (GMI)], and Santo Aleixo (SAL). Pronounced genetic structure was found, involving 10 haplotypes for cytB and 6 for coi , with no haplotypes shared between localities. Coalescent-based delineation methods as well as distance-based methods revealed genetic clusters corresponding to each sample site. Paleo-drainage reconstructions showed two putative paleo-rivers: an eastern one connecting KAE and SJO; and a western one merging in the Guanabara Bay (GAC, GMI, and SAL). A disagreement was uncovered between the inferred past riverine connections and current population genetic structure. Although KAE and SJO belong to the same paleo-river, the latter is more closely related to specimens from the Guanabara paleo-river. This discordance between paleo-drainage connections and phylogenetic structure may indicate an ancient stream-capture event in headwaters of this region. Furthermore, all analyses showed high divergence between KAE and the other lineages, suggesting at least one cryptic species in the latter, and that the nominal species should be restricted to the Macaé river basin, its type locality. In this drainage, impacts such as the invasive species and habitat loss can be especially threatening for such species with a narrow range. Our results also suggest that freshwater fishes from headwaters in the Serra do Mar mountains might have different biogeographical patterns than those from the lowlands, indicating a complex and dynamic climatic and geomorphological history.

  20. River rehabilitation for the delivery of multiple ecosystem services at the river network scale.

    PubMed

    Gilvear, David J; Spray, Chris J; Casas-Mulet, Roser

    2013-09-15

    This paper presents a conceptual framework and methodology to assist with optimising the outcomes of river rehabilitation in terms of delivery of multiple ecosystem services and the benefits they represent for humans at the river network scale. The approach is applicable globally, but was initially devised in the context of a project critically examining opportunities and constraints on delivery of river rehabilitation in Scotland. The spatial-temporal approach highlighted is river rehabilitation measure, rehabilitation scale, location on the stream network, ecosystem service and timescale specific and could be used as initial scoping in the process of planning rehabilitation at the river network scale. The levels of service delivered are based on an expert-derived scoring system based on understanding how the rehabilitation measure assists in reinstating important geomorphological, hydrological and ecological processes and hence intermediate or primary ecosystem function. The framework permits a "total long-term (>25 years) ecosystem service score" to be calculated which is the cumulative result of the combined effect of the number of and level of ecosystem services delivered over time. Trajectories over time for attaining the long-term ecosystem service score for each river rehabilitation measures are also given. Scores could also be weighted according to societal values and economic valuation. These scores could assist decision making in relation to river rehabilitation at the catchment scale in terms of directing resources towards alternative scenarios. A case study is presented of applying the methodology to the Eddleston Water in Scotland using proposed river rehabilitation options for the catchment to demonstrate the value of the approach. Our overall assertion is that unless sound conceptual frameworks are developed that permit the river network scale ecosystem services of river rehabilitation to be evaluated as part of the process of river basin planning and management, the total benefit of river rehabilitation may well be reduced. River rehabilitation together with a 'vision' and framework within which it can be developed, is fundamental to future success in river basin management. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Development of a channel classification to evaluate potential for cottonwood restoration, lower segments of the Middle Missouri River, South Dakota and Nebraska

    USGS Publications Warehouse

    Jacobson, Robert B.; Elliott, Caroline M.; Huhmann, Brittany L.

    2010-01-01

    This report documents development of a spatially explicit river and flood-plain classification to evaluate potential for cottonwood restoration along the Sharpe and Fort Randall segments of the Middle Missouri River. This project involved evaluating existing topographic, water-surface elevation, and soils data to determine if they were sufficient to create a classification similar to the Land Capability Potential Index (LCPI) developed by Jacobson and others (U.S. Geological Survey Scientific Investigations Report 2007–5256) and developing a geomorphically based classification to apply to evaluating restoration potential.Existing topographic, water-surface elevation, and soils data for the Middle Missouri River were not sufficient to replicate the LCPI. The 1/3-arc-second National Elevation Dataset delineated most of the topographic complexity and produced cumulative frequency distributions similar to a high-resolution 5-meter topographic dataset developed for the Lower Missouri River. However, lack of bathymetry in the National Elevation Dataset produces a potentially critical bias in evaluation of frequently flooded surfaces close to the river. High-resolution soils data alone were insufficient to replace the information content of the LCPI. In test reaches in the Lower Missouri River, soil drainage classes from the Soil Survey Geographic Database database correctly classified 0.8–98.9 percent of the flood-plain area at or below the 5-year return interval flood stage depending on state of channel incision; on average for river miles 423–811, soil drainage class correctly classified only 30.2 percent of the flood-plain area at or below the 5-year return interval flood stage. Lack of congruence between soil characteristics and present-day hydrology results from relatively rapid incision and aggradation of segments of the Missouri River resulting from impoundments and engineering. The most sparsely available data in the Middle Missouri River were water-surface elevations. Whereas hydraulically modeled water-surface elevations were available at 1.6-kilometer intervals in the Lower Missouri River, water-surface elevations in the Middle Missouri River had to be interpolated between streamflow-gaging stations spaced 3–116 kilometers. Lack of high-resolution water-surface elevation data precludes development of LCPI-like classification maps.An hierarchical river classification framework is proposed to provide structure for a multiscale river classification. The segment-scale classification presented in this report is deductive and based on presumed effects of dams, significant tributaries, and geological (and engineered) channel constraints. An inductive reach-scale classification, nested within the segment scale, is based on multivariate statistical clustering of geomorphic data collected at 500-meter intervals along the river. Cluster-based classifications delineate reaches of the river with similar channel and flood-plain geomorphology, and presumably, similar geomorphic and hydrologic processes. The dominant variables in the clustering process were channel width (Fort Randall) and valley width (Sharpe), followed by braiding index (both segments).Clusters with multithread and highly sinuous channels are likely to be associated with dynamic channel migration and deposition of fresh, bare sediment conducive to natural cottonwood germination. However, restoration potential within these reaches is likely to be mitigated by interaction of cottonwood life stages with the highly altered flow regime.

  2. Water quality, sediment characteristics, aquatic habitat, geomorphology, and mussel population status of the Clinch River, Virginia and Tennessee, 2009-2011

    USGS Publications Warehouse

    Krstolic, Jennifer L.; Johnson, Gregory C.; Ostby, Brett J.K.

    2013-01-01

    Chemical, physical, and biological data were collected during 2009-2011 as part of a study of the Clinch River in Virginia and Tennessee. The data from this study, data-collection methods, and laboratory analytical methods used in the study are documented in this report. The study was conducted to describe the conditions of the Clinch River and to determine if there are measurable differences in chemical, physical, or biological characteristics in a segment of the river where freshwater mussel populations are in decline, have low density, richness, little to no recruitment, and lack endangered species (low-quality reach) compared to a segment of the river where mussel assemblages have relatively high density, richness, evidence of recruitment, and support endangered species (high-quality reach). Five continuous water-quality monitors were installed and operated on the mainstem of the Clinch River and two tributaries. Discrete water-quality sample sets were collected during base-flow and stormflow conditions two sites on the Clinch River and on the Guest River, a tributary to the Clinch River predominantly in the Appalachian Plateaus Physiographic Province. Base-flow water-quality samples were collected in July and August 2011 at 15 sites along the mainstem of the Clinch River. Other analyses included longitudinal sampling along the mainstem of the Clinch River at 10 sites to evaluate bed-sediment chemistry, habitat condition, and mollusk community status. In situ freshwater mussel growth and mortality experiments were conducted with hatchery propogated Villosa iris (rainbow mussels). Tissue from the V. iris as well as tissue from 16 Actinonaias pectorosa mussels were analyzed for trace metals, and V. iris mussel tissue was analyzed for organic compounds. Data collected during this investigation were analyzed by various U.S. Geological Survey or U.S. Fish and Wildlife Service laboratories.

  3. River reach classification for the Greater Mekong Region at high spatial resolution

    NASA Astrophysics Data System (ADS)

    Ouellet Dallaire, C.; Lehner, B.

    2014-12-01

    River classifications have been used in river health and ecological assessments as coarse proxies to represent aquatic biodiversity when comprehensive biological and/or species data is unavailable. Currently there are no river classifications or biological data available in a consistent format for the extent of the Greater Mekong Region (GMR; including the Irrawaddy, the Salween, the Chao Praya, the Mekong and the Red River basins). The current project proposes a new river habitat classification for the region, facilitated by the HydroSHEDS (HYDROlogical SHuttle Elevation Derivatives at multiple Scales) database at 500m pixel resolution. The classification project is based on the Global River Classification framework relying on the creation of multiple sub-classifications based on different disciplines. The resulting classes from the sub-classification are later combined into final classes to create a holistic river reach classification. For the GMR, a final habitat classification was created based on three sub-classifications: a hydrological sub-classification based only on discharge indices (river size and flow variability); a physio-climatic sub-classification based on large scale indices of climate and elevation (biomes, ecoregions and elevation); and a geomorphological sub-classification based on local morphology (presence of floodplains, reach gradient and sand transport). Key variables and thresholds were identified in collaboration with local experts to ensure that regional knowledge was included. The final classification is composed 54 unique final classes based on 3 sub-classifications with less than 15 classes each. The resulting classifications are driven by abiotic variables and do not include biological data, but they represent a state-of-the art product based on best available data (mostly global data). The most common river habitat type is the "dry broadleaf, low gradient, very small river". These classifications could be applied in a wide range of hydro-ecological assessments and useful for a variety of stakeholders such as NGO, governments and researchers.

  4. Characterising the Geomorphology of Forested Floodplains Using High Resolution Terrestrial Laser Scanning

    NASA Astrophysics Data System (ADS)

    Sear, D. A.; Brasington, J.; Darby, S. E.

    2007-12-01

    Forested floodplain environments represent the undisturbed land cover of most temperate and tropical river systems, but they are under threat from human resource management (Hughes et al., 2005, FLOBAR II Project report). A scientific understanding of forest floodplain processes therefore has relevance to ecosystem conservation and restoration, and the interpretation of pre-historic river and floodplain evolution. Empirical research has highlighted how overbank flows are relatively shallow and strongly modified by floodplain topography and the presence of vegetation and organic debris on the woodland floor [Jeffries et al., 2003, Geomorphology, 51, 61-80; Millington and Sear, 2007, Earth. Surf. Proc. Landforms, 32, doi: 10.1002/esp.1552]. In such instances flow blockage and diversions are common, and there is the possibility of frequent switches from sub-critical to locally super-critical flow. Such conditions also favour turbulence generation, both by wakes and by shear. Consequently, the floodplain terrain (where we take 'terrain' to include the underlying topography, root structures, and organic debris) plays a key role in modulating the processes of erosion and sedimentation that underpin the physical habitat diversity and hydraulic characteristics of complex wooded floodplain surfaces. However, despite the importance of these issues, as yet there are no formal, quantitative, descriptions of the highly complex and spatially diverse micro- and meso-topography that appears to be characteristic of forested floodplain surfaces. To address this gap, we have undertaken detailed surveys on a small floodplain reach within the Highland Water Research Catchment (HWRC: see http://www.geog.soton.ac.uk/research/nfrc/default.asp), which is a UK national reference site for lowland floodplain forest streams. This involved the deployment of a Leica ScanStation terrestrial laser-scanner from 14 setups and ranges of less than 30 m to acquire an extremely high resolution, accurate (185 million xyz observations, with absolute mean registration errors of 2 mm) 3-d point cloud model of the floodplain. These raw data were processed using a combination of Leica CYCLONE and bespoke filtering algorithms to construct a multi-resolution DTM of the forested floodplain at hitherto unprecedented detail (median point density ~4500 pts m-2). A key point is that the extreme precision and point density permit relevant features of the terrain (micro-topography, protruding roots, branches and stems, and surficial debris) that contribute to the floodplain roughness, to be readily and directly be incorporated in the DTM as topographic features. To characterise the morphology of the floodplain surface we have used the DTM to analyse a range of floodplain morphometric indices, in particular focusing on derivative surface roughness metrics (including roughness height) which are relevant in the parameterization of flow resistance. These are analysed at the floodplain scale to show the spatial distribution of roughness, and at a patch scale selected from a simple classification of floodplain surface. The analysis demonstrates spatial variability in roughness metrics at both scales, which have implications for parameterising flow resistance in models of wooded floodplains.

  5. Candor Chasm in Valles Marineris

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Part of Candor Chasm in Valles Marineris, Mars, from about latitude -9 degrees to -3 degrees and longitude 69 degrees to 75 degrees. Layered terrain is visible in the scene, perhaps due to a huge ancient lake. The geomorphology is complex, shaped by tectonics, mass wasting, and wind, and perhaps by water and volcanism.

  6. The Avignon Bridge: a 3d Reconstruction Project Integrating Archaeological, Historical and Gemorphological Issues

    NASA Astrophysics Data System (ADS)

    Berthelot, M.; Nony, N.; Gugi, L.; Bishop, A.; De Luca, L.

    2015-02-01

    The history and identity of the Avignon's bridge is inseparable from that of the Rhône river. Therefore, in order to share the history and memory of the Rhône, it is essential to get to know this bridge and especially to identify and make visible the traces of its past, its construction, its interaction with the river dynamics, which greatly influenced his life. These are the objectives of the PAVAGE project that focuses on digitally surveying, modelling and re-visiting a heritage site of primary importance with the aim of virtually restoring the link between the two sides which, after the disappearance of the Roman bridge of Arles, constituted for a long time the only connection between Lyon or Vienna and the sea. Therefore, this project has an important geo-historical dimension for which geo-morphological and paleoenvironmental studies were implemented in connection with the latest digital simulation methods exploiting geographic information systems. By integrating knowledge and reflections of archaeologists, historians, geomorphologists, environmentalists, architects, engineers and computer scientists, the result of this project (which involved 5 laboratories during 4 years) is a 3D digital model covering an extension of 50 km2 achieved by integrating satellite imagery, UAV-based acquisitions, terrestrial laser scanning and photogrammetry, etc. Beyond the actions of scientific valorisation concerning the historical and geomorphological dimensions of the project, the results of this work of this interdisciplinary investigation and interpretation of this site are today integrated within a location-based augmented reality application allowing tourists to exploring the virtual reconstruction of the bridge and its environment through tablets inside the portion of territory covered by this project (between Avignon and Villeneuve-lez-Avignon). This paper presents the main aspects of the 3D virtual reconstruction approach.

  7. Managing the effects of multiple stressors on aquatic ecosystems under water scarcity

    NASA Astrophysics Data System (ADS)

    Barceló Cullerés, Damià; Ludwig, Ralf

    2015-04-01

    Water and water-related services are major components of the human wellbeing, and as such are major factors of socio-economic development in Europe; yet freshwater systems are under threat by a variety of stressors (organic and inorganic pollution, geomorphological alterations, land cover change, water abstraction, invasive species and pathogens. Some stressors, such as water scarcity, can be a stressor on its own because of its structural character, and drive the effects of other stressors. The relevance of water scarcity as a stressor is more important in semi-arid regions, such as the Mediterranean basin, which are characterized by highly variable river flows and the occurrence of low flows. This has resulted in increases in frequency and magnitude of extreme flow events. Furthermore, in other European regions such as eastern Germany, western Poland and England, water demand exceeds water availability and water scarcity has become an important management issue. Water scarcity is most commonly associated with inappropriate water management, with resulting river flow reductions. It has become one of the most important drivers of change in freshwater ecosystems. Conjoint occurrence of a myriad of stressors (chemical, geomorphological, biological) under water scarcity will produce novel and unfamiliar synergies and most likely very pronounced effects. Within this context, GLOBAQUA has assembled a multidisciplinary team of leading scientists in the fields of hydrology, chemistry, ecology, ecotoxicology, economy, sociology, engineering and modeling in order to study the interaction of multiple stressors within the frame of strong pressure on water resources. The aim is to achieve a better understanding how current management practices and policies could be improved by identifying the main drawbacks and alternatives.

  8. Environmental impact of melting buried ice blocks (North Poland)

    NASA Astrophysics Data System (ADS)

    Ott, F.; Slowinski, M. M.; Blaszkiewicz, M.; Brauer, A.; Noryskiewicz, B.; Tyszkowski, S.

    2013-12-01

    The aim of the research was to decipher the impacts of the role of dead ice melting on landscape evolution in the Lateglacial and early Holocene Central Europe. Here, we present the paleoecological results from the middle section of the Wda river which is located in northern Poland (Central Europe), on the outwash plain formed during the Pomeranian phase of the last (Vistulian) glacial period ca 16,000 14C yrs BP. The Wda river has a typical polygenetic valley in young glacial areas of the northern central European lowlands. We reconstructed environmental changes using biotic proxies (plant macrofossil and pollen analyses) and geomorphological investigations. In this study we focused on a short terrestrial sediment core (48 cm) representing four phases of landscape evolution: telmatic, lacustrine, lacustrine-fluvial and alluvial. Abrupt changes in lithology and sediment structures show rapid changes and threshold processes in environmental conditions. The AMS 14C dating of terrestrial plant remains reveals an age for the basal sediments of 11 223 × 23 cal yr BP and thus falls within the Preboreal biozone. Our results showed that existence of buried ice blocks in northern Poland even at the beginning of the Holocene is clear evidence that locally discontinuous permafrost still was present at that time. The results of our study prove a strong influence of melting buried ice blocks on the geomorphological development, hydrological changes in the catchment, and the biotic environment even in the early Holocene. The research was supported by the National Science Centre Poland (grants No. NN 306085037 and NCN 2011/01/B/ST10/07367). This study is a contribution to the Virtual Institute of Integrated Climate and Landscape Evolution (ICLEA) of the Helmholtz Association. Financial support by the COST Action ES0907 INTIMATE is gratefully acknowledged.

  9. Geomorphology of ice stream beds: recent progress and future challenges

    NASA Astrophysics Data System (ADS)

    Stokes, Chris R.

    2016-04-01

    Ice sheets lose mass primarily by melting and discharge via rapidly-flowing ice streams. Surface and basal melting (e.g. of ice shelves) are closely linked to atmospheric and oceanic conditions, but the mechanisms that drive changes in ice stream discharge are more complex; and are influenced by conditions at their bed which can sustain, enhance or inhibit their motion. Although explicit comparisons are rare, the ice-bed interface is similar to the 'boundary layer' in fluvial and aeolian environments, where shear stresses (both basal and lateral in the case of ice streams) oppose the flow of the overlying medium. The analogy extends further because processes within the boundary layer create a distinctive geomorphology (and roughness) that is characterised by subglacial bedforms that resemble features in fluvial and aeolian environments. Their creation results from erosion, transport and deposition of sediment which is poorly constrained, but which is intimately linked to the mechanisms through which ice streams are able to flow rapidly. The study of ice stream geomorphology is, therefore, critical to our understanding of their dynamics. Despite difficulty in observing the subglacial environment of active ice streams, our understanding of their geomorphology has grown rapidly in the last three decades, from almost complete ignorance to a detailed knowledge of their geomorphological products. This has been brought about by two main approaches: (i) geophysical investigation of modern (active) ice streams, and (ii) sedimentological and geomorphological investigation of palaeo-ice stream beds. The aim of this paper is to review progress in these two areas, highlight the key questions that remain, and discuss the opportunities that are likely to arise that will enable them to be addressed. It is clear that whilst these two main approaches have led to important advances, they have often been viewed as separate sub-disciplines, with minimal cross-pollination of ideas and concepts, particularly with respect to how landforms can be securely linked to subglacial processes and ice dynamics. However, recent developments in numerical modelling of the subglacial environment are beginning to offer new opportunities to tackle this issue and observations from both modern and palaeo-ice streams will be critical to constrain and validate such modelling.

  10. Geomorphic evidence of Quaternary tectonics within an underlap fault zone of southern Apennines, Italy

    NASA Astrophysics Data System (ADS)

    Giano, Salvatore Ivo; Pescatore, Eva; Agosta, Fabrizio; Prosser, Giacomo

    2018-02-01

    A composite seismic source, the Irpinia - Agri Valley Fault zone, located in the axial sector of the fold-and-thrust belt of southern Apennines, Italy, is investigated. This composite source is made up of a series of nearly parallel, NW-striking normal fault segments which caused many historical earthquakes. Two of these fault segments, known as the San Gregorio Magno and Pergola-Melandro, and the fault-related mountain fronts, form a wedge-shaped, right-stepping, underlap fault zone. This work is aimed at documenting tectonic geomorphology and geology of this underlap fault zone. The goal is to decipher the evidence of surface topographic interaction between two bounding fault segments and their related mountain fronts. In particular, computation of geomorphic indices such as mountain front sinuosity (Smf), water divide sinuosity (Swd), asymmetry factor (AF), drainage basin elongation (Bs), relief ratio (Rh), Hypsometry (HI), normalized steepness (Ksn), and concavity (θ) is integrated with geomorphological analysis, the geological mapping, and structural analysis in order to assess the recent activity of the fault scarp sets recognized within the underlap zone. Results are consistent with the NW-striking faults as those showing the most recent tectonic activity, as also suggested by presence of related slope deposits younger than 38 ka. The results of this work therefore show how the integration of a multidisciplinary approach that combines geomorphology, morphometry, and structural analyses may be key to solving tectonic geomorphology issues in a complex, fold-and-thrust belt configuration.

  11. Geomorphology of the Iberian Continental Margin

    NASA Astrophysics Data System (ADS)

    Maestro, Adolfo; López-Martínez, Jerónimo; Llave, Estefanía; Bohoyo, Fernando; Acosta, Juan; Hernández-Molina, F. Javier; Muñoz, Araceli; Jané, Gloria

    2013-08-01

    The submarine features and processes around the Iberian Peninsula are the result of a complex and diverse geological and oceanographical setting. This paper presents an overview of the seafloor geomorphology of the Iberian Continental Margin and the adjacent abyssal plains. The study covers an area of approximately 2.3 million km2, including a 50 to 400 km wide band adjacent to the coastline. The main morphological characteristics of the seafloor features on the Iberian continental shelf, continental slope, continental rise and the surrounding abyssal plains are described. Individual seafloor features existing on the Iberian Margin have been classified into three main groups according to their origin: tectonic and/or volcanic, depositional and erosional. Major depositional and erosional features around the Iberian Margin developed in late Pleistocene-Holocene times and have been controlled by tectonic movements and eustatic fluctuations. The distribution of the geomorphological features is discussed in relation to their genetic processes and the evolution of the margin. The prevalence of one or several specific processes in certain areas reflects the dominant morphotectonic and oceanographic controlling factors. Sedimentary processes and the resulting depositional products are dominant on the Valencia-Catalán Margin and in the northern part of the Balearic Promontory. Strong tectonic control is observed in the geomorphology of the Betic and the Gulf of Cádiz margins. The role of bottom currents is especially evident throughout the Iberian Margin. The Galicia, Portuguese and Cantabrian margins show a predominance of erosional features and tectonically-controlled linear features related to faults.

  12. Actual geomorphological processes on steep hillslope vineyards. A comparison of Ruwertal (Germany) with the Montes de Málaga (Spain).

    NASA Astrophysics Data System (ADS)

    Rodrigo Comino, Jesús; Damián Ruiz Sinoga, José; María Senciales González, José; Guerra Merchán, Antonio; Seeger, Manuel; Ries, Johannes B.

    2016-04-01

    Nowadays, steep hillslope viticulture areas are one of the most complex agricultural eco-geomorphological systems in Europe. Precisely, the vineyards of the Ruwer-Mosel valley (Germany) and Montes de Málaga-Axarquía (Spain) are one clear example. Both regions are characterized by frequent heavy rainfall events, concentrated in summer (Germany) and autumn-winter (Spain), and intensive and not conservative land use managements on the soil (application of vine training systems, herbicides, non ecological amendments, anthropic rills generated by wheel traffic, footsteps in Germany and built by hoes or shovels in Spain). The goals of this work were: i) to determine and to quantify the hydrological and erosive phenomena in two traditional hillslope vineyards in Waldrach (Ruwer-Mosel valley, Germany) and Almáchar (Montes de Málaga-Axarquía, Spain); ii) to compare the geomorphological and hydrological dynamics of these study areas during diverse seasons and under different management conditions (Mediterranean and Continental climatic contexts, application of machineries, traditional protection measures...). For this purpose, a combined methodology performed by Trier and Málaga Universities with soil analysis, sediment traps, rainfall simulations and Guelph permeameter were applied. The main results showed high soil erosion and similar variations in the runoff and infiltration rates. In both study areas, geomorphological and hydrological dynamics registered several spatiotemporal variations along the upper, middle and foot slope, and during different seasons (before and after the vintage, and between the dry and humid period).

  13. (Semi-)Automated landform mapping of the alpine valley Gradental (Austria) based on LiDAR data

    NASA Astrophysics Data System (ADS)

    Strasser, T.; Eisank, C.

    2012-04-01

    Alpine valleys are typically characterised as complex, hierarchical structured systems with rapid landform changes. Detection of landform changes can be supported by automated geomorphological mapping. Especially, the analysis over short time scales require a method for standardised, unbiased geomorphological map reproduction, which is delivered by automated mapping techniques. In general, digital geomorphological mapping is a challenging task, since knowledge about landforms with respect to their natural boundaries as well as their hierarchical and scaling relationships, has to be integrated in an objective way. A combination of very-high spatial resolution data (VHSR) such as LiDAR and new methods like object based image analysis (OBIA) allow for a more standardised production of geomorphological maps. In OBIA the processing units are spatially configured objects that are created by multi-scale segmentation. Therefore, not only spectral information can be used for assigning the objects to geomorphological classes, but also spatial and topological properties can be exploited. In this study we focus on the detection of landforms, especially bedrock sediment deposits (alluvion, debris cone, talus, moraine, rockglacier), as well as glaciers. The study site Gradental [N 46°58'29.1"/ E 12°48'53.8"] is located in the Schobergruppe (Austria, Carinthia) and is characterised by heterogenic geology conditions and high process activity. The area is difficult to access and dominated by steep slopes, thus hindering a fast and detailed geomorphological field mapping. Landforms are identified using aerial and terrestrial LiDAR data (1 m spatial resolution). These DEMs are analysed by an object based hierarchical approach, which is structured in three main steps. The first step is to define occurring landforms by basic land surface parameters (LSPs), topology and hierarchy relations. Based on those definitions a semantic model is created. Secondly, a multi-scale segmentation is performed on a three-band LSP that integrates slope, aspect and plan curvature, which expresses the driving forces of geomorphological processes. In the third step, the generated multi-level object structures are classified in order to produce the geomorphological map. The classification rules are derived from the semantic model. Due to landform type-specific scale dependencies of LSPs, the values of LSPs used in the classification are calculated in a multi-scale manner by constantly enlarging the size of the moving window. In addition, object form properties (density, compactness, rectangular fit) are utilised as additional information for landform characterisation. Validation of classification is performed by intersecting a visually interpreted reference map with the classification output map and calculating accuracy matrices. Validation shows an overall accuracy of 78.25 % and a Kappa of 0.65. The natural borders of landforms can be easily detected by the use of slope, aspect and plan curvature. This study illustrates the potential of OBIA for a more standardised and automated mapping of surface units (landforms, landcover). Therefore, the presented methodology features a prospective automated geomorphological mapping approach for alpine regions.

  14. Geomorphology: the Shock of the Familiar

    NASA Astrophysics Data System (ADS)

    Dietrich, W. E.

    2008-12-01

    Everyone experiences landscapes and has a sense about how they work: water runs down hill, it erodes and carries sediments, and that's about it, right? Introductory earth science text books are uniformly qualitative about the field, and leave one with little sense of wonder, and certainly not "shock". But four shocks occur if one peels away the first impressions. First, landscapes are surprisingly similar: the same forms are repeated in virtually all environments, including under the ocean and on other planets. Second, we lack theory and mechanistic observations to answer many simple first-order questions, e.g. what controls the width of a river, how does rock type control hillslope form and erosion rate, or, is there a topographic signature of life. Third, there are unexpected connections between surface erosion, deep earth processes, and climate. And fourth, the field itself, despite having been a subject of study for well over 100 years, is currently experiencing a revolution of ideas and discoveries through new tools, observatories, centers, journals, books, contributions of researchers from other disciplines, and from a significant hiring of young researchers in geomorphology. Deep messages await discovery in the simple landforms surrounding us.

  15. Geomorphologic, stratigraphic and sedimentologic evidences of tectonic activity in Sone-Ganga alluvial tract in Middle Ganga Plain, India

    NASA Astrophysics Data System (ADS)

    Sahu, Sudarsan; Saha, Dipankar

    2014-08-01

    The basement of the Ganga basin in the Himalayan foreland is criss-crossed by several faults, dividing the basin into several sub-blocks forming horsts, grabens, or half-grabens. Tectonic perturbations along basement faults have affected the fluvial regime and extent of sediment fill in different parts of the basin during Late Quaternary. The East Patna Fault (EPF) and the West Patna Fault (WPF), located in Sone-Ganga alluvial tract in the southern marginal parts of Middle Ganga Plain (MGP), have remained tectonically active. The EPF particularly has acted significantly and influenced in evolving the geomorphological landscape and the stratigraphic architecture of the area. The block bounded by the two faults has earlier been considered as a single entity, constituting a half-graben. The present investigation (by morpho-stratigraphic and sedimentologic means) has revealed the existence of yet another fault within the half-graben, referred to as Bishunpur-Khagaul Fault (BKF). Many of the long profile morphological characters (e.g., knick-zone, low width-depth ratio) of the Sone River at its lower reaches can be ascribed to local structural deformation along BKF. These basement faults in MGP lie parallel to each other in NE-SW direction.

  16. Humans as major geological and geomorphological agents in the Anthropocene: the significance of artificial ground in Great Britain.

    PubMed

    Price, Simon J; Ford, Jonathan R; Cooper, Anthony H; Neal, Catherine

    2011-03-13

    Since the first prehistoric people started to dig for stone to make implements, rather than pick up loose material, humans have modified the landscape through excavation of rock and soil, generation of waste and creation of artificial ground. In Great Britain over the past 200 years, people have excavated, moved and built up the equivalent of at least six times the volume of Ben Nevis. It is estimated that the worldwide deliberate annual shift of sediment by human activity is 57,000 Mt (million tonnes) and exceeds that of transport by rivers to the oceans (22,000 Mt) almost by a factor of three. Humans sculpt and transform the landscape through the physical modification of the shape and properties of the ground. As such, humans are geological and geomorphological agents and the dominant factor in landscape evolution through settlement and widespread industrialization and urbanization. The most significant impact of this has been since the onset of the Industrial Revolution in the eighteenth century, coincident with increased release of greenhouse gases to the atmosphere. The anthropogenic sedimentological record, therefore, provides a marker on which to characterize the Anthropocene.

  17. Evolution of ice sheets in the early Quaternary of the central North Sea: 2.58 Ma to 0.78 Ma

    NASA Astrophysics Data System (ADS)

    Lamb, R.; Huuse, M.; Stewart, M.; Brocklehurst, S. H.

    2016-12-01

    Integration of chronostratigraphic proxies with 3D seismic and well-log data has allowed for a basin-wide re-interpretation of the onset of glaciation in the central North Sea during the Quaternary. Mapping of seismic geomorphology, calculations of water depth and sediment accumulation rates, and other basin analysis techniques unravel the evolution of the North Sea basin during the early Pleistocene, a period of dramatic global cooling and rapid 41 kyr glacial-interglacial cycles, identifying a system which is increasingly dominated by large, continental-scale ice sheets. Prior to this study continental-scale ice sheets were generally not considered able to grow in a 41 kyr cycle and the earliest date for such an ice sheet in the North Sea was identified at the onset of tunnel valley formation in the Elsterian (0.48 Ma; MIS 12) which forms a large regional-scale glacial unconformity. At the onset of the Pleistocene at 2.58 Ma the North Sea basin was an elongate `mega-fjord' with water depths of up to 350 m, infilling rapidly as the European river systems deposited a large clinoform complex in the southern end of the basin. This period corresponds to the preservation of large scale ice-berg scouring on clinoform topsets, suggesting the presence of marine-terminating ice sheets with repeated calving events. As the Pleistocene progressed and global climate became increasingly colder the North Sea became smaller and shallower due to the continual infill of the basin. At 1.72 Ma the basin reached a critical point between the cold climate and the shallowing of the basin and the first evidence for grounded glaciation in the form of mega-scale glacial lineations is seen at this level. Between 1.72 and 0.48 Ma there is evidence for ice-streaming in the form of multiple MSGL flow sets re-occupying the central North Sea, as well as a large glaciotectonic complex. The glacial geomorphological evidence presented pushes back the date of grounded glaciation in the central North Sea by over one million years relative to the existing models. This raises important questions about the completeness of glaciation histories of Europe and other high and mid latitude land areas that can only be addressed by in depth scrutiny of their adjacent offshore sedimentary records.

  18. Geomorphological survey and remote sensing analysis: a multidisciplinary approach to reconstruct triggering factors of a DSGSD in Maso Corto (South Tyrol, Italy)

    NASA Astrophysics Data System (ADS)

    Amato, Gabriele; Fubelli, Giandomenico; Piccin, Gianluca; Chinellato, Giulia; Iasio, Christian; Mosna, David; Morelli, Corrado

    2015-04-01

    In the Alpine regions, it is essential and urgent to define an improved and specific set of monitoring methods for the evolution of instability phenomena in order to avoid the closure of the installations because of the occurrence of natural calamities and to ensure the safety of citizens. In this context the SloMove Project aims at consolidate know-how of the ordinary monitoring applications of surface movements, evaluate their pros and cons and optimize the expected technical procedures of investigation. Within the SloMove project, an experimental composite monitoring has been carried out in the touristic site of Maso Corto (South Tyrol, Italy). Structural-Geomorphological Survey, GPS measurements and Time series analysis of SAR Interferometry data have been integrated. The purposes of this experiment are: 1) to reconstruct the geomorphological dynamics and their state of activity; 2) to provide considerations on the role of permafrost as an influential factor for landslide activity. Structural-Geomorphological survey highlighted control of structural asset of the outcropping lithologies on geomorphological markers, such as trenches, counterscarps, outcropping sliding surfaces. The area is characterized by metamorphic rocks, affected by foliation oriented between N350 and N30. Moreover, joints due to frost thaw activity are common in the shallow portions and the presence of two sets of tectonics fractures (N45, 45°-60° and N360, sub-vertical) has been recognized. In order to evaluate the state of permafrost, rock glaciers in the area have been investigated. SAR interferometry data have been processed by TRE® through the SqueeSAR™ analysis using Radarsat and Envisat images acquired during a period between 2003 and 2009. GPS surveys were carried out through the technique of Rapid-Static Relative Positioning during the summer months of 2012 and 2013. Data shows that an area of 2km2, north of Maso Corto, is affected by a Deep Seated Gravitational Slide Deformation that affects the outcropping metamorphic rocks throughout most part of the slope. Deformation facing southeast is extremely slow, reaching a maximum average speed of 10-15 mm/y. A clearly visible sliding surface, rising further upstream, separates stable bedrock by the deformed layer. Structural-Geomorphological Survey allowed to understand the boundaries of the DSGSD that is located on the east flank of the mountain north of the town, where the adjacent re-incised N-S glacial valley rises the maximum deep. Finally, GPS data measured 34 mm/y as the maximum horizontal velocity value of the rock glaciers in the study area. This low displacement rate let us assume that discontinuous, shallow, hot and thin permafrost may be present in the area. The overall analysis of composite survey suggests that the DSGSD formation may result as consequence of deglaciation, subsequent river incision and presence of tectonic discontinuity surfaces, favorably oriented with respect to the maximum slope, whereas the recent degradation of permafrost, due to post-LGM global warming, might have triggered or increased the velocity of the movement. Keywords: integrated monitoring, permafrost, DSGSD, InSAR, GPS, Rock Glacier, Geomorphological Survey, Alps

  19. The development and evolution of landform based on neotectonic movement: The Sancha river catchment in the southwestern China

    NASA Astrophysics Data System (ADS)

    Zhong, Lingmin; Xu, Mo; Yang, Yanna; Wang, Xingbing

    2018-02-01

    Neotectonics has changed the coupled process of endogenic and exogenic geological dynamics, which mold the modern landform. Geomorphologic analysis is essential for identifying and understanding the tectonic activity and indicates the responsive mechanism of the landform to tectonic activity. At first, this research reconstructed the twisted Shanpen period planation surface, computed the valley floor width-to-height ratio of Sancha river and extracted the cross sections marking the river terraces to analyze the characteristics of the neotectonics. And then, the relation between neotectonic movement and landform development was analyzed by dividing the landform types. At last, the spatial variation of landform evolution was analyzed by extracting the Hypsometric Integral of sub-catchments. The Sancha river catchment's neotectonic movement presents the tilt-lift of earth's crust from NW to SE, which is characterized by the posthumous activity of Yanshan tectonic deformation. The spatial distribution of river terraces indicates that Sancha river catchment has experienced at least four intermittent uplifts and the fault blocks at both the sides of Liuzhi-Zhijin basement fault have differentially uplifted since the late Pleistocene. As the resurgence of Liuzhi-Zhijin basement fault, the Sancha river catchment was broken into two relative independent landform units. The spatial variations of the landform types near the Sancha river and the sub-catchments' landform evolution are characterized by periodic replacement. The styles of geological structure have controlled the development of landform far away from the Sancha River and influenced the landform evolution. The posthumous activities of the secondary structure have resulted in the spatial variation of sub-catchments' landform evolution, which presents periodic replacement with local exceptions. The present study suggests that spatial variations of the development and evolution of modern landform of Sancha River catchment owe their genesis to the interplay between the hydrodynamic force and tectonic activity in the neotectonic period. Likewise, the application of geomorphic indicators also provides a new way to assess the regional crustal stability.

  20. Controls on anastomosis in lowland river systems: Towards process-based solutions to habitat conservation.

    PubMed

    Marcinkowski, Paweł; Grabowski, Robert C; Okruszko, Tomasz

    2017-12-31

    Anastomosing rivers were historically common around the world before extensive agricultural and industrial development in river valleys. Few lowland anastomosing rivers remain in temperate zones, and the protection of these river-floodplain systems is an international conservation priority. However, the mechanisms that drive the creation and maintenance of multiple channels, i.e. anabranches, are not well understood, particularly for lowland rivers, making it challenging to identify effective management strategies. This study uses a novel multi-scale, process-based hydro-geomorphological approach to investigate the natural and anthropogenic controls on anastomosis in lowland river reaches. Using a wide range of data (hydrologic, cartographic, remote-sensing, historical), the study (i) quantifies changes in the planform of the River Narew, Poland over the last 100years, (ii) documents changes in the natural and anthropogenic factors that could be driving the geomorphic change, and (iii) develops a conceptual model of the controls of anastomosis. The results show that 110km of anabranches have been lost from the Narew National Park (6810ha), a 42% reduction in total anabranch length since 1900. The rates of anabranch loss have increased as the number of pressures inhibiting anabranch creation and maintenance has multiplied. The cessation of localized water level and channel management (fishing dams, water mills and timber rafting), the loss of traditional floodplain activities (seasonal mowing) and infrastructure construction (embanked roads and an upstream dam) are contributing to low water levels and flows, the deposition of sediment at anabranch inlets, the encroachment of common reed (Phragmites australis), and the eventual loss of anabranches. By identifying the processes driving the loss of anabranches, this study provides transferable insights into the controls of anastomosis in lowland rivers and the management solutions needed to preserve the unique anastomosing river pattern and diverse wet grasslands that are central to the conservation value of lowland floodplains. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Are calanco landforms similar to river basins?

    PubMed

    Caraballo-Arias, N A; Ferro, V

    2017-12-15

    In the past badlands have been often considered as ideal field laboratories for studying landscape evolution because of their geometrical similarity to larger fluvial systems. For a given hydrological process, no scientific proof exists that badlands can be considered a model of river basin prototypes. In this paper the measurements carried out on 45 Sicilian calanchi, a type of badlands that appears as a small-scale hydrographic unit, are used to establish their morphological similarity with river systems whose data are available in the literature. At first the geomorphological similarity is studied by identifying the dimensionless groups, which can assume the same value or a scaled one in a fixed ratio, representing drainage basin shape, stream network and relief properties. Then, for each property, the dimensionless groups are calculated for the investigated calanchi and the river basins and their corresponding scale ratio is evaluated. The applicability of Hack's, Horton's and Melton's laws for establishing similarity criteria is also tested. The developed analysis allows to conclude that a quantitative morphological similarity between calanco landforms and river basins can be established using commonly applied dimensionless groups. In particular, the analysis showed that i) calanchi and river basins have a geometrically similar shape respect to the parameters Rf and Re with a scale factor close to 1, ii) calanchi and river basins are similar respect to the bifurcation and length ratios (λ=1), iii) for the investigated calanchi the Melton number assumes values less than that (0.694) corresponding to the river case and a scale ratio ranging from 0.52 and 0.78 can be used, iv) calanchi and river basins have similar mean relief ratio values (λ=1.13) and v) calanchi present active geomorphic processes and therefore fall in a more juvenile stage with respect to river basins. Copyright © 2017 Elsevier B.V. All rights reserved.

  2. Geomorphic status of regulated rivers in the Iberian Peninsula.

    PubMed

    Lobera, G; Besné, P; Vericat, D; López-Tarazón, J A; Tena, A; Aristi, I; Díez, J R; Ibisate, A; Larrañaga, A; Elosegi, A; Batalla, R J

    2015-03-01

    River regulation by dams modifies flow regimes, interrupts the transfer of sediment through channel networks, and alters downstream bed dynamics, altogether affecting channel form and processes. So far, most studies on the geomorphic impacts of dams are restricted to single rivers, or even single river stretches. In this paper we analyse the geomorphic status of 74 river sites distributed across four large basins in the Iberian Peninsula (i.e. 47 sites located downstream of dams). For this purpose, we combine field data with hydrological data available from water agencies, and analyse historical (1970) and current aerial photographs. In particular, we have developed a Geomorphic Status (GS) index that allows us to assess the physical structure of a given channel reach and its change through time. The GS encompasses a determination of changes in sedimentary units, sediment availability, bar stability and channel flow capacity. Sites are statistically grouped in four clusters based on contrasted physical and climate characteristics. Results emphasise that regulation changes river's flow regime with a generalized reduction of the magnitude and frequency of floods (thus flow competence). This, in addition to the decrease downstream sediment supply, results in the loss of active bars as they are encroached by vegetation, to the point that only reaches with little or no regulation maintain exposed sedimentary deposits. The GS of regulated river reaches is negatively correlated with magnitude of the impoundment (regulation). Heavily impacted reaches present channel stabilization and, in contrast to the hydrological response, the distance and number of tributaries do not reverse the geomorphic impact of the dams. Stabilization limits river dynamics and may contribute to the environmental degradation of the fluvial ecosystem. Overall, results describe the degree of geomorphological alteration experienced by representative Iberian rivers mostly because of regulation, challenging the successful long-term implementation of river basin management programmes. Copyright © 2014 Elsevier B.V. All rights reserved.

  3. Terrestrial Contributions to the Aquatic Food Web in the Middle Yangtze River

    PubMed Central

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies. PMID:25047656

  4. Quantifying Late Quaternary Deformation along the Santa Ynez River, Santa Maria Basin, California

    NASA Astrophysics Data System (ADS)

    Slatten, C. L.; Onderdonk, N.

    2017-12-01

    The fault bounded Santa Maria Basin, located on the Central Coast of California, is positioned in an area of convergence between the rotating Western Transverse Ranges and the non-rotated Southern Coast Ranges. The Santa Ynez River Fault (SYRF) is an east-west trending fault that parallels the Santa Ynez River west of Lake Cachuma, California and defines the southern structural boundary of the Santa Maria Basin. However, the rate and style of Late Quaternary deformation and uplift in this region and the potential for seismic hazard along the fault is lacking. Fluvial terraces are key geomorphological components of fluvial systems that can be used to provide insights into regional and local uplift and deformation. The Santa Ynez River delineates the northern edge of the Santa Ynez Mountains and flows west through the Santa Ynez Valley to its mouth at the Pacific Ocean. The Santa Ynez River Field Area is a 10 km stretch of the Santa Ynez River just west of Lake Cachuma where terraces are well developed and the SYRF cuts through terraces and the active river (Figure 1). If there has been Quaternary movement of the SYRF we expect to find deformation in these areas. An initial survey of the area identified five terrace levels ranging from 8 m to 135 m above modern river level. The fluvial terraces are being mapped as separate units, surveyed for deformation with GPS based transects, and sampled for optically stimulated luminescence (OSL) dating. These combined methods will allow us to document the geomorphic characteristics and landform evolution of the lower Santa Ynez River, evaluate the possibility of Late Quaternary activity of the SYRF, and determine the rate of Late Quaternary regional uplift along the western Santa Ynez River in the Santa Maria Basin providing a possible basis for augmentation of the seismic hazards for Santa Barbara County.

  5. Terrestrial contributions to the aquatic food web in the middle Yangtze River.

    PubMed

    Wang, Jianzhu; Gu, Binhe; Huang, Jianhui; Han, Xingguo; Lin, Guanghui; Zheng, Fawen; Li, Yuncong

    2014-01-01

    Understanding the carbon sources supporting aquatic consumers in large rivers is essential for the protection of ecological integrity and for wildlife management. The relative importance of terrestrial and algal carbon to the aquatic food webs is still under intensive debate. The Yangtze River is the largest river in China and the third longest river in the world. The completion of the Three Gorges Dam (TGD) in 2003 has significantly altered the hydrological regime of the middle Yangtze River, but its immediate impact on carbon sources supporting the river food web is unknown. In this study, potential production sources from riparian and the main river channel, and selected aquatic consumers (invertebrates and fish) at an upstream constricted-channel site (Luoqi), a midstream estuarine site (Huanghua) and a near dam limnetic site (Maoping) of the TGD were collected for stable isotope (δ13C and δ15N) and IsoSource analyses. Model estimates indicated that terrestrial plants were the dominant carbon sources supporting the consumer taxa at the three study sites. Algal production appeared to play a supplemental role in supporting consumer production. The contribution from C4 plants was more important than that of C3 plants at the upstream site while C3 plants were the more important carbon source to the consumers at the two impacted sites (Huanghua and Maoping), particularly at the midstream site. There was no trend of increase in the contribution of autochthonous production from the upstream to the downstream sites as the flow rate decreased dramatically along the main river channel due to the construction of TGD. Our findings, along with recent studies in rivers and lakes, are contradictory to studies that demonstrate the importance of algal carbon in the aquatic food web. Differences in system geomorphology, hydrology, habitat heterogeneity, and land use may account for these contradictory findings reported in various studies.

  6. An overview of historical channel adjustment and selected hydraulic values in the Lower Sabine and Lower Brazos River Basins, Texas and Louisiana

    USGS Publications Warehouse

    Heitmuller, Franklin T.; Greene, Lauren E.; John D. Gordon, John D.

    2010-01-01

    The Sabine and Brazos are alluvial rivers; alluvial rivers are dynamic systems that adjust their geometry in response to changes in streamflow (discharge) and sediment load. In fluvial geomorphology, the term 'channel adjustment' refers to river channel changes in three geometric dimensions: (1) channel slope (profile); (2) the outline or shape, such as meandering or braided, projected on a horizontal plane (planform); and (3) cross-sectional form (shape). The primary objective of the study was to investigate how the channel morphology of these rivers has changed in response to reservoirs and other anthropogenic disturbances that have altered streamflow and sediment load. The results of this study are expected to aid ecological assessments in the lower Sabine River and lower Brazos River Basins for the Texas Instream Flow Program. Starting in the 1920s, several dams have been constructed on the Sabine and Brazos Rivers and their tributaries, and numerous bridges have been built and sometimes replaced multiple times, which have changed the natural flow regime and reduced or altered sediment loads downstream. Changes in channel geometry over time can reduce channel conveyance and thus streamflow, which can have adverse ecological effects. Channel attributes including cross-section form, channel slope, and planform change were evaluated to learn how each river's morphology changed over many years in response to natural and anthropogenic disturbances. Climate has large influence on the hydrologic regimes of the lower Sabine and lower Brazos River Basins. Equally important as climate in controlling the hydrologic regime of the two river systems are numerous reservoirs that regulate downstream flow releases. The hydrologic regimes of the two rivers and their tributaries reflect the combined influences of climate, flow regulation, and drainage area. Historical and contemporary cross-sectional channel geometries at 15 streamflow-gaging stations in the lower Sabine and lower Brazos River Basins were evaluated. An in-depth discussion of results from streamflow-gaging station 08028500 Sabine River near Bon Weir, Tex., is featured here as an example of the analyses that were done at each station.

  7. Remote Sensing of Surficial Process Responses to Extreme Meteorological Events

    NASA Technical Reports Server (NTRS)

    Brakenridge, G. Robert

    1997-01-01

    Changes in the frequency and magnitude of extreme meteorological events are associated with changing environmental means. Such events are important in human affairs, and can also be investigated by orbital remote sensing. During the course of this project, we applied ERS-1, ERS-2, Radarsat, and an airborne sensor (AIRSAR-TOPSAR) to measure flood extents, flood water surface profiles, and flood depths. We established a World Wide Web site (the Dartmouth Flood Observatory) for publishing remote sensing-based maps of contemporary floods worldwide; this is also an online "active archive" that presently constitutes the only global compilation of extreme flood events. We prepared an article for EOS concerning SAR imaging of the Mississippi Valley flood; an article for the International Journal of Remote Sensing on measurement of a river flood wave using ERS-2, began work on an article (since completed and published) on the Flood Observatory for a Geoscience Information Society Proceedings volume, and presented lectures at several Geol. Soc. of America Natl. Meetings, an Assoc. of Amer. Geographers Natl. Meeting, and a Binghamton Geomorphology Symposium (all on SAR remote sensing of the Mississippi Valley flood). We expanded in-house modeling capabilities by installing the latest version of the Army Corps of Engineers RMA two-dimensional hydraulics software and BYU Engineering Graphics Lab's Surface Water Modeling System (finite elements based pre- and post-processors for RMA work) and also added watershed modeling software. We are presently comparing the results of the 2-d flow models with SAR image data. The grant also supported several important upgrades of pc-based remote sensing infrastructure at Dartmouth. During work on this grant, we collaborated with several workers at the U.S. Army Corps of Engineers, Remote Sensing/GIS laboratory (for flood inundation mapping and modeling; particularly of the Illinois River using the AIRSAR/TOPSAR/ERS-2 combined data), with Dr. Karen Prestegaard at the University of Maryland (geomorphological responses to the extreme 1993 flood along the Raccoon drainage in central Iowa), and with Mr Tim Scrom of the Albany National Weather Service River Forecast Center (initial planning for the use of Radarsat and ERS-2 for flood warning). The work thus initiated with this proposal is continuing.

  8. Swift delineation of flood-prone areas over large European regions

    NASA Astrophysics Data System (ADS)

    Tavares da Costa, Ricardo; Castellarin, Attilio; Manfreda, Salvatore; Samela, Caterina; Domeneghetti, Alessio; Mazzoli, Paolo; Luzzi, Valerio; Bagli, Stefano

    2017-04-01

    According to the European Environment Agency (EEA Report No 1/2016), a significant share of the European population is estimated to be living on or near a floodplain, with Italy having the highest population density in flood-prone areas among the countries analysed. This tendency, tied with event frequency and magnitude (e.g.: the 24/11/2016 floods in Italy) and the fact that river floods may occur at large scales and at a transboundary level, where data is often sparse, presents a challenge in flood-risk management. The availability of consistent flood hazard and risk maps during prevention, preparedness, response and recovery phases are a valuable and important step forward in improving the effectiveness, efficiency and robustness of evidence-based decision making. The present work aims at testing and discussing the usefulness of pattern recognition techniques based on geomorphologic indices (Manfreda et al., J. Hydrol. Eng., 2011, Degiorgis et al., J Hydrol., 2012, Samela et al., J. Hydrol. Eng., 2015) for the simplified mapping of river flood-prone areas at large scales. The techniques are applied to 25m Digital Elevation Models (DEM) of the Danube, Po and Severn river watersheds, obtained from the Copernicus data and information funded by the European Union - EU-DEM layers. Results are compared to the Pan-European flood hazard maps derived by Alfieri et al. (Hydrol. Proc., 2013) using a set of distributed hydrological (LISFLOOD, van der Knijff et al., Int. J. Geogr. Inf. Sci., 2010, employed within the European Flood Awareness System, www.efas.eu) and hydraulic models (LISFLOOD-FP, Bates and De Roo, J. Hydrol., 2000). Our study presents different calibration and cross-validation exercises of the DEM-based mapping algorithms to assess to which extent, and with which accuracy, they can be reproduced over different regions of Europe. This work is being developed under the System-Risk project (www.system-risk.eu) that received funding from the European Union's Framework Programme for Research and Innovation Horizon 2020 under the Marie Skłodowska-Curie Grant Agreement No. 676027. Keywords: flood hazard, data-scarce regions, large-scale studies, pattern recognition, linear binary classifiers, basin geomorphology, DEM.

  9. Modeling global mangrove soil carbon stocks: filling the gaps in coastal environments

    NASA Astrophysics Data System (ADS)

    Rovai, A.; Twilley, R.

    2017-12-01

    We provide an overview of contemporaneous global mangrove soil organic carbon (SOC) estimates, focusing on a framework to explain disproportionate differences among observed data as a way to improve global estimates. This framework is based on a former conceptual model, the coastal environmental setting, in contrast to the more popular latitude-based hypotheses largely believed to explain hemispheric variation in mangrove ecosystem properties. To demonstrate how local and regional estimates of SOC linked to coastal environmental settings can render more realistic global mangrove SOC extrapolations we combined published and unpublished data, yielding a total of 106 studies, reporting on 552 sites from 43 countries. These sites were classified into distinct coastal environmental setting types according to two concurrent worldwide typology of nearshore coastal systems classifications. Mangrove SOC density varied substantially across coastal environmental settings, ranging from 14.9 ± 0.8 in river dominated (deltaic) soils to 53.9 ± 1.6 mg cm-3 (mean ± SE) in karstic coastlines. Our findings reveal striking differences between published values and contemporary global mangrove SOC extrapolation based on country-level mean reference values, particularly for karstic-dominated coastlines where mangrove SOC stocks have been underestimated by up to 50%. Correspondingly, climate-based global estimates predicted lower mangrove SOC density values (32-41 mg C cm-3) for mangroves in karstic environments, differing from published (21-126 mg C cm-3) and unpublished (47-58 mg C cm-3) values. Moreover, climate-based projections yielded higher SOC density values (27-70 mg C cm-3) for river-dominated mangroves compared to lower ranges reported in the literature (11-24 mg C cm-3). We argue that this inconsistent reporting of SOC stock estimates between river-dominated and karstic coastal environmental settings is likely due to the omission of geomorphological and geophysical environmental drivers, which control C storage in coastal wetlands. We encourage the science community more close utilize coastal environmental settings and new inventories of geomorphological typologies to build more robust estimates of local and regional estimates of SOC that can be extrapolated to global C estimates.

  10. Geomorphic Parameters for Developing a Hydrologic Model to Infer Holocene Climate Variability, Middle Snake River near Bliss, Idaho

    NASA Astrophysics Data System (ADS)

    Bullard, T. F.; Bacon, S. N.; Kimball, V. R.

    2015-12-01

    The geomorphology and stratigraphy preserved in a canyon reach of the Middle Snake River provide model parameter constraints for estimating Holocene paleohydrology. Channel constrictions, which acted as hydraulic weirs throughout the Holocene, were created in this reach by the Bonneville Flood (~17.5 ka) that left very large (>10 m) slabs of basalt and 2-3 m diameter boulder deposits near the canyon floor. Post-Bonneville Flood landforms and deposits that formed during the Holocene are situated less than ~30 m above river level (arl) in this reach and include fluvial and boulder terraces, alluvial fans, and incised tributary alluvial units. Relative topographic position of these geomorphic features, cross-cutting relations, multiple buried soils, depositional and erosional contacts, and radiocarbon dates from terraces (Qt) and alluvial fans provide a geomorphic and stratigraphic framework and a Holocene chronology for this area. The relative stratigraphic position of a massive silty sand that overlies Bonneville Flood gravel in Qt5 (~20 m arl) and Qt4 (~10 m arl) deposits and comprises all of Qt3 (~5 m arl) deposits indicates changes in Holocene discharge; longitudinal profiles of fluvial terraces graded to hydraulic constrictions provide reasonable estimates of paleo-stage. Fifteen radiocarbon dates yielded ages of ~8670 and ~3500 cal yr BP for Qt4 deposits and ~1100 and ~100 cal yr BP for Qt3 deposits and help define periods of episodic cutting and filling. Timing of Qt4 and Qt3 cut-and-fill episodes and alluvial fan formation correlates well with Holocene global and regional paleoclimate events inferred from Great Basin lake histories including wet periods from ~9.0 to 8.0 ka and ~4.2 to 2.5 ka, the Medieval Climatic Anomaly (~1.2 to 0.8 ka), and the Little Ice Age (~0.3 to 0.6 ka). The fluvial geomorphology documented in this study will be used to develop a watershed-scale hydrologic model to infer paleoprecipitation in the region during the Holocene.

  11. Applicability of Complexity Theory to Martian Fluvial Systems: A Preliminary Analysis

    NASA Technical Reports Server (NTRS)

    Rosenshein, E. B.

    2003-01-01

    In the last 15 years, terrestrial geomorphology has been revolutionized by the theories of chaotic systems, fractals, self-organization, and selforganized criticality. Except for the application of fractal theory to the analysis of lava flows and rampart craters on Mars, these theories have not yet been applied to problems of Martian landscape evolution. These complexity theories are elucidated below, along with the methods used to relate these theories to the realities of Martian fluvial systems.

  12. Anthropogenic disruption to the seismic driving of beach ridge formation: The Sendai coast, Japan.

    PubMed

    Goff, James; Knight, Jasper; Sugawara, Daisuke; Terry, James P

    2016-02-15

    The expected geomorphic after-effects of the Mw 9.0 Tōhoku-oki earthquake of 11 March 2011 (eastern Japan) are summarized by a schematic model of seismic driving, which details seismogenic disturbances to sediment systems that affect the rate or timing of sediment delivery to coastlines over timescales of 10(2)-10(4)years. The immediate physical environmental responses to this high-magnitude earthquake included a large tsunami and extensive region-wide slope failures. Normally, slope failures within mountain catchments would have significant impacts on Japan's river and coastal geomorphology in the coming decades with, for example, a new beach ridge expected to form within 20-100 years on the Sendai Plain. However, human activity has significantly modified the rate and timing of geomorphic processes of the region, which will have impacts on likely geomorphic responses to seismic driving. For example, the rivers draining into Sendai Bay have been dammed, providing sediment traps that will efficiently capture bedload and much suspended sediment in transit through the river system. Instead of the expected ~1 km of coastal progradation and formation of a ~3m high beach ridge prior to the next large tsunami, it is likely that progradation of the Sendai Plain will continue to slow or even cease as a result of damming of river systems and capture of river sediments behind dams. The resulting reduction of fluvial sediment delivery to the coast due to modification of rivers inadvertently makes seawalls and other engineered coastal structures even more necessary than they would be otherwise. Copyright © 2015 Elsevier B.V. All rights reserved.

  13. A new model of river dynamics, hydroclimatic change and human settlement in the Nile Valley derived from meta-analysis of the Holocene fluvial archive

    NASA Astrophysics Data System (ADS)

    Macklin, Mark G.; Toonen, Willem H. J.; Woodward, Jamie C.; Williams, Martin A. J.; Flaux, Clément; Marriner, Nick; Nicoll, Kathleen; Verstraeten, Gert; Spencer, Neal; Welsby, Derek

    2015-12-01

    In the Nile catchment, a growing number of site- and reach-based studies employ radiocarbon and, more recently, OSL dating to reconstruct Holocene river histories, but there has been no attempt to critically evaluate and synthesise these data at the catchment scale. We present the first meta-analysis of published and publically available radiocarbon and OSL dated Holocene fluvial units in the Nile catchment, including the delta region, and relate this to changing climate and river dynamics. Dated fluvial units are separated both geographically (into the Nile Delta and White, Blue, and Desert Nile sub-regions) and into depositional environment (floodplain and palaeochannel fills). Cumulative probability density frequency (CPDF) plots of floodplain and palaeochannel units show a striking inverse relationship during the Holocene, reflecting abrupt (<100 years) climate-related changes in flooding regime. The CPDF plot of dated floodplain units is interpreted as a record of over-bank river flows, whilst the CPDF plot of palaeochannel units reflect periods of major flooding associated with channel abandonment and contraction, as well as transitions to multi-centennial length episodes of greater aridity and low river flow. This analysis has identified major changes in river flow and dynamics in the Nile catchment with phases of channel and floodplain contraction at c. 6150-5750, 4400-4150, 3700-3450, 2700-2250, 1350-900, 800-550 cal. BC and cal. AD 1600, timeframes that mark shifts to new hydrological and geomorphological regimes. We discuss the impacts of these changing hydromorphological regimes upon riverine civilizations in the Nile Valley.

  14. Physical basis for river segmentation from water surface observables

    NASA Astrophysics Data System (ADS)

    Samine Montazem, A.; Garambois, P. A.; Calmant, S.; Moreira, D. M.; Monnier, J.; Biancamaria, S.

    2017-12-01

    With the advent of satellite missions such as SWOT we will have access to high resolution estimates of the elevation, slope and width of the free surface. A segmentation strategy is required in order to sub-sample the data set into reach master points for further hydraulic analyzes and inverse modelling. The question that arises is : what will be the best node repartition strategy that preserves hydraulic properties of river flow? The concept of hydraulic visibility introduced by Garambois et al. (2016) is investigated in order to highlight and characterize the spatio-temporal variations of water surface slope and curvature for different flow regimes and reach geometries. We show that free surface curvature is a powerful proxy for characterizing the hydraulic behavior of a reach since concavity of water surface is driven by variations in channel geometry that impacts the hydraulic properties of the flow. We evaluated the performance of three segmentation strategies by means of a well documented case, that of the Garonne river in France. We conclude that local extrema of free surface curvature appear as the best candidate for locating the segment boundaries for an optimal hydraulic representation of the segmented river. We show that for a given river different segmentation scales are possible: a fine-scale segmentation which is driven by fine-scale hydraulic to large-scale segmentation driven by large-scale geomorphology. The segmentation technique is then applied to high resolution GPS profiles of free surface elevation collected on the Negro river basin, a major contributor of the Amazon river. We propose two segmentations: a low-resolution one that can be used for basin hydrology and a higher resolution one better suited for local hydrodynamic studies.

  15. Tectonic geomorphology of the Safeen Anticline (Northern Iraq)

    NASA Astrophysics Data System (ADS)

    Bartl, N.; Grasemann, B.; Faber, R.; Lockhart, D.

    2009-04-01

    The Zagros Fold- and Thrust Belt extends over 1800 km from Kurdistan in N-Iraq to the Strait of Hormuz in Iran and is one of the world most promising regions for the future hydrocarbon exploration. The Zagros Mountains are the result of the collision of the Eurasian and the Arabian Plates starting in the Late Cretaceous. Recent GPS measurements in have shown that the shortening between these two plates is about 2.5 cm/a most of which is distributed within the Zagros collision orogen. Whereas the tectonic structure and the geomorphological response to active deformation is thoroughly studied in the SE part of the Zagros in Iran, there are almost no modern field based studies of the NW part of the Zagros in Iraq. Here we present the first structural field studies, the mechanical stratigraphy and geomorphological investigations of the Safeen anticline in the NE of the city of Erbil in the Kurdistan region, which is a province of Northern Iraq. The sub-cylindrical part of the anticline strikes for about 65 km NW-SE and has a dominant wavelength of about 6 km. Perpendicular to the strike of the anticline Cretaceous to Tertiary sediments are exposed consisting mainly of bedded to massif limestones and sandstones (competent lithologies), intercalated with marl and claystones (incompetent lithologies). Whereas deformation in the competent lithologies is accommodated by diffusive mass transfer processes and mainly fracturing, the incompetent lithologies record distributed plastic deformation. Along the investigated section, the limbs of the anticline dip with 55° towards NE (backlimb) and 60° towards SW (forelimb). Interestingly the drainage pattern of the forelimb differs significantly to the erosional signature along the backlimb. Both limbs are dominated by transverse river segments. The backlimb records straight almost perpendicular to the fold axis with a spacing of the segments of about 200 m. The forelimb, however, is dominated by a more irregular pattern with a wider spacing of the main segments of about 600m. We use an ASTER digital elevation model in combination with the geological map in order to quantify the differences in geomorphological signal along the different limbs of the Safeen anticline.

  16. Portage and Path Dependence*

    PubMed Central

    Bleakley, Hoyt; Lin, Jeffrey

    2012-01-01

    We examine portage sites in the U.S. South, Mid-Atlantic, and Midwest, including those on the fall line, a geomorphological feature in the southeastern U.S. marking the final rapids on rivers before the ocean. Historically, waterborne transport of goods required portage around the falls at these points, while some falls provided water power during early industrialization. These factors attracted commerce and manufacturing. Although these original advantages have long since been made obsolete, we document the continuing importance of these portage sites over time. We interpret these results as path dependence and contrast explanations based on sunk costs interacting with decreasing versus increasing returns to scale. PMID:23935217

  17. Flow and residence times of dynamic river bank storage and sinuosity-driven hyporheic exchange

    USGS Publications Warehouse

    Gomez-Velez, J.D.; Wilson, J.L.; Cardenas, M.B.; Harvey, Judson

    2017-01-01

    Hydrologic exchange fluxes (HEFs) vary significantly along river corridors due to spatiotemporal changes in discharge and geomorphology. This variability results in the emergence of biogeochemical hot-spots and hot-moments that ultimately control solute and energy transport and ecosystem services from the local to the watershed scales. In this work, we use a reduced-order model to gain mechanistic understanding of river bank storage and sinuosity-driven hyporheic exchange induced by transient river discharge. This is the first time that a systematic analysis of both processes is presented and serves as an initial step to propose parsimonious, physics-based models for better predictions of water quality at the large watershed scale. The effects of channel sinuosity, alluvial valley slope, hydraulic conductivity, and river stage forcing intensity and duration are encapsulated in dimensionless variables that can be easily estimated or constrained. We find that the importance of perturbations in the hyporheic zone's flux, residence times, and geometry is mainly explained by two-dimensionless variables representing the ratio of the hydraulic time constant of the aquifer and the duration of the event (Γd) and the importance of the ambient groundwater flow ( ). Our model additionally shows that even systems with small sensitivity, resulting in small changes in the hyporheic zone extent, are characterized by highly variable exchange fluxes and residence times. These findings highlight the importance of including dynamic changes in hyporheic zones for typical HEF models such as the transient storage model.

  18. Salinization of aquifers at the regional scale by marine transgression: Time scales and processes

    NASA Astrophysics Data System (ADS)

    Armandine Les Landes, A.; Davy, P.; Aquilina, L.

    2014-12-01

    Saline fluids with moderate concentrations have been sampled and reported in the Armorican basement at the regional scale (northwestern France). The horizontal and vertical distributions of high chloride concentrations (60-1400mg/L) at the regional scale support the marine origin and provide constraints on the age of these saline fluids. The current distribution of fresh and "saline" groundwater at depth is the result mostly of processes occurring at geological timescales - seawater intrusion processes followed by fresh groundwater flushing -, and only slightly of recent anthropogenic activities. In this study, we focus on seawater intrusion mechanisms in continental aquifers. We argue that one of the most efficient processes in macrotidal environments is the gravity-driven downconing instability below coastal salinized rivers. 2-D numerical experiments have been used to quantify this process according to four main parameter types: (1) the groundwater system permeability, (2) the salinity degree of the river, (3) the river width and slope, and (4) the tidal amplitude. A general expression of the salinity inflow rates have been derived, which has been used to estimate groundwater salinization rates in Brittany, given the geomorphological and environmental characteristics (drainage basin area, river widths and slopes, tidal range, aquifer permeability). We found that downconing below coastal rivers entail very high saline rates, indicating that this process play a major role in the salinization of regional aquifers. This is also likely to be an issue in the context of climate change, where sea-level rise is expected.

  19. Natural and environmental vulnerability analysis through remote sensing and GIS techniques: a case study of Indigirka River basin, Eastern Siberia, Russia

    NASA Astrophysics Data System (ADS)

    Boori, Mukesh S.; Choudhary, Komal; Kupriyanov, Alexander; Sugimoto, Atsuko; Evers, Mariele

    2016-10-01

    The aim of this research work is to understand natural and environmental vulnerability situation and its cause such as intensity, distribution and socio-economic effect in the Indigirka River basin, Eastern Siberia, Russia. This paper identifies, assess and classify natural and environmental vulnerability using landscape pattern from multidisciplinary approach, based on remote sensing and Geographical Information System (GIS) techniques. A model was developed by following thematic layers: land use/cover, vegetation, wetland, geology, geomorphology and soil in ArcGIS 10.2 software. According to numerical results vulnerability classified into five levels: low, sensible, moderate, high and extreme vulnerability by mean of cluster principal. Results are shows that in natural vulnerability maximum area covered by moderate (29.84%) and sensible (38.61%) vulnerability and environmental vulnerability concentrated by moderate (49.30%) vulnerability. So study area has at medial level vulnerability. The results found that the methodology applied was effective enough in the understanding of the current conservation circumstances of the river basin in relation to their environment with the help of remote sensing and GIS. This study is helpful for decision making for eco-environmental recovering and rebuilding as well as predicting the future development.

  20. Tundra landform and vegetation productivity trend maps for the Arctic Coastal Plain of northern Alaska

    PubMed Central

    Lara, Mark J.; Nitze, Ingmar; Grosse, Guido; McGuire, A. David

    2018-01-01

    Arctic tundra landscapes are composed of a complex mosaic of patterned ground features, varying in soil moisture, vegetation composition, and surface hydrology over small spatial scales (10–100 m). The importance of microtopography and associated geomorphic landforms in influencing ecosystem structure and function is well founded, however, spatial data products describing local to regional scale distribution of patterned ground or polygonal tundra geomorphology are largely unavailable. Thus, our understanding of local impacts on regional scale processes (e.g., carbon dynamics) may be limited. We produced two key spatiotemporal datasets spanning the Arctic Coastal Plain of northern Alaska (~60,000 km2) to evaluate climate-geomorphological controls on arctic tundra productivity change, using (1) a novel 30 m classification of polygonal tundra geomorphology and (2) decadal-trends in surface greenness using the Landsat archive (1999–2014). These datasets can be easily integrated and adapted in an array of local to regional applications such as (1) upscaling plot-level measurements (e.g., carbon/energy fluxes), (2) mapping of soils, vegetation, or permafrost, and/or (3) initializing ecosystem biogeochemistry, hydrology, and/or habitat modeling. PMID:29633984

Top