Sample records for complex heat capacity

  1. Heat capacity changes in carbohydrates and protein-carbohydrate complexes.

    PubMed

    Chavelas, Eneas A; García-Hernández, Enrique

    2009-05-13

    Carbohydrates are crucial for living cells, playing myriads of functional roles that range from being structural or energy-storage devices to molecular labels that, through non-covalent interaction with proteins, impart exquisite selectivity in processes such as molecular trafficking and cellular recognition. The molecular bases that govern the recognition between carbohydrates and proteins have not been fully understood yet. In the present study, we have obtained a surface-area-based model for the formation heat capacity of protein-carbohydrate complexes, which includes separate terms for the contributions of the two molecular types. The carbohydrate model, which was calibrated using carbohydrate dissolution data, indicates that the heat capacity contribution of a given group surface depends on its position in the saccharide molecule, a picture that is consistent with previous experimental and theoretical studies showing that the high abundance of hydroxy groups in carbohydrates yields particular solvation properties. This model was used to estimate the carbohydrate's contribution in the formation of a protein-carbohydrate complex, which in turn was used to obtain the heat capacity change associated with the protein's binding site. The model is able to account for protein-carbohydrate complexes that cannot be explained using a previous model that only considered the overall contribution of polar and apolar groups, while allowing a more detailed dissection of the elementary contributions that give rise to the formation heat capacity effects of these adducts.

  2. Effect of CMC Molecular Weight on Acid-Induced Gelation of Heated WPI-CMC Soluble Complex.

    PubMed

    Huan, Yan; Zhang, Sha; Vardhanabhuti, Bongkosh

    2016-02-01

    Acid-induced gelation properties of heated whey protein isolate (WPI) and carboxymethylcellulose (CMC) soluble complex were investigated as a function of CMC molecular weight (270, 680, and 750 kDa) and concentrations (0% to 0.125%). Heated WPI-CMC soluble complex with 6% protein was made by heating biopolymers together at pH 7.0 and 85 °C for 30 min and diluted to 5% protein before acid-induced gelation. Acid-induced gel formed from heated WPI-CMC complexes exhibited increased hardness and decreased water holding capacity with increasing CMC concentrations but gel strength decreased at higher CMC content. The highest gel strength was observed with CMC 750 k at 0.05%. Gels with low CMC concentration showed homogenous microstructure which was independent of CMC molecular weight, while increasing CMC concentration led to microphase separation with higher CMC molecular weight showing more extensive phase separation. When heated WPI-CMC complexes were prepared at 9% protein the acid gels showed improved gel hardness and water holding capacity, which was supported by the more interconnected protein network with less porosity when compared to complexes heated at 6% protein. It is concluded that protein concentration and biopolymer ratio during complex formation are the major factors affecting gel properties while the effect of CMC molecular weight was less significant. © 2016 Institute of Food Technologists®

  3. Free Energy and Heat Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kurata, Masaki; Devanathan, Ramaswami

    2015-10-13

    Free energy and heat capacity of actinide elements and compounds are important properties for the evaluation of the safety and reliable performance of nuclear fuel. They are essential inputs for models that describe complex phenomena that govern the behaviour of actinide compounds during nuclear fuel fabrication and irradiation. This chapter introduces various experimental methods to measure free energy and heat capacity to serve as inputs for models and to validate computer simulations. This is followed by a discussion of computer simulation of these properties, and recent simulations of thermophysical properties of nuclear fuel are briefly reviewed.

  4. Mechanochemical effect in the iron(III) spin crossover complex [Fe(3-MeO-salenEt2]PF6 as studied by heat capacity calorimetry.

    PubMed

    Sorai, Michio; Burriel, Ramón; Westrum, Edgar F; Hendrickson, David N

    2008-04-10

    Magnetic and thermal properties of the iron(III) spin crossover complex [Fe(3MeO-salenEt)(2)]PF(6) are very sensitive to mechanochemical perturbations. Heat capacities for unperturbed and differently perturbed samples were precisely determined by adiabatic calorimetry at temperatures in the 10-300 K range. The unperturbed compound shows a cooperative spin crossover transition at 162.31 K, presenting a hysteresis of 2.8 K. The anomalous enthalpy and entropy contents of the transition were evaluated to be Delta(trs)H = 5.94 kJ mol(-1) and Delta(trs)S = 36.7 J K(-1) mol(-1), respectively. By mechanochemical treatments, (1) the phase transition temperature was lowered by 1.14 K, (2) the enthalpy and entropy gains at the phase transition due to the spin crossover phenomenon were diminished to Delta(trs)H = 4.94 kJ mol(-1) and Delta(trs)S = 31.1 J K(-1) mol(-1), and (3) the lattice heat capacities were larger than those of the unperturbed sample over the whole temperature range. In spite of different mechanical perturbations (grinding with a mortar and pestle and grinding in a ball-mill), two sets of heat capacity measurements provided basically the same results. The mechanochemical perturbation exerts its effect more strongly on the low-spin state than on the high-spin state. It shows a substantial increase of the number of iron(III) ions in the high-spin state below the transition temperature. The heat capacities of the diamagnetic cobalt(III) analogue [Co(3MeO-salenEt)(2)]PF(6) also were measured. The lattice heat capacity of the iron compounds has been estimated from either the measurements on the cobalt complex using a corresponding states law or the effective frequency distribution method. These estimations have been used for the evaluation of the transition anomaly.

  5. Prediction of heat capacities of solid inorganic salts from group contributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mostafa, A.T.M.G.; Eakman, J.M.; Yarbro, S.L.

    1997-01-01

    A group contribution technique is proposed to predict the coefficients in the heat capacity correlation, C{sub p} = a + bT + c/T{sup 2} + dT{sup 2}, for solid inorganic salts. The results from this work are compared with fits to experimental data from the literature. It is shown to give good predictions for both simple and complex solid inorganic salts. Literature heat capacities for a large number (664) of solid inorganic salts covering a broad range of cations (129), anions (17) and ligands (2) have been used in regressions to obtain group contributions for the parameters in the heatmore » capacity temperature function. A mean error of 3.18% is found when predicted values are compared with literature values for heat capacity at 298{degrees} K. Estimates of the error standard deviation from the regression for each additivity constant are also determined.« less

  6. Melting and Freezing of Metal Clusters

    NASA Astrophysics Data System (ADS)

    Aguado, Andrés; Jarrold, Martin F.

    2011-05-01

    Recent developments allow heat capacities to be measured for size-selected clusters isolated in the gas phase. For clusters with tens to hundreds of atoms, the heat capacities determined as a function of temperature usually have a single peak attributed to a melting transition. The melting temperatures and latent heats show large size-dependent fluctuations. In some cases, the melting temperatures change by hundreds of degrees with the addition of a single atom. Theory has played a critical role in understanding the origin of the size-dependent fluctuations, and in understanding the properties of the liquid-like and solid-like states. In some cases, the heat capacities have extra features (an additional peak or a dip) that reveal a more complex behavior than simple melting. In this article we provide a description of the methods used to measure the heat capacities and provide an overview of the experimental and theoretical results obtained for sodium and aluminum clusters.

  7. Towards a Net Zero Building Cluster Energy Systems Analysis for a Brigade Combat Team Complex

    DTIC Science & Technology

    2010-05-01

    of technologies, like cogeneration or combined heat and power, waste heat recovery, biomass, geother- mal energy, solar heating (and cooling), and...peaks of individual buildings; thus the needed gen- eration and back-up capacity is smaller. To develop the community energy concept, energy models...overall thermal energy system, a hydraulic flow model (Figure 5) should be used to analyze critical capacities and flows in the system. This material is

  8. Coupling heat and chemical tracer experiments for estimating heat transfer parameters in shallow alluvial aquifers.

    PubMed

    Wildemeersch, S; Jamin, P; Orban, P; Hermans, T; Klepikova, M; Nguyen, F; Brouyère, S; Dassargues, A

    2014-11-15

    Geothermal energy systems, closed or open, are increasingly considered for heating and/or cooling buildings. The efficiency of such systems depends on the thermal properties of the subsurface. Therefore, feasibility and impact studies performed prior to their installation should include a field characterization of thermal properties and a heat transfer model using parameter values measured in situ. However, there is a lack of in situ experiments and methodology for performing such a field characterization, especially for open systems. This study presents an in situ experiment designed for estimating heat transfer parameters in shallow alluvial aquifers with focus on the specific heat capacity. This experiment consists in simultaneously injecting hot water and a chemical tracer into the aquifer and monitoring the evolution of groundwater temperature and concentration in the recovery well (and possibly in other piezometers located down gradient). Temperature and concentrations are then used for estimating the specific heat capacity. The first method for estimating this parameter is based on a modeling in series of the chemical tracer and temperature breakthrough curves at the recovery well. The second method is based on an energy balance. The values of specific heat capacity estimated for both methods (2.30 and 2.54MJ/m(3)/K) for the experimental site in the alluvial aquifer of the Meuse River (Belgium) are almost identical and consistent with values found in the literature. Temperature breakthrough curves in other piezometers are not required for estimating the specific heat capacity. However, they highlight that heat transfer in the alluvial aquifer of the Meuse River is complex and contrasted with different dominant process depending on the depth leading to significant vertical heat exchange between upper and lower part of the aquifer. Furthermore, these temperature breakthrough curves could be included in the calibration of a complex heat transfer model for estimating the entire set of heat transfer parameters and their spatial distribution by inverse modeling. Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities.

    PubMed

    Yurchenko, Stanislav O; Komarov, Kirill A; Kryuchkov, Nikita P; Zaytsev, Kirill I; Brazhkin, Vadim V

    2018-04-07

    The heat capacity of classical crystals is determined by the Dulong-Petit value C V ≃ D (where D is the spatial dimension) for softly interacting particles and has the gas-like value C V ≃ D/2 in the hard-sphere limit, while deviations are governed by the effects of anharmonicity. Soft- and hard-sphere interactions, which are associated with the enthalpy and entropy of crystals, are specifically anharmonic owing to violation of a linear relation between particle displacements and corresponding restoring forces. Here, we show that the interplay between these two types of anharmonicities unexpectedly induces two possible types of heat capacity anomalies. We studied thermodynamics, pair correlations, and collective excitations in 2D and 3D crystals of particles with a limited range of soft repulsions to prove the effect of interplay between the enthalpy and entropy types of anharmonicities. The observed anomalies are triggered by the density of the crystal, changing the interaction regime in the zero-temperature limit, and can provide about 10% excess of the heat capacity above the Dulong-Petit value. Our results facilitate understanding effects of complex anharmonicity in molecular and complex crystals and demonstrate the possibility of new effects due to the interplay between different types of anharmonicities.

  10. Bizarre behavior of heat capacity in crystals due to interplay between two types of anharmonicities

    NASA Astrophysics Data System (ADS)

    Yurchenko, Stanislav O.; Komarov, Kirill A.; Kryuchkov, Nikita P.; Zaytsev, Kirill I.; Brazhkin, Vadim V.

    2018-04-01

    The heat capacity of classical crystals is determined by the Dulong-Petit value CV ≃ D (where D is the spatial dimension) for softly interacting particles and has the gas-like value CV ≃ D/2 in the hard-sphere limit, while deviations are governed by the effects of anharmonicity. Soft- and hard-sphere interactions, which are associated with the enthalpy and entropy of crystals, are specifically anharmonic owing to violation of a linear relation between particle displacements and corresponding restoring forces. Here, we show that the interplay between these two types of anharmonicities unexpectedly induces two possible types of heat capacity anomalies. We studied thermodynamics, pair correlations, and collective excitations in 2D and 3D crystals of particles with a limited range of soft repulsions to prove the effect of interplay between the enthalpy and entropy types of anharmonicities. The observed anomalies are triggered by the density of the crystal, changing the interaction regime in the zero-temperature limit, and can provide about 10% excess of the heat capacity above the Dulong-Petit value. Our results facilitate understanding effects of complex anharmonicity in molecular and complex crystals and demonstrate the possibility of new effects due to the interplay between different types of anharmonicities.

  11. A study on specific heat capacities of Li-ion cell components and their influence on thermal management

    NASA Astrophysics Data System (ADS)

    Loges, André; Herberger, Sabrina; Seegert, Philipp; Wetzel, Thomas

    2016-12-01

    Thermal models of Li-ion cells on various geometrical scales and with various complexity have been developed in the past to account for the temperature dependent behaviour of Li-ion cells. These models require accurate data on thermal material properties to offer reliable validation and interpretation of the results. In this context a thorough study on the specific heat capacities of Li-ion cells starting from raw materials and electrode coatings to representative unit cells of jelly rolls/electrode stacks with lumped values was conducted. The specific heat capacity is reported as a function of temperature and state of charge (SOC). Seven Li-ion cells from different manufactures with different cell chemistry, application and design were considered and generally applicable correlations were developed. A 2D thermal model of an automotive Li-ion cell for plug-in hybrid electric vehicle (PHEV) application illustrates the influence of specific heat capacity on the effectivity of cooling concepts and the temperature development of Li-ion cells.

  12. Melting and Freezing of Metals Under the High Pressures of Planetary Interiors

    NASA Astrophysics Data System (ADS)

    Geballe, Zachary Michael

    The goal of this thesis is to help improve models of the evolution of cores of the Earth and other planets, and to improve understanding of melting transitions of metals in general. First, I present laboratory studies of high-pressure melting and near-melting phase transitions of two metals. The epsilon-to-B2 phase boundary of FeSi is constrained to 30 +/- 2 GPa with no measurable pressure-dependence from 1200 +/- 200 to 2300 +/- 200 K using x-ray diffraction in laser heated diamond anvil cells. The miscibility of Si in crystalline Fe likely increases at this transition due to the increasing effective ionic radius of Si, evidenced by the coordination change documented here. The result is that silicon is even more miscible in iron in the cores of Mercury and Mars than shown previously. Solid-solid transitions are also documented in AuGa2 from cubic (fluorite-type) to denser phases above 5.5 GPa and 600 K, in close proximity to the reversal in melting curve from negative slope to positive slope, which is also documented here. The change in melting curve therefore seems to be primarily driven by the crystallographic transitions and not the electronic transitions thought to occur at low temperatures. All transitions described here are reversed in the experiments, revealing hysteresis that ranges from 90 K to less than 15 K, and from 7 GPa to less than 2 GPa. This complexity, along with other complexities seen here and in other studies, suggest the need for new experimental techniques to make unambiguous measurements of a variety of equilibrium properties at melting and near melting. To improve future laboratory studies of melting at high pressure, I analyze several varieties of dynamic heating experiments. Laser heating experiments on metals in diamond anvil cells are shown to be at least 5 times less sensitive (and sometimes > 100 times less sensitive) to the latent heat of melting than suggested by published experimental data from pulsed-heating and continuous-heating experiments. Rather, experimentally detected plateaus in temperature likely result from changes in reflectivity of the laser absorber. To reveal a material's energetic properties (latent heat or heat capacity) in the highly conductive environment of diamond cells, heating frequencies >100 kHz should be used, and heat should be deposited uniformly through the material. Specifically, an "adiabaticity parameter'' is presented in Chapter 4 to guide experiments seeking to measure temperature plateaus that reveal the latent heats of first order phase transitions. Focusing on heat capacity alone, two experimental possibilities are described in Chapter 5: relative measures of heat capacity of metallic samples using modulated laser heating at 1 MHz to 1 GHz, and absolute measure of heat capacity using Joule-heating of metallic samples at 1 to 100 MHz frequency. Finally, Chapter 6 shows that a specific experimental design for Joule-heating is feasible: a realistic electrical circuit using two amplifiers and a Wheatstone bridge can couple electrical current into a diamond-cell-sized metal sample and output 20 mu V residual voltage oscillations induced by the sample's 1 MHz temperature oscillations, allowing measurement of the sample's heat capacity with 11% contribution from the insulation. The thermal models of Joule heating in diamond cells are validated by laboratory data of the heat capacity of a nickel foil pressed between thin glass pieces glued to a diamond: measured heat capacities decrease from 100s of % above the actual heat capacity of a 6 mu m-thick nickel sample at ≤ 1 kHz, to within ~ 20% of the actual heat capacity at 30 kHz.

  13. Determination of Complex Microcalorimeter Parameters with Impedance Measurements

    NASA Technical Reports Server (NTRS)

    Saab, T.; Bandler, S. R.; Chervenak, J.; Figueroa-Feliciano, E.; Finkbeiner, F.; Iyomoto, N.; Kelley, R.; Kilbourne, C. A.; Lindeman, M. A.; Porter, F. S.; hide

    2005-01-01

    The proper understanding and modeling of a microcalorimeter s response requires the accurate knowledge of a handful of parameters, such as C, G, alpha, . . . . While a few of these, such 8s the normal state resistance and the total thermal conductance to the heat bath (G) are directly determined from the DC IV characteristics, some others, notoriously the heat capacity (C) and alpha, appear in degenerate combinations in most measurable quantities. The case of a complex microcalorimeter, i.e. one in which the absorber s heat capacity is connected by a finite thermal impedance to the sensor, and subsequently by another thermal impedance to the heat bath, results in an added ambiguity in the determination of the individual C's and G's. In general, the dependence of the microcalorimeter s complex impedance on these parameters varies with frequency. This variation allows us to determine the individual parameters by fitting the prediction of the microcalorimeter model to the impedance data. We describe in this paper our efforts at characterizing the Goddard X-ray microcalorimeters. Using the parameters determined with this method we them compare the pulse shape and noise spectra predicted by the microcalorimeter model to data taken with the same devices.

  14. Configurational Heat Capacity of Na- and Ca-bearing Aluminosilicate Melts

    NASA Astrophysics Data System (ADS)

    Webb, S. L.

    2006-12-01

    The Na2O-Al2O3-SiO2 and CaO-Al2O3-SiO2 systems are used as analogs for the more complex natural magmatic systems of the Earth in studies of the physical properties, structure and flow mechanisms of silicate melts. Although the description of flow in binary alkali-silicate melts is clear; that for multi-oxide compositions quickly becomes very complex. The addition of aluminium to melts creates the need for a charge-balancing cation for the tetrahedrally co-ordinated Al3+. With the presence of both mono- and di-valent ions there are questions about which atom is preferred as the charge balancer and which will create non-bridging oxygens. This study addresses the structure of peraluminous and peralkaline/metaluminous Na2O-CaO-Al2O3-SiO2 melts and the change in structure with composition via determination of their shear viscosity and heat capacity. Viscosity has been determined using the micropenetration technique and the heat capacity and configurational heat capacity have been determined by differential scanning calorimetry. While the viscosity of these melts indicates structural changes at the condition where there are no longer enough Na+ or Ca2+ to charge balance all of the Al3+ in tetrahedral co-ordination, it is the heat capacity data which provides more information about the energy required for flow to occur in the melts as the structure changes due to changing composition. The configurational heat capacity can be determined from the difference between the liquid (cpl) and the glass (cpg) heat capacity at the glass transition temperature. To a first approximation cpg can be calculated from a linear summation of the cps of the oxide components. Similarly, if there are no anomalous changes in melt structure upon heating through Tg, the cpl will be a linear sum of the contributions of the component oxides. Configurational entropy Sconf(Tg) has been calculated from the viscosity data using the Adam-Gibbs equation for viscosity as a function of configurational entropy and temperature. In addition to the change in structure implied from changes in the trends of the viscosity and heat capacity data when there are no longer enough charge balancers for all of the Al3+ in tetrahedral co-ordination, there also appears to be a change in structure at the composition where there are no longer enough Ca2+ in the melt that each Al3+ tetrahedron has its own charge balancer that is the composition at which pairs of Al3+ tetrahedra must share a Ca2+ as charge balancer.

  15. Formation of lactoferrin/sodium caseinate complexes and their adsorption behaviour at the air/water interface.

    PubMed

    Li, Quanyang; Zhao, Zhengtao

    2017-10-01

    This research investigated the complexation behaviour between lactoferrin (Lf) and sodium caseinate (NaCas) before and after heat treatment. The results showed that heating facilitated their interaction and different complexes were formed at different Lf/NaCas ratios. The presence of low concentrations of NaCas resulted in the rapid precipitation of Lf, while no precipitation was observed at the NaCas concentrations higher than Lf/NaCas ratio of 2:1. The formed complexes at the ratio of 2:1 have an average diameter of 194±9.0nm and they exhibited a great capacity in lowering the air/water interfacial tension. Further increase of NaCas concentration to ratios of 1:1 and 1:2 resulted in the formation of smaller complexes with average diameters of 60±2.5nm. The complexes formed at these two ratios showed similar adsorption behaviour at the air/water interface and they exhibited lower capacity in decreasing the interfacial tension than the ratio of 2:1. Copyright © 2017 Elsevier Ltd. All rights reserved.

  16. Simulation of the thermal performance of a hybrid solar-assisted ground-source heat pump system in a school building

    NASA Astrophysics Data System (ADS)

    Androulakis, N. D.; Armen, K. G.; Bozis, D. A.; Papakostas, K. T.

    2018-04-01

    A hybrid solar-assisted ground-source heat pump (SAGSHP) system was designed, in the frame of an energy upgrade study, to serve as a heating system in a school building in Greece. The main scope of this study was to examine techniques to reduce the capacity of the heating equipment and to keep the primary energy consumption low. Simulations of the thermal performance of both the building and of five different heating system configurations were performed by using the TRNSYS software. The results are presented in this work and show that the hybrid SAGSHP system displays the lower primary energy consumption among the systems examined. A conventional ground-source heat pump system has the same primary energy consumption, while the heat pump's capacity is double and the ground heat exchanger 2.5 times longer. This work also highlights the contribution of simulation tools to the design of complex heating systems with renewable energy sources.

  17. Phase diagram and thermal properties of strong-interaction matter

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Fei; Chen, Jing; Liu, Yu-Xin

    2016-05-20

    We introduce a novel method for computing the (μ, T)-dependent pressure in continuum QCD, from which we obtain a complex phase diagram and predictions for thermal properties of the dressed-quark component of the system, providing the in-medium behavior of the related trace anomaly, speed of sound, latent heat, and heat capacity.

  18. Heat capacity of a self-gravitating spherical shell of radiations

    NASA Astrophysics Data System (ADS)

    Kim, Hyeong-Chan

    2017-10-01

    We study the heat capacity of a static system of self-gravitating radiations analytically in the context of general relativity. To avoid the complexity due to a conical singularity at the center, we excise the central part and replace it with a regular spherically symmetric distribution of matters of which specifications we are not interested in. We assume that the mass inside the inner boundary and the locations of the inner and the outer boundaries are given. Then, we derive a formula relating the variations of physical parameters at the outer boundary with those at the inner boundary. Because there is only one free variation at the inner boundary, the variations at the outer boundary are related, which determines the heat capacity. To get an analytic form for the heat capacity, we use the thermodynamic identity δ Srad=β δ Mrad additionally, which is derived from the variational relation of the entropy formula with the restriction that the mass inside the inner boundary does not change. Even if the radius of the inner boundary of the shell goes to zero, in the presence of a central conical singularity, the heat capacity does not go to the form of the regular sphere. An interesting discovery is that another legitimate temperature can be defined at the inner boundary which is different from the asymptotic one β-1.

  19. Investigation of the thermophysical properties of high-melting materials with the aid of a complex of instruments

    NASA Technical Reports Server (NTRS)

    Bolgar, A. S.; Gordiyenko, S. P.; Guseva, Y. A.; Turchanin, A. G.; Fenochka, B. V.; Fesenko, V. V.

    1984-01-01

    The evaporation rate, vapor pressure, heats of evaporation reaction (sublimation, dissociation), enthalpy, electrical resistance, heat capacity, emissivity, and heat conductivity of various carbides, borides, sulfides, nitrides, selenides, and phosphides were investigated. A set of high temperature high vacuum devices, calorimeters (designed for operation at 400 to 1300 K and from 1200 K), and mass spectrometers, most of which were specially developed for these studies, is described.

  20. ATF1 Modulates the Heat Shock Response by Regulating the Stress-Inducible Heat Shock Factor 1 Transcription Complex

    PubMed Central

    Takii, Ryosuke; Fujimoto, Mitsuaki; Tan, Ke; Takaki, Eiichi; Hayashida, Naoki; Nakato, Ryuichiro; Shirahige, Katsuhiko

    2014-01-01

    The heat shock response is an evolutionally conserved adaptive response to high temperatures that controls proteostasis capacity and is regulated mainly by an ancient heat shock factor (HSF). However, the regulation of target genes by the stress-inducible HSF1 transcription complex has not yet been examined in detail in mammalian cells. In the present study, we demonstrated that HSF1 interacted with members of the ATF1/CREB family involved in metabolic homeostasis and recruited them on the HSP70 promoter in response to heat shock. The HSF1 transcription complex, including the chromatin-remodeling factor BRG1 and lysine acetyltransferases p300 and CREB-binding protein (CBP), was formed in a manner that was dependent on the phosphorylation of ATF1. ATF1-BRG1 promoted the establishment of an active chromatin state and HSP70 expression during heat shock, whereas ATF1-p300/CBP accelerated the shutdown of HSF1 DNA-binding activity during recovery from acute stress, possibly through the acetylation of HSF1. Furthermore, ATF1 markedly affected the resistance to heat shock. These results revealed the unanticipated complexity of the primitive heat shock response mechanism, which is connected to metabolic adaptation. PMID:25312646

  1. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    PubMed

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by placing wells at locations with higher rock stiffness. Compared with the reference case with coal burning for heating purposes, the yearly emission reduction capacity can reach 1 × 10 7  kg by switching to the direct utilization of geothermal energy in Daming field.

  2. Thermodynamic Properties of α-Fe 2O 3 and Fe 3O 4 Nanoparticles

    DOE PAGES

    Spencer, Elinor C.; Ross, Nancy L.; Olsen, Rebecca E.; ...

    2015-04-21

    Here we comprehansively assessed the thermodynamic properties of hydrated α-Fe 2O 3 (hematite) and Fe 3O 4 (magnetite) nanoparticles. In addition to 9 nm Fe 3O 4, three α-e 2O 3nanoparticles samples of different sizes (11, 14, and 25 nm) and bulk α-e 2O 3 have been evaluated by inelastic neutron scattering methods. The contribution of the two-level magnetic spin flip transition to the heat capacity of the α-e 2O 3 particles has been determined. The isochoric heat capacity of the water confined on the surface of these two types of iron oxide particles have been calculated from their INSmore » spectra, and is affected by the chemical composition of the underlying particle. Furthermore, the heat capacity and dynamics of the particle hydration layers appear to be influenced by a complex array of factors including particle size, water coverage, and possibly the magnetic state of the particle itself.« less

  3. Estimating heat capacity and heat content of rocks

    USGS Publications Warehouse

    Robertson, Eugene C.; Hemingway, Bruch S.

    1995-01-01

    Our measured heat-capacity values for rocks and other measurements of heat capacity or heat content of rocks found in the literature have been compared with estimated rock heat capacities calculated from the summation of heat capacities of both minerals and oxide components. The validity of calculating the heat content or heat capacity of rocks to better than about ± 3% from its mineral or chemical composition is well demonstrated by the data presented here.

  4. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile.

    PubMed

    Inostroza, Luis; Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making.

  5. A Heat Vulnerability Index: Spatial Patterns of Exposure, Sensitivity and Adaptive Capacity for Santiago de Chile

    PubMed Central

    Palme, Massimo; de la Barrera, Francisco

    2016-01-01

    Climate change will worsen the high levels of urban vulnerability in Latin American cities due to specific environmental stressors. Some impacts of climate change, such as high temperatures in urban environments, have not yet been addressed through adaptation strategies, which are based on poorly supported data. These impacts remain outside the scope of urban planning. New spatially explicit approaches that identify highly vulnerable urban areas and include specific adaptation requirements are needed in current urban planning practices to cope with heat hazards. In this paper, a heat vulnerability index is proposed for Santiago, Chile. The index was created using a GIS-based spatial information system and was constructed from spatially explicit indexes for exposure, sensitivity and adaptive capacity levels derived from remote sensing data and socio-economic information assessed via principal component analysis (PCA). The objective of this study is to determine the levels of heat vulnerability at local scales by providing insights into these indexes at the intra city scale. The results reveal a spatial pattern of heat vulnerability with strong variations among individual spatial indexes. While exposure and adaptive capacities depict a clear spatial pattern, sensitivity follows a complex spatial distribution. These conditions change when examining PCA results, showing that sensitivity is more robust than exposure and adaptive capacity. These indexes can be used both for urban planning purposes and for proposing specific policies and measures that can help minimize heat hazards in highly dynamic urban areas. The proposed methodology can be applied to other Latin American cities to support policy making. PMID:27606592

  6. System Statement of Tasks of Calculating and Providing the Reliability of Heating Cogeneration Plants in Power Systems

    NASA Astrophysics Data System (ADS)

    Biryuk, V. V.; Tsapkova, A. B.; Larin, E. A.; Livshiz, M. Y.; Sheludko, L. P.

    2018-01-01

    A set of mathematical models for calculating the reliability indexes of structurally complex multifunctional combined installations in heat and power supply systems was developed. Reliability of energy supply is considered as required condition for the creation and operation of heat and power supply systems. The optimal value of the power supply system coefficient F is based on an economic assessment of the consumers’ loss caused by the under-supply of electric power and additional system expences for the creation and operation of an emergency capacity reserve. Rationing of RI of the industrial heat supply is based on the use of concept of technological margin of safety of technological processes. The definition of rationed RI values of heat supply of communal consumers is based on the air temperature level iside the heated premises. The complex allows solving a number of practical tasks for providing reliability of heat supply for consumers. A probabilistic model is developed for calculating the reliability indexes of combined multipurpose heat and power plants in heat-and-power supply systems. The complex of models and calculation programs can be used to solve a wide range of specific tasks of optimization of schemes and parameters of combined heat and power plants and systems, as well as determining the efficiency of various redundance methods to ensure specified reliability of power supply.

  7. Comparison of lipids in organs of the starfish Asterias amurensis associated with different treatments

    NASA Astrophysics Data System (ADS)

    Wang, Qi; Ikegame, Keita; Takahashi, Koretaro; Xue, Changhu; Zhang, Weinong; Wang, Hongxun; Hou, Wenfu; Wang, Yuming

    2013-09-01

    Lipids were extracted from organs of the starfish Asterias amurensis associated with different treatments (raw-control, boiling and heating), and then analyzed for lipid content, lipid oxidation index, lipid classes and fatty acid composition. Results showed that boiling softened the hard starfish shells, thus facilitating the collection of starfish organs. As compared with raw organs, the boiled organs had lower water content and higher lipid content, possibly due to the loss of water-holding capacity caused by protein denaturation. Both boiling and heating increased the peroxide value (PV), thiobarbituric acid (TBA) value and carbon value (CV) of lipids. Despite slight increases in the content of complex lipids, associated lipid composition had no substantial variations upon boiling and heating. For simple lipids, the content of 1, 2-diglyceride decreased in boiled and heated organs, with free fatty acids observed on thin layer chromatography (TLC). However, neither boiling nor heating significantly changed the fatty acid compositions of simple or complex lipids in starfish organs, suggesting that these two treatments had no significant effects on complex lipids in starfish organs. Together, our results indicated that boiling of starfish soon after capture facilitated the handling and extraction of useful complex lipids consisting of abundant glucosylceramide and eicosapentaenoic acid (EPA)-bounded phospholipids.

  8. Data use investigations for applications Explorer Mission A (Heat Capacity Mapping Mission): HCMM's role in studies of the urban heat island, Great Lakes thermal phenomena and radiometric calibration of satellite data. [Buffalo, Syracuse, and Rochester New York and Lake Ontario

    NASA Technical Reports Server (NTRS)

    Schott, J. R. (Principal Investigator); Schimminger, E. W.

    1981-01-01

    The utility of data from NASA'a heat capacity mapping mission satellite for studies of the urban heat island, thermal phenomena in large lakes and radiometric calibration of satellite sensors was assessed. The data were found to be of significant value in all cases. Using HCMM data, the existence and microstructure of the heat island can be observed and associated with land cover within the urban complex. The formation and development of the thermal bar in the Great Lakes can be observed and quantitatively mapped using HCMM data. In addition, the thermal patterns observed can be associated with water quality variations observed both from other remote sensing platforms and in situ. The imaging radiometer on-board the HCMM satellite is shown to be calibratible to within about 1.1 C of actual surface temperatures. These findings, as well as the analytical procedures used in studying the HCMM data, are included.

  9. Heat capacities of quasi-two-dimensional hetero-spin honeycomb magnets {NBu4[CuIICrIII(ox)3]}n and {PPh4[MnIICrIII(ox)3]}n (Bu=n-butyl, Ph=phenyl, H2ox=oxalic acid): High-temperature series expansion analysis

    NASA Astrophysics Data System (ADS)

    Hashiguchi, Takao; Miyazaki, Yuji; Asano, Kaori; Nakano, Motohiro; Sorai, Michio; Tamaki, Hiroko; Matsumoto, Naohide; Ōkawa, Hisashi

    2003-10-01

    Heat capacities of two metal-assembled complexes {NBu4[CuIICrIII(ox)3]}n and {PPh4[MnIICrIII(ox)3]}n (Bu=n-butyl, Ph=phenyl, H2ox=oxalic acid) were measured by adiabatic calorimetry in the 0.5-300 K temperature range. A ferromagnetic phase transition was detected at Tc=6.98 K for {NBu4[CuCr(ox)3]}n and Tc=5.59 K for {PPh4[MnCr(ox)3]}n, above which a remarkable heat capacity tail suggesting the short-range order effects was observed. Furthermore, a lambda-type heat-capacity anomaly due to a structural phase transition was found at Ttrs=226.9 K for {NBu4[CuCr(ox)3]}n and at Ttrs=71.3 K for {PPh4[MnCr(ox)3]}n. The observed entropy gains due to the magnetic phase transitions are very close to the theoretical values, R ln(2×4) for {NBu4[CuCr(ox)3]}n and R ln(6×4) for {PPh4[MnCr(ox)3]}n, expected from the spin multiplicities (CuII, s=1/2; MnII, s=5/2; CrIII, s=3/2). Since this series of metal oxalato assemblies can crystallize in either 2D honeycomb or 3D helical hetero-spin lattices, the theoretical magnetic heat capacities for both lattices were calculated by the high-temperature series expansion up to seventh cumulant to compare with their experimental magnetic heat capacities. The magnetic heat capacities above Tc were reproduced well by the theoretical ones for the 2D honeycomb lattice rather than the 3D helical lattice. The intralayer exchange interaction was estimated to be J/kB=5.0 K for {NBu4[CuCr(ox)3]}n and J/kB=0.95 K for {PPh4[MnCr(ox)3]}n. The analyses based on spin wave theory revealed that both compounds bring about dimensional crossovers into 3D ferromagnetic orders below Tc through the weak interlayer interactions.

  10. Thermal and volumetric properties of complex aqueous electrolyte solutions using the Pitzer formalism - The PhreeSCALE code

    NASA Astrophysics Data System (ADS)

    Lach, Adeline; Boulahya, Faïza; André, Laurent; Lassin, Arnault; Azaroual, Mohamed; Serin, Jean-Paul; Cézac, Pierre

    2016-07-01

    The thermal and volumetric properties of complex aqueous solutions are described according to the Pitzer equation, explicitly taking into account the speciation in the aqueous solutions. The thermal properties are the apparent relative molar enthalpy (Lϕ) and the apparent molar heat capacity (Cp,ϕ). The volumetric property is the apparent molar volume (Vϕ). Equations describing these properties are obtained from the temperature or pressure derivatives of the excess Gibbs energy and make it possible to calculate the dilution enthalpy (∆HD), the heat capacity (cp) and the density (ρ) of aqueous solutions up to high concentrations. Their implementation in PHREEQC V.3 (Parkhurst and Appelo, 2013) is described and has led to a new numerical tool, called PhreeSCALE. It was tested first, using a set of parameters (specific interaction parameters and standard properties) from the literature for two binary systems (Na2SO4-H2O and MgSO4-H2O), for the quaternary K-Na-Cl-SO4 system (heat capacity only) and for the Na-K-Ca-Mg-Cl-SO4-HCO3 system (density only). The results obtained with PhreeSCALE are in agreement with the literature data when the same standard solution heat capacity (Cp0) and volume (V0) values are used. For further applications of this improved computation tool, these standard solution properties were calculated independently, using the Helgeson-Kirkham-Flowers (HKF) equations. By using this kind of approach, most of the Pitzer interaction parameters coming from literature become obsolete since they are not coherent with the standard properties calculated according to the HKF formalism. Consequently a new set of interaction parameters must be determined. This approach was successfully applied to the Na2SO4-H2O and MgSO4-H2O binary systems, providing a new set of optimized interaction parameters, consistent with the standard solution properties derived from the HKF equations.

  11. Molecular simulation of caloric properties of fluids modelled by force fields with intramolecular contributions: Application to heat capacities

    NASA Astrophysics Data System (ADS)

    Smith, William R.; Jirsák, Jan; Nezbeda, Ivo; Qi, Weikai

    2017-07-01

    The calculation of caloric properties such as heat capacity, Joule-Thomson coefficients, and the speed of sound by classical force-field-based molecular simulation methodology has received scant attention in the literature, particularly for systems composed of complex molecules whose force fields (FFs) are characterized by a combination of intramolecular and intermolecular terms. The calculation of a thermodynamic property for a system whose molecules are described by such a FF involves the calculation of the residual property prior to its addition to the corresponding ideal-gas property, the latter of which is separately calculated, either using thermochemical compilations or nowadays accurate quantum mechanical calculations. Although the simulation of a volumetric residual property proceeds by simply replacing the intermolecular FF in the rigid molecule case by the total (intramolecular plus intermolecular) FF, this is not the case for a caloric property. We describe the correct methodology required to perform such calculations and illustrate it in this paper for the case of the internal energy and the enthalpy and their corresponding molar heat capacities. We provide numerical results for cP, one of the most important caloric properties. We also consider approximations to the correct calculation procedure previously used in the literature and illustrate their consequences for the examples of the relatively simple molecule 2-propanol, CH3CH(OH)CH3, and for the more complex molecule monoethanolamine, HO(CH2)2NH2, an important fluid used in carbon capture.

  12. Heat processing of peanut seed enhances the sensitization potential of the major peanut allergen Ara h 6.

    PubMed

    Guillon, Blanche; Bernard, Hervé; Drumare, Marie-Françoise; Hazebrouck, Stéphane; Adel-Patient, Karine

    2016-12-01

    Processing of food has been shown to impact IgE binding and functionality of food allergens. In the present study, we investigated the impact of heat processing on the sensitization capacity of Ara h 6, a major peanut allergen and one of the most potent elicitors of the allergic reaction. Peanut extracts obtained from raw or heat-processed peanut and some fractions thereof were biochemically and immunochemically characterized. These extracts/fractions, purified Ara h 6, or recombinant Ara h 6 including Ara h 6 mutants lacking disulfide bridges were used in in vitro digestion tests and mouse models of experimental sensitization. Peanut roasting led to the formation of complexes of high molecular weight, notably between Ara h 6 and Ara h 1, which supported the induction of IgE specific to native Ara h 6. On the contrary, a fraction containing free monomeric 2S albumins or purified native Ara h 6 displayed no intrinsic allergenicity. In addition to complex formation, heat denaturation and/or partial destabilization enhanced Ara h 6 immunogenicity and increased its sensitivity to digestion. These results suggest that sensitization potency and IgE binding capacity can be supported by different structures, modified and/or produced during food processing in interaction with other food constituents. © 2016 The Authors. Molecular Nutrition & Food Research published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Complex fluid flow and heat transfer analysis inside a calandria based reactor using CFD technique

    NASA Astrophysics Data System (ADS)

    Kulkarni, P. S.

    2017-04-01

    Series of numerical experiments have been carried out on a calandria based reactor for optimizing the design to increase the overall heat transfer efficiency by using Computational Fluid Dynamic (CFD) technique. Fluid flow and heat transfer inside the calandria is governed by many geometric and flow parameters like orientation of inlet, inlet mass flow rate, fuel channel configuration (in-line, staggered, etc.,), location of inlet and outlet, etc.,. It was well established that heat transfer is more wherever forced convection dominates but for geometries like calandria it is very difficult to achieve forced convection flow everywhere, intern it strongly depends on the direction of inlet jet. In the present paper the initial design was optimized with respect to inlet jet angle, the optimized design has been numerically tested for different heat load mass flow conditions. To further increase the heat removal capacity of a calandria, further numerical studies has been carried out for different inlet geometry. In all the analysis same overall geometry size and same number of tubes has been considered. The work gives good insight into the fluid flow and heat transfer inside the calandria and offer a guideline for optimizing the design and/or capacity enhancement of a present design.

  14. Quartz: heat capacities from 340 to 1000 K and revised values for the thermodynamic properties.

    USGS Publications Warehouse

    Hemingway, B.S.

    1987-01-01

    New heat-capacity data for quartz have been measured over the T interval 340-1000 K by differential scanning calorimetry. The data were combined with recent heat-content and heat-capacity data to provide a significantly revised set of thermodynamic properties for alpha -quartz and to resolve the problem of disparate heat-content and heat-capacity data for alpha - and beta -quartz.-J.A.Z.

  15. Adsorption and release of ofloxacin from acid- and heat-treated halloysite.

    PubMed

    Wang, Qin; Zhang, Junping; Zheng, Yue; Wang, Aiqin

    2014-01-01

    Halloysite nanotube is an ideal vehicle of the controlled release of drugs. In this study, we systematically investigated the effects of acid- and heat-treatments on the physicochemical properties, structure and morphology of halloysite by XRD, FTIR, SEM and TEM. Afterwards, the adsorption and in vitro release properties of halloysite for cationic ofloxacin (OFL) were evaluated. The results indicate that HCl treatment has no influence on the crystal structure of halloysite, whereas it becomes amorphous after calcined at temperature higher than 500 °C. Both acid- and heat-treatments have no evident influence on the tubular structure of halloysite. OFL was adsorbed onto halloysite via electrostatic interaction between protonated OFL and negative halloysite surface, cation exchange as well as electrostatic interaction between the OFL-Al(3+) complexes and the negative halloysite surface. Acid-treatment facilitates the release of the adsorbed OFL compared with the natural halloysite in spite of a slight decrease of adsorption capacity. However, heat-treatment results in a sharp decrease of adsorption capacity for OFL owning to the OFL-promoted dissolution of aluminum and the disappearance of the porous structure. Although heat-treatment also facilitates release of the adsorbed OFL, the amount of OFL released is in fact less than the natural halloysite owing to the very low adsorption capacity. Thus, acid-activation is an effective protocol to improve the adsorption and release of halloysite for cationic drug molecules. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Climate change and temperature-dependent biogeography: oxygen limitation of thermal tolerance in animals.

    PubMed

    Pörtner, H O

    2001-04-01

    Recent years have shown a rise in mean global temperatures and a shift in the geographical distribution of ectothermic animals. For a cause and effect analysis the present paper discusses those physiological processes limiting thermal tolerance. The lower heat tolerance in metazoa compared with unicellular eukaryotes and bacteria suggests that a complex systemic rather than molecular process is limiting in metazoa. Whole-animal aerobic scope appears as the first process limited at low and high temperatures, linked to the progressively insufficient capacity of circulation and ventilation. Oxygen levels in body fluids may decrease, reflecting excessive oxygen demand at high temperatures or insufficient aerobic capacity of mitochondria at low temperatures. Aerobic scope falls at temperatures beyond the thermal optimum and vanishes at low or high critical temperatures when transition to an anaerobic mitochondrial metabolism occurs. The adjustment of mitochondrial densities on top of parallel molecular or membrane adjustments appears crucial for maintaining aerobic scope and for shifting thermal tolerance. In conclusion, the capacity of oxygen delivery matches full aerobic scope only within the thermal optimum. At temperatures outside this range, only time-limited survival is supported by residual aerobic scope, then anaerobic metabolism and finally molecular protection by heat shock proteins and antioxidative defence. In a cause and effect hierarchy, the progressive increase in oxygen limitation at extreme temperatures may even enhance oxidative and denaturation stress. As a corollary, capacity limitations at a complex level of organisation, the oxygen delivery system, define thermal tolerance limits before molecular functions become disturbed.

  17. Determination of the heat capacities of Lithium/BCX (bromide chloride in thionyl chloride) batteries

    NASA Technical Reports Server (NTRS)

    Kubow, Stephen A.; Takeuchi, Kenneth J.; Takeuchi, Esther S.

    1989-01-01

    Heat capacities of twelve different Lithium/BCX (BrCl in thionyl chloride) batteries in sizes AA, C, D, and DD were determined. Procedures and measurement results are reported. The procedure allowed simple, reproducible, and precise determinations of heat capacities of industrially important Lithium/BCX cells, without interfering with performance of the cells. Use of aluminum standards allowed the accuracy of the measurements to be maintained. The measured heat capacities were within 5 percent of calculated heat capacity values.

  18. Microencapsulation of stearidonic acid soybean oil in Maillard reaction-modified complex coacervates.

    PubMed

    Ifeduba, Ebenezer A; Akoh, Casimir C

    2016-05-15

    The antioxidant capacity of Maillard reaction (MR)-modified gelatin (GE)-gum arabic (GA) coacervates was optimized to produce microcapsules with superior oxidative stability compared to the unmodified control. MR was used to crosslink GE and GA, with or without maltodextrin (MD), to produce anti-oxidative Maillard reaction products (MRP) which was used to encapsulate stearidonic acid soybean oil (SDASO) by complex coacervation. Biopolymer blends (GE-GA [1:1, w/w] or GE-GA-MD [2:2:1, w/w/w]) were crosslinked by dry-heating at 80°C for 4, 8, or 16h. Relationships between the extent of browning, Trolox equivalent antioxidant capacity (TEAC), and the total oxidation (TOTOX) of encapsulated SDASO were fitted to quadratic models. The [GE-GA-MD] blends exhibited higher browning rates and TEAC values than corresponding [GE-GA] blends. Depending on the type of biopolymer blend and dry-heating time, TOTOX values of SDASO in MRP-derived microcapsules were 29-87% lower than that of the non-crosslinked control after 30 days of storage. Copyright © 2015 Elsevier Ltd. All rights reserved.

  19. Modular, thermal bus-to-radiator integral heat exchanger design for Space Station Freedom

    NASA Technical Reports Server (NTRS)

    Chambliss, Joe; Ewert, Michael

    1990-01-01

    The baseline concept is introduced for the 'integral heat exchanger' (IHX) which is the interface of the two-phase thermal bus with the heat-rejecting radiator panels. A direct bus-to-radiator heat-pipe integral connection replaces the present interface hardware to reduce the weight and complexity of the heat-exchange mechanism. The IHX is presented in detail and compared to the baseline system assuming certain values for heat rejection, mass per unit width, condenser capacity, contact conductance, and assembly mass. The spreadsheet comparison can be used to examine a variety of parameters such as radiator length and configuration. The IHX is shown to permit the reduction of panel size and system mass in response to better conductance and packaging efficiency. The IHX is found to be a suitable heat-rejection system for the Space Station Freedom because it uses present technology and eliminates the interface mechanisms.

  20. Heat Capacity of Hydrous Silicate Melts

    NASA Astrophysics Data System (ADS)

    Robert, G.; Whittington, A. G.; Stechern, A.; Behrens, H.

    2015-12-01

    We determined the heat capacities of four series of glasses and liquids of basaltic and basaltic andesite compositions including two natural remelts from Fuego volcano, Guatemala, and two Fe-free analogs. The samples are low-alkali, Ca- and Mg-rich aluminosilicates with non-bridging oxygen to tetrahedrally-coordinated cation ratios (NBO/T) ranging between 0.33 and 0.67. Differential scanning calorimetry measurements were performed at atmospheric pressure between room temperature and ≈100 K above the glass transition for hydrous samples and up to ≈1800 K for dry samples. The water contents investigated range up to 5.34 wt.% (16.4 mol%). Water does not measurably affect the heat capacity of glasses (T

  1. Heat capacity of molten halides.

    PubMed

    Redkin, Alexander A; Zaikov, Yurii P; Korzun, Iraida V; Reznitskikh, Olga G; Yaroslavtseva, Tatiana V; Kumkov, Sergey I

    2015-01-15

    The heat capacities of molten salts are very important for their practical use. Experimental investigation of this property is challenging because of the high temperatures involved and the corrosive nature of these materials. It is preferable to combine experimental investigations with empirical relationships, which allows for the evaluation of the heat capacity of molten salt mixtures. The isobaric molar heat capacities of all molten alkali and alkaline-earth halides were found to be constant for each group of salts. The value depends on the number of atoms in the salt, and the molar heat capacity per atom is constant for all molten halide salts with the exception of the lithium halides. The molar heat capacities of molten halides do not change when the anions are changed.

  2. Anomalous Behavior of Electronic Heat Capacity of Strongly Correlated Iron Monosilicide

    NASA Astrophysics Data System (ADS)

    Povzner, A. A.; Volkov, A. G.; Nogovitsyna, T. A.

    2018-04-01

    The paper deals with the electronic heat capacity of iron monosilicide FeSi subjected to semiconductor-metal thermal transition during which the formation of its spintronic properties is observed. The proposed model which considers pd-hybridization of strongly correlated d-electrons with non-correlated p-electrons, demonstrates a connection of their contribution to heat capacity in the insulator phase with paramagnon effects and fluctuations of occupation numbers for p- and d-states. In a slitless state, the temperature curve of heat capacity is characterized by a maximum appeared due to normalization of the electron density of states using fluctuating exchange fields. At higher temperatures, a linear growth in heat capacity occurs due to paramagnon effects. The correlation between the model parameters and the first-principles calculation provides the electron contribution to heat capacity, which is obtained from the experimental results on phonon heat capacity. Anharmonicity of phonons is connected merely with the thermal expansion of the crystal lattice.

  3. Heat capacity and magnetocaloric effect in polycrystalline Gd 1-xSm xMn 2Si 2

    NASA Astrophysics Data System (ADS)

    Kumar, Pramod; Singh, Niraj K.; Suresh, K. G.; Nigam, A. K.; Malik, S. K.

    2007-12-01

    We report the magnetocaloric effect in terms of isothermal magnetic entropy change as well as adiabatic temperature change, calculated using the heat capacity data. Using the zero-field heat capacity data, the magnetic contribution to the heat capacity has been estimated. The variations in the magnetocaloric behavior have been explained on the basis of the magnetic structure of these compounds. The refrigerant capacities have also been calculated for these compounds.

  4. THERMAL-INERTIA MAPPING IN VEGETATED TERRAIN FROM HEAT CAPACITY MAPPING MISSION SATELLITE DATA.

    USGS Publications Warehouse

    Watson, Ken; Hummer-Miller, Susanne

    1984-01-01

    Thermal-inertia data, derived from the Heat Capacity Mapping Mission (HCMM) satellite, were analyzed in areas of varying amounts of vegetation cover. Thermal differences which appear to correlate with lithologic differences have been observed previously in areas of substantial vegetation cover. However, the energy exchange occurring within the canopy is much more complex than that used to develop the methods employed to produce thermal-inertia images. Because adequate models are lacking at present, the interpretation is largely dependent on comparison, correlation, and inference. Two study areas were selected in the western United States: the Richfield, Utah and the Silver City, Arizona-New Mexico, 1 degree multiplied by 2 degree quadrangles. Many thermal-inertia highs were found to be associated with geologic-unit boundaries, faults, and ridges. Lows occur in valleys with residual soil cover.

  5. The isobaric heat capacity of liquid water at low temperatures and high pressures

    NASA Astrophysics Data System (ADS)

    Troncoso, Jacobo

    2017-08-01

    Isobaric heat capacity for water shows a rather strong anomalous behavior, especially at low temperature. However, almost all experimental studies supporting this statement have been carried out at low pressure; very few experimental data were reported above 100 MPa. In order to explore the behavior of this magnitude for water up to 500 MPa, a new heat flux calorimeter was developed. With the aim of testing the experimental methodology and comparing with water results, isobaric heat capacity was also measured for methanol and hexane. Good agreement with indirect heat capacity estimations from the literature was obtained for the three liquids. Experimental results show large anomalies in water heat capacity. This is especially true as regards its temperature dependence, qualitatively different from that observed for other liquids. Heat capacity versus temperature curves show minima for most studied isobars, whose location decreases with the pressure up to around 100 MPa but increases at higher pressures.

  6. Heat capacities and entropies of sillimanite, fibrolite, andalusite, kyanite, and quartz and the Al2SiO5 phase diagram

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.; Evans, H.T.; Kerrick, Derrill M.

    1991-01-01

    Low-temperature heat capacities for sillimanite, fibrolite, and both fine-grained and coarse-grained quartz have been measured. Superambient heat capacities have been measured for four sillimanite, two andalusite, one kyanite, and two fibrolite samples. Equations are recommended for the temperature dependence of the heat capacities of kyanite, andalusite, sillimanite, and fibrolite. The heat capacity functions have been combined with thermal expansion (fibrolite and sillimanite reported here), enthalpy of solution, and phase equilibrium data in order to construct a phase diagram for the Al2SiO5 polymorphs. -from Authors

  7. Development of high temperature calorimeter: heat capacity measurement by direct heating pulse calorimetry

    NASA Astrophysics Data System (ADS)

    Arita, Yuji; Suzuki, Keisuke; Matsui, Tsuneo

    2005-02-01

    The temperature limit for heat capacity measurements with the direct heating pulse calorimeter has been increased up to 2000 K by means of the combination of an optical pyrometer to detect the relative temperature change with tungsten rhenium thermocouples to determine absolute temperatures. With this improved calorimeter the heat capacities were measured up to 1950 K, for SiC and B4C, and 2000 K for graphite. The heat capacity values obtained in this study were in good agreement, within the error of ±5%, with those previous values calculated from the enthalpy data by drop method. The electrical conductivities of SiC, B4C and graphite were also simultaneously determined from the inducted voltage and the current for heat capacity measurement.

  8. The heat capacity of hydrous cordierite above 295 K

    NASA Astrophysics Data System (ADS)

    Carey, J. William

    1993-04-01

    The heat capacity of synthetic hydrous cordierite (Mg2Al4Si5O18·nH2O) has been determined by differential scanning calorimetry (DSC) from 295 to 425 K as a function of H2O content. Six samples with H2O contents ranging from 0 to 0.82 per formula unit were examined. The partial molar heat capacity of H2O in cordierite over the measured temperature interval is independent of composition and temperature within experimental uncertainty and is equal to 43.3 ±0.8 J/mol/ K. This value exceeds the molar heat capacity of gaseous H2O by 9.7 J/mol/K, but is significantly smaller than the heat capacity of H2O in several zeolites and liquid H2O. A statistical-mechanical model of the heat capacity of adsorbed gas species (Barrer 1978) is used to extrapolate the heat capacity of hydrous cordierite to temperatures greater than 425 K. In this model, the heat capacity of hydrous cordierite (Crd·nH2O) is represented as follows: Cp(Crd · nH2O) = Cp(Crd)+ n{Cp(H2O, gas)+ R(gas constant)} (1) An examination of calorimetric data for hydrous beryl, analcime, mordenite, and clinoptilolite (Hemingway et al. 1986; Johnson et al. 1982, 1991, 1992) demonstrates the general applicability of the statistical-mechanical model for the extrapolation of heat capacity data of zeolitic minerals. The heat capacity data for cordierite are combined with the data of Carey and Navrotsky (1992) to obtain the molar enthalpy of formation and enthalpy of hydration of hydrous cordierite as a function of temperature.

  9. Simultaneous measurement of thermal conductivity and heat capacity of bulk and thin film materials using frequency-dependent transient thermoreflectance method.

    PubMed

    Liu, Jun; Zhu, Jie; Tian, Miao; Gu, Xiaokun; Schmidt, Aaron; Yang, Ronggui

    2013-03-01

    The increasing interest in the extraordinary thermal properties of nanostructures has led to the development of various measurement techniques. Transient thermoreflectance method has emerged as a reliable measurement technique for thermal conductivity of thin films. In this method, the determination of thermal conductivity usually relies much on the accuracy of heat capacity input. For new nanoscale materials with unknown or less-understood thermal properties, it is either questionable to assume bulk heat capacity for nanostructures or difficult to obtain the bulk form of those materials for a conventional heat capacity measurement. In this paper, we describe a technique for simultaneous measurement of thermal conductivity κ and volumetric heat capacity C of both bulk and thin film materials using frequency-dependent time-domain thermoreflectance (TDTR) signals. The heat transfer model is analyzed first to find how different combinations of κ and C determine the frequency-dependent TDTR signals. Simultaneous measurement of thermal conductivity and volumetric heat capacity is then demonstrated with bulk Si and thin film SiO2 samples using frequency-dependent TDTR measurement. This method is further testified by measuring both thermal conductivity and volumetric heat capacity of novel hybrid organic-inorganic thin films fabricated using the atomic∕molecular layer deposition. Simultaneous measurement of thermal conductivity and heat capacity can significantly shorten the development∕discovery cycle of novel materials.

  10. Estimation of Metabolism Characteristics for Heat-Injured Bacteria Using Dielectrophoretic Impedance Measurement Method

    NASA Astrophysics Data System (ADS)

    Amako, Eri; Enjoji, Takaharu; Uchida, Satoshi; Tochikubo, Fumiyoshi

    Constant monitoring and immediate control of fermentation processes have been required for advanced quality preservation in food industry. In the present work, simple estimation of metabolic states for heat-injured Escherichia coli (E. coli) in a micro-cell was investigated using dielectrophoretic impedance measurement (DEPIM) method. Temporal change in the conductance between micro-gap (ΔG) was measured for various heat treatment temperatures. In addition, the dependence of enzyme activity, growth capacity and membrane situation for E. coli on heat treatment temperature was also analyzed with conventional biological methods. Consequently, a correlation between ΔG and those biological properties was obtained quantitatively. This result suggests that DEPIM method will be available for an effective monitoring technique for complex change in various biological states of microorganisms.

  11. Amino acid substitutions affecting protein dynamics in eglin C do not affect heat capacity change upon unfolding.

    PubMed

    Gribenko, Alexey V; Keiffer, Timothy R; Makhatadze, George I

    2006-08-01

    The heat capacity change upon unfolding (deltaC(p)) is a thermodynamic parameter that defines the temperature dependence of the thermodynamic stability of proteins; however, physical basis of the heat capacity change is not completely understood. Although empirical surface area-based calculations can predict heat capacity changes reasonably well, accumulating evidence suggests that changes in hydration of those surfaces is not the only parameter contributing to the observed heat capacity changes upon unfolding. Because packing density in the protein interior is similar to that observed in organic crystals, we hypothesized that changes in protein dynamics resulting in increased rigidity of the protein structure might contribute to the observed heat capacity change upon unfolding. Using differential scanning calorimetry we characterized the thermodynamic behavior of a serine protease inhibitor eglin C and two eglin C variants with altered native state dynamics, as determined by NMR. We found no evidence of changes in deltaC(p) in either of the variants, suggesting that changes in rigidity do not contribute to the heat capacity change upon unfolding in this model system. Copyright 2006 Wiley-Liss, Inc.

  12. Prediction of nanofluids properties: the density and the heat capacity

    NASA Astrophysics Data System (ADS)

    Zhelezny, V. P.; Motovoy, I. V.; Ustyuzhanin, E. E.

    2017-11-01

    The results given in this report show that the additives of Al2O3 nanoparticles lead to increase the density and decrease the heat capacity of isopropanol. Based on the experimental data the excess molar volume and the excess molar heat capacity were calculated. The report suggests new method for predicting the molar volume and molar heat capacity of nanofluids. It is established that the values of the excess thermodynamic functions are determined by the properties and the volume of the structurally oriented layers of the base fluid molecules near the surface of nanoparticles. The heat capacity of the structurally oriented layers of the base fluid is less than the heat capacity of the base fluid for given parameters due to the greater regulation of its structure. It is shown that information on the geometric dimensions of the structured layers of the base fluid near nanoparticles can be obtained from data on the nanofluids density and at ambient temperature - by the dynamic light scattering method. For calculations of the nanofluids heat capacity over a wide range of temperatures a new correlation based on the extended scaling is proposed.

  13. Structural Reorganization and the Cooperative Binding of Single-stranded Telomere DNA in Sterkiella nova*

    PubMed Central

    Buczek, Pawel; Horvath, Martin P.

    2009-01-01

    In Sterkiella nova, α and β telomere proteins bind cooperatively with single-stranded DNA to form a ternary α·β·DNA complex. Association of telomere protein subunits is DNA-dependent, and α-β association enhances DNA affinity. To further understand the molecular basis for binding cooperativity, we characterized several possible stepwise assembly pathways using isothermal titration calorimetry. In one path, α and DNA first form a stable α·DNA complex followed by addition of β in a second step. Binding energy accumulates with nearly equal free energy of association for each of these steps. Heat capacity is nonetheless dramatically different with ΔCp = −305 ± 3 cal mol−1 K−1 for α binding with DNA and ΔCp = −2010 ± 20 cal mol−1 K−1 for addition of β to complete the α·β·DNA complex. By examining alternate routes including titration of single-stranded DNA with a preformed α·β complex, a significant portion of binding energy and heat capacity could be assigned to structural reorganization involving protein-protein interactions and repositioning of the DNA. Structural reorganization probably affords a mechanism to regulate high affinity binding of telomere single-stranded DNA with important implications for telomere biology. Regulation of telomere complex dissociation is thought to involve post-translational modifications in the lysine-rich C-terminal portion of β. We observed no difference in binding energetics or crystal structure when comparing complexes prepared with full-length β or a C-terminally truncated form, supporting interesting parallels between the intrinsically disordered regions of histones and this portion of β. PMID:17082188

  14. Building America Case Study: Impact of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps, Cocoa, Florida

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Withers, J. Cummings, B. Nigusse, E. Martin

    A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40 to 118% of nominal full capacity); thus, staying 'on' for 60% to 100% more hours per day compared to fixed-capacity systems. Current Phase 4 experiments in an instrumented lab home with simulated occupancy evaluate the impact of duct R-value enhancement on the overall operating efficiency of the variable-capacity systemmore » compared to the fixed-capacity system.« less

  15. Thermodynamic properties and diffusion of water + methane binary mixtures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shvab, I.; Sadus, Richard J., E-mail: rsadus@swin.edu.au

    2014-03-14

    Thermodynamic and diffusion properties of water + methane mixtures in a single liquid phase are studied using NVT molecular dynamics. An extensive comparison is reported for the thermal pressure coefficient, compressibilities, expansion coefficients, heat capacities, Joule-Thomson coefficient, zero frequency speed of sound, and diffusion coefficient at methane concentrations up to 15% in the temperature range of 298–650 K. The simulations reveal a complex concentration dependence of the thermodynamic properties of water + methane mixtures. The compressibilities, heat capacities, and diffusion coefficients decrease with increasing methane concentration, whereas values of the thermal expansion coefficients and speed of sound increase. Increasing methanemore » concentration considerably retards the self-diffusion of both water and methane in the mixture. These effects are caused by changes in hydrogen bond network, solvation shell structure, and dynamics of water molecules induced by the solvation of methane at constant volume conditions.« less

  16. Heat capacity and entropy of Ni2SiO4-olivine from 5 to 1000 K and heat capacity of Co2SiO4 from 360 to 1000 K.

    USGS Publications Warehouse

    Robie, R.A.; Hemingway, B.S.; Ito, J.; Krupka, K.M.

    1984-01-01

    The heat capacity of Ni2SiO4-olivine has been measured between 5 and 387 K by cryogenic adiabatic-shield calorimetry and between 360 and 1000 K by differential scanning calorimetry. The heat capacity of Co2SiO4-olivine was measured between 360 and 1000 K by differential scanning calorimetry.-J.A.Z.

  17. Direct Observation of a Majorana Quasiparticle Heat Capacity in 3He

    NASA Astrophysics Data System (ADS)

    Bunkov, Y. M.

    2014-04-01

    The Majorana fermion, which acts as its own antiparticle, was suggested by Majorana in 1937 (Nuovo Cimento 14:171). While no stable particle with Majorana properties has yet been observed, Majorana quasiparticles (QP) may exist at the boundaries of topological insulators. Here we report the preliminary results of direct observation of Majorana QPs by a precise measurements of superfluid 3He heat capacity. The bulk superfluid 3He heat capacity falls exponentially with cooling at the temperatures significantly below the energy gap. Owing to the zero energy gap mode the Majorana heat capacity falls in a power law. The Majorana heat capacity can be larger than bulk one at some temperature, which depends on surface to volume ratio of the experimental cell. Some times ago we developed the Dark matter particles detector (DMD) on a basis of superfluid 3He which is working at the frontier of extremely low temperatures (Winkelmann et al., Nucl. Instrum. Meth. A 559:384-386, 2006). Here we report the observation of zero gap mode of Majorana, follows from the new analyses of DMD heat capacity, published early. We have found a 10 % deviation from the bulk superfluid 3He heat capacity at the temperature of 135 μK. This deviation corresponds well to the theoretical value for Majorana heat capacity at such low temperature. (Note, there were no fitting parameters).

  18. Heat capacity of alkanolamine aqueous solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chiu, L.F.; Li, M.H.

    1999-12-01

    Heat capacities of monoethanoloamine, diglycolamine, diethanolamine, di-w propanolamine, triethanolamine, N-methyldiethanolamine, 2-amino-2-methyl-l-propanol, and 2-piperidineethanol aqueous solutions were measured from 30 to 80 C with a differential scanning calorimeter (DSC). The mole fractions of alkanolamines studied are 0.2, 0.4, 0.6, and 0.8. Heat capacities of N-methyldiethanolamine aqueous solutions have been measured to verify the validity of C{sub p} measurements for alkanolamine aqueous solutions. The estimated uncertainty of the measured heat capacities is {plus{underscore}minus}3%, including the effect of up to 5% impurities in a substance. An excess molar heat capacity expression using the Redlich-Kister equation for the composition dependence is used to representmore » the measured C{sub p} of alkanolamine aqueous solutions. For a total of 374 data points, the calculation results for eight alkanolamine solutions give the overall average absolute deviations of 11.9% and 0.29% for the excess molar heat capacity and the heat capacity, respectively. The heat capacities presented in this study are, in general, of sufficient accuracy for most engineering-design calculations. Solutions of alkanolamines are industrially important mixtures used in the natural gas industry, oil refineries, petroleum chemical plants, and synthetic ammonia plants for the removal of acidic components such as CO{sub 2} and H{sub 2}S from gas streams.« less

  19. A simple method to measure the complex permittivity of materials at variable temperatures

    NASA Astrophysics Data System (ADS)

    Yang, Xiaoqing; Yin, Yang; Liu, Zhanwei; Zhang, Di; Wu, Shiyue; Yuan, Jianping; Li, Lixin

    2017-10-01

    Measurement of the complex permittivity (CP) of a material at different temperatures in microwave heating applications is difficult and complicated. In this paper a simple and convenient method is employed to measure the CP of a material over variable temperature. In this method the temperature of a sample is increased experimentally to obtain the formula for the relationship between CP and temperature by a genetic algorithm. We chose agar solution (sample) and a Yangshao reactor (microwave heating system) to validate the reliability and feasibility of this method. The physical parameters (the heat capacity, C p , density, ρ, and thermal conductivity, k) of the sample are set as constants in the process of simulation and inversion. We analyze the influence of the variation of physical parameters with temperature on the accuracy of the inversion results. It is demonstrated that the variation of these physical parameters has little effect on the inversion results in a certain temperature range.

  20. Heat-induced formation of myosin oligomer-soluble filament complex in high-salt solution.

    PubMed

    Shimada, Masato; Takai, Eisuke; Ejima, Daisuke; Arakawa, Tsutomu; Shiraki, Kentaro

    2015-02-01

    Heat-induced aggregation of myosin into an elastic gel plays an important role in the water-holding capacity and texture of meat products. Here, we investigated thermal aggregation of porcine myosin in high-salt solution over a wide temperature range by dynamic light scattering experiments. The myosin samples were readily dissolved in 1.0 M NaCl at 25 °C followed by dilution into various salt concentrations. The diluted solutions consistently contained both myosin monomers and soluble filaments. The filament size decreased with increasing salt concentration and temperature. High temperatures above Tm led to at least partial dissociation of soluble filaments and thermal unfolding, resulting in the formation of soluble oligomers and binding to the persistently present soluble filaments. Such a complex formation between the oligomers and filaments has never been observed. Our results provide new insight into the heat-induced myosin gelation in high-salt solution. Copyright © 2014 Elsevier B.V. All rights reserved.

  1. Liquid heat capacity lasers

    DOEpatents

    Comaskey, Brian J [Walnut Creek, CA; Scheibner, Karl F [Tracy, CA; Ault, Earl R [Livermore, CA

    2007-05-01

    The heat capacity laser concept is extended to systems in which the heat capacity lasing media is a liquid. The laser active liquid is circulated from a reservoir (where the bulk of the media and hence waste heat resides) through a channel so configured for both optical pumping of the media for gain and for light amplification from the resulting gain.

  2. Final Report: Cooling Seasonal Energy and Peak Demand Impacts of Improved Duct Insulation on Fixed-Capacity (SEER 13) and Variable-Capacity (SEER 22) Heat Pumps

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Withers, C.; Cummings, J.; Nigusse, B.

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied bymore » adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.« less

  3. World Geothermal Congress WGC-2015

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.

    2016-08-01

    This article discusses materials and results of the World Geothermal Congress that was held in Melbourne (Australia) from April 19 to April 25, 2015. Information on the extent and technological features of utilization of geothermal resources for heat supply and power production, as well as in other economic areas, is given. A stable growth in the capacity and number of geothermal power systems that is determined by ecological cleanliness, economic efficiency, and the highest (among renewable energy sources) indicators of installed capacity utilization is shown. It was noted that combined schemes of geothermal power plants (GPPs), such as turbine units of different type (binary units, units with one or two separation pressures, etc.), have become more frequently used to increase the efficiency of utilization of geothermal heat carrier. Actual data determining room heating systems with the total worldwide capacity of nearly 50000 MW thermal (MWt) as the most currently significant segment of consumption of geothermal waters are given. In addition, geothermal resources are also utilized in soil pumps, balneological and sports basins, greenhouse complexes, and other manufactures. It was noted that geological studies were carried out in more than 40 countries, with the development of methods of simulation of tanks for the existing and new geothermal fields. Trends of development and the role of geothermal power engineering in the energy supply of many countries are shown. It was shown that prospects for the development of geothermal power generation are significantly associated with utilization of low-temperature geothermal sources in binary power generating units, as well as with the increase in installed capacity of operating geothermal power plants (GPPs) without drilling additional wells, i.e., by using waste geothermal heat carrier in binary-cycle or combined-cycle power plants. The article provides data on a pilot binary power unit at Pauzhetka GPP and on a promising Russian geothermal project to increase the installed capacity of Mutnovsk GPP (whose current capacity is 50.0 (2 × 25.0) MW of electric power) by 25% by constructing a combined binary-cycle power generating unit on the basis of waste separate utilization.

  4. The potential energy landscape contribution to the dynamic heat capacity

    NASA Astrophysics Data System (ADS)

    Brown, Jonathan R.; McCoy, John D.

    2011-05-01

    The dynamic heat capacity of a simple polymeric, model glassformer was computed using molecular dynamics simulations by sinusoidally driving the temperature and recording the resultant energy. The underlying potential energy landscape of the system was probed by taking a time series of particle positions and quenching them. The resulting dynamic heat capacity demonstrates that the long time relaxation is the direct result of dynamics resulting from the potential energy landscape. Moreover, the equilibrium (low frequency) portion of the potential energy landscape contribution to the heat capacity is found to increase rapidly at low temperatures and at high packing fractions. This increase in the heat capacity is explained by a statistical mechanical model based on the distribution of minima in the potential energy landscape.

  5. Synthesis of Copper Oxide/Graphite Composite for High-Performance Rechargeable Battery Anode.

    PubMed

    Cho, Sanghun; Ahn, Yong-Keon; Yin, Zhenxing; You, Duck-Jae; Kim, Hyunjin; Piao, Yuanzhe; Yoo, Jeeyoung; Kim, Youn Sang

    2017-08-25

    A novel copper oxide/graphite composite (GCuO) anode with high capacity and long cycle stability is proposed. A simple, one-step synthesis method is used to prepare the GCuO, through heat treatment of the Cu ion complex and pristine graphite. The gases generated during thermal decomposition of the Cu ion complex (H 2 and CO 2 ) induce interlayer expansion of the graphite planes, which assists effective ion intercalation. Copper oxide is formed simultaneously as a high-capacity anode material through thermal reduction of the Cu ion complex. Material analyses reveal the formation of Cu oxide nanoparticles and the expansion of the gaps between the graphite layers from 0.34 to 0.40 nm, which is enough to alleviate layer stress for reversible ion intercalation for Li or Na batteries. The GCuO cell exhibits excellent Li-ion battery half-cell performance, with a capacity of 532 mAh g -1 at 0.2 C (C-rate) and capacity retention of 83 % after 250 cycles. Moreover, the LiFePO 4 /GCuO full cell is fabricated to verify the high performance of GCuO in practical applications. This cell has a capacity of 70 mAh g -1 and a coulombic efficiency of 99 %. The GCuO composite is therefore a promising candidate for use as an anode material in advanced Li- or Na-ion batteries. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. The Heat Is on: An Inquiry-Based Investigation for Specific Heat

    ERIC Educational Resources Information Center

    Herrington, Deborah G.

    2011-01-01

    A substantial number of upper-level science students and practicing physical science teachers demonstrate confusion about thermal equilibrium, heat transfer, heat capacity, and specific heat capacity. The traditional method of instruction, which involves learning the related definitions and equations, using equations to solve heat transfer…

  7. Effect of surface hydroxyl groups on heat capacity of mesoporous silica

    NASA Astrophysics Data System (ADS)

    Marszewski, Michal; Butts, Danielle; Lan, Esther; Yan, Yan; King, Sophia C.; McNeil, Patricia E.; Galy, Tiphaine; Dunn, Bruce; Tolbert, Sarah H.; Hu, Yongjie; Pilon, Laurent

    2018-05-01

    This paper quantifies the effect of surface hydroxyl groups on the effective specific and volumetric heat capacities of mesoporous silica. To achieve a wide range of structural diversity, mesoporous silica samples were synthesized by various methods, including (i) polymer-templated nanoparticle-based powders, (ii) polymer-templated sol-gel powders, and (iii) ambigel silica samples dried by solvent exchange at room temperature. Their effective specific heat capacity, specific surface area, and porosity were measured using differential scanning calorimetry and low-temperature nitrogen adsorption-desorption measurements. The experimentally measured specific heat capacity was larger than the conventional weight-fraction-weighted specific heat capacity of the air and silica constituents. The difference was attributed to the presence of OH groups in the large internal surface area. A thermodynamic model was developed based on surface energy considerations to account for the effect of surface OH groups on the specific and volumetric heat capacity. The model predictions fell within the experimental uncertainty.

  8. Different biosorption mechanisms of Uranium(VI) by live and heat-killed Saccharomyces cerevisiae under environmentally relevant conditions.

    PubMed

    Wang, Tieshan; Zheng, Xinyan; Wang, Xiaoyu; Lu, Xia; Shen, Yanghao

    2017-02-01

    Uranium adsorption mechanisms of live and heat-killed Saccharomyces cerevisiae in different pH values and biomass concentrations were studied under environmentally relevant conditions. Compared with live cells, the adsorption capacity of heat-killed cells is almost one order of magnitude higher in low biomass concentration and highly acidic pH conditions. To explore the mesoscopic surface interactions between uranium and cells, the characteristic of uranium deposition was investigated by SEM-EDX, XPS and FTIR. Biosorption process of live cells was considered to be metabolism-dependent. Under stimulation by uranyl ions, live cells could gradually release phosphorus and reduce uranium from U(VI) to U(IV) to alleviate uranium toxicity. The uranyl-phosphate complexes were formed in scale-like shapes on cell surface. The metabolic detoxification mechanisms such as reduction and "self-protection" are of significance to the migration of radionuclides. In the metabolism-independent biosorption process of heat-killed cells: the cells cytomembrane was damaged by autoclaving which led to the free diffusion of phosphorous from intracellular, and the rough surface and nano-holes indicated that the dead cells provided larger contact area to precipitate U(VI) as spherical nano-particles. The high biosorption capacity of heat-killed cells makes it become a suitable biological adsorbent for uranium removal. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. High-performance heat pipes for heat recovery applications

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. H.

    1980-01-01

    Methods to improve the performance of reflux heat pipes for heat recovery applications were examined both analytically and experimentally. Various models for the estimation of reflux heat pipe transport capacity were surveyed in the literature and compared with experimental data. A high transport capacity reflux heat pipe was developed that provides up to a factor of 10 capacity improvement over conventional open tube designs; analytical models were developed for this device and incorporated into a computer program HPIPE. Good agreement of the model predictions with data for R-11 and benzene reflux heat pipes was obtained.

  10. 'Heat from Above' Heat Capacity Measurements in Liquid He-4

    NASA Technical Reports Server (NTRS)

    Lee, R. A. M.; Chatto, A.; Sergatskov, D. A.; Babkin, A. V.; Boyd, S. T. P.; Churilov, A. M.; McCarson, T. D.; Chui, T. C. P.; Day, P. K.; Dunca, R. V.

    2003-01-01

    We have made heat capacity measurements of superfluid He-4 at temperatures very close to the lambda point, T(sub lambda) , in a constant heat flux, Q, when the helium sample is heated from above. In this configuration the helium enters a self-organized (SOC) heat transport state at a temperature T(sub SOC)(Q), which for Q greater than or = 100 nW/sq cm lies below T(sub lambda). At low Q we observe little or no deviation from the bulk Q = 0 heat capacity up to T(sub SOC)(Q); beyond this temperature the heat capacity appears to be sharply depressed, deviating dramatically from its bulk behaviour. This marks the formation and propagation of a SOC/superfluid two phase state, which we confirm with a simple model. The excellent agreement between data and model serves as an independent confirmation of the existence of the SOC state. As Q is increased (up to 6 micron W/sq cm) we observe a Q dependant depression in the heat capacity that occurs just below T(sub SOC)(Q), when the entire sample is still superfluid. This is due to the emergence of a large thermal resistance in the sample, which we have measured and used to model the observed heat capacity depression. Our measurements of the superfluid thermal resistivity are a factor of ten larger than previous measurements by Baddar et al.

  11. Counter-extrapolation method for conjugate interfaces in computational heat and mass transfer.

    PubMed

    Le, Guigao; Oulaid, Othmane; Zhang, Junfeng

    2015-03-01

    In this paper a conjugate interface method is developed by performing extrapolations along the normal direction. Compared to other existing conjugate models, our method has several technical advantages, including the simple and straightforward algorithm, accurate representation of the interface geometry, applicability to any interface-lattice relative orientation, and availability of the normal gradient. The model is validated by simulating the steady and unsteady convection-diffusion system with a flat interface and the steady diffusion system with a circular interface, and good agreement is observed when comparing the lattice Boltzmann results with respective analytical solutions. A more general system with unsteady convection-diffusion process and a curved interface, i.e., the cooling process of a hot cylinder in a cold flow, is also simulated as an example to illustrate the practical usefulness of our model, and the effects of the cylinder heat capacity and thermal diffusivity on the cooling process are examined. Results show that the cylinder with a larger heat capacity can release more heat energy into the fluid and the cylinder temperature cools down slower, while the enhanced heat conduction inside the cylinder can facilitate the cooling process of the system. Although these findings appear obvious from physical principles, the confirming results demonstrates the application potential of our method in more complex systems. In addition, the basic idea and algorithm of the counter-extrapolation procedure presented here can be readily extended to other lattice Boltzmann models and even other computational technologies for heat and mass transfer systems.

  12. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, G.; George, E.V.; Krupke, W.F.; Sooy, W.; Sutton, S.B.

    1996-06-11

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes. 5 figs.

  13. High energy bursts from a solid state laser operated in the heat capacity limited regime

    DOEpatents

    Albrecht, Georg; George, E. Victor; Krupke, William F.; Sooy, Walter; Sutton, Steven B.

    1996-01-01

    High energy bursts are produced from a solid state laser operated in a heat capacity limited regime. Instead of cooling the laser, the active medium is thermally well isolated. As a result, the active medium will heat up until it reaches some maximum acceptable temperature. The waste heat is stored in the active medium itself. Therefore, the amount of energy the laser can put out during operation is proportional to its mass, the heat capacity of the active medium, and the temperature difference over which it is being operated. The high energy burst capacity of a heat capacity operated solid state laser, together with the absence of a heavy, power consuming steady state cooling system for the active medium, will make a variety of applications possible. Alternately, cooling takes place during a separate sequence when the laser is not operating. Industrial applications include new material working processes.

  14. Thermodynamic properties of zeolites: low-temperature heat capacities and thermodynamic functions for phillipsite and clinoptilolite. Estimates of the thermochemical properties of zeolitic water at low temperature.

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.

    1984-01-01

    Measured heat capacities between 15 and 305 K and calculated heat capacities, entropies, enthalpy functions and Gibbs energy functions are reported and analysed for phillipsite and clinoptilolite. - J.A.Z.

  15. Standard Partial Molar Heat Capacities and Volumes of Barium and Cadmium Ions in Dimethylsulfoxide at 298.15 K

    NASA Astrophysics Data System (ADS)

    Novikov, A. N.; Doronin, Ya. I.; Rakhmanova, P. A.

    2018-07-01

    The heat capacities and volumes of dimethylsulfoxide (DMSO) solutions of barium and cadmium iodides at 298.15 K were measured by calorimetry and densimetry. The standard partial molar heat capacities \\bar C_{p,2}^° and volumes \\bar V2^° of BaI2 and CdI2 in DMSO were calculated. The standard heat capacities \\bar C_{p,i}^° and volumes \\bar {V}i^° of barium and cadmium ions in DMSO at 298.15 K were determined.

  16. Characterization of Thermo-Physical Properties of EVA/ATH: Application to Gasification Experiments and Pyrolysis Modeling.

    PubMed

    Girardin, Bertrand; Fontaine, Gaëlle; Duquesne, Sophie; Försth, Michael; Bourbigot, Serge

    2015-11-20

    The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material.

  17. Characterization of Thermo-Physical Properties of EVA/ATH: Application to Gasification Experiments and Pyrolysis Modeling

    PubMed Central

    Girardin, Bertrand; Fontaine, Gaëlle; Duquesne, Sophie; Försth, Michael; Bourbigot, Serge

    2015-01-01

    The pyrolysis of solid polymeric materials is a complex process that involves both chemical and physical phenomena such as phase transitions, chemical reactions, heat transfer, and mass transport of gaseous components. For modeling purposes, it is important to characterize and to quantify the properties driving those phenomena, especially in the case of flame-retarded materials. In this study, protocols have been developed to characterize the thermal conductivity and the heat capacity of an ethylene-vinyl acetate copolymer (EVA) flame retarded with aluminum tri-hydroxide (ATH). These properties were measured for the various species identified across the decomposition of the material. Namely, the thermal conductivity was found to decrease as a function of temperature before decomposition whereas the ceramic residue obtained after the decomposition at the steady state exhibits a thermal conductivity as low as 0.2 W/m/K. The heat capacity of the material was also investigated using both isothermal modulated Differential Scanning Calorimetry (DSC) and the standard method (ASTM E1269). It was shown that the final residue exhibits a similar behavior to alumina, which is consistent with the decomposition pathway of EVA/ATH. Besides, the two experimental approaches give similar results over the whole range of temperatures. Moreover, the optical properties before decomposition and the heat capacity of the decomposition gases were also analyzed. Those properties were then used as input data for a pyrolysis model in order to predict gasification experiments. Mass losses of gasification experiments were well predicted, thus validating the characterization of the thermo-physical properties of the material. PMID:28793682

  18. Meteorite heat capacities: Results to date

    NASA Astrophysics Data System (ADS)

    Consolmagno, G.; Macke, R.; Britt, D.

    2014-07-01

    Heat capacity is an essential thermal property for modeling asteroid internal metamorphism or differentiation, and dynamical effects like YORP or Yarkovsky perturbations. We have developed a rapid, inexpensive, and non-destructive method for measuring the heat capacity of meteorites at low temperature [1]. A sample is introduced into a dewar of liquid nitrogen and an electronic scale measures the amount of nitrogen boiled away as the sample is cooled from the room temperature to the liquid nitrogen temperature; given the heat of vaporization of liquid nitrogen, one can then calculate the heat lost from the sample during the cooling process. Note that heat capacity in this temperature range is a strong function of temperature, but this functional relation is essentially the same for all materials; the values we determine are equivalent to the heat capacity of the sample at 175 K. To correct for systematic errors, samples of laboratory-grade quartz are measured along with the meteorite samples. To date, more than 70 samples of more than 50 different meteorites have been measured in this way, including ordinary chondrites [1], irons [2], basaltic achondrites [3], and a limited number of carbonaceous chondrites [1]. In general, one can draw a number of important conclusions from these results. First, the heat capacity of a meteorite is a function of its mineral composition, independent of shock, metamorphism, or other physical state. Second, given this relation, heat capacity can be strongly altered by terrestrial weathering. Third, the measurement of heat capacity in small (less than 1 g) samples as done typically by commercial systems runs a serious risk of giving misleading results for samples that are heterogeneous on scales of tens of grams or more. Finally, we demonstrate that heat capacity is a useful tool for determining and classifying a sample, especially if used in conjunction with other intrinsic variables such as grain density and magnetic susceptibility. We will present an updated list of our results, incorporating our latest corrections for a variety of small but measurable systematic errors, and new results for meteorites and meteorite types not previously measured or reported.

  19. The Heat Capacity of Ideal Gases

    ERIC Educational Resources Information Center

    Scott, Robert L.

    2006-01-01

    The heat capacity of an ideal gas has been shown to be calculable directly by statistical mechanics if the energies of the quantum states are known. However, unless one makes careful calculations, it is not easy for a student to understand the qualitative results. Why there are maxima (and occasionally minima) in heat capacity-temperature curves…

  20. Transverse Uniaxial Composite Thermal Properties Data Base of Thermally Conductive Graphite Fibers with and without Contiguous Grown Graphite Fins

    DTIC Science & Technology

    2013-07-01

    Vacuum Heat Capacity: Test Method: Conventional MCDS Heating Rate 2 oC/min Temperature(oC): -75 -50 -25 0 25 50 75 100 Average (J/goC): 0.5555...PreConditioning Time-Duration: 24hrs at 125oC and -29inch Vacuum Heat Capacity: Test Method: Conventional MCDS Heating Rate 2 oC/min Temperature(oC...29inch Vacuum Heat Capacity: Test Method: Conventional MCDS Heating Rate 2 oC/min Temperature(oC): -75 -50 -25 0 - - - - Average (J/goC

  1. Technical and Operational Feasibility Study on Humidity Control within the U.S. Air Force Aircraft Service Shelter. Aircraft Service Shelter is an Integral Part of the F-16 Maintenance Complex

    DTIC Science & Technology

    1987-02-27

    capacity, as calculated below, was added to the high tempierature, high humzidity load. The following new parameter values were used. K2 - sass flow...was added to the low temperature load. The following new parameter values were used. SM5 - mass flow rate for 4 hour "pull down" flow rate Q - 1,280...manufactured from the same teCnical data pdciage wi tn no essential differences and that capacity data for the A.R.E. heat pump wil. closely approximate the

  2. Thermotolerance and Photosystem II Behaviour in Co-occuring Temperate Tree Species Exposed to Short-term Extreme Heat Waves

    NASA Astrophysics Data System (ADS)

    Guha, A.; Warren, J.; Cummings, C.; Han, J.

    2017-12-01

    Thermal stress can induce irreversible photodamage with longer consequences for plant metabolism. We focused on photosystem II (PSII) behaviour to understand how this complex responds in different co-occuring temperate trees exposed to short-term extreme heat waves. The study was designed for understanding complex heat tolerance mechanisms in trees. During manipulative heat-wave experiments, we monitored instantaneous PSII performance and tracked both transient and chronic PSII damages using chlorophyll a fluorescence characteristics. Fluorescence signals were used to simulate PSII bioenergetic processes. The light (Fv'/Fm') and dark-adapted (Fv/Fm) fluorescence traits including fast induction kinetics (OJIP), electron transport rate, PSII operating efficiency and quenching capacities were significantly affected by the heat treatments. Loss in PSII efficiency was more apparent in species like black cottonwood, yellow poplar, walnuts and conifers, whereas oaks maintained relatively better PSII functions. The post-heat recovery of Fv/Fm varied across the studied species showing differential carry over effects. PSII down-regulation was one of dominant factors for the loss in operational photosynthesis during extreme heat wave events. Both light and dark-adapted fluorescence characteristics showed loss in photo-regulatory functions and photodamage. Some resilient species showed rapid recovery from transient PSII damage, whereas fingerprints of chronic PSII damage were observed in susceptibles. Thresholds for Fv/Fm and non-photochemical quenching were identified for the studied species. PSII malfunctioning was largely associated with the observed photosynthetic down-regulation during heat wave treatments, however, its physiological recovery should be a key factor to determine species resilience to short-term extreme heat wave events.

  3. Rotary Vapor Compression Cycle Final Report.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kariya, Arthur; Staats, Wayne; Koplow, Jeffrey P.

    While there are several heat pump technologies such thermoelectric, adsorption and magnetocaloric cycles, the oldest and most widely used is the vapor compression cycle (VCC). Currently, thermoelectric cycles have not yet achieved efficiencies nor cooling capacities comparable to VCCs. Adsorption cycles offer the benefit of using low-quality heat as the energy input, but are significantly more complex and expensive and are therefore limited to certain niche applications. Magnetocaloric cycles are still in the research phase. Consequently, improvements made for VCCs will likely have the most immediate and encompassing impact. The objective of this work is to develop an alternative VCCmore » topology to reduce the above inefficiencies.« less

  4. Highly sensitive pseudo-differential ac-nanocalorimeter for the study of the glass transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laarraj, Mohcine; University Grenoble Alpes, Institut NEEL, F-38042 Grenoble; Laboratoire d’Ingénierie et des Matériaux

    2015-11-15

    We present a nanocalorimeter designed for the measurement of the dynamic heat capacity of thin films. The microfabricated sensor, the thermal conditioning of the sensor, as well as the highly stable and low noise electronic chain allow measurements of the real and imaginary parts of the complex specific heat with a resolution Δ C/C of about 10{sup −5}. The performances of this quasi-differential nanocalorimeter were tested on a model of polymeric glass-former, the polyvinyl acetate (PVAc). The high stability and low noise of the device are essential for accurate studies on non-equilibrium slow relaxing systems such as glasses.

  5. Deconvolution of complex differential scanning calorimetry profiles for protein transitions under kinetic control.

    PubMed

    Toledo-Núñez, Citlali; Vera-Robles, L Iraís; Arroyo-Maya, Izlia J; Hernández-Arana, Andrés

    2016-09-15

    A frequent outcome in differential scanning calorimetry (DSC) experiments carried out with large proteins is the irreversibility of the observed endothermic effects. In these cases, DSC profiles are analyzed according to methods developed for temperature-induced denaturation transitions occurring under kinetic control. In the one-step irreversible model (native → denatured) the characteristics of the observed single-peaked endotherm depend on the denaturation enthalpy and the temperature dependence of the reaction rate constant, k. Several procedures have been devised to obtain the parameters that determine the variation of k with temperature. Here, we have elaborated on one of these procedures in order to analyze more complex DSC profiles. Synthetic data for a heat capacity curve were generated according to a model with two sequential reactions; the temperature dependence of each of the two rate constants involved was determined, according to the Eyring's equation, by two fixed parameters. It was then shown that our deconvolution procedure, by making use of heat capacity data alone, permits to extract the parameter values that were initially used. Finally, experimental DSC traces showing two and three maxima were analyzed and reproduced with relative success according to two- and four-step sequential models. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Sodium-based hydrides for thermal energy applications

    NASA Astrophysics Data System (ADS)

    Sheppard, D. A.; Humphries, T. D.; Buckley, C. E.

    2016-04-01

    Concentrating solar-thermal power (CSP) with thermal energy storage (TES) represents an attractive alternative to conventional fossil fuels for base-load power generation. Sodium alanate (NaAlH4) is a well-known sodium-based complex metal hydride but, more recently, high-temperature sodium-based complex metal hydrides have been considered for TES. This review considers the current state of the art for NaH, NaMgH3- x F x , Na-based transition metal hydrides, NaBH4 and Na3AlH6 for TES and heat pumping applications. These metal hydrides have a number of advantages over other classes of heat storage materials such as high thermal energy storage capacity, low volume, relatively low cost and a wide range of operating temperatures (100 °C to more than 650 °C). Potential safety issues associated with the use of high-temperature sodium-based hydrides are also addressed.

  7. DOE Office of Scientific and Technical Information (OSTI.GOV)

    A new generation of central, ducted variable-capacity heat pump systems has come on the market, promising very high cooling and heating efficiency. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they vary their cooling and heating output over a wide range (approximately 40 to 118% of nominal full capacity); thus, staying 'on' for 60% to 100% more hours per day compared to fixed-capacity systems. Current Phase 4 experiments in an instrumented lab home with simulated occupancy evaluate the impact of duct R-value enhancement on the overall operating efficiency of the variable-capacity systemmore » compared to the fixed-capacity system.« less

  8. Thermochemistry of the specific binding of C12 surfactants to bovine serum albumin.

    PubMed

    Nielsen, A D; Borch, K; Westh, P

    2000-06-15

    The specific binding to bovine serum albumin (BSA) of anionic and non-ionic surfactants with C12 acyl chains has been studied by high sensitivity isothermal titration calorimetry. This method proved particularly effective in resolving the binding of anionic surfactants into separate classes of sites with different affinity. For sodium dodecylsulfate (SDS) the measured binding curves could be rationalized as association to two classes (high affinity/low affinity) of sites comprising, respectively, three and six similar (i.e. thermodynamically equivalent), independent sites. Changes in the thermodynamic functions enthalpy, standard free energy, standard entropy and heat capacity could be discerned for each class of binding site, as well as for micelle formation. These data suggest that binding to low affinity sites (in analogy with micelle formation) exhibits energetic parameters; in particular, a large negative change in heat capacity, which is characteristic of hydrophobic interactions. The thermodynamics of high affinity binding, on the other hand, is indicative of other dominant forces; most likely electrostatic interactions. Other anionic ligands investigated (laurate and dodecyl benzylsulfonate) showed a behavior similar to SDS, the most significant difference being the high affinity binding of the alkylbenzyl sulfonate. For this ligand, the thermodynamic data is indicative of a more loosely associated complex than for SDS and laurate. BSA was found to bind one or two of the non-ionic surfactants (NIS) hepta- or penta(ethylene glycol) monododecyl ether (C12EO7 and C12EO5) with binding constants about three orders of magnitude lower than for SDS. Hence, the free energy of the surfactant in the weakly bound BSA-NIS complex is only slightly favored over the micellar state. The binding process is characterized by very large exothermic enthalpy changes (larger than for the charged surfactants) and a large, positive increment in heat capacity. These observations cannot be reconciled with a molecular picture based on simple hydrophobic condensation onto non-polar patches on the protein surface.

  9. Anomalous electronic heat capacity of copper nanowires at sub-Kelvin temperatures

    NASA Astrophysics Data System (ADS)

    Viisanen, K. L.; Pekola, J. P.

    2018-03-01

    We have measured the electronic heat capacity of thin film nanowires of copper and silver at temperatures 0.1-0.3 K; the films were deposited by standard electron-beam evaporation. The specific heat of the Ag films of sub-100-nm thickness agrees with the bulk value and the free-electron estimate, whereas that of similar Cu films exceeds the corresponding reference values by one order of magnitude. The origin of the anomalously high heat capacity of copper films remains unknown for the moment. Based on the small heat capacity at low temperatures and the possibility to devise a tunnel probe thermometer on it, metal films form a promising absorber material, e.g., for microwave photon calorimetry.

  10. Phase-Change Heat-Storage Module

    NASA Technical Reports Server (NTRS)

    Mulligan, James C.

    1989-01-01

    Heat-storage module accommodates momentary heating or cooling overload in pumped-liquid heat-transfer system. Large heat-storage capacity of module provided by heat of fusion of material that freezes at or near temperature desired to maintain object to be heated or cooled. Module involves relatively small penalties in weight, cost, and size and more than compensates by enabling design of rest of system to handle only average load. Latent heat of fusion of phase-change material provides large heat-storage capacity in small volume.

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    C. Withers; Cummings, J.; Nigusse, B.

    A new generation of full variable-capacity, central, ducted air-conditioning (AC) and heat pump units has come on the market, and they promise to deliver increased cooling (and heating) efficiency. They are controlled differently than standard single-capacity (fixed-capacity) systems. Instead of cycling on at full capacity and then cycling off when the thermostat is satisfied, they can vary their capacity over a wide range (approximately 40% to 118% of nominal full capacity), thus staying “on” for up to twice as many hours per day compared to fixed-capacity systems of the same nominal capacity. The heating and cooling capacity is varied bymore » adjusting the indoor fan air flow rate, compressor, and refrigerant flow rate as well as the outdoor unit fan air flow rate. Note that two-stage AC or heat pump systems were not evaluated in this research effort. The term dwell is used to refer to the amount of time distributed air spends inside ductwork during space-conditioning cycles. Longer run times mean greater dwell time and therefore greater exposure to conductive gains and losses.« less

  12. Melting, glass transition, and apparent heat capacity of α-D-glucose by thermal analysis.

    PubMed

    Magoń, A; Pyda, M

    2011-11-29

    The thermal behaviors of α-D-glucose in the melting and glass transition regions were examined utilizing the calorimetric methods of standard differential scanning calorimetry (DSC), standard temperature-modulated differential scanning calorimetry (TMDSC), quasi-isothermal temperature-modulated differential scanning calorimetry (quasi-TMDSC), and thermogravimetric analysis (TGA). The quantitative thermal analyses of experimental data of crystalline and amorphous α-D-glucose were performed based on heat capacities. The total, apparent and reversingheat capacities, and phase transitions were evaluated on heating and cooling. The melting temperature (T(m)) of a crystalline carbohydrate such as α-D-glucose, shows a heating rate dependence, with the melting peak shifted to lower temperature for a lower heating rate, and with superheating of around 25K. The superheating of crystalline α-D-glucose is observed as shifting the melting peak for higher heating rates, above the equilibrium melting temperature due to of the slow melting process. The equilibrium melting temperature and heat of fusion of crystalline α-D-glucose were estimated. Changes of reversing heat capacity evaluated by TMDSC at glass transition (T(g)) of amorphous and melting process at T(m) of fully crystalline α-D-glucose are similar. In both, the amorphous and crystalline phases, the same origin of heat capacity changes, in the T(g) and T(m) area, are attributable to molecular rotational motion. Degradation occurs simultaneously with the melting process of the crystalline phase. The stability of crystalline α-D-glucose was examined by TGA and TMDSC in the melting region, with the degradation shown to be resulting from changes of mass with temperature and time. The experimental heat capacities of fully crystalline and amorphous α-D-glucose were analyzed in reference to the solid, vibrational, and liquid heat capacities, which were approximated based on the ATHAS scheme and Data Bank. Copyright © 2011 Elsevier Ltd. All rights reserved.

  13. Regenerator filled with a matrix of polycrystalline iron whiskers

    NASA Astrophysics Data System (ADS)

    Eder, F. X.; Appel, H.

    1982-08-01

    In thermal regenerators, parameters were optimized: convection coefficient, surface of heat accumulating matrix, matrix density and heat capacity, and frequency of cycle inversions. The variation of heat capacity with working temperature was also computed. Polycrystalline iron whiskers prove a good compromise as matrix for heat regenerators at working temperatures ranging from 300 to 80 K. They were compared with wire mesh screens and microspheres of bronze and stainless steel. For theses structures and materials, thermal conductivity, pressure drop, heat transfer and yield were calculated and related to the experimental values. As transport heat gas, helium, argon, and dry nitrogen were applied at pressures up to 20 bar. Experimental and theoretical studies result in a set of formulas for calculating pressure drop, heat capacity, and heat transfer rate for a given thermal regenerator in function of mass flow. It is proved that a whisker matrix has an efficiency that depends strongly on gas pressure and composition. Iron whiskers make a good matrix with heat capacities of kW/cu cm per K, but their relative high pressure drop may, at low pressures, be a limitation. A regenerator expansion machine is described.

  14. Results from a lab study of melting sea ice

    NASA Astrophysics Data System (ADS)

    Wiese, M.; Griewank, P.; Notz, D.

    2012-04-01

    Sea-ice melting is a complex process which is not fully understood yet. In order to study sea-ice melt in detail we perform lab experiments in an approximately 2x0.7x1.2 m large tank in a cold room. We grow sea ice with different salinities at least 10 cm thick. Then we let the ice melt at different air temperatures and oceanic heat fluxes. During the melt period, we measure the evolution of ice thickness, internal temperature, salinity and surface temperature. We will present results from roughly five months of experiments. Topics will include the influence of bulk salinity on melt rates and the surface temperature. The effects of flushing on the salinity evolution and detailed thermal profiles will also be included. To investigate these processes we focus on the energy budget and the salinity evolution. These topics are linked since the thermodynamic properties of sea ice (heat capacity, heat conductivity and latent heat of fusion) are very sensitive to salinity variations. For example the heat capacity of sea ice increases greatly as the temperature approaches the melting point. This increase results in non-linear temperature profiles and enhances heat conduction into the ice. The salinity evolution during the growth phase has been investigated and measured in multiple studies over the last decades. In contrast there are no detailed lab measurements of melting ice available to quantify the effects of flushing melt water and ponding. This is partially due to the fact that the heterogeneity of melting sea ice makes it much more difficult to measure representative values.

  15. Heat Capacity of Room-Temperature Ionic Liquids: A Critical Review

    NASA Astrophysics Data System (ADS)

    Paulechka, Yauheni U.

    2010-09-01

    Experimental data on heat capacity of room-temperature ionic liquids in the liquid state were compiled and critically evaluated. The compilation contains data for 102 aprotic ionic liquids from 63 literature references and covers the period of time from 1998 through the end of February 2010. Parameters of correlating equations for temperature dependence of the heat capacities were developed.

  16. Heat Capacity, Body Temperature, and Hypothermia

    NASA Astrophysics Data System (ADS)

    Kimbrough, Doris R.

    1998-01-01

    Even when air and water are at the same temperature, water will "feel" distinctly colder to us. This difference is due to the much higher heat capacity of water than of air. Offered here is an interesting life science application of water's high heat capacity and its serious implications for the maintenance of body temperature and the prevention of hypothermia in warm-blooded animals.

  17. Geothermal Power Supply Systems around the World and in Russia: State of the Art and Future Prospects

    NASA Astrophysics Data System (ADS)

    Butuzov, V. A.; Amerkhanov, R. A.; Grigorash, O. V.

    2018-05-01

    Solar and geothermal energy systems are shown to have received the widest use among all kinds of renewable sources of energy for heat supply purposes around the world. The power capacities and amounts of thermal energy generated by solar and geothermal heat supply systems around the world are presented by way of comparison. The thermal power capacity of solar heat supply systems installed around the world as of 2015 totaled 268.1 GW, and the thermal energy generated by them amounted to 225 TW h/year. The thermal power capacity of geothermal heat supply systems installed around the world totaled 70.3 GW, and the thermal energy generated by them amounted to 163 TW h/year. Information on the geothermal heat supply systems in the leading countries around the world based on the data reported at the World Geothermal Congress held in 2015 is presented. It is shown that China, with the installed thermal power capacities of its geothermal heat supply stations totaling 17.87 GW and the amount of thermal energy generated per annum equal to 48.435 TW h/year, is the world's leader in this respect. The structures of geothermal heat supply systems by the kinds of heat consumption used around the world are presented. The systems equipped with geothermal heat pumps accounted for 70.95% in the total installed capacity and for 55.3% in the total amount of generated heat. For systems that do not use heat pumps, those serving for pools account for the largest share amounting to 44.74% in installed capacity and to 45.43% in generated heat. A total of 2218 geothermal wells with the total length equal to 9534 km (with 38.7% of them for heat supply purposes) were drilled in 42 countries in the period from 2010 to 2014. In Russia, geothermal heat supply systems are in operation mainly in Dagestan, in Krasnodar krai, and in Kamchatka. The majority of these systems have been made without breaking the stream after the well outlet. A cyclic control arrangement is also used. The combined geothermal and solar heat supply system with an installed thermal power capacity of 5 MW that is in operation in the Rozovyi settlement, Krasnodar krai, is described. In the summer time, the solar installation with a capacity of 115 kW is used for supplying hot water to residential houses and for restoring the geothermal well pore pressure. The basic process circuit and characteristics of the geothermal heat supply system with the installed thermal power capacity of 8.7 MW operating in the Khankala settlement, the city of Groznyi, are given. The specific feature of this system is that the spent geothermal heat carrier is reinjected into a specially drilled inclined well. Advanced geothermal heat supply technologies involving reinjection of the spent geothermal heat carrier, combination with binary power units, use of heat pumps for recovering the spent heat carrier, and protection of equipment from corrosion and deposits are proposed.

  18. Heat Capacity of B. Mori Silk Fibroin Based on the Vibrational-Motion of Poly(amino acid)s.

    NASA Astrophysics Data System (ADS)

    Pyda, Marek; Hu, Xiao; Cebe, Peggy

    2009-03-01

    Bombyx mori silk fibroin heat capacities with and without water have been determined based on the vibrational motions of poly(amino acid)s and water, using the Advanced Thermal Analysis System (ATHAS) Data Bank. The heat capacities, Cp, of dry silk and silk-water were linked to their vibrational spectra based on the group and skeletal vibration contributions. For dry silk, the experimental and calculated Cp agree to better than ±3% between 200 K and 435 K. The heat capacity of the solid silk-water system, below the glass transition, was estimated from a sum of linear combinations of the molar fractions of the vibrational heat capacities of dry silk and glassy water. Calculations are compared to experimental data obtained from calorimetric methods, using hermetic and non-hermetic pans. The approach presented allows one to predict the low temperature vibrational heat capacity for dry silk and for the silk-water system down to zero kelvin, and, together with an extension to higher temperatures, above the glass transition. This can be used as a reference baseline for quantitative thermal analysis of this biomaterial..

  19. Solar heated fluidized bed gasification system

    NASA Technical Reports Server (NTRS)

    Qader, S. A. (Inventor)

    1981-01-01

    A solar-powered fluidized bed gasification system for gasifying carbonaceous material is presented. The system includes a solar gasifier which is heated by fluidizing gas and steam. Energy to heat the gas and steam is supplied by a high heat capacity refractory honeycomb which surrounds the fluid bed reactor zone. The high heat capacity refractory honeycomb is heated by solar energy focused on the honeycomb by solar concentrator through solar window. The fluid bed reaction zone is also heated directly and uniformly by thermal contact of the high heat capacity ceramic honeycomb with the walls of the fluidized bed reactor. Provisions are also made for recovering and recycling catalysts used in the gasification process. Back-up furnace is provided for start-up procedures and for supplying heat to the fluid bed reaction zone when adequate supplies of solar energy are not available.

  20. Effect of high energy electron beam (10MeV) on specific heat capacity of low-density polyethylene/hydroxyapatite nano-composite.

    PubMed

    Soltani, Z; Ziaie, F; Ghaffari, M; Beigzadeh, A M

    2017-02-01

    In the present work, thermal properties of low density polyethylene (LDPE) and its nano composites are investigated. For this purpose LDPE reinforced with different weight percents of hydroxyapatite (HAP) powder which was synthesized via hydrolysis method are produced. The samples were irradiated with 10MeV electron beam at doses of 75 to 250kGy. Specific heat capacity measurement have been carried out at different temperatures, i.e. 25, 50, 75 and 100°C using modulated temperature differential scanning calorimetry (MTDSC) apparatus and the effect of three parameters include of temperature, irradiation dose and the amount of HAP nano particles as additives on the specific heat capacity of PE/HAP have been investigated precisely. The MTDSC results indicate that the specific heat capacity have decreased by addition of nano sized HAP as reinforcement for LDPE. On the other hand, the effect of radiation dose is reduction in the specific heat capacity in all materials including LDPE and its nano composites. The HAP nano particles along with cross-link junctions due to radiation restrain the movement of the polymer chains in the vicinity of each particle and improve the immobility of polymer chains and consequently lead to reduction in specific heat capacity. Also, the obtained results confirm that the radiation effect on the specific heat capacity is more efficient than the reinforcing effect of nano-sized hydroxyapatite. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Could thermal sensitivity of mitochondria determine species distribution in a changing climate?

    PubMed

    Iftikar, Fathima I; MacDonald, Julia R; Baker, Daniel W; Renshaw, Gillian M C; Hickey, Anthony J R

    2014-07-01

    For many aquatic species, the upper thermal limit (Tmax) and the heart failure temperature (THF) are only a few degrees away from the species' current environmental temperatures. While the mechanisms mediating temperature-induced heart failure (HF) remain unresolved, energy flow and/or oxygen supply disruptions to cardiac mitochondria may be impacted by heat stress. Recent work using a New Zealand wrasse (Notolabrus celidotus) found that ATP synthesis capacity of cardiac mitochondria collapses prior to T(HF). However, whether this effect is limited to one species from one thermal habitat remains unknown. The present study confirmed that cardiac mitochondrial dysfunction contributes to heat stress-induced HF in two additional wrasses that occupy cold temperate (Notolabrus fucicola) and tropical (Thalassoma lunare) habitats. With exposure to heat stress, T. lunare had the least scope to maintain heart function with increasing temperature. Heat-exposed fish of all species showed elevated plasma succinate, and the heart mitochondria from the cold temperate N. fucicola showed decreased phosphorylation efficiencies (depressed respiratory control ratio, RCR), cytochrome c oxidase (CCO) flux and electron transport system (ETS) flux. In situ assays conducted across a range of temperatures using naive tissues showed depressed complex II (CII) and CCO capacity, limited ETS reserve capacities and lowered efficiencies of pyruvate uptake in T. lunare and N. celidotus. Notably, alterations of mitochondrial function were detectable at saturating oxygen levels, indicating that cardiac mitochondrial insufficiency can occur prior to HF without oxygen limitation. Our data support the view that species distribution may be related to the thermal limits of mitochondrial stability and function, which will be important as oceans continue to warm. © 2014. Published by The Company of Biologists Ltd.

  2. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in themore » cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.« less

  3. Measurement of the Heat Capacity of He-II Under a Heat Current Near the Lambda Transition

    NASA Technical Reports Server (NTRS)

    Harter, Alexa W.; Lee, Richard A. M.; Chui, Talso C. P.; Goodstein, David L.

    2000-01-01

    We present preliminary measurements of the heat capacity of superfluid helium-4 under an applied heat current near the lambda transition. The calorimeter is a standard cylindrical thermal conductivity cell with a 0.6 mm gap between two copper endplates. The sidewall is made of stainless steel. A heat current density in the range of 1 to 4 microW/sq cm is applied through the helium sample while a pulse method is used to measure the heat capacity. Temperature changes are recorded with high-resolution thermometers (HRTs) located on the top and bottom endplates. Corrections are made to the readings of the HRTs to account for the Kapitza boundary resistance and the anomalous Kapitza boundary resistance. After the corrections, both the top and the bottom HRTs. give the same heat capacity values. The heat capacity is found to be much larger than the prediction of recent theories. We also plotted our data on a scaled plot to test the prediction of scaling by the theories. The result and its interpretation will be presented. The cell height was deliberately made to be thin to reduce the effects of gravity. Nonetheless, gravity is expected to have significant effects on the heat capacity data in the temperature range of our measurement. A space experiment would remove this unwanted gravity effect and allow the true physics to be examined. Moreover, in the absence of gravity, a deeper cell can be used allowing HRTs to be mounted on to the sidewall providing direct measurements of the helium temperature, unaffected by the anomalous Kapitza boundary resistance.

  4. Akermanite: phase transitions in heat capacity and thermal expansion, and revised thermodynamic data.

    USGS Publications Warehouse

    Hemingway, B.S.; Evans, H.T.; Nord, G.L.; Haselton, H.T.; Robie, R.A.; McGee, J.J.

    1986-01-01

    A small but sharp anomaly in the heat capacity of akermanite at 357.9 K, and a discontinuity in its thermal expansion at 693 K, as determined by XRD, have been found. The enthalpy and entropy assigned to the heat-capacity anomaly, for the purpose of tabulation, are 679 J/mol and 1.9 J/(mol.K), respectively. They were determined from the difference between the measured values of the heat capacity in the T interval 320-365 K and that obtained from an equation which fits the heat-capacity and heat-content data for akermanite from 290 to 1731 K. Heat-capacity measurements are reported for the T range from 9 to 995 K. The entropy and enthalpy of formation of akermanite at 298.15 K and 1 bar are 212.5 + or - 0.4 J/(mol.K) and -3864.5 + or - 4.0 kJ/mol, respectively. Weak satellite reflections have been observed in hk0 single-crystal X-ray precession photographs and electron-diffraction patterns of this material at room T. With in situ heating by TEM, the satellite reflections decreased significantly in intensity above 358 K and disappeared at about 580 K and, on cooling, reappeared. These observations suggest that the anomalies in the thermal behaviour of akermanite are associated with local displacements of Ca ions from the mirror plane (space group P421m) and accompanying distortion of the MgSi2O7 framework.-L.C.C.

  5. Heat capacities and thermal diffusivities of n-alkane acid ethyl esters—biodiesel fuel components

    NASA Astrophysics Data System (ADS)

    Bogatishcheva, N. S.; Faizullin, M. Z.; Nikitin, E. D.

    2017-09-01

    The heat capacities and thermal diffusivities of ethyl esters of liquid n-alkane acids C n H2 n-1O2C2H5 with the number of carbon atoms in the parent acid n = 10, 11, 12, 14, and 16 are measured. The heat capacities are measured using a DSC 204 F1 Phoenix heat flux differential scanning calorimeter (Netzsch, Germany) in the temperature range of 305-375 K. Thermal diffusivities are measured by means of laser flash method on an LFA-457 instrument (Netzsch, Germany) at temperatures of 305-400 K. An equation is derived for the dependence of the molar heat capacities of the investigated esters on temperature. It is shown that the dependence of molar heat capacity C p,m (298.15 K) on n ( n = 1-6) is close to linear. The dependence of thermal diffusivity on temperature in the investigated temperature range is described by a first-degree polynomial, but thermal diffusivity a (298.15 K) as a function of n has a minimum at n = 5.

  6. Low temperature heat capacity and thermodynamic functions of anion bearing sodalites Na 8Al 6Si 6O 24X 2 (X = SO 4, ReO 4, Cl, I)

    DOE PAGES

    Schliesser, Jacob; Lilova, Kristina; Pierce, Eric M.; ...

    2017-06-01

    Heat capacities of sulfate, perrhenate, chloride, and iodide sodalites with the ideal formula Na 8Al 6Si 6O 24X 2 (X = SO 4, ReO 4, Cl, I) were measured from 2 K to 300 K using a Quantum Design Physical Property Measurement System (PPMS). From the heat capacity data, the standard thermodynamic functions were determined. All four sodalites undergo a phase transition below room temperature for which thermodynamic parameters were determined. Additionally, the heat capacity of one of the constituent compounds (NaReO 4) was measured.

  7. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System

    PubMed Central

    Ma, Biao; Zhou, Xue-yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-feng

    2016-01-01

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are −18 °C–7 °C, 7 °C–25 °C and 25 °C–44 °C, respectively, and that of the asphalt mixture are −18 °C~10 °C, −10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method. PMID:28773510

  8. Determination of Specific Heat Capacity on Composite Shape-Stabilized Phase Change Materials and Asphalt Mixtures by Heat Exchange System.

    PubMed

    Ma, Biao; Zhou, Xue-Yan; Liu, Jiang; You, Zhanping; Wei, Kun; Huang, Xiao-Feng

    2016-05-19

    Previous research has shown that composite shape-stabilized phase change material (CPCM) has a remarkable capacity for thermal storage and stabilization, and it can be directly applied to highway construction without leakage. However, recent studies on temperature changing behaviors of CPCM and asphalt mixture cannot intuitively reflect the thermoregulation mechanism and efficiency of CPCM on asphalt mixture. The objective of this paper is to determine the specific heat capacity of CPCM and asphalt mixtures mixed with CPCM using the heat exchange system and the data acquisition system. Studies have shown that the temperature-rise curve of 5 °C CPCM has an obvious temperature plateau, while an asphalt mixture mixed with 5 °C CPCM does not; with increasing temperature, the specific heat capacities of both 5 °C CPCM and asphalt mixture first increase and then decrease, while the variation rate of 5 °C CPCM is larger than that of the asphalt mixture, and the maximum specific heat capacity of 5 °C CPCM appears around the initial phase change temperature. It is concluded that the temperature intervals of 5 °C CPCM are -18 °C-7 °C, 7 °C-25 °C and 25 °C-44 °C, respectively, and that of the asphalt mixture are -18 °C~10 °C, -10 °C~5 °C and 5 °C~28 °C. A low dosage of 5 °C CPCM has little influence on the specific heat capacity of asphalt mixture. Finally, the functions of specific heat capacities and temperature for CPCM and asphalt mixture mixed with CPCM were recommended by the sectional regression method.

  9. Solid and liquid heat capacities of n-alkyl para-aminobenzoates near the melting point.

    PubMed

    Neau, S H; Flynn, G L

    1990-11-01

    The expression that relates the ideal mole fraction solubility of a crystalline compound to physicochemical properties of the compound includes a term involving the difference in the heat capacities of the solid and liquid forms of the solute, delta Cp. There are two alternate conventions which are employed to eliminate this term. The first assumes that the term involving delta Cp, or delta Cp itself, is zero. The alternate assumption assigns the value of the entropy of fusion to the differential heat capacity. The relative validity of these two assumptions was evaluated using the straight-chain alkyl para-aminobenzoates as test compounds. The heat capacities of the solid and liquid forms of each of the para-aminobenzoates, near the respective melting point, were determined by differential scanning calorimetry. The data lead one to conclude that the assumption that the differential heat capacity is not usually negligible and is better approximated by the entropy of fusion.

  10. Analysis of the heat capacity of nanoclusters of FCC metals on the example of Al, Ni, Cu, Pd, and Au

    NASA Astrophysics Data System (ADS)

    Gafner, Yu. Ya.; Gafner, S. L.; Zamulin, I. S.; Redel, L. V.; Baidyshev, V. S.

    2015-06-01

    The heat capacity of ideal nickel, copper, gold, aluminum, and palladium fcc clusters with diameter of up to 6 nm has been studied in the temperature range of 150-800 K in terms of the molecular-dynamics theory using a tight-binding potential. The heat capacity of individual metallic nanoclusters has been found to exceed that characteristic of the bulk state, but by no more than 16-20%, even in the case of very small clusters. To explain the discrepancy between the simulated data and the experimental results on the compacted metals, aluminum and palladium samples with 80% theoretical density have also been investigated. Based on the simulation results and analysis of the experimental data, it has been established that the increased heat capacity of the compacted nanomaterials does not depend on the enhanced heat capacity of the individual clusters but rather, can be due to either the disordered state of the nanomaterial or a significant content of impurities (mainly, hydrogen).

  11. Investigation on phase transitions of 1-decylammonium hydrochloride as the potential thermal energy storage material

    NASA Astrophysics Data System (ADS)

    Dan, Wen-Yan; Di, You-Ying; He, Dong-Hua; Liu, Yu-Pu

    2011-02-01

    1-Decylammonium hydrochloride was synthesized by the method of liquid phase synthesis. Chemical analysis, elemental analysis, and X-ray single crystal diffraction techniques were applied to characterize its composition and structure. Low-temperature heat capacities of the compounds were measured with a precision automated adiabatic calorimeter over the temperature range from 78 to 380 K. Three solid-solid phase transitions have been observed at the peak temperatures of 307.52 ± 0.13, 325.02 ± 0.19, and 327.26 ± 0.07 K. The molar enthalpies and entropies of three phase transitions were determined based on the analysis of heat capacity curves. Experimental molar heat capacities were fitted to two polynomial equations of the heat capacities as a function of temperature by least square method. Smoothed heat capacities and thermodynamic functions of the compound relative to the standard reference temperature 298.15 K were calculated and tabulated at intervals of 5 K based on the fitted polynomials.

  12. Molar heat capacity and entropy of calcium metal

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.; Chase, M.W.

    1997-01-01

    The heat capacity of calcium has been measured at 85 mean temperatures between T ??? 8 K and T ??? 369 K using an adiabatically-shielded calorimeter in an intermittent heating mode. At T = 298.15 K, the recommended values for the molar heat capacity, molar entropy, and molar enthalpy increment referred to T = 0 are (25.77 ?? 0.08) J??K-1??mol-1, (42.90 ?? 0.11) J??K-1??mol-1, and (5811 ?? 12) J??mol-1, respectively. The uncertainties are twice the standard deviation of the mean. ?? 1997 Academic Press Limited.

  13. Heat capacity and transport measurements in sputtered niobium-zirconium multilayers

    NASA Astrophysics Data System (ADS)

    Broussard, P. R.; Mael, D.

    1989-08-01

    We have studied the electrical resistivity and heat capacity for multilayers of niobium and zirconium prepared by magnetron sputtering for values of the bilayer period Λ varying from 4 to 950 Å. We find a transition in the thermal part of the resistivity that correlates with the coherent-to-incoherent transition seen in earlier work. The heat capacity data for the normal state show anomalous behavior for both the electronic coefficient γ and the Debye temperature. We also study the variation in Tc and the jump in the specific heat.

  14. Bulk thermal capacity determination for Li/BCX and Li/SOClN2 cells

    NASA Technical Reports Server (NTRS)

    Kalu, E. E.; White, R. E.; Darcy, E. C.

    1992-01-01

    The bulk heat capacities of Li/BCX and Li/SOClN2 cells were determined at 0 and 100 percent depth-of-discharge for 2.0 V cut-off voltage, in the temperature range 0 to 60 C by a method that did not involve the destruction of the cell nor the contact of cell with a liquid. The heat capacities are found to be dependent on state-of-charge, increasing with depth-of-discharge. The Li/BCX DD-cell has a lower heat capacity than a high rate Li/SOCl2 D-cell. The results obtained by this method compare favorably well with results reported in the literature through other methods. The bulk heat capacities of the cells did not change significantly in the temperature range 0 to 60 C.

  15. Heat Capacity, Crystallization, and Nucleation in Poly(vinyl alcohol) Thin Films

    NASA Astrophysics Data System (ADS)

    Thomas, David; Wurm, Andreas; Zhuravlev, Evgeny; Schick, Christoph; Cebe, Peggy

    Polyvinyl alcohol (PVA) is hydrophilic, biodegradable, semi-crystalline polymer with a wide array of applications ranging from textiles and packaging to medicine. Despite possessing favorable properties, PVA thermally degrades at temperatures just in excess of 200 °C which occurs slightly below the observed peak endothermic melting peak at 203 °C. Utilizing fast scanning calorimetry it is possible to minimize sample degradation allowing measurements of the liquid phase heat capacity as well as study nucleation and crystallization from the amorphous melt state. Samples cut from parent films 2-3 μm thick were placed on UFSC1 sensors and brought between -80 and 270 °C at rates of 2000 °C/s under a nitrogen atmosphere. After five complete cycles samples did not show any signs of degradation. By fitting the symmetry corrected glassy phase heat capacity with literature values for the specific heat capacity from the ATHAS databank sample masses were determined to vary between 15-50 ng. Homogeneous nucleation was observed for all samples cooled from the melt with peak temperature 123 °C. Fitting linear heat capacity baselines in the melt and glassy states it was possible to obtain an experimental measurement of the heat capacity increment 44.5 J/mol K at the glass transition 85 °C. NSF DMR-1206010.

  16. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  17. Differential molar heat capacities to test ideal solubility estimations.

    PubMed

    Neau, S H; Bhandarkar, S V; Hellmuth, E W

    1997-05-01

    Calculation of the ideal solubility of a crystalline solute in a liquid solvent requires knowledge of the difference in the molar heat capacity at constant pressure of the solid and the supercooled liquid forms of the solute, delta Cp. Since this parameter is not usually known, two assumptions have been used to simplify the expression. The first is that delta Cp can be considered equal to zero; the alternate assumption is that the molar entropy of fusion, delta Sf, is an estimate of delta Cp. Reports claiming the superiority of one assumption over the other, on the basis of calculations done using experimentally determined parameters, have appeared in the literature. The validity of the assumptions in predicting the ideal solubility of five structurally unrelated compounds of pharmaceutical interest, with melting points in the range 420 to 470 K, was evaluated in this study. Solid and liquid heat capacities of each compound near its melting point were determined using differential scanning calorimetry. Linear equations describing the heat capacities were extrapolated to the melting point to generate the differential molar heat capacity. Linear data were obtained for both crystal and liquid heat capacities of sample and test compounds. For each sample, ideal solubility at 298 K was calculated and compared to the two estimates generated using literature equations based on the differential molar heat capacity assumptions. For the compounds studied, delta Cp was not negligible and was closer to delta Sf than to zero. However, neither of the two assumptions was valid for accurately estimating the ideal solubility as given by the full equation.

  18. Heat capacities of synthetic hedenbergite, ferrobustamite and CaFeSi2O6 glass

    USGS Publications Warehouse

    Haselton, H.T.; Robie, R.A.; Hemingway, B.S.

    1987-01-01

    Heat capacities have been measured for synthetic hedenbergite (9-647 K), ferrobustamite (5-746 K) and CaFeSi2O6 glass (6-380 K) by low-temperature adiabatic and differential scanning calorimetry. The heat capacity of each of these structural forms of CaFeSiO6 exhibits anomalous behavior at low temperatures. The X-peak in the hedenbergite heat-capacity curve at 34.5 K is due to antiferromagnetic ordering of the Fe2+ ions. Ferrobustamite has a bump in its heat-capacity curve at temperatures less than 20 K, which could be due to weak cooperative magnetic ordering or to a Schottky anomaly. Surprisingly, a broad peak with a maximum at 68 K is present in the heat-capacity curve of the glass. If this maximum, which occurs at a higher temperature than in hedenbergite is caused by magnetic ordering, it could indicate that the range of distortions of the iron sites in the glass is quite small and that coupling between iron atoms is stronger in the glass than in the edge-shared octahedral chains of hedenbergite. The standard entropy change, So298.15 - So0, is 174.2 ?? 0.3, 180.5 ?? 0.3 and 185.7 ?? 0.4 J/mol??K for hedenbergite, ferrobustamite and CaFeSi2O6 glass, respectively. Ferrobustamite is partially disordered in Ca-Fe distribution at high temperatures, but the dependence of the configuratonal entropy on temperature cannot be evaluated due to a lack of information. At high temperatures (298-1600 K), the heat capacity of hedenbergite may be represented by the equation Cop(J/mol??K) = 3l0.46 + 0.01257T-2039.93T -1 2 - 1.84604?? l06T-2 and the heat capacity of ferrobustamite may be represented by Cop(J/mol??K) = 403.83-0.04444T+ 1.597?? 10-5T2-3757.3T -1 2. ?? 1987.

  19. Interaction of murine intestinal mast cell proteinase with inhibitors (serpins) in blood; analysis by SDS-PAGE and western blotting.

    PubMed Central

    Irvine, J; Newlands, G F; Huntley, J F; Miller, H R

    1990-01-01

    The interaction of mouse intestinal mast cell proteinase (IMCP) with serine proteinase inhibitors (serpins) in blood was analysed: (i) by examining the capacity of the inhibitors in blood to block the binding of the irreversible serine esterase inhibitor [3H]diisopropyl fluorophosphate (DFP); (ii) by Western blotting. The binding of [3H]DFP to IMCP was blocked very rapidly by inhibitors in mouse serum and, by Western blotting, this inhibition was associated with the appearance of a 73,000 MW proteinase/inhibitor complex together with a series of higher (greater than 100,000) MW complexes. IMCP was not dissociated from these complexes when electrophoresed under reducing conditions, although prior heat treatment of mouse serum (60 for 30-160 min) abolished the formation of all proteinase/inhibitor complexes. Similarly, the activity of a 48,000 MW inhibitor of chymotrypsin was abolished by heat treatment. A titration experiment established that between 0.5 and 5 mg IMCP were inhibited per ml of serum. The properties and MW of the IMCP inhibitor complexes are typical of serpins and suggest that IMCP secreted during intestinal immunological reactions would be rapidly and irreversibly inactivated by plasma-derived inhibitors. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:2312150

  20. Structure and thermal properties of salicylate-based-protic ionic liquids as new heat storage media. COSMO-RS structure characterization and modeling of heat capacities.

    PubMed

    Jacquemin, Johan; Feder-Kubis, Joanna; Zorębski, Michał; Grzybowska, Katarzyna; Chorążewski, Mirosław; Hensel-Bielówka, Stella; Zorębski, Edward; Paluch, Marian; Dzida, Marzena

    2014-02-28

    During this research, we present a study on the thermal properties, such as the melting, cold crystallization, and glass transition temperatures as well as heat capacities from 293.15 K to 323.15 K of nine in-house synthesized protic ionic liquids based on the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate ([H-Im-C1OC(n)][Sal]) with n = 3-11. The 3D structures, surface charge distributions and COSMO volumes of all investigated ions are obtained by combining DFT calculations and the COSMO-RS methodology. The heat capacity data sets as a function of temperature of the 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate are then predicted using the methodology originally proposed in the case of ionic liquids by Ge et al. 3-(Alkoxymethyl)-1H-imidazol-3-ium salicylate based ionic liquids present specific heat capacities higher in many cases than other ionic liquids that make them suitable as heat storage media and in heat transfer processes. It was found experimentally that the heat capacity increases linearly with increasing alkyl chain length of the alkoxymethyl group of 3-(alkoxymethyl)-1H-imidazol-3-ium salicylate as was expected and predicted using the Ge et al. method with an overall relative absolute deviation close to 3.2% for temperatures up to 323.15 K.

  1. Determination of the Temperature Dependence of Heat Capacity for Some Molecular Crystals of Nitro Compounds

    NASA Astrophysics Data System (ADS)

    Kovalev, Yu. M.; Kuropatenko, V. F.

    2018-05-01

    An analysis of the existing approximations used for describing the dependence of heat capacity at a constant volume on the temperature of a molecular crystal has been carried out. It is shown that the considered Debye and Einstein approximations do not enable one to adequately describe the dependence of heat capacity at a constant volume on the temperature of the molecular crystals of nitro compounds. This inference requires the development of special approximations that would describe both low-frequency and high-frequency parts of the vibrational spectra of molecular crystals. This work presents a universal dependence allowing one to describe the dependence of heat capacity at a constant volume on temperature for a number of molecular crystals of nitro compounds.

  2. Heat capacities and thermodynamic functions for beryl, Be3Al2Si6O18, phenakite, Be2SiO4, euclase, BeAlSiO4(OH), bertrandite, Be4Si2O7(OH)2, and chrysoberyl, BeAl2O4.

    USGS Publications Warehouse

    Hemingway, B.S.; Barton, M.D.; Robie, R.A.; Haselton, H.T.

    1986-01-01

    The heat capacities of beryl, phenakite, euclase and bertrandite have been measured between approx 5 and 800 K by combined quasi-adiabatic cryogenic calorimetry and differential scanning calorimetry. The heat capacities of chrysoberyl have been measured from 340 to 800 K. The resulting data have been combined with solution and phase-equilibrium experimental data and simultaneously adjusted using the programme PHAS20 to provide an internally consistent set of thermodynamic properties for several important beryllium phases. The experimental heat capacities and tables of derived thermodynamic properties are presented.-J.A.Z.

  3. Heat capacities and thermodynamic properties of annite (aluminous iron biotite)

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.

    1990-01-01

    The heat capacities have been measured between 7 and 650 K by quasi-adiabatic calorimetry and differential scanning calorimetry. At 298.15 K and 1 bar, the calorimetric entropy for our sample is 354.9??0.7 J/(mol.K). A minimum configurational entropy of 18.7 J/(mol.K) for full disorder of Al/Si in the tetrahedral sites should be added to the calorimetric entropy for third-law calculations. The heat capacity equation [Cp in units of J/mol.K)] Cp0 = 583.586 + 0.075246T - 3420.60T-0.5 - (4.4551 ?? 106)T-2 fits the experimental and estimated heat capacities for our sample (valid range 250 to 1000 K) with an average deviation of 0.37%. -from Authors

  4. Tomato yellow leaf curl virus infection mitigates the heat stress response of plants grown at high temperatures

    PubMed Central

    Ghandi, Anfoka; Adi, Moshe; Lilia, Fridman; Linoy, Amrani; Or, Rotem; Mikhail, Kolot; Mouhammad, Zeidan; Henryk, Czosnek; Rena, Gorovits

    2016-01-01

    Cultured tomatoes are often exposed to a combination of extreme heat and infection with Tomato yellow leaf curl virus (TYLCV). This stress combination leads to intense disease symptoms and yield losses. The response of TYLCV-susceptible and resistant tomatoes to heat stress together with viral infection was compared. The plant heat-stress response was undermined in TYLCV infected plants. The decline correlated with the down-regulation of heat shock transcription factors (HSFs) HSFA2 and HSFB1, and consequently, of HSF-regulated genes Hsp17, Apx1, Apx2 and Hsp90. We proposed that the weakened heat stress response was due to the decreased capacity of HSFA2 to translocate into the nuclei of infected cells. All the six TYLCV proteins were able to interact with tomato HSFA2 in vitro, moreover, coat protein developed complexes with HSFA2 in nuclei. Capturing of HSFA2 by viral proteins could suppress the transcriptional activation of heat stress response genes. Application of both heat and TYLCV stresses was accompanied by the development of intracellular large protein aggregates containing TYLCV proteins and DNA. The maintenance of cellular chaperones in the aggregated state, even after recovery from heat stress, prevents the circulation of free soluble chaperones, causing an additional decrease in stress response efficiency. PMID:26792235

  5. A high-temperature high-pressure calorimeter for determining heats of solution up to 623 K.

    PubMed

    Djamali, Essmaiil; Turner, Peter J; Murray, Richard C; Cobble, James W

    2010-07-01

    A high-temperature high-pressure isoperibol calorimeter for determining the heats of solution and reaction of very dilute substances in water (10(-4) m) at temperatures up to 623 K is described. The energies of vaporization of water at steam saturation pressure were measured as a function of temperature and the results agree with the corresponding values from steam tables to better than 0.08+/-0.18%. The novelties of the present instrument relative to flow type heat capacity calorimeters are that measurements can be made at orders of magnitude lower concentrations and that measurement of heat of reaction involving solids or gases or in the presence of high concentrations of supporting electrolytes, acids, and bases is possible. Furthermore, the advantage of using enthalpy data over heat capacity data for calculations of the standard state Gibbs free energies of electrolytes is that the experimental heat data of this research need only be integrated once to derive higher temperature free energy data from lower temperatures. The derived heat capacities can be used mathematically to obtain free energies by double integration. However, the resulting errors are much smaller than if experimental aqueous heat capacities were used for the integrations.

  6. A series of binuclear lanthanide(III) complexes: Crystallography, antimicrobial activity and thermochemistry properties studies

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Ren, Ning; Xu, Su-Ling; Zhang, Jian-Jun; Zhang, Da-Hai

    2015-02-01

    A series of novel lanthanide complexes with the general formula [Ln(3,4-DClBA)3phen]2 (Ln = Ho(1), Nd(2), Sm(3), Dy(4), Eu(5), Tb(6), Yb(7) and Er(8), 3,4-DClBA = 3,4-dichlorobenzoate, phen = 1,10-phenanthroline) were prepared at room temperature and characterized. The crystal structures of complexes 1-8 have been determined by single crystal X-ray diffraction. These complexes are isomorphous and lanthanide ions are all eight-coordinated to oxygen atoms and nitrogen atoms with distorted square-antiprism geometry. The thermal decomposition mechanism and TG-FTIR spectra of gaseous products of thermal decomposition processes for complexes 1-8 were acquired through TG/DSC-FTIR system. The heat capacities of complexes 1-8 were measured using DSC technology and fitted to a polynomial equation by the least-squares method. Complexes 3-6 display characteristic lanthanide emission bands in the visible region. Meanwhile, these complexes exhibit in good antimicrobial activity against Candida albicans, Escherichia coli, and Staphylococcus aureu.

  7. Characterization and Thermal Properties of Nitrate Based Molten Salt for Heat Recovery System

    NASA Astrophysics Data System (ADS)

    Faizal Tukimon, Mohd; Muhammad, Wan Nur Azrina Wan; Nor Annuar Mohamad, Md; Yusof, Farazila

    2017-10-01

    Molten salt can acts like a storage medium or heat transfer fluid in heat recovery system. Heat transfer fluid is a fluid that has the capability to deliver heat this one side to another while heat recovery system is a system that transfers heat to produce energy. This studies shows about determining the new formulation of different molten nitrate/nitrite salts consisting of LiNO3, KNO2, KNO3 and NaNO2 that give a low temperature of melting point and high average specific heat capacity. Mixed alkaline molten nitrate/nitrite salt can act as a heat transfer fluid due to their advantageous in terms of its properties that feasible in heat recovery system such as high specific heat capacity, low vapour pressure, low cost and wide range of temperature in its application. The mixing of these primary substances will form a new line of quaternary nitrate salt (LiNO3 - KNO2 - KNO3 - NaNO2). The quaternary mixture was heated inside the box furnace at 150°C for four hours and rose up the temperature to 400°C for eight hours to homogenize the mixture. Through heating process, the elements of nitrate/nitrite base were mixed completely. The temperature was then reduced to 115°C for several hours before removing the mixture from the furnace. The melting point of each sample were testified by using thermal gravimetric analysis, TGA/DTA and experiment of determining the specific heat capacity were conducted by using Differential Scanning Calorimeter, DSC. From the result, it is found that the melting point Sample 1 with percentage of weightage (25.4wt% of LiNO3, 33.8wt% of KNO2, 20.7wt% of KNO3 and 20.1wt% of NaNO2) is 94.4°C whereas the average specific heat capacity was 1.0484/g°C while for Sample 3 with percentages of weightage (30.0wt% of LiNO3, 50.2wt% of KNO2, 3.1wt% of KNO3 and 16.7wt% of NaNO2), the melting point is 86.1°C with average specific heat capacity of 0.7274 J/g°C. In the nut shell, the quaternary mixture salts had been a good mixture with good thermal properties that low in melting point and have high specific heat capacity which could be a potential heat transfer fluid in heat recovery application.

  8. Heat Capacity of Spider Silk-like Block Copolymers

    PubMed Central

    Huang, Wenwen; Krishnaji, Sreevidhya; Hu, Xiao; Kaplan, David; Cebe, Peggy

    2012-01-01

    We synthesized and characterized a new family of di-block copolymers based on the amino acid sequences of Nephila clavipes major ampulate dragline spider silk, having the form HABn and HBAn (n=1–3), comprising an alanine-rich hydrophobic block, A, a glycine-rich hydrophilic block, B, and a histidine tag, H. The reversing heat capacities, Cp(T), for temperatures below and above the glass transition, Tg, were measured by temperature modulated differential scanning calorimetry. For the solid state, we then calculated the heat capacities of our novel block copolymers based on the vibrational motions of the constituent poly(amino acid)s, whose heat capacities are known or can be estimated from the ATHAS Data Bank. For the liquid state, the heat capacity was estimated by using the rotational and translational motions in the polymer chain. Excellent agreement was found between the measured and calculated values of the heat capacity, showing that this method can serve as a standard by which to assess the Cp for other biologically inspired block copolymers. The fraction of beta sheet crystallinity of spider silk block copolymers was also determined by using the predicted Cp, and was verified by wide angle X-ray diffraction and Fourier transform infrared spectroscopy. The glass transition temperatures of spider silk block copolymer were fitted by Kwei’s equation and the results indicate that attractive interaction exists between the A-block and B-block. PMID:23869111

  9. Honey melanoidins: Analysis of the compositions of the high molecular weight melanoidins exhibiting radical-scavenging activity.

    PubMed

    Brudzynski, Katrina; Miotto, Danielle

    2011-08-01

    Size-exclusion chromatography (SEC) and activity-guided fractionation of honeys allowed the isolation of high molecular weight brown compounds, ranging in size from 66 to 235kDa that exhibited peroxyl radical-scavenging activity. Their concentrations, antioxidant activity and degree of browning increased after heat-treatment of honeys, suggesting that they represent melanoidins. Chemical analysis of melanoidins demonstrated the presence of proteins, polyphenols and oligosaccharides. Heat-treatment caused an increased incorporation of phenolics into high molecular weight melanoidins and drastically decreased the protein content in these fractions with a concomitant appearance of high molecular weight protein-polyphenol complexes of reduced solubility. LC-ESI-MS demonstrated the presence of oligosaccharide moieties, supporting the postulated origin of melanoidins. The changes in the phenolic content of melanoidins from heated honeys were strongly correlated with their oxygen radical absorbance capacity (ORAC) values (R=0.75, p<0.0001), indicating that polyphenols contribute to the antioxidant activity of melanoidins. In summary, honey melanoidins are multi-component polymers consisting of protein-polyphenol-oligosaccharide complexes. A direct interaction between polyphenols and melanoidins resulted in a loss or gain of function for melanoidin antioxidant activity. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Making Activated Carbon for Storing Gas

    NASA Technical Reports Server (NTRS)

    Wojtowicz, Marek A.; Serio, Michael A.; Suuberg, Eric M.

    2005-01-01

    Solid disks of microporous activated carbon, produced by a method that enables optimization of pore structure, have been investigated as means of storing gas (especially hydrogen for use as a fuel) at relatively low pressure through adsorption on pore surfaces. For hydrogen and other gases of practical interest, a narrow distribution of pore sizes <2 nm is preferable. The present method is a variant of a previously patented method of cyclic chemisorption and desorption in which a piece of carbon is alternately (1) heated to the lower of two elevated temperatures in air or other oxidizing gas, causing the formation of stable carbon/oxygen surface complexes; then (2) heated to the higher of the two elevated temperatures in flowing helium or other inert gas, causing the desorption of the surface complexes in the form of carbon monoxide. In the present method, pore structure is optimized partly by heating to a temperature of 1,100 C during carbonization. Another aspect of the method exploits the finding that for each gas-storage pressure, gas-storage capacity can be maximized by burning off a specific proportion (typically between 10 and 20 weight percent) of the carbon during the cyclic chemisorption/desorption process.

  11. Multipeak low-temperature behavior of specific heat capacity in frustrated magnetic systems: An exact theoretical analysis

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2018-05-01

    We investigate in detail the process of formation of the multipeak low-temperature structure in the behavior of the specific heat capacity in frustrated magnetic systems in the framework of the exactly solvable antiferromagnetic spin-1 /2 Ising model with the multisite interaction in the presence of the external magnetic field on the kagome-like Husimi lattice. The behavior of the entropy of the model is studied and exact values of the residual entropies of all ground states are found. It is shown that the multipeak structure in the behavior of the specific heat capacity is related to the formation of the multilevel hierarchical ordering in the system of all ground states of the model. Direct relation between the maximal number of peaks in the specific heat capacity behavior and the number of independent interactions in studied frustrated magnetic system is identified. The mechanism of the formation of the multipeak structure in the specific heat capacity is described and studied in detail, and it is generalized to frustrated magnetic systems with arbitrary numbers of independent interactions.

  12. 40 CFR 60.665 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... heater with a design heat input capacity of 44 MW (150 million Btu/hour) or greater is used to comply...) The average combustion temperature of the boiler or process heater with a design heat input capacity... design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission readings, heat content...

  13. Data mining of space heating system performance in affordable housing

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ren, Xiaoxin; Yan, Da; Hong, Tianzhen

    The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems inmore » terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less

  14. Data mining of space heating system performance in affordable housing

    DOE PAGES

    Ren, Xiaoxin; Yan, Da; Hong, Tianzhen

    2015-02-16

    The space heating in residential buildings accounts for a considerable amount of the primary energy use. Therefore, understanding the operation and performance of space heating systems becomes crucial in improving occupant comfort while reducing energy use. This study investigated the behavior of occupants adjusting their thermostat settings and heating system operations in a 62-unit affordable housing complex in Revere, Massachusetts, USA. The data mining methods, including clustering approach and decision trees, were used to ascertain occupant behavior patterns. Data tabulating ON/OFF space heating states was assessed, to provide a better understanding of the intermittent operation of space heating systems inmore » terms of system cycling frequency and the duration of each operation. The decision tree was used to verify the link between room temperature settings, house and heating system characteristics and the heating energy use. The results suggest that the majority of apartments show fairly constant room temperature profiles with limited variations during a day or between weekday and weekend. Data clustering results revealed six typical patterns of room temperature profiles during the heating season. Space heating systems cycled more frequently than anticipated due to a tight range of room thermostat settings and potentially oversized heating capacities. In conclusion, from this study affirm data mining techniques are an effective method to analyze large datasets and extract hidden patterns to inform design and improve operations.« less

  15. A high performance cocurrent-flow heat pipe for heat recovery applications

    NASA Technical Reports Server (NTRS)

    Saaski, E. W.; Hartl, J. C.

    1980-01-01

    By the introduction of a plate-and-tube separator assembly into a heat pipe vapor core, it has been demonstrated that axial transport capacity in reflux mode can be improved by up to a factor of 10. This improvement is largely the result of eliminating the countercurrent shear that commonly limits reflux heat pipe axial capacity. With benzene, axial heat fluxes up to 1800 W/sq cm were obtained in the temperature range 40 to 80 C, while heat flux densities up to 3000 W/sq cm were obtained with R-11 over the temperature range 40 to 80 C. These very high axial capacities compare favorably with liquid metal limits; the sonic limit for liquid sodium, for example, is 3000 W/sq cm at 657 C. Computational models developed for these cocurrent flow heat pipes agreed with experimental data within + or - 25%.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Holland, Troy Michael; Kress, Joel David; Bhat, Kabekode Ghanasham

    Year 1 Objectives (August 2016 – December 2016) – The original Independence model is a sequentially regressed set of parameters from numerous data sets in the Aspen Plus modeling framework. The immediate goal with the basic data model is to collect and evaluate those data sets relevant to the thermodynamic submodels (pure substance heat capacity, solvent mixture heat capacity, loaded solvent heat capacities, and volatility data). These data are informative for the thermodynamic parameters involved in both vapor-liquid equilibrium, and in the chemical equilibrium of the liquid phase.

  17. Thermodynamic Properties of Nitrogen Including Liquid and Vapor Phases from 63K to 2000K with Pressures to 10,000 Bar

    NASA Technical Reports Server (NTRS)

    Jacobsen, Richard T.; Stewart, Richard B.

    1973-01-01

    Tables of thermodynamic properties of nitrogen are presented for the liquid and vapor phases for temperatures from the freezing line to 2000K and pressures to 10,000 bar. The tables include values of density, internal energy, enthalpy, entropy, isochoric heat capacity, isobaric heat capacity velocity of sound, the isotherm derivative, and the isochor derivative. The thermodynamic property tables are based on an equation of state, P=P (p,T), which accurately represents liquid and gaseous nitrogen for the range of pressures and temperatures covered by the tables. Comparisons of property values calculated from the equation of state with measured values for P-p-T, heat capacity, enthalpy, latent heat, and velocity of sound are included to illustrate the agreement between the experimental data and the tables of properties presented here. The coefficients of the equation of state were determined by a weighted least squares fit to selected P-p-T data and, simultaneously, to isochoric heat capacity data determined by corresponding states analysis from oxygen data, and to data which define the phase equilibrium criteria for the saturated liquid and the saturated vapor. The vapor pressure equation, melting curve equation, and an equation to represent the ideal gas heat capacity are also presented. Estimates of the accuracy of the equation of state, the vapor pressure equation, and the ideal gas heat capacity equation are given. The equation of state, derivatives of the equation, and the integral functions for calculating derived thermodynamic properties are included.

  18. On the heat capacity of elements in WMD regime

    NASA Astrophysics Data System (ADS)

    Hamel, Sebatien

    2014-03-01

    Once thought to get simpler with increasing pressure, elemental systems have been discovered to exhibit complex structures and multiple phases at high pressure. For carbon, QMD/PIMC simulations have been performed and the results are guiding alternative modelling methodologies for constructing a carbon equation-of-state covering the warm dense matter regime. One of the main results of our new QMD/PIMC carbon equation of state is that the decay of the ion-thermal specific heat with temperature is much faster than previously expected. An important question is whether this is only found in carbon and not other element. In this presentation, based on QMD calculations for several elements, we explore trends in the transition from condensed matter to warm dense matter regime.

  19. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Withers, Chuck; McIlvaine, Janet

    Low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. This report evaluates the performance of variable-capacity comfort systems, with a focus on inverter-driven, variable-capacity systems, as well as proposed system enhancements.

  20. Transport and thermodynamic properties of hydrous melts in the system An-Di.

    NASA Astrophysics Data System (ADS)

    Giordano, D.; Potuzak, M.; Romano, C.; Russell, J. K.; Nowak, M.; Dingwell, D. B.

    2006-12-01

    The thermodynamic and transport properties hydrous silicate melts are of fundamental importance for characterization of the dynamics and energetics associated with silicate melts in the Earth. The literature concerning the transport and calorimetric properties of hydrous silicate melts remains scarce. With few exceptions little has been effectively done in order to provide chemical models that bridge the gap between the description of both complex and simple systems. The An-Di system is of general interest to geochemists as well as petrologists because it serves as a simple analogue for basaltic compositions. It was chosen here due to the combination of its simple chemical description and the presence of an extensive database of published experimental data on both its transport and thermodynamic properties. We have measured the viscosity (η)), the glass transition temperatures (Tg) and the heat capacity (Cp) of silicate melts in the An-Di system containing up to 3 wt.% of dissolved H2O. Viscosity data were obtained by using the dilatometric method of micropenetration, whereas a differential scanning calorimeter (DSC) was employed to determine the glass transition temperatures and the heat capacities. In order to characterize the well-known cooling/heating rate dependence of the glass transition temperatures the calorimetric measurements were performed at heating/cooling rate of 5, 10, 15 and 20 K/min. These results together with those of previous experimental studies have been used to provide a compositional model capable of calculating the Newtonian viscosity of melts as well as the Tg and Cp values for the An- Di+H2O system. The non-Arrhenian T-dependence of viscosity is accounted for by the Vogel-Fulcher- Tammann (VFT) and the Adam Gibbs (AG) equations. Our optimizations assume a common, high-T limit (A) for silicate melt viscosity, consistent with values provided by both theoretical and experimental studies. In particular, we also show that glass transition temperatures taken at each single heating/cooling rate are associated to single viscosity values. The equivalence of the activation energy associated to viscous and enthalpic relaxation process at specific temperatures also allow us to calibrate a tool to predict the viscosity of silicate melts by using specific heat curves. The effect of water on the heat capacity of the glass (Cpglass), from dry to nearly 3 wt% H2O, ranges from almost absent up to 20% of the measured Cp,glass values.

  1. Metal Hydride Heat Storage Technology for Directed Energy Weapon Systems

    DTIC Science & Technology

    2007-11-16

    high thermal conductivity materials for heat transfer enhancement. In addition, the PCMs ’ low heat storage density requires excessively large system...capacity as compared to the PCMs . For example, Ca0.2M0.8Ni5, a commercial hydride, has a heat storage density of 853.3MJ/m³ in raw material condition...Huston and Sandrock, 1980], while paraffin (Calwax 130), a common organic PCM has a heat storage capacity of 177.5MJ/m³ [Al-Hallaj and Selman, 2000]. The

  2. Active Flow Control with Thermoacoustic Actuators

    DTIC Science & Technology

    2014-01-31

    AC power has been shown to produce large-amplitude acoustic waves [6]. The input AC current sinusoidally heats this device due to joule heating and...conventional metals, the heat capacity value for carbon-based material (carbon nanotubes/graphene) in consideration here is at least 2 orders of...magnitude smaller. Since the output acoustic power delivered to the surrounding flow field is related inversely to the material heat capacity C (i.e., Poutput

  3. Effect of crystalline electric field on heat capacity of LnBaCuFeO5 (Ln = Gd, Ho, Yb)

    NASA Astrophysics Data System (ADS)

    Lal, Surender; Mukherjee, K.; Yadav, C. S.

    2018-02-01

    Structural, magnetic and thermodynamic properties of layered perovskite compounds LnBaCuFeO5 (Ln = Ho, Gd, Yb) have been investigated. Unlike the iso-structural compound YBaCuFeO5, which shows commensurate antiferromagnetic to incommensurate antiferromagnetic ordering below ∼200 K, the studied compounds do not show any magnetic transition in measured temperature range of 2-350 K. The high temperature heat capacity of the compounds is understood by employing contributions from both optical and acoustic phonons. At low temperature, the observed upturn in the heat capacity is attributed to the Schottky anomaly. The magnetic field dependent heat capacity shows the variation in position of the anomaly with temperature, which appears due to the removal of ground state degeneracy of the rare earth ions, by the crystalline electric field.

  4. Core-Shell Coating Silicon Anode Interfaces with Coordination Complex for Stable Lithium-Ion Batteries.

    PubMed

    Zhou, Jinqiu; Qian, Tao; Wang, Mengfan; Xu, Na; Zhang, Qi; Li, Qun; Yan, Chenglin

    2016-03-02

    In situ core-shell coating was used to improve the electrochemical performance of Si-based anodes with polypyrrole-Fe coordination complex. The vast functional groups in the organometallic coordination complex easily formed hydrogen bonds when in situ modifying commercial Si nanoparticles. The incorporation of polypyrrole-Fe resulted in the conformal conductive coating surrounding each Si nanoparticle, not only providing good electrical connection to the particles but also promoting the formation of a stable solid-electrolyte-interface layer on the Si electrode surface, enhancing the cycling properties. As an anode material for Li-ion batteries, modified silicon powders exhibited high reversible capacity (3567 mAh/g at 0.3 A/g), good rate property (549.12 mAh/g at 12 A/g), and excellent cycling performance (reversible capacity of 1500 mAh/g after 800 cycles at 1.2 A/g). The constructed novel concept of core-shell coating Si particles presented a promising route for facile and large-scale production of Si-based anodes for extremely durable Li-ion batteries, which provided a wide range of applications in the field of energy storage of the renewable energy derived from the solar energy, hydropower, tidal energy, and geothermal heat.

  5. Use of Satellite Data Assimilation to Infer Land Surface Thermal Inertia

    NASA Technical Reports Server (NTRS)

    Lapenta, William; McNider, Richard T.; Biazar, Arastoo; Suggs, Ron; Jedlovec, Gary; Dembek, Scott

    2002-01-01

    There are two important but observationally uncertain parameters in the grid averaged surface energy budgets of mesoscale models - surface moisture availability and thermal heat capacity. A technique has been successfully developed for assimilating Geostationary Operational Environmental Satellite (GOES) skin temperature tendencies during the mid-morning time frame to improve specification of surface moisture. In a new application of the technique, the use of satellite skin temperature tendencies in early evening is explored to improve specification of the surface thermal heat capacity. Together, these two satellite assimilation constraints have been shown to significantly improve the characterization of the surface energy budget of a mesoscale model on fine spatial scales. The GOES assimilation without the adjusted heat capacity was run operationally during the International H2O Project on a 12-km grid. This paper presents the results obtained when using both the moisture availability and heat capacity retrievals in concert. Preliminary results indicate that retrieved moisture availability alone improved the verification statistics of 2-meter temperature and dew point forecasts. Results from the 1.5 month long study period using the bulk heat capacity will be presented at the meeting.

  6. Reversible hydrogen storage materials

    DOEpatents

    Ritter, James A [Lexington, SC; Wang, Tao [Columbia, SC; Ebner, Armin D [Lexington, SC; Holland, Charles E [Cayce, SC

    2012-04-10

    In accordance with the present disclosure, a process for synthesis of a complex hydride material for hydrogen storage is provided. The process includes mixing a borohydride with at least one additive agent and at least one catalyst and heating the mixture at a temperature of less than about 600.degree. C. and a pressure of H.sub.2 gas to form a complex hydride material. The complex hydride material comprises MAl.sub.xB.sub.yH.sub.z, wherein M is an alkali metal or group IIA metal, Al is the element aluminum, x is any number from 0 to 1, B is the element boron, y is a number from 0 to 13, and z is a number from 4 to 57 with the additive agent and catalyst still being present. The complex hydride material is capable of cyclic dehydrogenation and rehydrogenation and has a hydrogen capacity of at least about 4 weight percent.

  7. Correlation analysis of the heat capacity and thermal expansion of solid mercury

    NASA Astrophysics Data System (ADS)

    Bodryakov, V. Yu.; Babintsev, Yu. N.

    2015-06-01

    A detailed analysis of the correlation between the volumetric thermal expansion coefficient o( T) and heat capacity C( T) of solid mercury has been performed. It has been shown that there is a clear correlation dependence o( C) not only in the low-temperature range, where it is linear and known as the Grüneisen law, but also up to the melting point of mercury. The dependence o( C) substantially deviates from the low-temperature linear behavior when the heat capacity reaches the classical Dulong-Petit limit of 3 R.

  8. Heat Capacity of V1-x Fe x O2-Solid Solutions at Helium Temperatures and their Evolution during Thermal Cycling

    NASA Astrophysics Data System (ADS)

    Surikov, Vad. I.; Surikov, Val. I.; Danilov, S. V.; Semenyuk, N. A.; Egorova, V. A.; Eysmont, N. G.

    2018-06-01

    The results of investigations of heat capacity Cp of a series of V1-xFexO2-solid solutions at the temperatures from 4.2 to 25 K are reported. It is found out that at these temperatures considerable contributions into the heat capacity come from the crystal lattice proper and crystal lattice defects formed in the course of material synthesis. The results of investigating the evolution of these materials during thermal cycling are also reported.

  9. Thermal effectiveness of multiple shell and tube pass TEMA E heat exchangers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pignotti, A.; Tamborenea, P.I.

    1988-02-01

    The thermal effectiveness of a TEMAE shell-and-tube heat exchanger, with one shell pass and an arbitrary number of tube passes, is determined under the usual simplifying assumptions of perfect transverse mixing of the shell fluid, no phase change, and temperature independence of the heat capacity rates and the heat transfer coefficient. A purely algebraic solution is obtained for the effectiveness as a functions of the heat capacity rate ratio and the number of heat transfer units. The case with M shell passes and N tube passes is easily expressed in terms of the single-shell-pass case.

  10. Coefficient of performance and its bounds with the figure of merit for a general refrigerator

    NASA Astrophysics Data System (ADS)

    Long, Rui; Liu, Wei

    2015-02-01

    A general refrigerator model with non-isothermal processes is studied. The coefficient of performance (COP) and its bounds at maximum χ figure of merit are obtained and analyzed. This model accounts for different heat capacities during the heat transfer processes. So, different kinds of refrigerator cycles can be considered. Under the constant heat capacity condition, the upper bound of the COP is the Curzon-Ahlborn (CA) coefficient of performance and is independent of the time durations of the heat exchanging processes. With the maximum χ criterion, in the refrigerator cycles, such as the reversed Brayton refrigerator cycle, the reversed Otto refrigerator cycle and the reversed Atkinson refrigerator cycle, where the heat capacity in the heat absorbing process is not less than that in the heat releasing process, their COPs are bounded by the CA coefficient of performance; otherwise, such as for the reversed Diesel refrigerator cycle, its COP can exceed the CA coefficient of performance. Furthermore, the general refined upper and lower bounds have been proposed.

  11. Experimental determination of nanofluid specific heat with SiO2 nanoparticles in different base fluids

    NASA Astrophysics Data System (ADS)

    Akilu, S.; Baheta, A. T.; Sharma, K. V.; Said, M. A.

    2017-09-01

    Nanostructured ceramic materials have recently attracted attention as promising heat transfer fluid additives owing to their outstanding heat storage capacities. In this paper, experimental measurements of the specific heats of SiO2-Glycerol, SiO2-Ethylene Glycol, and SiO2-Glycerol/Ethylene Glycol mixture 60:40 ratio (by mass) nanofluids with different volume concentrations of 1.0-4.0% have been carried out using differential scanning calorimeter at temperatures of 25 °C and 50 °C. Experimental results indicate lower specific heat capacities are found with SiO2 nanofluids compared to their respective base fluids. The specific heat was decreasing with the increase of concentration, and this decrement depends on upon the type of the base fluid. It is observed that temperature has a positive impact on the specific heat capacity. Furthermore, the experimental values were compared with the theoretical model predictions, and a satisfactory agreement was established.

  12. Large heat capacity change in a protein-monovalent cation interaction.

    PubMed

    Guinto, E R; Di Cera, E

    1996-07-09

    Current views about protein-ligand interactions state that electrostatic forces drive the binding of charged species and that burial of hydrophobic and polar surfaces controls the heat capacity change associated with the reaction. For the interaction of a protein with a monovalent cation the electrostatic components are expected to be significant due to the ionic nature of the ligand, whereas the heat capacity change is expected to be small due to the size of the surface area involved in the recognition event. The physiologically important interaction of Na+ with thrombin was studied over the temperature range from 5 to 45 degrees C and the ionic strength range from 50 to 800 mM. These measurements reveal an unanticipated result that bears quite generally on studies of molecular recognition and protein folding. Binding of Na+ to thrombin is characterized by a modest dependence on ionic strength but a large and negative heat capacity change of -1.1 +/- 0.1 kcal mol-1 K-1. The small electrostatic coupling can be explained in terms of a minimal perturbation of the ionic atmosphere of the protein upon Na+ binding. The large heat capacity change, however, is difficult to reconcile with current views on the origin of this effect from surface area changes or large folding transitions coupled to binding. It is proposed that this change is linked to burial of a large cluster of water molecules in the Na+ binding pocket upon Na+ binding. Due to their reduced mobility and highly ordered structure, water molecules sequestered in the interior of a protein must have a lower heat capacity compared to those on the surface of a protein or in the bulk solvent. Hence, a binding or folding event where water molecules are buried may result in significant heat capacity changes independent of changes in exposed hydrophobic surface or coupled conformational transitions.

  13. Highly macroscopically degenerated single-point ground states as source of specific heat capacity anomalies in magnetic frustrated systems

    NASA Astrophysics Data System (ADS)

    Jurčišinová, E.; Jurčišin, M.

    2018-04-01

    Anomalies of the specific heat capacity are investigated in the framework of the exactly solvable antiferromagnetic spin- 1 / 2 Ising model in the external magnetic field on the geometrically frustrated tetrahedron recursive lattice. It is shown that the Schottky-type anomaly in the behavior of the specific heat capacity is related to the existence of unique highly macroscopically degenerated single-point ground states which are formed on the borders between neighboring plateau-like ground states. It is also shown that the very existence of these single-point ground states with large residual entropies predicts the appearance of another anomaly in the behavior of the specific heat capacity for low temperatures, namely, the field-induced double-peak structure, which exists, and should be observed experimentally, along with the Schottky-type anomaly in various frustrated magnetic system.

  14. High-Temperature Adiabatic Calorimeter for Constant-Volume Heat Capacity Measurements of Compressed Gases and Liquids

    PubMed Central

    Magee, Joseph W.; Deal, Renee J.; Blanco, John C.

    1998-01-01

    A high-temperature adiabatic calorimeter has been developed to measure the constant-volume specific heat capacities (cV) of both gases and liquids, especially fluids of interest to emerging energy technologies. The chief design feature is its nearly identical twin bomb arrangement, which allows accurate measurement of energy differences without large corrections for energy losses due to thermal radiation fluxes. Operating conditions for the calorimeter cover a range of temperatures from 250 K to 700 K and at pressures up to 20 MPa. Performance tests were made with a sample of twice-distilled water. Heat capacities for water were measured from 300 K to 420 K at pressures to 20 MPa. The measured heat capacities differed from those calculated with an independently developed standard reference formulation with a root-mean-square fractional deviation of 0.48 %. PMID:28009375

  15. Heat capacity and thermodynamic functions for gehlenite and staurolite: with comments on the Schootky anomaly in the heat capacity of staurolite.

    USGS Publications Warehouse

    Hemingway, B.S.; Robie, R.A.

    1984-01-01

    The heat capacities of a synthetic gehlenite and a natural staurolite were measured from 12 and 5 K, respectively, to 370 K by adiabatic calorimetry, and the heat capacities of staurolite were measured to 900 K by differential scanning calorimetry. At 298.15 K and 1 bar the entropy of gehlenite is 210.1 + or - 0.6 J/(mol.K) and that of staurolite is 1019.6 + or - 12.0 for H2Al2Fe4Al16Si8O48 and 1101.0 + or - 12.0 for 103(H3Al1.15Fe2+0.60)- 324(Fe2+2.07Fe3+0.54 Ti0.08Mn0.02Al1.19)(Mg0.44Al15.26)Si8O48. -J.A.Z.

  16. A New Look at the Structural and Magnetic Properties of Potassium Neptunate K2NpO4 Combining XRD, XANES Spectroscopy, and Low-Temperature Heat Capacity.

    PubMed

    Smith, Anna L; Colineau, Eric; Griveau, Jean-Christophe; Popa, Karin; Kauric, Guilhem; Martin, Philippe; Scheinost, Andreas C; Cheetham, Anthony K; Konings, Rudy J M

    2017-05-15

    The physicochemical properties of the potassium neptunate K 2 NpO 4 have been investigated in this work using X-ray diffraction, X-ray absorption near edge structure (XANES) spectroscopy at the Np-L 3 edge, and low-temperature heat capacity measurements. A Rietveld refinement of the crystal structure is reported for the first time. The Np(VI) valence state has been confirmed by the XANES data, and the absorption edge threshold of the XANES spectrum has been correlated to the Mössbauer isomer shift value reported in the literature. The standard entropy and heat capacity of K 2 NpO 4 have been derived at 298.15 K from the low-temperature heat capacity data. The latter suggest the existence of a magnetic ordering transition around 25.9 K, most probably of the ferromagnetic type.

  17. Effect of heat treatment on CO2 adsorption of KOH-activated graphite nanofibers.

    PubMed

    Meng, Long-Yue; Park, Soo-Jin

    2010-12-15

    In this work, graphite nanofibers (GNFs) were successfully expanded intercalating KOH followed by heat treatment in the temperature range of 700-1000 °C. The aim was to improve the CO(2) adsorption capacity of the GNFs by increasing the porosity of GNFs. The effects of heat treatment on the pore structures of GNFs were investigated by N(2) full isotherms, XRD, SEM, and TEM. The CO(2) adsorption capacity was measured by CO(2) isothermal adsorption at 25 °C and 1 atm. From the results, it was found that the activation temperature had a major influence on CO(2) adsorption capacity and textural properties of GNFs. The specific surface area, total pore volume, and mesopore volume of the GNFs increased after heat treatment. The CO(2) adsorption isotherms showed that G-900 exhibited the best CO(2) adsorption capacity with 59.2 mg/g. Copyright © 2010 Elsevier Inc. All rights reserved.

  18. How to measure heat capacity of metals at 10s to 100s of GPa

    NASA Astrophysics Data System (ADS)

    Geballe, Z. M.; Townley, A.; Jeanloz, R.

    2014-12-01

    Adapting methods of calorimetry to the diamond-anvil cell can provide important new information for understanding planetary interiors. Here we show that heat capacity of metals can be measured to the 10-100 GPa range by using AC electrical heating inside diamond anvil cells. Frequencies of f ≈ 1-100 MHz must be used to contain the heat within the sample of interest, as evidenced by numerical and physical models of heat flow: f > DinsCins2/(Csamdsam)2, where Dins is the thermal diffusivity of the insulation, Cins and Csam are specific heat capacities of insulation and metal sample, and dsam is sample thickness. Heat must be deposited uniformly (e.g. skin depth > sample thickness) for the most accurate and unambiguous measurements, thereby allowing measurement of the energetics of pre-melting, melting and partial melting of metals, including iron and its alloys. In principle, high-pressure calorimetry can be used to independently determine melting at high pressures, and also to quantify latent heats of fusion, thereby revealing the density of liquid metals at Earth core conditions.

  19. Heat capacity and thermodynamic properties for coesite and jadeite, reexamination of the quartz-coesite equilibrium boundary

    USGS Publications Warehouse

    Hemingway, B.S.; Bohlen, S.R.; Hankins, W.B.; Westrum, E.F.; Kuskov, O.L.

    1998-01-01

    The heat capacities of synthetic coesite and jadeite were measured between about 15 and 850 K by adiabatic and differential scanning calorimetry. The experimental data were smoothed and estimates were made of heat capacities to 1800 K. The following equations represent our estimate of the heat capacities of coesite and jadeite between 298.15 and 1800 K: [see original article for formula]. Tables of thermodynamic values for coesite and jadeite to 1800 K are presented. The entropies of coesite and jadeite are 40.38 ?? 0.12 and 136.5 ?? 0.32 J/(mol.K), respectively, at 298.15 K. The entropy for coesite derived here confirms the value published earlier by Holm et al. (1967). We have derived an equation to describe the quartz-coesite boundary over the temperature range of 600 to 1500 K, P(GPa) = 1.76 + 0.001T(K). Our results are in agreement with the enthalpy of transition reported by Akaogi and Navrotsky (1984) and yield -907.6 ?? 1.4 kJ/mol for the enthalpy of formation of coesite from the elements at 298.15 K and 1 bar, in agreement with the value recommended by CODATA (Khodakovsky et al. 1995). Several sources of uncertainty remain unacceptably high, including: the heat capacities of coesite at temperatures above about 1000 K; the heat capacities and volumetric properties of ?? quartz at higher pressures and at temperatures above 844 K; the pressure corrections for the piston cylinder apparatus used to determine the quartz-coesite equilibrium boundary.

  20. Zeolite Y Adsorbents with High Vapor Uptake Capacity and Robust Cycling Stability for Potential Applications in Advanced Adsorption Heat Pumps.

    PubMed

    Li, Xiansen; Narayanan, Shankar; Michaelis, Vladimir K; Ong, Ta-Chung; Keeler, Eric G; Kim, Hyunho; McKay, Ian S; Griffin, Robert G; Wang, Evelyn N

    2015-01-01

    Modular and compact adsorption heat pumps (AHPs) promise an energy-efficient alternative to conventional vapor compression based heating, ventilation and air conditioning systems. A key element in the advancement of AHPs is the development of adsorbents with high uptake capacity, fast intracrystalline diffusivity and durable hydrothermal stability. Herein, the ion exchange of NaY zeolites with ingoing Mg 2+ ions is systematically studied to maximize the ion exchange degree (IED) for improved sorption performance. It is found that beyond an ion exchange threshold of 64.1%, deeper ion exchange does not benefit water uptake capacity or characteristic adsorption energy, but does enhance the vapor diffusivity. In addition to using water as an adsorbate, the uptake properties of Mg,Na-Y zeolites were investigated using 20 wt.% MeOH aqueous solution as a novel anti-freeze adsorbate, revealing that the MeOH additive has an insignificant influence on the overall sorption performance. We also demonstrated that the labscale synthetic scalability is robust, and that the tailored zeolites scarcely suffer from hydrothermal stability even after successive 108-fold adsorption/desorption cycles. The samples were analyzed using N 2 sorption, 27 Al/ 29 Si MAS NMR spectroscopy, ICP-AES, dynamic vapor sorption, SEM, Fick's 2 nd law and D-R equation regressions. Among these, close examination of sorption isotherms for H 2 O and N 2 adsorbates allows us to decouple and extract some insightful information underlying the complex water uptake phenomena. This work shows the promising performance of our modified zeolites that can be integrated into various AHP designs for buildings, electronics, and transportation applications.

  1. Integrated two-cylinder liquid piston Stirling engine

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin

    2014-10-06

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harnessmore » useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.« less

  2. Integrated two-cylinder liquid piston Stirling engine

    NASA Astrophysics Data System (ADS)

    Yang, Ning; Rickard, Robert; Pluckter, Kevin; Sulchek, Todd

    2014-10-01

    Heat engines utilizing the Stirling cycle may run on low temperature differentials with the capacity to function at high efficiency due to their near-reversible operation. However, current approaches to building Stirling engines are laborious and costly. Typically the components are assembled by hand and additional components require a corresponding increase in manufacturing complexity, akin to electronics before the integrated circuit. We present a simple and integrated approach to fabricating Stirling engines with precisely designed cylinders. We utilize computer aided design and one-step, planar machining to form all components of the engine. The engine utilizes liquid pistons and displacers to harness useful work from heat absorption and rejection. As a proof of principle of the integrated design, a two-cylinder engine is produced and characterized and liquid pumping is demonstrated.

  3. Workplace heat stress, health and productivity - an increasing challenge for low and middle-income countries during climate change.

    PubMed

    Kjellstrom, Tord; Holmer, Ingvar; Lemke, Bruno

    2009-11-11

    Global climate change is already increasing the average temperature and direct heat exposure in many places around the world. To assess the potential impact on occupational health and work capacity for people exposed at work to increasing heat due to climate change. A brief review of basic thermal physiology mechanisms, occupational heat exposure guidelines and heat exposure changes in selected cities. In countries with very hot seasons, workers are already affected by working environments hotter than that with which human physiological mechanisms can cope. To protect workers from excessive heat, a number of heat exposure indices have been developed. One that is commonly used in occupational health is the Wet Bulb Globe Temperature (WBGT). We use WBGT to illustrate assessing the proportion of a working hour during which a worker can sustain work and the proportion of that same working hour that (s)he needs to rest to cool the body down and maintain core body temperature below 38 degrees C. Using this proportion a 'work capacity' estimate was calculated for selected heat exposure levels and work intensity levels. The work capacity rapidly reduces as the WBGT exceeds 26-30 degrees C and this can be used to estimate the impact of increasing heat exposure as a result of climate change in tropical countries. One result of climate change is a reduced work capacity in heat-exposed jobs and greater difficulty in achieving economic and social development in the countries affected by this somewhat neglected impact of climate change.

  4. Determination of thermal physical properties of alkali fluoride/carbonate eutectic molten salt

    NASA Astrophysics Data System (ADS)

    An, Xue-Hui; Cheng, Jin-Hui; Su, Tao; Zhang, Peng

    2017-06-01

    Molten salts used in high temperatures are more and more interested in the CSP for higher energy conversion efficiency. Thermal physical properties are the basic engineering data of thermal hydraulic calculation and safety analysis. Therefore, the thermophysical performances involving density, specific heat capacity, viscosity and thermal conductivity of FLiNaK, (LiNaK)2CO3 and LiF(NaK)2CO3 molten salts are experimentally determined and through comparison the general rules can be summarized. Density measurement was performed on the basis of Archimedes theory; specific heat capacity was measured using the DSC technique; viscosity was tested based on the rotating method; and the thermal conductivity was gained by laser flash method with combination of the density, specific heat capacity and thermal diffusivity through a formula. Finally, the energy storage capacity and figures of merit are calculated to evaluate their feasibility as TES and HFT media. The results show that FLiNaK has the largest energy storage capacity and best heat transfer performance, LiF(NaK)2CO3 is secondary, and (LiNaK)2CO3 has the smallest.

  5. Fuel Cell Thermal Management Through Conductive Cooling Plates

    NASA Technical Reports Server (NTRS)

    Colozza, Anthony J.; Burke, Kenneth A.

    2008-01-01

    An analysis was performed to evaluate the concept of utilizing conductive cooling plates to remove heat from a fuel cell stack, as opposed to a conventional internal cooling loop. The potential advantages of this type of cooling system are reduced stack complexity and weight and increased reliability through the reduction of the number of internal fluid seals. The conductive cooling plates would extract heat from the stack transferring it to an external coolant loop. The analysis was performed to determine the required thickness of these plates. The analysis was based on an energy balance between the thermal energy produced within the stack and the heat removal from the cooling plates. To accomplish the energy balance, the heat flow into and along the plates to the cooling fluid was modeled. Results were generated for various numbers of cells being cooled by a single cooling plate. The results provided cooling plate thickness, mass, and operating temperature of the plates. It was determined that utilizing high-conductivity pyrolitic graphite cooling plates can provide a specific cooling capacity (W/kg) equivalent to or potentially greater than a conventional internal cooling loop system.

  6. Malone-brayton cycle engine/heat pump

    NASA Astrophysics Data System (ADS)

    Gilmour, Thomas A.

    1994-07-01

    A machine, such as a heat pump, and having an all liquid heat exchange fluid, operates over a more nearly ideal thermodynamic cycle by adjustment of the proportionality of the volumetric capacities of a compressor and an expander to approximate the proportionality of the densities of the liquid heat exchange fluid at the chosen working pressures. Preferred forms of a unit including both the compressor and the expander on a common shaft employs difference in axial lengths of rotary pumps of the gear or vane type to achieve the adjustment of volumetric capacity. Adjustment of the heat pump system for differing heat sink conditions preferably employs variable compression ratio pumps.

  7. Entropy Change for the Irreversible Heat Transfer between Two Finite Objects

    DTIC Science & Technology

    2015-06-10

    independent heat capacities. Another interesting aspect of this problem is to compute the entropy change during the process. Textbooks typically only...case where the two objects have unequal heat capacities, both of which are finite. (From a calculus point of view, each time an increment of heat dQ is...Theory, and Statistical Thermodynamics 3rd edn (Reading MA: Addison-Wesley) ch 5 [3] Larson R and Edwards B 2014 Calculus 10th edn (Boston MA: Brooks

  8. High-temperature heat capacity of Co3O4 spinel: thermally induced spin unpairing transition

    USGS Publications Warehouse

    Mocala, K.; Navrotsky, A.; Sherman, David M.

    1992-01-01

    A strong anomaly was found in the heat capacity of Co3O4 between 1000 K and the decomposition temperature. This anomaly is not related to the decomposition of Co3O4 to CoO. The measured entropy of transition, ??S=46??4 J mol-1 K-1 of Co3O4, supports the interpretation that this anomaly reflects a spin unpairing transition in octahedrally coordinated Co3+ cations. Experimental values of heat capacity, heat content and entropy of Co3O4 in the high temperature region are provided. The enthalpy of the spin unpairing transition is 53??4 kJ mol-1 of Co3O4. ?? 1992 Springer-Verlag.

  9. Relaxation kinetics of lipid membranes and its relation to the heat capacity.

    PubMed Central

    Grabitz, Peter; Ivanova, Vesselka P; Heimburg, Thomas

    2002-01-01

    We investigated the relaxation behavior of lipid membranes close to the chain-melting transition using pressure jump calorimetry with a temperature accuracy of approximately 10(-3) K. We found relaxation times in the range from seconds up to about a minute, depending on vesicular state. The relaxation times are within error proportional to the heat capacity. We provide a statistical thermodynamics theory that rationalizes the close relation between heat capacity and relaxation times. It is based on our recent finding that enthalpy and volume changes close to the melting transition are proportional functions. PMID:11751317

  10. Molecular Dynamics Modeling of Thermal Properties of Aluminum Near Melting Line

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Karavaev, A. V.; Dremov, V. V.; Sapozhnikov, F. A.

    2006-08-03

    In this work we present results of calculations of thermal properties of solid and liquid phases of aluminum at different densities and temperatures using classical molecular dynamics with EAM potential function. Dependencies of heat capacity CV on temperature and density have been analyzed. It was shown that when temperature increases, heat capacity CV behavior deviates from that by Dulong-Petit law. It may be explained by influence of anharmonicity of crystal lattice vibrations. Comparison of heat capacity CV of liquid phase with Grover's model has been performed. Dependency of aluminum melting temperature on pressure has been acquired.

  11. Correlation dependence of the volumetric thermal expansion coefficient of metallic aluminum on its heat capacity

    NASA Astrophysics Data System (ADS)

    Bodryakov, V. Yu.; Bykov, A. A.

    2016-05-01

    The correlation between the volumetric thermal expansion coefficient β( T) and the heat capacity C( T) of aluminum is considered in detail. It is shown that a clear correlation is observed in a significantly wider temperature range, up to the melting temperature of the metal, along with the low-temperature range where it is linear. The significant deviation of dependence β( C) from the low-temperature linear behavior is observed up to the point where the heat capacity achieves the classical Dulong-Petit limit of 3 R ( R is the universal gas constant).

  12. Negative thermal expansion and anomalies of heat capacity of LuB 50 at low temperatures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Novikov, V. V.; Zhemoedov, N. A.; Matovnikov, A. V.

    2015-07-20

    Heat capacity and thermal expansion of LuB 50 boride were experimentally studied in the 2–300 K temperature range. The data reveal an anomalous contribution to the heat capacity at low temperatures. The value of this contribution is proportional to the first degree of temperature. It was identified that this anomaly in heat capacity is caused by the effect of disorder in the LuB 50 crystalline structure and it can be described in the soft atomic potential model (SAP). The parameters of the approximation were determined. The temperature dependence of LuB 50 heat capacity in the whole temperature range was approximatedmore » by the sum of SAP contribution, Debye and two Einstein components. The parameters of SAP contribution for LuB 50 were compared to the corresponding values for LuB 66, which was studied earlier. Negative thermal expansion at low temperatures was experimentally observed for LuB 50. The analysis of the experimental temperature dependence for the Gruneisen parameter of LuB 50 suggested that the low-frequency oscillations, described in SAP mode, are responsible for the negative thermal expansion. As a result, the glasslike character of the behavior of LuB 50 thermal characteristics at low temperatures was confirmed.« less

  13. 76 FR 80531 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-12-23

    ... boilers are small (less than 10 MMBtu/hr heat input) and are generally owned and operated by contractors... (> 5MMBtu/h) or five-year ( New boilers with heat input capacity greater than 10 million Btu per hour that... with heat input capacity greater than 10 million Btu per hour that are biomass-fired or oil-fired must...

  14. Behavior of sandwich panels in a fire

    NASA Astrophysics Data System (ADS)

    Chelekova, Eugenia

    2018-03-01

    For the last decades there emerged a vast number of buildings and structures erected with the use of sandwich panels. The field of application for this construction material is manifold, especially in the construction of fire and explosion hazardous buildings. In advanced evacu-ation time calculation methods the coefficient of heat losses is defined with dire regard to fire load features, but without account to thermal and physical characteristics of building envelopes, or, to be exact, it is defined for brick and concrete walls with gross heat capacity. That is why the application of the heat loss coefficient expression obtained for buildings of sandwich panels is impossible because of different heat capacity of these panels from the heat capacities of brick and concrete building envelopes. The article conducts an analysis and calculation of the heal loss coefficient for buildings and structures of three layer sandwich panels as building envelopes.

  15. Novel specific heat and magnetoresistance behavior of Tb0.5Ho0.5Mn2Si2

    NASA Astrophysics Data System (ADS)

    Pandey, Swati; Siruguri, V.; Rawat, R.

    2018-04-01

    In this report, we study temperature dependent heat capacity and electrical resistance of Tb1-xHoxMn2Si2 (x = 0.5). Two successive low temperature magnetic transitions T1 (˜15 K) and T2 (˜25 K) are observed from both measurements. Anomalous rise in heat capacity at low temperatures is ascribed to the nuclear Schottky effect. Sommerfeld coefficient (γ), Debye temperature (θD) and density of states at Fermi level N(EF) is calculated from the zero field specific heat data. We observe 4f contribution to heat capacity from T1 to 100K, which is attributed to crystal field effect. In the electrical transport study, application of the magnetic field shows a substantial change around the ordering temperature of rare earth moment resulting in large positive magnetoresistance of about 20% with field change of 6T.

  16. Heat capacity of free electrons at the degenerate-nondegenerate transition

    NASA Astrophysics Data System (ADS)

    Nimtz, G.; Stadler, J. P.

    1985-04-01

    In this Brief Report the heat capacity of an electron gas at the degenerate-nondegenerate transition is presented. The values are deduced from hot-carrier data of InSb with ~=1014 electrons/cm3 determined by Maneval, Zylberstejn, and Budd.

  17. Relations between structural and dynamic thermal characteristics of building walls

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kossecka, E.; Kosny, J.

    1996-10-01

    The effect of internal thermal structure on dynamic characteristics of walls is analyzed. The concept of structure factors is introduced and the conditions they impose on response factors are given. Simple examples of multilayer walls, representing different types of thermal resistance and capacity distribution, are analyzed to illustrate general relations between structure factors and response factors. The idea of the ``thermally equivalent wall``, a plane multilayer structure, with dynamic characteristics similar to those of a complex structure, in which three-dimensional heat flow occurs, is presented.

  18. Antioxidant and isozyme features of two strains of Laminaria japonica (Phaeophyceae)

    NASA Astrophysics Data System (ADS)

    Wang, You; Tang, Xuexi; Li, Yongqi; Yu, Zhiming

    2007-01-01

    Healthy sporophytes of two gametophyte mutants of Laminaria japonica with different heat resistances: kelp 901 ( 901, with comparatively stronger heat-resistance) and Rongcheng No.1 ( RC, sensitive to heat stress), were respectively collected during October to December 2002 from Yantai and Rongcheng Sea Farm in the Shandong Peninsula of China. The contents of some biochemical materials and antioxidant capacity were analyzed under controlled laboratory conditions to identify if there is any relation between the overall antioxidant capacity and the heat-resistance in L. japonica and to understand possible mechanism of heat-resistance. Results show that: (1) the overall antioxidant capacity in healthy sporophyte of 901, such as vitamin E, polyphenol, and ascorbic acid contents and the enzymatic activity of SOD, POD, CAT, Gpx, PPO, and PAL, were not always higher than that of RC under controlled laboratory conditions, and no significance ( P>0.05) was shown in total antioxidant capacity (T-AOC) in 901 and RC. Result suggested that the difference in antioxidant capacity was not a decisive factor for different heat-resistances in L. japonica; (2) the simultaneous assay on isozymes was carried out using vertical polyacrylamide gel electrophoresis (PAGE). Considerable differences in peroxide (PRX), malate dehydrogenase (MDH), malic enzyme (ME), polyphenol oxidase (PPO) and glutamate dehydrogenase (GDH) were obtained in 901 and RC from either the band number, relative mobility ( R f ), or staining intensity, and ME could be used as an indicator to distinguish healthy sporophyte of 901 and RC under controlled laboratory conditions.

  19. Heat capacities and entropies at 298.15 K of MgTiO3 (geikielite), ZnO (zincite), and ZnCO3 (smithsonite)

    USGS Publications Warehouse

    Robie, R.A.; Haselton, H.T.; Hemingway, B.S.

    1989-01-01

    Heat capacities of synthetic MgTiO3 (geikielite), ZnO (zincite), and natural crystals of smithsonite (ZnCO3) were measured between 9 and 366 K using an automatic adiabatically shielded calorimeter. At 298.15 K the standard molar entropies Smo of MgTiO3, ZnO, and ZnCO3 are (74.64 ?? 0.15), (43.16 ?? 0.09), and (81.19 ?? 0.16) J??K-1??mol-1, respectively. Debye temperatures for MgTiO3 and ZnO calculated from our Cp, mo values below 20 K are (900 ?? 20) K and (440 ?? 25) K respectively. Heat capacities for MgTiO3 and ZnO were combined with enthalpy increments from the literature to derive heat-capacity equations for these phases from 260 to about 1800 K. The heat capacities of MgTiO3 between 260 and 1720 K were fitted with an average deviation of 0.3 per cent by the equation: C??p,m/(J??K-1??mol-1) = 222.5-0.05274(T/K)-6.092x105(T/K)-1-1874.6(T/K) -1/2+1.878x10-5(T/K)2 and for ZnO the equation: C??p,m/(J??K-1??mol-1) = 53.999+7.851x10-4(T/K)-5.868x105(T/K)-2 -127.50(T/K)-:1/2+1.9376x10-6(T/K)2 fits the heat capacities in the temperature interval of 250 to 1800 K with an average deviation of 0.7 per cent. ?? 1989.

  20. Exchange bias in bulk layered hydroxylammonium fluorocobaltate (NH₃OH)₂CoF₄.

    PubMed

    Jagličić, Z; Zentková, M; Mihalik, M; Arnold, Z; Drofenik, M; Kristl, M; Dojer, B; Kasunič, M; Golobič, A; Jagodič, M

    2012-02-08

    The magnetic properties of layered hydroxylammonium fluorocobaltate (NH(3)OH)(2)CoF(4) were investigated by measuring its dc magnetic susceptibility in zero-field-cooled (ZFC) and field-cooled (FC) regimes, its frequency dependent ac susceptibility, its isothermal magnetization curves after ZFC and FC regimes, and its heat capacity. Effects of pressure and magnetic field on magnetic phase transitions were studied by susceptibility and heat capacity measurements, respectively. The system undergoes a magnetic phase transition from a paramagnetic state to a canted antiferromagnetic state exhibiting a weak ferromagnetic behavior at T(C) = 46.5 K and an antiferromagnetic transition at T(N) = 2.9 K. The most spectacular manifestation of the complex magnetic behavior in this system is a shift of the isothermal magnetization hysteresis loop in a temperature range below 20 K after the FC regime-an exchange bias phenomenon. We investigated the exchange bias as a function of the magnetic field during cooling and as a function of temperature. The observed exchange bias was attributed to the large exchange anisotropy which exists due to the quasi-2D structure of the layered (NH(3)OH)(2)CoF(4) material.

  1. Micro-bubble emission boiling with the cavitation bubble blow pit

    PubMed Central

    Inada, Shigeaki; Shinagawa, Kazuaki; Illias, Suhaimi Bin; Sumiya, Hiroyuki; Jalaludin, Helmisyah A.

    2016-01-01

    The miniaturization boiling (micro-bubble emission boiling [MEB]) phenomenon, with a high heat removal capacity that contributes considerably to the cooling of the divertor of the nuclear fusion reactor, was discovered in the early 1980s. Extensive research on MEB has been performed since its discovery. However, the progress of the application has been delayed because the generation mechanism of MEB remains unclear. Reasons for this lack of clarity include the complexity of the phenomenon itself and the high-speed phase change phenomenon in which boiling and condensation are rapidly generated. In addition, a more advanced thermal technique is required to realize the MEB phenomenon at the laboratory scale. To the authors’ knowledge, few studies have discussed the rush mechanism of subcooled liquid to the heating surface, which is critical to elucidating the mechanism behind MEB. This study used photographic images to verify that the cavitation phenomenon spreads to the inside of the superheated liquid on the heating surface and thus clarify the mechanism of MEB. PMID:27628271

  2. District heating and cooling systems for communities through power plant retrofit distribution network. Volume 3. Final report, September 1, 1978-May 31, 1979

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    This final report of Phase I of the study presents Task 4, Technical Review and Assessment. The most-promising district-heating concept identified in the Phase I study for the Public Service Electric and Gas Company, Newark, New Jersey, is a hot-water system in which steam is extracted from an existing turbine and used to drive a new, small backpressure turbine-generator. The backpressure turbine provides heat for district heating and simultaneously provides additional electric-generating capacity to partially offset the capacity lost due to the steam extraction. This approach is the most-economical way to retrofit the stations studied for district heating while minimizingmore » electric-capacity loss. Nine fossil-fuel-fired stations within the PSE and G system were evaluated for possibly supplying heat for district heating and cooling in cogeneration operations, but only three were selected to supply the district-heating steam. They are Essex, Hudson, and Bergen. Plant retrofit, thermal distribution schemes, consumer-conversion scheme, and consumer-metering system are discussed. Extensive technical information is provided in 16 appendices, additional tables, figures, and drawings. (MCW)« less

  3. New and future heat pump technologies

    NASA Astrophysics Data System (ADS)

    Creswick, F. A.

    It is not possible to say for sure what future heat pumps will look like, but there are some interesting possibilities. In the next five years, we are likely to see US heat pumps with two kinds of innovations: capacity modulation and charge control. Capacity modulation will be accomplished by variable-speed compressor motors. The objective of charge control is to keep the refrigerant charge in the system where it belongs for best performance; there are probably many ways to accomplish this. Charge control will improve efficiency and durability; capacity modulation will further improve efficiency and comfort. The Stirling cycle heat pump has several interesting advantages, but it is farther out in time. At present, we don't know how to make it as efficient as the conventional vapor-compression heat pump. Electric utility people should be aware that major advances are being made in gas-fired heat pumps which could provide strong competition in the future. However, even a gas-fired heat pump has a substantial auxiliary electric power requirement. The resources needed to develop advanced heat pumps are substantial and foreign competition will be intense. It will be important for utilities, manufacturers, and the federal government to work in close cooperation.

  4. Heat capacity, resistivity, and angular dependent magnetization studies of single crystal Nd 1 + ϵ Fe 4 B 4 for ϵ ≈ 1 7

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Conner, Benjamin S.; Susner, Michael A.; UES Inc., Beavercreek, OH

    Advances in crystal growth have allowed for synthesis of large single crystals of Nd 1+ϵFe 4B 4, a well-known phase with a modulated structure. As a result we are able to report heat capacity and resistivity measurements on a single crystal Nd 1+ϵFe 4B 4 sample with a distribution of ϵ that skews towards the solubility limit of Nd near ϵ ≈ 17. Heat capacity measurements show evidence of crystal field splitting at temperatures higher than the long-range ferromagnetic Curie temperature. Heat capacity, resistivity, and magnetization measurements all confirm a Curie temperature of 7 K which is lower than previouslymore » reported values in the Nd 1+ϵFe 4B 4 system. Here, we also perform measurements of the angular dependence of the magnetization and discover behavior associated with the magnetic anisotropy that is inconsistent with the simple description previously proposed.« less

  5. Heat capacity, resistivity, and angular dependent magnetization studies of single crystal Nd 1 + ϵ Fe 4 B 4 for ϵ ≈ 1 7

    DOE PAGES

    Conner, Benjamin S.; Susner, Michael A.; UES Inc., Beavercreek, OH; ...

    2017-04-04

    Advances in crystal growth have allowed for synthesis of large single crystals of Nd 1+ϵFe 4B 4, a well-known phase with a modulated structure. As a result we are able to report heat capacity and resistivity measurements on a single crystal Nd 1+ϵFe 4B 4 sample with a distribution of ϵ that skews towards the solubility limit of Nd near ϵ ≈ 17. Heat capacity measurements show evidence of crystal field splitting at temperatures higher than the long-range ferromagnetic Curie temperature. Heat capacity, resistivity, and magnetization measurements all confirm a Curie temperature of 7 K which is lower than previouslymore » reported values in the Nd 1+ϵFe 4B 4 system. Here, we also perform measurements of the angular dependence of the magnetization and discover behavior associated with the magnetic anisotropy that is inconsistent with the simple description previously proposed.« less

  6. Reduction in thermal conductivity and tunable heat capacity of inorganic/organic hybrid superlattices

    NASA Astrophysics Data System (ADS)

    Giri, Ashutosh; Niemelä, Janne-Petteri; Szwejkowski, Chester J.; Karppinen, Maarit; Hopkins, Patrick E.

    2016-01-01

    We study the influence of molecular monolayers on the thermal conductivities and heat capacities of hybrid inorganic/organic superlattice thin films fabricated via atomic/molecular layer deposition. We measure the cross plane thermal conductivities and volumetric heat capacities of TiO2- and ZnO-based superlattices with periodic inclusion of hydroquinone layers via time domain thermoreflectance. In comparison to their homogeneous counterparts, the thermal conductivities in these superlattice films are considerably reduced. We attribute this reduction in the thermal conductivity mainly due to incoherent phonon boundary scattering at the inorganic/organic interface. Increasing the inorganic/organic interface density reduces the thermal conductivity and heat capacity of these films. High-temperature annealing treatment of the superlattices results in a change in the orientation of the hydroquinone molecules to a 2D graphitic layer along with a change in the overall density of the hybrid superlattice. The thermal conductivity of the hybrid superlattice increases after annealing, which we attribute to an increase in crystallinity.

  7. Aluminum alloy anode materials for Li-ion batteries

    NASA Astrophysics Data System (ADS)

    Sun, Z. H.; Chen, Z. F.; Fu, Q. W.; Jiang, X. Y.

    2017-03-01

    Aluminum has larger theoretical capacity of 2235 mAh/g than that of graphite (372 mAh/g), but it has big disadvantages including shorter cycle life and higher irreversible capacity loss. Improving cycle performance can be obtained via alloying of aluminum. In this paper, two ternary aluminum alloy, Al7Cu2Fe and Al73Cu5Fe22 were prepared. The main phase of Al7Cu2Fe alloy was Al7Cu2Fe. The heat treatment increased the proportion of Al7Cu2Fe. The main phase of Al73Cu5Fe22 alloy was Al60Cu30Fe10. The heat treatment reduced the proportion of Al60Cu30Fe10. For two alloys, the heat treatment could increase discharge capacity compared with cast alloy. The discharge capacity was improved by 50%. The content of aluminum in alloys has little effect on improving cycle performance, and it has obvious influence on the phase structure of alloy with heat treatment.

  8. The effect of thermal treatment on antioxidant capacity and pigment contents in separated betalain fractions.

    PubMed

    Mikołajczyk-Bator, Katarzyna; Pawlak, Sylwia

    2016-01-01

    Increased consumption of fruits and vegetables significantly reduces the risk of cardio-vascular disease. This beneficial effect on the human organism is ascribed to the antioxidant compounds these foods contain. Unfortunately, many products, particularly vegetables, need to be subjected to thermal processing before consumption. The aim of this study was to determine the effect of such thermal treatment on the antioxidant capacity and pigment contents in separated fractions of violet pigments (betacyanins) and yellow pigments (betaxanthins and betacyanins). Fractions of violet and yellow pigments were obtained by separation of betalain pigments from fresh roots of 3 red beet cultivars using column chromatography and solid phase extraction (SPE). The betalain pigment content was determined in all samples before and after thermal treatment (90°C/30 min) by spectrophotometry, according to Nilsson's method [1970] and antioxidant capacity was assessed based on ABTS. Betalain pigments in the separated fractions were identified using HPLC-MS. After thermal treatment of betacyanin fractions a slight, but statistically significant degradation of pigments was observed, while the antioxidant capacity of these fractions did not change markedly. Losses of betacyanin content amounted to 13-15% depending on the cultivar, while losses of antioxidant capacity were approx. 7%. HPLC/MS analyses showed that before heating, betanin was the dominant pigment in the betacyanin fraction, while after heating it was additionally 15-decarboxy-betanin. Isolated fractions of yellow pigments in red beets are three times less heat-resistant than betacyanin fractions. At losses of yellow pigment contents in the course of thermal treatment reaching 47%, antioxidant capacity did not change markedly (a decrease by approx. 5%). In the yellow pigment fractions neobetanin was the dominant peak in the HPLC chromatogram, while vulgaxanthin was found in a much smaller area, whereas after heating additionally 2-decarboxy-2,3-dehydro-neobetanin was detected. Both groups of betalain pigments (betacyanins and betaxanthins) exhibit antioxidant capacity before and after heating. Violet beatacyjanins are 3 times more stable when heated than yellow betaxanthins.

  9. Phonon Mechanisms for Excess Heat Capacity in Membrane Isolated Superconducting Transition Edge Sensors

    NASA Technical Reports Server (NTRS)

    Chervenak, James A.

    2012-01-01

    The mechanics of phonon transport in membrane-isolated superconducting transition edge sensors is discussed. Surveys of the literature on this type of sensor reveal a number of designs with excess heat capacity and a smaller subset that exhibit decoupling of the superconducting film from the underlying dielectric. A simple model is addressed in which the membrane, despite its thermal isolation, fails to fully thermalize to the temperature of the metal film heating it. A population of phonons exists which is emitted by the metal film, partially thermalizes the dielectric and is then reabsorbed in the metal film without escaping from the device structure to the thermal bath. The size of this population and its contribution to the heat capacity are estimated for several device scenarios.

  10. Probing the Energetics of Antigen-Antibody Recognition by Titration Microcalorimetry

    PubMed

    Jelesarov; Leder; Bosshard

    1996-06-01

    Our understanding of the energetics that govern antigen-antibody recognition lags behind the increasingly rapid accumulation of structural information on antigen-antibody complexes. Thanks to the development of highly sensitive microcalorimeters, the thermodynamic parameters of antigen-antibody interactions can now be measured with precision and using only nanomole quantities of protein. The method of choice is isothermal titration calorimetry, in which a solution of the antibody (or antigen) is titrated with small aliquots of the antigen (or antibody) and the heat change accompanying the formation of the antigen-antibody complex is measured with a sensitivity as high as 0.1 μcal s-1. The free energy of binding (DeltaG), the binding enthalpy (DeltaH), and the binding entropy (DeltaS) are usually obtained from a single experiment, and no spectroscopic or radioactive label must be introduced into the antigen or antibody. The often large and negative change in heat capacity (DeltaCp) accompanying the formation of an antigen-antibody complex is obtained from DeltaH measured at different temperatures. The basic theory and the principle of the measurements are reviewed and illustrated by examples. The thermodynamic parameters relate to the dynamic physical forces that govern the association of the freely moving antigen and antibody into a well-structured and unique complex. This information complements the static picture of the antigen-antibody complex that results from X-ray diffraction analysis. Attempts to correlate dynamic and static aspects are discussed briefly.

  11. High-temperature heat capacity of CdO-V2O5 oxides

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Chumilina, L. G.; Belousova, N. V.; Denisov, V. M.; Galiakhmetova, N. A.

    2017-12-01

    Vanadates Cd2V2O7 and CdV2O6 have been prepared from CdO i V2O5 by three-phase synthesis with subsequent burning at 823-1073 K and 823-853 K, respectively. The molar heat capacity of these oxide compounds has been measured by differential scanning calorimetry. The enthalpy change, the entropy change, and the reduced Gibbs energy are calculated using the experimental dependences C p = f( T). It is shown that there is a correlation between the specific heat capacity and the composition of CdO-V2O5 oxide system.

  12. High accuracy heat capacity measurements through the lambda transition of helium with very high temperature resolution

    NASA Technical Reports Server (NTRS)

    Fairbanks, W. M.; Lipa, J. A.

    1984-01-01

    A measurement of the heat capacity singularity of helium at the lambda transition was performed with the aim of improving tests of the Renormalization Group (RG) predictions for the static thermodynamic behavior near the singularity. The goal was to approach as closely as possible to the lambda-point while making heat capacity measurements of high accuracy. To do this, a new temperature sensor capable of unprecedented resolution near the lambda-point, and two thermal control systems were used. A short description of the theoretical background and motivation is given. The initial apparatus and results are also described.

  13. Geographic divergence in upper thermal limits across insect life stages: does behavior matter?

    PubMed

    MacLean, Heidi J; Higgins, Jessica K; Buckley, Lauren B; Kingsolver, Joel G

    2016-05-01

    Insects with complex life cycles vary in size, mobility, and thermal ecology across life stages. We examine how differences in the capacity for thermoregulatory behavior influence geographic differences in physiological heat tolerance among egg and adult Colias butterflies. Colias adults exhibit differences in morphology (wing melanin and thoracic setal length) along spatial gradients, whereas eggs are morphologically indistinguishable. Here we compare Colias eriphyle eggs and adults from two elevations and Colias meadii from a high elevation. Hatching success and egg development time of C. eriphyle eggs did not differ significantly with the elevation of origin. Egg survival declined in response to heat-shock temperatures above 38-40 °C and egg development time was shortest at intermediate heat-shock temperatures of 33-38 °C. Laboratory experiments with adults showed survival in response to heat shock was significantly greater for Colias from higher than from lower elevation sites. Common-garden experiments at the low-elevation field site showed that C. meadii adults initiated heat-avoidance and over-heating behaviors significantly earlier in the day than C. eriphyle. Our study demonstrates the importance of examining thermal tolerances across life stages. Our findings are inconsistent with the hypothesis that thermoregulatory behavior inhibits the geographic divergence of physiological traits in mobile stages, and suggest that sessile stages may evolve similar heat tolerances in different environments due to microclimatic variability or evolutionary constraints.

  14. Limited energy study, West Point, NY. Executive summary and final report. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, C.T.

    1994-05-13

    In the Holleder Sports Complex at West Point Military Academy, there is an indoor ice skating rink. Due to perceived operational inefficiencies, it was anticipated that energy was being wasted. Furthermore, it was noted that during the normal operation of the ice making plant, heat was being rejected from the building. Questions were asked as to the possibility of recapturing this rejected heat and utilizing it to increase the operational efficiency and reduce the energy wasted. The existing ice making refrigerant plant was originally installed with a heat reclaiming subsystem to utilize waste heat to provide for the required underslabmore » heating system and to melt waste ice scrapings (snow) from the ice resurfacing process. The underslab heating system is working properly, but there is not enough recovered waste heat left to totally melt the snow from resurfacing. This snow builds up over time and is melted by spraying domestic hot water at 140 deg F over the snow pile. This process is labor intensive, energy use intensive, and reduces the capacity of the domestic hot water system to satisfy hot water needs in other parts of the building. Actual compressor run times were obtained from the operator of the ice refrigerant plant and calculations showed that 2,122,100 MBH per year of energy was available for recovery.« less

  15. Comparative miRNAs analysis of Two contrasting broccoli inbred lines with divergent head-forming capacity under temperature stress.

    PubMed

    Chen, Chi-Chien; Fu, Shih-Feng; Norikazu, Monma; Yang, Yau-Wen; Liu, Yu-Ju; Ikeo, Kazuho; Gojobori, Takashi; Huang, Hao-Jen

    2015-12-01

    MicroRNAs (miRNAs) play a vital role in growth, development, and stress response at the post-transcriptional level. Broccoli (Brassica oleracea L. var italic) is an important vegetable crop, and the yield and quality of broccoli are decreased by heat stress. The broccoli inbred lines that are capable of producing head at high temperature in summer are unique varieties in Taiwan. However, knowledge of miRNAomes during the broccoli head formation under heat stress is limited. In this study, molecular characterization of two nearly isogenic lines with contrasting head-forming capacity was investigated. Head-forming capacity was better for heat-tolerant (HT) than heat-sensitive (HS) broccoli under heat stress. By deep sequencing and computational analysis, 20 known miRNAs showed significant differential expression between HT and HS genotypes. According to the criteria for annotation of new miRNAs, 24 novel miRNA sequences with differential expression between the two genotypes were identified. To gain insight into functional significance, 213 unique potential targets of these 44 differentially expressed miRNAs were predicted. These targets were implicated in shoot apical development, phase change, response to temperature stimulus, hormone and energy metabolism. The head-forming capacity of the unique HT line was related to autonomous regulation of Bo-FT genes and less expression level of heat shock protein genes as compared to HS. For the genotypic comparison, a set of miRNAs and their targets had consistent expression patterns in various HT genotypes. This large-scale characterization of broccoli miRNAs and their potential targets is to unravel the regulatory roles of miRNAs underlying heat-tolerant head-forming capacity.

  16. Frustrated magnetism in the double perovskite L a2LiOs O6 : A comparison with L a2LiRu O6

    NASA Astrophysics Data System (ADS)

    Thompson, C. M.; Marjerrison, C. A.; Sharma, A. Z.; Wiebe, C. R.; Maharaj, D. D.; Sala, G.; Flacau, R.; Hallas, A. M.; Cai, Y.; Gaulin, B. D.; Luke, G. M.; Greedan, J. E.

    2016-01-01

    The frustrated double perovskite L a2LiOs O6 , based on O s5 +(5 d3,t23 ) is studied using magnetization, elastic neutron scattering, heat capacity, and muon spin relaxation (μSR) techniques and compared with isostructural (P 21/n ) L a2LiRu O6 ,R u5 +(4 d3,t23 ) . While previous studies of L a2LiOs O6 showed a broad susceptibility maximum (χmax) near 40 K, heat capacity data indicate a sharp peak at 30 K, similar to L a2LiRu O6 with χmax˜30 K and a heat capacity peak at 24 K. Significant differences between the two materials are seen in powder neutron diffraction where the magnetic structure is described by k =(1 /2 1 /2 0 ) for L a2LiOs O6 , while L a2LiRu O6 has been reported with k =(000 ) , structure for face centered lattices. For the k =(1 /2 1 /2 0 ) structure, one has antiferromagnetic layers stacked antiferromagnetically, while for k =(0 0 0 ) structure, ferromagnetic layers are stacked antiferromagnetically. In spite of these differences, both can be considered as type I fcc antiferromagnetic structures. For L a2LiOs O6 , the magnetic structure is best described in terms of linear combinations of basis vectors belonging to irreducible representations Γ2 and Γ4. The combinations Γ2- Γ4 and Γ2+Γ4 could not be distinguished from refinement of the data. In all cases, the O s5 + moments lie in the y z plane with the largest component along y . The total moment is 1.81(4) μB. For L a2LiRu O6 , the R u5 + moments are reported to lie in the x z plane. In addition, while neutron diffraction, μSR and NMR data indicate a unique TN=24 K for L a2LiRu O6 , the situation for L a2LiOs O6 is more complex, with heat capacity, neutron diffraction, and μSR indicating two ordering events at 30 and 37 K, similar to the cases of cubic B a2YRu O6 and monoclinic S r2YRu O6 .

  17. A 1 kW-class multi-stage heat-driven thermoacoustic cryocooler system operating at liquefied natural gas temperature range

    NASA Astrophysics Data System (ADS)

    Zhang, L. M.; Hu, J. Y.; Wu, Z. H.; Luo, E. C.; Xu, J. Y.; Bi, T. J.

    2015-07-01

    This article introduces a multi-stage heat-driven thermoacoustic cryocooler capable of reaching cooling capacity about 1 kW at liquefied natural gas temperature range without any moving mechanical parts. The cooling system consists of an acoustically resonant double-acing traveling wave thermoacoustic heat engine and three identical pulse tube coolers. Unlike other traditional traveling wave thermoacoustic heat engines, the acoustically resonant double-acting thermoacoustic heat engine is a closed-loop configuration consists of three identical thermoacoustic conversion units. Each pulse tube cooler is bypass driven by one thermoacoustic heat engine unit. The device is acoustically completely symmetric and therefore "self-matching" for efficient traveling-wave thermoacoustic conversion. In the experiments, with 7 MPa helium gas as working gas, when the heating temperature reaches 918 K, total cooling capacity of 0.88 kW at 110 K is obtained with a resonant frequency of about 55 Hz. When the heating temperature is 903 K, a maximum total cooling capacity at 130 K of 1.20 kW is achieved, with a thermal-to-cold exergy efficiency of 8%. Compared to previously developed heat-driven thermoacoustic cryocoolers, this device has higher thermal efficiency and higher power density. It shows a good prospect of application in the field of natural gas liquefaction and recondensation.

  18. Development and Application of New Solid-State Models for Low-Energy Vibrations, Lattice Defects, Entropies of Mixing, and Magnetic Properties

    NASA Astrophysics Data System (ADS)

    Schliesser, Jacob M.

    Low-temperature heat capacity data contain information on the physical properties of materials, and new models continue to be developed to aid in the analysis and interpretation of heat capacity data into physically meaningful properties. This work presents the development of two such models and their application to real material systems. Equations describing low-energy vibrational modes with a gap in the density of states (DOS) have been derived and tested on several material systems with known gaps in the DOS, and the origins of such gaps in the DOS are presented. Lattice vacancies have been shown to produce a two-level system that can be modeled with a sum of low-energy Schottky anomalies that produce an overall linear dependence on temperature in the low-temperature heat capacity data. These two models for gaps in the vibrational DOS and the relationship between a linear heat capacity and lattice vacancies and many well-known models have been applied to several systems of materials to test their validity and applicability as well as provide greater information on the systems themselves. A series of bulk and nanoscale Mn-Fe and Co-Fe spinel solid solutions were analyzed using the entropies derived from heat capacity data, and excess entropies of mixing were determined. These entropies show that changes in valence, cation distribution, bonding, and the microstructure between the mixing ions is non-ideal, especially in the nanoparticles. The heat capacity data of ten Al doped TiO2 anatase nanoparticle samples have also been analyzed to show that the Al3+ dopant ions form small regions of short-range order, similar to a glass, within the TiO2 particles, while the overall structure of TiO2 remains unchanged. This has been supported by X-ray diffraction (XRD) and electron energy-loss spectroscopy and provides new insights to the synthesis and characterization of doped materials. The final investigation examines nanocrystalline CuO using heat capacities, magnetization, XRD, and electron microscopy and compares the findings to the known properties of bulk CuO. All of these measurements show transitions between antiferromagnetic and paramagnetic states in the temperature range of about 150--350 K that are greater in number and higher in temperature than the transitions in bulk CuO. These changes are shown to cause an increase in the temperature range of multiferroicity in CuO nanoparticles. Keywords: thermodynamics, heat capacity, lattice vacancies, materials, nanoparticles, mixing, characterization.

  19. Reversing and nonreversing heat capacity of poly(lactic acid) in the glass transition region by TMDSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pyda, Marek; Wunderlich, Bernhard

    2005-11-01

    A study of the glass transition of an amorphous and a semicrystalline poly(lactic acid) (PLA) is performed with adiabatic calorimetry, differential scanning calorimetry (DSC), and temperature-modulated DSC (TMDSC). The reversing, total, and nonreversing apparent heat capacities of samples with different contents of L- and D-lactic acid and with various thermal histories were evaluated. Different modes of TMDSC analyses of amorphous and semicrystalline PLA were compared to the total heat capacity from standard DSC. The enthalpy relaxation and the cold crystallization in the glass transition region are largely irreversible. The melting is largely irreversible, but a 100% reversing fraction is observedmore » at low temperatures from 375 to 420 K, which becomes small inside the major melting peak at about 440 K. From the TMDSC of amorphous PLA, the combined information on endothermic and exothermic enthalpy relaxation and glass transition were deconvoluted into the reversing and nonreversing components. The glass transition temperature from the reversing heat capacity and the enthalpy relaxation peaks from the nonreversing component shift to higher temperature for increasingly annealed PLA. The relaxation times for aging decrease on cooling until the glass transition is reached and then increase. This behavior is linked to cooperativity. All quantitative thermal analyses are based on the heat capacity of the solid and liquid, evaluated earlier with the advanced thermal analysis system (ATHAS).« less

  20. Heat capacity and monogamy relations in the mixed-three-spin XXX Heisenberg model at low temperatures

    NASA Astrophysics Data System (ADS)

    Zad, Hamid Arian; Movahhedian, Hossein

    2016-08-01

    Heat capacity of a mixed-three-spin (1/2,1,1/2) antiferromagnetic XXX Heisenberg chain is precisely investigated by use of the partition function of the system for which, spins (1,1/2) have coupling constant J1 and spins (1/2,1/2) have coupling constant J2. We verify tripartite entanglement for the model by means of the convex roof extended negativity (CREN) and concurrence as functions of temperature T, homogeneous magnetic field B and the coupling constants J1 and J2. As shown in our previous work, [H. A. Zad, Chin. Phys. B 25 (2016) 030303.] the temperature, the magnetic field and the coupling constants dependences of the heat capacity for such spin system have different behaviors for the entangled and separable states, hence, we did some useful comparisons between this quantity and negativities of its organized bipartite (sub)systems at entangled and separable states. Here, we compare the heat capacity of the mixed-three-spin (1/2,1,1/2) system with the CREN and the tripartite concurrence (as measures of the tripartite entanglement) at low temperature. Ground state phase transitions, and also, transition from ground state to some excited states are explained in detail for this system at zero temperature. Finally, we investigate the heat capacity behavior around those critical points in which these quantum phase transitions occur.

  1. New Processes for Freeze-Drying in Dual-Chamber Systems.

    PubMed

    Werk, T; Ludwig, I S; Luemkemann, J; Huwyler, J; Mahler, H-C; Haeuser, C R; Hafner, M

    2016-01-01

    Dual-chamber systems can offer self-administration and home care use for lyophilized biologics. Only a few products have been launched in dual-chamber systems so far-presumably due to dual-chamber systems' complex and costly drug product manufacturing process. Within this paper, two improved processes (both based on tray filling technology) for freeze-drying pharmaceuticals in dual-chamber systems are described. Challenges with regards to heat transfer were tackled by (1) performing the freeze-drying step in a needle-down orientation in combination with an aluminum block, or (2) freeze-drying the drug product "externally" in a metal cartridge with subsequent filling of the lyophilized cake into the dual-chamber system. Metal-mediated heat transfer was shown to be efficient in both cases and batch (unit-to-unit) homogeneity with regards to sublimation rate was increased. It was difficult to influence ice crystal size using different methods when in use with an aluminum block due to its heat capacity. Using such a metal carrier implies a large heat capacity leading to relatively small ice crystals. Compared to the established process, drying times were reduced by half using the new processes. The drying time was, however, longer for syringes compared to vials due to the syringe design (long and slim). The differences in drying times were less pronounced for aggressive drying cycles. The proposed processes may help to considerably decrease investment costs into dual-chamber system fill-finish equipment. Dual-chamber syringes offer self-administration and home care use for freeze-dried pharmaceuticals. Only a few products have been launched in dual-chamber syringes so far-presumably due to their complex and costly drug product manufacturing process. In this paper two improved processes for freeze-drying pharmaceuticals in dual-chamber syringes are described. The major challenge of freeze-drying is to transfer heat through a vacuum. The proposed processes cope with this challenge by (1) freeze-drying the drug product in the syringe in an orientation in which the product is closest to the heat source, or (2) freeze-drying the drug product outside the syringe in a metal tube. The latter requires filling the freeze-dried product subsequently into the dual-chamber syringe. Both processes were very efficient and promised to achieve similar freeze-drying conditions for all dual-chamber syringes within one production run. The proposed processes may help to considerably decrease investment costs into dual-chamber syringe fill-finish equipment. © PDA, Inc. 2016.

  2. Testing of a single graded groove variable conductance heat pipe

    NASA Astrophysics Data System (ADS)

    Kapolnek, Michael R.; Holmes, H. R.; Hager, Brian

    1992-07-01

    Variable conductance heat pipes (VCHPs) with transport capacities in the 50,000 to 100,000 Watt-inch range will be required to transport the large heat loads anticipated for advanced spacecraft. A high-reliability, nonarterial constant conductance heat pipe with this capacity, the Single Graded Groove (SGG) heat pipe, was developed for NASA's Space Station Freedom. The design and testing of a variable conductance SGG heat pipe are described. Response of the pipe to startup and heat load changes was excellent. After correcting for condenser temperature changes, the evaporator temperature varied by only +/- 4 F for large evaporator heat load changes. The surface tension difference between ends of the gas blocked region was found to measurably affect the performance of the pipe. Performance was negligibly affected by Marangoni flow in the gas blocked region.

  3. Large variable conductance heat pipe. Transverse header

    NASA Technical Reports Server (NTRS)

    Edelstein, F.

    1975-01-01

    The characteristics of gas-loaded, variable conductance heat pipes (VCHP) are discussed. The difficulties involved in developing a large VCHP header are analyzed. The construction of the large capacity VCHP is described. A research project to eliminate some of the problems involved in large capacity VCHP operation is explained.

  4. High-temperature heat capacity of YFe3(BO3)4

    NASA Astrophysics Data System (ADS)

    Denisov, V. M.; Denisova, L. T.; Gudim, I. A.; Temerov, V. L.; Volkov, N. V.; Patrin, G. S.; Chumilina, L. G.

    2014-02-01

    The molar heat capacity of YFe3(BO3)4 has been measured using differential scanning calorimetry in the temperature range 339-1086 K. It has been found that the dependence C p = f( T) exhibits an extremum at a temperature of 401 K due to the structural transition.

  5. On thermal properties of hard rocks as a host environment of an underground thermal energy storage

    NASA Astrophysics Data System (ADS)

    Novakova, L.; Hladky, R.; Broz, M.; Novak, P.; Lachman, V.; Sosna, K.; Zaruba, J.; Metelkova, Z.; Najser, J.

    2013-12-01

    With increasing focus on environmentally friendly technologies waste heat recycling became an important issue. Under certain circumstances subsurface environment could be utilized to accommodate relatively large quantity of heat. Industrial waste heat produced during warm months can be stored in an underground thermal energy storage (UTES) and used when needed. It is however a complex task to set up a sustainable UTES for industrial scale. Number of parameters has to be studied and evaluated by means of thermohydromechanical and chemical coupling (THMC) before any UTES construction. Thermal characteristics of various rocks and its stability under thermal loading are amongst the most essential. In the Czech Republic study two complementary projects THMC processes during an UTES operation. The RESEN project (www.resen.cz) employs laboratory tests and experiments to characterise thermal properties of hard rocks in the Bohemian Massif. Aim of the project is to point out the most suitable rock environment in the Bohemian Massif for moderate to ultra-high temperature UTES construction (Sanyal, 2005). The VITA project (www.geology.cz/mokrsko) studies THM coupling in non-electrical temperature UTES using long term in-situ experiment. In both projects thermal properties of rocks were studied. Thermal conductivity and capacity were measured on rock samples. In addition an influence of increasing temperature and moisture content was considered. Ten hard rocks were investigated. The set included two sandstones, two ignibrites, a melaphyr, a syenite, two granites, a gneiss and a serpentinite. For each rock there were measured thermal conductivity and capacity of at least 54 dried samples. Subsequently, the samples were heated up to 380°C in 8 hours and left to cool down. Thermal characteristics were measured during the heating period and after the sample reached room temperature. Heating and cooling cycle was repeated 7 to 10 times to evaluate possible UTES-like degradation of the studied rocks. The studies revealed thermal loading caused rapid decrease of thermal conductivity of a rock. The decrease of up to 30.6% was observed in sandstones. Reduction up to 16% was found in the granite, 12.3% in the syenite, 12.1% in the gneiss, 10.1% in the serpentinite, 8.1% in the melaphyr and 5.9 - 6.5% in ignimbites. Thermal loading initiated insignificant decrement of the thermal capacity. The capacity loss was usually less than 2%. Increasing content of water caused increase in the measured thermal characteristics. Saturated melaphyr showed 29% higher conductivity and 17.8% higher capacity comparing to the dried one. In the ignibrites there was found growth up to 23.5% in the thermal conductivity and 14.9% in the capacity, 12.1-17.6% and 4.5-5.9% in granites, 9.1% and 11.1% in the serpetinite, 7.9% and 7.9% in the gneiss and 1.2% and 3.4% in the syenite. This work was funded by the Technology Agency of the CR (TA01020348) and Ministry of Industry and trade of the CR (FR-TI3/325). Reference Sanyal, S.K., 2005. Classification of geothermal systems - a possible scheme, Proceedings, 30th Workshop on Geothermal Reservoir Engineering, Stanford University, Stanford, California, p. 85-88.

  6. Inverse problem and variation method to optimize cascade heat exchange network in central heating system

    NASA Astrophysics Data System (ADS)

    Zhang, Yin; Wei, Zhiyuan; Zhang, Yinping; Wang, Xin

    2017-12-01

    Urban heating in northern China accounts for 40% of total building energy usage. In central heating systems, heat is often transferred from heat source to users by the heat network where several heat exchangers are installed at heat source, substations and terminals respectively. For given overall heating capacity and heat source temperature, increasing the terminal fluid temperature is an effective way to improve the thermal performance of such cascade heat exchange network for energy saving. In this paper, the mathematical optimization model of the cascade heat exchange network with three-stage heat exchangers in series is established. Aim at maximizing the cold fluid temperature for given hot fluid temperature and overall heating capacity, the optimal heat exchange area distribution and the medium fluids' flow rates are determined through inverse problem and variation method. The preliminary results show that the heat exchange areas should be distributed equally for each heat exchanger. It also indicates that in order to improve the thermal performance of the whole system, more heat exchange areas should be allocated to the heat exchanger where flow rate difference between two fluids is relatively small. This work is important for guiding the optimization design of practical cascade heating systems.

  7. Evaluation of a large capacity heat pump concept for active cooling of hypersonic aircraft structure

    NASA Technical Reports Server (NTRS)

    Pagel, L. L.; Herring, R. L.

    1978-01-01

    Results of engineering analyses assessing the conceptual feasibility of a large capacity heat pump for enhancing active cooling of hypersonic aircraft structure are presented. A unique heat pump arrangement which permits cooling the structure of a Mach 6 transport to aluminum temperatures without the aid of thermal shielding is described. The selected concept is compatible with the use of conventional refrigerants, with Freon R-11 selected as the preferred refrigerant. Condenser temperatures were limited to levels compatible with the use of conventional refrigerants by incorporating a unique multipass condenser design, which extracts mechanical energy from the hydrogen fuel, prior to each subsequent pass through the condenser. Results show that it is technically feasible to use a large capacity heat pump in lieu of external shielding. Additional analyses are required to optimally apply this concept.

  8. The effect of heat preservation time on the electrochemical properties of LiFePO4

    NASA Astrophysics Data System (ADS)

    He, Rui; Zhang, Lihui; Bai, Xue; Liu, Zhenfa

    2017-12-01

    LiFePO4 was prepared via high temperature solid-state method at different heat preservation time. XRD and SEM was used to test the structure and morphology of LiFePO4. Land 2001 was used to test the electrochemical performance of LiFePO4. The results illustrated that well-crystallized LiFePO4 composite with homogeneous small particles was obtained by XRD and SEM. And the optimum heat preservation time was 4 hour. From charge/discharge test, it can be seen that at 0.2C, LiFePO4 has initial discharge capacities of 159.1mAh/g at the heat preservation time 4 hour. From the rate capacity, it can be seen that the discharge capacity was of optimum sample remains above 99% after 200 cycles.

  9. The decrease in the IgG-binding capacity of intensively dry heated whey proteins is associated with intense Maillard reaction, structural changes of the proteins and formation of RAGE-ligands.

    PubMed

    Liu, Fahui; Teodorowicz, Małgorzata; van Boekel, Martinus A J S; Wichers, Harry J; Hettinga, Kasper A

    2016-01-01

    Heat treatment is the most common way of milk processing, inducing structural changes as well as chemical modifications in milk proteins. These modifications influence the immune-reactivity and allergenicity of milk proteins. This study shows the influence of dry heating on the solubility, particle size, loss of accessible thiol and amino groups, degree of Maillard reaction, IgG-binding capacity and binding to the receptor for advanced glycation end products (RAGE) of thermally treated and glycated whey proteins. A mixture of whey proteins and lactose was dry heated at 130 °C up to 20 min to mimic the baking process in two different water activities, 0.23 to mimic the heating in the dry state and 0.59 for the semi-dry state. The dry heating was accompanied by a loss of soluble proteins and an increase in the size of dissolved aggregates. Most of the Maillard reaction sites were found to be located in the reported conformational epitope area on whey proteins. Therefore the structural changes, including exposure of the SH group, SH-SS exchange, covalent cross-links and the loss of available lysine, subsequently resulted in a decreased IgG-binding capacity (up to 33%). The binding of glycation products to RAGE increased with the heating time, which was correlated with the stage of the Maillard reaction and the decrease in the IgG-binding capacity. The RAGE-binding capacity was higher in samples with a lower water activity (0.23). These results indicate that the intensive dry heating of whey proteins as it occurs during baking may be of importance to the immunological properties of allergens in cow's milk, both due to chemical modifications of the allergens and formation of AGEs.

  10. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  11. Water treatment capacity of forward osmosis systems utilizing power plant waste heat

    DOE PAGES

    Zhou, Xingshi; Gingerich, Daniel B.; Mauter, Meagan S.

    2015-06-11

    Forward osmosis (FO) has the potential to improve the energy efficiency of membrane-based water treatment by leveraging waste heat from steam electric power generation as the primary driving force for separation. In this study, we develop a comprehensive FO process model, consisting of membrane separation, heat recovery, and draw solute regeneration (DSR) models. We quantitatively characterize three alternative processes for DSR: distillation, steam stripping, and air stripping. We then construct a mathematical model of the distillation process for DSR that incorporates hydrodynamics, mass and heat transport resistances, and reaction kinetics, and we integrate this into a model for the fullmore » FO process. Finally, we utilize this FO process model to derive a first-order approximation of the water production capacity given the rejected heat quantity and quality available at U.S. electric power facilities. We find that the upper bound of FO water treatment capacity using low-grade heat sources at electric power facilities exceeds process water treatment demand for boiler water make-up and flue gas desulfurization wastewater systems.« less

  12. Latent Heat Thermal Energy Storage: Effect of Metallic Mesh Size on Storage Time and Capacity

    NASA Astrophysics Data System (ADS)

    Shuja, S. Z.; Yilbas, B. S.

    2015-11-01

    Use of metallic meshes in latent heat thermal storage system shortens the charging time (total melting of the phase change material), which is favorable in practical applications. In the present study, effect of metallic mesh size on the thermal characteristics of latent heat thermal storage system is investigated. Charging time is predicted for various mesh sizes, and the influence of the amount of mesh material on the charging capacity is examined. An experiment is carried out to validate the numerical predictions. It is found that predictions of the thermal characteristics of phase change material with presence of metallic meshes agree well with the experimental data. High conductivity of the metal meshes enables to transfer heat from the edges of the thermal system towards the phase change material while forming a conduction tree in the system. Increasing number of meshes in the thermal system reduces the charging time significantly due to increased rate of conduction heat transfer in the thermal storage system; however, increasing number of meshes lowers the latent heat storage capacity of the system.

  13. 16 CFR 305.7 - Determinations of capacity.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... appendix P to 10 CFR part 430, subpart B. (f) Room air conditioners. The capacity shall be the cooling... 430, subpart B. (i) Central air conditioners, cooling. The capacity shall be the cooling capacity in... capacities between 38,000 and 64,999 Btu's per hour. (j) Central air conditioners, heating. The capacity...

  14. On the relationship between the specific heat enhancement of salt-based nanofluids and the ionic exchange capacity of nanoparticles.

    PubMed

    Mondragón, Rosa; Juliá, J Enrique; Cabedo, Luis; Navarrete, Nuria

    2018-05-14

    Nanoparticles have been used in thermal applications to increase the specific heat of the molten salts used in Concentrated Solar Power plants for thermal energy storage. Although several mechanisms for abnormal enhancement have been proposed, they are still being investigated and more research is necessary. However, this nanoparticle-salt interaction can also be found in chemical applications in which nanoparticles have proved suitable to be used as an adsorbent for nitrate removal given their high specific surface, reactivity and ionic exchange capacity. In this work, the ionic exchange capacity mechanism for the nanoparticles functionalization phenomenon was evaluated. The ionic exchange capacity of silica and alumina nanoparticles dispersed in lithium, sodium and potassium nitrates was measured. Fourier-transform infrared spectroscopy tests confirmed the adsorption of nitrate ions on the nanoparticle surface. A relationship between the ionic exchange capacity of nanoparticles and the specific heat enhancement of doped molten salts was proposed for the first time.

  15. Can physiological engineering/programming increase multi-generational thermal tolerance to extreme temperature events?

    PubMed

    Sorby, Kris L; Green, Mark P; Dempster, Tim D; Jessop, Tim S

    2018-05-29

    Organisms increasingly encounter higher frequencies of extreme weather events as a consequence of global climate change. Currently, few strategies are available to mitigate climate change effects on animals arising from acute extreme high temperature events. We tested the capacity of physiological engineering to influence the intra- and multi-generational upper thermal tolerance capacity of a model organism Artemia , subjected to extreme high temperatures. Enhancement of specific physiological regulators during development could affect thermal tolerances or life-history attributes affecting subsequent fitness. Using experimental Artemia populations we exposed F0 individuals to one of four treatments; heat hardening (28°C to 36°C, 1°C per 10 minutes), heat hardening plus serotonin (0.056 µg ml -1 ), heat hardening plus methionine (0.79 mg ml -1 ), and a control treatment. Regulator concentrations were based on previous literature. Serotonin may promote thermotolerance, acting upon metabolism and life-history. Methionine acts as a methylation agent across generations. For all groups, measurements were collected for three performance traits of individual thermal tolerance (upper sublethal thermal limit, lethal limit, and dysregulation range) over two generations. Results showed no treatment increased upper thermal limit during acute thermal stress, although serotonin-treated and methionine-treated individuals outperformed controls across multiple thermal performance traits. Additionally, some effects were evident across generations. Together these results suggest phenotypic engineering provides complex outcomes; and if implemented with heat hardening can further influence performance in multiple thermal tolerance traits, within and across generations. Potentially, such techniques could be up-scaled to provide resilience and stability in populations susceptible to extreme temperature events. © 2018. Published by The Company of Biologists Ltd.

  16. Suppression of the sonic heat transfer limit in high-temperature heat pipes

    NASA Astrophysics Data System (ADS)

    Dobran, Flavio

    1989-08-01

    The design of high-performance heat pipes requires optimization of heat transfer surfaces and liquid and vapor flow channels to suppress the heat transfer operating limits. In the paper an analytical model of the vapor flow in high-temperature heat pipes is presented, showing that the axial heat transport capacity limited by the sonic heat transfer limit depends on the working fluid, vapor flow area, manner of liquid evaporation into the vapor core of the evaporator, and lengths of the evaporator and adiabatic regions. Limited comparisons of the model predictions with data of the sonic heat transfer limits are shown to be very reasonable, giving credibility to the proposed analytical approach to determine the effect of various parameters on the axial heat transport capacity. Large axial heat transfer rates can be achieved with large vapor flow cross-sectional areas, small lengths of evaporator and adiabatic regions or a vapor flow area increase in these regions, and liquid evaporation in the evaporator normal to the main flow.

  17. Determining the Equation of State (EoS) Parameters for Ballistic Gelatin

    DTIC Science & Technology

    2015-09-01

    standard deviation. The specific heat measured at room temperature reported in (Winter 1975) is approximately 1.13 cal/g/°C (= 4.73 J /g/K). Fig. 4...Piatt 2010) Table 3 Specific heat capacity, average heat capacity, and standard deviation Temperature (°C) Cp [ J /(g·K)] Cp Cp Cp Average Cp...density amorphous ice and their implications on pressure induced amorphization. J Chem Physics. 2005;122:124710. Appleby-Thomas GJ, Hazell PJ

  18. Measurement of electron-ion relaxation in warm dense copper

    DOE PAGES

    Cho, B. I.; Ogitsu, T.; Engelhorn, K.; ...

    2016-01-06

    Experimental investigation of electron-ion coupling and electron heat capacity of copper in warm and dense states are presented. From time-resolved x-ray absorption spectroscopy, the temporal evolution of electron temperature is obtained for non-equilibrium warm dense copper heated by an intense femtosecond laser pulse. Electron heat capacity and electron-ion coupling are inferred from the initial electron temperature and its decrease over 10 ps. As a result, data are compared with various theoretical models.

  19. Physical and thermal properties of mud-dominant sediment from the Joetsu Basin in the eastern margin of the Japan Sea

    NASA Astrophysics Data System (ADS)

    Goto, Shusaku; Yamano, Makoto; Morita, Sumito; Kanamatsu, Toshiya; Hachikubo, Akihiro; Kataoka, Satsuki; Tanahashi, Manabu; Matsumoto, Ryo

    2017-12-01

    Physical properties (bulk density and porosity) and thermal properties (thermal conductivity, heat capacity, specific heat, and thermal diffusivity) of sediment are crucial parameters for basin modeling. We measured these physical and thermal properties for mud-dominant sediment recovered from the Joetsu Basin, in the eastern margin of the Japan Sea. To determine thermal conductivity, heat capacity, and thermal diffusivity, the dual-needle probe method was applied. Grain density and grain thermal properties for the mud-dominant sediment were estimated from the measured physical and thermal properties by applying existing models of physical and thermal properties of sediment. We suggest that the grain density, grain thermal conductivity, and grain thermal diffusivity depend on the sediment mineral composition. Conversely, the grain heat capacity and grain specific heat showed hardly any dependency on the mineral composition. We propose empirical formulae for the relationships between: thermal diffusivity and thermal conductivity, and heat capacity and thermal conductivity for the sediment in the Joetsu Basin. These relationships are different from those for mud-dominant sediment in the eastern flank of the Juan de Fuca Ridge presented in previous work, suggesting a difference in mineral composition, probably mainly in the amount of quartz, between the sediments in that area and the Joetsu Basin. Similar studies in several areas of sediments with various mineral compositions would enhance knowledge of the influence of mineral composition.

  20. A phonon thermodynamics approach of gold nanofluids synthesized in solution plasma

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Heo, YongKang, E-mail: yk@rd.numse.nagoya-u.ac.jp; Aburaya, Daiki, E-mail: daiki@rd.numse.nagoya-u.ac.jp; Antoaneta Bratescu, Maria, E-mail: maria@rd.numse.nagoya-u.ac.jp

    2014-03-17

    The phonon thermodynamics theory for liquids was applied to explain the thermal characteristics of gold nanofluids synthesized by a simple, one-step, and chemical-free method using an electrical discharge in a liquid environment termed solution plasma process. The specific heat capacity of nanofluids was measured with a differential scanning calorimeter using the ratio between the differential heat flow rate and the heating rate. The decrease of the specific heat capacity with 10% of gold nanofluids relative to water was explained by the decrease of Frenkel relaxation time with 22%, considering a solid-like state model of liquids.

  1. Phononic crystal devices

    DOEpatents

    El-Kady, Ihab F [Albuquerque, NM; Olsson, Roy H [Albuquerque, NM

    2012-01-10

    Phononic crystals that have the ability to modify and control the thermal black body phonon distribution and the phonon component of heat transport in a solid. In particular, the thermal conductivity and heat capacity can be modified by altering the phonon density of states in a phononic crystal. The present invention is directed to phononic crystal devices and materials such as radio frequency (RF) tags powered from ambient heat, dielectrics with extremely low thermal conductivity, thermoelectric materials with a higher ratio of electrical-to-thermal conductivity, materials with phononically engineered heat capacity, phononic crystal waveguides that enable accelerated cooling, and a variety of low temperature application devices.

  2. Analysis of trends in the development of cities' heat supply systems

    NASA Astrophysics Data System (ADS)

    Stennikov, V. A.; Mednikova, E. E.

    2016-09-01

    New challenges—including the modern urban development policy, formation of the market of energy efficient technologies and different types of equipment of a broad power capacity range, tightening requirements to reliability, quality, and economic accessibility of heat supply—enhance the competitiveness of decentralized heat supply. In addition, its spontaneous growth and not always reasonable implementation lead to unjustified expenses, low efficiency, and ecological inconsistency. This proves the relevance of solving the problems of dividing an urban territory into zones of centralized heating (CH) and decentralized heating (DCH) along with their planning and justification, as well as determining a reasonable level of heat supply centralization and concentration of heat sources' power capacity. Solving these problems using the suggested method will allow optimizing the application areas for various types of heat supply and heat sources, justifying the degree of heat power capacity concentration and the extent of the systems as early as at the phase of a detailed urban planning project and then refining them during the design of urban heat supply systems. This will dramatically improve the reasonability of the decisions made and will simplify the procedure of their implementation. For criteria of limiting the extent (radius) of heat supply systems and defining their type, we suggest using standard values—the density of heat load per unit length of the pipeline and per unit area of urban territory. Standard values must be differentiated across the territory of Russia taking into account regional climatic and economic conditions and unique characteristics of heat supply development in cities and towns. The present article continues and develops the statements made in the previous articles created within the framework of the Theory of Hydraulic Circuits and takes into account the current situation and emerging trends in heat supply.

  3. Molecular structures and thermodynamic properties of monohydrated gaseous iodine compounds: Modelling for severe accident simulation

    NASA Astrophysics Data System (ADS)

    Sudolská, Mária; Cantrel, Laurent; Budzák, Šimon; Černušák, Ivan

    2014-03-01

    Monohydrated complexes of iodine species (I, I2, HI, and HOI) have been studied by correlated ab initio calculations. The standard enthalpies of formation, Gibbs free energy and the temperature dependence of the heat capacities at constant pressure were calculated. The values obtained have been implemented in ASTEC nuclear accident simulation software to check the thermodynamic stability of hydrated iodine compounds in the reactor coolant system and in the nuclear containment building of a pressurised water reactor during a severe accident. It can be concluded that iodine complexes are thermodynamically unstable by means of positive Gibbs free energies and would be represented by trace level concentrations in severe accident conditions; thus it is well justified to only consider pure iodine species and not hydrated forms.

  4. Polymerization of the tubulin-colchicine complex: relation to microtubule assembly.

    PubMed

    Andreu, J M; Wagenknecht, T; Timasheff, S N

    1983-03-29

    The polymerization of purified tubulin-colchicine complex, which results in polymers different from microtubules under microtubule-promoting conditions, has been characterized. It proceeds as a nucleated condensation polymerization, requires Mg2+, and is inhibited by small concentrations of Ca2+. Polymerization requires GTP binding, but GDP is inhibitory. The GTPase activity proceeds, but it is unlinked to polymerization. The thermodynamic characteristics of the growth reaction, namely, the apparent changes of free energy, enthalpy, entropy, heat capacity, and preferential interaction with H+ and Mg2+, are very similar to those of microtubule assembly. It is proposed that the interactions responsible for the two types of polymerization are very similar and that the molecular mechanism of microtubule inhibition by colchicine may consist in a drug-induced distortion of the normal protomer bonding geometry.

  5. The Determination of Heat Capacity Ratios in a Simple Open System

    ERIC Educational Resources Information Center

    Holden, Glen L.

    2007-01-01

    A virtually closed system is treated as open and compared to known results. The classic experiment of Clement and Desormes provides the conceptual framework for this open system approach in determining the molar heat capacity ratios, lambda. This alternate view, extends the theoretical treatment beyond the first law of thermodynamics for closed…

  6. Improved Method for Determining the Heat Capacity of Metals

    ERIC Educational Resources Information Center

    Barth, Roger; Moran, Michael J.

    2014-01-01

    An improved procedure for laboratory determination of the heat capacities of metals is described. The temperature of cold water is continuously recorded with a computer-interfaced temperature probe and the room temperature metal is added. The method is more accurate and faster than previous methods. It allows students to get accurate measurements…

  7. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  8. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  9. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  10. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  11. 40 CFR 61.305 - Reporting and recordkeeping.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... unit or process heater with a design heat input capacity of 44 MW (150 × 106 BTU/hr) or greater is used... or other flare design (i.e., steam-assisted, air-assisted or nonassisted), all visible emission... temperature of the steam generating unit or process heater with a design heat input capacity of less than 44...

  12. THE HEAT CAPACITY OF FLUORINATED PROPANE AND BUTANE DERIVATIVES BY DIFFERENTIAL SCANNING CALORIMETRY

    EPA Science Inventory

    The paper gives results of the measurement (to 3% accuracy) of the constant-pressure liquid-phase heat capacities of 21 hydrogen-containing fluorinated propane and butane derivatives and one fluorinated ether (CF3OCF2H) with boiling points ranging from -34.6 to 76.7 C, using diff...

  13. Thermodynamic properties of α-uranium

    NASA Astrophysics Data System (ADS)

    Ren, Zhiyong; Wu, Jun; Ma, Rong; Hu, Guichao; Luo, Chao

    2016-11-01

    The lattice constants and equilibrium atomic volume of α-uranium were calculated by Density Functional Theory (DFT). The first principles calculation results of the lattice for α-uranium are in agreement with the experimental results well. The thermodynamic properties of α-uranium from 0 to 900 K and 0-100 GPa were calculated with the quasi-harmonic Debye model. Volume, bulk modulus, entropy, Debye temperature, thermal expansion coefficient and the heat capacity of α-uranium were calculated. The calculated results show that the bulk modulus and Debye temperature increase with the increasing pressure at a given temperature while decreasing with the increasing temperature at a given pressure. Volume, entropy, thermal expansion coefficient and the heat capacity decrease with the increasing pressure while increasing with the increasing temperature. The theoretical results of entropy, Debye temperature, thermal expansion coefficient and the heat capacity show good agreement with the general trends of the experimental values. The constant-volume heat capacity shows typical Debye T3 power-law behavior at low temperature limit and approaches to the classical asymptotic Dulong-Petit limit at high temperature limit.

  14. Transient thermal characteristics of high-temperature SiC power module enhanced with Al-bump technology

    NASA Astrophysics Data System (ADS)

    Tanisawa, Hidekazu; Kato, Fumiki; Koui, Kenichi; Sato, Shinji; Watanabe, Kinuyo; Takahashi, Hiroki; Murakami, Yoshinori; Sato, Hiroshi

    2018-04-01

    In this paper, we demonstrate a mounting technology that improves the tolerance to transient power loss by adding a heat capacity near the device. Silicon carbide (SiC) power devices can operate at high temperatures, up to 250 °C, at which silicon (Si) power devices cannot. Therefore, it is possible to allow a large temperature difference between the device and ambient air. Thus, the size of a power converter equipped with an SiC power module is reduced by simplifying the cooling system. The temperature of the power module is important not only in the steady state, but in transient loads as well. Therefore, we developed the Al-bump flip-chip mounting technology to increase heat capacity near the device. With this proposed structure, the heat capacity per device increased by 1.7% compared with the total heat capacity of the conventional structure using wire bonding. The reduction in transient thermal impedance is observed from 0.003 to 3 s, and we confirmed that the transient thermal impedance is reduced very efficiently by 15% at the maximum, compared with the conventional structure.

  15. Heat capacities and thermal conductivities of AmO 2 and AmO 1.5

    NASA Astrophysics Data System (ADS)

    Nishi, Tsuyoshi; Itoh, Akinori; Ichise, Kenichi; Arai, Yasuo

    2011-07-01

    The thermal diffusivity of AmO 2 was measured from 473 to 773 K and that of AmO 1.5 between 473 and 1373 K using a laser flash method. The enthalpy increment of AmO 2 was measured from 335 to 1081 K and that of AmO 1.5 between 335 and 1086 K using drop calorimetry. The heat capacities of AmO 2 and AmO 1.5 were derived from the enthalpy increment measurements. The thermal conductivity was determined from the measured thermal diffusivity, heat capacity and bulk density. The heat capacities of AmO 2 was found larger than that of AmO 1.5. The thermal conductivities of AmO 2 and AmO 1.5 were found to decrease with increasing temperature in the investigated temperature range. The thermal conductivity of AmO 1.5 with A -type hexagonal structure was smaller than that of AmO 2 with C-type fluorite structure but larger than that of sub-stoichiometric AmO 1.73.

  16. Semi-empirical estimation of organic compound fugacity ratios at environmentally relevant system temperatures.

    PubMed

    van Noort, Paul C M

    2009-06-01

    Fugacity ratios of organic compounds are used to calculate (subcooled) liquid properties, such as solubility or vapour pressure, from solid properties and vice versa. They can be calculated from the entropy of fusion, the melting temperature, and heat capacity data for the solid and the liquid. For many organic compounds, values for the fusion entropy are lacking. Heat capacity data are even scarcer. In the present study, semi-empirical compound class specific equations were derived to estimate fugacity ratios from molecular weight and melting temperature for polycyclic aromatic hydrocarbons and polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans. These equations estimate fugacity ratios with an average standard error of about 0.05 log units. In addition, for compounds with known fusion entropy values, a general semi-empirical correction equation based on molecular weight and melting temperature was derived for estimation of the contribution of heat capacity differences to the fugacity ratio. This equation estimates the heat capacity contribution correction factor with an average standard error of 0.02 log units for polycyclic aromatic hydrocarbons, polychlorinated benzenes, biphenyls, dibenzo[p]dioxins and dibenzofurans.

  17. Heat capacity of the neutron star inner crust within an extended nuclear statistical equilibrium model

    NASA Astrophysics Data System (ADS)

    Burrello, S.; Gulminelli, F.; Aymard, F.; Colonna, M.; Raduta, Ad. R.

    2015-11-01

    Background: Superfluidity in the crust is a key ingredient for the cooling properties of proto-neutron stars. Present theoretical calculations employ the quasiparticle mean-field Hartree-Fock-Bogoliubov theory with temperature-dependent occupation numbers for the quasiparticle states. Purpose: Finite temperature stellar matter is characterized by a whole distribution of different nuclear species. We want to assess the importance of this distribution on the calculation of heat capacity in the inner crust. Method: Following a recent work, the Wigner-Seitz cell is mapped into a model with cluster degrees of freedom. The finite temperature distribution is then given by a statistical collection of Wigner-Seitz cells. We additionally introduce pairing correlations in the local density BCS approximation both in the homogeneous unbound neutron component, and in the interface region between clusters and neutrons. Results: The heat capacity is calculated in the different baryonic density conditions corresponding to the inner crust, and in a temperature range varying from 100 KeV to 2 MeV. We show that accounting for the cluster distribution has a small effect at intermediate densities, but it considerably affects the heat capacity both close to the outer crust and close to the core. We additionally show that it is very important to consider the temperature evolution of the proton fraction for a quantitatively reliable estimation of the heat capacity. Conclusions: We present the first modelization of stellar matter containing at the same time a statistical distribution of clusters at finite temperature, and pairing correlations in the unbound neutron component. The effect of the nuclear distribution on the superfluid properties can be easily added in future calculations of the neutron star cooling curves. A strong influence of resonance population on the heat capacity at high temperature is observed, which deserves to be further studied within more microscopic calculations.

  18. Peak capacity, peak-capacity production rate, and boiling point resolution for temperature-programmed GC with very high programming rates

    PubMed

    Grall; Leonard; Sacks

    2000-02-01

    Recent advances in column heating technology have made possible very fast linear temperature programming for high-speed gas chromatography. A fused-silica capillary column is contained in a tubular metal jacket, which is resistively heated by a precision power supply. With very rapid column heating, the rate of peak-capacity production is significantly enhanced, but the total peak capacity and the boiling-point resolution (minimum boiling-point difference required for the separation of two nonpolar compounds on a nonpolar column) are reduced relative to more conventional heating rates used with convection-oven instruments. As temperature-programming rates increase, elution temperatures also increase with the result that retention may become insignificant prior to elution. This results in inefficient utilization of the down-stream end of the column and causes a loss in the rate of peak-capacity production. The rate of peak-capacity production is increased by the use of shorter columns and higher carrier gas velocities. With high programming rates (100-600 degrees C/min), column lengths of 6-12 m and average linear carrier gas velocities in the 100-150 cm/s range are satisfactory. In this study, the rate of peak-capacity production, the total peak capacity, and the boiling point resolution are determined for C10-C28 n-alkanes using 6-18 m long columns, 50-200 cm/s average carrier gas velocities, and 60-600 degrees C/min programming rates. It was found that with a 6-meter-long, 0.25-mm i.d. column programmed at a rate of 600 degrees C/min, a maximum peak-capacity production rate of 6.1 peaks/s was obtained. A total peak capacity of about 75 peaks was produced in a 37-s long separation spanning a boiling-point range from n-C10 (174 degrees C) to n-C28 (432 degrees C).

  19. Alternative energy sources

    NASA Astrophysics Data System (ADS)

    Todd, R. W.

    1982-04-01

    Renewable energy sources and their potential contribution for solving energy needs are presented. Centralized supply technologies include those alternative fuels derived from biomass using solar energy, (supplying 57% of the energy supply in some countries), and those using directly collected solar energy to manufacture a fuel. Fuel utilization effects can be doubled by using combined heat and power stations, and other major sources include wind, wave, tidal, and solar. In terms of local supply technology, wood burning appliances are becoming more popular, and methane is being used for heating and to fuel spark ignition engines. Geothermal low temperature heating exists worldwide at a capacity of 7.2 GW, supplying heat, particularly in Hungary, parts of the U.S.S.R., and Iceland, and a geothermal research program has been established in the United States. Sweden has a potential hydroelectric capacity of 600 MW, and the United States has a 100 GW capacity. Many of these technologies are already cost effective.

  20. On-board multispectral classification study

    NASA Technical Reports Server (NTRS)

    Ewalt, D.

    1979-01-01

    The factors relating to onboard multispectral classification were investigated. The functions implemented in ground-based processing systems for current Earth observation sensors were reviewed. The Multispectral Scanner, Thematic Mapper, Return Beam Vidicon, and Heat Capacity Mapper were studied. The concept of classification was reviewed and extended from the ground-based image processing functions to an onboard system capable of multispectral classification. Eight different onboard configurations, each with varying amounts of ground-spacecraft interaction, were evaluated. Each configuration was evaluated in terms of turnaround time, onboard processing and storage requirements, geometric and classification accuracy, onboard complexity, and ancillary data required from the ground.

  1. Mechanical and thermal properties of planetologically important ices

    NASA Technical Reports Server (NTRS)

    Croft, Steven K.

    1987-01-01

    Two squences of ice composition were proposed for the icy satellites: a dense nebula model and a solar nebula model. Careful modeling of the structure, composition, and thermal history of satellites composed of these various ices requires quantitative information on the density, compressibility, thermal expansion, heat capacity, and thermal conductivity. Equations of state were fitted to the density data of the molecular ices. The unusual thermal and mechanical properties of the molecular and binary ices suggest a larger range of phenomena than previously anticipated, sufficiently complex perhaps to account for many of the unusual geologic phenomena found on the icy satellites.

  2. Excess heat capacity and entropy of mixing along the chlorapatite-fluorapatite binary join

    NASA Astrophysics Data System (ADS)

    Dachs, Edgar; Harlov, Daniel; Benisek, Artur

    2010-10-01

    The heat capacity at constant pressure, C p, of chlorapatite [Ca5(PO4)3Cl - ClAp], and fluorapatite [Ca5(PO4)3F - FAp], as well as of 12 compositions along the chlorapatite-fluorapatite join have been measured using relaxation calorimetry [heat capacity option of the physical properties measurement system (PPMS)] and differential scanning calorimetry (DSC) in the temperature range 5-764 K. The chlor-fluorapatites were synthesized at 1,375-1,220°C from Ca3(PO4)2 using the CaF2-CaCl2 flux method. Most of the chlor-fluorapatite compositions could be measured directly as single crystals using the PPMS such that they were attached to the sample platform of the calorimeter by a crystal face. However, the crystals were too small for the crystal face to be polished. In such cases, where the sample coupling was not optimal, an empirical procedure was developed to smoothly connect the PPMS to the DSC heat capacities around ambient T. The heat capacity of the end-members above 298 K can be represented by the polynomials: C {p/ClAp} = 613.21 - 2,313.90 T -0.5 - 1.87964 × 107 T -2 + 2.79925 × 109 T -3 and C {p/FAp} = 681.24 - 4,621.73 × T -0.5 - 6.38134 × 106 T -2 + 7.38088 × 108 T -3 (units, J mol-1 K-1). Their standard third-law entropy, derived from the low-temperature heat capacity measurements, is S° = 400.6 ± 1.6 J mol-1 K-1 for chlorapatite and S° = 383.2 ± 1.5 J mol-1 K-1 for fluorapatite. Positive excess heat capacities of mixing, Δ C {p/ex}, occur in the chlorapatite-fluorapatite solid solution around 80 K (and to a lesser degree at 200 K) and are asymmetrically distributed over the join reaching a maximum of 1.3 ± 0.3 J mol-1 K-1 for F-rich compositions. They are significant at these conditions exceeding the 2 σ-uncertainty of the data. The excess entropy of mixing, Δ S ex, at 298 K reaches positive values of 3-4 J mol-1 K-1 in the F-rich portion of the binary, is, however, not significantly different from zero across the join within its 2 σ-uncertainty.

  3. Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers

    NASA Astrophysics Data System (ADS)

    Khan, M. F.; Miriyala, N.; Lee, J.; Hassanpourfard, M.; Kumar, A.; Thundat, T.

    2016-05-01

    Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which is dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ˜10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g-1 K-1) and a resolution of 23 mJ/(g K) for ˜150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.

  4. Experimental study on performance of outdoor ground materials in aspect of surface temperature by constant field experiment in subtropical climate city

    NASA Astrophysics Data System (ADS)

    Xi, T. Y.; Ding, J. H.; Lv, X. W.; Lei, Y. S.

    2018-06-01

    In order to create a comfortable building thermal environment, it is important to study the outdoor ground materials performance. In this article, we carried out a constant field experiment in Guangzhou, China, studying on the variations of the surface temperature of three common outdoor building materials: concrete, pavement and grass. We put the equipment on six experiment points respectively to measure the ground surface temperature constantly. The result shows that because of the specific heat capacity, both concrete and pavement have an obvious time delay during their temperature decrease when the grass ground has almost no time delay. And when in the same conditions (exposed to sunlight all day), the material with a low specific heat capacity has a more sensitive variation in temperature. The lower the specific capacity is, the steeper the variation trend of the surface temperature will be. So compared with concrete, the pavement brick ground with a low specific heat capacity has a higher surface temperature in daytime and a lower temperature in the late night time. When in different conditions (different time exposed to sunlight), the temperature value is proportional to the time exposed to the sunlight between the same materials. The concrete exposed to sunlight all day has the highest temperature when the shaded one has the lowest. This experiment reveals that both specific heat capacity and the exposed time to sunlight has a strong influence on the surface temperature of outdoor materials. In subtropical region, the materials with a higher specific heat capacity and a less time exposed to sunlight may be more beneficial to the building thermal environment.

  5. The electrothermal conductance and heat capacity of black phosphorus

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Das, Saptarshi; Shi, Junxia

    2018-03-01

    We study a thermal gradient induced current (It h ) flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and Ith acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of Ith that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.

  6. The electrothermal conductance and heat capacity of black phosphorus.

    PubMed

    Sengupta, Parijat; Das, Saptarshi; Shi, Junxia

    2018-03-14

    We study a thermal gradient induced current I th flow in potassium-doped two-dimensional anisotropic black phosphorus (BP) with semi-Dirac dispersion. The prototype device is a BP channel clamped between two contacts maintained at unequal temperatures. The choice of BP lies in the predicted efficient thermoelectric behaviour. A temperature-induced difference in the Fermi levels of the two contacts drives the current (typified by the electro-thermal conductance) which we calculate using the Landauer transport equation. The current shows an initial rise when the device is operated at lower temperatures. The rise stalls at progressively higher temperatures and I th acquires a plateau-like flat profile indicating a competing effect between a larger number of transmission modes and a corresponding drop in the Fermi level difference between the contacts. The current is computed for both n- and p-type BP, and the difference thereof is attributed to the particle-hole asymmetry. The utility of such calculations lie in conversion of the heat produced in a miniaturized chip to useful thermopower via a prototypical Seebeck power generator. Unlike the flow of I th that purportedly utilizes the additional removable heat in a nanoscale device heat, the ability of a material to maintain a steady temperature is reflected in its heat capacity through effective absorption of thermal energy. The heat capacity is formulated in this work for BP via a Sommerfeld expansion. In the concluding part, we draw a microscopic connection between the two seemingly disparate processes of heat removal and absorption by pinning down their origin to the underlying density of states. Finally, a qualitative analysis of a Carnot-like efficiency of the considered thermoelectric engine is performed drawing upon the previous results on thermal current and heat capacity.

  7. Transformation of glucocorticoid receptors bound to the antagonist RU 486: Effects of alkaline phosphatase

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruol, D.J.; Wolfe, K.A.

    1990-08-28

    RU 486 is a synthetic steroid that binds avidly to glucocorticoid receptors without promoting their transformation into activated transcription factors. A significant part of this behavior has been shown to be due to a failure of the RU 486 bound receptor to be efficiently released from a larger (sedimenting at 8-9 S) multimeric complex containing the 90-kDa heat shock protein. The studies have found that in vitro at 15{degree}C the RU 486-receptor was slowly released from the 8-9S complex and converted into a DNA binding protein by a process that could be blocked by sodium fluoride. Moreover, this transition wasmore » significantly accelerated by treatment with alkaline phosphatase. High-resolution anion-exchange chromatography showed that the profile of receptor subspecies released from the 8-9S complex was different for the RU 486 bound receptor when compared to the receptor occupied by the agonist triamcinolone acetonide. Production of the earliest eluting receptor form (peak A) was inhibited with RU 486. Treatment of the Ru 486-receptor with alkaline phosphatase increased the formation of the peak A subspecies as well as the capacity of receptor to bind DNA-cellulose. Taken together, the results indicate that phosphorylation of the receptor or a tightly bound factor contributes to defining the capacity with which individual steroids can promote dissociation of the 8-9S complex and conversion of the glucocorticoid receptor into a DNA-binding protein.« less

  8. Cycle performance testing of nonazeotropic mixtures of HFC-142A/HCFC-124 and HFC-32/HCFC-124 with enhanced surface heat exchangers

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Conklin, J. C.; Brown, A. J.

    In an effort to improve the efficiency of residential heat pumps using alternative refrigerants, two nonazeotropic refrigerant mixtures (NARM's) were tested over a range of heat exchanger capacities to determine their cooling mode performance at US Department of Energy (DOE) heat pump rating conditions of 82 F (27.8 C). The two mixtures, 30% HFC-32/70% HCFC-124 and 75% HFC-143a/25% HCFC-124, were selected on the basis of a previous study that screened refrigerant pairs using such factors as boiling point, stability, ozone depletion potential (ODP), and coefficient of performance (COP) to determine suitable candidates for residential heat pump performance. Three refrigerant-side heat transfer enhancements were tested to determine improvements to overall system performance. Comparisons were made on the basis of the COP as a function of capacity. The results for one of the heat exchanger combinations, a segmented evaporator and finned condenser, were quite promising. Improvements in COP, relative to that for HCFC-22, were from 9 to 17% for the 30% HFC-32/70% HCFC-124 mixture and from 5 to 9% for the 75% HFC-143a/25% HCFC-124 NARM. Another combination, a smooth tube evaporator with a perforated foil insert and finned condenser, had similar gains at low capacities but experienced decreased performance at the higher capacities. The final combination, a smooth tube evaporator with a perforated foil insert and smooth tube condenser with a bent tab insert resulted in poor performance.

  9. Structural, vibrational and thermodynamic properties of Mg2 FeH6 complex hydride

    NASA Astrophysics Data System (ADS)

    Zhou, H. L.; Yu, Y.; Zhang, H. F.; Gao, T.

    2011-02-01

    Mg2FeH6, which has one of the highest hydrogen storage capacities among Mg based 3d-transitional metal hydrides, is considered as an attractive material for hydrogen storage. Within density-functional perturbation theory (DFPT), we have investigated the structural, vibrational and thermodynamic properties of Mg2FeH6. The band structure calculation shows that this compound is a semiconductor with a direct X-X energy gap of 1.96 eV. The calculated phonon frequencies for the Raman-active and the infrared-active modes are assigned. The phonon dispersion curves together with the corresponding phonon density of states and longitudinal-transverse optical (LO-TO) splitting are also calculated. Findings are also presented for the temperature-dependent behaviors of some thermodynamic properties such as free energy, internal energy, entropy and heat capacity within the quasi-harmonic approximation based on the calculated phonon density of states.

  10. Heat capacity mapping radiometer for AEM spacecraft

    NASA Technical Reports Server (NTRS)

    Sonnek, G. E.

    1977-01-01

    The operation, maintenance, and integration of the applications explorer mission heat capacity mapping radiometer is illustrated in block diagrams and detail schematics of circuit functions. Data format and logic timing diagrams are included along with radiometric and electronic calibration data. Mechanical and electrical configuration is presented to provide interface details for integration of the HCMR instrument to AEM spacecraft.

  11. 40 CFR 60.615 - Reporting and recordkeeping requirements.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... or process heater with a design heat input capacity of 44 MW (150 million Btu/hour) or greater is...) The average combustion temperature of the boiler or process heater with a design heat input capacity... this subpart seeks to comply with § 60.612(b) through the use of a smokeless flare, flare design (i.e...

  12. 75 FR 6013 - Energy Conservation Program for Consumer Products: Decision and Order Granting a Waiver to...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-02-05

    ... heating exceeds the high-stage compressor capacity for cooling. Finally, the test procedure must account... test method to cover Hallowell's three-capacity compressor. The two (of three potential) active stages... pumps for the heating mode as follows: a. Conduct one Maximum Temperature Test (H0 1 ), two High...

  13. Heat capacity of rare-earth cuprates, orthovanadates, and aluminum garnets, gallium garnets, and iron garnets

    NASA Astrophysics Data System (ADS)

    Denisova, L. T.; Kargin, Yu. F.; Denisov, V. M.

    2015-08-01

    The correlation between the heat capacities of rare-earth cuprates, orthovanadates, and garnets with ionic radius R 3+ has been analyzed. It has been shown that the values of C {/p 0} change consistently depending on the radius R 3+ within the corresponding tetrads (La-Nd, Pm-Gd, Gd-Ho, Eu-Lu).

  14. Thermodynamic property determination in low gravity

    NASA Technical Reports Server (NTRS)

    Margrave, J. L.

    1977-01-01

    Techniques for determining heat capacities and other properties of molten metals were investigated and critically evaluated. Precisely determining heat capacities calorimetrically in space poses several problems. The weight of a drop calorimeter block along with the necessity of obtaining a large number of data points tend to make traditional approaches appear infeasible. However, for many substances exhibiting sufficiently high thermal conductivities and with known emissivities, it appears possible to investigate their properties by observing the rate of cooling of a levitated sphere which is initially at a uniform temperature above the melting point. A special advantage of the levitation method is that considerable supercooling is expected, making the study of the heat capacities of molten metals both above and below their melting points possible.

  15. Heat capacities and thermodynamic properties of braunite (Mn7 SiO12) and rhodonite (MnSiO3)

    USGS Publications Warehouse

    Robie, R.A.; Huebner, J.S.; Hemingway, B.S.

    1995-01-01

    The heat capacities, C0P, of synthetic rhodonite and braunite have been measured by adiabatic calorimetry from 6 to ~350 K. The heat capacity of braunite was also measured to ~900 K by differential scanning calorimetry. Brunite exhibits a ??-peak in C0P in the temperature region 93.4-94.2 K. Rhodonite did not show the expected peak in C0P characteristic of the co-operative ordering of the Mn2+ spins at temperatures above 6 K. A revised petrogenetic grid for the system Mn-Si-O-C at 2000 bars is presented and is consistent with both thermochemical values and occurrence of natural assemblages. -from Authors

  16. LC-circuit calorimetry

    NASA Astrophysics Data System (ADS)

    Bossen, O.; Schilling, A.

    2011-09-01

    We present a new type of calorimeter in which we couple an unknown heat capacity with the aid of Peltier elements to an electrical circuit. The use of an electrical inductance and an amplifier in the circuit allows us to achieve autonomous oscillations, and the measurement of the corresponding resonance frequency makes it possible to accurately measure the heat capacity with an intrinsic statistical uncertainty that decreases as ˜ t_m^{ -3/2} with measuring time tm, as opposed to a corresponding uncertainty ˜ t_m^{-1/2} in the conventional alternating current method to measure heat capacities. We have built a demonstration experiment to show the feasibility of the new technique, and we have tested it on a gadolinium sample at its transition to the ferromagnetic state.

  17. Low temperature anomaly of light stimulated magnetization and heat capacity of the 1D diluted magnetic semiconductors

    NASA Astrophysics Data System (ADS)

    Geffe, Chernet Amente

    2018-03-01

    This article reports magnetization and specific heat capacity anomalies in one dimensional diluted magnetic semiconductors observed at very low temperatures. Based on quantum field theory double time temperature dependent Green function technique is employed to evaluate magnon dispersion and the time correlation function. It is understood that magnon-photon coupling and magnetic impurity concentration controls both, such that near absolute temperature magnetization is nearly zero and abruptly increase to saturation level with decreasing magnon-photon coupling strength. We also found out dropping of magnetic specific heat capacity as a result of increase in magnetic impurity concentration x, perhaps because of inter-band disorder that would suppress the enhancement of density of spin waves.

  18. Nonanalytic microscopic phase transitions and temperature oscillations in the microcanonical ensemble: An exactly solvable one-dimensional model for evaporation

    NASA Astrophysics Data System (ADS)

    Hilbert, Stefan; Dunkel, Jörn

    2006-07-01

    We calculate exactly both the microcanonical and canonical thermodynamic functions (TDFs) for a one-dimensional model system with piecewise constant Lennard-Jones type pair interactions. In the case of an isolated N -particle system, the microcanonical TDFs exhibit (N-1) singular (nonanalytic) microscopic phase transitions of the formal order N/2 , separating N energetically different evaporation (dissociation) states. In a suitably designed evaporation experiment, these types of phase transitions should manifest themselves in the form of pressure and temperature oscillations, indicating cooling by evaporation. In the presence of a heat bath (thermostat), such oscillations are absent, but the canonical heat capacity shows a characteristic peak, indicating the temperature-induced dissociation of the one-dimensional chain. The distribution of complex zeros of the canonical partition may be used to identify different degrees of dissociation in the canonical ensemble.

  19. Residential Cold Climate Heat Pump (CCHP) w/Variable Speed Technology

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Messmer, Craig S.

    2016-09-30

    This report summarizes the results of a three year program awarded to Unico, Inc. to commercialize a residential cold climate heat pump. Several designs were investigated. Compressors were selected using analysis from Oakridge National Laboratories followed by prototype construction and lab testing in a specially built environmental chamber capable of reaching -30°F. The initial design utilized two variable speed compressors in series with very good capacity results and acceptable efficiency at very cold temperatures. The design was then modified to reduce cost and complexity by redesigning the system using three dual-stage compressors: two in parallel followed by one in series.more » Extensive testing found significant challenge with oil management, reliability, weight and cost which prevented the system from being fully commercialized. Further analysis of other conceptual designs indicated that these challenges could be overcome in the future.« less

  20. The application of dual-electrode through vial impedance spectroscopy for the determination of ice interface temperatures, primary drying rate and vial heat transfer coefficient in lyophilization process development.

    PubMed

    Smith, Geoff; Jeeraruangrattana, Yowwares; Ermolina, Irina

    2018-06-22

    Through vial impedance spectroscopy (TVIS) is a product non-invasive process analytical technology which exploits the frequency dependence of the complex impedance spectrum of a composite object (i.e. the freeze-drying vial and its contents) in order to track the progression of the freeze-drying cycle. This work demonstrates the use of a dual electrode system, attached to the external surface of a type I glass tubing vial (nominal capacity 10 mL) in the prediction of (i) the ice interface temperatures at the sublimation front and at the base of the vial, and (ii) the primary drying rate. A value for the heat transfer coefficient (for a chamber pressure of 270 µbar) was then calculated from these parameters and shown to be comparable to that published by Tchessalov[1]. Copyright © 2018. Published by Elsevier B.V.

  1. Energetic basis on interactions between ferredoxin and ferredoxin NADP{sup +} reductase at varying physiological conditions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kinoshita, Misaki; Kim, Ju Yaen; Kume, Satoshi

    In spite of a number of studies to characterize ferredoxin (Fd):ferredoxin NADP{sup +} reductase (FNR) interactions at limited conditions, detailed energetic investigation on how these proteins interact under near physiological conditions and its linkage to FNR activity are still lacking. We herein performed systematic Fd:FNR binding thermodynamics using isothermal titration calorimetry (ITC) at distinct pH (6.0 and 8.0), NaCl concentrations (0–200 mM), and temperatures (19–28 °C) for mimicking physiological conditions in chloroplasts. Energetically unfavorable endothermic enthalpy changes were accompanied by Fd:FNR complexation at all conditions. This energetic cost was compensated by favorable entropy changes, balanced by conformational and hydrational entropy. Increases inmore » the NaCl concentration and pH weakened interprotein affinity due to the less contribution of favorable entropy change regardless of energetic gains from enthalpy changes, suggesting that entropy drove complexation and modulated affinity. Effects of temperature on binding thermodynamics were much smaller than those of pH and NaCl. NaCl concentration and pH-dependent enthalpy and heat capacity changes provided clues for distinct binding modes. Moreover, decreases in the enthalpy level in the Hammond's postulate-based energy landscape implicated kinetic advantages for FNR activity. All these energetic interplays were comprehensively demonstrated by the driving force plot with the enthalpy-entropy compensation which may serve as an energetic buffer against outer stresses. We propose that high affinity at pH 6.0 may be beneficial for protection from proteolysis of Fd and FNR in rest states, and moderate affinity at pH 8.0 and proper NaCl concentrations with smaller endothermic enthalpy changes may contribute to increase FNR activity. - Highlights: • Energetics of Fd:FNR binding were examined by considering physiological conditions. • NaCl and pH affect energetically Fd:FNR binding with minimal effects of temperature. • Enthalpy and heat capacity may modulate binding kinetics and modes for FNR activity. • Entropy drives complexation by overcoming unfavorable enthalpy and tunes affinity. • Driving force plot reveals condition-dependent energetic interplays for complexation.« less

  2. Complex magnetic behaviour and evidence of a superspin glass state in the binary intermetallic compound Er5Pd2

    NASA Astrophysics Data System (ADS)

    Sharma, Mohit K.; Yadav, Kavita; Mukherjee, K.

    2018-05-01

    The binary intermetallic compound Er5Pd2 has been investigated using dc and ac magnetic susceptibilities, magnetic memory effect, isothermal magnetization, non-linear dc susceptibility, heat capacity and magnetocaloric effect studies. Interestingly, even though the compound does not show geometrical frustration it undergoes glassy magnetic phase transition below 17.2 K. Investigation of dc magnetization and heat capacity data divulged absence of long-ranged magnetic ordering. Through the magnetic memory effect, time dependent magnetization and ac susceptibility studies it was revealed that the compound undergoes glass-like freezing below 17.2 K. Analysis of frequency dependence of this transition temperature through scaling and Arrhenius law; along with the Mydosh parameter indicate, that the dynamics in Er5Pd2 are due to the presence of strongly interacting superspins rather than individual spins. This phase transition was further investigated by non-linear dc susceptibility and was characterized by static critical exponents γ and δ. Our results indicate that this compound shows the signature of superspin glass at low temperature. Additionally, both conventional and inverse magnetocaloric effect was observed with a large value of magnetic entropy change and relative cooling power. Our results suggest that Er5Pd2 can be classified as a superspin glass system with large magnetocaloric effect.

  3. Estimation of performance of a J-T refrigerators operating with nitrogen-hydrocarbon mixtures and a coiled tubes-in-tube heat exchanger

    NASA Astrophysics Data System (ADS)

    Satya Meher, R.; Venkatarathnam, G.

    2018-06-01

    The exergy efficiency of Joule-Thomson (J-T) refrigerators operating with mixtures (MRC systems) strongly depends on the choice of refrigerant mixture and the performance of the heat exchanger used. Helically coiled, multiple tubes-in-tube heat exchangers with an effectiveness of over 96% are widely used in these types of systems. All the current studies focus only on the different heat transfer correlations and the uncertainty in predicting performance of the heat exchanger alone. The main focus of this work is to estimate the uncertainty in cooling capacity when the homogenous model is used by comparing the theoretical and experimental studies. The comparisons have been extended to some two-phase models present in the literature as well. Experiments have been carried out on a J-T refrigerator at a fixed heat load of 10 W with different nitrogen-hydrocarbon mixtures in the evaporator temperature range of 100-120 K. Different heat transfer models have been used to predict the temperature profiles as well as the cooling capacity of the refrigerator. The results show that the homogenous two-phase flow model is probably the most suitable model for rating the cooling capacity of a J-T refrigerator operating with nitrogen-hydrocarbon mixtures.

  4. A completely automated flow, heat-capacity, calorimeter for use at high temperatures and pressures

    NASA Astrophysics Data System (ADS)

    Rogers, P. S. Z.; Sandarusi, Jamal

    1990-11-01

    An automated, flow calorimeter has been constructed to measure the isobaric heat capacities of concentrated, aqueous electrolyte solutions using a differential calorimetry technique. The calorimeter is capable of operation to 700 K and 40 MPa with a measurement accuracy of 0.03% relative to the heat capacity of the pure reference fluid (water). A novel design encloses the calorimeter within a double set of separately controlled, copper, adiabatic shields that minimize calorimeter heat losses and precisely control the temperature of the inlet fluids. A multistage preheat train, used to efficiently heat the flowing fluid, includes a counter-current heat exchanger for the inlet and outlet fluid streams in tandem with two calorimeter preheaters. Complete system automation is accomplished with a distributed control scheme using multiple processors, allowing the major control tasks of calorimeter operation and control, data logging and display, and pump control to be performed simultaneously. A sophisticated pumping strategy for the two separate syringe pumps allows continuous fluid delivery. This automation system enables the calorimeter to operate unattended except for the reloading of sample fluids. In addition, automation has allowed the development and implementation of an improved heat loss calibration method that provides calorimeter calibration with absolute accuracy comparable to the overall measurement precision, even for very concentrated solutions.

  5. Thermal energy storage and transport

    NASA Technical Reports Server (NTRS)

    Hausz, W.

    1980-01-01

    The extraction of thermal energy from large LWR and coal fired plants for long distance transport to industrial and residential/commercial users is analyzed. Transport of thermal energy as high temperature water is shown to be considerably cheaper than transport as steam, hot oil, or molten salt over a wide temperature range. The delivered heat is competitive with user-generated heat from oil, coal, or electrode boilers at distances well over 50 km when the pipeline operates at high capacity factor. Results indicate that thermal energy storage makes meeting of even very low capacity factor heat demands economic and feasible and gives the utility flexibility to meet coincident electricity and heat demands effectively.

  6. Performance of a hybrid chemical/mechanical heat pump

    NASA Technical Reports Server (NTRS)

    Silvestri, John J.; Scaringe, Robert P.; Grzyll, Lawrence R.

    1990-01-01

    The authors present the design and preliminary results of the performance of a hybrid chemical/mechanical, low-lift (20 C) heat pump. Studies have indicated that this heat pump has several advantages over the traditional single fluid vapor compression (reverse Rankine) heat pump. Included in these benefits are: 1) increased COPc due to the approximation of the cycle to the Lorenz cycle and due to the availability of the heat of solution, along with the heat of vaporization, to provide cooling; and 2) ease of variation in system cooling capacity by changing the fluid composition. The system performance is predicted for a variety of refrigerant-absorbent pairs. Cooling capacity is determined for systems operating with ammonia as the refrigerant and lithium nitrate and sodium thiocyanate as the absorbents and also with water as the refrigerant and magnesium chloride, potassium hydroxide, lithium bromide, sodium hydroxide, and sulfuric acid as the absorbents. Early indications have shown that the systems operating with water as the refrigerant operate at 2-4 times the capacity of the ammonia-refrigerant-based systems. Using existing working fluids in the proposed innovative design, a coefficient-of-performance improvement of 21 percent is possible when compared to the best vapor compression systems analyzed.

  7. Physiological responses to heat of resting man with impaired sweating capacity

    NASA Technical Reports Server (NTRS)

    Totel, G. L.

    1974-01-01

    The effects of total-body heat exposure were studied in three groups of subjects with varied degrees of impaired sweating capacity. The responses of two ectodermal dysplasic men, six quadriplegic men, and a man with widespread burned scar tissue were compared with the responses of three able-bodied men resting in the heat. It was found that the able-bodied and burned subjects competed successfully with a controlled environment of 38 C and 20% relative humidity for up to 150 min, whereas the quadriplegic and ectodermal dysplasic men developed hyperthermia, hyperventilation, and distress after only 120 and 75 min of heat exposure, respectively. The intolerance to heat is thus ascribed directly to the inability to produce and evaporate sweat.

  8. Influence of collector heat capacity and internal conditions of heat exchanger on cool-down process of small gas liquefier

    NASA Astrophysics Data System (ADS)

    Saberimoghaddam, Ali; Bahri Rasht Abadi, Mohammad Mahdi

    2018-01-01

    Joule-Thomson cooling systems are commonly used in gas liquefaction. In small gas liquefiers, transient cool-down time is high. Selecting suitable conditions for cooling down process leads to decrease in time and cost. In the present work, transient thermal behavior of Joule-Thomson cooling system including counter current helically coiled tube in tube heat exchanger, expansion valve, and collector was studied using experimental tests and simulations. The experiments were performed using small gas liquefier and nitrogen gas as working fluid. The heat exchanger was thermally studied by experimental data obtained from a small gas liquefier. In addition, the simulations were performed using experimental data as variable boundary conditions. A comparison was done between presented and conventional methods. The effect of collector heat capacity and convection heat transfer coefficient inside the tubes on system performance was studied using temperature profiles along the heat exchanger.

  9. Influence of inhomogeneous surface heat capacity on the estimation of radiative response coefficients in a two-zone energy balance model

    NASA Astrophysics Data System (ADS)

    Park, Jungmin; Choi, Yong-Sang

    2018-04-01

    Observationally constrained values of the global radiative response coefficient are pivotal to assess the reliability of modeled climate feedbacks. A widely used approach is to measure transient global radiative imbalance related to surface temperature changes. However, in this approach, a potential error in the estimate of radiative response coefficients may arise from surface inhomogeneity in the climate system. We examined this issue theoretically using a simple two-zone energy balance model. Here, we dealt with the potential error by subtracting the prescribed radiative response coefficient from those calculated within the two-zone framework. Each zone was characterized by the different magnitude of the radiative response coefficient and the surface heat capacity, and the dynamical heat transport in the atmosphere between the zones was parameterized as a linear function of the temperature difference between the zones. Then, the model system was forced by randomly generated monthly varying forcing mimicking time-varying forcing like an observation. The repeated simulations showed that inhomogeneous surface heat capacity causes considerable miscalculation (down to -1.4 W m-2 K-1 equivalent to 31.3% of the prescribed value) in the global radiative response coefficient. Also, the dynamical heat transport reduced this miscalculation driven by inhomogeneity of surface heat capacity. Therefore, the estimation of radiative response coefficients using the surface temperature-radiation relation is appropriate for homogeneous surface areas least affected by the exterior.

  10. Effect of heat treatment on the phenolic compounds and antioxidant capacity of citrus peel extract.

    PubMed

    Xu, Guihua; Ye, Xingqian; Chen, Jianchu; Liu, Donghong

    2007-01-24

    This paper reports the effects of heat treatment on huyou (Citrus paradisi Changshanhuyou) peel in terms of phenolic compounds and antioxidant capacity. High-performance liquid chromatography (HPLC) coupled with a photodiode array (PDA) detector was used in this study for the analysis of phenolic acids (divided into four fractions: free, ester, glycoside, and ester-bound) and flavanone glycosides (FGs) in huyou peel (HP) before and after heat treatment. The results showed that after heat treatment, the free fraction of phenolic acids increased, whereas ester, glycoside, and ester-bound fractions decreased and the content of total FGs declined (P < 0.05). Furthermore, the antioxidant activity of methanol extract of HP increased (P < 0.05), which was evaluated by total phenolics contents (TPC) assay, 2,2'-azinobis(3-ethylbenzothiazoline-6-sulfonate) (ABTS*+) method, and ferric reducing antioxidant power (FRAP) assay. The correlation coefficients among TPC, ABTS, FRAP assay, and total cinnamics and benzoics (TCB) in the free fraction were significantly high (P < 0.05), which meant that the increase of total antioxidant capacity (TAC) of HP extract was due at least in part to the increase of TCB in free fraction. In addition, FGs may be destroyed when heated at higher temperature for a long time (for example, 120 degrees C for 90 min or 150 degrees C for 30 min). Therefore, it is suggested that a proper and reasonable heat treatment could be used to enhance the antioxidant capacity of citrus peel.

  11. Topological effects on the mechanical properties of polymer knots

    NASA Astrophysics Data System (ADS)

    Zhao, Yani; Ferrari, Franco

    2017-11-01

    The mechanical properties of knotted polymer rings under stretching in a bad or good solvent are investigated by applying a force F to a point of the knot while keeping another point fixed. The Monte Carlo sampling of the polymer conformations is performed on a simple cubic lattice using the Wang-Landau algorithm. The specific energy, specific heat capacity, gyration radius and the force-elongation curves are computed for several knot topologies with lengths up to 120 lattice units. The common features of the mechanical and thermal behavior of stretched short polymer rings forming knots of a given topological type are analyzed as well as the differences arising due to topology and size effects. It is found that these systems admit three different phases depending on the values of the tensile force F and the temperature T. The transitions from one phase to the other are well characterized by the peaks of the specific heat capacity and by the data of the gyration radius and specific energy. At very low temperatures the force-elongation curves show that the stretching of a knot is a stepwise process, which becomes smooth at higher temperatures. Criteria for distinguishing topological and size effects are provided. It turns out from our study that the behavior of short polymer rings is strongly influenced by topological effects. In particular, the swelling and the swelling rate of knots are severely limited by the topological constraints. Several other properties that are affected by topology, like the decay of the specific energy at high tensile forces, are discussed. The fading out of the influences of topological origin with increasing knot lengths has been verified. Some anomalies detected in the plots of the specific heat capacity of very short and complex knots have been explained by the limitations in the number of accessible energy states due to the topological constraints.

  12. Thermal properties of an erythritol derivative

    NASA Astrophysics Data System (ADS)

    Trhlikova, Lucie; Prikryl, Radek; Zmeskal, Oldrich

    2016-06-01

    Erythritol (C4H10O4) is a sugar alcohol (or polyol) that is commonly used in the food industry. Its molar mass is 122.12 g.mol-1 and mass density 1450 kg.m-3. Erythritol, an odorless crystalline powder, can also be characterized by other physical parameters like melting temperature (121 °C) and boiling temperature (329 °C). The substance can be used for the accumulation of energy in heat exchangers based on various oils or water. The PlusICE A118 product manufactured by the PCM Products Ltd. company (melting temperature Θ = 118 °C, specific heat capacity cp = 2.70 kJ.K-1.kg-1, mass density 1450 kg.m-3, latent heat capacity 340 kJ.kg-1, volumetric heat capacity 493 MJ.m-3) is based on an erythritol-type medium. Thermal properties of the PlusICE A118 product in both solid and liquid phase were investigated for this purpose in terms of potential applications. Temperature dependences of its thermal parameters (thermal diffusivity, thermal conductivity, and specific heat) were determined using a transient (step-wise) method. A fractal model of heat transport was used for determination of the above thermal parameters. This model is independent of geometry and type of sample heating. Moreover, it also considers heat losses. The experiment confirmed the formerly declared value of phase change temperature, about 120 °C.

  13. High-Capacity Heat-Pipe Evaporator

    NASA Technical Reports Server (NTRS)

    Oren, J. A.; Duschatko, R. J.; Voss, F. E.; Sauer, L. W.

    1989-01-01

    Heat pipe with cylindrical heat-input surface has higher contact thermal conductance than one with usual flat surface. Cylindrical heat absorber promotes nearly uniform flow of heat into pipe at all places around periphery of pipe, helps eliminate hotspots on heat source. Lugs in aluminum pipe carry heat from outer surface to liquid oozing from capillaries of wick. Liquid absorbs heat, evaporates, and passes out of evaporator through interlug passages.

  14. Modeling of High Capacity Passive Cooling System

    DTIC Science & Technology

    2009-03-01

    Pulsating Heat Pipes : Closed Loop Pulsating Heat Pipes , which is also known as Meandering Capillary Tube Heat Pipe or Closed Loop Oscillating Heat ... Pipe , has emerged in the recent years as a new electronics cooling technology. The Pulsating Heat Pipe is an innovating technology that has gained...horizontal orientation, the operating temperatures are lower. Pulsating heat pipes are capable of higher heat

  15. A subclass of plant heat shock cognate 70 chaperones carries a motif that facilitates trafficking through plasmodesmata

    PubMed Central

    Aoki, Koh; Kragler, Friedrich; Xoconostle-Cázares, Beatriz; Lucas, William J.

    2002-01-01

    Plasmodesmata establish a pathway for the trafficking of non-cell-autonomously acting proteins and ribonucleoprotein complexes. Plasmodesmal enriched cell fractions and the contents of enucleate sieve elements, in the form of phloem sap, were used to isolate and characterize heat shock cognate 70 (Hsc70) chaperones associated with this cell-to-cell transport pathway. Three Cucurbita maxima Hsc70 chaperones were cloned and functional and sequence analysis led to the identification of a previously uncharacterized subclass of non-cell-autonomous chaperones. The highly conserved nature of the heat shock protein 70 (Hsp70) family, in conjunction with mutant analysis, permitted the characterization of a motif that allows these Hsc70 chaperones to engage the plasmodesmal non-cell-autonomous translocation machinery. Proof of concept that this motif is necessary for Hsp70 gain-of-movement function was obtained through the engineering of a human Hsp70 that acquired the capacity to traffic through plasmodesmata. These results are discussed in terms of the roles likely played by this subclass of Hsc70 chaperones in the trafficking of non-cell-autonomous proteins. PMID:12456884

  16. Small Spacecraft Active Thermal Control: Micro-Vascular Composites Enable Small Satellite Cooling

    NASA Technical Reports Server (NTRS)

    Ghosh, Alexander

    2016-01-01

    The Small Spacecraft Integrated Power System with Active Thermal Control project endeavors to achieve active thermal control for small spacecraft in a practical and lightweight structure by circulating a coolant through embedded micro-vascular channels in deployable composite panels. Typically, small spacecraft rely on small body mounted passive radiators to discard heat. This limits cooling capacity and leads to the necessity to design for limited mission operations. These restrictions severely limit the ability of the system to dissipate large amounts of heat from radios, propulsion systems, etc. An actively pumped cooling system combined with a large deployable radiator brings two key advantages over the state of the art for small spacecraft: capacity and flexibility. The use of a large deployable radiator increases the surface area of the spacecraft and allows the radiation surface to be pointed in a direction allowing the most cooling, drastically increasing cooling capacity. With active coolant circulation, throttling of the coolant flow can enable high heat transfer rates during periods of increased heat load, or isolate the radiator during periods of low heat dissipation.

  17. Determination of the magnetic contribution to the heat capacity of cobalt oxide nanoparticles and the thermodynamic properties of the hydration layers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Spencer, Elinor; Ross, Dr. Nancy; Parker, Stewart F.

    2011-01-01

    We present low temperature (11 K) inelastic neutron scattering (INS) data on four hydrated nanoparticle systems: 10 nm CoO 0.10H2O (1), 16 nmCo3O4 0.40H2O (2), 25 nm Co3O4 0.30H2O (3) and 40 nmCo3O4 0.026H2O (4). The vibrational densities of states were obtained for all samples and from these the isochoric heat capacity and vibrational energy for the hydration layers confined to the surfaces of these nanoparticle systems have been elucidated. The results show that water on the surface of CoO nanoparticles is more tightly bound than water confined to the surface of Co3O4, and this is reflected in the reducedmore » heat capacity and vibrational entropy for water on CoO relative to water on Co3O4 nanoparticles. This supports the trend, seen previously, for water to be more tightly bound in materials with higher surface energies. The INS spectra for the antiferromagnetic Co3O4 particles (2 4) also show sharp and intense magnetic excitation peaks at 5 meV, and from this the magnetic contribution to the heat capacity of Co3O4 nanoparticles has been calculated; this represents the first example of use of INS data for determining the magnetic contribution to the heat capacity of any magnetic nanoparticle system.« less

  18. Analysis of the heat capacity for pure CH4 and CH4/CCl4 on graphite near the melting point and calculation of the T-X phase diagram for (CH3)CCl3 + CCl4

    NASA Astrophysics Data System (ADS)

    Yurtseven, Hamit; Yılmaz, Aygül

    2016-06-01

    We study the temperature dependence of the heat capacity Cp for the pure CH4 and the coadsorbed CH4/CCl4 on graphite near the melting point. The heat capacity peaks are analyzed using the experimental data from the literature by means of the power-law formula. The critical exponents for the heat capacity are deduced below and above the melting point for CH4 (Tm = 104.8 K) and CH4/CCl4 (Tm = 99.2 K). Our exponent values are larger as compared with the predicted values of some theoretical models exhibiting second order transition. Our analyses indicate that the pure methane shows a nearly second order (weak discontinuity in the heat capacity peak), whereas the transition in coadsorbed CH4/CCl4 is of first order (apparent discontinuity in Cp). We also study the T - X phase diagram of a two-component system of CH3CCl3+CCl4 using the Landau phenomenological model. Phase lines of the R+L (rhombohedral+liquid) and FCC+L (face-centred cubic + liquid) are calculated using the observed T - X phase diagram of this binary mixture. Our results show that the Landau mean field theory describes the observed behavior of CH3CCl3+CCl4 adequately. From the calculated T - X phase diagram, critical behavior of some thermodynamic quantities can be predicted at various temperatures and concentrations (CCl4) for a binary mixture of CH3CCl3+CCl4.

  19. Low temperature heat capacity of permanently densified SiO2 glasses

    NASA Astrophysics Data System (ADS)

    Carini, Giovanni; Carini, Giuseppe; Cosio, Daniele; D'Angelo, Giovanna; Rossi, Flavio

    2016-03-01

    A study of low temperature specific heat capacity (1-30 K) has been performed on samples of vitreous SiO2, which have been compacted under pressures up to 8 GPa to explore different glassy phases having growing density. Increasing densification by more than 21% leads to a progressive reduction of the specific heat capacity Cp and to a shift from 10 K up to about 17 K of the broad hump, the calorimetric Boson peak (BP), observed above 1 K in a Cp(T)/T3 vs. T plot. The revealed changes are not accounted for by the modifications of the elastic continuum, implying a nature of additional vibrations at variance with the extended sound waves. Increasing atomic packing of the glassy network leads to a progressively decreasing excess heat capacity over that of α-quartz, a crystalline polymorph of SiO2. By using the low-frequency Raman intensity measured in these glasses to determine the temperature dependence of the low temperature heat capacity, it has been evaluated the density of low-frequency vibrational states. The observations are compared with some theoretical pictures explaining the nature of the BP, disclosing qualitative agreement with the predictions of the Soft Potential Model and the results of a simulation study concerning the vibrations of jammed particles. This finding leads to evaluate a nanometer length scale which suggests the existence of poorly packed domains formed from several n-membered rings involving SiO4 tetrahedra. These soft regions are believed to be the main source of low-frequency vibrations giving rise to the BP.

  20. Enhancing Extreme Heat Health-Related Intervention and Preparedness Activities Using Remote Sensing Analysis of Daily Surface Temperature, Surface Observation Networks and Ecmwf Reanalysis

    NASA Astrophysics Data System (ADS)

    Garcia, R. L.; Booth, J.; Hondula, D.; Ross, K. W.; Stuyvesant, A.; Alm, G.; Baghel, E.

    2015-12-01

    Extreme heat causes more human fatalities in the United States than any other natural disaster, elevating the concern of heat-related mortality. Maricopa County Arizona is known for its high heat index and its sprawling metropolitan complex which makes this region a perfect candidate for human health research. Individuals at higher risk are unequally spatially distributed, leaving the poor, homeless, non-native English speakers, elderly, and the socially isolated vulnerable to heat events. The Arizona Department of Health Services, Arizona State University and NASA DEVELOP LaRC are working to establish a more effective method of placing hydration and cooling centers in addition to enhancing the heat warning system to aid those with the highest exposure. Using NASA's Earth Observation Systems from Aqua and Terra satellites, the daily spatial variability within the UHI was quantified over the summer heat seasons from 2005 - 2014, effectively establishing a remotely sensed surface temperature climatology for the county. A series of One-way Analysis of Variance revealed significant differences between daily surface temperature averages of the top 30% of census tracts within the study period. Furthermore, synoptic upper tropospheric circulation patterns were classified to relate surface weather types and heat index. The surface weather observation networks were also reviewed for analyzing the veracity of the other methods. The results provide detailed information regarding nuances within the UHI effect and will allow pertinent recommendations regarding the health department's adaptive capacity. They also hold essential components for future policy decision-making regarding appropriate locations for cooling centers and efficient warning systems.

  1. Introduction of Differential Scanning Calorimetry in a General Chemistry Laboratory Course: Determination of Heat Capacity of Metals and Demonstration of Law of Dulong and Petit

    ERIC Educational Resources Information Center

    D'Amelia, Ronald P.; Stracuzzi, Vincent; Nirode, William F.

    2008-01-01

    Today's general chemistry students are introduced to many of the principles and concepts of thermodynamics. In first-year general chemistry undergraduate courses, thermodynamic properties such as heat capacity are frequently discussed. Classical calorimetric methods of analysis and thermal equilibrium experiments are used to determine heat…

  2. 40 CFR 60.43c - Standard for particulate matter (PM).

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... construction, reconstruction, or modification on or before February 28, 2005, that combusts coal or combusts mixtures of coal with other fuels and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or greater, shall... mixtures of wood with other fuels (except coal) and has a heat input capacity of 8.7 MW (30 MMBtu/hr) or...

  3. Magnetic Field Dependence of Heat Capacity Study on the (e-p) Bose-Einstein Condensation Through the Hydrogen onto D, L-Valine Optical Lattice

    NASA Astrophysics Data System (ADS)

    Wang, W. Q.; Gong, G. Y.; Shen, X. C.; Qiao, B. H.; Li, J. J.

    2017-07-01

    For the aim to investigate the role of chirality and helicity between D- and L-valine crystal lattices under Debye temperature 2 K to 20 K, the magnetic field dependence of zero-field and 1, 3 and 5 Tesla on the heat capacity were measured.

  4. Graded Reflectivity Mirror for the Solid State Heat Capacity Laser Final Report CRADA No. TC-2085-04

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamamoto, R.; Davis, J. A.

    This was a collaborative effort between The Regents of the University of California, Lawrence Livermore National Laboratory (LLNL) and the Boeing Company, to develop a Graded Reflectivity Mirror (GRM) to achieve improved near field fill and higher brightness in the far field output of LLNL’s Solid State Heat Capacity Laser (SSHCL).

  5. Climate variations and the physiological basis of temperature dependent biogeography: systemic to molecular hierarchy of thermal tolerance in animals.

    PubMed

    Pörtner, H O

    2002-08-01

    The physiological mechanisms limiting and adjusting cold and heat tolerance have regained interest in the light of global warming and associated shifts in the geographical distribution of ectothermic animals. Recent comparative studies, largely carried out on marine ectotherms, indicate that the processes and limits of thermal tolerance are linked with the adjustment of aerobic scope and capacity of the whole animal as a crucial step in thermal adaptation on top of parallel adjustments at the molecular or membrane level. In accordance with Shelford's law of tolerance decreasing whole animal aerobic scope characterises the onset of thermal limitation at low and high pejus thresholds (pejus=getting worse). The drop in aerobic scope of an animal indicated by falling oxygen levels in the body fluids and or the progressively limited capacity of circulatory and ventilatory mechanisms. At high temperatures, excessive oxygen demand causes insufficient oxygen levels in the body fluids, whereas at low temperatures the aerobic capacity of mitochondria may become limiting for ventilation and circulation. Further cooling or warming beyond these limits leads to low or high critical threshold temperatures (T(c)) where aerobic scope disappears and transition to an anaerobic mode of mitochondrial metabolism and progressive insufficiency of cellular energy levels occurs. The adjustments of mitochondrial densities and their functional properties appear as a critical process in defining and shifting thermal tolerance windows. The finding of an oxygen limited thermal tolerance owing to loss of aerobic scope is in line with Taylor's and Weibel's concept of symmorphosis, which implies that excess capacity of any component of the oxygen delivery system is avoided. The present study suggests that the capacity of oxygen delivery is set to a level just sufficient to meet maximum oxygen demand between the average highs and lows of environmental temperatures. At more extreme temperatures only time limited passive survival is supported by anaerobic metabolism or the protection of molecular functions by heat shock proteins and antioxidative defence. As a corollary, the first line of thermal sensitivity is due to capacity limitations at a high level of organisational complexity, i.e. the integrated function of the oxygen delivery system, before individual, molecular or membrane functions become disturbed. These interpretations are in line with the more general consideration that, as a result of the high level of complexity of metazoan organisms compared with simple eukaryotes and then prokaryotes, thermal tolerance is reduced in metazoans. A similar sequence of sensitivities prevails within the metazoan organism, with the highest sensitivity at the organismic level and wider tolerance windows at lower levels of complexity. However, the situation is different in that loss in aerobic scope and progressive hypoxia at the organismic level define the onset of thermal limitation which then transfers to lower hierarchical levels and causes cellular and molecular disturbances. Oxygen limitation contributes to oxidative stress and, finally, denaturation or malfunction of molecular repair, e.g. during suspension of protein synthesis. The sequence of thermal tolerance limits turns into a hierarchy, ranging from systemic to cellular to molecular levels.

  6. Step - wise transient method - Influence of heat source inertia

    NASA Astrophysics Data System (ADS)

    Malinarič, Svetozár; Dieška, Peter

    2016-07-01

    Step-wise transient (SWT) method is an experimental technique for measuring the thermal diffusivity and conductivity of materials. Theoretical models and experimental apparatus are presented and the influence of the heat source capacity are investigated using the experiment simulation. The specimens from low density polyethylene (LDPE) were measured yielding the thermal diffusivity 0.165 mm2/s and thermal conductivity 0.351 W/mK with the coefficient of variation less than 1.4 %. The heat source capacity caused the systematic error of the results smaller than 1 %.

  7. Thermal physics in practice and its confrontation with school physics

    NASA Astrophysics Data System (ADS)

    Vochozka, Vladimír; Tesař, Jiří; Bednář, Vít

    2017-01-01

    Concepts of heat, specific heat capacity and other terms of thermal physics are very abstract. For their better understanding it is necessary in teaching to include newly conceived experiments focused on the everyday experience of students. The paper evaluates the thermal phenomena with the help of infrared camera, respectively surface temperature sensors for on-line measurement. The article focuses on the experimental verification of the law of conservation of energy in thermal physics, comparing specific heat capacity of various substances and their confrontation with established experience of pupils.

  8. Workplace heat stress, health and productivity – an increasing challenge for low and middle-income countries during climate change

    PubMed Central

    Kjellstrom, Tord; Holmer, Ingvar; Lemke, Bruno

    2009-01-01

    Background Global climate change is already increasing the average temperature and direct heat exposure in many places around the world. Objectives To assess the potential impact on occupational health and work capacity for people exposed at work to increasing heat due to climate change. Design A brief review of basic thermal physiology mechanisms, occupational heat exposure guidelines and heat exposure changes in selected cities. Results In countries with very hot seasons, workers are already affected by working environments hotter than that with which human physiological mechanisms can cope. To protect workers from excessive heat, a number of heat exposure indices have been developed. One that is commonly used in occupational health is the Wet Bulb Globe Temperature (WBGT). We use WBGT to illustrate assessing the proportion of a working hour during which a worker can sustain work and the proportion of that same working hour that (s)he needs to rest to cool the body down and maintain core body temperature below 38°C. Using this proportion a ‘work capacity’ estimate was calculated for selected heat exposure levels and work intensity levels. The work capacity rapidly reduces as the WBGT exceeds 26–30°C and this can be used to estimate the impact of increasing heat exposure as a result of climate change in tropical countries. Conclusions One result of climate change is a reduced work capacity in heat-exposed jobs and greater difficulty in achieving economic and social development in the countries affected by this somewhat neglected impact of climate change. PMID:20052422

  9. Modelling of Technological Solutions to 4th Generation DH Systems

    NASA Astrophysics Data System (ADS)

    Vigants, Edgars; Prodanuks, Toms; Vigants, Girts; Veidenbergs, Ivars; Blumberga, Dagnija

    2017-11-01

    Flue gas evaporation and condensing processes are investigated in a direct contact heat exchanger - condensing unit, which is installed after a furnace. By using equations describing processes of heat and mass transfer, as well as correlation coherences for determining wet gas parameters, a model is formed to create a no-filling, direct contact heat exchanger. Results of heating equipment modelling and experimental research on the gas condensing unit show, that the capacity of the heat exchanger increases, when return temperature of the district heating network decreases. In order to explain these alterations in capacity, the character of the changes in water vapour partial pressure, in the propelling force of mass transfer, in gas and water temperatures and in the determining parameters of heat transfer are used in this article. The positive impact on the direct contact heat exchanger by the decreased district heating (DH) network return temperature shows that introduction of the 4th generation DH system increases the energy efficiency of the heat exchanger. In order to make an assessment, the methodology suggested in the paper can be used in each particular situation.

  10. Choice of optimal working fluid for binary power plants at extremely low temperature brine

    NASA Astrophysics Data System (ADS)

    Tomarov, G. V.; Shipkov, A. A.; Sorokina, E. V.

    2016-12-01

    The geothermal energy development problems based on using binary power plants utilizing lowpotential geothermal resources are considered. It is shown that one of the possible ways of increasing the efficiency of heat utilization of geothermal brine in a wide temperature range is the use of multistage power systems with series-connected binary power plants based on incremental primary energy conversion. Some practically significant results of design-analytical investigations of physicochemical properties of various organic substances and their influence on the main parameters of the flowsheet and the technical and operational characteristics of heat-mechanical and heat-exchange equipment for binary power plant operating on extremely-low temperature geothermal brine (70°C) are presented. The calculation results of geothermal brine specific flow rate, capacity (net), and other operation characteristics of binary power plants with the capacity of 2.5 MW at using various organic substances are a practical interest. It is shown that the working fluid selection significantly influences on the parameters of the flowsheet and the operational characteristics of the binary power plant, and the problem of selection of working fluid is in the search for compromise based on the priorities in the field of efficiency, safety, and ecology criteria of a binary power plant. It is proposed in the investigations on the working fluid selection of the binary plant to use the plotting method of multiaxis complex diagrams of relative parameters and characteristic of binary power plants. Some examples of plotting and analyzing these diagrams intended to choose the working fluid provided that the efficiency of geothermal brine is taken as main priority.

  11. Heat capacity measurements of sub-nanoliter volumes of liquids using bimaterial microchannel cantilevers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Khan, M. F.; Miriyala, N.; Hassanpourfard, M.

    Lab-on-a-Chip compatible techniques for thermal characterization of miniaturized volumes of liquid analytes are necessary in applications such as protein blotting, DNA melting, and drug development, where samples are either rare or volume-limited. We developed a closed-chamber calorimeter based on a bimaterial microchannel cantilever (BMC) for sub-nanoliter level thermal analysis. When the liquid-filled BMC is irradiated with infrared (IR) light at a specific wavelength, the IR absorption by the liquid analyte results in localized heat generation and the subsequent deflection of the BMC, due to a thermal expansion mismatch between the constituent materials. The time constant of the deflection, which ismore » dependent upon the heat capacity of the liquid analyte, can be directly measured by recording the time-dependent bending of the BMC. We have used the BMC to quantitatively measure the heat capacity of five volatile organic compounds. With a deflection noise level of ∼10 nm and a signal-to-noise ratio of 68:1, the BMC offers a sensitivity of 30.5 ms/(J g{sup −1 }K{sup −1}) and a resolution of 23 mJ/(g K) for ∼150 pl liquid for heat capacity measurements. This technique can be used for small-scale thermal characterization of different chemical and biological samples.« less

  12. Structural and spectroscopic investigation of the N-methylformamide-water (NMF···3H2O) complex

    NASA Astrophysics Data System (ADS)

    Hammami, F.; Ghalla, H.; Chebaane, A.; Nasr, S.

    2015-01-01

    In this work, theoretical studies on the structure, molecular properties, hydrogen bonding, and vibrational spectra of the N-methylformamide-water (NMF...3H2O) complex will be presented. The molecular geometry was optimised by using Hartree-Fock (HF), second Møller-Plesset (MP2), and density functional theory methods with different basis sets. The harmonic vibrational frequencies are computed by using the B3LYP method with 6-311++G(d,p) as a basis set and then scaled with a suitable scale factor to yield good coherence with the observed values. The temperature dependence of various thermodynamic functions (heat capacity, entropy, and enthalpy changes) was also studied. A detailed analysis of the nature of the hydrogen bonding, using natural bond orbital (NBO) and topological atoms in molecules theory, has been reported.

  13. Comparing Single-Point and Multi-point Calibration Methods in Modulated DSC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Buskirk, Caleb Griffith

    2017-06-14

    Heat capacity measurements for High Density Polyethylene (HDPE) and Ultra-high Molecular Weight Polyethylene (UHMWPE) were performed using Modulated Differential Scanning Calorimetry (mDSC) over a wide temperature range, -70 to 115 °C, with a TA Instruments Q2000 mDSC. The default calibration method for this instrument involves measuring the heat capacity of a sapphire standard at a single temperature near the middle of the temperature range of interest. However, this method often fails for temperature ranges that exceed a 50 °C interval, likely because of drift or non-linearity in the instrument's heat capacity readings over time or over the temperature range. Therefore,more » in this study a method was developed to calibrate the instrument using multiple temperatures and the same sapphire standard.« less

  14. Heat capacities of kaolinite from 7 to 380 K and of DMSO- intercalated kaolinite from 20 to 310 K. The entropy of kaolinite Al2Si2O5(OH)4

    USGS Publications Warehouse

    Robie, Richard A.; Hemingway, Bruce S.

    1991-01-01

    The heat capacities of kaolinite (7 to 380 K) and of dimethyl sulfoxide (DMSO) intercalated kaolinite (20 to 310 K) were measured by adiabatically shielded calorimetry. The third law entropy of kaolinite, S°298, is 200.9 ± 0.5 J ⋅ mol-1 ⋅ K-1.The "melting point" of the DMSO in the intercalate, 288.0 ± 0.2 K, is 3.7 K lower than that of pure DMSO, 291.67 K. The heat capacity of DMSO in the intercalate above 290 K is approximately 5.2 J ⋅ mol-1 ⋅ K-1 smaller than that of pure liquid DMSO at the same temperature.

  15. Gold absorbing film for a composite bolometer

    NASA Technical Reports Server (NTRS)

    Dragovan, M.; Moseley, S. H.

    1984-01-01

    The principles governing the design of metal films are reviewed, with attention also given to the choice of metals. A description is then given of the characteristics of a bolometer with a gold absorbing film. It is demonstrated that gold is effective as an absorbing film for a millimeter bolometer operated at 1.5 K. At 1.5 K, gold is significantly better than bismuth since gold has a lower heat capacity for the absorbing film. At 0.3 K, gold and bismuth are both suitable. It is pointed out that at temperatures below 0.3 K, a superconducting absorbing film can have a heat capacity low enough not to dominate the heat capacity of the detector; for this reason, it may give better performance than a nonsuperconducting absorbing film.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rice, C. Keith; Shen, Bo; Shrestha, Som S.

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirementmore » (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28% increase in delivered heating load and an ~52% increase in the estimated heating operating cost over that given in the AHRI directory (AHRI 2014).« less

  17. Effects of Mead Wort Heat Treatment on the Mead Fermentation Process and Antioxidant Activity.

    PubMed

    Czabaj, Sławomir; Kawa-Rygielska, Joanna; Kucharska, Alicja Z; Kliks, Jarosław

    2017-05-14

    The effects of mead wort heat treatment on the mead fermentation process and antioxidant activity were tested. The experiment was conducted with the use of two different honeys (multiflorous and honeydew) collected from the Lower Silesia region (Poland). Heat treatment was performed with the use of a traditional technique (gently boiling), the more commonly used pasteurization, and without heat treatment (control). During the experiment fermentation dynamics were monitored using high performance liquid chromatography with refractive index detection (HPLC-RID). Total antioxidant capacity (TAC) and total phenolic content (TPC) were estimated for worts and meads using UV/Vis spectrophotometric analysis. The formation of 5-hydroxymethylfurfural (HMF) was monitored by HPLC analyses. Heat treatment had a great impact on the final antioxidant capacity of meads.

  18. Droplet Evaporator For High-Capacity Heat Transfer

    NASA Technical Reports Server (NTRS)

    Valenzuela, Javier A.

    1993-01-01

    Proposed heat-exchange scheme boosts heat transfer per unit area. Key component is generator that fires uniform size droplets of subcooled liquid at hot plate. On impact, droplets spread out and evaporate almost instantly, removing heat from plate. In practice, many generator nozzles arrayed over evaporator plate.

  19. High capacity demonstration of honeycomb panel heat pipes

    NASA Technical Reports Server (NTRS)

    Tanzer, H. J.

    1989-01-01

    The feasibility of performance enhancing the sandwich panel heat pipe was investigated for moderate temperature range heat rejection radiators on future-high-power spacecraft. The hardware development program consisted of performance prediction modeling, fabrication, ground test, and data correlation. Using available sandwich panel materials, a series of subscale test panels were augumented with high-capacity sideflow and temperature control variable conductance features, and test evaluated for correlation with performance prediction codes. Using the correlated prediction model, a 50-kW full size radiator was defined using methanol working fluid and closely spaced sideflows. A new concept called the hybrid radiator individually optimizes heat pipe components. A 2.44-m long hybrid test vehicle demonstrated proof-of-principle performance.

  20. Continuum-atomistic simulation of picosecond laser heating of copper with electron heat capacity from ab initio calculation

    NASA Astrophysics Data System (ADS)

    Ji, Pengfei; Zhang, Yuwen

    2016-03-01

    On the basis of ab initio quantum mechanics (QM) calculation, the obtained electron heat capacity is implemented into energy equation of electron subsystem in two temperature model (TTM). Upon laser irradiation on the copper film, energy transfer from the electron subsystem to the lattice subsystem is modeled by including the electron-phonon coupling factor in molecular dynamics (MD) and TTM coupled simulation. The results show temperature and thermal melting difference between the QM-MD-TTM integrated simulation and pure MD-TTM coupled simulation. The successful construction of the QM-MD-TTM integrated simulation provides a general way that is accessible to other metals in laser heating.

  1. LOW-TEMPERATURE HEAT CAPACITIES AND THERMODYNAMIC FUNCTIONS OF SOME PLATINUM AND PALLADIUM GROUP CHALCOGENIDES. I. MONO-CHALCOGENIDES. Pts, PtTe, AND PdTe

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Groenvold, F.; Thurmann-Moe, T.; Westrum, E.F. Jr.

    1961-11-01

    Heat capacities of platinum monosulfide, platinum monotelluride, and palladium monotelluride were measured in the range 5--350 deg K. They show the normal sigmoidal temperature dependence with no evidence of transivions or other anomalies. The derived heat-capacity equations were integrated. Values of heat capacitles, entropy, and enthalpy increments, and of the free-energy function are tabulated for selected temperatures. Av 298,15 deg K, the third-law entroples are 13,16 cal gfw/sup -1/ deg K/sup -1/ for PtS 19.41 cal gfw/sup -1/ deg K/sup - 1/ for PtTe, and 2l.42 cal gfw/sup -1/ deg K/sup -1/ for PdTe. The new dava on PvS weremore » correlaved wlvh exlstlng decomposlvlonpressure data vo evaluate DELTA Hf, DELTA Ff, and DELTA Sf 298.15 deg K. Entropies for other platlnum-metal monochalcogenides were estimated. (auth)« less

  2. Thermal Property Measurement of Semiconductor Melt using Modified Laser Flash Method

    NASA Technical Reports Server (NTRS)

    Lin, Bochuan; Zhu, Shen; Ban, Heng; Li, Chao; Scripa, Rosalla N.; Su, Ching-Hua; Lehoczky, Sandor L.

    2003-01-01

    This study further developed standard laser flash method to measure multiple thermal properties of semiconductor melts. The modified method can determine thermal diffusivity, thermal conductivity, and specific heat capacity of the melt simultaneously. The transient heat transfer process in the melt and its quartz container was numerically studied in detail. A fitting procedure based on numerical simulation results and the least root-mean-square error fitting to the experimental data was used to extract the values of specific heat capacity, thermal conductivity and thermal diffusivity. This modified method is a step forward from the standard laser flash method, which is usually used to measure thermal diffusivity of solids. The result for tellurium (Te) at 873 K: specific heat capacity 300.2 Joules per kilogram K, thermal conductivity 3.50 Watts per meter K, thermal diffusivity 2.04 x 10(exp -6) square meters per second, are within the range reported in literature. The uncertainty analysis showed the quantitative effect of sample geometry, transient temperature measured, and the energy of the laser pulse.

  3. Heat capacity from 12 to 305°K and entropy of talc and tremolite

    USGS Publications Warehouse

    Robie, R.A.; Stout, J.W.

    1963-01-01

    The heat capacities of talc, Mg3Si4O10(OH)2, and tremolite, Ca2Mg6Si8O22(OH)2, have been measured between 12 and 305??K. Smoothed values of heat capacity, entropy, enthalpy, and free energy are tabulated. At 298.15?? K. the values of the thermodynamic functions are: talc, Cp?? = 76.89 ?? 0.23 cal. deg.-1 mole-1, S?? = 62.33 ?? 0.19 cal. deg.-1 mole-1, H?? - H6?? = 11,206 ?? 34 cal. mole-1; tremolite, Cp?? = 156.7 ?? 0.6 cal. deg.-1 mole-1, S?? = 131.2 ?? 0.5 cal. deg.-1 mole-1, H?? - H6?? = 23,335 ?? 90 cal. mole-1. From the equilibrium data of Bowen and Tuttle and the entropy of talc, the heat of formation of talc from MgO, SiO2, and H2O (liq.) is calculated to be ??H??f298 = -43.6 ?? 1 kcal.

  4. 16 CFR 305.7 - Determinations of capacity.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... determined according to appendix P to 10 CFR part 430, subpart B. (f) Room air conditioners. The capacity... 10 CFR part 430, subpart B. (i) Central air conditioners, cooling. The capacity shall be the cooling... hour for capacities between 38,000 and 64,999 Btu's per hour. (j) Central air conditioners, heating...

  5. Study on the Effect of a Cogeneration System Capacity on its CO2 Emissions

    NASA Astrophysics Data System (ADS)

    Fonseca, J. G. S., Jr.; Asano, Hitoshi; Fujii, Terushige; Hirasawa, Shigeki

    With the global warming problem aggravating and subsequent implementation of the Kyoto Protocol, CO2 emissions are becoming an important factor when verifying the usability of cogeneration systems. Considering this, the purpose of this work is to study the effect of the capacity of a cogeneration system on its CO2 emissions under two kinds of operation strategies: one focused on exergetic efficiency and another on running cost. The system meets the demand pattern typical of a hospital in Japan, operating during one year with an average heat-to-power ratio of 1.3. The main equipments of the cogeneration system are: a gas turbine with waste heat boiler, a main boiler and an auxiliary steam turbine. Each of these equipments was characterized with partial load models, and the turbine efficiencies at full load changed according to the system capacity. Still, it was assumed that eventual surplus of electricity generated could be sold. The main results showed that for any of the capacities simulated, an exergetic efficiency-focused operational strategy always resulted in higher CO2 emissions reduction when compared to the running cost-focused strategy. Furthermore, the amount of reduction in emissions decreased when the system capacity decreased, reaching a value of 1.6% when the system capacity was 33% of the maximum electricity demand with a heat-to-power ratio of 4.1. When the system operated focused on running cost, the economic savings increased with the capacity and reached 42% for a system capacity of 80% of maximum electricity demand and with a heat-to-power ratio of 2.3. In such conditions however, there was an increase in emissions of 8.5%. Still for the same capacity, an exergetic efficiency operation strategy presented the best balance between cost and emissions, generating economic savings of 29% with a decrease in CO2 emissions of 7.1%. The results found showed the importance of an exergy-focused operational strategy and also indicated that lower capacities resulted in lesser gains of both CO2 emissions and running cost reduction.

  6. Calibration of High Temperature Thermal Conductivity System: New Algorithm to Measure Heat Capacity Using Flash Thermal Diffusivity in Thermoelectric Materials

    NASA Technical Reports Server (NTRS)

    Deb, Rahul; Snyder, Jeff G.

    2005-01-01

    A viewgraph presentation describing thermoelectric materials, an algorithm for heat capacity measurements and the process of flash thermal diffusivity. The contents include: 1) What are Thermoelectrics?; 2) Thermoelectric Applications; 3) Improving Thermoelectrics; 4) Research Goal; 5) Flash Thermal Diffusivity; 6) Background Effects; 7) Stainless Steel Comparison; 8) Pulse Max Integral; and 9) Graphite Comparison Algorithm.

  7. Status of Natural Gas Pipeline System Capacity Entering the 2000-2001 Heating Season

    EIA Publications

    2000-01-01

    This special report looks at the capabilities of the national natural gas pipeline network in 2000 and provides an assessment of the current levels of available capacity to transport supplies from production areas to markets throughout the United States during the upcoming heating season. It also examines how completion of currently planned expansion projects and proposed new pipelines would affect the network.

  8. 78 FR 7487 - National Emission Standards for Hazardous Air Pollutants for Area Sources: Industrial, Commercial...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-02-01

    .... All documents in the docket are listed on the http://www.regulations.gov Web site. Although listed in... boilers (i.e., with a design heat input capacity of 10 MMBtu/hr or more). A review of the data has... small coal-fired units (i.e., with a design heat input capacity of less than 10 MMBtu/hr) are subject to...

  9. Heat capacity of aqueous monoethanolamine, diethanolamine, N-methyldiethanolamine, and N-methyldiethanolamine-based blends with carbon dioxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Weiland, R.H.; Dingman, J.C.; Cronin, D.B.

    1997-09-01

    New data are reported on the heat capacity of CO{sub 2}-loaded, aqueous solutions of monoethanolamine (MEA), diethanolamine (DEA), N-methyldiethanolamine (MDEA), and aqueous MDEA-based blends with MEA and DEA. The work reported here was motivated by the need to quantify the effect of acid gas loading on the important physical properties of gas-sweetening solvents.

  10. Investigation of Sensible and Latent Heat Storage System using various HTF

    NASA Astrophysics Data System (ADS)

    Beemkumar, N.; Karthikeyan, A.; Manoj, A.; Keerthan, J. S.; Stallan, Joseph Paul; Amithkishore, P.

    2017-05-01

    The objective of the work is investigating the latent heat storage system by varying heat transfer fluid (HTF). In this experiment, the effect of using different heat transfer fluids on the combined system is studied while using a low melting phase change material (PCM) i.e., paraffin wax. The heat transfer fluids chosen are water (low boiling fluid) and Therminol-66 (High boiling fluid). A comparison is made between the heat transfers by employing both the Heat transfer fluids. In the beginning, water is made to flow as the HTF and the charging process is undertaken followed by the discharging process by utilizing the different encapsulation materials namely, copper, aluminium and brass. These processes are then repeated for therminol-66 as HTF. At the end of the experiment it was concluded that even though therminol-66 enhances the latent heat storage capacity, water offers a higher sensible heat storage capacity, making it a better HTF for low melting PCM. Similar to above said process the experiments can be conducted for high and medium range melting point PCM with variation of HTF.

  11. Shear transfer capacity of reinforced concrete exposed to fire

    NASA Astrophysics Data System (ADS)

    Ahmad, Subhan; Bhargava, Pradeep; Chourasia, Ajay

    2018-04-01

    Shear transfer capacity of reinforced concrete elements is a function of concrete compressive strength and reinforcement yield strength. Exposure of concrete and steel to elevated temperature reduces their mechanical properties resulting in reduced shear transfer capacity of RC elements. The objective of present study is to find the effect of elevated temperature on shear transfer capacity of reinforced concrete. For this purpose pushoff specimens were casted using normal strength concrete. After curing, specimens were heated to 250°C and 500°C in an electric furnace. Cooled specimens were tested for shear transfer capacity in a universal testing machine. It was found that shear transfer capacity and stiffness (slope of load-slip curve) were reduced when the specimens were heated to 250°C and 500°C. Load level for the initiation of crack slip was found to be decreased as the temperature was increased. A simple analytical approach is also proposed to predict the shear transfer capacity of reinforced concrete after elevated temperature.

  12. A Second Glass Transition in Pressure Collapsed Type II Clathrate Hydrates.

    PubMed

    Andersson, Ove; Häussermann, Ulrich

    2018-04-19

    Type II clathrate hydrates (CHs) M·17 H 2 O, with M = tetrahydrofuran (THF) or 1,3-dioxolane, are known to collapse, or amorphize, on pressurization to ∼1.3 GPa in the temperature range 77-140 K. On heating at 1 GPa, these pressure-amorphized CH states show a weak, stretched sigmoid-shaped, heat-capacity increase because of a glass transition. Here we use thermal conductivity and heat capacity measurements to show that also type II CH with M = cyclobutanone (CB) collapses on isothermal pressurization and undergoes a similar, weak, glass transition upon heating at 1 GPa. Furthermore, we reveal for both THF CH and CB CH a second, much more pronounced, glass transition at temperatures above the thermally weak glass transition on heating in the 0.2-0.7 GPa range. This result suggests the general occurrence of two glass transitions in water-rich (94 mol %) pressure-collapsed CHs. Because of a large increase in dielectric permittivity concurrently as the weak heat capacity increase, the first glass transition must be due to kinetic unfreezing of water molecules. The thermal features of the second glass transition, measured on isobaric temperature cycling, are typical of a glass-liquid-glass transition, which suggests that pressure-amorphized CHs transform reversibly to liquids.

  13. Experimental and theoretical analysis of nanofluids based on high temperature-heat transfer fluid with enhanced thermal properties

    NASA Astrophysics Data System (ADS)

    Navas, Javier; Sánchez-Coronilla, Antonio; Martín, Elisa I.; Gómez-Villarejo, Roberto; Teruel, Miriam; Gallardo, Juan Jesús; Aguilar, Teresa; Alcántara, Rodrigo; Fernández-Lorenzo, Concha; Martín-Calleja, Joaquín

    2017-04-01

    In this work, nanofluids were prepared using commercial Cu nanoparticles and a commercial high temperature-heat transfer Fluid (eutectic mixture of diphenyl oxide and biphenyl) as the base fluid, which is used in concentrating solar power (CSP) plants. Different properties such as density, viscosity, heat capacity and thermal conductivity were characterized. Nanofluids showed enhanced heat transfer efficiency. In detail, the incorporation of Cu nanoparticles led to an increase of the heat capacity up to 14%. Also, thermal conductivity was increased up to 13%. Finally, the performance of the nanofluids prepared increased up to 11% according to the Dittus-Boelter correlation. On the other hand, equilibrium molecular dynamics simulation was used to model the experimental nanofluid system studied. Thermodynamic properties such as heat capacity and thermal conductivity were calculated and the results were compared with experimental data. The analysis of the radial function distributions (RDFs) and the inspection of the spatial distribution functions (SDFs) indicate the important role that plays the metal-oxygen interaction in the system. Dynamic properties such as the diffusion coefficients of base fluid and nanofluid were computed according to Einstein relation by computing the mean square displacement (MSD). Supplementary online material is available in electronic form at http://www.epjap.org

  14. Thermal analysis of large-capacity LiFePO4 power batteries for electric vehicles

    NASA Astrophysics Data System (ADS)

    Lin, Chunjing; Xu, Sichuan; Li, Zhao; Li, Bin; Chang, Guofeng; Liu, Jinling

    2015-10-01

    Excellent design of a thermal management system requires good understanding of the thermal behaviors of power batteries. In this study, the electrochemical and heat performances of a prismatic 40 Ah C/LiFePO4 battery are investigated with a focus on the influence of temperature on cell capacity in a mixed charge-discharge cycle. In addition, the heat generation and energy efficiency of a battery are determined during charge and discharge at different current rates. The experimental results indicate that in certain temperature ranges, both the charging and discharging capacities increase significantly as the temperature increases. In addition, the energy efficiency reaches more than 95% when the battery runs at a current rate of 0.33 C-2 C and temperature of 25-45 °C. A thermal mathematical model based on experimentally obtained internal resistances and entropy coefficients is developed. Using this model, the increase in the battery temperature is simulated based on specific heat values that are measured experimentally and calculated theoretically. The results from the simulation indicate that the temperature increase agrees well with the experimental values, the measured specific heat provides better results than the calculated specific heat and the heat generated decreases as the temperature increases.

  15. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...

  16. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...

  17. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line widths... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...

  18. 16 CFR 305.12 - Labeling for central air conditioners, heat pumps, and furnaces.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... pumps, and furnaces. (a) Layout. All energy labels for central air conditioners, heat pumps, and... the end of this part illustrating the basic layout. All positioning, spacing, type sizes, and line... calculated for heating Region IV for the standardized design heating requirement nearest the capacity...

  19. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... conditions fluctuate. (See also “heat capacity” and “wall heat capacity”) Thermal mass wall insulation... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...

  20. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... conditions fluctuate. (See also “heat capacity” and “wall heat capacity”) Thermal mass wall insulation... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...

  1. 7 CFR 2902.54 - Heat transfer fluids.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 7 Agriculture 15 2011-01-01 2011-01-01 false Heat transfer fluids. 2902.54 Section 2902.54... Items § 2902.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used to facilitate the transfer of heat from one location to another, including coolants or refrigerants for use in...

  2. Geothermal energy

    NASA Astrophysics Data System (ADS)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  3. Effect of dry heating and ionic gum on the physicochemical and release properties of starch from Dioscorea.

    PubMed

    Vashisht, Deepika; Pandey, Anima; Hermenean, Anca; Yáñez-Gascón, Maria Josefa; Pérez-Sánchez, Horacio; Kumar, K Jayaram

    2017-02-01

    To meet the ever increasing industrial demand for excipients with desirable properties, modified starch is regarded as an alternative to it. With this in mind, the present study focuses on the modification of starches of Dioscorea from Jharkhand (India) using dry heat treatment with and without ionic gum. Modified starches were prepared using sodium alginate (1% w/w). Native and modified starches were subjected to heat treatment at 130°C for 2h and 4h. The effect of heating and ionic gum on the properties of Dioscorea starch was investigated. The amylose content, water holding capacity, micromeritic properties, swelling power, solubility and morphology of starches were evaluated. Dry heat treatment of starches without gum showed an increment in water-holding capacity after two-hours heating, but no such increment was found after four-hours heating. Oil binding capacity of starches modified with gum varied from 62% to 78%. Strongest effect of heat treatment occurred on the morphology of starches and thereby modified starches showed distorted surface morphology. Amylose content (21.09-21.89%) found to be decreased with the addition of gum which lead to decrease in paste clarity. Starches heated with gum at high-temperature resulted in restrict swelling and slight increase in solubility. Micromeritic properties of the modified starches showed the good flow properties. Further, the modified starches were investigated for in-vitro release studies and that the thermally modified derivatives can be a good prospect in slow release formulations. Copyright © 2016 Elsevier B.V. All rights reserved.

  4. Lattice dynamical investigation of the Raman and infrared wave numbers and heat capacity properties of the pyrochlores R2Zr2O7 (R = La, Nd, Sm, Eu)

    NASA Astrophysics Data System (ADS)

    Nandi, S.; Jana, Y. M.; Gupta, H. C.

    2018-04-01

    A short-range electrostatic forcefield model has been applied for the first time to investigate the Raman and infrared wave numbers in pyrochlore zirconates R2Zr2O7 (R3+ = La, Nd, Sm, Eu). The calculations of phonons involve five stretching and four bending force constants in the Wilson GF matrix method. The calculated phonon wave numbers are in reasonable agreement with the observed spectra in infrared and Raman excitation zones for all of these isomorphous compounds. The contributions of force constants to each mode show a similar trend of variation for all of these compounds. Furthermore, to validate the established forcefield model, we calculated the standard thermodynamic functions, e.g., molar heat capacity, entropy and enthalpy, and compared the results with the previous experimental data for each compound. Using the derived wave numbers for the acoustic and optical modes, the total phonon contribution to the heat capacity was calculated for all these zirconate compounds. The Schottky heat capacity contributions were also calculated for the magnetic compounds, Nd2Zr2O7, Sm2Zr2O7 and Eu2Zr2O7, taking account of crystal-field level schemes of the lanthanide ions. The derived total heat capacity and the integrated values of molar entropy and molar enthalpy showed satisfactory correlations at low temperatures with the experimental results available in the literature for these compounds. At higher temperatures, the discrepancies may be caused by the anharmonic effects of vibrations, phonon dispersion, distribution of phonon density of states, etc.

  5. Thermodynamics of Ligand Binding to a Heterogeneous RNA Population in the Malachite Green Aptamer

    PubMed Central

    Sokoloski, Joshua E.; Dombrowski, Sarah E.; Bevilacqua, Philip C.

    2011-01-01

    The malachite green aptamer binds two closely related ligands, malachite green (MG) and tetramethylrosamine (TMR), with near equal affinity. The MG ligand consists of three phenyl rings emanating from a central carbon, while TMR has two of the three rings connected by an ether linkage. The binding pockets for MG and TMR in the aptamer, known from high-resolution structure, differ only in the conformation of a few nucleotides. Herein, we applied isothermal titration calorimetry (ITC) to compare the thermodynamics for binding of MG and TMR to the aptamer. Binding heat capacities were obtained from ITC titrations over the temperature range of 15 to 60 °C. Two temperature regimes were found for MG binding: one from 15 to 45 °C where MG bound with a large negative heat capacity and an apparent stoichiometry (n) of ~0.4, and another from 50 to 60 °C where MG bound with positive heat capacity and n~1.1. The binding of TMR, on the other hand, revealed only one temperature regime for binding, with a more modest negative heat capacity and n~1.2. The large difference in heat capacity between the two ligands suggests that significantly more conformational rearrangement occurs upon the binding of MG than TMR, which is consistent with differences in solvent accessible surface area calculated for available ligand-bound structures. Lastly, we note that binding stoichiometry of MG was improved not only by raising the temperature, but also by lowering the concentration of Mg2+ or increasing the time between ITC injections. These studies suggest that binding of a dynamical ligand to a functional RNA requires the RNA itself to have significant dynamics. PMID:22192051

  6. Effective model with strong Kitaev interactions for α -RuCl3

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Suga, Sei-ichiro

    2018-04-01

    We use an exact numerical diagonalization method to calculate the dynamical spin structure factors of three ab initio models and one ab initio guided model for a honeycomb-lattice magnet α -RuCl3 . We also use thermal pure quantum states to calculate the temperature dependence of the heat capacity, the nearest-neighbor spin-spin correlation function, and the static spin structure factor. From the results obtained from these four effective models, we find that, even when the magnetic order is stabilized at low temperature, the intensity at the Γ point in the dynamical spin structure factors increases with increasing nearest-neighbor spin correlation. In addition, we find that the four models fail to explain heat-capacity measurements whereas two of the four models succeed in explaining inelastic-neutron-scattering experiments. In the four models, when temperature decreases, the heat capacity shows a prominent peak at a high temperature where the nearest-neighbor spin-spin correlation function increases. However, the peak temperature in heat capacity is too low in comparison with that observed experimentally. To address these discrepancies, we propose an effective model that includes strong ferromagnetic Kitaev coupling, and we show that this model quantitatively reproduces both inelastic-neutron-scattering experiments and heat-capacity measurements. To further examine the adequacy of the proposed model, we calculate the field dependence of the polarized terahertz spectra, which reproduces the experimental results: the spin-gapped excitation survives up to an onset field where the magnetic order disappears and the response in the high-field region is almost linear. Based on these numerical results, we argue that the low-energy magnetic excitation in α -RuCl3 is mainly characterized by interactions such as off-diagonal interactions and weak Heisenberg interactions between nearest-neighbor pairs, rather than by the strong Kitaev interactions.

  7. 40 CFR Table 1 to Subpart Jjjjjj... - Emission Limits

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... percent oxygen. 3. New biomass-fired boiler with heat input capacity of 30 million Btu per hour or greater a. Particulate Matter 0.03 lb per MMBtu of heat input. 4. New biomass fired boiler with heat input...

  8. 40 CFR Table 1 to Subpart Jjjjjj... - Emission Limits

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... percent oxygen. 3. New biomass-fired boiler with heat input capacity of 30 million Btu per hour or greater a. Particulate Matter 0.03 lb per MMBtu of heat input. 4. New biomass fired boiler with heat input...

  9. Electric home heating: Substitution for oil and gas

    NASA Astrophysics Data System (ADS)

    Burwell, C. C.; Devine, W. D., Jr.; Phung, D. L.

    1982-03-01

    The objective of the research is to determine the potential for substituting electricity generated with surplus coal and nuclear capacity for gas and oil used for home heating. The relative effectiveness of electric heating was determined by an analysis of the purposes of extra winter sales of electricity to the residential sector compared to a similar analysis for extra winter sales of natural gas. The price of electricity for heating is determined based on utility rate structures for selected utilities (primarily located in the north and south central portions of the country) having surplus coal and nuclear capacity throughout the decade of the 1980s. It is found that, on the average, the overall efficiency of fuel use for heating homes electrically is comparable to the use of combustion systems in the home and that electric heating is substantially less costly than direct heating with oil in regions where coal and uranium are the primary fuels used for power generation.

  10. A coupled nuclear reactor thermal energy storage system for enhanced load following operation

    NASA Astrophysics Data System (ADS)

    Alameri, Saeed A.

    Nuclear power plants usually provide base-load electric power and operate most economically at a constant power level. In an energy grid with a high fraction of renewable energy sources, future nuclear reactors may be subject to significantly variable power demands. These variable power demands can negatively impact the effective capacity factor of the reactor and result in severe economic penalties. Coupling the reactor to a large Thermal Energy Storage (TES) block will allow the reactor to better respond to variable power demands. In the system described in this thesis, a Prismatic-core Advanced High Temperature Reactor (PAHTR) operates at constant power with heat provided to a TES block that supplies power as needed to a secondary energy conversion system. The PAHTR is designed to have a power rating of 300 MW th, with 19.75 wt% enriched Tri-Structural-Isotropic UO 2 fuel and a five year operating cycle. The passive molten salt TES system will operate in the latent heat region with an energy storage capacity of 150 MWd. Multiple smaller TES blocks are used instead of one large block to enhance the efficiency and maintenance complexity of the system. A transient model of the coupled reactor/TES system is developed to study the behavior of the system in response to varying load demands. The model uses six-delayed group point kinetics and decay heat models coupled to thermal-hydraulic and heat transfer models of the reactor and TES system. Based on the transient results, the preferred TES design consists of 1000 blocks, each containing 11000 LiCl phase change material tubes. A safety assessment of major reactor events demonstrates the inherent safety of the coupled system. The loss of forced circulation study determined the minimum required air convection heat removal rate from the reactor core and the lowest possible reduced primary flow rate that can maintain the reactor in a safe condition. The loss of ultimate heat sink study demonstrated the ability of the TES to absorb the decay heat of the reactor fuel while cooling the PAHTR after an emergency shutdown. The simulated reactivity insertion accident assessment determined the maximum allowable reactivity insertion to the PAHTR as a function of shutdown response times.

  11. Magnetization and heat-capacity measurements on Zn1-xCrxTe

    NASA Astrophysics Data System (ADS)

    Pekarek, T. M.; Luning, J. E.; Miotkowski, I.; Crooker, B. C.

    1994-12-01

    We have taken magnetization and calorimetric measurements on Zn1-xCrxTe (x=0.003). The heat-capacity measurements show a Schottky peak indicating an energy-level splitting of 3.1 K between the ground and first excited states. Above 1.5 K we observe additional heat capacity, which indicates the presence of additional low-energy vibronic excitations. The magnetization data reveal a small anisotropy (~7%) with the (111) direction giving the largest value. The magnetization data were fit with a model including a static Jahn-Teller distortion proposed previously in these materials [J. T. Vallin, G. A. Slack, S. Roberts, and A. E. Hughes, Phys. Rev. B 2, 4313 (1970)]. Reasonable agreement was found with the data for a spin-orbit parameter of -59 cm-1 and a Jahn-Teller energy of 320 cm-1.

  12. Heat capacity and magnetocaloric effect in manganites (La 1- yEu y) 0.7Pb 0.3MnO 3 ( y:0.2; 0.6)

    NASA Astrophysics Data System (ADS)

    Kartashev, A. V.; Flerov, I. N.; Volkov, N. V.; Sablina, K. A.

    2010-03-01

    Heat capacity and intensive magnetocaloric effect (MCE) in manganites (La 1- yEu y) 0.7Pb 0.3MnO 3 [ y=0.2; 0.6] (LEPM) were investigated by means of adiabatic calorimeter. The heat capacity anomaly as well as the values of both the intensive (Δ TAD) and the extensive (Δ SMCE) MCE were found to decrease upon increased replacement of La with nonmagnetic Eu. However, because of widening of the MCE peaks, the LEPM compounds show the relative cooling power, RCP/Δ H, comparable to other solid solutions of manganites. Owing to strong effect of Eu→La substitution on the Curie temperature, LEPM might have potential as the solid state refrigerants in multi-element cooling apparatus operating in a wide temperature range.

  13. Heat Capacity Mapping Mission investigation no. 25 (Tellus project)

    NASA Technical Reports Server (NTRS)

    Deparatesi, S. G. (Principal Investigator); Reiniger, P. (Editor)

    1982-01-01

    The TELLUS pilot project, utilizing 0.5 to 1.1 micron and 10.5 to 12.5 micron day and/or night imagery from the Heat Capacity Mapping Mission, is described. The application of remotely sensed data to synoptic evaluation of evapotranspiration and moisture in agricultural soils was considered. The influence of topography, soils, land use, and meteorology on surface temperature distribution was evaluated. Anthropogenic heat release was investigated. Test areas extended from semi-arid land in southern Italy to polders in the Netherlands, and from vine-growing hills in the Rhineland to grasslands in Buckinghamshire.

  14. C[subscript p]/C[subscript V] Ratios Measured by the Sound Velocity Method Using Calculator-Based Laboratory Technology

    ERIC Educational Resources Information Center

    Branca, Mario; Soletta, Isabella

    2007-01-01

    The velocity of sound in a gas depends on its temperature, molar mass, and [lambda] = C[subscript p]/C[subscript v], ratio (heat capacity at a constant pressure to heat capacity at constant volume). The [lambda] values for air, oxygen, nitrogen, argon, and carbon dioxide were determined by measuring the velocity of the sound through the gases at…

  15. Low-Temperature Heat Capacities and Standard Molar Enthalpy of Formation of Potassium Benzoate C7H5O2K(s)

    NASA Astrophysics Data System (ADS)

    Yang, Wei-Wei; di, You-Ying; Yin, Zhen-Fen; Kong, Yu-Xia; Tan, Zhi-Cheng

    2009-04-01

    Potassium benzoate C7H5O2K (CAS Registry No. 582-25-2) was synthesized by the method of liquid phase reaction. Chemical and elemental analyses, FTIR, and X-ray powder diffraction (XRD) techniques were applied to characterize the composition and structure of the compound. Low-temperature heat capacities of the compound were measured by a precision automated adiabatic calorimeter over the temperature range from 78 K to 398 K. A polynomial equation of the heat capacities as a function of temperature was fitted by the least-squares method. Smoothed heat capacities and thermodynamic functions of the compound were calculated based on the fitted polynomial. In accordance with Hess’s law, a reasonable thermochemical cycle was designed, and 100 mL of 1 mol · dm-3 NaOH solution was chosen as the calorimetric solvent. The standard molar enthalpies of dissolution for the reactants and products of the supposed reaction in the selected solvent were measured by an isoperibol solution-reaction calorimeter. Finally, the standard molar enthalpy of formation of the title compound C7H5O2K (s) was derived to be -(610.94 ± 0.77) kJ · mol-1.

  16. Molar heat capacity at constant volume of difluoromethane (R32) and pentafluoroethane (R125) from the triple-point temperature to 345 K at pressures to 35 MPa

    NASA Astrophysics Data System (ADS)

    Lüddecke, T. O.; Magee, J. W.

    1996-07-01

    Molar heat capacities at constant volume ( C v) of dill uoromethane (R32) and pentalluoroethane (R125) were measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of a high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase ( C {v/(2)}), saturated liquid ( C σ or C' x ), and singlephase ( C v) molar heat capacities. The C σ data were used to estimate vapor pressures for values less than 0.3 MPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature ( T tr) and the enthalpy of fusion (Δfus H) were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-ofvolume work adjustment. The expanded uncertainty (at the two-sigma level) for C v is estimated to be 0.7%, for C {v/(2)} it is 0.5%, and for C σ it is 0.7%.

  17. Geothermal resources and energy complex use in Russia

    NASA Astrophysics Data System (ADS)

    Svalova, V.

    2009-04-01

    Geothermal energy use is the perspective way to clean sustainable development of the world. Russia has rich high and low temperature geothermal resources and makes good steps in their use. In Russia the geothermal resources are used predominantly for heat supply both heating of several cities and settlements on Northern Caucasus and Kamchatka with a total number of the population 500000. Besides in some regions of country the deep heat is used for greenhouses of common area 465000 m2. Most active the hydrothermal resources are used in Krasnodar territory, Dagestan and on Kamchatka. The approximately half of extracted resources is applied for heat supply of habitation and industrial puttings, third - to a heating of greenhouses, and about 13 % - for industrial processes. Besides the thermal waters are used approximately on 150 health resorts and 40 factories on bottling mineral water. The most perspective direction of usage of low temperature geothermal resources is the use of heat pumps. This way is optimal for many regions of Russia - in its European part, on Ural and others. The electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands. At present three stations work in Kamchatka: Pauzhetka GeoPP (11MW e installed capacity) and two Severo-Mutnovka GeoPP ( 12 and 50 MWe). Moreover, another GeoPP of 100 MVe is now under preparation in the same place. Two small GeoPP are in operation in Kuril's Kunashir Isl, and Iturup Isl, with installed capacity of 2,б MWe and 6 MWe respectively. There are two possible uses of geothermal resources depending on structure and properties of thermal waters: heat/power and mineral extraction. The heat/power direction is preferable for low mineralized waters when valuable components in industrial concentration are absent, and the general mineralization does not interfere with normal operation of system. When high potential geothermal waters are characterized by the high mineralization and propensity for scaling, the extraction of mineral components should be considered. The mineral-extraction direction is basic for geothermal waters, containing valuable components in industrial quantities. Thus, the ability to extract minerals is dependent upon the use and maturity of recovery technologies. For such waters the heat is an added product, which use can raise efficiency of basic mineral production processes and even to save fuel. The process of extraction of valuable components should be dominant in such systems. The most significant deposits of thermal waters represent the brines containing from 35 up to 400 and more g/l of salts. They are mineral raw materials for many chemical elements. Many brines can become deposits of valuable chemical elements: cesium, boron, strontium, tantalum, magnesium, calcium, tungsten, etc. Basically it is possible to recover iodine, bromine, boron, chloride salts of ammonium, potassium, sodium, calcium and magnesium from natural solutions using inexpensive technological solutions. Extraction of other chemical elements is complicated due to high cost of technology. There is a perspective method of ion-exchange pitches for selective extraction of certain components from natural waters. In a basis of the method there is the principle of selective sorption of ions of useful elements or their complexes in solutions with special compounds. Works of some scientific institutes in Russia strive to create the procedures of chemical processing of hydrothermal minerals to expand the spheres of its economic application. Many laboratory and natural tests on extraction of valuable components from thermal waters confirm the necessity and an opportunity of complex use of this nonconventional raw material. It is planned to recover I, Br, KCl, CaCl, NaCl from brines in Yaroslavl area. New methods of mineral and valuable elements extraction from industrial solutions are developed on the basis of biosorbent use.

  18. Binding Thermodynamics of Ferredoxin:NADP+ Reductase: Two Different Protein Substrates and One Energetics

    PubMed Central

    Martínez-Júlvez, Marta; Medina, Milagros; Velázquez-Campoy, Adrián

    2009-01-01

    Abstract The thermodynamics of the formation of binary and ternary complexes between Anabaena PCC 7119 FNR and its substrates, NADP+ and Fd, or Fld, has been studied by ITC. Despite structural dissimilarities, the main difference between Fd and Fld binding to FNR relates to hydrophobicity, reflected in different binding heat capacity and number of water molecules released from the interface. At pH 8, the formation of the binary complexes is both enthalpically and entropically driven, accompanied by the protonation of at least one ionizable group. His299 FNR has been identified as the main responsible for the proton exchange observed. However, at pH 10, where no protonation occurs and intrinsic binding parameters can be obtained, the formation of the binary complexes is entropically driven, with negligible enthalpic contribution. Absence of the FMN cofactor in Fld does not alter significantly the strength of the interaction, but considerably modifies the enthalpic and entropic contributions, suggesting a different binding mode. Ternary complexes show negative cooperativity (6-fold and 11-fold reduction in binding affinity, respectively), and an increase in the enthalpic contribution (more favorable) and a decrease in the entropic contribution (less favorable), with regard to the binary complexes energetics. PMID:19527656

  19. Visual Short-Term Memory Capacity for Simple and Complex Objects

    ERIC Educational Resources Information Center

    Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto

    2010-01-01

    Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not…

  20. Aquatic Humic Substances: Relationship Between Origin and Complexing Capacity.

    PubMed

    González-Guadarrama, María de Jesús; Armienta-Hernández, Ma Aurora; Rosa, André H

    2018-05-01

    Aiming to determine the relationship between source and complexing capacity, humic substances obtained from three sites (Sorocaba and Itapanhau Brasilian rivers, and Xochimilco Lake in Mexico) were studied. Copper, manganese, zinc and arsenic complexing capacity were determined for the three substances under various pH conditions. Results showed similar complexing capacity for the three elements depending on the chemistry of each one and on the physico-chemical conditions. Speciation diagrams showed that these conditions affect both, the humic substances, and the transition metals and arsenic.

  1. Efficacy of heat treatment for disinfestation of concrete grain silos

    USDA-ARS?s Scientific Manuscript database

    Field experiments were conducted in 2007 and 2008 to evaluate heat treatment for disinfestations of empty concrete elevator silos. A Mobile Heat Treatment Unit was used to introduce heat into silos to attain target conditions of 50°C for at least 6 h. Ventilated plastic containers with a capacity of...

  2. The 70 kDa Heat Shock Protein Assists during the Repair of Chilling Injury in the Insect, Pyrrhocoris apterus

    PubMed Central

    Koštál, Vladimír; Tollarová-Borovanská, Michaela

    2009-01-01

    Background The Pyrrhocoris apterus (Insecta: Heteroptera) adults attain high levels of cold tolerance during their overwintering diapause. Non-diapause reproducing adults, however, lack the capacity to express a whole array of cold-tolerance adaptations and show relatively low survival when exposed to sub-zero temperatures. We assessed the competence of non-diapause males of P. apterus for responding to heat- and cold-stresses by up-regulation of 70 kDa heat shock proteins (Hsps) and the role of Hsps during repair of heat- and cold-induced injury. Principal Findings The fragments of P. apterus homologues of Hsp70 inducible (PaHsp70) and cognate forms (PaHsc70) were cloned and sequenced. The abundance of mRNA transcripts for the inducible form (qPCR) and corresponding protein (Western blotting) were significantly up-regulated in response to high and low temperature stimuli. In the cognate form, mRNA was slightly up-regulated in response to both stressors but very low or no up-regulation of protein was apparent after heat- or cold-stress, respectively. Injection of 695 bp-long Pahsp70 dsRNA (RNAi) caused drastic suppression of the heat- and cold-stress-induced Pahsp70 mRNA response and the up-regulation of corresponding protein was practically eliminated. Our RNAi predictably prevented recovery from heat shock and, in addition, negatively influenced repair of chilling injuries caused by cold stress. Cold tolerance increased when the insects were first exposed to a mild heat shock, in order to trigger the up-regulation of PaHsp70, and subsequently exposed to cold stress. Conclusion Our results suggest that accumulation of PaHsp70 belongs to a complex cold tolerance adaptation in the insect Pyrrhocoris apterus. PMID:19229329

  3. Seasonal and geographical variation in heat tolerance and evaporative cooling capacity in a passerine bird.

    PubMed

    Noakes, Matthew J; Wolf, Blair O; McKechnie, Andrew E

    2016-03-01

    Intraspecific variation in avian thermoregulatory responses to heat stress has received little attention, despite increasing evidence that endothermic animals show considerable physiological variation among populations. We investigated seasonal (summer versus winter) variation in heat tolerance and evaporative cooling in an Afrotropical ploceid passerine, the white-browed sparrow-weaver (Plocepasser mahali; ∼ 47 g) at three sites along a climatic gradient with more than 10 °C variation in mid-summer maximum air temperature (Ta). We measured resting metabolic rate (RMR) and total evaporative water loss (TEWL) using open flow-through respirometry, and core body temperature (Tb) using passive integrated transponder tags. Sparrow-weavers were exposed to a ramped profile of progressively higher Ta between 30 and 52 °C to elicit maximum evaporative cooling capacity (N=10 per site per season); the maximum Ta birds tolerated before the onset of severe hyperthermia (Tb ≈ 44 °C) was considered to be their hyperthermia threshold Ta (Ta,HT). Our data reveal significant seasonal acclimatisation of heat tolerance, with a desert population of sparrow-weavers reaching significantly higher Ta in summer (49.5 ± 1.4 °C, i.e. higher Ta,HT) than in winter (46.8 ± 0.9 °C), reflecting enhanced evaporative cooling during summer. Moreover, desert sparrow-weavers had significantly higher heat tolerance and evaporative cooling capacity during summer compared with populations from more mesic sites (Ta,HT=47.3 ± 1.5 and 47.6 ± 1.3 °C). A better understanding of the contributions of local adaptation versus phenotypic plasticity to intraspecific variation in avian heat tolerance and evaporative cooling capacity is needed for modelling species' responses to changing climates. © 2016. Published by The Company of Biologists Ltd.

  4. Introductory heat-transfer

    NASA Technical Reports Server (NTRS)

    Widener, Edward L.

    1992-01-01

    The objective is to introduce some concepts of thermodynamics in existing heat-treating experiments using available items. The specific objectives are to define the thermal properties of materials and to visualize expansivity, conductivity, heat capacity, and the melting point of common metals. The experimental procedures are described.

  5. Cargo systems manual: Heat Pipe Performance (HPP) STS-66

    NASA Technical Reports Server (NTRS)

    Napp, Robert

    1994-01-01

    The purpose of the cargo systems manual (CSM) is to provide a payload reference document for payload and shuttle flight operations personnel during shuttle mission planning, training, and flight operations. It includes orbiter-to-payload interface information and payload system information (including operationally pertinent payload safety data) that is directly applicable to the Mission Operations Directorate (MOD) role in the payload mission. The primary objectives of the heat pipe performance (HPP) are to obtain quantitative data on the thermal performance of heat pipes in a microgravity environment. This information will increase understanding of the behavior of heat pipes in space and be useful for application to design improvements in heat pipes and associated systems. The purpose of HPP-2 is to establish a complete one-g and zero-g data base for axial groove heat pipes. This data will be used to update and correlate data generated from a heat pipe design computer program called Grooved Analysis Program (GAP). The HPP-2 objectives are to: determine heat transport capacity and conductance for open/closed grooved heat pipes and different Freon volumes (nominal, under, and overcharged) using a uniform heat load; determine heat transport capacity and conductance for single/multiple evaporators using asymmetric heat loads; obtain precise static, spin, and rewicking data points for undercharged pipes; investigate heat flux limits (asymmetric heat loads); and determine effects of positive body force on thermal performance.

  6. Multipurpose Vacuum Induction Processing System

    NASA Astrophysics Data System (ADS)

    Govindaraju, M.; Kulkarni, Deepak; Balasubramanian, K.

    2012-11-01

    Multipurpose vacuum processing systems are cost effective; occupy less space, multiple functional under one roof and user friendly. A multipurpose vacuum induction system was designed, fabricated and installed in a record time of 6 months time at NFTDC Hyderabad. It was designed to function as a) vacuum induction melting/refining of oxygen free electronic copper/pure metals, b) vacuum induction melting furnace for ferrous materials c) vacuum induction melting for non ferrous materials d) large vacuum heat treatment chamber by resistance heating (by detachable coil and hot zone) e) bottom discharge vacuum induction melting system for non ferrous materials f) Induction heat treatment system and g) directional solidification /investment casting. It contains provision for future capacity addition. The attachments require to manufacture multiple shaped castings and continuous rod casting can be added whenever need arises. Present capacity is decided on the requirement for 10years of development path; presently it has 1.2 ton liquid copper handling capacity. It is equipped with provision for capacity addition up to 2 ton liquid copper handling capacity in future. Provision is made to carry out the capacity addition in easy steps quickly. For easy operational maintenance and troubleshooting, design was made in easily detachable sections. High vacuum system is also is detachable, independent and easily movable which is first of its kind in the country. Detailed design parameters, advantages and development history are presented in this paper.

  7. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 2 2013-10-01 2013-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  8. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 2 2011-10-01 2011-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  9. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 2 2010-10-01 2010-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  10. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 2 2014-10-01 2014-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  11. 46 CFR 53.05-5 - Discharge capacities and valve markings.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 2 2012-10-01 2012-10-01 false Discharge capacities and valve markings. 53.05-5 Section 53.05-5 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) MARINE ENGINEERING HEATING BOILERS Pressure Relieving Devices (Article 4) § 53.05-5 Discharge capacities and valve markings. The discharge capacities and valve markings must...

  12. A solar receiver-storage modular cascade based on porous ceramic structures for hybrid sensible/thermochemical solar energy storage

    NASA Astrophysics Data System (ADS)

    Agrafiotis, Christos; de Oliveira, Lamark; Roeb, Martin; Sattler, Christian

    2016-05-01

    The current state-of-the-art solar heat storage concept in air-operated Solar Tower Power Plants is to store the solar energy provided during on-sun operation as sensible heat in porous solid materials that operate as recuperators during off-sun operation. The technology is operationally simple; however its storage capacity is limited to 1.5 hours. An idea for extending this capacity is to render this storage concept from "purely" sensible to "hybrid" sensible/ thermochemical one, via coating the porous heat exchange modules with oxides of multivalent metals for which their reduction/oxidation reactions are accompanied by significant heat effects, or by manufacturing them entirely of such oxides. In this way solar heat produced during on-sun operation can be used (in addition to sensibly heating the porous solid) to power the endothermic reduction of the oxide from its state with the higher metal valence to that of the lower; the thermal energy can be entirely recovered by the reverse exothermic oxidation reaction (in addition to sensible heat) during off-sun operation. Such sensible and thermochemical storage concepts were tested on a solar-irradiated receiver- heat storage module cascade for the first time. Parametric studies performed so far involved the comparison of three different SiC-based receivers with respect to their capability of supplying solar-heated air at temperatures sufficient for the reduction of the oxides, the effect of air flow rate on the temperatures achieved within the storage module, as well as the comparison of different porous storage media made of cordierite with respect to their sensible storage capacity.

  13. Dimensionless Model of a Thermoelectric Cooling Device Operating at Real Heat Transfer Conditions: Maximum Cooling Capacity Mode

    NASA Astrophysics Data System (ADS)

    Melnikov, A. A.; Kostishin, V. G.; Alenkov, V. V.

    2017-05-01

    Real operating conditions of a thermoelectric cooling device are in the presence of thermal resistances between thermoelectric material and a heat medium or cooling object. They limit performance of a device and should be considered when modeling. Here we propose a dimensionless mathematical steady state model, which takes them into account. Analytical equations for dimensionless cooling capacity, voltage, and coefficient of performance (COP) depending on dimensionless current are given. For improved accuracy a device can be modeled with use of numerical or combined analytical-numerical methods. The results of modeling are in acceptable accordance with experimental results. The case of zero temperature difference between hot and cold heat mediums at which the maximum cooling capacity mode appears is considered in detail. Optimal device parameters for maximal cooling capacity, such as fraction of thermal conductance on the cold side y, fraction of current relative to maximal j' are estimated in range of 0.38-0.44 and 0.48-0.95, respectively, for dimensionless conductance K' = 5-100. Also, a method for determination of thermal resistances of a thermoelectric cooling system is proposed.

  14. Rapid, in Situ Synthesis of High Capacity Battery Anodes through High Temperature Radiation-Based Thermal Shock.

    PubMed

    Chen, Yanan; Li, Yiju; Wang, Yanbin; Fu, Kun; Danner, Valencia A; Dai, Jiaqi; Lacey, Steven D; Yao, Yonggang; Hu, Liangbing

    2016-09-14

    High capacity battery electrodes require nanosized components to avoid pulverization associated with volume changes during the charge-discharge process. Additionally, these nanosized electrodes need an electronically conductive matrix to facilitate electron transport. Here, for the first time, we report a rapid thermal shock process using high-temperature radiative heating to fabricate a conductive reduced graphene oxide (RGO) composite with silicon nanoparticles. Silicon (Si) particles on the order of a few micrometers are initially embedded in the RGO host and in situ transformed into 10-15 nm nanoparticles in less than a minute through radiative heating. The as-prepared composites of ultrafine Si nanoparticles embedded in a RGO matrix show great performance as a Li-ion battery (LIB) anode. The in situ nanoparticle synthesis method can also be adopted for other high capacity battery anode materials including tin (Sn) and aluminum (Al). This method for synthesizing high capacity anodes in a RGO matrix can be envisioned for roll-to-roll nanomanufacturing due to the ease and scalability of this high-temperature radiative heating process.

  15. Boiler water regime

    NASA Astrophysics Data System (ADS)

    Khavanov, Pavel; Chulenyov, Anatoly

    2017-10-01

    Active development of autonomous heating the past 25 years has led to the widespread use of hot-water boilers of small capacity up to 2.5 MW. Rational use of the design of autonomous sources of heating boilers design features significantly improve their technical, economic and operational performance. This publication reviewed and analyzed a number of features of the design, operation and exploitation of boilers of small capacity, significantly affecting the efficiency and reliability of their application.

  16. Heat capacities and entropies of rhodochrosite (MnCO3) and siderite (FeCO3) between 5 and 600 K.

    USGS Publications Warehouse

    Robie, R.A.; Haselton, H.T.; Hemingway, B.S.

    1984-01-01

    The heat capacities of rhodochrosite, (Mn0.994Fe0.005Mg0.001)CO3, and siderite, 171(Fe0.956Mn0.042Mg0.002)CO3, were measured between 5 and 550 K by combined cryogenic-adiabatic and differential scanning calorimetry. These new data were used to reanalyse the thermodynamic properties of these phases.-J.A.Z.

  17. The development of a high-capacity instrument module heat transport system, appendixes

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Data sheets provide temperature requirements for 82 individual instruments that are under development or planned for grouping on a space platform or pallet. The scientific objectives of these instrument packages are related to solar physics, space plasma physics, astronomy, high energy astrophysics, resources observations, environmental observations, materials processing, and life sciences. System specifications are given for a high capacity instrument module heat transport system to be used with future payloads.

  18. The phonon theory of liquid thermodynamics

    PubMed Central

    Bolmatov, D.; Brazhkin, V. V.; Trachenko, K.

    2012-01-01

    Heat capacity of matter is considered to be its most important property because it holds information about system's degrees of freedom as well as the regime in which the system operates, classical or quantum. Heat capacity is well understood in gases and solids but not in the third main state of matter, liquids, and is not discussed in physics textbooks as a result. The perceived difficulty is that interactions in a liquid are both strong and system-specific, implying that the energy strongly depends on the liquid type and that, therefore, liquid energy can not be calculated in general form. Here, we develop a phonon theory of liquids where this problem is avoided. The theory covers both classical and quantum regimes. We demonstrate good agreement of calculated and experimental heat capacity of 21 liquids, including noble, metallic, molecular and hydrogen-bonded network liquids in a wide range of temperature and pressure. PMID:22639729

  19. Thermodynamic properties of isomeric pentanols under elevated pressures determined by the acoustic method

    NASA Astrophysics Data System (ADS)

    Dzida, M.

    2008-02-01

    Three isomeric pentanols were studied: pentan-1-ol, 2-methyl-1-buta- nol, and 2-methyl-2-butanol. Isobaric heat capacities and internal pressure at pressures up to 100 MPa and temperatures ranging from 293 K to 318 K were determined by the acoustic method. In calculations the measured speeds of sound as function of temperature and pressure together with densities as function of temperature under atmospheric pressure and the literature isobaric heat capacities for the atmospheric pressure were used. To this end, the method, based on the suggestion of Davis and Gordon [1] was applied. The results obtained show that the effect of pressure on and the values of isobaric heat capacity and internal presure of 2-methyl-2-butanol is higher than that of pentan-1-ol, 2-methyl-1-butanol over the whole pressure range. That facilitates telling 2-methyl-2-butanol from pentan-1-ol and 2-methyl-1-butanol.

  20. Vibrational properties, phonon spectrum and related thermal parameters of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine: a theoretical study.

    PubMed

    Qian, Wen; Zhang, Weibin; Zong, Hehou; Gao, Guofang; Zhou, Yang; Zhang, Chaoyang

    2016-01-01

    The vibrational spectrum, phonon dispersion curve, and phonon density of states (DOS) of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (β-HMX) crystal were obtained by molecular simulation and calculations. As results, it was found that the peaks at low frequency (0-2.5 THz) are comparable with the experimental Terahertz absorption and the molecular vibrational modes are in agreement with previous reports. Thermodynamic properties including Gibbs free energy, enthalpy, and heat capacity as functions of temperature were obtained based on the calculated phonon spectrum. The heat capacity at normal temperature was calculated using linear fitting method, with a result consistent with experiments. Graphical Abstract Phonon spectrum and heat capacity of β-octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine from DFT calculation.

  1. Evaluating Moisture Control of Variable-Capacity Heat Pumps in Mechanically Ventilated, Low-Load Homes in Climate Zone 2A

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Eric; Withers, Chuck; McIlvaine, Janet

    The well-sealed, highly insulated building enclosures constructed by today's home building industry coupled with efficient lighting and appliances are achieving significantly reduced heating and cooling loads. These low-load homes can present a challenge when selecting appropriate space-conditioning equipment. Conventional, fixed-capacity heating and cooling equipment is often oversized for small homes, causing increased first costs and operating costs. Even if fixed-capacity equipment can be properly specified for peak loads, it remains oversized for use during much of the year. During these part-load cooling hours, oversized equipment meets the target dry-bulb temperatures very quickly, often without sufficient opportunity for moisture control. Themore » problem becomes more acute for high-performance houses in humid climates when meeting ASHRAE Standard 62.2 recommendations for wholehouse mechanical ventilation.« less

  2. On the Induction of the First-Order Phase Magnetic Transitions by Acoustic Vibrations in MnSi

    NASA Astrophysics Data System (ADS)

    Pikin, S. A.

    2017-12-01

    The main result of the paper contains the conclusion that the magnetic phase transition in MnSi always remains first order at any temperature and magnetic field. In these aims, a model of coupling of an order parameter with other degrees of freedom is used. The coupling of magnetic order parameters with long-wave acoustic phonons, in the presence of the nonsingular parts of the bulk and shear moduli, a first-order transition occurs, participle near the transition the heat capacity and the compressibility remain finite, if the heat capacity becomes infinite in the system disregarding the acoustic phonons. The role of the Frenkel heterophase fluctuations is discussed. The impurity effect shows that, for some phases, the heat capacity of the system remains continuous and finite at the transition point. It is supposed that the transition is progressively smoothed by these fluctuations at the application of the magnetic field.

  3. On the induction of the first-order phase magnetic transitions by acoustic vibrations in MnSi

    NASA Astrophysics Data System (ADS)

    Pikin, S. A.

    2017-12-01

    The main result of the paper contains the conclusion that the magnetic phase transition in MnSi always remains first order at any temperature and magnetic field. In these aims, a model of coupling of an order parameter with other degrees of freedom is used. The coupling of magnetic order parameters with longwave acoustic phonons, in the presence of the nonsingular parts of the bulk and shear moduli, a first-order transition occurs, participle near the transition the heat capacity and the compressibility remain finite, if in the system without allowance of the acoustic phonons the heat capacity becomes infinite. The role of the Frenkel heterophase fluctuations is discussed. The impurity effect shows that, for some phases, the heat capacity of the system remains continuous and finite at the transition point. It is supposed that the transition is progressively smoothed by these fluctuations at the application of the magnetic field.

  4. Controlling Thermodynamic Properties of Ferromagnetic Group-IV Graphene-Like Nanosheets by Dilute Charged Impurity

    NASA Astrophysics Data System (ADS)

    Yarmohammadi, Mohsen; Mirabbaszadeh, Kavoos

    2017-05-01

    Using the Kane-Mele Hamiltonian, Dirac theory and self-consistent Born approximation, we investigate the effect of dilute charged impurity on the electronic heat capacity and magnetic susceptibility of two-dimensional ferromagnetic honeycomb structure of group-IV elements including silicene, germanene and stanene within the Green’s function approach. We also find these quantities in the presence of applied external electric field. Our results show that the silicene (stanene) has the maximum (minimum) heat capacity and magnetic susceptibility at uniform electric fields. From the behavior of theses quantities, the band gap has been changed with impurity concentration, impurity scattering strength and electric field. The analysis on the impurity-dependent magnetic susceptibility curves shows a phase transition from ferromagnetic to paramagnetic and antiferromagnetic phases. Interestingly, electronic heat capacity increases (decreases) with impurity concentration in silicene (germanene and stanene) structure.

  5. Feasibility Study for the Ivano-Frankivsk District Heating Repowering: Analysis of Options

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Markel, L.; Popelka, A.; Laskarevsky, V.

    2002-03-20

    Part of the U.S. Initiative on Joint Implementation with the Ukraine Inter-Ministerial Commission on Climate Change, financed by the US Department of Energy. The project was implemented by a team consisting of the US company SenTech, Inc. and the Ukrainian company Esco-West. The main objective of the effort was to assess available alternatives of Ivano-Frankivsk (I-F) District Heating repowering and provide information for I-F's investment decision process. This study provides information on positive and negative technical and economic aspects of available options. Three options were analyzed for technical merit and economic performance: 1. Installation of cogeneration system based on Gasmore » Turbine (GT) and Heat Recovery Heat Exchanger with thermal capacity of 30 MW and electrical capacity of 13.5 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. Equipment in this Option was sized for longest operating hours, about 8000 based on the available summer baseload. 2. Installation of Gas Turbine Combined Cycle (GTCC) and Heat Recovery Steam Generator (HRSG) with thermal capacity 45 MW and electrical capacity of 58.7 MW. This Option assumes utilization of five existing boilers with total capacity of 221 MW. Existing boilers will be equipped with modern controls. The equipment was sized for medium, shoulder season thermal load, and some cooling was assumed during the summer operation for extension of operating hours for electricity production. 3. Retrofit of six existing boilers (NGB) with total thermal capacity of 255.9 MW by installation of modern control system and minor upgrades. This option assumes only heat production with minimum investment. The best economic performance and the largest investment cost would result from alternative GTCC. This alternative has positive Net Present Value (NPV) with discount rate lower than about 12%, and has IRR slightly above 12%. The lowest economic results, and the lowest required investment, would result from alternative NGB. This Option's NPV is negative even at 0% discount rate, and would not become positive even by improving some parameters within a reasonable range. The Option with Gas Turbine displays relatively modest results and the NPV is positive for low discount rate, higher price of sold electricity and lower cost of natural gas. The IRR of this alternative is 9.75%, which is not very attractive. The largest influences on the investment are from the cost of electricity sold to the grid, the heat tariff, and the cost of natural gas. Assuming the implementation of the GTCC alternative, the benefit of the project is also reflected in lower Green House Emissions.« less

  6. A room-temperature phase transition in maximum microcline - Heat capacity measurements

    USGS Publications Warehouse

    Openshaw, R.E.; Hemingway, B.S.; Robie, R.A.; Krupka, K.M.

    1979-01-01

    The thermal hysteresis in heat capacity measurements recently reported (Openshaw et al., 1976) for a maximum microcline prepared from Amelia albite by fused-salt ion-exchange is described in detail. The hysteresis is characterized by two limiting and reproducible curves which differ by 1% of the measured heat capacities. The lower curve, denoted curve B, represents the values obtained before the sample had been cooled below 300 K. Measurements made immediately after cooling the sample below 250 K followed a second parallel curve, curve A, to at least 370 K. Values intermediate to the two limiting curves were also obtained. The transitions from the B to the A curve were rapid and observed to occur three times. The time required to complete the transition from the A to the B curve increased from 39 h to 102 h in the two times it was observed to occur. The hysteresis is interpreted as evidence of a phase change in microcline at 300??10 K The heat effect associated with the phase change has not been evaluated. ?? 1979 Springer-Verlag.

  7. Effects of pretreatments on anthocyanin composition, phenolics contents and antioxidant capacities during fermentation of hawthorn (Crataegus pinnatifida) drink.

    PubMed

    Liu, Suwen; Chang, Xuedong; Liu, Xiufeng; Shen, Zhanwei

    2016-12-01

    The effect of microwave and heat pretreatment on the content and composition of anthocyanins, phenolics, and the antioxidant capacity of hawthorn drink were studied. Nine anthocyanins were isolated by chromatographic separation from the Zirou hawthorn source and their structure identified using HPLC-DAD-ESI/MS analysis. Heat and microwave pretreatments had a significant impact on the relative contents of hawthorn anthocyanins, such as cyanidin-3-galactoside (82.9% and 76.9%, respectively) and cyanidin-3-glucoside (9.2% and 11.5%, respectively). Pretreatment had no significant effect on pH, total soluble solid or total acid. More anthocyanins remained after heat treatment than after microwaving (0.745mg/100mL), and were 52.4% higher than the control group after storage for 7days. The colour density of the heat treated group was higher than the control group (24.5%) after 12days of fermentation. The main antioxidant capacities of the hawthorn drinks came from total polyphenolics rather than total anthocyanins or total flavonoids. Copyright © 2016 Elsevier Ltd. All rights reserved.

  8. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2015-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and multifunctional operation. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flight-like, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  9. High-Capacity Spacesuit Evaporator Absorber Radiator (SEAR)

    NASA Technical Reports Server (NTRS)

    Izenson, Michael G.; Chen, Weibo; Phillips, Scott; Chepko, Ariane; Bue, Grant; Quinn, Gregory

    2014-01-01

    Future human space exploration missions will require advanced life support technology that can operate across a wide range of applications and environments. Thermal control systems for space suits and spacecraft will need to meet critical requirements for water conservation and adaptability to highly variable thermal environments. This paper describes a Space Evaporator Absorber Radiator (SEAR) that has been designed to meet performance requirements for future life support systems. A SEAR system comprises a lithium chloride absorber radiator (LCAR) for heat rejection coupled with a space water membrane evaporator (SWME) for heat acquisition. SEAR systems provide heat pumping to minimize radiator size, thermal storage to accommodate variable environmental conditions, and water absorption to minimize use of expendables. We have built and tested a flightlike, high-capacity LCAR, demonstrated its performance in thermal vacuum tests, and explored the feasibility of an ISS demonstration test of a SEAR system. The new LCAR design provides the same cooling capability as prior LCAR prototypes while enabling over 30% more heat absorbing capacity. Studies show that it should be feasible to demonstrate SEAR operation in flight by coupling with an existing EMU on the space station.

  10. Thermodynamic properties of methane hydrate in quartz powder.

    PubMed

    Voronov, Vitaly P; Gorodetskii, Evgeny E; Safonov, Sergey S

    2007-10-04

    Using the experimental method of precision adiabatic calorimetry, the thermodynamic (equilibrium) properties of methane hydrate in quartz sand with a grain size of 90-100 microm have been studied in the temperature range of 260-290 K and at pressures up to 10 MPa. The equilibrium curves for the water-methane hydrate-gas and ice-methane hydrate-gas transitions, hydration number, latent heat of hydrate decomposition along the equilibrium three-phase curves, and the specific heat capacity of the hydrate have been obtained. It has been experimentally shown that the equilibrium three-phase curves of the methane hydrate in porous media are shifted to the lower temperature and high pressure with respect to the equilibrium curves of the bulk hydrate. In these experiments, we have found that the specific heat capacity of the hydrate, within the accuracy of our measurements, coincides with the heat capacity of ice. The latent heat of the hydrate dissociation for the ice-hydrate-gas transition is equal to 143 +/- 10 J/g, whereas, for the transition from hydrate to water and gas, the latent heat is 415 +/- 15 J/g. The hydration number has been evaluated in the different hydrate conditions and has been found to be equal to n = 6.16 +/- 0.06. In addition, the influence of the water saturation of the porous media and its distribution over the porous space on the measured parameters has been experimentally studied.

  11. Characterization and Evaluation of a Mass Efficient Heat Storage Device.

    NASA Technical Reports Server (NTRS)

    Splinter, Scott C.; Blosser, Max L.; Gifford, Andrew R.

    2007-01-01

    The heat sponge is a device for mass-efficient storage of heat. It was developed to be incorporated in the substructure of a reentry or hypersonic vehicle to reduce thermal protection system requirements. The heat sponge consists of a liquid-vapor mixture contained within a number of miniature pressure vessels that can be embedded within a variety of different types of structures. As temperature is increased, pressure in the miniature pressure vessels also increases so that heat absorbed through vaporization of the liquid is spread over a relatively large temperature range. Using water as a working fluid, the heat storage capacity of the liquid-vapor mixture is many times higher than that of typical structural materials and is well above that of common phase change materials over the temperature range of 660oR to 1160oR. Prototype heat sponges were fabricated and characterized. These heat sponges consisted of 1.0 inch diameter hollow stainless steel spheres with a wall thickness of 0.020 inches which had varying percentages of their interior volumes filled with water. An apparatus to measure the heat stored in these prototype heat sponges was designed, fabricated, and verified. The heat storage capacity calculated from measured temperature histories is compared to numerical predictions.

  12. Measured Performance of a Low Temperature Air Source Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, R. K.

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor 'boosted heat pump' technology. The Low Temperature Heat Pumpsystem operates with four increasing levels of capacity (heat output) as the outdoor temperature drops. The system was shown to select capacity correctly, supplying the appropriate amount of heat to the house across the full range of outdoor temperatures. The system'smore » Coefficient of Performance (Seasonal COP, or SCOP) over two entire winters was calculated, based on measured data, to be 3.29over the first winter and 2.68 over the second winter. A second seasonal efficiency calculation by a different method yielded a SCOP of 2.78 for the first winter and 2.83 for the second winter. This second seasonal efficiency calculation was determined by comparing measured heat pump energy use to the in situ energy use with resistance heat alone. This method is the ratio of the slopes of thedaily energy use load lines.« less

  13. Consensus Recommendations on Training and Competing in the Heat.

    PubMed

    Racinais, Sébastien; Alonso, Juan-Manuel; Coutts, Aaron J; Flouris, Andreas D; Girard, Olivier; González-Alonso, José; Hausswirth, Christophe; Jay, Ollie; Lee, Jason K W; Mitchell, Nigel; Nassis, George P; Nybo, Lars; Pluim, Babette M; Roelands, Bart; Sawka, Michael N; Wingo, Jonathan; Périard, Julien D

    2015-07-01

    Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Heat acclimatization should comprise repeated exercise-heat exposures over 1-2 weeks. In addition, athletes should initiate competition and training in an euhydrated state and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vests), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimizing the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events for hydration and body cooling opportunities when competitions are held in the heat.

  14. Vibrational collapse of boroxol rings in compacted B2O3 glasses: a study of Raman scattering and low temperature specific heat

    NASA Astrophysics Data System (ADS)

    Carini, Giovanni, Jr.; Carini, Giuseppe; D’Angelo, Giovanna; Federico, Mauro; Romano, Valentino

    2018-05-01

    Low and high frequency Raman scattering of B2O3 glasses, compacted under GPa pressures, has been performed to investigate structural changes due to increasing atomic packing. Compacted glasses, annealed at ambient temperature and pressure, experience a time-dependent decrease of the density to a smaller constant value over a period of few months, displaying a permanent plastic deformation. Increasing densification determines a parallel and progressive decrease of the intensity of the Boson peak and the main band at 808 cm‑1, both these modes arising from localized vibrations involving planar boroxol rings (B3O6), the glassy units formed from three basic BO3 triangles. The 808 cm‑1 mode preserves its frequency, while the BP evidences a well-defined frequency increase. The high-frequency multicomponent band between 1200 and 1600 cm‑1 also changes with increasing densification, disclosing a decreasing intensity of the 1260 cm‑1 mode due to oxygen vibrations of BO3 units bridging boroxol rings. This indicates the gradual vibrational collapse of groups formed from rings connected by more complex links than a single bridging oxygen. The observed behaviours suggest that glass compaction causes severe deformation of boroxol rings, determining a decrease of groups which preserve unaltered their vibrational activity. Growing glass densification stiffens the network and leads to a decrease of the excess heat capacity over the Debye prediction below 20 K, which is not accounted for by the hardening of the elastic continuum. By using the low-frequency Raman scattering to determine the temperature dependence of the heat capacity, it has been evaluated the density of low-frequency vibrational states which discloses a significant reduction of excess modes with increasing density.

  15. Improvement of cooldown time of LSF9599 flexure-bearing SADA cooler

    NASA Astrophysics Data System (ADS)

    Mullié, Jeroen; vd Groep, Willem; Bruins, Peter; Benschop, Tonny; de Koning, Arjan; Dam, Jacques

    2006-05-01

    Thales Cryogenics has presented the LSF 9599 SADA II flexure cooler in 2005. Based on Thales' well-known moving magnet flexure technology, the LSF 9599 complies with the SADA II specification with respect to performance, envelope and mass. Being the first manufacturer offering a full flexure-bearing supported cooler that fits within the SADA II envelope, Thales Cryogenics has been selected in several new (military) programs with their LSF coolers. For many of these new programs, the cooldown time requirements are more stringent than in the past, whereas at the same time size, complexity and thus thermal mass of the infrared sensor tends to increase. In order to respond to the need created by the combination of these trends, Thales Cryogenics started a development program to optimize cryogenic performance of the LSF 9599 cooler. The main goal for the development program is to reduce the cooldown time, while maintaining the SADA II compatible interface, and maintaining the robustness and proven reliability of the cooler. Within these constraints, the regenerator was further optimized using among others the experience with mixed-gauze regenerators obtained from our pulse tube research. Using the mixed gauze approach, the heat storage capacity of the regenerator is adapted as a function of the temperature profile over the regenerator, thus giving the optimum balance between heat storage capacity and pressure drop. A novel way of constructing the regenerator further decreases shuttle heat losses and other thermal losses in the regenerator. This paper describes the first results of the trade-offs and gives an overview of impact on cooldown times and efficiency figures achieved after the regenerator and displacer optimization.

  16. Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts.

    PubMed

    Kjellstrom, Tord; Briggs, David; Freyberg, Chris; Lemke, Bruno; Otto, Matthias; Hyatt, Olivia

    2016-01-01

    Ambient heat exposure is a well-known health hazard, which reduces human performance and work capacity at heat levels already common in tropical and subtropical areas. Various health problems have been reported. Increasing heat exposure during the hottest seasons of each year is a key feature of global climate change. Heat exhaustion and reduced human performance are often overlooked in climate change health impact analysis. Later this century, many among the four billion people who live in hot areas worldwide will experience significantly reduced work capacity owing to climate change. In some areas, 30-40% of annual daylight hours will become too hot for work to be carried out. The social and economic impacts will be considerable, with global gross domestic product (GDP) losses greater than 20% by 2100. The analysis to date is piecemeal. More analysis of climate change-related occupational health impact assessments is greatly needed.

  17. Biosurface engineering through ink jet printing.

    PubMed

    Khan, Mohidus Samad; Fon, Deniece; Li, Xu; Tian, Junfei; Forsythe, John; Garnier, Gil; Shen, Wei

    2010-02-01

    The feasibility of thermal ink jet printing as a robust process for biosurface engineering was demonstrated. The strategy investigated was to reconstruct a commercial printer and take advantage of its colour management interface. High printing resolution was achieved by formulating bio-inks of viscosity and surface tension similar to those of commercial inks. Protein and enzyme denaturation during thermal ink jet printing was shown to be insignificant. This is because the time spent by the biomolecules in the heating zone of the printer is negligible; in addition, the air and substrate of high heat capacity absorb any residual heat from the droplet. Gradients of trophic/tropic factors can serve as driving force for cell growth or migration for tissue regeneration. Concentration gradients of proteins were printed on scaffolds to show the capability of ink jet printing. The printed proteins did not desorb upon prolonged immersion in aqueous solutions, thus allowing printed scaffold to be used under in vitro and in vivo conditions. Our group portrait was ink jet printed with a protein on paper, illustrating that complex biopatterns can be printed on large area. Finally, patterns of enzymes were ink jet printed within the detection and reaction zones of a paper diagnostic.

  18. Thermal inertia effect in an axisymmetric thermoelastic problem based on generalized thermoelasticity

    NASA Astrophysics Data System (ADS)

    Xie, Yushu; Li, Fatao

    2010-06-01

    The objective of this paper is to study thermal inertia effect due to the fact of the properties of the hyperbolic equations based on LS theory in generalized thermoelasticity. Simulations in a 2D hollow cylinder for uncoupled dynamic thermal stresses and thermal displacements were predicted by use of finite element method with Newmark algorithm. The thermal inertia effect on LS theory in rapid transient heat transfer process is also investigated in comparison with in steady heat transfer process. When different specific heat capacity is chosen, dynamic thermal stresses appear different types of vibration, in which less heat capacity causes more violent dynamic thermal stresses because of the thermal inertia effect. Both dynamic thermal stresses and thermal displacements in rapid transient heat transfer process have the larger amplitude and higher frequency than in steady heat transfer process due to thermal inertia from the results of simulation, which is consistent with the nature of the generalized thermoelasticity.

  19. A solar-thermal energy harvesting scheme: enhanced heat capacity of molten HITEC salt mixed with Sn/SiO(x) core-shell nanoparticles.

    PubMed

    Lai, Chih-Chung; Chang, Wen-Chih; Hu, Wen-Liang; Wang, Zhiming M; Lu, Ming-Chang; Chueh, Yu-Lun

    2014-05-07

    We demonstrated enhanced solar-thermal storage by releasing the latent heat of Sn/SiO(x) core-shell nanoparticles (NPs) embedded in a eutectic salt. The microstructures and chemical compositions of Sn/SiO(x) core-shell NPs were characterized. In situ heating XRD provides dynamic crystalline information about the Sn/SiO(x) core-shell NPs during cyclic heating processes. The latent heat of ∼29 J g(-1) for Sn/SiO(x) core-shell NPs was measured, and 30% enhanced heat capacity was achieved from 1.57 to 2.03 J g(-1) K(-1) for the HITEC solar salt without and with, respectively, a mixture of 5% Sn/SiO(x) core-shell NPs. In addition, an endurance cycle test was performed to prove a stable operation in practical applications. The approach provides a method to enhance energy storage in solar-thermal power plants.

  20. Determination of thermophysical characteristics of solid materials by electrical modelling of the solutions to the inverse problems in nonsteady heat conduction

    NASA Technical Reports Server (NTRS)

    Kozdoba, L. A.; Krivoshei, F. A.

    1985-01-01

    The solution of the inverse problem of nonsteady heat conduction is discussed, based on finding the coefficient of the heat conduction and the coefficient of specific volumetric heat capacity. These findings are included in the equation used for the electrical model of this phenomenon.

  1. Integrating Climate Change Adaptation into Public Health Practice: Using Adaptive Management to Increase Adaptive Capacity and Build Resilience

    PubMed Central

    McDowell, Julia Z.; Luber, George

    2011-01-01

    Background: Climate change is expected to have a range of health impacts, some of which are already apparent. Public health adaptation is imperative, but there has been little discussion of how to increase adaptive capacity and resilience in public health systems. Objectives: We explored possible explanations for the lack of work on adaptive capacity, outline climate–health challenges that may lie outside public health’s coping range, and consider changes in practice that could increase public health’s adaptive capacity. Methods: We conducted a substantive, interdisciplinary literature review focused on climate change adaptation in public health, social learning, and management of socioeconomic systems exhibiting dynamic complexity. Discussion: There are two competing views of how public health should engage climate change adaptation. Perspectives differ on whether climate change will primarily amplify existing hazards, requiring enhancement of existing public health functions, or present categorically distinct threats requiring innovative management strategies. In some contexts, distinctly climate-sensitive health threats may overwhelm public health’s adaptive capacity. Addressing these threats will require increased emphasis on institutional learning, innovative management strategies, and new and improved tools. Adaptive management, an iterative framework that embraces uncertainty, uses modeling, and integrates learning, may be a useful approach. We illustrate its application to extreme heat in an urban setting. Conclusions: Increasing public health capacity will be necessary for certain climate–health threats. Focusing efforts to increase adaptive capacity in specific areas, promoting institutional learning, embracing adaptive management, and developing tools to facilitate these processes are important priorities and can improve the resilience of local public health systems to climate change. PMID:21997387

  2. The influence of working memory capacity on experimental heat pain.

    PubMed

    Nakae, Aya; Endo, Kaori; Adachi, Tomonori; Ikeda, Takashi; Hagihira, Satoshi; Mashimo, Takashi; Osaka, Mariko

    2013-10-01

    Pain processing and attention have a bidirectional interaction that depends upon one's relative ability to use limited-capacity resources. However, correlations between the size of limited-capacity resources and pain have not been evaluated. Working memory capacity, which is a cognitive resource, can be measured using the reading span task (RST). In this study, we hypothesized that an individual's potential working memory capacity and subjective pain intensity are related. To test this hypothesis, we evaluated 31 healthy participants' potential working memory capacity using the RST, and then applied continuous experimental heat stimulation using the listening span test (LST), which is a modified version of the RST. Subjective pain intensities were significantly lower during the challenging parts of the RST. The pain intensity under conditions where memorizing tasks were performed was compared with that under the control condition, and it showed a correlation with potential working memory capacity. These results indicate that working memory capacity reflects the ability to process information, including precise evaluations of changes in pain perception. In this work, we present data suggesting that changes in subjective pain intensity are related, depending upon individual potential working memory capacities. Individual working memory capacity may be a phenotype that reflects sensitivity to changes in pain perception. Copyright © 2013 American Pain Society. Published by Elsevier Inc. All rights reserved.

  3. 7 CFR 3201.54 - Heat transfer fluids.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...

  4. 7 CFR 3201.54 - Heat transfer fluids.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...

  5. 7 CFR 3201.54 - Heat transfer fluids.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... for use in HVAC applications, internal combustion engines, personal cooling devices, thermal energy... Designated Items § 3201.54 Heat transfer fluids. (a) Definition. Products with high thermal capacities used...

  6. Structure-activity relationships for novel drug precursor N-substituted-6-acylbenzothiazolon derivatives: A theoretical approach

    NASA Astrophysics Data System (ADS)

    Sıdır, Yadigar Gülseven; Sıdır, İsa

    2013-08-01

    In this study, the twelve new modeled N-substituted-6-acylbenzothiazolon derivatives having analgesic analog structure have been investigated by quantum chemical methods using a lot of electronic parameters and structure-activity properties; such as molecular polarizability (α), dipole moment (μ), EHOMO, ELUMO, q-, qH+, molecular volume (Vm), ionization potential (IP), electron affinity (EA), electronegativity (χ), molecular hardness (η), molecular softness (S), electrophilic index (ω), heat of formation (HOF), molar refractivity (MR), octanol-water partition coefficient (log P), thermochemical properties (entropy (S), capacity of heat (Cv)); as to investigate activity relationships with molecular structure. The correlations of log P with Vm, MR, ω, EA, EHOMO - ELUMO (ΔE), HOF in aqueous phase, χ, μ, S, η parameters, respectively are obtained, while the linear relation of log P with IP, Cv, HOF in gas phase are not observed. The log P parameter is obtained to be depending on different properties of compounds due to their complexity.

  7. Molten salt thermal energy storage for utility peaking loads

    NASA Technical Reports Server (NTRS)

    Ferrara, A.; Haslett, R.; Joyce, J.

    1977-01-01

    This paper considers the use of thermal energy storage (TES) in molten salts to increase the capacity of power plants. Five existing fossil and nuclear electric utility plants were selected as representative of current technology. A review of system load diagrams indicated that TES to meet loads over 95% of peak was a reasonable goal. Alternate TES heat exchanger locations were evaluated, showing that the stored energy should be used either for feedwater heating or to generate steam for an auxiliary power cycle. Specific salts for each concept are recommended. Design layouts were prepared for one plant, and it was shown that a TES tube/shell heat exchanger system could provide about 7% peaking capability at lower cost than adding steam generation capacity. Promising alternate heat exchanger concepts were also identified.

  8. QSPR models for various physical properties of carbohydrates based on molecular mechanics and quantum chemical calculations.

    PubMed

    Dyekjaer, Jane Dannow; Jónsdóttir, Svava Osk

    2004-01-22

    Quantitative Structure-Property Relationships (QSPR) have been developed for a series of monosaccharides, including the physical properties of partial molar heat capacity, heat of solution, melting point, heat of fusion, glass-transition temperature, and solid state density. The models were based on molecular descriptors obtained from molecular mechanics and quantum chemical calculations, combined with other types of descriptors. Saccharides exhibit a large degree of conformational flexibility, therefore a methodology for selecting the energetically most favorable conformers has been developed, and was used for the development of the QSPR models. In most cases good correlations were obtained for monosaccharides. For five of the properties predictions were made for disaccharides, and the predicted values for the partial molar heat capacities were in excellent agreement with experimental values.

  9. Process feasibility study in support of silicon material task 1

    NASA Technical Reports Server (NTRS)

    Li, K. Y.; Hansen, K. C.; Yaws, C. L.

    1978-01-01

    Process system properties are analyzed for materials involved in the alternate processes under consideration for solar cell grade silicon. The following property data are reported for trichlorosilane: critical constants, vapor pressure, heat of vaporization, gas heat capacity, liquid heat capacity, density, surface tension, viscosity, thermal conductivity, heat of formation, and Gibb's free energy of formation. Work continued on the measurement of gas viscosity values of silicon source materials. Gas phase viscosity values for silicon tetrafluoride between 40 C and 200 C were experimentally determined. Major efforts were expended on completion of the preliminary economic analysis of the silane process. Cost, sensitivity and profitability analysis results are presented based on a preliminary process design of a plant to produce 1,000 metric tons/year of silicon by the revised process.

  10. Deficiency in the Heat Stress Response Could Underlie Susceptibility to Metabolic Disease

    PubMed Central

    Rogers, Robert S.; Morris, E. Matthew; Wheatley, Joshua L.; Archer, Ashley E.; McCoin, Colin S.; White, Kathleen S.; Wilson, David R.; Meers, Grace M.E.; Koch, Lauren G.; Britton, Steven L.

    2016-01-01

    Heat treatment (HT) effectively prevents insulin resistance and glucose intolerance in rats fed a high-fat diet (HFD). The positive metabolic actions of heat shock protein 72 (HSP72), which include increased oxidative capacity and enhanced mitochondrial function, underlie the protective effects of HT. The purpose of this study was to test the ability of HSP72 induction to mitigate the effects of consumption of a short-term 3-day HFD in rats selectively bred to be low-capacity runners (LCRs) and high-capacity runners (HCRs)—selective breeding that results in disparate differences in intrinsic aerobic capacity. HCR and LCR rats were fed a chow or HFD for 3 days and received a single in vivo HT (41°C, for 20 min) or sham treatment (ST). Blood, skeletal muscles, liver, and adipose tissues were harvested 24 h after HT/ST. HT decreased blood glucose levels, adipocyte size, and triglyceride accumulation in liver and muscle and restored insulin sensitivity in glycolytic muscles from LCR rats. As expected, HCR rats were protected from the HFD. Importantly, HSP72 induction was decreased in LCR rats after only 3 days of eating the HFD. Deficiency in the highly conserved stress response mediated by HSPs could underlie susceptibility to metabolic disease with low aerobic capacity. PMID:27554472

  11. Macromolecular Rate Theory (MMRT) Provides a Thermodynamics Rationale to Underpin the Convergent Temperature Response in Plant Leaf Respiration

    NASA Astrophysics Data System (ADS)

    Liang, L. L.; Arcus, V. L.; Heskel, M.; O'Sullivan, O. S.; Weerasinghe, L. K.; Creek, D.; Egerton, J. J. G.; Tjoelker, M. G.; Atkin, O. K.; Schipper, L. A.

    2017-12-01

    Temperature is a crucial factor in determining the rates of ecosystem processes such as leaf respiration (R) - the flux of plant respired carbon dioxide (CO2) from leaves to the atmosphere. Generally, respiration rate increases exponentially with temperature as modelled by the Arrhenius equation, but a recent study (Heskel et al., 2016) showed a universally convergent temperature response of R using an empirical exponential/polynomial model whereby the exponent in the Arrhenius model is replaced by a quadratic function of temperature. The exponential/polynomial model has been used elsewhere to describe shoot respiration and plant respiration. What are the principles that underlie these empirical observations? Here, we demonstrate that macromolecular rate theory (MMRT), based on transition state theory for chemical kinetics, is equivalent to the exponential/polynomial model. We re-analyse the data from Heskel et al. 2016 using MMRT to show this equivalence and thus, provide an explanation based on thermodynamics, for the convergent temperature response of R. Using statistical tools, we also show the equivalent explanatory power of MMRT when compared to the exponential/polynomial model and the superiority of both of these models over the Arrhenius function. Three meaningful parameters emerge from MMRT analysis: the temperature at which the rate of respiration is maximum (the so called optimum temperature, Topt), the temperature at which the respiration rate is most sensitive to changes in temperature (the inflection temperature, Tinf) and the overall curvature of the log(rate) versus temperature plot (the so called change in heat capacity for the system, ). The latter term originates from the change in heat capacity between an enzyme-substrate complex and an enzyme transition state complex in enzyme-catalysed metabolic reactions. From MMRT, we find the average Topt and Tinf of R are 67.0±1.2 °C and 41.4±0.7 °C across global sites. The average curvature (average negative) is -1.2±0.1 kJ.mol-1K-1. MMRT extends the classic transition state theory to enzyme-catalysed reactions and scales up to more complex processes including micro-organism growth rates and ecosystem processes.

  12. Electronic and phononic modulation of MoS2 under biaxial strain

    NASA Astrophysics Data System (ADS)

    Moghadasi, A.; Roknabadi, M. R.; Ghorbani, S. R.; Modarresi, M.

    2017-12-01

    Dichalcogenides of transition metals are attractive material due to its unique properties. In this work, it has been investigated the electronic band structure, phonon spectrum and heat capacity of MoS2 under the applied tensile and compressive biaxial strain using the density functional theory. The Molybdenum disulfide under compressive (tensile) strain up to 6% (10%) has stable atomic structure without any negative frequency in the phonon dispersion curves. The tensile biaxial strain reduces the energy gap in the electronic band structure and the optical-acoustic gap in phonon dispersion curves. The tensile biaxial strain also increases the specific heat capacity. On the other hand, the compressive biaxial strain in this material increases phonon gap and reduces the heat capacity and the electronic band gap. The phonon softening/hardening is reported for tensile/compressive biaxial strain in MoS2. We report phonon hardening for out of plane ZA mode in the presence of both tensile and compressive strains. Results show that the linear variation of specific heat with strain (CV ∝ε) and square dependency of specific heat with the temperature (CV ∝T2) for low temperature regime. The results demonstrate that the applied biaxial strain tunes the electronic energy gap and modifies the phonon spectrum of MoS2.

  13. Microencapsulated PCM slurries for heat transfer and energy storage in spacecraft systems

    NASA Astrophysics Data System (ADS)

    Colvin, David P.; Mulligan, James C.; Bryant, Yvonne G.; Duncan, John L.; Gravely, Benjamin T.

    The technical feasibility for providing significantly enhanced heat transport and storage as well as improved thermal control has been investigated during several Small Business Innovative Research (SBIR) programs for NASA, the United States Air Force (USAF), and the Strategic Defense Initiative Organization (SDIO) using microencapsulated phase change materials (PCMs) in both aqueous and nonaqueous two-component slurries. In the program for SDIO, novel two-component coolant fluids were prepared and successfully tested at both low (300 K) and intermediate temperatures (460 to 700 K). The two-component fluid slurries of microencapsulated PCMs included organic particles in aqueous and nonaqueous liquids, as well as microencapsulated metals that potentially could be carried by liquid metals or used as powdered heat sinks. Simulation and experimental studies showed that such active cooling systems could be designed and operated with enhancements of heat capacity that exceeded 10 times or 1000 percent that for the base fluid along with significant enhancement in the fluid's heat capacity. Furthermore, this enhancement provided essentially isothermal conditions throughout the pumped primary coolant fluid loop. The results suggest that together with much higher fluid thermal capacity, greater uniformity of temperature is achievable with such fluids, and that significant reductions in pumping power, system size, and system mass are also possible.

  14. Heat Capacity Anomaly Near the Lower Critical Consolute Point of Triethylamine-Water

    NASA Technical Reports Server (NTRS)

    Flewelling, Anne C.; DeFonseka, Rohan J.; Khaleeli, Nikfar; Partee, J.; Jacobs, D. T.

    1996-01-01

    The heat capacity of the binary liquid mixture triethylamine-water has been measured near its lower critical consolute point using a scanning, adiabatic calorimeter. Two data runs are analyzed to provide heat capacity and enthalpy data that are fitted by equations with background terms and a critical term that includes correction to scaling. The critical exponent a was determined to be 0.107 +/- 0.006, consistent with theoretical predictions. When alpha was fixed at 0.11 to determine various amplitudes consistently, our values of A(+) and A(-) agreed with a previous heat capacity measurement, but the value of A(-) was inconsistent with values determined by density or refractive index measurements. While our value for the amplitude ratio A(+)/ A(-) = 0.56 +/- 0.02 was consistent with other recent experimental determinations in binary liquid mixtures, it was slightly larger than either theoretical predictions or recent experimental values in liquid-vapor systems. The correction to scaling amplitude ratio D(+)/D(-) = 0.5 +/- 0.1 was half of that predicted. As a result of several more precise theoretical calculations and experimental determinations, the two-scale-factor universality ratio X, which we found to be 0.019 +/- 0.003, now is consistent among experiments and theories. A new 'universal' amplitude ratio R(sup +/-)(sub Bcr) involving the amplitudes for the specific heat was tested. Our determination of R(sup +/-)(sub Bcr) = -0.5 +/- 0.1 and R(sup -)(sub Bcr) = 1.1 +/- 0.1 is smaller in magnitude than predicted and is the first such determination in a binary fluid mixture.

  15. Critical phenomena and chemical potential of a charged AdS black hole

    NASA Astrophysics Data System (ADS)

    Wei, Shao-Wen; Liang, Bin; Liu, Yu-Xiao

    2017-12-01

    Inspired by the interpretation of the cosmological constant from the boundary gauge theory, we here treat it as the number of colors N and its conjugate quantity as the associated chemical potential μ in the black hole side. Then the thermodynamics and the chemical potential for a five-dimensional charged AdS black hole are studied. It is found that there exists a small-large black hole phase transition of van der Waals type. The critical phenomena are investigated in the N2-μ chart. The result implies that the phase transition can occur for large number of colors N , while is forbidden for small number. This to some extent implies that the interaction of the system increases with the number. In particular, in the reduced parameter space, all the thermodynamic quantities can be rescaled with the black hole charge such that these reduced quantities are charge-independent. Then we obtain the coexistence curve and the phase diagram. The latent heat is also numerically calculated. Moreover, the heat capacity and the thermodynamic scalar are studied. The result indicates that the information of the first-order black hole phase transition is encoded in the heat capacity and scalar. However, the phase transition point cannot be directly calculated with them. Nevertheless, the critical point linked to a second-order phase transition can be determined by either the heat capacity or the scalar. In addition, we calculate the critical exponents of the heat capacity and the scalar for the saturated small and large black holes near the critical point.

  16. Characterization of Molten CZT Using Thermal Conductivity and Heat Capacity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nero, Franco; Jackson, Maxx; Stowe, Ashley

    To compare thermal conductivity of a polycrystalline semiconductor to the single crystal semiconductor using thermo-physical data acquired from Simultaneous Thermal Analysis and Transient Plane Source heating.

  17. Heat Illness: A Handbook for Medical Officers

    DTIC Science & Technology

    1991-06-03

    Recommendations to planning staffs should eii~piliasve theC irportwnce of adequate sleep and food to reduce the likelihood of heat casuaRtift-ýs...experience much greater heat strain in uniforms, such as the BDO, that restrict heat exchange with the environment. Will the recruits have the...the sklf.- to thermoregulate and increase the risk of heat Illness. Lack of sleep and food will reduce thermoregiilatomy capacity. Medical Plannin-a

  18. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow.

    PubMed

    Teng, Tun-Ping; Hung, Yi-Hsuan; Teng, Tun-Chien; Chen, Jyun-Hong

    2011-08-09

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration.

  19. Performance evaluation on an air-cooled heat exchanger for alumina nanofluid under laminar flow

    PubMed Central

    2011-01-01

    This study analyzes the characteristics of alumina (Al2O3)/water nanofluid to determine the feasibility of its application in an air-cooled heat exchanger for heat dissipation for PEMFC or electronic chip cooling. The experimental sample was Al2O3/water nanofluid produced by the direct synthesis method at three different concentrations (0.5, 1.0, and 1.5 wt.%). The experiments in this study measured the thermal conductivity and viscosity of nanofluid with weight fractions and sample temperatures (20-60°C), and then used the nanofluid in an actual air-cooled heat exchanger to assess its heat exchange capacity and pressure drop under laminar flow. Experimental results show that the nanofluid has a higher heat exchange capacity than water, and a higher concentration of nanoparticles provides an even better ratio of the heat exchange. The maximum enhanced ratio of heat exchange and pressure drop for all the experimental parameters in this study was about 39% and 5.6%, respectively. In addition to nanoparticle concentration, the temperature and mass flow rates of the working fluid can affect the enhanced ratio of heat exchange and pressure drop of nanofluid. The cross-section aspect ratio of tube in the heat exchanger is another important factor to be taken into consideration. PMID:21827644

  20. Restrictions on linear heat capacities from Joule-Brayton maximum-work cycle efficiency

    NASA Astrophysics Data System (ADS)

    Angulo-Brown, F.; Gonzalez-Ayala, Julian; Arias-Hernandez, L. A.

    2014-02-01

    This paper discusses the possibility of using the Joule-Brayton cycle to determine the accessible value range for the coefficients a and b of the heat capacity at constant pressure Cp, expressed as Cp=a+bT (with T the absolute temperature) by using the Carnot theorem. This is made for several gases which operate as the working fluids. Moreover, the landmark role of the Curzon-Ahlborn efficiency for this type of cycle is established.

  1. Ranking of Air Force Heating Plants Relative to the Economic Benefit of Coal Utilization

    DTIC Science & Technology

    1989-11-01

    HTlW Output Capacity ..................... 27 5.2.2 Combustion Technologies ......................... 31 5.3 COMPUTER MODEL FOR LCC ANALISIS ...and field-erected units have been examined. The packaged units are factory -built, shell (fire-tube) boilers that are small enotgh to be shipped by...40 HBtMu/h with a thermal energy capacity factory of about 65% if used as a baseload heating plant. A water- tube boiler with a steam rating of 1200

  2. Laser Measurement of the Speed of Sound in Gases: A Novel Approach to Determining Heat Capacity Ratios and Gas Composition

    ERIC Educational Resources Information Center

    Baum, J. Clayton; Compton, R. N.; Feigerle, Charles S.

    2008-01-01

    The speed of sound is measured in several gases using a pulsed laser to create a micro-spark on a carbon rod and a microphone connected to a digital oscilloscope to measure the time-of-flight of the resulting shockwave over a known distance. These data are used to calculate the heat capacity ratios (C[subscript p]/C[subscript V]) of the gases and…

  3. Performance of HCFC22 alternative refrigerants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jung, D.; Kim, C.B.; Song, Y.J.

    1999-07-01

    In this study, 14 refrigerant mixtures composed of R32, R125, R134a, R152a, R290(Propane) and R1270(Propylene) were tested in a breadboard heat pump in an attempt to replace R22 used in residential air-conditioners. The test heat pump was of 1 ton capacity with water as the secondary heat transfer fluids. All tests were conducted under ARI test A condition. Test results how that ternary mixtures composed of R32, R125, and R134a have 4 {approximately} 5% higher coefficient of performance(COP) and capacity than R22. Hence they seem to be promising alternatives for R22. On the other hand, ternary mixtures containing R125, R134a,more » and R152a have lower COPs and capacities than R22. R290/R134 azeotrope also shows 3--4% increases in COP and capacity. The compressor discharge and dome temperatures of all the mixtures tested are lower than those of R22 by 15.9--34.7 C and 5.5--14.3 C respectively, indicating that these mixtures would offer better system reliability and longer life time than R22. Finally, the test results with a suction line heat exchanger (SLHX) indicated that SLHX must be used with special care in air-conditioners since its effect is fluid dependent.« less

  4. Intermolecular interactions and the thermodynamic properties of supercritical fluids.

    PubMed

    Yigzawe, Tesfaye M; Sadus, Richard J

    2013-05-21

    The role of different contributions to intermolecular interactions on the thermodynamic properties of supercritical fluids is investigated. Molecular dynamics simulation results are reported for the energy, pressure, thermal pressure coefficient, thermal expansion coefficient, isothermal and adiabatic compressibilities, isobaric and isochoric heat capacities, Joule-Thomson coefficient, and speed of sound of fluids interacting via both the Lennard-Jones and Weeks-Chandler-Andersen potentials. These properties were obtained for a wide range of temperatures, pressures, and densities. For each thermodynamic property, an excess value is determined to distinguish between attraction and repulsion. It is found that the contributions of intermolecular interactions have varying effects depending on the thermodynamic property. The maxima exhibited by the isochoric and isobaric heat capacities, isothermal compressibilities, and thermal expansion coefficient are attributed to interactions in the Lennard-Jones well. Repulsion is required to obtain physically realistic speeds of sound and both repulsion and attraction are necessary to observe a Joule-Thomson inversion curve. Significantly, both maxima and minima are observed for the isobaric and isochoric heat capacities of the supercritical Lennard-Jones fluid. It is postulated that the loci of these maxima and minima converge to a common point via the same power law relationship as the phase coexistence curve with an exponent of β = 0.32. This provides an explanation for the terminal isobaric heat capacity maximum in supercritical fluids.

  5. Comparative study of helimagnets MnSi and Cu2OSeO3 at high pressures

    NASA Astrophysics Data System (ADS)

    Stishov, Sergei; Sidorov, Vladimir; Petrova, Alla; Berdonosov, Peter; Dolgikh, Valery

    2014-03-01

    The heat capacity of helical magnets Cu2OSeO3 and MnSi has been investigated at high pressures by the ac-calorimetric technique. Despite the differing nature of their magnetic moments, Cu2OSeO3 and MnSi demonstrate a surprising similarity in behavior of their magnetic and thermodynamic properties at the phase transition. Two characteristic features of the heat capacity at the phase transitions of both substances (peak and shoulder) behave also in a similar way at high pressures if analyzed as a function of temperature. This probably implies that the longitudinal spin fluctuations typical of weak itinerant magnets like MnSi contribute little to the phase transition. The shoulders of the heat capacity curves shrink with decreasing temperature suggesting that they arise from classical fluctuations. In case of MnSi the sharp peak and shoulder at the heat capacity disappear simultaneously probably signifying the existence of a tricritical point and confirming the fluctuation nature of the first order phase transition in MnSi as well as in Cu2OSeO3. This work was supported by the Russian Foundation for Basic Research (grant 12-02-00376-a, 12-03-92604), Program of the Physics Department of RAS on Strongly Correlated Electron Systems and Program of the Presidium of RAS on Strongly Compressed Matter.

  6. Use of a double condenser in a dehumidifier with a spray dryer for vitamin A extraction in tomato as a heat-sensitive material

    NASA Astrophysics Data System (ADS)

    Kosasih, E. A.; Warjito, H., Imansyah I.; Ruhyat, N.

    2017-06-01

    Spray dryers are commonly operated at a high temperature (>100 °C), which becomes an obstacle for heat-sensitive materials. In this study, a refrigeration system that uses evaporator as dehumidifier and that recovers the heat released from the first condenser to preheat the drying air was utilised to reduce the drying temperature. Results showed that the degradation of vitamin A (measured with the high performance liquid chromatography method) in tomato increased significantly when the drying air temperature increased from 90 °C to 120 °C, and it cannot be controlled at a temperature higher than 120 °C. At an air flow rate of 450 lpm, the drying capacity at a drying air temperature of 60 °C (with refrigeration, humidity ratio of 0.005 [kg H2O / kg dry air]) is equal to the drying capacity at a drying air temperature of 120 °C (without refrigeration, humidity ratio of 0.021 [kg H2O / kg dry air]). The drying capacity at a drying air temperature of 90 °C (with refrigeration) even becomes 1.5 times the drying capacity at a drying air temperature of 120 °C (without refrigeration). The combination of a spray dryer system with a refrigeration system (double condenser) is therefore beneficial for drying heat-sensitive materials, such as vitamin A.

  7. Heat capacity and thermodynamic functions of some rare-earth arsenates in the range 298.15-673 K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kasenov, B.K.; Mustafin, E.S.; Oralova, A.T.

    1994-12-01

    Rare earth arsenates are promising as semiconducting and ferroelectric materials. However, no experimental data on the thermodynamic properties of these material can be found in the literature to date. In this work, we report heat capacity measurements for La,Nd,Gd, and Er arsenates. We synthesized LaAsO{sub 4}, NdAsO{sub 4}, GdAsO{sub 4}, and ErAsO{sub 4} by solid-state reactions between stoichiometric amounts of As{sup 2}O{sub 5} and extra-pure-grade La{sub 2}O{sub 3}, Nd{sub 2}O{sub 3}, Gd{sub 2}O{sub 3}, or Er{sub 2}O{sub 3} in evacuated (0.13 Pa) quartz ampules. The heat capacity at constant pressure was measured within the temperature range 298.15-673 K with 25-Kmore » steps using a commercial ITS-400 calorimeter. The experimental data were used to calculate coefficients of the equations for heat capacity vs. temperature. The experimental and calculated values of C{sup o}{sub p}(298.15 K) are in agreement. For example, C{sup o}{sub p}(LaAsO{sub 4}, 298.15K)=112.5 J/(molK), as calculated by the Landiya method, which agrees with the corresponding experimental value within {approximately}4.0%« less

  8. Combustor Computations for CO2-Neutral Aviation

    NASA Technical Reports Server (NTRS)

    Hendricks, Robert C.; Brankovic, Andreja; Ryder, Robert C.; Huber, Marcia

    2011-01-01

    Knowing the pure component C(sub p)(sup 0) or mixture C(sub p) (sup 0) as computed by a flexible code such as NIST-STRAPP or McBride-Gordon, one can, within reasonable accuracy, determine the thermophysical properties necessary to predict the combustion characteristics when there are no tabulated or computed data for those fluid mixtures 3or limited results for lower temperatures. (Note: C(sub p) (sup 0) is molar heat capacity at constant pressure.) The method can be used in the determination of synthetic and biological fuels and blends using the NIST code to compute the C(sub p) (sup 0) of the mixture. In this work, the values of the heat capacity were set at zero pressure, which provided the basis for integration to determine the required combustor properties from the injector to the combustor exit plane. The McBride-Gordon code was used to determine the heat capacity at zero pressure over a wide range of temperatures (room to 6,000 K). The selected fluids were Jet-A, 224TMP (octane), and C12. It was found that each heat capacity loci were form-similar. It was then determined that the results [near 400 to 3,000 K] could be represented to within acceptable engineering accuracy with the simplified equation C(sub p) (sup 0) = A/T + B, where A and B are fluid-dependent constants and T is temperature (K).

  9. Measured Performance of a Low Temperature Air Source Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.K. Johnson

    2013-09-01

    A 4-ton Low Temperature Heat Pump (LTHP) manufactured by Hallowell International was installed in a residence near New Haven, Connecticut and monitored over two winters of operation. After attending to some significant service issues, the heat pump operated as designed. This report should be considered a review of the dual compressor “boosted heat pump” technology. The Low Temperature Heat Pump system operates with four increasing levels of capacity (heat output) as the outdoor temperature drops.

  10. Characteristics of turbulence transport for momentum and heat in particle-laden turbulent vertical channel flows

    NASA Astrophysics Data System (ADS)

    Liu, Caixi; Tang, Shuai; Shen, Lian; Dong, Yuhong

    2017-10-01

    The dynamic and thermal performance of particle-laden turbulent flow is investigated via direction numerical simulation combined with the Lagrangian point-particle tracking under the condition of two-way coupling, with a focus on the contributions of particle feedback effect to momentum and heat transfer of turbulence. We take into account the effects of particles on flow drag and Nusselt number and explore the possibility of drag reduction in conjunction with heat transfer enhancement in particle-laden turbulent flows. The effects of particles on momentum and heat transfer are analyzed, and the possibility of drag reduction in conjunction with heat transfer enhancement for the prototypical case of particle-laden turbulent channel flows is addressed. We present results of turbulence modification and heat transfer in turbulent particle-laden channel flow, which shows the heat transfer reduction when large inertial particles with low specific heat capacity are added to the flow. However, we also found an enhancement of the heat transfer and a small reduction of the flow drag when particles with high specific heat capacity are involved. The present results show that particles, which are active agents, interact not only with the velocity field, but also the temperature field and can cause a dissimilarity in momentum and heat transport. This demonstrates that the possibility to increase heat transfer and suppress friction drag can be achieved with addition of particles with different thermal properties.

  11. FY95 limited energy study for the area `a` package boiler. Holston Army Ammunition Plant, Kingsport, Tennessee. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-11-03

    Holston Army Ammunition Plant (HSAAP) in Holston, Tennessee, manufactures explosives from raw materials. The facility comprises two separate areas designated Area `A11 and Area 11B`. Each area is served by a steam plant which produces steam for production processes, equipment operation, space heating, domestic water heating, steam tracing, and product storage heating requirements. The purpose of this study is to identify and evaluate the technical and economic feasibility of alternative methods of meeting the steam requirements of the Area 11A11 industrial complex. The following items were specifically requested to be evaluated. Evaluate the use of two new gas-fired packaged boilersmore » sized to meet the requirements of the industrial complex. The new boilers would be installed adjacent to the existing steam plant and would utilize the existing smokestacks and steam distribution system. Evaluate using the existing steam distribution system rather than locating multiple boilers at various sites. Existing steam driven chillers will be replaced with electric driven equipment. Evaluate this impact on the steam system requirements. Field survey and test two existing gas-fired packaged boilers located at the Volunteer Army Ammunition Plant in Chattanooga, Tennessee. The two boilers were last used about 1980 and are presently laid away. The boilers are approximately the same capacity and operating characteristics as the ones at HSAAP. Relocation of the existing boilers and ancillary equipment (feedwater pumps, generators, fans, etc.) would be required as well as repairs or modifications necessary to meet current operating conditions and standards.« less

  12. Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity.

    PubMed

    Díaz, Milagros; de Haro, Virginia; Muñoz, Romualdo; Quiles, María José

    2007-12-01

    Two species of Brassica were used to study their acclimation to heat and high illumination during the first stages of development. One, Brassica fruticulosa, is a wild species from south-east Spain and is adapted to both heat and high light intensity in its natural habitat, while the other, Brassica oleracea, is an agricultural species that is widely cultivated throughout the world. Growing Brassica plants under high irradiance and moderate heat was seen to affect the growth parameters and the functioning of the photosynthetic apparatus. The photosystem II (PSII) quantum yields and the capacity of photosynthetic electron transport, which were lower in B. fruticulosa than in B. oleracea, decreased in B. oleracea plants when grown under stress conditions, indicating inhibition of PSII. However, in B. fruticulosa, the values of these parameters were similar to the values of control plants. Photosystem I (PSI) activity was higher in B. fruticulosa than in B. oleracea, and in both species this activity increased in plants exposed to heat and high illumination. Immunoblot analysis of thylakoid membranes using specific antibodies raised against the NDH-K subunit of the thylakoidal NADH dehydrogenase complex (NADH DH) and against plastid terminal oxidase (PTOX) revealed a higher amount of both proteins in B. fruticulosa than in B. oleracea. In addition, PTOX activity in plastoquinone oxidation, and NADH DH activity in thylakoid membranes were higher in the wild species (B. fruticulosa) than in the agricultural species (B. oleracea). The results indicate that tolerance to high illumination and heat of the photosynthetic activity was higher in the wild species than in the agricultural species, suggesting that plant adaptation to these stresses in natural conditions favours subsequent acclimation, and that the chlororespiration process is involved in adaptation to heat and high illumination in Brassica.

  13. Holt film wall shear instrumentation for boundary layer transition research

    NASA Technical Reports Server (NTRS)

    Schneider, Steven P.

    1994-01-01

    Measurements of the performance of hot-film wall-shear sensors were performed to aid development of improved sensors. The effect of film size and substrate properties on the sensor performance was quantified through parametric studies carried out both electronically and in a shock tube. The results show that sensor frequency response increases with decreasing sensor size, while at the same time sensitivity decreases. Substrate effects were also studied, through parametric variation of thermal conductivity and heat capacity. Early studies used complex dual-layer substrates, while later studies were designed for both single-layer and dual-layer substrates. Sensor failures and funding limitations have precluded completion of the substrate thermal-property tests.

  14. Code-to-Code Comparison, and Material Response Modeling of Stardust and MSL using PATO and FIAT

    NASA Technical Reports Server (NTRS)

    Omidy, Ali D.; Panerai, Francesco; Martin, Alexandre; Lachaud, Jean R.; Cozmuta, Ioana; Mansour, Nagi N.

    2015-01-01

    This report provides a code-to-code comparison between PATO, a recently developed high fidelity material response code, and FIAT, NASA's legacy code for ablation response modeling. The goal is to demonstrates that FIAT and PATO generate the same results when using the same models. Test cases of increasing complexity are used, from both arc-jet testing and flight experiment. When using the exact same physical models, material properties and boundary conditions, the two codes give results that are within 2% of errors. The minor discrepancy is attributed to the inclusion of the gas phase heat capacity (cp) in the energy equation in PATO, and not in FIAT.

  15. Isentropic expansion and related thermodynamic properties of non-ionic amphiphile-water mixtures.

    PubMed

    Reis, João Carlos R; Douhéret, Gérard; Davis, Michael I; Fjellanger, Inger Johanne; Høiland, Harald

    2008-01-28

    A concise thermodynamic formalism is developed for the molar isentropic thermal expansion, ES,m = ( partial differential Vm/ partial differential T)(Sm,x), and the ideal and excess quantities for the molar, apparent molar and partial molar isentropic expansions of binary liquid mixtures. Ultrasound speeds were determined by means of the pulse-echo-overlap method in aqueous mixtures of 2-methylpropan-2-ol at 298.15 K over the entire composition range. These data complement selected extensive literature data on density, isobaric heat capacity and ultrasound speed for 9 amphiphile (methanol, ethanol, propan-1-ol, propan-2-ol, 2-methylpropan-2-ol, ethane-1,2-diol, 2-methoxyethanol, 2-ethoxyethanol or 2-butoxyethanol)-water binary systems, which form the basis of tables listing molar and excess molar isobaric expansions and heat capacities, and molar and excess molar isentropic compressions and expansions at 298.15 K and at 65 fixed mole fractions spanning the entire composition range and fine-grained in the water-rich region. The dependence on composition of these 9 systems is graphically depicted for the excess molar isobaric and isentropic expansions and for the excess partial molar isobaric and isentropic expansions of the amphiphile. The analysis shows that isentropic thermal expansion properties give a much stronger response to amphiphile-water molecular interactions than do their isobaric counterparts. Depending on the pair property-system, the maximum excess molar isentropic value is generally twenty- to a hundred-fold greater than the corresponding maximum isobaric value, and occurs at a lower mole fraction of the amphiphile. Values at infinite dilution of the 9 amphiphiles in water are given for the excess partial molar isobaric heat capacity, isentropic compression, isobaric expansion and isentropic expansion. These values are interpreted in terms of the changes occurring when amphiphile molecules cluster into an oligomeric form. Present results are discussed from theoretical and experimental thermodynamic viewpoints. It is concluded that isentropic thermal expansion properties constitute a new distinct resource for revealing particular features and trends in complex mixing processes, and that analyses using these new properties compare favourably with conventional approaches.

  16. Electronic effects on melting: Comparison of aluminum cluster anions and cations

    NASA Astrophysics Data System (ADS)

    Starace, Anne K.; Neal, Colleen M.; Cao, Baopeng; Jarrold, Martin F.; Aguado, Andrés; López, José M.

    2009-07-01

    Heat capacities have been measured as a function of temperature for aluminum cluster anions with 35-70 atoms. Melting temperatures and latent heats are determined from peaks in the heat capacities; cohesive energies are obtained for solid clusters from the latent heats and dissociation energies determined for liquid clusters. The melting temperatures, latent heats, and cohesive energies for the aluminum cluster anions are compared to previous measurements for the corresponding cations. Density functional theory calculations have been performed to identify the global minimum energy geometries for the cluster anions. The lowest energy geometries fall into four main families: distorted decahedral fragments, fcc fragments, fcc fragments with stacking faults, and "disordered" roughly spherical structures. The comparison of the cohesive energies for the lowest energy geometries with the measured values allows us to interpret the size variation in the latent heats. Both geometric and electronic shell closings contribute to the variations in the cohesive energies (and latent heats), but structural changes appear to be mainly responsible for the large variations in the melting temperatures with cluster size. The significant charge dependence of the latent heats found for some cluster sizes indicates that the electronic structure can change substantially when the cluster melts.

  17. Thermodynamic Analysis of the 3-Stage ADR for the Astro-H Soft X-Ray Spectrometer Instrument

    NASA Technical Reports Server (NTRS)

    Shirron, Peter; Kimball, Mark; DiPirro, Michael; Bialas, Tom; Sneiderman, Gary; Porter, Scott; Kelley, Richard

    2015-01-01

    The Soft X-ray Spectrometer (SXS) instrument on Astro-H will use a 3-stage ADR to cool the microcalorimeter array to 50 mK. In the primary operating mode, two stages of the ADR cool the detectors using superfluid helium at 1.20 K as the heat sink. In the secondary mode, which is activated when the liquid helium is depleted, two of the stages continuously cool the (empty) helium tank using a 4.5 K Joule-Thomson cooler as the heat sink, and the third stage cools the detectors. In the design phase, a high-fidelity model of the ADR was developed in order to predict both the cooling capacity and heat rejection rates in both operating modes. The primary sources of heat flow are from the salt pills, hysteresis heat from the magnets and magnetic shields, and power dissipated by the heat switches. The flight instrument dewar, ADR, detectors and electronics were integrated in mid-2014 and have since undergone extensive performance testing, in part to validate the performance model. This paper will present the thermodynamic performance of the ADR, including cooling capacity, heat rejection to the heat sinks, and various measures of efficiency.

  18. Avian thermoregulation in the heat: evaporative cooling in five Australian passerines reveals within-order biogeographic variation in heat tolerance.

    PubMed

    McKechnie, Andrew E; Gerson, Alexander R; McWhorter, Todd J; Smith, Eric Krabbe; Talbot, William A; Wolf, Blair O

    2017-07-01

    Evaporative heat loss pathways vary among avian orders, but the extent to which evaporative cooling capacity and heat tolerance vary within orders remains unclear. We quantified the upper limits to thermoregulation under extremely hot conditions in five Australian passerines: yellow-plumed honeyeater ( Lichenostomus ornatus ; ∼17 g), spiny-cheeked honeyeater ( Acanthagenys rufogularis ; ∼42 g), chestnut-crowned babbler ( Pomatostomus ruficeps ; ∼52 g), grey butcherbird ( Cracticus torquatus ; ∼86 g) and apostlebird ( Struthidea cinerea ; ∼118 g). At air temperatures ( T a ) exceeding body temperature ( T b ), all five species showed increases in T b to maximum values around 44-45°C, accompanied by rapid increases in resting metabolic rate above clearly defined upper critical limits of thermoneutrality and increases in evaporative water loss (EWL) to levels equivalent to 670-860% of baseline rates at thermoneutral T a Maximum cooling capacity, quantified as the fraction of metabolic heat production dissipated evaporatively, ranged from 1.20 to 2.17, consistent with the known range for passerines, and well below the corresponding ranges for columbids and caprimulgids. Heat tolerance limit (HTL, the maximum T a tolerated) scaled positively with body mass, varying from 46°C in yellow-plumed honeyeaters to 52°C in a single apostlebird, but was lower than that of three southern African ploceid passerines investigated previously. We argue this difference is functionally linked to a smaller scope for increases in EWL above baseline levels. Our data reiterate the reliance of passerines in general on respiratory evaporative heat loss via panting, but also reveal substantial within-order variation in heat tolerance and evaporative cooling capacity. © 2017. Published by The Company of Biologists Ltd.

  19. 40 CFR 60.703 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... position before any substantial heat exchange is encountered. (ii) Where a catalytic incinerator is used... equipment: (1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel...

  20. 40 CFR 60.703 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... position before any substantial heat exchange is encountered. (ii) Where a catalytic incinerator is used... equipment: (1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel...

  1. 40 CFR 60.703 - Monitoring of emissions and operations.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... position before any substantial heat exchange is encountered. (ii) Where a catalytic incinerator is used... equipment: (1) A heat sensing device, such as an ultraviolet beam sensor or thermocouple, at the pilot light... 44 MW (150 million Btu/hr) design heat input capacity. Any vent stream introduced with primary fuel...

  2. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... capacity” and “wall heat capacity”) Thermal mass wall insulation position: (1) Exterior insulation position... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...

  3. 10 CFR 434.201 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... capacity” and “wall heat capacity”) Thermal mass wall insulation position: (1) Exterior insulation position... thermal energy of the vent gases into mechanical energy. Boiler capacity: the rated heat output of the... furnished by the utility. Coefficient of performance (COP)—Cooling: the ratio of the rate of heat removal to...

  4. Promoting evaluation capacity building in a complex adaptive system.

    PubMed

    Lawrenz, Frances; Kollmann, Elizabeth Kunz; King, Jean A; Bequette, Marjorie; Pattison, Scott; Nelson, Amy Grack; Cohn, Sarah; Cardiel, Christopher L B; Iacovelli, Stephanie; Eliou, Gayra Ostgaard; Goss, Juli; Causey, Lauren; Sinkey, Anne; Beyer, Marta; Francisco, Melanie

    2018-04-10

    This study provides results from an NSF funded, four year, case study about evaluation capacity building in a complex adaptive system, the Nanoscale Informal Science Education Network (NISE Net). The results of the Complex Adaptive Systems as a Model for Network Evaluations (CASNET) project indicate that complex adaptive system concepts help to explain evaluation capacity building in a network. The NISE Network was found to be a complex learning system that was supportive of evaluation capacity building through feedback loops that provided for information sharing and interaction. Participants in the system had different levels of and sources of evaluation knowledge. To be successful at building capacity, the system needed to have a balance between both centralized and decentralized control, coherence, redundancy, and diversity. Embeddedness of individuals within the system also provided support and moved the capacity of the system forward. Finally, success depended on attention being paid to the control of resources. Implications of these findings are discussed. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Field Investigation of an Air-Source Cold Climate Heat Pump

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shen, Bo; Abdelaziz, Omar; Rice, C Keith

    In the U.S., there are approximately 2.6 million dwellings that use electricity for heating in cold and very cold regions with an annual energy consumption of 0.16 quads (0.17 EJ). A high performance cold climate heat pump (CCHP) would result in significant savings over current technologies (greater than 60% compared to electric resistance heating). We developed an air-source cold climate heat pump, which uses tandem compressors, with a single compressor rated for the building design cooling load, and running two compressors to provide, at -13 F (-25 C), 75% of rated heating capacity. The tandem compressors were optimized for heatingmore » operation and are able to tolerate discharge temperatures up to 280 F (138 C). A field investigation was conducted in the winter of 2015, in an occupied home in Ohio, USA. During the heating season, the seasonal COP was measured at 3.16, and the heat pump was able to operate down to -13 F (-25 C) and eliminate resistance heat use. The heat pump maintained an acceptable comfort level throughout the heating season. In comparison to a previous single-speed heat pump in the home, the CCHP demonstrated more than 40% energy savings in the peak heating load month. This paper illustrates the measured field performance, including compressor run time, frost/defrosting operations, distributions of building heating load and capacity delivery, comfort level, field measured COPs, etc.« less

  6. Superconducting Hot-Electron Submillimeter-Wave Detector

    NASA Technical Reports Server (NTRS)

    Karasik, Boris; McGrath, William; Leduc, Henry

    2009-01-01

    A superconducting hot-electron bolometer has been built and tested as a prototype of high-sensitivity, rapid-response detectors of submillimeter-wavelength radiation. There are diverse potential applications for such detectors, a few examples being submillimeter spectroscopy for scientific research; detection of leaking gases; detection of explosive, chemical, and biological weapons; and medical imaging. This detector is a superconducting-transition- edge device. Like other such devices, it includes a superconducting bridge that has a low heat capacity and is maintained at a critical temperature (T(sub c)) at the lower end of its superconducting-transition temperature range. Incident photons cause transient increases in electron temperature through the superconducting-transition range, thereby yielding measurable increases in electrical resistance. In this case, T(sub c) = 6 K, which is approximately the upper limit of the operating-temperature range of silicon-based bolometers heretofore used routinely in many laboratories. However, whereas the response speed of a typical silicon- based laboratory bolometer is characterized by a frequency of the order of a kilohertz, the response speed of the present device is much higher characterized by a frequency of the order of 100 MHz. For this or any bolometer, a useful figure of merit that one seeks to minimize is (NEP)(tau exp 1/2), where NEP denotes the noise-equivalent power (NEP) and the response time. This figure of merit depends primarily on the heat capacity and, for a given heat capacity, is approximately invariant. As a consequence of this approximate invariance, in designing a device having a given heat capacity to be more sensitive (to have lower NEP), one must accept longer response time (slower response) or, conversely, in designing it to respond faster, one must accept lower sensitivity. Hence, further, in order to increase both the speed of response and the sensitivity, one must make the device very small in order to make its heat capacity very small; this is the approach followed in developing the present device.

  7. Low-temperature heat capacity of diopside glass (CaMgSi2O6): A calorimetric test of the configurational-entropy theory applied to the viscosity of liquid silicates

    USGS Publications Warehouse

    Richet, P.; Robie, R.A.; Hemingway, B.S.

    1986-01-01

    Heat-capacity measurements have been made between 8 and 370 K on an annealed and a rapidly quenched diopside glass. Between 15 and 200 K, Cp does not depend significantly on the thermal history of the glass. Below 15 K Cp is larger for the quenched than for the annealed specimen. The opposite is true above 200 K as a result of what is interpreted as a secondary relaxation around room temperature. The magnitude of these effects, however, is small enough that the relative entropies S(298)-S(0) of the glasses differ by only 0.5 J/mol K, i.e., a figure within the combined experimental uncertainties. The insensitivity of relative entropies to thermal history supports the assumption that the configurational heat capacity of the liquid may be taken as the heat capacity difference between the liquid and the glass (??Cp). Furthermore, this insensitivity allows calculation of the residual entropies at 0 K of diopside glasses as a function of the fictive temperature from the entropy of fusion of diopside and the heat capacities of the crystalline, glassy and liquid phases. For a glass with a fictive temperature of 1005 K, for example, this calorimetric residual entropy is 24.3 ?? 3 J/mol K, in agreement with the prediction made by RICHET (1984) from an analysis of the viscosity data with the configurational-entropy theory of relaxation processes of Adam and Gibbs (1965). In turn, all the viscosity measurements for liquid diopside, which span the range 0.5-4?? 1013 poise, can be quantitatively reproduced through this theory with the calorimetrically determined entropies and ??Cp data. Finally, the unclear significance of "activation energies" for structural interpretations of viscosity data is emphasized, and the importance of ??Cp and glass-transition temperature systematics for determining the composition and temperature dependences of the viscosity is pointed out. ?? 1986.

  8. Comparative ex vivo study on humidifying function of three speaking valves with integrated heat and moisture exchanger for tracheotomised patients.

    PubMed

    van den Boer, C; Lansaat, L; Muller, S H; van den Brekel, M W M; Hilgers, F J M

    2015-12-01

    Assessment of humidifying function of tracheotomy speaking valves with integrated heat and moisture exchanger. Ex vivo measurement of water exchange and storage capacity of three tracheotomy speaking valves: Humidiphon Plus, Spiro and ProTrach DualCare (with two different heat and moisture exchangers: XtraMoist and Regular). Comprehensive Cancer Centre. Healthy volunteer. Difference between end-inspiratory and end-expiratory weight as measure for water exchange capacity, weight after 10 min breathing as measure for water storage capacity, weighing at 1-min intervals to assess residual water exchange potential in speaking mode and absolute humidity in mg/L as measure for environmental and respiratory humidity. None of the tracheotomy speaking valves provides humidification while in speaking mode. Only the ProTrach DualCare allows blocking the speaking valve and breathing through the heat and moisture exchanger during inhalation and exhalation (heat and moisture exchanger mode). This leads to an increase in inspiratory humidity of 2.5 mg (XtraMoist) and 1.6 mg (Regular). There was no measurable water storage in speaking mode in any of the three tracheotomy speaking valves. In breathing mode, water storage in the DualCare heat and moisture exchangers was 47 and 37 mg, respectively. The remaining humidifying potential in speaking mode after 10 min breathing in heat and moisture exchanger mode for XtraMoist was 38%, 15% and 10% at 1, 2 and 3 min, respectively. For Regular, this was 47%, 24% and 13%, respectively. Tracheostoma valves with integrated heat and moisture exchanger have no humidification function in speaking mode. Only ProTrach DualCare, allowing blocking the speaking mode, in heat and moisture exchanger mode enables a significant increase in humidification. Regular switching between speaking and heat and moisture exchanger mode with this latter device prolongs the humidification in speaking mode. © 2015 John Wiley & Sons Ltd.

  9. Capacity enhancement of indigenous expansion engine based helium liquefier

    NASA Astrophysics Data System (ADS)

    Doohan, R. S.; Kush, P. K.; Maheshwari, G.

    2017-02-01

    Development of technology and understanding for large capacity helium refrigeration and liquefaction at helium temperature is indispensable for coming-up projects. A new version of helium liquefier designed and built to provide approximately 35 liters of liquid helium per hour. The refrigeration capacity of this reciprocating type expansion engine machine has been increased from its predecessor version with continuous improvement and deficiency debugging. The helium liquefier has been built using components by local industries including cryogenic Aluminum plate fin heat exchangers. Two compressors with nearly identical capacity have been deployed for the operation of system. Together they consume about 110 kW of electric power. The system employs liquid Nitrogen precooling to enhance liquid Helium yield. This paper describes details of the cryogenic expander design improvements, reconfiguration of heat exchangers, performance simulation and their experimental validation.

  10. Survey of solar thermal energy storage subsystems for thermal/electric applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Segaser, C. L.

    1978-08-01

    A survey of the current technology and estimated costs of subsystems for storing the thermal energy produced by solar collectors is presented. The systems considered were capable of producing both electricity and space conditioning for three types of loads: a single-family detached residence, an apartment complex of 100 units, and a city of 30,000 residents, containing both single-family residences and apartments. Collector temperatures will be in four ranges: (1) 100 to 250/sup 0/F (used for space heating and single-cycle air conditioners and organic Rankine low-temperature turbines); (2) 300 to 400/sup 0/F (used for dual-cycle air conditioners and low-temperature turbines); (3)more » 400 to 600/sup 0/F (using fluids from parabolic trough collectors to run Rankine turbines); (4) 800 to 1000/sup 0/F (using fluids from heliostats to run closed-cycle gas turbines and steam Rankine turbines). The solar thermal energy subsystems will require from 60 to 36 x 10/sup 5/ kWhr (2.05 x 10/sup 5/ to 1.23 x 10/sup 10/ Btu) of thermal storage capacity. In addition to sensible heat and latent heat storage materials, several other media were investigated as potential thermal energy storage materials, including the clathrate and semiclathrate hydrates, various metal hydrides, and heat storage based on inorganic chemical reactions.« less

  11. High temperature metal hydrides as heat storage materials for solar and related applications.

    PubMed

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 degrees C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described.

  12. High Temperature Metal Hydrides as Heat Storage Materials for Solar and Related Applications

    PubMed Central

    Felderhoff, Michael; Bogdanović, Borislav

    2009-01-01

    For the continuous production of electricity with solar heat power plants the storage of heat at a temperature level around 400 °C is essential. High temperature metal hydrides offer high heat storage capacities around this temperature. Based on Mg-compounds, these hydrides are in principle low-cost materials with excellent cycling stability. Relevant properties of these hydrides and their possible applications as heat storage materials are described. PMID:19333448

  13. Interaction of the dietary pigment curcumin with hemoglobin: energetics of the complexation.

    PubMed

    Basu, Anirban; Kumar, Gopinatha Suresh

    2014-08-01

    Thermodynamics of the interaction of the chemotherapeutic and chemopreventive dietary pigment, curcumin, with hemoglobin was studied by isothermal titration calorimetry. The binding was characterized to be exothermic. At 293.15 K, the equilibrium constant for curcumin-Hb complexation was found to be (4.88 ± 0.06) × 10(5) M(-1). The binding stoichiometry was calculated to be 1.08 ± 0.05, confirming a 1:1 complexation. The binding was driven by a large negative standard molar enthalpy change (ΔH(0) = -118.45 ± 0.05 kJ mol(-1)) and an unfavorable standard molar entropy change (TΔS(0) = -86.53 ± 0.01 kJ mol(-1)) at 293.15 K. Increasing the temperature favoured the binding, and the magnitude of the negative standard molar heat capacity change suggested the involvement of significant hydrophobic forces in the binding process. With increasing salt concentration, the magnitude of the equilibrium constant decreased slightly; and the complexation mostly involved non-polyelectrolytic forces contributing about 92-94% of the standard molar Gibbs energy change. DSC studies revealed that curcumin binding caused a partial unfolding of the protein.

  14. Power Beaming, Orbital Debris Removal, and Other Space Applications of a Ground Based Free Electron Laser

    DTIC Science & Technology

    2010-03-01

    mask of strength, his character, fortitude, and xxii devotion to our family helped to keep me on my feet. What I say with words, he says through...superfluid) and an extremely large heat capacity. This large heat capacity is what makes He II an ideal refrigerant for high power and high frequency...limited tools, ancient astronomers accomplished many insightful discoveries regarding the motion of celestial bodies, but prior to the 1600s, most of

  15. Low-temperature heat capacities of CaAl2SiO6 glass and pyroxene and thermal expansion of CaAl2SiO6 pyroxene.

    USGS Publications Warehouse

    Haselton, H.T.; Hemingway, B.S.; Robie, R.A.

    1984-01-01

    Low-T heat capacities (5-380 K) have been measured by adiabatic calorimetry for synthetic CaAl2SiO6 glass and pyroxene. High-T unit cell parameters were measured for CaAl2SiO6 pyroxene by means of a Nonius Guinier-Lenne powder camera in order to determine the mean coefficient of thermal expansion in the T range 25-1200oC. -J.A.Z.

  16. Heat-physical properties of lunar surface material returned to earth by the Luna 16 automatic station

    NASA Technical Reports Server (NTRS)

    Avduyevskiy, V. S.; Anfimov, N. A.; Marov, M. Y.; Treskin, Y. A.; Shalayev, S. P.; Ekonomov, A. P.

    1974-01-01

    Density, specific heat capacity, and coefficient of thermal conductivity were studied on a sample of lunar surface material returned by the Luna 16 automatic station. The study was carried out in a helium-filled chamber. The density of the surface material when freely heaped was 1.2 g/cu cm, and when shaken down -- 1.7 g/cu cm. The specific heat capacity was 0.177 + or - 0.010 cal x g/1 x deg/1. The coefficient of thermal conductivity in the material was 4.8 x 10/6 + or - 1.2 x 10/6 cal x cm/1 x sec/1 x deg/1.

  17. Adsorption of SO2 onto oxidized and heat-treated activated carbon fibers (ACFs)

    USGS Publications Warehouse

    Daley, M.A.; Mangun, C.L.; DeBarr, J.A.; Riha, S.; Lizzio, A.A.; Donnals, G.L.; Economy, J.

    1997-01-01

    Oxidation of the ACFs, using an aqueous oxidant, decreased their adsorption capacity for SO2 from flue gas due to a decrease in pore volume and repulsion of the SO2 from acidic surface groups. If these samples were heat-treated to desorb the oxygen containing function groups, the amount of SO2 adsorption increased. This increase in adsorption capacity was directly correlated to the amount of CO2 evolved during heat-treatment of the oxidized ACFs. The amount of SO2 adsorbed for these samples was related to the pore size, pore surface chemistry and pore volume. This analysis is explained in more detail in this paper.

  18. Studies of Second Layer Hydrogens on Graphite: Hydrogen/hd/gr and Hd/hd/gr.

    NASA Astrophysics Data System (ADS)

    Liu, Yuanming

    Quasi-adiabatic heat capacity and volumetric vapor pressure isotherm techniques were used to study the thermodynamic properties of monolayer H_2 adsorbed on HD plated graphite (H_2/HD/Gr) and bilayer HD on bare graphite (HD/HD/Gr). Quasielastic neutron scattering (QENS) measurements were performed at the Laboratoire Leon Brillouin (LLB) in Saclay, France, to study the mobility of the bilayer HD films. The three techniques complemented each other. Three types of graphite were used: graphite foam for the heat capacity measurements, more loose and homogeneous graphite 'worms' for the isotherm measurements, and Papyex (similar to Grafoil) with a high surface-to-volume ratio for the QENS measurements. The heat capacity study on the mixture system H_2/HD/Gr is a continuation of the previous study on H_2/D _2/Gr by F. C. Liu et al. The results show three peculiar features which have not been seen in the pure bilayer hydrogen films: a tilted triple line, a distorted liquid(L)-vapor(V) coexistence region, and weak heat capacity anomalies at 10.1K. The triple line tilts backwards, from 6.58K to 6.25K as the H2 coverage increases. The lowest triple point temperature (6.25K) is still higher than both 5.96K of H_2/H _2/Gr (Wiechert et al.) and 5.74K of H_2/D_2/Gr (F. C. Liu et al.). The behavior of the triple line can be semi-quantitatively explained by a model of interlayer mixing which is based on the consideration that interlayer mixing lowers the system's free energy. The distortion of the L-V region and appearance of weak heat capacity anomalies are also believed to be due to interlayer mixing. The heat capacity measurements on HD/HD/Gr show a phase diagram similar to those of H_2 /H_2/MgO, H_2 /H_2/Gr, and 3D van der Waals systems, with the 2D triple and critical points at T _{t} = 8.44K and T_ {c} = 11.45K. The entropy change and heat of fusion at the triple point melting in HD/HD/Gr are comparable with those of H_2/H _2/Gr and D_2/D _2/Gr, but are considerably less (only about 1/3) than the ones of H_2/H _2/MgO. The vapor pressure isotherm measurements discover a relatively narrow solid(S)-liquid(L) coexistence region, confirming the small solid-liquid density difference expected from the relatively small entropy change upon the triple point melting. The triple point and critical point temperatures determined by the isotherms are consistent with the heat capacity measurements. The preliminary results of the QENS measurements show that the phase existing above T_{t } in the 2nd layer HD is a 2D liquid with a diffusion coefficient about 1/2-1/3 of that of the bulk liquid at its triple point (T_{t} (3D) = 16.60K), while surprisingly showing that there is a substantial liquid fraction and mobility at least 1^circK below the solidification temperature.

  19. Consensus recommendations on training and competing in the heat.

    PubMed

    Racinais, S; Alonso, J M; Coutts, A J; Flouris, A D; Girard, O; González-Alonso, J; Hausswirth, C; Jay, O; Lee, J K W; Mitchell, N; Nassis, G P; Nybo, L; Pluim, B M; Roelands, B; Sawka, M N; Wingo, J E; Périard, J D

    2015-06-01

    Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimize performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimize performance is to heat acclimatize. Heat acclimatization should comprise repeated exercise-heat exposures over 1-2 weeks. In addition, athletes should initiate competition and training in a euhydrated state and minimize dehydration during exercise. Following the development of commercial cooling systems (e.g., cooling vest), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organizers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimizing the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events for hydration and body cooling opportunities when competitions are held in the heat. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  20. Consensus recommendations on training and competing in the heat

    PubMed Central

    Racinais, S; Alonso, J M; Coutts, A J; Flouris, A D; Girard, O; González-Alonso, J; Hausswirth, C; Jay, O; Lee, J K W; Mitchell, N; Nassis, G P; Nybo, L; Pluim, B M; Roelands, B; Sawka, M N; Wingo, J; Périard, J D

    2015-01-01

    Exercising in the heat induces thermoregulatory and other physiological strain that can lead to impairments in endurance exercise capacity. The purpose of this consensus statement is to provide up-to-date recommendations to optimise performance during sporting activities undertaken in hot ambient conditions. The most important intervention one can adopt to reduce physiological strain and optimise performance is to heat acclimatise. Heat acclimatisation should comprise repeated exercise-heat exposures over 1–2 weeks. In addition, athletes should initiate competition and training in a euhydrated state and minimise dehydration during exercise. Following the development of commercial cooling systems (eg, cooling-vest), athletes can implement cooling strategies to facilitate heat loss or increase heat storage capacity before training or competing in the heat. Moreover, event organisers should plan for large shaded areas, along with cooling and rehydration facilities, and schedule events in accordance with minimising the health risks of athletes, especially in mass participation events and during the first hot days of the year. Following the recent examples of the 2008 Olympics and the 2014 FIFA World Cup, sport governing bodies should consider allowing additional (or longer) recovery periods between and during events, for hydration and body cooling opportunities, when competitions are held in the heat. PMID:26069301

  1. Molecular Origins of Thermal Transitions in Polyelectrolyte Assemblies

    NASA Astrophysics Data System (ADS)

    Yildirim, Erol; Zhang, Yanpu; Antila, Hanne S.; Lutkenhaus, Jodie L.; Sammalkorpi, Maria; Aalto Team; Texas A&M Team

    2015-03-01

    Polyelectrolyte (PE) multilayers and complexes formed from oppositely charged polymers can exhibit extraordinary superhydrophobicity, mechanical strength and responsiveness resulting in applications ranging functional membranes, optics, sensors and drug delivery. Depending on the assembly conditions, PE assemblies may undergo a thermal transition from glassy to soft behavior under heating. Our earlier work using thermal analysis measurements shows a distinct thermal transition for PE layer-by-layer (LbL) systems assembled with added salt but no analogous transition in films assembled without added salt or dry systems. These findings raise interesting questions on the nature of the thermal transition; here, we explore its molecular origins through characterization of the PE aggregates by temperature-controlled all-atom molecular dynamics simulations. We show via molecular simulations the thermal transition results from the existence of an LCST (lower critical solution temperature) in the PE systems: the diffusion behavior, hydrogen bond formation, and bridging capacity of water molecules plasticizing the complex changes at the transition temperature. We quantify the behavior, map its chemistry specificity through comparison of strongly and weakly charged PE complexes, and connect the findings to our interrelated QCM-D experiments.

  2. Does food complexity have a role in eliciting expectations of satiating capacity?

    PubMed

    Marcano, Johanna; Morales, Diana; Vélez-Ruiz, Jorge F; Fiszman, Susana

    2015-09-01

    New strategies for formulating healthy, balanced food with enhanced expected satiating capacity are a hot topic. The present work tests the hypothesis that adding complexity to food will result in higher expectations of satiating capacity. Different kinds of "visible" particles (wheat bran, ground coconut, flaxseeds and oat meal) were added to cheese pies with the aim of increasing the complexity of both their appearance and their texture. Two more basic recipes were also prepared with no particles added. Instrumental texture measurements, complexity and expected satiating capacity consumer scoring and sensory profiling of the six pie formulations were performed. In addition, the consumers were asked to write down the characteristics they took into account in their pie complexity scores. For pies with very similar instrumental TPA hardness and resistance to penetration values, a clear trend that emerged was that the more complex the texture, the higher the satiating capacity expectations. The qualitative analysis of the terms mentioned by consumers was of great value for understanding the concepts underlying the appraisal of the samples' complexity. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Influence of microwave sterilization on the cutting capacity of carbide burs.

    PubMed

    Fais, Laiza Maria Grassi; Pinelli, Lígia Antunes Pereira; Adabo, Gelson Luis; Silva, Regina Helena Barbosa Tavares da; Marcelo, Caroline Canhizares; Guaglianoni, Dalton Geraldo

    2009-01-01

    This study compared the cutting capacity of carbide burs sterilized with microwaves and traditional sterilization methods. Sixty burs were divided into 5 groups according to the sterilization methods: dry heat (G1), autoclave (G2), microwave irradiation (G3), glutaraldehyde (G4) or control - no sterilization (G5). The burs were used to cut glass plates in a cutting machine set for twelve 2.5-min periods and, after each period, they were sterilized (except G5) following the protocol established for each group. The cutting capacity of the burs was determined by a weight-loss method. Data were analyzed statistically by Kruskal-Wallis and Dunn's test. The means of the cutting amount performed by each group after the 12 periods were G1 = 0.2167 +/- 0.0627 g; G2 = 0.2077 +/- 0.0231 g; G3 = 0.1980 +/- 0.0326 g; G4 = 0.1203 +/- 0.0459 g; G5 = 0.2642 +/- 0.0359 g. There were statistically significant differences among the groups (p<0.05); only dry heat sterilization was similar to the control. Sterilization by dry heat was the method that least affected the cutting capacity of the carbide burs and microwave sterilization was not better than traditional sterilization methods.

  4. Endothermy in birds: underlying molecular mechanisms.

    PubMed

    Walter, Isabel; Seebacher, Frank

    2009-08-01

    Endothermy is significant in vertebrate evolution because it changes the relations between animals and their environment. How endothermy has evolved in archosaurs (birds, crocodiles and dinosaurs) is controversial especially because birds do not possess brown adipose tissue, the specialized endothermic tissue of mammals. Internal heat production is facilitated by increased oxidative metabolic capacity, accompanied by the uncoupling of aerobic metabolism from energy (ATP) production. Here we show that the transition from an ectothermic to an endothermic metabolic state in developing chicken embryos occurs by the interaction between increased basal ATP demand (Na(+)/K(+)-ATPase activity and gene expression), increased oxidative capacity and increased uncoupling of mitochondria; this process is controlled by thyroid hormone via its effect on PGC1alpha and adenine nucleotide translocase (ANT) gene expression. Mitochondria become more uncoupled during development, but unlike in mammals, avian uncoupling protein (avUCP) does not uncouple electron transport from oxidative phosphorylation and therefore plays no role in heat production. Instead, ANT is the principal uncoupling protein in birds. The relationship between oxidative capacity and uncoupling indicates that there is a continuum of phenotypes that fall between the extremes of selection for increased heat production and increased aerobic activity, whereas increased cellular ATP demand is a prerequisite for increased oxidative capacity.

  5. Limits to sustained energy intake. XIII. Recent progress and future perspectives.

    PubMed

    Speakman, John R; Król, Elżbieta

    2011-01-15

    Several theories have been proposed to explain limits on the maximum rate at which animals can ingest and expend energy. These limits are likely to be intrinsic to the animal, and potentially include the capacity of the alimentary tract to assimilate energy--the 'central limitation' hypothesis. Experimental evidence from lactating mice exposed to different ambient temperatures allows us to reject this and similar ideas. Two alternative ideas have been proposed. The 'peripheral limitation' hypothesis suggests that the maximal sustained energy intake reflects the summed demands of individual tissues, which have their own intrinsic limitations on capacity. In contrast, the 'heat dissipation limit' (HDL) theory suggests that animals are constrained by the maximal capacity to dissipate body heat. Abundant evidence in domesticated livestock supports the HDL theory, but data from smaller mammals are less conclusive. Here, we develop a novel framework showing how the HDL and peripheral limitations are likely to be important in all animals, but to different extents. The HDL theory makes a number of predictions--in particular that there is no fixed limit on sustained energy expenditure as a multiple of basal metabolic rate, but rather that the maximum sustained scope is positively correlated with the capacity to dissipate heat.

  6. 16 CFR Appendix H to Part 305 - Cooling Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for Central Air Conditioners Manufacturer's rated cooling capacities (Btu's/hr.) Range of SEER's Low High Single Package Units Central Air Conditioners (Cooling Only): All capacities 10.6 16.5 Heat Pumps (Cooling Function): All capacities 10.6 16.0 Split System Units Central Air Conditioners (Cooling Only...

  7. Testing of refrigerant mixtures in residential heat pumps. Final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Judge, J.F.; Radermacher, R.

    1995-08-01

    To contribute to finding the proper substitute for R-22, a test facility was designed and built to measure the steady state and cyclic performance of two air-to-air heat pumps of 2 & 3 refrigeration-ton (RT) capacity. The performance of heat pumps is evaluated based on ASHRAE Standard 116-1983 {open_quotes}Method of Testing for Seasonal Efficiency of Unitary Air-conditioners and Heat Pumps{close_quotes} (47). This standard includes six steady-state tests; three cooling tests (A, B, and C) and three heating tests (High Temperature (47S), Frost Accumulation (35F), and Low Temperature (17L)). The standard also includes two cyclic tests; a cyclic cooling test (D)more » and a cyclic heating test (47C). The results of these tests are used to evaluate the seasonal performance of a heat pump. In the work presented here, two heat pumps (test units) are used. Test unit 1 is a 2 RT split heat pump system using a reciprocating compressor, a short tube, and a thermostatic expansion valve. Test unit 2 is a 3 RT split heat pump system using a scroll compressor and two thermostatic expansion valves. This study investigates four different possibilities for replacing R-22 with R-32/125/134a (30/10/60 wt.%) (Mixture 1) or R-32/125/134a (23/25/52 wt.%) (Mixture 2). The first and simplest scenario is the retrofit with no hardware modifications. The second possibility investigated is altering the refrigerant path to attain a near-counterflow configuration in the indoor coil for the heating mode. The third and most complex possibility is the soft optimization which consists of maximizing the COPs of R-22 and Mixture 2 in the heating and cooling modes by optimizing refrigerant charge and expansion devices. The fourth option investigated is the suction-line heat exchange (SLHX). In unit 1, the first, second, and third scenarios are investigated and in unit 2, the first, second, and fourth scenarios are investigated.« less

  8. Visual short-term memory capacity for simple and complex objects.

    PubMed

    Luria, Roy; Sessa, Paola; Gotler, Alex; Jolicoeur, Pierre; Dell'Acqua, Roberto

    2010-03-01

    Does the capacity of visual short-term memory (VSTM) depend on the complexity of the objects represented in memory? Although some previous findings indicated lower capacity for more complex stimuli, other results suggest that complexity effects arise during retrieval (due to errors in the comparison process with what is in memory) that is not related to storage limitations of VSTM, per se. We used ERPs to track neuronal activity specifically related to retention in VSTM by measuring the sustained posterior contralateral negativity during a change detection task (which required detecting if an item was changed between a memory and a test array). The sustained posterior contralateral negativity, during the retention interval, was larger for complex objects than for simple objects, suggesting that neurons mediating VSTM needed to work harder to maintain more complex objects. This, in turn, is consistent with the view that VSTM capacity depends on complexity.

  9. Impacts of Various Characteristics of Electricity and Heat Demand on the Optimal Configuration of a Microgrid

    NASA Astrophysics Data System (ADS)

    Bando, Shigeru; Watanabe, Hiroki; Asano, Hiroshi; Tsujita, Shinsuke

    A methodology was developed to design the number and capacity for each piece of equipment (e.g. gas engines, batteries, thermal storage tanks) in microgrids with combined heat and power systems. We analyzed three types of microgrids; the first one consists of an office building and an apartment, the second one consists of a hospital and an apartment, the third one consists of a hotel, office and retails. In the methodology, annual cost is minimized by considering the partial load efficiency of a gas engine and its scale economy, and the optimal number and capacity of each piece of equipment and the annual operational schedule are determined by using the optimal planning method. Based on calculations using this design methodology, it is found that the optimal number of gas engines is determined by the ratio of bottom to peak of the electricity demand and the ratio of heat to electricity demand. The optimal capacity of a battery required to supply electricity for a limited time during a peak demand period is auxiliary. The thermal storage tank for space cooling and space heating is selected to minimize the use of auxiliary equipment such as a gas absorption chiller.

  10. The study of the thermal behavior of a new semicrystalline polyimide

    NASA Technical Reports Server (NTRS)

    Cheng, Stephen Z. D.; Chalmers, Tammy M.

    1992-01-01

    Thermal properties of a new semicrystalline polyimide synthesized from 3,3',4,4' benzophenone tetracarboxylic dianhydride (BTDA) and 2,2 dimethyl 1,2-(4 aminophenoxy) propane (DMDA) were studied. Heat capacities in the solid and liquid states of BTDA-DMDA were measured. The heat capacity increase at the glass transition temperature (T sub g = 230 C) is 145 J/(C mol) for amorphous BTDA-DMDA. The equilibrium heat of fusion of the BTDA-DMDA crystals was obtained using wide angle X ray diffraction and differential scanning calorimetry measurements, and it is 75.8 kJ/mol. Based on the information of crystallinity and the heat capacity increase at T sub g, a rigid amorphous fraction is identified in semicrystalline BTDA-DMDA samples. The rigid amorphous fraction represents an interfacial region between the crystalline and amorphous states. In particular, this fraction increases with the crystallinity of the sample which should be associated with crystal sizes, and therefore, with crystal morphology. It was also found that this polymer has a high temperature crystal phase upon annealing above its original melting temperature. The thermal degradation activation energies are determined to be 154 and 150 kJ/mol in nitrogen and air, respectively.

  11. High Speed Blood and Transfusion Equipment

    DTIC Science & Technology

    2013-10-14

    absorption process is entirely reversible. By heating the absorber the ammonia refrigerant is removed from the salt in the vapor phase . The...ligand quantity decreased, the heating capacity would also consistently diminish. However, with the monovariant attribute a single pulse of the...limit, implying perfect heat transfer with no heat losses, can accommodate a volumetric flow rate of blood up to approximately 360 cc/min. When operating

  12. Use of multilevel modeling for determining optimal parameters of heat supply systems

    NASA Astrophysics Data System (ADS)

    Stennikov, V. A.; Barakhtenko, E. A.; Sokolov, D. V.

    2017-07-01

    The problem of finding optimal parameters of a heat-supply system (HSS) is in ensuring the required throughput capacity of a heat network by determining pipeline diameters and characteristics and location of pumping stations. Effective methods for solving this problem, i.e., the method of stepwise optimization based on the concept of dynamic programming and the method of multicircuit optimization, were proposed in the context of the hydraulic circuit theory developed at Melentiev Energy Systems Institute (Siberian Branch, Russian Academy of Sciences). These methods enable us to determine optimal parameters of various types of piping systems due to flexible adaptability of the calculation procedure to intricate nonlinear mathematical models describing features of used equipment items and methods of their construction and operation. The new and most significant results achieved in developing methodological support and software for finding optimal parameters of complex heat supply systems are presented: a new procedure for solving the problem based on multilevel decomposition of a heat network model that makes it possible to proceed from the initial problem to a set of interrelated, less cumbersome subproblems with reduced dimensionality; a new algorithm implementing the method of multicircuit optimization and focused on the calculation of a hierarchical model of a heat supply system; the SOSNA software system for determining optimum parameters of intricate heat-supply systems and implementing the developed methodological foundation. The proposed procedure and algorithm enable us to solve engineering problems of finding the optimal parameters of multicircuit heat supply systems having large (real) dimensionality, and are applied in solving urgent problems related to the optimal development and reconstruction of these systems. The developed methodological foundation and software can be used for designing heat supply systems in the Central and the Admiralty regions in St. Petersburg, the city of Bratsk, and the Magistral'nyi settlement.

  13. Working Fluids for Increasing Capacities of Heat Pipes

    NASA Technical Reports Server (NTRS)

    Chao, David F.; Zhang, Nengli

    2004-01-01

    A theoretical and experimental investigation has shown that the capacities of heat pipes can be increased through suitable reformulation of their working fluids. The surface tensions of all of the working fluids heretofore used in heat pipes decrease with temperature. As explained in more detail below, the limits on the performance of a heat pipe are associated with the decrease in the surface tension of the working fluid with temperature, and so one can enhance performance by reformulating the working fluid so that its surface tension increases with temperature. This improvement is applicable to almost any kind of heat pipe in almost any environment. The heat-transfer capacity of a heat pipe in its normal operating-temperature range is subject to a capillary limit and a boiling limit. Both of these limits are associated with the temperature dependence of surface tension of the working fluid. In the case of a traditional working fluid, the decrease in surface tension with temperature causes a body of the liquid phase of the working fluid to move toward a region of lower temperature, thus preventing the desired spreading of the liquid in the heated portion of the heat pipe. As a result, the available capillary-pressure pumping head decreases as the temperature of the evaporator end of the heat pipe increases, and operation becomes unstable. Water has widely been used as a working fluid in heat pipes. Because the surface tension of water decreases with increasing temperature, the heat loads and other aspects of performance of heat pipes that contain water are limited. Dilute aqueous solutions of long-chain alcohols have shown promise as substitutes for water that can offer improved performance, because these solutions exhibit unusual surface-tension characteristics: Experiments have shown that in the cases of an aqueous solution of an alcohol, the molecules of which contain chains of more than four carbon atoms, the surface tension increases with temperature when the temperature exceeds a certain value. There are also other liquids that have surface tensions that increase with temperature and could be used as working fluids in heat pipes. For example, as a substitute for ammonia, which is the working fluid in some heat pipes, one could use a solution of ammonia and an ionic surfactant.

  14. 16 CFR Appendix I to Part 305 - Heating Performance and Cost for Central Air Conditioners

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... for Central Air Conditioners Manufacturer's rated heating capacity (Btu's/hr.) Range of HSPF's Low... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Heating Performance and Cost for Central Air Conditioners I Appendix I to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC...

  15. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  16. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  17. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  18. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  19. 40 CFR 63.988 - Incinerators, boilers, and process heaters.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... position before any substantial heat exchange occurs. (2) Where a catalytic incinerator is used... status requirements of 40 CFR part 265, subpart O; (ii) A boiler or process heater with a design heat... per hour) design heat input capacity is used and the regulated vent stream is not introduced as or...

  20. Using the Earth to Heat and Cool Homes.

    ERIC Educational Resources Information Center

    Thomas, Stephen G.

    The heat collecting capacity of the earth and or the earth's ground waters and surface waters exist as potential energy sources for home heating and cooling. Techniques and devices associated with use of the earth's thermal energy capabilities are presented and evaluated in this four-chapter report. Included in these chapters are: (1) descriptions…

  1. Chemistry Lab--Heat Capacity.

    ERIC Educational Resources Information Center

    Stern, Robert

    1998-01-01

    Explores measuring the specific heat of a metal ball. The ball is heated to a known temperature then placed in cold water. Students measure the temperature gain of the water in this investigation of the principle of Conservation of Energy. As a second task, students make a precise determination of the density of the ball. (PVD)

  2. The Use of Sodium Chloride & Aluminum as Phase Change Materials for High Temperature Thermal Energy Storage Characterized by Calorimetry

    NASA Astrophysics Data System (ADS)

    Solomon, Laura

    2013-01-01

    Encapsulated phase change materials (EPCM) have a great deal of potential for the storage of thermal energy in a wide range of applications. The present work is aimed at developing encapsulated phase change materials capable of storing thermal energy at temperatures above 700°C for use in concentrated solar power (CSP) systems. EPCM with a phase change material (PCM) with both a salt (sodium chloride) and a metal (aluminum) are considered here. Sodium chloride and aluminum are effective storage mediums because of their high melting points and large latent heats of fusion, 800°C and 660°C and 430kJ/kg and 397kJ/kg, respectively. Based on the heat capacities and the latent heat of fusion, for a 100 degree temperature range centered on the melting point of the PCM, 80% of the energy stored by the sodium chloride PCM can be attributed to the latent heat and 79% for the aluminum PCM. These large fractions attributed to latent heat have the potential for making EPCM based thermal energy storage devices smaller and less expensive. To study the performance of the candidate PCMs considered here, a specialized immersion calorimeter was designed, calibrated, and used to evaluate the storage capabilities of sodium chloride and aluminum based EPCMs. Additionally, the EPCMs were studied to ensure no loss of capacity would occur over the lifetime of the EPCM. While no reduction in the storage capacity of the sodium chloride EPCMs was found after repeated thermal cycles, there was a decrease in the storage capacity of the aluminum EPCMs after prolonged exposure to high temperatures.

  3. Energetic basis for selective recognition of T*G mismatched base pairs in DNA by imidazole-rich polyamides.

    PubMed

    Lacy, Eilyn R; Nguyen, Binh; Le, Minh; Cox, Kari K; OHare, Caroline; Hartley, John A; Lee, Moses; Wilson, W David

    2004-01-01

    To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T.G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T.G-polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T.G mismatch containing DNA hairpin duplex and a similar DNA with only Watson-Crick base pairs. Large negative binding enthalpies for all of the polyamide-DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T.G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T.G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T.G mismatch sites.

  4. Energetic basis for selective recognition of T·G mismatched base pairs in DNA by imidazole-rich polyamides

    PubMed Central

    Lacy, Eilyn R.; Nguyen, Binh; Le, Minh; Cox, Kari K.; O'Hare, Caroline; Hartley, John A.; Lee, Moses; Wilson, W. David

    2004-01-01

    To complement available structure and binding results and to develop a detailed understanding of the basis for selective molecular recognition of T·G mismatches in DNA by imidazole containing polyamides, a full thermodynamic profile for formation of the T·G–polyamide complex has been determined. The amide-linked heterocycles f-ImImIm and f-PyImIm (where f is formamido group, Im is imidazole and Py is pyrrole) were studied by using biosensor-surface plasmon resonance (SPR) and isothermal titration calorimetry (ITC) with a T·G mismatch containing DNA hairpin duplex and a similar DNA with only Watson–Crick base pairs. Large negative binding enthalpies for all of the polyamide–DNA complexes indicate that the interactions are enthalpically driven. SPR results show slower complex formation and stronger binding of f-ImImIm to the T·G than to the match site. The thermodynamic analysis indicates that the enhanced binding to the T·G site is the result of better entropic contributions. Negative heat capacity changes for the complex are correlated with calculated solvent accessible surface area changes and indicate hydrophobic contributions to complex formation. DNase I footprinting analysis in a long DNA sequence provided supporting evidence that f-ImImIm binds selectively to T·G mismatch sites. PMID:15064359

  5. Heat capacity of the site-diluted spin dimer system Ba₃(Mn 1-xV x)₂O₈

    DOE PAGES

    Samulon, E. C.; Shapiro, M. C.; Fisher, I. R.

    2011-08-05

    Heat-capacity and susceptibility measurements have been performed on the diluted spin dimer compound Ba₃(Mn 1-xV x)₂O₈. The parent compound Ba₃Mn₂O₈ is a spin dimer system based on pairs of antiferromagnetically coupled S=1, 3d² Mn⁵⁺ ions such that the zero-field ground state is a product of singlets. Substitution of nonmagnetic S=0, 3d⁰ V⁵⁺ ions leads to an interacting network of unpaired Mn moments, the low-temperature properties of which are explored in the limit of small concentrations 0≤x≤0.05. The zero-field heat capacity of this diluted system reveals a progressive removal of magnetic entropy over an extended range of temperatures, with no evidencemore » for a phase transition. The concentration dependence does not conform to expectations for a spin-glass state. Rather, the data suggest a low-temperature random singlet phase, reflecting the hierarchy of exchange energies found in this system.« less

  6. Single crystal growth and anisotropic magnetic properties of HoAl2Ge2

    NASA Astrophysics Data System (ADS)

    Matin, Md.; Mondal, Rajib; Thamizhavel, A.; Provino, A.; Manfrinetti, P.; Dhar, S. K.

    2018-05-01

    We have grown a single crystal of HoAl2Ge2, which crystallizes in the hexagonal CaAl2Si2 type structure with Ho ions in the trigonal coordination in the ab plane. The data obtained from the bulk measurement techniques of magnetization, heat capacity and transport reveal that HoAl2Ge2 orders antiferromagnetically at TN ˜6.5 K. The susceptibility below TN and isothermal magnetization at 2 K indicate the ab plane as the easy plane of magnetization. Heat capacity data reveal a prominent Schottky anomaly with a broad peak centered around 25 K, suggesting a relatively low crystal electric field (CEF) splitting. The electrical resistivity reveals the occurrence of a superzone gap below TN. The point charge model of the CEF is applied to the magnetization and the heat capacity data. While a good fit to the paramagnetic susceptibility is obtained, the CEF parameters do not provide a satisfactory fit to the isothermal magnetization at 2 K and the Schottky anomaly.

  7. Heat capacity peak at the quantum critical point of the transverse Ising magnet CoNb2O6

    PubMed Central

    Liang, Tian; Koohpayeh, S. M.; Krizan, J. W.; McQueen, T. M.; Cava, R. J.; Ong, N. P.

    2015-01-01

    The transverse Ising magnet Hamiltonian describing the Ising chain in a transverse magnetic field is the archetypal example of a system that undergoes a transition at a quantum critical point (QCP). The columbite CoNb2O6 is the closest realization of the transverse Ising magnet found to date. At low temperatures, neutron diffraction has observed a set of discrete collective spin modes near the QCP. Here, we ask if there are low-lying spin excitations distinct from these relatively high-energy modes. Using the heat capacity, we show that a significant band of gapless spin excitations exists. At the QCP, their spin entropy rises to a prominent peak that accounts for 30% of the total spin degrees of freedom. In a narrow field interval below the QCP, the gapless excitations display a fermion-like, temperature-linear heat capacity below 1 K. These novel gapless modes are the main spin excitations participating in, and affected by, the quantum transition. PMID:26146018

  8. Physiological constraints to climate warming in fish follow principles of plastic floors and concrete ceilings.

    PubMed

    Sandblom, Erik; Clark, Timothy D; Gräns, Albin; Ekström, Andreas; Brijs, Jeroen; Sundström, L Fredrik; Odelström, Anne; Adill, Anders; Aho, Teija; Jutfelt, Fredrik

    2016-05-17

    Understanding the resilience of aquatic ectothermic animals to climate warming has been hindered by the absence of experimental systems experiencing warming across relevant timescales (for example, decades). Here, we examine European perch (Perca fluviatilis, L.) from the Biotest enclosure, a unique coastal ecosystem that maintains natural thermal fluctuations but has been warmed by 5-10 °C by a nuclear power plant for over three decades. We show that Biotest perch grow faster and display thermally compensated resting cardiorespiratory functions compared with reference perch living at natural temperatures in adjacent waters. However, maximum cardiorespiratory capacities and heat tolerance limits exhibit limited or no thermal compensation when compared with acutely heated reference perch. We propose that while basal energy requirements and resting cardiorespiratory functions (floors) are thermally plastic, maximum capacities and upper critical heat limits (ceilings) are much less flexible and thus will limit the adaptive capacity of fishes in a warming climate.

  9. Thermophysical properties of ilvaite CaFe22+Fe3+Si2O7O (OH); heat capacity from 7 to 920 K and thermal expansion between 298 and 856 K

    USGS Publications Warehouse

    Robie, R.A.; Evans, H.T.; Hemingway, B.S.

    1988-01-01

    The heat capacity of ilvaite from Seriphos, Greece was measured by adiabatic shield calorimetry (6.4 to 380.7 K) and by differential scanning calorimetry (340 to 950 K). The thermal expansion of ilvaite was also investigated, by X-ray methods, between 308 and 853 K. At 298.15 K the standard molar heat capacity and entropy for ilvaite are 298.9??0.6 and 292.3??0.6 J/(mol. K) respectively. Between 333 and 343 K ilvaite changes from monoclinic to orthorhombic. The antiferromagnetic transition is shown by a hump in Cp0with a Ne??el temperature of 121.9??0.5 K. A rounded hump in Cp0between 330 and 400 K may possibily arise from the thermally activated electron delocalization (hopping) known to take place in this temperature region. ?? 1988 Springer-Verlag.

  10. Energy and economic efficiency alternatives for electric lighting in commercial buildings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robbins, C L; Hunter, K C; Carlisle, N

    1985-10-01

    This report investigates current efficient alternatives for replacing or supplementing electric lighting systems in commercial buildings. Criteria for establishing the economic attractiveness of various lighting alternatives are defined and the effect of future changes in building lighting on utility capacity. The report focuses on the energy savings potential, economic efficiency, and energy demand reduction of three categories of lighting alternatives: (1) use of a renewable resource (daylighting) to replace or supplement electric lighting; (2) use of task/ambient lighting in lieu of overhead task lighting; and (3) equipment changes to improve lighting energy efficiency. The results indicate that all three categoriesmore » offer opportunities to reduce lighting energy use in commercial buildings. Further, reducing lighting energy causes a reduction in cooling energy use and cooling capacity while increasing heating energy use. It does not typically increase heating capacity because the use of lighting in the building does not offset the need for peak heating at night.« less

  11. Evolution of some physicochemical and antioxidant properties of black garlic whole bulbs and peeled cloves.

    PubMed

    Toledano-Medina, M Angeles; Pérez-Aparicio, Jesús; Moreno-Rojas, Rafael; Merinas-Amo, Tania

    2016-05-15

    Black garlic was processed at three different temperatures of heat treatment (72°, 75° and 78°C) and close to 90% of relative humidity. Two types of material source were used: whole bulbs and peeled cloves. Total soluble solids content (°Brix), pH, water activity (aw), browning intensive (L value), total polyphenol content, antioxidant capacity and total polyphenol index of the raw and heated garlic were determined. This study showed the changes occurring in the physicochemical and antioxidant properties of the garlic during the heat-treatment evolution. The soluble solids content (°Brix) in garlic increased gradually and the pH decreased in whole bulbs and peeled garlics. The polyphenol content measured by the Folin-Ciocalteu method showed a significant increase during the heat-treatment in all the cases. Also, the antioxidant capacity measured by the ABTS radical increased significantly during the heat-treatment. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Thermophysical properties of heat-treated U-7Mo/Al dispersion fuel

    NASA Astrophysics Data System (ADS)

    Cho, Tae Won; Kim, Yeon Soo; Park, Jong Man; Lee, Kyu Hong; Kim, Sunghwan; Lee, Chong Tak; Yang, Jae Ho; Oh, Jang Soo; Sohn, Dong-Seong

    2018-04-01

    In this study, the effects of interaction layer (IL) on thermophysical properties of U-7Mo/Al dispersion fuel were examined. Microstructural analyses revealed that ILs were formed uniformly on U-Mo particles during heating of U-7Mo/Al samples. The IL volume fraction was measured by applying image analysis methods. The uranium loadings of the samples were calculated based on the measured meat densities at 298 K. The density of the IL was estimated by using the measured density and IL volume fraction. Thermal diffusivity and heat capacity of the samples after the heat treatment were measured as a function of temperature and volume fractions of U-Mo and IL. The thermal conductivity of IL-formed U-7Mo/Al was derived by using the measured thermal diffusivity, heat capacity, and density. The thermal conductivity obtained in the present study was lower than that predicted by the modified Hashin-Shtrikman model due to the theoretical model's inability to consider the thermal resistance at interfaces between the meat constituents.

  13. A Novel Approach to Model the Air-Side Heat Transfer in Microchannel Condensers

    NASA Astrophysics Data System (ADS)

    Martínez-Ballester, S.; Corberán, José-M.; Gonzálvez-Maciá, J.

    2012-11-01

    The work presents a model (Fin1D×3) for microchannel condensers and gas coolers. The paper focusses on the description of the novel approach employed to model the air-side heat transfer. The model applies a segment-by-segment discretization to the heat exchanger adding, in each segment, a specific bi-dimensional grid to the air flow and fin wall. Given this discretization, the fin theory is applied by using a continuous piecewise function for the fin wall temperature. It allows taking into account implicitly the heat conduction between tubes along the fin, and the unmixed air influence on the heat capacity. The model has been validated against experimental data resulting in predicted capacity errors within ± 5%. Differences on prediction results and computational cost were studied and compared with the previous authors' model (Fin2D) and with other simplified model. Simulation time of the proposed model was reduced one order of magnitude respect the Fin2D's time retaining its same accuracy.

  14. High radiogenic heat-producing Caenozoic granites: implications for the origin of Quman geothermal field in Taxkorgan, northwestern China

    NASA Astrophysics Data System (ADS)

    Shuai, W.; Shihua, Q.

    2017-12-01

    As a new found geothermal field, Quman geothermal field (Taxkorgan, China) holds a wellhead temperature of 144 ° and a shallow buried depth of heat reservoir. The heat source of the geothermal field is thought to be the heat flow from the upper mantle, which is disputable with the average Pamir Moho depth of 70 km. The new geochemical data of Taxkorgan alkaline complex, which is located to the west of the geothermal field and is exposed for 60 km along the western side of the Taxkorgan Valley, shed a light on the origin of Quman geothermal field. Together with the lithological association, the geochemical results present that Taxkorgan alkaline complex are mainly composed of alkaline syenites and subalkaline granitoids. Based on the contents of Th, U and K of 25 rock samples, the average radioactive heat generation of the complex (9.08 μW/m3) is 2 times of the standard of high heat production granites (HHPGs) (5 μW/m3), and 4 times of the average upper continental crust (UCC) heat production (2.7 μW/m3). According to U-Pd dating of zircon in aegirine-augite syenite, the crystallization age of the complex is 11 Ma. The complex has incompatible element abundances higher than generally observed for the continental crust, therefore a mantle source should be considered. The results of apatite fission track ange and track length of the complex indicate a low uplift rate (0.11 mm/a) in 3 5 Ma and a high uplift rate (2 3 mm/a) since ca. 2Ma, which indicates a low exposed age of the complex. Therefore, combined with previous studies, we propose that radioactive heat production of the complex and afterheat of magma cooling are the heat source of Quman geothermal field. With a shallow buried heat source, the geothermal field is potential for EGS development.

  15. Novel 18650 lithium-ion battery surrogate cell design with anisotropic thermophysical properties for studying failure events

    NASA Astrophysics Data System (ADS)

    Spinner, Neil S.; Hinnant, Katherine M.; Mazurick, Ryan; Brandon, Andrew; Rose-Pehrsson, Susan L.; Tuttle, Steven G.

    2016-04-01

    Cylindrical 18650-type surrogate cells were designed and fabricated to mimic the thermophysical properties and behavior of active lithium-ion batteries. An internal jelly roll geometry consisting of alternating stainless steel and mica layers was created, and numerous techniques were used to estimate thermophysical properties. Surrogate cell density was measured to be 1593 ± 30 kg/m3, and heat capacity was found to be 727 ± 18 J/kg-K. Axial thermal conductivity was determined to be 5.1 ± 0.6 W/m-K, which was over an order of magnitude higher than radial thermal conductivity due to jelly roll anisotropy. Radial heating experiments were combined with numerical and analytical solutions to the time-dependent, radial heat conduction equation, and from the numerical method an additional estimate for heat capacity of 805 ± 23 J/kg-K was found. Using both heat capacities and analysis techniques, values for radial thermal conductivity were between 0.120 and 0.197 W/m-K. Under normal operating conditions, relatively low radial temperature distributions were observed; however, during extreme battery failure with a hexagonal cell package, instantaneous radial temperature distributions as high as 43-71 °C were seen. For a vertical cell package, even during adjacent cell failure, similar homogeneity in internal temperatures were observed, demonstrating thermal anisotropy.

  16. Design, fabrication and test of a hydrogen heat pipe. [extruding and grooving 6063-T6 aluminum tubes for cryogenic heat pipes

    NASA Technical Reports Server (NTRS)

    Alario, J.

    1979-01-01

    Re-entrant groove technology was extended to hydrogen heat pipes. Parametric analyses are presented which optimize the theoretical design while considering the limitations of state-of-the-art extrusion technology. The 6063-T6 aluminum extrusion is 14.6 mm OD with a wall thickness of 1.66 mm and contains 20 axial grooves which surround a central 9.3 mm diameter vapor core. Each axial groove is 0.775 mm diameter with a 0.33 mm opening. An excess vapor reservoir is provided at the evaporator to minimize the pressure containment hazard during ambient storage. Modifications to the basic re-entrant groove profile resulted in improved overall performance. While the maximum heat transport capacity decreased slightly to 103 w-m the static wicking height increased markedly to 4.5 cm. The heat pipe became operational between 20 and 30 K after a cooldown from 77 K without any difficulty. Steady state performance data taken over a 19 to 23 K temperature range indicated: (1) maximum heat transport capacity of 5.4 w-m; (2) static wicking height of 1.42 cm; and (3) overall heat pipe conductance of 1.7 watts/deg C.

  17. Low temperature heat capacities and thermodynamic functions described by Debye-Einstein integrals.

    PubMed

    Gamsjäger, Ernst; Wiessner, Manfred

    2018-01-01

    Thermodynamic data of various crystalline solids are assessed from low temperature heat capacity measurements, i.e., from almost absolute zero to 300 K by means of semi-empirical models. Previous studies frequently present fit functions with a large amount of coefficients resulting in almost perfect agreement with experimental data. It is, however, pointed out in this work that special care is required to avoid overfitting. Apart from anomalies like phase transformations, it is likely that data from calorimetric measurements can be fitted by a relatively simple Debye-Einstein integral with sufficient precision. Thereby, reliable values for the heat capacities, standard enthalpies, and standard entropies at T  = 298.15 K are obtained. Standard thermodynamic functions of various compounds strongly differing in the number of atoms in the formula unit can be derived from this fitting procedure and are compared to the results of previous fitting procedures. The residuals are of course larger when the Debye-Einstein integral is applied instead of using a high number of fit coefficients or connected splines, but the semi-empiric fit coefficients keep their meaning with respect to physics. It is suggested to use the Debye-Einstein integral fit as a standard method to describe heat capacities in the range between 0 and 300 K so that the derived thermodynamic functions are obtained on the same theory-related semi-empiric basis. Additional fitting is recommended when a precise description for data at ultra-low temperatures (0-20 K) is requested.

  18. Thermophysical Properties of Cold and Vacuum Plasma Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings. Part 2; Specific Heat Capacity

    NASA Technical Reports Server (NTRS)

    Raj, S. V.

    2017-01-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma sprayed (VPS) and cold sprayed copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant pressure specific heat capacities, CP, of these coatings. The data were empirically were regression-fitted with the equation: CP = AT4 + BT3 + CT2 + DT +E where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of CP using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the Neumann-Kopp rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and CP is greater than 3R, where R is the universal gas constant, were measured for all the alloys except NiAl for which CP is less than 3R at all temperatures.

  19. Molar heat capacity at constant volume of 1,1-difluoroethane (R152a) and 1,1,1-trifluoroethane (R143a) from the triple-point temperature to 345 k at pressure to 35 MPa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Magee, J.W.

    1998-09-01

    Molar heat capacities at constant volume (C{sub v}) of 1,1-difluoroethane (R152a) and 1,1,1-trifluoroethane (R143a) have been measured with an adiabatic calorimeter. Temperatures ranged from their triple points to 345 K, and pressures up to 35 MPa. Measurements were conducted on the liquid in equilibrium with its vapor and on compressed liquid samples. The samples were of high purity, verified by chemical analysis of each fluid. For the samples, calorimetric results were obtained for two-phase (C{sub v}{sup (2)}), saturated-liquid (C{sub {sigma}} or C{sub x}{prime}), and single-phase (C{sub v}) molar heat capacities. The C{sub {sigma}} data were used to estimate vapor pressuresmore » for values less than 105 kPa by applying a thermodynamic relationship between the saturated liquid heat capacity and the temperature derivatives of the vapor pressure. The triple-point temperature and the enthalpy of fusion were also measured for each substance. The principal sources of uncertainty are the temperature rise measurement and the change-of-volume work adjustment. The expanded relative uncertainty (with a coverage factor k = 2 and thus a two-standard deviation estimate) for C{sub v} is estimated to be 0.7%, for C{sub v}{sup (2)} it is 0.5%, and for C{sub {sigma}} it is 0.7%.« less

  20. Thermophysical Properties of Cold- and Vacuum Plasma-Sprayed Cu-Cr-X Alloys, NiAl and NiCrAlY Coatings II: Specific Heat Capacity

    NASA Astrophysics Data System (ADS)

    Raj, S. V.

    2017-11-01

    Part I of the paper discussed the temperature dependencies of the electrical resistivities, thermal conductivities, thermal diffusivities and total hemispherical emissivities of several vacuum plasma-sprayed (VPS) and cold-sprayed (CS) copper alloy monolithic coatings, VPS NiAl, VPS NiCrAlY, extruded GRCop-84 and as-cast Cu-17(wt.%)Cr-5%Al. Part II discusses the temperature dependencies of the constant-pressure specific heat capacities, C P, of these coatings. The data were empirically regression-fitted with the equation: \\varvec{C}_{P} = {AT}^{4} + {BT}^{3} + {CT}^{2} + DT + \\varvec{E}where T is the absolute temperature and A, B, C, D and E are regression constants. The temperature dependencies of the molar enthalpy, molar entropy and Gibbs molar free energy determined from experimental values of molar specific heat capacity are reported. Calculated values of C P using the Neumann-Kopp (NK) rule were in poor agreement with experimental data. Instead, a modification of the NK rule was found to predict values closer to the experimental data with an absolute deviation less than 6.5%. The specific molar heat capacities for all the alloys did not agree with the Dulong-Petit law, and C P > 3 R, where R is the universal gas constant, were measured for all the alloys except NiAl for which C P < 3 R at all temperatures.

  1. Waste-Heat-Driven Cooling Using Complex Compound Sorbents

    NASA Technical Reports Server (NTRS)

    Rocketfeller, Uwe; Kirol, Lance; Khalili, Kaveh

    2004-01-01

    Improved complex-compound sorption pumps are undergoing development for use as prime movers in heat-pump systems for cooling and dehumidification of habitats for humans on the Moon and for residential and commercial cooling on Earth. Among the advantages of sorption heat-pump systems are that they contain no moving parts except for check valves and they can be driven by heat from diverse sources: examples include waste heat from generation of electric power, solar heat, or heat from combustion of natural gas. The use of complex compound sorbents in cooling cycles is not new in itself: Marketing of residential refrigerators using SrCl2 was attempted in the 1920s and 30s and was abandoned because heat- and mass-transfer rates of the sorbents were too low. Addressing the issue that gave rise to the prior abandonment of complex compound sorption heat pumps, the primary accomplishment of the present development program thus far has been the characterization of many candidate sorption media, leading to large increases in achievable heat- and mass-transfer rates. In particular, two complex compounds (called "CC260-1260" and "CC260-2000") were found to be capable of functioning over the temperature range of interest for the lunar-habitat application and to offer heat- and mass-transfer rates and a temperature-lift capability adequate for that application. Regarding the temperature range: A heat pump based on either of these compounds is capable of providing a 95-K lift from a habitable temperature to a heat-rejection (radiator) temperature when driven by waste heat at an input temperature .500 K. Regarding the heat- and mass-transfer rates or, more precisely, the power densities made possible by these rates: Power densities observed in tests were 0.3 kilowatt of cooling per kilogram of sorbent and 2 kilowatts of heating per kilogram of sorbent. A prototype 1-kilowatt heat pump based on CC260-2000 has been built and demonstrated to function successfully.

  2. Excess entropy and crystallization in Stillinger-Weber and Lennard-Jones fluids

    NASA Astrophysics Data System (ADS)

    Dhabal, Debdas; Nguyen, Andrew Huy; Singh, Murari; Khatua, Prabir; Molinero, Valeria; Bandyopadhyay, Sanjoy; Chakravarty, Charusita

    2015-10-01

    Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW16). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW20), silicon (SW21), and water (SW23.15 or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. The tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by Strip, is also studied. Strip is a good entropy estimator for liquids where pair and triplet correlations are important such as Ge and Si, but loses accuracy for purely pair-dominated liquids, like LJ fluid, or near the crystallization temperature (Tthr). Since local tetrahedral order is compatible with both liquid and crystalline states, the reorganisation of tetrahedral liquids is accompanied by a clear rise in the pair, triplet, and thermodynamic contributions to the heat capacity, resulting in the heat capacity anomaly. In contrast, the pair-dominated liquids show increasing dominance of triplet correlations on approaching crystallization but no sharp rise in either the pair or thermodynamic heat capacities.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dhabal, Debdas; Chakravarty, Charusita, E-mail: charus@chemistry.iitd.ac.in; Nguyen, Andrew Huy

    Molecular dynamics simulations are used to contrast the supercooling and crystallization behaviour of monatomic liquids that exemplify the transition from simple to anomalous, tetrahedral liquids. As examples of simple fluids, we use the Lennard-Jones (LJ) liquid and a pair-dominated Stillinger-Weber liquid (SW{sub 16}). As examples of tetrahedral, water-like fluids, we use the Stillinger-Weber model with variable tetrahedrality parameterized for germanium (SW{sub 20}), silicon (SW{sub 21}), and water (SW{sub 23.15} or mW model). The thermodynamic response functions show clear qualitative differences between simple and water-like liquids. For simple liquids, the compressibility and the heat capacity remain small on isobaric cooling. Themore » tetrahedral liquids in contrast show a very sharp rise in these two response functions as the lower limit of liquid-phase stability is reached. While the thermal expansivity decreases with temperature but never crosses zero in simple liquids, in all three tetrahedral liquids at the studied pressure, there is a temperature of maximum density below which thermal expansivity is negative. In contrast to the thermodynamic response functions, the excess entropy on isobaric cooling does not show qualitatively different features for simple and water-like liquids; however, the slope and curvature of the entropy-temperature plots reflect the heat capacity trends. Two trajectory-based computational estimation methods for the entropy and the heat capacity are compared for possible structural insights into supercooling, with the entropy obtained from thermodynamic integration. The two-phase thermodynamic estimator for the excess entropy proves to be fairly accurate in comparison to the excess entropy values obtained by thermodynamic integration, for all five Lennard-Jones and Stillinger-Weber liquids. The entropy estimator based on the multiparticle correlation expansion that accounts for both pair and triplet correlations, denoted by S{sub trip}, is also studied. S{sub trip} is a good entropy estimator for liquids where pair and triplet correlations are important such as Ge and Si, but loses accuracy for purely pair-dominated liquids, like LJ fluid, or near the crystallization temperature (T{sub thr}). Since local tetrahedral order is compatible with both liquid and crystalline states, the reorganisation of tetrahedral liquids is accompanied by a clear rise in the pair, triplet, and thermodynamic contributions to the heat capacity, resulting in the heat capacity anomaly. In contrast, the pair-dominated liquids show increasing dominance of triplet correlations on approaching crystallization but no sharp rise in either the pair or thermodynamic heat capacities.« less

  4. In situ production of titanium dioxide nanoparticles in molten salt phase for thermal energy storage and heat-transfer fluid applications

    NASA Astrophysics Data System (ADS)

    Lasfargues, Mathieu; Bell, Andrew; Ding, Yulong

    2016-06-01

    In this study, TiO2 nanoparticles (average particle size 16 nm) were successfully produced in molten salt phase and were showed to significantly enhance the specific heat capacity of a binary eutectic mixture of sodium and potassium nitrate (60/40) by 5.4 % at 390 °C and 7.5 % at 445 °C for 3.0 wt% of precursors used. The objective of this research was to develop a cost-effective alternate method of production which is potentially scalable, as current techniques utilized are not economically viable for large quantities. Enhancing the specific heat capacity of molten salt would promote more competitive pricing for electricity production by concentrating solar power plant. Here, a simple precursor (TiOSO4) was added to a binary eutectic mixture of potassium and sodium nitrate, heated to 450 °C, and cooled to witness the production of nanoparticles.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    New inverter-driven ASHPs are gaining ground in colder climates. These systems operate at sub-zero temperatures without the use of electric resistance backup. There are still uncertainties, however, about cold-climate capacity and efficiency in cold weather and questions such as measuring: power consumption, supply, return, and outdoor air temperatures, and air flow through the indoor fan coil. CARB observed a wide range of operating efficiencies and outputs from site to site. Maximum capacities were found to be generally in line with manufacturer's claims as outdoor temperatures fell to -10 degrees F. The reasons for the wide range in heating performance likelymore » include: low indoor air flow rates, poor placement of outdoor units, relatively high return air temperatures, thermostat set back, integration with existing heating systems, and occupants limiting indoor fan speed. Even with lower efficiencies than published in other studies, most of the heat pumps here still provide heat at lower cost than oil, propane, or certainly electric resistance systems.« less

  6. Using thermal stress to model aspects of disease states.

    PubMed

    Wilson, Thad E; Klabunde, Richard E; Monahan, Kevin D

    2014-07-01

    Exposure to acute heat or cold stress elicits numerous physiological responses aimed at maintaining body temperatures. Interestingly, many of the physiological responses, mediated by the cardiovascular and autonomic nervous systems, resemble aspects of, or responses to, certain disease states. The purpose of this Perspective is to highlight some of these areas in order to explore how they may help us better understand the pathophysiology underlying aspects of certain disease states. The benefits of using this human thermal stress approach are that (1) no adjustments for inherent comparative differences in animals are needed, (2) non-medicated healthy humans with no underlying co-morbidities can be studied in place of complex patients, and (3) more mechanistic perturbations can be safely employed without endangering potentially vulnerable populations. Cold stress can be used to induce stable elevations in blood pressure. Cold stress may also be used to model conditions where increases in myocardial oxygen demand are not met by anticipated increases in coronary blood flow, as occurs in older adults. Lower-body negative pressure has the capacity to model aspects of shock, and the further addition of heat stress improves and expands this model because passive-heat exposure lowers systemic vascular resistance at a time when central blood volume and left-ventricular filling pressure are reduced. Heat stress can model aspects of heat syncope and orthostatic intolerance as heat stress decreases cerebral blood flow and alters the Frank-Starling mechanism resulting in larger decreases in stroke volume for a given change in left-ventricular filling pressure. Combined, thermal perturbations may provide in vivo paradigms that can be employed to gain insights into pathophysiological aspects of certain disease states. Copyright © 2014 Elsevier Ltd. All rights reserved.

  7. Calorimetric determination of thermal parameters for the Li/BrCl in SOCl2 (BCX) chemistry

    NASA Technical Reports Server (NTRS)

    Darcy, Eric C.; Kalu, Eric E.; White, Ralph E.

    1990-01-01

    The heat capacity of a Li-BCX DD-cell was found to be dependent on its state of charge by drop calorimetry measurements. The method of drop calorimetry involves measuring the energy (joules) gained or lost from a sample that is transferred from a bath at temperature A to one at temperature B. The thermoneutral potential is defined as the cell potential where the cell electrochemical reactions are neither exothermic nor endothermic. A Hart scientific calorimeter system, Model No. S77XX, designed for heat conduction calorimetry and drop calorimetry was used. Calorimetric analysis yielded a thermoneutral potential of 4.14 volts and a cell heat capacity dependent on the state of charge.

  8. Advanced Thermo-Adsorptive Battery: Advanced Thermo-Adsorptive Battery Climate Control System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    HEATS Project: MIT is developing a low-cost, compact, high-capacity, advanced thermoadsorptive battery (ATB) for effective climate control of EVs. The ATB provides both heating and cooling by taking advantage of the materials’ ability to adsorb a significant amount of water. This efficient battery system design could offer up as much as a 30% increase in driving range compared to current EV climate control technology. The ATB provides high-capacity thermal storage with little-to-no electrical power consumption. The ATB is also looking to explore the possibility of shifting peak electricity loads for cooling and heating in a variety of other applications, includingmore » commercial and residential buildings, data centers, and telecom facilities.« less

  9. Electrical and Thermal Characteristics of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Rao. Gopalskrishna M.; Vaidyanathan, Hari

    1999-01-01

    The 18,650 type lithium ion cells are characterized by a cell resistance of 130 mOmega, capacity of 1.27 Ah at 25 C, and a mid-discharge voltage of 3.6 V. The capacity loss in the 72-hour stand test was 3.39%. The heat dissipation properties were determined by a radiative calorimeter. During charge, initial endothermic cooling and subsequent exothermic cooling beyond 55% state- of-charge were observed. At C/2 rate of discharge (which is considered medium rate), the heat dissipated was 17 mW/cu cm. The heat dissipation profile during discharge is also unique in the presence of a minimum that is different from that observed for Ni-Cd, Ni-MH, and Ni-H2 cells.

  10. Electrical and Thermal Characteristics of Lithium-Ion Cells

    NASA Technical Reports Server (NTRS)

    Vaidyanathan, Hari; Rao, Gopalakrishna

    1999-01-01

    The 18650 type lithium ion cells are characterized by a cell resistance of 130 m Omega, capacity of 1.27 Ah at 25C, and a mid-discharge voltage of 3.6 V. The capacity loss in the 72-hour stand test was 3.39 percent. The heat dissipation properties were determined by a radiative calorimeter. During charge, initial endothermic cooling and subsequent exothermic cooling beyond 55 percent state-of-charge were observed. At C/2 rate of discharge (which is considered medium rate), the heat dissipated was 17 mW/cc. The heat dissipation profile during discharge is also unique in the presence of a minimum that is different from that observed for Ni-Cd, Ni-MH, and Ni-H2 cells.

  11. Turbine sizing of a solar thermal power plant

    NASA Technical Reports Server (NTRS)

    Manvi, R.; Fujita, T.

    1979-01-01

    Since the insolation is intermittent, thermal energy storage is necessary to extend the time of power generation with solar heat past sunset. There are two approaches to specifying the size of turbine-generator units depending on the system operation. In the first approach, the turbine operates at its full capacity when operating on direct solar heat, and at reduced capacity when operating on collected heat out of energy storage. In the second approach, the turbine will always operate at a uniform level either on derated energy from the receiver or from energy storage. Both of these approaches have certain advantages and disadvantages. In this paper, a simple analysis is outlined and exercised to compare the performance and economics of these two approaches.

  12. Oscillatory conductive heat transfer for a fiber in an ideal gas

    NASA Technical Reports Server (NTRS)

    Kuntz, H. L.; Perreira, N. D.

    1985-01-01

    A description of the thermal effects created by placing a cylindrical fiber in an inviscid, ideal gas, through which an acoustic wave propagates, is presented. The fibers and the gas have finite heat capacities and thermal conductivities. Expressions for the temperature distribution in the gas and in the material are determined. The temperature distribution is caused by pressure oscillations in the gas which, in turn, are caused by the passage of an acoustic wave. The relative value of a dimensionless parameter is found to be indicative of whether the exact or approximate equations should be used in the solution. This parameter is a function of the thermal conductivities and heat capacities of the fiber and gas, the acoustic frequency, and the fiber diameter.

  13. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 16 Commercial Practices 1 2014-01-01 2014-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to Part 305 Commercial Practices FEDERAL TRADE COMMISSION REGULATIONS UNDER SPECIFIC ACTS OF CONGRESS... LABELING RULEâ) Pt. 305, App. D5 Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information Capacity...

  14. 46 CFR 64.63 - Minimum emergency venting capacity.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... tank may have a reduction if— (1) It is shown to the Coast Guard that the insulation reduces the heat... in square feet. L=Latent heat of the product being vaporized at relieving conditions in Btu per pound... based on relation of specific heats, in accordance with appendix J of division 1 of section VIII of the...

  15. 46 CFR 64.63 - Minimum emergency venting capacity.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... tank may have a reduction if— (1) It is shown to the Coast Guard that the insulation reduces the heat... in square feet. L=Latent heat of the product being vaporized at relieving conditions in Btu per pound... based on relation of specific heats, in accordance with Appendix J of Division 1 of Section VIII of the...

  16. 46 CFR 64.63 - Minimum emergency venting capacity.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... tank may have a reduction if— (1) It is shown to the Coast Guard that the insulation reduces the heat... in square feet. L=Latent heat of the product being vaporized at relieving conditions in Btu per pound... based on relation of specific heats, in accordance with Appendix J of Division 1 of Section VIII of the...

  17. 46 CFR 64.63 - Minimum emergency venting capacity.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... tank may have a reduction if— (1) It is shown to the Coast Guard that the insulation reduces the heat... in square feet. L=Latent heat of the product being vaporized at relieving conditions in Btu per pound... based on relation of specific heats, in accordance with Appendix J of Division 1 of Section VIII of the...

  18. 46 CFR 64.63 - Minimum emergency venting capacity.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... tank may have a reduction if— (1) It is shown to the Coast Guard that the insulation reduces the heat... in square feet. L=Latent heat of the product being vaporized at relieving conditions in Btu per pound... based on relation of specific heats, in accordance with appendix J of division 1 of section VIII of the...

  19. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 16 Commercial Practices 1 2010-01-01 2010-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

  20. 16 CFR Appendix D5 to Part 305 - Water Heaters-Heat Pump

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 16 Commercial Practices 1 2012-01-01 2012-01-01 false Water Heaters-Heat Pump D5 Appendix D5 to... CONCERNING DISCLOSURES REGARDING ENERGY CONSUMPTION AND WATER USE OF CERTAIN HOME APPLIANCES AND OTHER... Appendix D5 to Part 305—Water Heaters—Heat Pump Range Information CAPACITY FIRST HOUR RATING Range of...

Top