Sample records for complex high atlas

  1. SU-E-J-128: Two-Stage Atlas Selection in Multi-Atlas-Based Image Segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, T; Ruan, D

    2015-06-15

    Purpose: In the new era of big data, multi-atlas-based image segmentation is challenged by heterogeneous atlas quality and high computation burden from extensive atlas collection, demanding efficient identification of the most relevant atlases. This study aims to develop a two-stage atlas selection scheme to achieve computational economy with performance guarantee. Methods: We develop a low-cost fusion set selection scheme by introducing a preliminary selection to trim full atlas collection into an augmented subset, alleviating the need for extensive full-fledged registrations. More specifically, fusion set selection is performed in two successive steps: preliminary selection and refinement. An augmented subset is firstmore » roughly selected from the whole atlas collection with a simple registration scheme and the corresponding preliminary relevance metric; the augmented subset is further refined into the desired fusion set size, using full-fledged registration and the associated relevance metric. The main novelty of this work is the introduction of an inference model to relate the preliminary and refined relevance metrics, based on which the augmented subset size is rigorously derived to ensure the desired atlases survive the preliminary selection with high probability. Results: The performance and complexity of the proposed two-stage atlas selection method were assessed using a collection of 30 prostate MR images. It achieved comparable segmentation accuracy as the conventional one-stage method with full-fledged registration, but significantly reduced computation time to 1/3 (from 30.82 to 11.04 min per segmentation). Compared with alternative one-stage cost-saving approach, the proposed scheme yielded superior performance with mean and medium DSC of (0.83, 0.85) compared to (0.74, 0.78). Conclusion: This work has developed a model-guided two-stage atlas selection scheme to achieve significant cost reduction while guaranteeing high segmentation accuracy. The benefit in both complexity and performance is expected to be most pronounced with large-scale heterogeneous data.« less

  2. Brain transcriptome atlases: a computational perspective.

    PubMed

    Mahfouz, Ahmed; Huisman, Sjoerd M H; Lelieveldt, Boudewijn P F; Reinders, Marcel J T

    2017-05-01

    The immense complexity of the mammalian brain is largely reflected in the underlying molecular signatures of its billions of cells. Brain transcriptome atlases provide valuable insights into gene expression patterns across different brain areas throughout the course of development. Such atlases allow researchers to probe the molecular mechanisms which define neuronal identities, neuroanatomy, and patterns of connectivity. Despite the immense effort put into generating such atlases, to answer fundamental questions in neuroscience, an even greater effort is needed to develop methods to probe the resulting high-dimensional multivariate data. We provide a comprehensive overview of the various computational methods used to analyze brain transcriptome atlases.

  3. Localized-atlas-based segmentation of breast MRI in a decision-making framework.

    PubMed

    Fooladivanda, Aida; Shokouhi, Shahriar B; Ahmadinejad, Nasrin

    2017-03-01

    Breast-region segmentation is an important step for density estimation and Computer-Aided Diagnosis (CAD) systems in Magnetic Resonance Imaging (MRI). Detection of breast-chest wall boundary is often a difficult task due to similarity between gray-level values of fibroglandular tissue and pectoral muscle. This paper proposes a robust breast-region segmentation method which is applicable for both complex cases with fibroglandular tissue connected to the pectoral muscle, and simple cases with high contrast boundaries. We present a decision-making framework based on geometric features and support vector machine (SVM) to classify breasts in two main groups, complex and simple. For complex cases, breast segmentation is done using a combination of intensity-based and atlas-based techniques; however, only intensity-based operation is employed for simple cases. A novel atlas-based method, that is called localized-atlas, accomplishes the processes of atlas construction and registration based on the region of interest (ROI). Atlas-based segmentation is performed by relying on the chest wall template. Our approach is validated using a dataset of 210 cases. Based on similarity between automatic and manual segmentation results, the proposed method achieves Dice similarity coefficient, Jaccard coefficient, total overlap, false negative, and false positive values of 96.3, 92.9, 97.4, 2.61 and 4.77%, respectively. The localization error of the breast-chest wall boundary is 1.97 mm, in terms of averaged deviation distance. The achieved results prove that the suggested framework performs the breast segmentation with negligible errors and efficient computational time for different breasts from the viewpoints of size, shape, and density pattern.

  4. New high-precision drift-tube detectors for the ATLAS muon spectrometer

    NASA Astrophysics Data System (ADS)

    Kroha, H.; Fakhrutdinov, R.; Kozhin, A.

    2017-06-01

    Small-diameter muon drift tube (sMDT) detectors have been developed for upgrades of the ATLAS muon spectrometer. With a tube diameter of 15 mm, they provide an about an order of magnitude higher rate capability than the present ATLAS muon tracking detectors, the MDT chambers with 30 mm tube diameter. The drift-tube design and the construction methods have been optimised for mass production and allow for complex shapes required for maximising the acceptance. A record sense wire positioning accuracy of 5 μm has been achieved with the new design. In the serial production, the wire positioning accuracy is routinely better than 10 μm. 14 new sMDT chambers are already operational in ATLAS, further 16 are under construction for installation in the 2019-2020 LHC shutdown. For the upgrade of the barrel muon spectrometer for High-Luminosity LHC, 96 sMDT chambers will be contructed between 2020 and 2024.

  5. From lizard body form to serpentiform morphology: The atlas-axis complex in African cordyliformes and their relatives.

    PubMed

    Čerňanský, Andrej

    2016-04-01

    The comparative vertebral morphology of the atlas-axis complex in cordyliforms, xantusiid and several skinks is studied here. These lizards are particularly interesting because of their different ecological adaptations and anti-predation strategies, where conformation ranges from the lizard-like body to a snake-like body. This transition to serpentiform morphology shows several evolutionary patterns in the atlas-axis complex: 1) the zygapophyseal articulations are lost in the early stage of the transition. In contrast to mammals, the atlas is more or less locked to the axis in lepidosaurs, but the absence of zygapophyseal articulation releases this locking for rotation. However despite its serpentiform morphology, Chamaesaura is different, in possessing this articulation; 2) the first intercentrum of Chamaesaura and Tetradactylus africanus (serpentiform grass-swimmers) is fully curved anteriorly, underlying the occipital condyle. While this limits ventral skull rotation beyond a certain angle, it locks the skull, which is a crucial adaptation for a sit-and-wait position in grassland habitats that needs to keep the head stabilized; and 3) in Acontias, most of the atlas articular surface with the occipital condyle is formed by the lateral aspect of the articulation area relative to the area located in the dorsal region of the slightly reduced intercentrum. A similar state occurs in amphisbaenians, most likely reflecting a fossorial lifestyle of the limbless lizards. Although Chamaesaura and Tetradactylus live sympatrically in grasslands, Chamaesaura differs in several ways in atlas-axis complex: for example, aforementioned presence of the atlas-axis zygapophyseal articulation, and long posterodorsal processes. Its occipital condyle protrudes further posteriorly, placing the atlas-axis complex further from the endocranium than in Tetradactylus. Hence, adaptation in the same niche, even among sister clades, can lead to different atlas-axis morphology due to different lifestyle strategies, for example, different foraging mode, while similar atlas-axis morphology can evolve in two lineages occupying different niches, as in Ablepharus and Scelotes. © 2016 Wiley Periodicals, Inc.

  6. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    A view from high up inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. A crane lifts the payload fairing containing NOAA's Geostationary Operational Environmental Satellite (GOES-R) for mating to the United Launch Alliance Atlas V Centaur upper stage. The satellite will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  7. Large-scale inference of protein tissue origin in gram-positive sepsis plasma using quantitative targeted proteomics

    PubMed Central

    Malmström, Erik; Kilsgård, Ola; Hauri, Simon; Smeds, Emanuel; Herwald, Heiko; Malmström, Lars; Malmström, Johan

    2016-01-01

    The plasma proteome is highly dynamic and variable, composed of proteins derived from surrounding tissues and cells. To investigate the complex processes that control the composition of the plasma proteome, we developed a mass spectrometry-based proteomics strategy to infer the origin of proteins detected in murine plasma. The strategy relies on the construction of a comprehensive protein tissue atlas from cells and highly vascularized organs using shotgun mass spectrometry. The protein tissue atlas was transformed to a spectral library for highly reproducible quantification of tissue-specific proteins directly in plasma using SWATH-like data-independent mass spectrometry analysis. We show that the method can determine drastic changes of tissue-specific protein profiles in blood plasma from mouse animal models with sepsis. The strategy can be extended to several other species advancing our understanding of the complex processes that contribute to the plasma proteome dynamics. PMID:26732734

  8. Neuroanatomical term generation and comparison between two terminologies.

    PubMed

    Srinivas, Prashanti R; Gusfield, Daniel; Mason, Oliver; Gertz, Michael; Hogarth, Michael; Stone, James; Jones, Edward G; Gorin, Fredric A

    2003-01-01

    An approach and software tools are described for identifying and extracting compound terms (CTs), acronyms and their associated contexts from textual material that is associated with neuroanatomical atlases. A set of simple syntactic rules were appended to the output of a commercially available part of speech (POS) tagger (Qtag v 3.01) that extracts CTs and their associated context from the texts of neuroanatomical atlases. This "hybrid" parser. appears to be highly sensitive and recognized 96% of the potentially germane neuroanatomical CTs and acronyms present in the cat and primate thalamic atlases. A comparison of neuroanatomical CTs and acronymsbetween the cat and primate atlas texts was initially performed using exact-term matching. The implementation of string-matching algorithms significantly improved the identification of relevant terms and acronyms between the two domains. The End Gap Free string matcher identified 98% of CTs and the Needleman Wunsch (NW) string matcher matched 36% of acronyms between the two atlases. Combining several simple grammatical and lexical rules with the POS tagger ("hybrid parser") (1) extracted complex neuroanatomical terms and acronyms from selected cat and primate thalamic atlases and (2) and facilitated the semi-automated generation of a highly granular thalamic terminology. The implementation of string-matching algorithms (1) reconciled terminological errors generated by optical character recognition (OCR) software used to generate the neuroanatomical text information and (2) increased the sensitivity of matching neuroanatomical terms and acronyms between the two neuroanatomical domains that were generated by the "hybrid" parser.

  9. Fast Simulation of Electromagnetic Showers in the ATLAS Calorimeter: Frozen Showers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barberio, E.; /Melbourne U.; Boudreau, J.

    2011-11-29

    One of the most time consuming process simulating pp interactions in the ATLAS detector at LHC is the simulation of electromagnetic showers in the calorimeter. In order to speed up the event simulation several parametrisation methods are available in ATLAS. In this paper we present a short description of a frozen shower technique, together with some recent benchmarks and comparison with full simulation. An expected high rate of proton-proton collisions in ATLAS detector at LHC requires large samples of simulated events (Monte Carlo) to study various physics processes. A detailed simulation of particle reactions ('full simulation') in the ATLAS detectormore » is based on GEANT4 and is very accurate. However, due to complexity of the detector, high particle multiplicity and GEANT4 itself, the average CPU time spend to simulate typical QCD event in pp collision is 20 or more minutes for modern computers. During detector simulation the largest time is spend in the calorimeters (up to 70%) most of which is required for electromagnetic particles in the electromagnetic (EM) part of the calorimeters. This is the motivation for fast simulation approaches which reduce the simulation time without affecting the accuracy. Several of fast simulation methods available within the ATLAS simulation framework (standard Athena based simulation program) are discussed here with the focus on the novel frozen shower library (FS) technique. The results obtained with FS are presented here as well.« less

  10. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features canmore » be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI-LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity coefficient to measure the overlap degree. Their method achieves average overlaps of 82.56% on 54 regions of interest (ROIs) and 79.78% on 80 ROIs, respectively, which significantly outperform the baseline method (random forests), with the average overlaps of 72.48% on 54 ROIs and 72.09% on 80 ROIs, respectively. Conclusions: The proposed methods have achieved the highest labeling accuracy, compared to several state-of-the-art methods in the literature.« less

  11. Nonlocal atlas-guided multi-channel forest learning for human brain labeling

    PubMed Central

    Ma, Guangkai; Gao, Yaozong; Wu, Guorong; Wu, Ligang; Shen, Dinggang

    2016-01-01

    Purpose: It is important for many quantitative brain studies to label meaningful anatomical regions in MR brain images. However, due to high complexity of brain structures and ambiguous boundaries between different anatomical regions, the anatomical labeling of MR brain images is still quite a challenging task. In many existing label fusion methods, appearance information is widely used. However, since local anatomy in the human brain is often complex, the appearance information alone is limited in characterizing each image point, especially for identifying the same anatomical structure across different subjects. Recent progress in computer vision suggests that the context features can be very useful in identifying an object from a complex scene. In light of this, the authors propose a novel learning-based label fusion method by using both low-level appearance features (computed from the target image) and high-level context features (computed from warped atlases or tentative labeling maps of the target image). Methods: In particular, the authors employ a multi-channel random forest to learn the nonlinear relationship between these hybrid features and target labels (i.e., corresponding to certain anatomical structures). Specifically, at each of the iterations, the random forest will output tentative labeling maps of the target image, from which the authors compute spatial label context features and then use in combination with original appearance features of the target image to refine the labeling. Moreover, to accommodate the high inter-subject variations, the authors further extend their learning-based label fusion to a multi-atlas scenario, i.e., they train a random forest for each atlas and then obtain the final labeling result according to the consensus of results from all atlases. Results: The authors have comprehensively evaluated their method on both public LONI_LBPA40 and IXI datasets. To quantitatively evaluate the labeling accuracy, the authors use the dice similarity coefficient to measure the overlap degree. Their method achieves average overlaps of 82.56% on 54 regions of interest (ROIs) and 79.78% on 80 ROIs, respectively, which significantly outperform the baseline method (random forests), with the average overlaps of 72.48% on 54 ROIs and 72.09% on 80 ROIs, respectively. Conclusions: The proposed methods have achieved the highest labeling accuracy, compared to several state-of-the-art methods in the literature. PMID:26843260

  12. Petrogenesis and origin of the Upper Jurassic-Lower Cretaceous magmatism in Central High Atlas (Morocco): Major, trace element and isotopic (Sr-Nd) constraints

    NASA Astrophysics Data System (ADS)

    Essaifi, Abderrahim; Zayane, Rachid

    2018-01-01

    During an uplift phase, which lasted ca. 40 Ma, from the Late Jurassic (165 Ma) to the Early Cretaceous (125 Ma), transitional to moderately alkaline magmatic series were emplaced in the Central High Atlas. The corresponding magmatic products include basaltic lava flows erupted within wide synclines and intrusive complexes composed of layered mafic intrusions and monzonitic to syenitic dykes emplaced along narrow anticlinal ridges. The igneous rock sequence within the intrusive complexes is composed of troctolites, olivine-gabbros, oxide-gabbros, monzonites and syenites. The chemical compositions of the various intrusive rocks can be accounted for by crystal accumulation, fractional crystallization and post-magmatic remobilization. The evolution from the troctolites to the syenites was mainly controlled by a fractional crystallization process marked by early fractionation of olivine, plagioclase and clinopyroxene, followed by separation of biotite, amphibole, apatite, and Ti-magnetite. Hydrothermal activity associated with emplacement of the intrusions within the Jurassic limestones modified the elemental and the Sr isotopic composition of the hydrothermally altered rocks In particular the monzonitic to syenitic dykes underwent an alkali metasomatism marked by depletion in K and Rb and enrichment in Na and Sr. As a result, their Sr isotopic composition was shifted towards higher initial Sr isotopic ratios (0.7067-0.7075) with respect to the associated gabbros (0.7036-0.7046). On the contrary, the Nd isotopic compositions were preserved from isotope exchange with the limestones and vary in a similar range to those of the gabbros (+1.6 < εNdi < +4.1). The isotopic and the trace element ratios of the uncontaminated samples were used to constrain the source characteristics of this magmatism. The Sr-Nd isotopic data and the incompatible element ratios (e.g. La/Nb, Zr/Nb, Th/U, Ce/Pb) are consistent with generation from an enriched upper mantle similar to an ocean island basalt source. Melting of the subcontinental metasomatized lithosphere is tentatively related to small-scale shallow mantle upwelling and asthenospheric uprise at the triple junction between the western High Atlas, the Middle Atlas and the eastern High Atlas domains during a period of relative tectonic quiescence.

  13. KSC-2012-6187

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- A Ukrainian Antonov-124 transport aircraft arrives at Cape Canaveral Air Force Station in Florida with the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. The booster stage, arriving from the United Launch Alliance manufacturing plant in Decatur, Ala., will be taken to the hangar at the Atlas Spaceflight Operations Center at Cape Canaveral. Launch of the TDRS-K on the Atlas V rocket is planned for January 2013 from Space Launch Complex 41. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://tdrs.gsfc.nasa.gov/. Photo credit: NASA/Tim Jacobs

  14. Atlas of susceptibility to pollution in marinas. Application to the Spanish coast.

    PubMed

    Gómez, Aina G; Ondiviela, Bárbara; Fernández, María; Juanes, José A

    2017-01-15

    An atlas of susceptibility to pollution of 320 Spanish marinas is provided. Susceptibility is assessed through a simple, fast and low cost empirical method estimating the flushing capacity of marinas. The Complexity Tidal Range Index (CTRI) was selected among eleven empirical methods. The CTRI method was selected by means of statistical analyses because: it contributes to explain the system's variance; it is highly correlated to numerical model results; and, it is sensitive to marinas' location and typology. The process of implementation to the Spanish coast confirmed its usefulness, versatility and adaptability as a tool for the environmental management of marinas worldwide. The atlas of susceptibility, assessed through CTRI values, is an appropriate instrument to prioritize environmental and planning strategies at a regional scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  15. Three-dimensional stereotactic atlas of the adult human skull correlated with the brain, cranial nerves, and intracranial vasculature.

    PubMed

    Nowinski, Wieslaw L; Thaung, Thant Shoon Let; Chua, Beng Choon; Yi, Su Hnin Wut; Ngai, Vincent; Yang, Yili; Chrzan, Robert; Urbanik, Andrzej

    2015-05-15

    Although the adult human skull is a complex and multifunctional structure, its 3D, complete, realistic, and stereotactic atlas has not yet been created. This work addresses the construction of a 3D interactive atlas of the adult human skull spatially correlated with the brain, cranial nerves, and intracranial vasculature. The process of atlas construction included computed tomography (CT) high-resolution scan acquisition, skull extraction, skull parcellation, 3D disarticulated bone surface modeling, 3D model simplification, brain-skull registration, 3D surface editing, 3D surface naming and color-coding, integration of the CT-derived 3D bony models with the existing brain atlas, and validation. The virtual skull model created is complete with all 29 bones, including the auditory ossicles (being among the smallest bones). It contains all typical bony features and landmarks. The created skull model is superior to the existing skull models in terms of completeness, realism, and integration with the brain along with blood vessels and cranial nerves. This skull atlas is valuable for medical students and residents to easily get familiarized with the skull and surrounding anatomy with a few clicks. The atlas is also useful for educators to prepare teaching materials. It may potentially serve as a reference aid in the reading and operating rooms. Copyright © 2015 Elsevier B.V. All rights reserved.

  16. The NeuARt II system: a viewing tool for neuroanatomical data based on published neuroanatomical atlases

    PubMed Central

    Burns, Gully APC; Cheng, Wei-Cheng; Thompson, Richard H; Swanson, Larry W

    2006-01-01

    Background Anatomical studies of neural circuitry describing the basic wiring diagram of the brain produce intrinsically spatial, highly complex data of great value to the neuroscience community. Published neuroanatomical atlases provide a spatial framework for these studies. We have built an informatics framework based on these atlases for the representation of neuroanatomical knowledge. This framework not only captures current methods of anatomical data acquisition and analysis, it allows these studies to be collated, compared and synthesized within a single system. Results We have developed an atlas-viewing application ('NeuARt II') in the Java language with unique functional properties. These include the ability to use copyrighted atlases as templates within which users may view, save and retrieve data-maps and annotate them with volumetric delineations. NeuARt II also permits users to view multiple levels on multiple atlases at once. Each data-map in this system is simply a stack of vector images with one image per atlas level, so any set of accurate drawings made onto a supported atlas (in vector graphics format) could be uploaded into NeuARt II. Presently the database is populated with a corpus of high-quality neuroanatomical data from the laboratory of Dr Larry Swanson (consisting 64 highly-detailed maps of PHAL tract-tracing experiments, made up of 1039 separate drawings that were published in 27 primary research publications over 17 years). Herein we take selective examples from these data to demonstrate the features of NeuArt II. Our informatics tool permits users to browse, query and compare these maps. The NeuARt II tool operates within a bioinformatics knowledge management platform (called 'NeuroScholar') either as a standalone or a plug-in application. Conclusion Anatomical localization is fundamental to neuroscientific work and atlases provide an easily-understood framework that is widely used by neuroanatomists and non-neuroanatomists alike. NeuARt II, the neuroinformatics tool presented here, provides an accurate and powerful way of representing neuroanatomical data in the context of commonly-used brain atlases for visualization, comparison and analysis. Furthermore, it provides a framework that supports the delivery and manipulation of mapped data either as a standalone system or as a component in a larger knowledge management system. PMID:17166289

  17. Neoproterozoic–Cambrian stratigraphic framework of the Anti-Atlas and Ouzellagh promontory (High Atlas), Morocco

    USGS Publications Warehouse

    Alvaro, Jose Javier; Benziane, Fouad; Thomas, Robert; Walsh, Gregory J.; Yazidi, Abdelaziz

    2014-01-01

    In the last two decades, great progress has been made in the geochronological, chrono- and chemostratigraphic control of the Neoproterozoic and Cambrian from the Anti-Atlas Ranges and the Ouzellagh promontory (High Atlas). As a result, the Neoproterozoic is lithostratigraphically subdivided into: (i) the Lkest-Taghdout Group (broadly interpreted at c. 800–690 Ma) representative of rift-to-passive margin conditions on the northern West African craton; (ii) the Iriri (c. 760–740 Ma), Bou Azzer (c. 762–697 Ma) and Saghro (c. 760?–610 Ma) groups, the overlying Anezi, Bou Salda, Dadès and Tiddiline formations localized in fault-grabens, and the Ouarzazate Supergroup (c. 615–548 Ma), which form a succession of volcanosedimentary complexes recording the onset of the Pan-African orogeny and its aftermath; and (iii) the Taroudant (the Ediacaran–Cambrian boundary lying in the Tifnout Member of the Adoudou Formation), Tata, Feijas Internes and Tabanite groups that have recorded development of the late Ediacaran–Cambrian Atlas Rift. Recent discussions of Moroccan strata to select new global GSSPs by the International Subcommissions on Ediacaran and Cambrian Stratigraphy have raised the stratigraphic interest in this region. A revised and updated stratigraphic framework is proposed here to assist the tasks of both subcommissions and to fuel future discussions focused on different geological aspects of the Neoproterozoic–Cambrian time span.

  18. TransAtlasDB: an integrated database connecting expression data, metadata and variants

    PubMed Central

    Adetunji, Modupeore O; Lamont, Susan J; Schmidt, Carl J

    2018-01-01

    Abstract High-throughput transcriptome sequencing (RNAseq) is the universally applied method for target-free transcript identification and gene expression quantification, generating huge amounts of data. The constraint of accessing such data and interpreting results can be a major impediment in postulating suitable hypothesis, thus an innovative storage solution that addresses these limitations, such as hard disk storage requirements, efficiency and reproducibility are paramount. By offering a uniform data storage and retrieval mechanism, various data can be compared and easily investigated. We present a sophisticated system, TransAtlasDB, which incorporates a hybrid architecture of both relational and NoSQL databases for fast and efficient data storage, processing and querying of large datasets from transcript expression analysis with corresponding metadata, as well as gene-associated variants (such as SNPs) and their predicted gene effects. TransAtlasDB provides the data model of accurate storage of the large amount of data derived from RNAseq analysis and also methods of interacting with the database, either via the command-line data management workflows, written in Perl, with useful functionalities that simplifies the complexity of data storage and possibly manipulation of the massive amounts of data generated from RNAseq analysis or through the web interface. The database application is currently modeled to handle analyses data from agricultural species, and will be expanded to include more species groups. Overall TransAtlasDB aims to serve as an accessible repository for the large complex results data files derived from RNAseq gene expression profiling and variant analysis. Database URL: https://modupeore.github.io/TransAtlasDB/ PMID:29688361

  19. Early Mesozoic rift basin architecture and sediment routing system in the Moroccan High Atlas

    NASA Astrophysics Data System (ADS)

    Perez, N.; Teixell, A.; Gomez, D.

    2016-12-01

    Late Permian to Triassic extensional systems associated with Pangea breakup governed the structural framework and rift basin architecture that was inherited by Cenozoic High Atlas Mountains in Morocco. U-Pb detrital zircon geochronologic and mapping results from Permo-Triassic deposits now incorporated into the High Atlas Mountains provide new constraints on the geometry and interconnectivity among synextensional depocenters. U-Pb detrital zircon data provide provenance constraints of Permo-Triassic deposits, highlighting temporal changes in sediment sources and revealing the spatial pattern of sediment routing along the rift. We also characterize the U-Pb detrital zircon geochronologic signature of distinctive interfingering fluvial, tidal, and aeolian facies that are preferentially preserved near the controlling normal faults. These results highlight complex local sediment mixing patterns potentially linked to the interplay between fault motion, eustatic, and erosion/transport processes. We compare our U-Pb geochronologic results with existing studies of Gondwanan and Laurentian cratonic blocks to investigate continent scale sediment routing pathways, and with analogous early Mesozoic extensional systems situated in South America (Mitu basin, Peru) and North America (Newark Basin) to assess sediment mixing patterns in rift basins.

  20. Constraints on the Velocity Structure and Accommodation of Shortening in the Atlas Mountains (Morocco) from Travel-Time Inversion of Refraction/Wide Angle Reflection Seismic Data

    NASA Astrophysics Data System (ADS)

    Ayarza, P.; Carbonell, R.; Palomeras, I.; Levander, A.; Teixell, A.; Zelt, C. A.; Kchikach, A.

    2013-12-01

    The Atlas Mountains are an intra-continental Cenozoic orogenic belt located at the southern edge of the diffuse plate boundary zone separating Africa and Europe. Its western part, the Moroccan Atlas, has long been under the scope of geoscientists investigating the origin of its high topography, locally exceeding 4000 m. Geological studies indicate that this mountain belt has experienced low to moderate shortening (<24% from balanced sections) and that topography and shortening do not keep a direct relationship. Forward modelling of the SIMA (Seismic Imaging of the Moroccan Atlas) refraction/wide angle reflection seismic data suggests that the total orogenic shortening, is resolved at depth with a Moho offset and a limited lower crust duplication that defines a 40 km-deep root in the northern part of the central High Atlas. However, the shortening accomodated by this feature (50 km) exceeds that estimated with surface data, and the position of the root appears to the north of the highest topography. In order to achieve a better definition of the crust/mantle boundary and to outline a tectonic model more coherent with surface data, we have used the RAYINVR code to carry out travel-time inversion of the SIMA data set. Inversion results depict a small shift to the south of the crustal root, formerly positioned in the northern part of the High Atlas, and define a thrusted mantle wedge. A limited crustal imbrication also appears in the Middle Atlas. The new velocity model implies complex ray trajectories but provides a better travel-time fit between the observed and the calculated data. Also, the amount of shortening implied by the this model is in agreement with that estimated from geological cross-sections. The final crustal thickness, as yet not exceeding 40 km in the root zone and less than 35 km elsewhere, still implies the need of a significant contribution from the mantle to support the topography of the Atlas mountains

  1. TDRS-M: Atlas V 2nd Stage Erection/Off-site Verticle Integration (OVI)

    NASA Image and Video Library

    2017-07-13

    A United Launch Alliance Atlas V Centaur upper stage arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. United Launch Alliance team members monitor the operation progress as the Centaur upper stage is lifted and mated to the Atlas V booster in the vertical position. The rocket is scheduled to help launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 in early August.

  2. MARINER 10 LAUNCH VEHICLE ATLAS CENTAUR 34 UNDERGOES TANKING TEST AT LAUNCH COMPLEX 36B

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Atlas Centaur 34, undergoes tanking test on NASA Complex 36B at Cape Kennedy, Fla. Atlas Centaur 34 is under preparation to launch history's first duel-planet flight, the Mariner mission to Venus and Mercury, scheduled for early November. With all events going as planned, the Mariner spacecraft will fly by Venus in early February, 1974, and reach Mercury in late march, 1974. The spacecraft, Mariner 10, will carry two television cameras to photograph the planets, and six other scientific experiments to return planetary and interplanetary data back to Earth.

  3. KSC-2012-6186

    NASA Image and Video Library

    2012-11-05

    CAPE CANAVERAL, Fla. -- A Ukrainian Antonov-124 transport aircraft prepares to touch down at Cape Canaveral Air Force Station in Florida with the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. The booster stage, arriving from the United Launch Alliance manufacturing plant in Decatur, Ala., will be taken to the hangar at the Atlas Spaceflight Operations Center at Cape Canaveral. Launch of the TDRS-K on the Atlas V rocket is planned for January 2013 from Space Launch Complex 41. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://tdrs.gsfc.nasa.gov/. Photo credit: NASA/Tim Jacobs

  4. KSC-2012-6189

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- A Ukrainian Antonov-124 transport aircraft arrives at Cape Canaveral Air Force Station in Florida with the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. The booster stage, arriving from the United Launch Alliance manufacturing plant in Decatur, Ala., will be taken to the hangar at the Atlas Spaceflight Operations Center at Cape Canaveral to begin processing. Launch of the TDRS-K on the Atlas V rocket is planned for January 2013 from Space Launch Complex 41. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Charisse Nahser

  5. KSC-2012-6188

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- A Ukrainian Antonov-124 transport aircraft arrives at Cape Canaveral Air Force Station in Florida with the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. The booster stage, arriving from the United Launch Alliance manufacturing plant in Decatur, Ala., will be taken to the hangar at the Atlas Spaceflight Operations Center at Cape Canaveral to begin processing. Launch of the TDRS-K on the Atlas V rocket is planned for January 2013 from Space Launch Complex 41. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Charisse Nahser

  6. Warping an atlas derived from serial histology to 5 high-resolution MRIs.

    PubMed

    Tullo, Stephanie; Devenyi, Gabriel A; Patel, Raihaan; Park, Min Tae M; Collins, D Louis; Chakravarty, M Mallar

    2018-06-19

    Previous work from our group demonstrated the use of multiple input atlases to a modified multi-atlas framework (MAGeT-Brain) to improve subject-based segmentation accuracy. Currently, segmentation of the striatum, globus pallidus and thalamus are generated from a single high-resolution and -contrast MRI atlas derived from annotated serial histological sections. Here, we warp this atlas to five high-resolution MRI templates to create five de novo atlases. The overall goal of this work is to use these newly warped atlases as input to MAGeT-Brain in an effort to consolidate and improve the workflow presented in previous manuscripts from our group, allowing for simultaneous multi-structure segmentation. The work presented details the methodology used for the creation of the atlases using a technique previously proposed, where atlas labels are modified to mimic the intensity and contrast profile of MRI to facilitate atlas-to-template nonlinear transformation estimation. Dice's Kappa metric was used to demonstrate high quality registration and segmentation accuracy of the atlases. The final atlases are available at https://github.com/CobraLab/atlases/tree/master/5-atlas-subcortical.

  7. High Energy Astronomy Observatory (HEAO)

    NASA Image and Video Library

    1977-08-01

    This picture is of an Atlas/Centaur launch vehicle, carrying the High Energy Astronomy Observatory (HEAO)-1, on Launch Complex 36 at the Air Force Eastern Test Range prior to launch on August 12, 1977. The Kennedy Space Center managed the launch operations that included a pre-aunch checkout, launch, and flight, up through the observatory separation in orbit.

  8. Structural styles of the western onshore and offshore termination of the High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Hafid, Mohamad; Zizi, Mahmoud; Bally, Albert W.; Ait Salem, Abdellah

    2006-01-01

    The present work aims (1) at documenting, by regional seismic transects, how the structural style varies in the western High Atlas system and its prolongation under the present-day Atlantic margin, (2) at understanding how this variation is related to the local geological framework, especially the presence of salt within the sedimentary cover, and (3) at discussing the exact geographic location of the northern front of the western High Atlas and how it links with the most western Atlas front in the offshore Cap Tafelney High Atlas. Previous work showed that the structural style of the Atlas belt changes eastward from a dominantly thick-skinned one in central and eastern High Atlas and Middle Atlas of Morocco to a dominantly thin-skinned one in Algeria and Tunisia. We propose here to show that a similar structural style change can be observed in the other direction of the Atlas Belt within its western termination, where the western High Atlas intersects at right angle the Atlantic passive margin and develops into a distinct segment, namely the High Atlas of Cap Tafelney, where salt/evaporite-based décollement tectonics prevail. To cite this article: M. Hafid et al., C. R. Geoscience 338 (2006).

  9. Juno at the Vertical Integration Facility

    NASA Image and Video Library

    2011-08-03

    At Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, was transferred into the Vertical Integration Facility where it was positioned on top of the Atlas rocket stacked inside.

  10. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    The United Launch Alliance Atlas V booster for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) was offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. The booster will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  11. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    The United Launch Alliance Atlas V booster for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. The booster will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  12. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    The United Launch Alliance Atlas V booster and Centaur stage for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) are offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. They will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  13. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    After being offloaded from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida, the United Launch Alliance Atlas V booster for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) is being transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  14. A three-plane architectonic atlas of the rat hippocampal region.

    PubMed

    Boccara, Charlotte N; Kjonigsen, Lisa J; Hammer, Ingvild M; Bjaalie, Jan G; Leergaard, Trygve B; Witter, Menno P

    2015-07-01

    The hippocampal region, comprising the hippocampal formation and the parahippocampal region, has been one of the most intensively studied parts of the brain for decades. Better understanding of its functional diversity and complexity has led to an increased demand for specificity in experimental procedures and manipulations. In view of the complex 3D structure of the hippocampal region, precisely positioned experimental approaches require a fine-grained architectural description that is available and readable to experimentalists lacking detailed anatomical experience. In this paper, we provide the first cyto- and chemoarchitectural description of the hippocampal formation and parahippocampal region in the rat at high resolution and in the three standard sectional planes: coronal, horizontal and sagittal. The atlas uses a series of adjacent sections stained for neurons and for a number of chemical marker substances, particularly parvalbumin and calbindin. All the borders defined in one plane have been cross-checked against their counterparts in the other two planes. The entire dataset will be made available as a web-based interactive application through the Rodent Brain WorkBench (http://www.rbwb.org) which, together with this paper, provides a unique atlas resource. © 2014 Wiley Periodicals, Inc.

  15. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage is lifted up for transfer into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  16. Atlas : A library for numerical weather prediction and climate modelling

    NASA Astrophysics Data System (ADS)

    Deconinck, Willem; Bauer, Peter; Diamantakis, Michail; Hamrud, Mats; Kühnlein, Christian; Maciel, Pedro; Mengaldo, Gianmarco; Quintino, Tiago; Raoult, Baudouin; Smolarkiewicz, Piotr K.; Wedi, Nils P.

    2017-11-01

    The algorithms underlying numerical weather prediction (NWP) and climate models that have been developed in the past few decades face an increasing challenge caused by the paradigm shift imposed by hardware vendors towards more energy-efficient devices. In order to provide a sustainable path to exascale High Performance Computing (HPC), applications become increasingly restricted by energy consumption. As a result, the emerging diverse and complex hardware solutions have a large impact on the programming models traditionally used in NWP software, triggering a rethink of design choices for future massively parallel software frameworks. In this paper, we present Atlas, a new software library that is currently being developed at the European Centre for Medium-Range Weather Forecasts (ECMWF), with the scope of handling data structures required for NWP applications in a flexible and massively parallel way. Atlas provides a versatile framework for the future development of efficient NWP and climate applications on emerging HPC architectures. The applications range from full Earth system models, to specific tools required for post-processing weather forecast products. The Atlas library thus constitutes a step towards affordable exascale high-performance simulations by providing the necessary abstractions that facilitate the application in heterogeneous HPC environments by promoting the co-design of NWP algorithms with the underlying hardware.

  17. Anti-Atlas Mountains, Morocco

    NASA Image and Video Library

    2003-01-08

    The Anti-Atlas Mountains of Morocco formed as a result of the collision of the African and Eurasian tectonic plates about 80 million years ago. This collision destroyed the Tethys Ocean; the limestone, sandstone, claystone, and gypsum layers that formed the ocean bed were folded and crumpled to create the Atlas and Anti-Atlas Mountains. In this ASTER image, short wavelength infrared bands are combined to dramatically highlight the different rock types, and illustrate the complex folding. The yellowish, orange and green areas are limestones, sandstones and gypsum; the dark blue and green areas are underlying granitic rocks. The ability to map geology using ASTER data is enhanced by the multiple short wavelength infrared bands, that are sensitive to differences in rock mineralogy. This image was acquired on June 13, 2001 by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) on NASA's Terra satellite. With its 14 spectral bands from the visible to the thermal infrared wavelength region, and its high spatial resolution of 15 to 90 meters (about 50 to 300 feet), ASTER images Earth to map and monitor the changing surface of our planet. http://photojournal.jpl.nasa.gov/catalog/PIA03893

  18. KSC-2012-6192

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- The first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit has been off loaded from a Ukrainian Antonov-124 transport aircraft after its arrival at Cape Canaveral Air Force Station in Florida. The booster stage was delivered from the United Launch Alliance manufacturing plant in Decatur, Ala., and will be taken to the hangar at the Atlas Spaceflight Operations Center at Cape Canaveral to begin processing. Launch of the TDRS-K on the Atlas V rocket is planned for January 2013 from Space Launch Complex 41. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Charisse Nahser

  19. KSC-2012-6191

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- The first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit is off loaded from a Ukrainian Antonov-124 transport aircraft after its arrival at Cape Canaveral Air Force Station in Florida. The booster stage was delivered from the United Launch Alliance manufacturing plant in Decatur, Ala., and will be taken to the hangar at the Atlas Spaceflight Operations Center at Cape Canaveral to begin processing. Launch of the TDRS-K on the Atlas V rocket is planned for January 2013 from Space Launch Complex 41. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Charisse Nahser

  20. KSC-2012-6190

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- The first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit is off loaded from a Ukrainian Antonov-124 transport aircraft after its arrival at Cape Canaveral Air Force Station in Florida. The booster stage was delivered from the United Launch Alliance manufacturing plant in Decatur, Ala., and will be taken to the hangar at the Atlas Spaceflight Operations Center at Cape Canaveral to begin processing. Launch of the TDRS-K on the Atlas V rocket is planned for January 2013 from Space Launch Complex 41. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Charisse Nahser

  1. KSC-2012-6193

    NASA Image and Video Library

    2012-11-06

    CAPE CANAVERAL, Fla. -- The first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit has been off loaded from a Ukrainian Antonov-124 transport aircraft after its arrival at Cape Canaveral Air Force Station in Florida. The booster stage was delivered from the United Launch Alliance manufacturing plant in Decatur, Ala., and will be taken to the hangar at the Atlas Spaceflight Operations Center at Cape Canaveral to begin processing. Launch of the TDRS-K on the Atlas V rocket is planned for January 2013 from Space Launch Complex 41. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://tdrs.gsfc.nasa.gov/ Photo credit: NASA/Charisse Nahser

  2. KSC-2013-1040

    NASA Image and Video Library

    2013-01-05

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, United Launch Alliance technicians support operations to lift the Centaur stage for mating to the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Charisse Nahser

  3. KSC-2013-1020

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  4. KSC-2013-1028

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  5. KSC-2013-1034

    NASA Image and Video Library

    2013-01-05

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, preparations are underway to mate the Centaur stage to the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Charisse Nahser

  6. KSC-2013-1012

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- In the morning fog at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  7. KSC-2013-1038

    NASA Image and Video Library

    2013-01-05

    CAPE CANAVERAL, Fla. -- The Centaur stage which will help boost the Tracking and Data Relay Satellite, TDRS-K, into orbit arrives by transport truck at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida for mating to an Atlas V rocket. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Charisse Nahser

  8. KSC-2013-1029

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  9. KSC-2013-1021

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- In the morning fog at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  10. KSC-2013-1016

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, United Launch Alliance technicians support operations to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  11. KSC-2013-1024

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- In the morning fog at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  12. KSC-2013-1027

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  13. KSC-2013-1036

    NASA Image and Video Library

    2013-01-05

    CAPE CANAVERAL, Fla. -- The Centaur stage which will help boost the Tracking and Data Relay Satellite, TDRS-K, into orbit arrives by transport truck at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida for mating to an Atlas V rocket. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Charisse Nahser

  14. KSC-2013-1039

    NASA Image and Video Library

    2013-01-05

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to lift the Centaur stage for mating to the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Charisse Nahser

  15. KSC-2013-1031

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- The first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit has been erected at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  16. KSC-2013-1044

    NASA Image and Video Library

    2013-01-05

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, United Launch Alliance technicians support operations to mate the Centaur stage to the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Charisse Nahser

  17. KSC-2013-1014

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- In the morning fog at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  18. KSC-2013-1015

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- In the morning fog at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  19. KSC-2013-1032

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- The first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit has been erected at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  20. KSC-2013-1013

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- In the morning fog at Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  1. KSC-2013-1019

    NASA Image and Video Library

    2013-01-03

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, operations are underway to erect the first stage of the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/ Ben Smegelsky

  2. KSC-2013-1043

    NASA Image and Video Library

    2013-01-05

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, United Launch Alliance technicians support operations to mate the Centaur stage to the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Charisse Nahser

  3. KSC-2013-1035

    NASA Image and Video Library

    2013-01-05

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41 in Florida, preparations are underway to mate the Centaur stage to the Atlas V rocket that will carry the Tracking and Data Relay Satellite, TDRS-K, into orbit. Launch of the TDRS-K on the Atlas V rocket is planned for January 29, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Charisse Nahser

  4. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    Operations are underway to stack the United Launch Alliance Atlas V Centaur second stage onto the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  5. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    A close-up view of the United Launch Alliance Atlas V Centaur second stage as it travels to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  6. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage has been lifted up and transferred into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  7. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    United Launch Alliance team members assist as operation begin to lift the Atlas V Centaur second stage into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  8. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage is lifted up by crane for transfer into Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  9. GOES-R Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2016-10-31

    The United Launch Alliance Atlas V Centaur second stage has been mated to the first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  10. FishFace: interactive atlas of zebrafish craniofacial development at cellular resolution

    PubMed Central

    2013-01-01

    Background The vertebrate craniofacial skeleton may exhibit anatomical complexity and diversity, but its genesis and evolution can be understood through careful dissection of developmental programs at cellular resolution. Resources are lacking that include introductory overviews of skeletal anatomy coupled with descriptions of craniofacial development at cellular resolution. In addition to providing analytical guidelines for other studies, such an atlas would suggest cellular mechanisms underlying development. Description We present the Fish Face Atlas, an online, 3D-interactive atlas of craniofacial development in the zebrafish Danio rerio. Alizarin red-stained skulls scanned by fluorescent optical projection tomography and segmented into individual elements provide a resource for understanding the 3D structure of the zebrafish craniofacial skeleton. These data provide the user an anatomical entry point to confocal images of Alizarin red-stained zebrafish with transgenically-labelled pharyngeal arch ectomesenchyme, chondrocytes, and osteoblasts, which illustrate the appearance, morphogenesis, and growth of the mandibular and hyoid cartilages and bones, as viewed in live, anesthetized zebrafish during embryonic and larval development. Confocal image stacks at high magnification during the same stages provide cellular detail and suggest developmental and evolutionary hypotheses. Conclusion The FishFace Atlas is a novel learning tool for understanding craniofacial skeletal development, and can serve as a reference for a variety of studies, including comparative and mutational analyses. PMID:23714426

  11. SECTION BB, FLOOR PLAN Dyess Air Force Base, Atlas ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    SECTION B-B, FLOOR PLAN - Dyess Air Force Base, Atlas F Missle Site S-8, Launch Facility, Approximately 3 miles east of Winters, 500 feet southwest of Highway 1770, center of complex, Winters, Runnels County, TX

  12. GOES-S Atlas V Booster and Centaur Stages Arrival, Offload, and

    NASA Image and Video Library

    2018-01-22

    Preparations are underway to offload the United Launch Alliance Atlas V booster and Centaur stage for NOAA's Geostationary Operational Environmental Satellite-S (GOES-S) from the Mariner transport ship at the Army Wharf at Cape Canaveral Air Force Station in Florida. They will be transported to the Atlas Spaceflight Operations Center near Space Launch Complex 41 at CCAFS. GOES-S is the second in a series of four advanced geostationary weather satellites. The satellite is slated to launch aboard the Atlas V rocket March 1.

  13. TDRS-M Atlas V 1st Stage Erection Launch Vehicle on Stand

    NASA Image and Video Library

    2017-07-12

    A United Launch Alliance Atlas V first stage is lifted at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  14. 11. CENTRAL ATLAS CONTROL CONSOLE IN SLC3W CONTROL ROOM. COMMUNICATIONS ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    11. CENTRAL ATLAS CONTROL CONSOLE IN SLC-3W CONTROL ROOM. COMMUNICATIONS HEADSETS IN FOREGROUND. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. High-voltage pixel sensors for ATLAS upgrade

    NASA Astrophysics Data System (ADS)

    Perić, I.; Kreidl, C.; Fischer, P.; Bompard, F.; Breugnon, P.; Clemens, J.-C.; Fougeron, D.; Liu, J.; Pangaud, P.; Rozanov, A.; Barbero, M.; Feigl, S.; Capeans, M.; Ferrere, D.; Pernegger, H.; Ristic, B.; Muenstermann, D.; Gonzalez Sevilla, S.; La Rosa, A.; Miucci, A.; Nessi, M.; Iacobucci, G.; Backhaus, M.; Hügging, Fabian; Krüger, H.; Hemperek, T.; Obermann, T.; Wermes, N.; Garcia-Sciveres, M.; Quadt, A.; Weingarten, J.; George, M.; Grosse-Knetter, J.; Rieger, J.; Bates, R.; Blue, A.; Buttar, C.; Hynds, D.

    2014-11-01

    The high-voltage (HV-) CMOS pixel sensors offer several good properties: a fast charge collection by drift, the possibility to implement relatively complex CMOS in-pixel electronics and the compatibility with commercial processes. The sensor element is a deep n-well diode in a p-type substrate. The n-well contains CMOS pixel electronics. The main charge collection mechanism is drift in a shallow, high field region, which leads to a fast charge collection and a high radiation tolerance. We are currently evaluating the use of the high-voltage detectors implemented in 180 nm HV-CMOS technology for the high-luminosity ATLAS upgrade. Our approach is replacing the existing pixel and strip sensors with the CMOS sensors while keeping the presently used readout ASICs. By intelligence we mean the ability of the sensor to recognize a particle hit and generate the address information. In this way we could benefit from the advantages of the HV sensor technology such as lower cost, lower mass, lower operating voltage, smaller pitch, smaller clusters at high incidence angles. Additionally we expect to achieve a radiation hardness necessary for ATLAS upgrade. In order to test the concept, we have designed two HV-CMOS prototypes that can be readout in two ways: using pixel and strip readout chips. In the case of the pixel readout, the connection between HV-CMOS sensor and the readout ASIC can be established capacitively.

  16. Evaluation of Atlas-Based White Matter Segmentation with Eve.

    PubMed

    Plassard, Andrew J; Hinton, Kendra E; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M; Landman, Bennett A

    2015-03-20

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.

  17. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  18. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Inside the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the solid rocket motor is being mated to the United Launch Alliance Atlas V rocket for its upcoming launch. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  19. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor is lifted on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  20. Upgrade of Tile Calorimeter of the ATLAS Detector for the High Luminosity LHC.

    NASA Astrophysics Data System (ADS)

    Valdes Santurio, Eduardo; Tile Calorimeter System, ATLAS

    2017-11-01

    The Tile Calorimeter (TileCal) is the hadronic calorimeter of ATLAS covering the central region of the ATLAS experiment. TileCal is a sampling calorimeter with steel as absorber and scintillators as active medium. The scintillators are read out by wavelength shifting fibers coupled to photomultiplier tubes (PMT). The analogue signals from the PMTs are amplified, shaped and digitized by sampling the signal every 25 ns. The High Luminosity Large Hadron Collider (HL-LHC) will have a peak luminosity of 5 × 1034 cm -2 s -1, five times higher than the design luminosity of the LHC. TileCal will undergo a major replacement of its on- and off-detector electronics for the high luminosity programme of the LHC in 2026. The calorimeter signals will be digitized and sent directly to the off-detector electronics, where the signals are reconstructed and shipped to the first level of trigger at a rate of 40 MHz. This will provide a better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Three different options are presently being investigated for the front-end electronic upgrade. Extensive test beam studies will determine which option will be selected. Field Programmable Gate Arrays (FPGAs) are extensively used for the logic functions of the off- and on-detector electronics. One hybrid demonstrator prototype module with the new calorimeter module electronics, but still compatible with the present system, may be inserted in ATLAS at the end of 2016.

  1. A review of structural and functional brain networks: small world and atlas.

    PubMed

    Yao, Zhijun; Hu, Bin; Xie, Yuanwei; Moore, Philip; Zheng, Jiaxiang

    2015-03-01

    Brain networks can be divided into two categories: structural and functional networks. Many studies of neuroscience have reported that the complex brain networks are characterized by small-world or scale-free properties. The identification of nodes is the key factor in studying the properties of networks on the macro-, micro- or mesoscale in both structural and functional networks. In the study of brain networks, nodes are always determined by atlases. Therefore, the selection of atlases is critical, and appropriate atlases are helpful to combine the analyses of structural and functional networks. Currently, some problems still exist in the establishment or usage of atlases, which are often caused by the segmentation or the parcellation of the brain. We suggest that quantification of brain networks might be affected by the selection of atlases to a large extent. In the process of building atlases, the influences of single subjects and groups should be balanced. In this article, we focused on the effects of atlases on the analysis of brain networks and the improved divisions based on the tractography or connectivity in the parcellation of atlases.

  2. Bootstrapping white matter segmentation, Eve++

    NASA Astrophysics Data System (ADS)

    Plassard, Andrew; Hinton, Kendra E.; Venkatraman, Vijay; Gonzalez, Christopher; Resnick, Susan M.; Landman, Bennett A.

    2015-03-01

    Multi-atlas labeling has come in wide spread use for whole brain labeling on magnetic resonance imaging. Recent challenges have shown that leading techniques are near (or at) human expert reproducibility for cortical gray matter labels. However, these approaches tend to treat white matter as essentially homogeneous (as white matter exhibits isointense signal on structural MRI). The state-of-the-art for white matter atlas is the single-subject Johns Hopkins Eve atlas. Numerous approaches have attempted to use tractography and/or orientation information to identify homologous white matter structures across subjects. Despite success with large tracts, these approaches have been plagued by difficulties in with subtle differences in course, low signal to noise, and complex structural relationships for smaller tracts. Here, we investigate use of atlas-based labeling to propagate the Eve atlas to unlabeled datasets. We evaluate single atlas labeling and multi-atlas labeling using synthetic atlases derived from the single manually labeled atlas. On 5 representative tracts for 10 subjects, we demonstrate that (1) single atlas labeling generally provides segmentations within 2mm mean surface distance, (2) morphologically constraining DTI labels within structural MRI white matter reduces variability, and (3) multi-atlas labeling did not improve accuracy. These efforts present a preliminary indication that single atlas labels with correction is reasonable, but caution should be applied. To purse multi-atlas labeling and more fully characterize overall performance, more labeled datasets would be necessary.

  3. ATLAS 1: Encountering Planet Earth

    NASA Technical Reports Server (NTRS)

    Shea, Charlotte; Mcmahan, Tracy; Accardi, Denise; Tygielski, Michele; Mikatarian, Jeff; Wiginton, Margaret (Editor)

    1984-01-01

    Several NASA science programs examine the dynamic balance of sunlight, atmosphere, water, land, and life that governs Earth's environment. Among these is a series of Space Shuttle-Spacelab missions, named the Atmospheric Laboratory for Applications and Science (ATLAS). During the ATLAS missions, international teams of scientists representing many disciplines combine their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigates how Earth's middle atmosphere and upper atmospheres and climate are affected by both the Sun and by products of industrial and agricultural activities on Earth.

  4. Atlas V OA-7 LVOS Atlas Booster on Stand

    NASA Image and Video Library

    2017-02-22

    The first stage of the United Launch Alliance (ULA) Atlas V rocket is lifted by crane to vertical as it is moved into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket is being prepared for Orbital ATK's seventh commercial resupply mission, CRS-7, to the International Space Station. Orbital ATK's CYGNUS pressurized cargo module is scheduled to launch atop ULA's Atlas V rocket from Pad 41 on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station

  5. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position and moved into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida for mating to the United Launch Alliance Atlas V rocket. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  6. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Preparations are underway to lift the solid rocket motor up from its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  7. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  8. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Technicians with United Launch Alliance (ULA) assist as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  9. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    Technicians with United Launch Alliance (ULA) monitor the progress as the solid rocket motor is mated to the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  10. Intelligent operations of the data acquisition system of the ATLAS experiment at LHC

    NASA Astrophysics Data System (ADS)

    Anders, G.; Avolio, G.; Lehmann Miotto, G.; Magnoni, L.

    2015-05-01

    The ATLAS experiment at the Large Hadron Collider at CERN relies on a complex and highly distributed Trigger and Data Acquisition (TDAQ) system to gather and select particle collision data obtained at unprecedented energy and rates. The Run Control (RC) system is the component steering the data acquisition by starting and stopping processes and by carrying all data-taking elements through well-defined states in a coherent way. Taking into account all the lessons learnt during LHC's Run 1, the RC has been completely re-designed and re-implemented during the LHC Long Shutdown 1 (LS1) phase. As a result of the new design, the RC is assisted by the Central Hint and Information Processor (CHIP) service that can be truly considered its “brain”. CHIP is an intelligent system able to supervise the ATLAS data taking, take operational decisions and handle abnormal conditions. In this paper, the design, implementation and performances of the RC/CHIP system will be described. A particular emphasis will be put on the way the RC and CHIP cooperate and on the huge benefits brought by the Complex Event Processing engine. Additionally, some error recovery scenarios will be analysed for which the intervention of human experts is now rendered unnecessary.

  11. Applications of advanced data analysis and expert system technologies in the ATLAS Trigger-DAQ Controls framework

    NASA Astrophysics Data System (ADS)

    Avolio, G.; Corso Radu, A.; Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.

    2012-12-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment is a very complex distributed computing system, composed of more than 20000 applications running on more than 2000 computers. The TDAQ Controls system has to guarantee the smooth and synchronous operations of all the TDAQ components and has to provide the means to minimize the downtime of the system caused by runtime failures. During data taking runs, streams of information messages sent or published by running applications are the main sources of knowledge about correctness of running operations. The huge flow of operational monitoring data produced is constantly monitored by experts in order to detect problems or misbehaviours. Given the scale of the system and the rates of data to be analyzed, the automation of the system functionality in the areas of operational monitoring, system verification, error detection and recovery is a strong requirement. To accomplish its objective, the Controls system includes some high-level components which are based on advanced software technologies, namely the rule-based Expert System and the Complex Event Processing engines. The chosen techniques allow to formalize, store and reuse the knowledge of experts and thus to assist the shifters in the ATLAS control room during the data-taking activities.

  12. A practical workflow for making anatomical atlases for biological research.

    PubMed

    Wan, Yong; Lewis, A Kelsey; Colasanto, Mary; van Langeveld, Mark; Kardon, Gabrielle; Hansen, Charles

    2012-01-01

    The anatomical atlas has been at the intersection of science and art for centuries. These atlases are essential to biological research, but high-quality atlases are often scarce. Recent advances in imaging technology have made high-quality 3D atlases possible. However, until now there has been a lack of practical workflows using standard tools to generate atlases from images of biological samples. With certain adaptations, CG artists' workflow and tools, traditionally used in the film industry, are practical for building high-quality biological atlases. Researchers have developed a workflow for generating a 3D anatomical atlas using accessible artists' tools. They used this workflow to build a mouse limb atlas for studying the musculoskeletal system's development. This research aims to raise the awareness of using artists' tools in scientific research and promote interdisciplinary collaborations between artists and scientists. This video (http://youtu.be/g61C-nia9ms) demonstrates a workflow for creating an anatomical atlas.

  13. KENNEDY SPACE CENTER, FLA. - The Rocket Garden at the KSC Visitor Complex features eight authentic rockets from the past, including a Mercury-Atlas rocket. The garden also features a climb-in Mercury, Gemino and Apollo capsule replicas, seating pods and informative graphic elements.

    NASA Image and Video Library

    2003-07-22

    KENNEDY SPACE CENTER, FLA. - The Rocket Garden at the KSC Visitor Complex features eight authentic rockets from the past, including a Mercury-Atlas rocket. The garden also features a climb-in Mercury, Gemino and Apollo capsule replicas, seating pods and informative graphic elements.

  14. 12. DETAIL OF WEST END OF CENTRAL ATLAS CONTROL CONSOLE ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    12. DETAIL OF WEST END OF CENTRAL ATLAS CONTROL CONSOLE IN SLC-3W CONTROL ROOM SHOWING LAUNCH CONDUCTOR AND ASSISTANT LAUNCH CONDUCTOR PANELS - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. Launch of Agena Target Docking Vehicle atop Atlas launch vehicle

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An Agena Target Docking Vehicle atop its Atlas launch vehicle was launched fromt the Kennedy Space Center's Launch Complex 14 at 6:05 a.m., September 12, 1966. The Agena served as a rendezvous and docking vehicle for the Gemini 11 spacecraft.

  16. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    The solid rocket motor has been lifted to the vertical position on its transporter for mating to the United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. NOAA's Geostationary Operational Environmental Satellite (GOES-R) will launch aboard the Atlas V rocket this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  17. The Atlas of Physiology and Pathophysiology: Web-based multimedia enabled interactive simulations.

    PubMed

    Kofranek, Jiri; Matousek, Stanislav; Rusz, Jan; Stodulka, Petr; Privitzer, Pavol; Matejak, Marek; Tribula, Martin

    2011-11-01

    The paper is a presentation of the current state of development for the Atlas of Physiology and Pathophysiology (Atlas). Our main aim is to provide a novel interactive multimedia application that can be used for biomedical education where (a) simulations are combined with tutorials and (b) the presentation layer is simplified while the underlying complexity of the model is retained. The development of the Atlas required the cooperation of many professionals including teachers, system analysts, artists, and programmers. During the design of the Atlas, tools were developed that allow for component-based creation of simulation models, creation of interactive multimedia and their final coordination into a compact unit based on the given design. The Atlas is a freely available online application, which can help to explain the function of individual physiological systems and the causes and symptoms of their disorders. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.

  18. Design of a ``Digital Atlas Vme Electronics'' (DAVE) module

    NASA Astrophysics Data System (ADS)

    Goodrick, M.; Robinson, D.; Shaw, R.; Postranecky, M.; Warren, M.

    2012-01-01

    ATLAS-SCT has developed a new ATLAS trigger card, 'Digital Atlas Vme Electronics' (``DAVE''). The unit is designed to provide a versatile array of interface and logic resources, including a large FPGA. It interfaces to both VME bus and USB hosts. DAVE aims to provide exact ATLAS CTP (ATLAS Central Trigger Processor) functionality, with random trigger, simple and complex deadtime, ECR (Event Counter Reset), BCR (Bunch Counter Reset) etc. being generated to give exactly the same conditions in standalone running as experienced in combined runs. DAVE provides additional hardware and a large amount of free firmware resource to allow users to add or change functionality. The combination of the large number of individually programmable inputs and outputs in various formats, with very large external RAM and other components all connected to the FPGA, also makes DAVE a powerful and versatile FPGA utility card.

  19. KSC-07pd1528

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- This panoramic view of Space Launch Complex 36 on Cape Canaveral Air Force Station shows the two mobile service towers on the ground after their demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  20. KSC-07pd1520

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- At Space Launch Complex 36 on Cape Canaveral Air Force Station, the 209-foot-tall mobile service tower on Pad 36-B has been identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  1. Advanced Technology Lifecycle Analysis System (ATLAS) Technology Tool Box (TTB)

    NASA Technical Reports Server (NTRS)

    Doyle, Monica; ONeil, Daniel A.; Christensen, Carissa B.

    2005-01-01

    The Advanced Technology Lifecycle Analysis System (ATLAS) is a decision support tool designed to aid program managers and strategic planners in determining how to invest technology research and development dollars. It is an Excel-based modeling package that allows a user to build complex space architectures and evaluate the impact of various technology choices. ATLAS contains system models, cost and operations models, a campaign timeline and a centralized technology database. Technology data for all system models is drawn from a common database, the ATLAS Technology Tool Box (TTB). The TTB provides a comprehensive, architecture-independent technology database that is keyed to current and future timeframes.

  2. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    A United Launch Alliance Atlas V rocket booster arrives at the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  3. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    A United Launch Alliance Atlas V rocket booster is transported to the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station in Florida. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  4. ATLAS FTK a - very complex - custom super computer

    NASA Astrophysics Data System (ADS)

    Kimura, N.; ATLAS Collaboration

    2016-10-01

    In the LHC environment for high interaction pile-up, advanced techniques of analysing the data in real time are required in order to maximize the rate of physics processes of interest with respect to background processes. The Fast TracKer (FTK) is a track finding implementation at the hardware level that is designed to deliver full-scan tracks with pT above 1 GeV to the ATLAS trigger system for events passing the Level-1 accept (at a maximum rate of 100 kHz). In order to achieve this performance, a highly parallel system was designed and currently it is being commissioned within in ATLAS. Starting in 2016 it will provide tracks for the trigger system in a region covering the central part of the ATLAS detector, and will be extended to the full detector coverage. The system relies on matching hits coming from the silicon tracking detectors against one billion patterns stored in custom ASIC chips (Associative memory chip - AM06). In a first stage, coarse resolution hits are matched against the patterns and the accepted hits undergo track fitting implemented in FPGAs. Tracks with pT > 1GeV are delivered to the High Level Trigger within about 100 ps. Resolution of the tracks coming from FTK is close to the offline tracking and it will allow for reliable detection of primary and secondary vertexes at trigger level and improved trigger performance for b-jets and tau leptons. This contribution will give an overview of the FTK system and present the status of commissioning of the system. Additionally, the expected FTK performance will be briefly described.

  5. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas

    PubMed Central

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G.; Leergaard, Trygve B.; Kirlangic, Mehmet E.; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time. PMID:27199682

  6. 3D Reconstructed Cyto-, Muscarinic M2 Receptor, and Fiber Architecture of the Rat Brain Registered to the Waxholm Space Atlas.

    PubMed

    Schubert, Nicole; Axer, Markus; Schober, Martin; Huynh, Anh-Minh; Huysegoms, Marcel; Palomero-Gallagher, Nicola; Bjaalie, Jan G; Leergaard, Trygve B; Kirlangic, Mehmet E; Amunts, Katrin; Zilles, Karl

    2016-01-01

    High-resolution multiscale and multimodal 3D models of the brain are essential tools to understand its complex structural and functional organization. Neuroimaging techniques addressing different aspects of brain organization should be integrated in a reference space to enable topographically correct alignment and subsequent analysis of the various datasets and their modalities. The Waxholm Space (http://software.incf.org/software/waxholm-space) is a publicly available 3D coordinate-based standard reference space for the mapping and registration of neuroanatomical data in rodent brains. This paper provides a newly developed pipeline combining imaging and reconstruction steps with a novel registration strategy to integrate new neuroimaging modalities into the Waxholm Space atlas. As a proof of principle, we incorporated large scale high-resolution cyto-, muscarinic M2 receptor, and fiber architectonic images of rat brains into the 3D digital MRI based atlas of the Sprague Dawley rat in Waxholm Space. We describe the whole workflow, from image acquisition to reconstruction and registration of these three modalities into the Waxholm Space rat atlas. The registration of the brain sections into the atlas is performed by using both linear and non-linear transformations. The validity of the procedure is qualitatively demonstrated by visual inspection, and a quantitative evaluation is performed by measurement of the concordance between representative atlas-delineated regions and the same regions based on receptor or fiber architectonic data. This novel approach enables for the first time the generation of 3D reconstructed volumes of nerve fibers and fiber tracts, or of muscarinic M2 receptor density distributions, in an entire rat brain. Additionally, our pipeline facilitates the inclusion of further neuroimaging datasets, e.g., 3D reconstructed volumes of histochemical stainings or of the regional distributions of multiple other receptor types, into the Waxholm Space. Thereby, a multiscale and multimodal rat brain model was created in the Waxholm Space atlas of the rat brain. Since the registration of these multimodal high-resolution datasets into the same coordinate system is an indispensable requisite for multi-parameter analyses, this approach enables combined studies on receptor and cell distributions as well as fiber densities in the same anatomical structures at microscopic scales for the first time.

  7. 18. DETAIL OF NORTH END OF ATLAS CONTROL CONSOLE NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    18. DETAIL OF NORTH END OF ATLAS CONTROL CONSOLE NEAR WEST WALL OF SLC-3W CONTROL ROOM SHOWING PAYLOAD ENVIRONMENT CONTROL AND MONITORING PANELS (LABELED 'PECMP') - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  8. 16. DETAIL OF SOUTH END OF ATLAS CONTROL CONSOLE NEAR ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    16. DETAIL OF SOUTH END OF ATLAS CONTROL CONSOLE NEAR WEST WALL OF SLC-3W CONTROL ROOM SHOWING CONTROLS FOR STILL CAMERAS POSITIONED AROUND THE LAUNCH PAD - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  9. The Human Brainnetome Atlas: A New Brain Atlas Based on Connectional Architecture.

    PubMed

    Fan, Lingzhong; Li, Hai; Zhuo, Junjie; Zhang, Yu; Wang, Jiaojian; Chen, Liangfu; Yang, Zhengyi; Chu, Congying; Xie, Sangma; Laird, Angela R; Fox, Peter T; Eickhoff, Simon B; Yu, Chunshui; Jiang, Tianzi

    2016-08-01

    The human brain atlases that allow correlating brain anatomy with psychological and cognitive functions are in transition from ex vivo histology-based printed atlases to digital brain maps providing multimodal in vivo information. Many current human brain atlases cover only specific structures, lack fine-grained parcellations, and fail to provide functionally important connectivity information. Using noninvasive multimodal neuroimaging techniques, we designed a connectivity-based parcellation framework that identifies the subdivisions of the entire human brain, revealing the in vivo connectivity architecture. The resulting human Brainnetome Atlas, with 210 cortical and 36 subcortical subregions, provides a fine-grained, cross-validated atlas and contains information on both anatomical and functional connections. Additionally, we further mapped the delineated structures to mental processes by reference to the BrainMap database. It thus provides an objective and stable starting point from which to explore the complex relationships between structure, connectivity, and function, and eventually improves understanding of how the human brain works. The human Brainnetome Atlas will be made freely available for download at http://atlas.brainnetome.org, so that whole brain parcellations, connections, and functional data will be readily available for researchers to use in their investigations into healthy and pathological states. © The Author 2016. Published by Oxford University Press.

  10. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    At Port Canaveral in Florida, a United Launch Alliance Atlas V rocket booster is transported from the company's Mariner ship to the Atlas Spaceflight Operations Center at Cape Canaveral Air Force Station. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  11. EMAP and EMAGE: a framework for understanding spatially organized data.

    PubMed

    Baldock, Richard A; Bard, Jonathan B L; Burger, Albert; Burton, Nicolas; Christiansen, Jeff; Feng, Guanjie; Hill, Bill; Houghton, Derek; Kaufman, Matthew; Rao, Jianguo; Sharpe, James; Ross, Allyson; Stevenson, Peter; Venkataraman, Shanmugasundaram; Waterhouse, Andrew; Yang, Yiya; Davidson, Duncan R

    2003-01-01

    The Edinburgh MouseAtlas Project (EMAP) is a time-series of mouse-embryo volumetric models. The models provide a context-free spatial framework onto which structural interpretations and experimental data can be mapped. This enables collation, comparison, and query of complex spatial patterns with respect to each other and with respect to known or hypothesized structure. The atlas also includes a time-dependent anatomical ontology and mapping between the ontology and the spatial models in the form of delineated anatomical regions or tissues. The models provide a natural, graphical context for browsing and visualizing complex data. The Edinburgh Mouse Atlas Gene-Expression Database (EMAGE) is one of the first applications of the EMAP framework and provides a spatially mapped gene-expression database with associated tools for data mapping, submission, and query. In this article, we describe the underlying principles of the Atlas and the gene-expression database, and provide a practical introduction to the use of the EMAP and EMAGE tools, including use of new techniques for whole body gene-expression data capture and mapping.

  12. KSC-2013-4389

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  13. KSC-2013-4393

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  14. KSC-2013-4392

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  15. KSC-2013-4390

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being prepared for transport from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  16. KSC-2013-4391

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  17. Spacelab

    NASA Image and Video Library

    1994-11-04

    This is an STS-66 mission onboard photo of the Space Shuttle Orbiter Atlantis showing the payload of the third Atmospheric Laboratory for Applications and Science (ATLAS-3) mission. During the ATLAS missions, international teams of scientists representing many disciplines combined their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigated how Earth's middle and upper atmospheres and climate are affected by by the sun and by products of industrial and agricultural activities on Earth. Thirteen ATLAS instruments supported experiments in atmospheric sciences, solar physics, space plasma physics, and astronomy. The instruments were mounted on two Spacelab pallets in the Space Shuttle payload bay. The ATLAS-3 mission continued a variety of atmospheric and solar studies to improve understanding of the Earth's atmosphere and its energy input from the sun. A key scientific objective was to refine existing data on variations in the fragile ozone layer of the atmosphere. The Orbiter Atlantis was launched on November 3, 1994 for the ATLAS-3 mission (STS-66).

  18. KSC-07pd1527

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- Smoke and dust rising from the ground of Space Launch Complex 36 on Cape Canaveral Air Force Station signifies the destruction of the 209-foot-tall mobile service tower on Pad 39-A. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  19. KSC-07pd1522

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- The destruction of the 209-foot-tall mobile service tower on Pad 39-B at Space Launch Complex 36 on Cape Canaveral Air Force Station kicks up a wall of dust. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  20. KSC-07pd1525

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- The 209-foot-tall mobile service tower on Pad 39-A of Space Launch Complex 36 on Cape Canaveral Air Force Station careens to the left after 122 pounds of explosives eliminated the base. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  1. KSC-07pd1521

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- At Space Launch Complex 36 on Cape Canaveral Air Force Station, the 209-foot-tall mobile service tower on Pad 36-B crashes to the ground. It is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  2. KSC-07pd1523

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- After the dust settles at Space Launch Complex 36 on Cape Canaveral Air Force Station, the ruins of the 209-foot-tall mobile service tower on Pad 39-B are visible. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  3. KSC-07pd1526

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- Smoke and dust rising from the ground of Space Launch Complex 36 on Cape Canaveral Air Force Station signifies the destruction of the 209-foot-tall mobile service tower on Pad 39-A. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  4. Complex terrain experiments in the New European Wind Atlas.

    PubMed

    Mann, J; Angelou, N; Arnqvist, J; Callies, D; Cantero, E; Arroyo, R Chávez; Courtney, M; Cuxart, J; Dellwik, E; Gottschall, J; Ivanell, S; Kühn, P; Lea, G; Matos, J C; Palma, J M L M; Pauscher, L; Peña, A; Rodrigo, J Sanz; Söderberg, S; Vasiljevic, N; Rodrigues, C Veiga

    2017-04-13

    The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available.This article is part of the themed issue 'Wind energy in complex terrains'. © 2017 The Authors.

  5. Complex terrain experiments in the New European Wind Atlas

    PubMed Central

    Angelou, N.; Callies, D.; Cantero, E.; Arroyo, R. Chávez; Courtney, M.; Cuxart, J.; Dellwik, E.; Gottschall, J.; Ivanell, S.; Kühn, P.; Lea, G.; Matos, J. C.; Palma, J. M. L. M.; Peña, A.; Rodrigo, J. Sanz; Söderberg, S.; Vasiljevic, N.; Rodrigues, C. Veiga

    2017-01-01

    The New European Wind Atlas project will create a freely accessible wind atlas covering Europe and Turkey, develop the model chain to create the atlas and perform a series of experiments on flow in many different kinds of complex terrain to validate the models. This paper describes the experiments of which some are nearly completed while others are in the planning stage. All experiments focus on the flow properties that are relevant for wind turbines, so the main focus is the mean flow and the turbulence at heights between 40 and 300 m. Also extreme winds, wind shear and veer, and diurnal and seasonal variations of the wind are of interest. Common to all the experiments is the use of Doppler lidar systems to supplement and in some cases replace completely meteorological towers. Many of the lidars will be equipped with scan heads that will allow for arbitrary scan patterns by several synchronized systems. Two pilot experiments, one in Portugal and one in Germany, show the value of using multiple synchronized, scanning lidar, both in terms of the accuracy of the measurements and the atmospheric physical processes that can be studied. The experimental data will be used for validation of atmospheric flow models and will by the end of the project be freely available. This article is part of the themed issue ‘Wind energy in complex terrains’. PMID:28265025

  6. NASA/IPAC Infrared Archive's General Image Cutouts Service

    NASA Astrophysics Data System (ADS)

    Alexov, A.; Good, J. C.

    2006-07-01

    The NASA/IPAC Infrared Archive (IRSA) ``Cutouts" Service (http://irsa.ipac.caltech.edu/applications/Cutouts) is a general tool for creating small ``cutout" FITS images and JPEGs from collections of data archived at IRSA. This service is a companion to IRSA's Atlas tool (http://irsa.ipac.caltech.edu/applications/Atlas/), which currently serves over 25 different data collections of various sizes and complexity and returns entire images for a user-defined region of the sky. The Cutouts Services sits on top of Atlas and extends the Atlas functionality by generating subimages at locations and sizes requested by the user from images already identified by Atlas. These results can be downloaded individually, in batch mode (using the program wget), or as a tar file. Cutouts re-uses IRSA's software architecture along with the publicly available Montage mosaicking tools. The advantages and disadvantages of this approach to generic cutout serving will be discussed.

  7. Development of n+-in-p large-area silicon microstrip sensors for very high radiation environments - ATLAS12 design and initial results

    NASA Astrophysics Data System (ADS)

    Unno, Y.; Edwards, S. O.; Pyatt, S.; Thomas, J. P.; Wilson, J. A.; Kierstead, J.; Lynn, D.; Carter, J. R.; Hommels, L. B. A.; Robinson, D.; Bloch, I.; Gregor, I. M.; Tackmann, K.; Betancourt, C.; Jakobs, K.; Kuehn, S.; Mori, R.; Parzefall, U.; Wiik-Fucks, L.; Clark, A.; Ferrere, D.; Gonzalez Sevilla, S.; Ashby, J.; Blue, A.; Bates, R.; Buttar, C.; Doherty, F.; Eklund, L.; McMullen, T.; McEwan, F.; O`Shea, V.; Kamada, S.; Yamamura, K.; Ikegami, Y.; Nakamura, K.; Takubo, Y.; Nishimura, R.; Takashima, R.; Chilingarov, A.; Fox, H.; Affolder, A. A.; Allport, P. P.; Casse, G.; Dervan, P.; Forshaw, D.; Greenall, A.; Wonsak, S.; Wormald, M.; Cindro, V.; Kramberger, G.; Mandic, I.; Mikuz, M.; Gorelov, I.; Hoeferkamp, M.; Palni, P.; Seidel, S.; Taylor, A.; Toms, K.; Wang, R.; Hessey, N. P.; Valencic, N.; Arai, Y.; Hanagaki, K.; Dolezal, Z.; Kodys, P.; Bohm, J.; Mikestikova, M.; Bevan, A.; Beck, G.; Ely, S.; Fadeyev, V.; Galloway, Z.; Grillo, A. A.; Martinez-McKinney, F.; Ngo, J.; Parker, C.; Sadrozinski, H. F.-W.; Schumacher, D.; Seiden, A.; French, R.; Hodgson, P.; Marin-Reyes, H.; Parker, K.; Paganis, S.; Jinnouchi, O.; Motohashi, K.; Todome, K.; Yamaguchi, D.; Hara, K.; Hagihara, M.; Garcia, C.; Jimenez, J.; Lacasta, C.; Marti i Garcia, S.; Soldevila, U.

    2014-11-01

    We have been developing a novel radiation-tolerant n+-in-p silicon microstrip sensor for very high radiation environments, aiming for application in the high luminosity large hadron collider. The sensors are fabricated in 6 in., p-type, float-zone wafers, where large-area strip sensor designs are laid out together with a number of miniature sensors. Radiation tolerance has been studied with ATLAS07 sensors and with independent structures. The ATLAS07 design was developed into new ATLAS12 designs. The ATLAS12A large-area sensor is made towards an axial strip sensor and the ATLAS12M towards a stereo strip sensor. New features to the ATLAS12 sensors are two dicing lines: standard edge space of 910 μm and slim edge space of 450 μm, a gated punch-through protection structure, and connection of orphan strips in a triangular corner of stereo strips. We report the design of the ATLAS12 layouts and initial measurements of the leakage current after dicing and the resistivity of the wafers.

  8. Agena Target Vehicle atop Atlas Launch vehicle launched from KSC

    NASA Technical Reports Server (NTRS)

    1966-01-01

    An Agena Target Vehicle atop its Atlas Launch vehicle is launched from the Kennedy Space Center (KSC) Launch Complex 14 at 10:15 am.m., May 17, 1966. The Agena was intended as a rendezvous and docking vehicle for the Gemini 9 spacecraft. However, since the Agena failed to achieve orbit, the Gemini 9 mission was postponed.

  9. An anatomic transcriptional atlas of human glioblastoma.

    PubMed

    Puchalski, Ralph B; Shah, Nameeta; Miller, Jeremy; Dalley, Rachel; Nomura, Steve R; Yoon, Jae-Guen; Smith, Kimberly A; Lankerovich, Michael; Bertagnolli, Darren; Bickley, Kris; Boe, Andrew F; Brouner, Krissy; Butler, Stephanie; Caldejon, Shiella; Chapin, Mike; Datta, Suvro; Dee, Nick; Desta, Tsega; Dolbeare, Tim; Dotson, Nadezhda; Ebbert, Amanda; Feng, David; Feng, Xu; Fisher, Michael; Gee, Garrett; Goldy, Jeff; Gourley, Lindsey; Gregor, Benjamin W; Gu, Guangyu; Hejazinia, Nika; Hohmann, John; Hothi, Parvinder; Howard, Robert; Joines, Kevin; Kriedberg, Ali; Kuan, Leonard; Lau, Chris; Lee, Felix; Lee, Hwahyung; Lemon, Tracy; Long, Fuhui; Mastan, Naveed; Mott, Erika; Murthy, Chantal; Ngo, Kiet; Olson, Eric; Reding, Melissa; Riley, Zack; Rosen, David; Sandman, David; Shapovalova, Nadiya; Slaughterbeck, Clifford R; Sodt, Andrew; Stockdale, Graham; Szafer, Aaron; Wakeman, Wayne; Wohnoutka, Paul E; White, Steven J; Marsh, Don; Rostomily, Robert C; Ng, Lydia; Dang, Chinh; Jones, Allan; Keogh, Bart; Gittleman, Haley R; Barnholtz-Sloan, Jill S; Cimino, Patrick J; Uppin, Megha S; Keene, C Dirk; Farrokhi, Farrokh R; Lathia, Justin D; Berens, Michael E; Iavarone, Antonio; Bernard, Amy; Lein, Ed; Phillips, John W; Rostad, Steven W; Cobbs, Charles; Hawrylycz, Michael J; Foltz, Greg D

    2018-05-11

    Glioblastoma is an aggressive brain tumor that carries a poor prognosis. The tumor's molecular and cellular landscapes are complex, and their relationships to histologic features routinely used for diagnosis are unclear. We present the Ivy Glioblastoma Atlas, an anatomically based transcriptional atlas of human glioblastoma that aligns individual histologic features with genomic alterations and gene expression patterns, thus assigning molecular information to the most important morphologic hallmarks of the tumor. The atlas and its clinical and genomic database are freely accessible online data resources that will serve as a valuable platform for future investigations of glioblastoma pathogenesis, diagnosis, and treatment. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  10. Modélisation magnétique de la suture ophiolitique de Bou Azzer El Graara (Anti-Atlas central, Maroc). Implications sur la reconstitution géodynamique panafricaine

    NASA Astrophysics Data System (ADS)

    Soulaimani, Abderrahmane; Jaffal, Mohammed; Maacha, Lhou; Kchikach, Azzouz; Najine, Abdessamad; Saidi, Abdellatif

    2006-02-01

    Aeromagnetic data of the Anti-Atlas Mountains show an important magnetic anomaly along the 'Major Anti-Atlas Fault', produced by different mafic and ultramafic rocks of a Neoproterozoic ophiolite complex. The magnetic modelling of Bou Azzer-El Graara ophiolitic suture shows a deep-seated anomaly through the upper continental crust corresponding to a north-dipping subduction. The polarity of the Pan-African subduction in the Anti-Atlas is therefore compatible with the contemporaneous Pan-African orogenic belts, where polarity of subduction dipped away from the West African Craton during the amalgamation of Western Gondwana. To cite this article: A. Soulaimani et al., C. R. Geoscience 338 (2006).

  11. OA-7 Atlas Booster and Centaur Stages Arrival

    NASA Image and Video Library

    2017-02-06

    The Mariner cargo ship arrives at the Army Outpost wharf at Port Canaveral, Florida, near the Kennedy Space Center. Aboard is the United Launch Alliance (ULA) Atlas V booster and centaur stages for the Orbital ATK CRS-7 commercial resupply mission to the International Space Station. After the rocket is offloaded, a transport truck takes the Atlas V vehicle hardware to the hangar at the Atlas Spaceflight Operations Center (ASOC), located south of Space Launch Complex 41 at Cape Canaveral Air Force Station. Scheduled to launch a Cygnus spacecraft on March 19, 2017, the Orbital ATK CRS-7 mission will deliver thousands of pounds of supplies, equipment and scientific research materials that improve life on Earth and drive progress toward future space exploration.

  12. Measurements and TCAD simulation of novel ATLAS planar pixel detector structures for the HL-LHC upgrade

    NASA Astrophysics Data System (ADS)

    Nellist, C.; Dinu, N.; Gkougkousis, E.; Lounis, A.

    2015-06-01

    The LHC accelerator complex will be upgraded between 2020-2022, to the High-Luminosity-LHC, to considerably increase statistics for the various physics analyses. To operate under these challenging new conditions, and maintain excellent performance in track reconstruction and vertex location, the ATLAS pixel detector must be substantially upgraded and a full replacement is expected. Processing techniques for novel pixel designs are optimised through characterisation of test structures in a clean room and also through simulations with Technology Computer Aided Design (TCAD). A method to study non-perpendicular tracks through a pixel device is discussed. Comparison of TCAD simulations with Secondary Ion Mass Spectrometry (SIMS) measurements to investigate the doping profile of structures and validate the simulation process is also presented.

  13. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution

    PubMed Central

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-01-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images. PMID:29062159

  14. Brain Atlas Fusion from High-Thickness Diagnostic Magnetic Resonance Images by Learning-Based Super-Resolution.

    PubMed

    Zhang, Jinpeng; Zhang, Lichi; Xiang, Lei; Shao, Yeqin; Wu, Guorong; Zhou, Xiaodong; Shen, Dinggang; Wang, Qian

    2017-03-01

    It is fundamentally important to fuse the brain atlas from magnetic resonance (MR) images for many imaging-based studies. Most existing works focus on fusing the atlases from high-quality MR images. However, for low-quality diagnostic images (i.e., with high inter-slice thickness), the problem of atlas fusion has not been addressed yet. In this paper, we intend to fuse the brain atlas from the high-thickness diagnostic MR images that are prevalent for clinical routines. The main idea of our works is to extend the conventional groupwise registration by incorporating a novel super-resolution strategy. The contribution of the proposed super-resolution framework is two-fold. First, each high-thickness subject image is reconstructed to be isotropic by the patch-based sparsity learning. Then, the reconstructed isotropic image is enhanced for better quality through the random-forest-based regression model. In this way, the images obtained by the super-resolution strategy can be fused together by applying the groupwise registration method to construct the required atlas. Our experiments have shown that the proposed framework can effectively solve the problem of atlas fusion from the low-quality brain MR images.

  15. A pediatric brain structure atlas from T1-weighted MR images

    NASA Astrophysics Data System (ADS)

    Shan, Zuyao Y.; Parra, Carlos; Ji, Qing; Ogg, Robert J.; Zhang, Yong; Laningham, Fred H.; Reddick, Wilburn E.

    2006-03-01

    In this paper, we have developed a digital atlas of the pediatric human brain. Human brain atlases, used to visualize spatially complex structures of the brain, are indispensable tools in model-based segmentation and quantitative analysis of brain structures. However, adult brain atlases do not adequately represent the normal maturational patterns of the pediatric brain, and the use of an adult model in pediatric studies may introduce substantial bias. Therefore, we proposed to develop a digital atlas of the pediatric human brain in this study. The atlas was constructed from T1 weighted MR data set of a 9 year old, right-handed girl. Furthermore, we extracted and simplified boundary surfaces of 25 manually defined brain structures (cortical and subcortical) based on surface curvature. Higher curvature surfaces were simplified with more reference points; lower curvature surfaces, with fewer. We constructed a 3D triangular mesh model for each structure by triangulation of the structure's reference points. Kappa statistics (cortical, 0.97; subcortical, 0.91) indicated substantial similarities between the mesh-defined and the original volumes. Our brain atlas and structural mesh models (www.stjude.org/BrainAtlas) can be used to plan treatment, to conduct knowledge and modeldriven segmentation, and to analyze the shapes of brain structures in pediatric patients.

  16. Toward the holistic, reference, and extendable atlas of the human brain, head, and neck.

    PubMed

    Nowinski, Wieslaw L

    2015-06-01

    Despite numerous efforts, a fairly complete (holistic) anatomical model of the whole, normal, adult human brain, which is required as the reference in brain studies and clinical applications, has not yet been constructed. Our ultimate objective is to build this kind of atlas from advanced in vivo imaging. This work presents the taxonomy of our currently developed brain atlases and addresses the design, content, functionality, and current results in the holistic atlas development as well as atlas usefulness and future directions. We have developed to date 35 commercial brain atlases (along with numerous research prototypes), licensed to 63 companies and institutions, and made available to medical societies, organizations, medical schools, and individuals. These atlases have been applied in education, research, and clinical applications. Hundreds of thousands of patients have been treated by using our atlases. Based on this experience, the first version of the holistic and reference atlas of the brain, head, and neck has been developed and made available. The atlas has been created from multispectral 3 and 7 Tesla and high-resolution CT in vivo scans. It is fully 3D, scalable, interactive, and highly detailed with about 3,000 labeled components. This atlas forms a foundation for the development of a multi-level molecular, cellular, anatomical, physiological, and behavioral brain atlas platform.

  17. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is lifted for mounting atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  18. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft is moved into position for mating atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  19. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft has been mated atop a United Launch Alliance Atlas V rocket. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  20. Crustal and lithospheric imaging of the Atlas Mountains of Morocco inferred from magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Kiyan, D.; Jones, A. G.; Fullea, J.; Hogg, C.; Ledo, J.; Sinischalchi, A.; Campanya, J.; Picasso Phase II Team

    2010-12-01

    The Atlas System of Morocco is an intra-continental mountain belt extending for more than 2,000 km along the NW African plate with a predominant NE-SW trend. The System comprises three main branches: the High Atlas, the Middle Atlas, and the Anti Atlas. We present the results of a very recent multi-institutional magnetotelluric (MT) experiment across the Atlas Mountains region that started in September, 2009 and ended in February, 2010, comprising acquisition of broadband and long-period MT data. The experiment consisted of two profiles: (1) a N-S oriented profile crossing the Middle Atlas through the Central High Atlas to the east and (2) a NE-SW profile crossing the western High Atlas towards the Anti Atlas to the west. The MT measurements are part of the PICASSO (Program to Investigate Convective Alboran Sea System Overturn) and the concomitant TopoMed (Plate re-organization in the western Mediterranean: Lithospheric causes and topographic consequences - an ESF EUROCORES TOPO-EUROPE project) projects, to develop a better understanding of the internal structure and evolution of the crust and lithosphere of the Atlas Mountains. The MT data have been processed with robust remote reference methods and submitted to comprehensive strike and dimensionality analysis. Two clearly depth-differentiated strike directions are apparent for crustal (5-35 km) and lithospheric (50-150 km) depth ranges. These two orientations are roughly consistent with the NW-SE Africa-Eurasia convergence acting since the late Cretaceous, and the NNE-SSW Middle Atlas, where Miocene to recent Alkaline volcanism is present. Two-dimensional (2-D) smooth electrical resistivity models were computed independently for both 50 degrees and 20 degrees E of N strike directions. At the crustal scale, our preliminary results reveal a middle to lower-crustal conductive layer stretching from the Middle Atlas southward towards the High Moulouya basin. The most resistive (and therefore potentially thickest) lithosphere is found beneath the Central High Atlas. The inversion results are to be tested against other geophysical observables (i.e. topography, geoid and gravity anomalies, surface heat flow and seismic velocities) using the software package LitMod. This software combines petrological and geophysical modelling of the lithosphere and sub-lithospheric upper mantle within an internally consistent thermodynamic-geophysical framework, where all relevant properties are functions of temperature, pressure and composition.

  1. Spacelab

    NASA Image and Video Library

    1994-11-04

    This is an STS-66 mission onboard photo showing the Remote Manipulator System (RMS) moving toward one of the solar science instruments for the third Atmospheric Laboratory for Applications and Science (ATLAS-3) mission in the cargo bay of the Orbiter Atlantis. During the ATLAS missions, international teams of scientists representing many disciplines combined their expertise to seek answers to complex questions about the atmospheric and solar conditions that sustain life on Earth. The ATLAS program specifically investigated how Earth's middle and upper atmospheres and climate are affected by by the sun and by products of industrial and agricultural activities on Earth. Thirteen ATLAS instruments supported experiments in atmospheric sciences, solar physics, space plasma physics, and astronomy. The instruments were mounted on two Spacelab pallets in the Space Shuttle payload bay. The ATLAS-3 mission continued a variety of atmospheric and solar studies, to improve understanding of the Earth's atmosphere and its energy input from the sun. A key scientific objective was to refine existing data on variations in the fragile ozone layer of the atmosphere. The Shuttle Orbiter Atlantis was launched on November 3, 1994 for the ATLAS-3 mission (STS-66). The ATLAS program was managed by the Marshall Space Flight Center.

  2. Atlas ranking and selection for automatic segmentation of the esophagus from CT scans

    NASA Astrophysics Data System (ADS)

    Yang, Jinzhong; Haas, Benjamin; Fang, Raymond; Beadle, Beth M.; Garden, Adam S.; Liao, Zhongxing; Zhang, Lifei; Balter, Peter; Court, Laurence

    2017-12-01

    In radiation treatment planning, the esophagus is an important organ-at-risk that should be spared in patients with head and neck cancer or thoracic cancer who undergo intensity-modulated radiation therapy. However, automatic segmentation of the esophagus from CT scans is extremely challenging because of the structure’s inconsistent intensity, low contrast against the surrounding tissues, complex and variable shape and location, and random air bubbles. The goal of this study is to develop an online atlas selection approach to choose a subset of optimal atlases for multi-atlas segmentation to the delineate esophagus automatically. We performed atlas selection in two phases. In the first phase, we used the correlation coefficient of the image content in a cubic region between each atlas and the new image to evaluate their similarity and to rank the atlases in an atlas pool. A subset of atlases based on this ranking was selected, and deformable image registration was performed to generate deformed contours and deformed images in the new image space. In the second phase of atlas selection, we used Kullback-Leibler divergence to measure the similarity of local-intensity histograms between the new image and each of the deformed images, and the measurements were used to rank the previously selected atlases. Deformed contours were overlapped sequentially, from the most to the least similar, and the overlap ratio was examined. We further identified a subset of optimal atlases by analyzing the variation of the overlap ratio versus the number of atlases. The deformed contours from these optimal atlases were fused together using a modified simultaneous truth and performance level estimation algorithm to produce the final segmentation. The approach was validated with promising results using both internal data sets (21 head and neck cancer patients and 15 thoracic cancer patients) and external data sets (30 thoracic patients).

  3. The SysteMHC Atlas project

    PubMed Central

    Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal

    2018-01-01

    Abstract Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. PMID:28985418

  4. X-ray atlas of rheumatic diseases

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dihlmann, W.

    1986-01-01

    This atlas comprises instructive X-rays of the various inflammatory rheumatic joint diseases in all stages at the extremities and the spinal column. In addition, the complex pattern of the wide range of arthroses, also known as degenerative rheumatic disease is included. Besides the instructive pointers to X-ray diagnosis, the book is also a guide to differential diagnosis. Hence, this book is actually an X-ray atlas of joint diseases in general. Selected Contents: Introduction: What Does ''Rheumatism'' Actually Mean./Radiographic Methodology in Rheumatic Diseases of the Locomotor System/The Mosaic of Arthritis/Adult Rheumatoid Arthritis/Seronegative Spondylarthritis/Classic Collagen Diseases/Enthesiopathies/Gout-Pseudogout

  5. OA-7 Atlas V Centaur mate to Booster

    NASA Image and Video Library

    2017-02-23

    The Centaur upper stage of the United Launch Alliance (ULA) Atlas V rocket arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Centaur stage is lifted and mated to the first stage booster. The rocket is being prepared for Orbital ATK's seventh commercial resupply mission, CRS-7, to the International Space Station. Orbital ATK's CYGNUS pressurized cargo module is scheduled to launch atop ULA's Atlas V rocket from Pad 41 on March 19, 2017. CYGNUS will deliver 7,600 of pounds of supplies, equipment and scientific research materials to the space station

  6. KSC-2014-2020

    NASA Image and Video Library

    2014-04-10

    CAPE CANAVERAL, Fla. – As the sun rises over Space Launch Complex 41 on Cape Canaveral Air Force Station in Florida, a United Launch Alliance Atlas V rocket awaits launch with a National Reconnaissance Office payload. The pad is just across the water from Kennedy Space Center. Liftoff is set for 1:45 p.m. EDT on April 10. A 90 percent chance of favorable weather conditions at launch time is forecast. Designated NROL-67, the mission is in support of national defense. To learn more about ULA's Atlas V rocket, visit http://www.ulalaunch.com/site/pages/Products_AtlasV.shtml. Photo credit: NASA/Ben Smelgelsky

  7. AGIS: The ATLAS Grid Information System

    NASA Astrophysics Data System (ADS)

    Anisenkov, Alexey; Belov, Sergey; Di Girolamo, Alessandro; Gayazov, Stavro; Klimentov, Alexei; Oleynik, Danila; Senchenko, Alexander

    2012-12-01

    ATLAS is a particle physics experiment at the Large Hadron Collider at CERN. The experiment produces petabytes of data annually through simulation production and tens petabytes of data per year from the detector itself. The ATLAS Computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we present ATLAS Grid Information System (AGIS) designed to integrate configuration and status information about resources, services and topology of whole ATLAS Grid needed by ATLAS Distributed Computing applications and services.

  8. KSC-07pd1524

    NASA Image and Video Library

    2007-06-16

    KENNEDY SPACE CENTER, FLA. -- Within sight of the KSC Vehicle Assembly Building (at left on the horizon), the 209-foot-tall mobile service tower on Pad 39-A of Space Launch Complex 36 on Cape Canaveral Air Force Station waits for its demise. The tower is one of two that were identified for demolition. The old towers are being toppled as part of the ongoing project to demolish the historic site to prevent corrosion from becoming a safety concern. A majority of the steel will be recycled and the rest will be taken to the landfill at CCAFS. Complex 36 was the birthplace of NASA's planetary launch program. It was built for the Atlas/Centaur development program and was operated under NASA's sponsorship until the late 1980s. Complex 36 hosted many historic missions over the years including Surveyor that landed on the moon and Mariner that orbited Mars and included one to Mercury. Two of the most historic launches were the Pioneer 10 and 11 space probes that were launched to Jupiter and are now outside of the solar system in interstellar space. Also, the historic Pioneer Venus spacecraft included an orbiter and a set of probes that were dispatched to the surface. While Launch Complex 36 is gone, the Atlas/Centaur rocket continues to be launched as the Atlas V from Complex 41. Photo credit: NASA/Charisse Nahser

  9. L'Arenig Llanvirn du Haut Atlas occidental et central (Maroc). Environnements sédimentaires, paléogéographie et contrôle de la sédimentation

    NASA Astrophysics Data System (ADS)

    Chacrone, Choukri; Hamoumi, Naïma

    2005-09-01

    The sedimentological study of Arenig-Llanvirn successions of Aït Lahsen (western High Atlas), Tizi-n-Tichka and Imini (central High Atlas) allow us to recognise two independent epeiric seas. In the western High Atlas, the sedimentation occurred in a wave- and storm-influenced delta, alimented by a source situated at the present-day location of the Argana corridor, under the control of sea-level fluctuations and subsidence. In the central High Atlas, the sedimentation occurred in an influenced tide and episodic storm delta, alimented by sources situated at the present-day location of the Siroua and Ouzellagh Massifs under the control of sea-level fluctuations and tectonics. To cite this article: C. Chacrone, N. Hamoumi, C. R. Geoscience 337 (2005).

  10. Automatic labeling of MR brain images through extensible learning and atlas forests.

    PubMed

    Xu, Lijun; Liu, Hong; Song, Enmin; Yan, Meng; Jin, Renchao; Hung, Chih-Cheng

    2017-12-01

    Multiatlas-based method is extensively used in MR brain images segmentation because of its simplicity and robustness. This method provides excellent accuracy although it is time consuming and limited in terms of obtaining information about new atlases. In this study, an automatic labeling of MR brain images through extensible learning and atlas forest is presented to address these limitations. We propose an extensible learning model which allows the multiatlas-based framework capable of managing the datasets with numerous atlases or dynamic atlas datasets and simultaneously ensure the accuracy of automatic labeling. Two new strategies are used to reduce the time and space complexity and improve the efficiency of the automatic labeling of brain MR images. First, atlases are encoded to atlas forests through random forest technology to reduce the time consumed for cross-registration between atlases and target image, and a scatter spatial vector is designed to eliminate errors caused by inaccurate registration. Second, an atlas selection method based on the extensible learning model is used to select atlases for target image without traversing the entire dataset and then obtain the accurate labeling. The labeling results of the proposed method were evaluated in three public datasets, namely, IBSR, LONI LPBA40, and ADNI. With the proposed method, the dice coefficient metric values on the three datasets were 84.17 ± 4.61%, 83.25 ± 4.29%, and 81.88 ± 4.53% which were 5% higher than those of the conventional method, respectively. The efficiency of the extensible learning model was evaluated by state-of-the-art methods for labeling of MR brain images. Experimental results showed that the proposed method could achieve accurate labeling for MR brain images without traversing the entire datasets. In the proposed multiatlas-based method, extensible learning and atlas forests were applied to control the automatic labeling of brain anatomies on large atlas datasets or dynamic atlas datasets and obtain accurate results. © 2017 American Association of Physicists in Medicine.

  11. [Biomechanical performance of different wires and cable fixation devices in posterior instrumentation for atlantoaxial instability].

    PubMed

    Liu, Tie-long; Yan, Wang-jun; Han, Yu; Ye, Xiao-jian; Jia, Lian-shun; Li, Jia-shun; Yuan, Wen

    2010-05-01

    To compare the biomechanical performances of different wires and cable fixation devices in posterior instrumentation for atlantoaxial instability, and test the effect of different fixation strengths and fixation approaches on the surgical outcomes. Six specimens of the atlantoaxial complex (C0-C3) were used to establish models of the normal complex, unstable complex (type II odontoid fracture) and fixed complex. On the wd-5 mechanical testing machine, the parameters including the strength and rigidity of anti-rotation, change and strength of stress, and stability were measured for the normal complex, atlantoaxial instability complex, the new type titanium cable fixation system, Atlas titanium cable, Songer titanium cable, and stainless wire. The strength and rigidity of anti-rotation, change and strength of stress, stability of flexion, extension and lateral bending of the unstable atlantoaxial complex fixed by the new double locking titanium cable fixation system were superior to those of the Songer or Atlas titanium cable (P<0.05) and medical stainless wire (P<0.05). Simultaneous cable fastening on both sides resulted in better fixation effect than successive cable fastening (P<0.05). Better fixation effect was achieved by fastening the specimen following a rest (P<0.05). The fixation effects can be enhanced by increased fastening strengths. The new type double locking titanium cable fixation system has better biomechanical performance than the conventional Songer and Atlas titanium cables. Fastening the unstable specimens after a rest following simultaneous fastening of the specimen on both sides produces better fixation effect.

  12. LIFTOFF - GEMINI-TITAN (GT)-9A - ATLAS/AGENA - CAPE

    NASA Image and Video Library

    1966-05-17

    S66-34610 (17 May 1966) --- An Agena Target Vehicle atop its Atlas Launch vehicle is launched from the Kennedy Space Center (KSC) Launch Complex 14 at 10:15 am., May 17, 1966. The Agena was intended as a rendezvous and docking vehicle for the Gemini-9 spacecraft. However, since the Agena failed to achieve orbit, the Gemini-9 mission was postponed. Photo credit: NASA

  13. GOES-R Lift and Mate

    NASA Image and Video Library

    2016-11-09

    Enclosed in its payload fairing, NOAA's Geostationary Operational Environmental Satellite (GOES-R) is mated to the United Launch Alliance Atlas V Centaur upper stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The satellite will launch aboard the Atlas V rocket in November. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  14. 25. VIEW OF ATLAS CONTROL CONSOLE NEAR NORTHEAST CORNER OF ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    25. VIEW OF ATLAS CONTROL CONSOLE NEAR NORTHEAST CORNER OF SLC-3W CONTROL ROOM. CONSOLE INCLUDES TELEVISION CONTROL, FACILITIES, AND VEHICLE (MISSILE) POWER PANELS. FROM LEFT TO RIGHT IN BACKGROUND: MILITARY-TIME CLOCK, BASE OF BUNKER PERISCOPE, AND STAIRS TO ESCAPE TUNNEL. - Vandenberg Air Force Base, Space Launch Complex 3, Launch Operations Building, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  15. MAVEN Atlas V Launch

    NASA Image and Video Library

    2013-11-18

    The United Launch Alliance Atlas V rocket with NASA’s Mars Atmosphere and Volatile EvolutioN (MAVEN) spacecraft launches from the Cape Canaveral Air Force Station Space Launch Complex 41, Monday, Nov. 18, 2013, Cape Canaveral, Florida. NASA’s Mars-bound spacecraft, the Mars Atmosphere and Volatile EvolutioN, or MAVEN, is the first spacecraft devoted to exploring and understanding the Martian upper atmosphere. Photo Credit: (NASA/Bill Ingalls)

  16. Resource atlases for multi-atlas brain segmentations with multiple ontology levels based on T1-weighted MRI.

    PubMed

    Wu, Dan; Ma, Ting; Ceritoglu, Can; Li, Yue; Chotiyanonta, Jill; Hou, Zhipeng; Hsu, John; Xu, Xin; Brown, Timothy; Miller, Michael I; Mori, Susumu

    2016-01-15

    Technologies for multi-atlas brain segmentation of T1-weighted MRI images have rapidly progressed in recent years, with highly promising results. This approach, however, relies on a large number of atlases with accurate and consistent structural identifications. Here, we introduce our atlas inventories (n=90), which cover ages 4-82years with unique hierarchical structural definitions (286 structures at the finest level). This multi-atlas library resource provides the flexibility to choose appropriate atlases for various studies with different age ranges and structure-definition criteria. In this paper, we describe the details of the atlas resources and demonstrate the improved accuracy achievable with a dynamic age-matching approach, in which atlases that most closely match the subject's age are dynamically selected. The advanced atlas creation strategy, together with atlas pre-selection principles, is expected to support the further development of multi-atlas image segmentation. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. An atlas of high-resolution IRAS maps on nearby galaxies

    NASA Technical Reports Server (NTRS)

    Rice, Walter

    1993-01-01

    An atlas of far-infrared IRAS maps with near 1 arcmin angular resolution of 30 optically large galaxies is presented. The high-resolution IRAS maps were produced with the Maximum Correlation Method (MCM) image construction and enhancement technique developed at IPAC. The MCM technique, which recovers the spatial information contained in the overlapping detector data samples of the IRAS all-sky survey scans, is outlined and tests to verify the structural reliability and photometric integrity of the high-resolution maps are presented. The infrared structure revealed in individual galaxies is discussed. The atlas complements the IRAS Nearby Galaxy High-Resolution Image Atlas, the high-resolution galaxy images encoded in FITS format, which is provided to the astronomical community as an IPAC product.

  18. TDRS-M Atlas V First and Second Stage Arrival

    NASA Image and Video Library

    2017-06-26

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster bound for nearby Cape Canaveral Air Force Station. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  19. TDRS-M Atlas V Booster and Centaur Stages Offload, Booster Trans

    NASA Image and Video Library

    2017-06-27

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster bound for nearby Cape Canaveral Air Force Station. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  20. ULA's Atlas V for Boeing's Orbital Flight Test

    NASA Image and Video Library

    2017-10-24

    The Atlas V rocket that will launch Boeing’s CST-100 Starliner spacecraft on the company’s uncrewed Orbital Flight Test for NASA’s Commercial Crew Program is coming together inside a United Launch Alliance facility in Decatur, Alabama. The flight test is intended to prove the design of the integrated space system prior to the Crew Flight Test. These events are part of NASA’s required certification process as the company works to regularly fly astronauts to and from the International Space Station. Boeing's Starliner will launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida.

  1. A quantitative magnetic resonance histology atlas of postnatal rat brain development with regional estimates of growth and variability.

    PubMed

    Calabrese, Evan; Badea, Alexandra; Watson, Charles; Johnson, G Allan

    2013-05-01

    There has been growing interest in the role of postnatal brain development in the etiology of several neurologic diseases. The rat has long been recognized as a powerful model system for studying neuropathology and the safety of pharmacologic treatments. However, the complex spatiotemporal changes that occur during rat neurodevelopment remain to be elucidated. This work establishes the first magnetic resonance histology (MRH) atlas of the developing rat brain, with an emphasis on quantitation. The atlas comprises five specimens at each of nine time points, imaged with eight distinct MR contrasts and segmented into 26 developmentally defined brain regions. The atlas was used to establish a timeline of morphometric changes and variability throughout neurodevelopment and represents a quantitative database of rat neurodevelopment for characterizing rat models of human neurologic disease. Published by Elsevier Inc.

  2. Upgraded Readout Electronics for the ATLAS Liquid Argon Calorimeters at the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Andeen, Timothy R.; ATLAS Liquid Argon Calorimeter Group

    2012-12-01

    The ATLAS liquid-argon calorimeters produce a total of 182,486 signals which are digitized and processed by the front-end and back-end electronics at every triggered event. In addition, the front-end electronics sum analog signals to provide coarsely grained energy sums, called trigger towers, to the first-level trigger system, which is optimized for nominal LHC luminosities. However, the pile-up background expected during the high luminosity phases of the LHC will be increased by factors of 3 to 7. An improved spatial granularity of the trigger primitives is therefore proposed in order to improve the identification performance for trigger signatures, like electrons or photons, at high background rejection rates. For the first upgrade phase in 2018, new Liquid Argon Trigger Digitizer Boards are being designed to receive higher granularity signals, digitize them on detector and send them via fast optical links to a new, off-detector digital processing system. The digital processing system applies digital filtering and identifies significant energy depositions. The refined trigger primitives are then transmitted to the first level trigger system to extract improved trigger signatures. The general concept of the upgraded liquid-argon calorimeter readout together with the various electronics components to be developed for such a complex system is presented. The research activities and architectural studies undertaken by the ATLAS Liquid Argon Calorimeter Group are described, particularly details of the on-going design of mixed-signal front-end electronics, of radiation tolerant optical-links, and of the high-speed off-detector digital processing system.

  3. AGIS: The ATLAS Grid Information System

    NASA Astrophysics Data System (ADS)

    Anisenkov, A.; Di Girolamo, A.; Klimentov, A.; Oleynik, D.; Petrosyan, A.; Atlas Collaboration

    2014-06-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produced petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization and computing resources able to meet ATLAS requirements of petabytes scale data operations. In this paper we describe the ATLAS Grid Information System (AGIS), designed to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  4. Three-dimensional interactive and stereotactic atlas of head muscles and glands correlated with cranial nerves and surface and sectional neuroanatomy.

    PubMed

    Nowinski, Wieslaw L; Chua, Beng Choon; Johnson, Aleksandra; Qian, Guoyu; Poh, Lan Eng; Yi, Su Hnin Wut; Bivi, Aminah; Nowinska, Natalia G

    2013-04-30

    Three-dimensional (3D) relationships between head muscles and cranial nerves innervating them are complicated. Existing sources present these relationships in illustrations, radiologic scans, or autopsy photographs, which are limited for learning and use. Developed electronic atlases are limited in content, quality, functionality, and/or presentation. We create a truly 3D interactive, stereotactic and high quality atlas, which provides spatial relationships among head muscles, glands and cranial nerves, and correlates them to surface and sectional neuroanatomy. The head muscles and glands were created from a 3T scan by contouring them and generating 3D models. They were named and structured according to Terminologia anatomica. The muscles were divided into: extra-ocular, facial, masticatory and other muscles, and glands into mouth and other glands. The muscles, glands (and also head) were placed in a stereotactic coordinate system. This content was integrated with cranial nerves and neuroanatomy created earlier. To explore this complex content, a scalable user interface was designed with 12 modules including central nervous system (cerebrum, cerebellum, brainstem, spinal cord), cranial nerves, muscles, glands, arterial system, venous system, tracts, deep gray nuclei, ventricles, white matter, visual system, head. Anatomy exploration operations include compositing/decompositing, individual/group selection, 3D view-index mapping, 3D labeling, highlighting, distance measuring, 3D brain cutting, and axial/coronal/sagittal triplanar display. To our best knowledge, this is the first truly 3D, stereotactic, interactive, fairly complete atlas of head muscles, and the first attempt to create a 3D stereotactic atlas of glands. Its use ranges from education of students and patients to research to potential clinical applications. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  5. The SysteMHC Atlas project.

    PubMed

    Shao, Wenguang; Pedrioli, Patrick G A; Wolski, Witold; Scurtescu, Cristian; Schmid, Emanuel; Vizcaíno, Juan A; Courcelles, Mathieu; Schuster, Heiko; Kowalewski, Daniel; Marino, Fabio; Arlehamn, Cecilia S L; Vaughan, Kerrie; Peters, Bjoern; Sette, Alessandro; Ottenhoff, Tom H M; Meijgaarden, Krista E; Nieuwenhuizen, Natalie; Kaufmann, Stefan H E; Schlapbach, Ralph; Castle, John C; Nesvizhskii, Alexey I; Nielsen, Morten; Deutsch, Eric W; Campbell, David S; Moritz, Robert L; Zubarev, Roman A; Ytterberg, Anders Jimmy; Purcell, Anthony W; Marcilla, Miguel; Paradela, Alberto; Wang, Qi; Costello, Catherine E; Ternette, Nicola; van Veelen, Peter A; van Els, Cécile A C M; Heck, Albert J R; de Souza, Gustavo A; Sollid, Ludvig M; Admon, Arie; Stevanovic, Stefan; Rammensee, Hans-Georg; Thibault, Pierre; Perreault, Claude; Bassani-Sternberg, Michal; Aebersold, Ruedi; Caron, Etienne

    2018-01-04

    Mass spectrometry (MS)-based immunopeptidomics investigates the repertoire of peptides presented at the cell surface by major histocompatibility complex (MHC) molecules. The broad clinical relevance of MHC-associated peptides, e.g. in precision medicine, provides a strong rationale for the large-scale generation of immunopeptidomic datasets and recent developments in MS-based peptide analysis technologies now support the generation of the required data. Importantly, the availability of diverse immunopeptidomic datasets has resulted in an increasing need to standardize, store and exchange this type of data to enable better collaborations among researchers, to advance the field more efficiently and to establish quality measures required for the meaningful comparison of datasets. Here we present the SysteMHC Atlas (https://systemhcatlas.org), a public database that aims at collecting, organizing, sharing, visualizing and exploring immunopeptidomic data generated by MS. The Atlas includes raw mass spectrometer output files collected from several laboratories around the globe, a catalog of context-specific datasets of MHC class I and class II peptides, standardized MHC allele-specific peptide spectral libraries consisting of consensus spectra calculated from repeat measurements of the same peptide sequence, and links to other proteomics and immunology databases. The SysteMHC Atlas project was created and will be further expanded using a uniform and open computational pipeline that controls the quality of peptide identifications and peptide annotations. Thus, the SysteMHC Atlas disseminates quality controlled immunopeptidomic information to the public domain and serves as a community resource toward the generation of a high-quality comprehensive map of the human immunopeptidome and the support of consistent measurement of immunopeptidomic sample cohorts. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  6. The Las Vegas Sustainability Atlas: Modeling Place-based Interactions and Implications in the Las Vegas Valley Bioregion

    NASA Astrophysics Data System (ADS)

    Ego, H.; McCown, K.; Saghafi, N.; Gross, E.; Hunter, W.; Zawarus, P.; Gann, A.; Piechota, T. C.

    2014-12-01

    Las Vegas, Nevada, with 2 million residents and 40 million annual visitors, is one of the driest metropolitan environments of its size in the world. The metro imports nearly all of its resources, including energy, water and food. Rapid population increases, drought, and temperature increases due to climate change create challenges for planning resilient systems in the Las Vegas Valley. Because of its growth rate, aridity, Las Vegas, Nevada is a significant and relevant region for the study of the water, energy, food and climate nexus. Cities in the United States and the world are seeing increasing trends in urbanization and water scarcity. How does the water-energy-climate-food nexus affect each metropolitan area? How can this complex information be used for resiliency planning? How can it be related to the public, so they can understand the issues in a way that makes them meaningful participants in the planning process? The topic of our presentation is a 'resiliency atlas.' The atlas is a place-based model tested in Las Vegas to explore bioregional distinctiveness of the water-energy-climate-food nexus, including regional transportation systems. The atlas integrates the systems within a utilitarian organization of information. Systems in this place-based model demonstrate how infrastructure services are efficiently provided for the Las Vegas Valley population. This resiliency atlas can clarify how the nexus applies to place; and how it can be used to spur geographically germane adaption strategies. In the Las Vegas Valley, climate change (drought and high sustained temperatures) and population affect water, energy, and food systems. This clarity of a place based model can help educate the public about the resilience of their place, and facilitate and organize the planning process in the face of uncertainty.

  7. Superposition de la tectonique éburnéenne et panafricaine dans les granitoïdes de la bordure nord du craton ouest africain, boutonniére de Zenaga, Anti-Atlas central, Maroc(Pan-african overprint on Eburnian granitoids at the northern boundary of the West African Craton, Zenaga Inlier, central Anti-Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Ennih, N.; Laduron, D.; Greiling, R. O.; Errami, E.; de Wall, H.; Boutaleb, M.

    2001-05-01

    The Zenaga Inlier shows a comprehensive record of the Eburnian and Pan-African Orogenies. The Eburnian is characterised by high-temperature regional metamorphism and complex magmatism. The early (Azguemerzi) granodiorite has an isotopic mantle signature and was emplaced diapirically during the Eburnian Orogeny causing local thermal metamorphism. The foliation observed in this granitoid is a result of the interference between its primary syn-emplacement foliation and the regional foliation under amphibolite-facies conditions. The northern part of Zenaga has been intruded by the leucocratic granites of Tazenakht. These granites are cut by mylonites and phyllonites, corresponding to the Pan-African shear zones and accompanied with sub-greenschist-facies metamorphism during the Pan-African Orogeny. The deformation was the result of a regional sinistral transpressive event. This study in the northern part of the West African Craton shows the superposition of the Pan-African on the Eburnian Orogeny and the presence of a major fault in the Anti-Atlas.

  8. Development of a computerized atlas of neonatal surgery

    NASA Astrophysics Data System (ADS)

    Gill, Brijesh S.; Hardin, William D., Jr.

    1995-05-01

    Digital imaging is an evolving technology with significant potential for enhancing medical education and practice. Current teaching methodologies still rely on the time-honored traditions of group lectures, small group discussions, and clinical preceptorships. Educational content and value are variable. Utilization of electronic media is in its infancy but offers significant potential for enhancing if not replacing current teaching methodologies. This report details our experience with the creation of an interactive atlas on neonatal surgical conditions. The photographic atlas has been one of the classic tools of practice, reference, and especially of education in surgery. The major limitations on current atlases all stem from the fact that they are produced in book form. The limiting factors in the inclusion of large numbers of images in these volumes include the desire to limit the physical size of the book and the costs associated with high quality color reproduction of print images. The structure of the atlases usually makes them reference tools, rather than teaching tools. We have digitized a large number of clinical images dealing with the diagnosis and surgical management of all of the most common neonatal surgical conditions. The flexibility of the computer presentation environment allows the images to be organized in a number of different ways. In addition to a standard captioned atlas, the user may choose to review case histories of several of the more common conditions in neonates, complete with presenting conditions, imaging studies, surgery and pathology. Use of the computer offers the ability to choose multiple views of the images, including comparison views and transparent overlays that point out important anatomical and histopathological structures, and the ability to perform user self-tests. This atlas thus takes advantage of several aspects of data management unique to computerized digital imaging, particularly the ability to combine all aspects of medical imaging related to a single case for easy retrieval. This facet unique to digital imaging makes it the obvious choice for new methods of teaching such complex subjects as the clinical management of neonatal surgical conditions. We anticipate that many more subjects in the surgical, pathologic, and radiologic realms will eventually be presented in a similar manner.

  9. GOES-S Countdown to T-Zero, Episode 4: Ready to Roll

    NASA Image and Video Library

    2018-02-28

    NOAA's GOES-S is encapsulated in its payload fairing inside Astrotech Space Operations in Titusville, Florida, and transported to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station. It was hoisted up and secured to the United Launch Alliance Atlas V rocket. GOES-S, the next in a series of advanced weather satellites, launched aboard the Atlas V on March 1, 2018.

  10. Bilateral arcuate foramen associated with partial defect of the posterior arch of the atlas in a medieval skeleton: case report and review of the literature. Looking backward to go forward.

    PubMed

    Travan, Luciana; Saccheri, Paola; Sabbadini, Gastone; Crivellato, Enrico

    2011-08-01

    We observed a complex atlas (C1) dysmorphism in a human medieval skeleton dug up from the sixth to the seventh century necropolis located in the north-eastern Italy. We analyzed such a dysmorphism in the light of pertinent literature and discussed the functional and clinical implications related to this type of C1 structural malformation. Macroscopical and CT-SCAN examinations of the atlas were carried out. Bone findings consisted of partial aplasia of the posterior arch of the C1 accompanied by a bilateral arcuate foramen. In addition, the spinous processes of C7 and T1 were found to be bifid. Although such abnormalities are supposed to be clinically inconspicuous, yet they may become challenging or even dangerous in the context of trauma. They may even complicate specific diagnostic or surgical procedures. In addition, they may cause a great number of symptoms, ranging from headache and neck pain to loss of postural muscle tone and consciousness, due to the close and complex relationship of bone structures with nerves, blood vessels, muscles, and ligaments. As a result, radiologists, clinicians, surgeons, and chiropractors should consider in their clinical reasoning the possibility that atlas dysmorphisms may occur.

  11. Incorporating soil variability in continental soil water modelling: a trade-off between data availability and model complexity

    NASA Astrophysics Data System (ADS)

    Peeters, L.; Crosbie, R. S.; Doble, R.; van Dijk, A. I. J. M.

    2012-04-01

    Developing a continental land surface model implies finding a balance between the complexity in representing the system processes and the availability of reliable data to drive, parameterise and calibrate the model. While a high level of process understanding at plot or catchment scales may warrant a complex model, such data is not available at the continental scale. This data sparsity is especially an issue for the Australian Water Resources Assessment system, AWRA-L, a land-surface model designed to estimate the components of the water balance for the Australian continent. This study focuses on the conceptualization and parametrization of the soil drainage process in AWRA-L. Traditionally soil drainage is simulated with Richards' equation, which is highly non-linear. As general analytic solutions are not available, this equation is usually solved numerically. In AWRA-L however, we introduce a simpler function based on simulation experiments that solve Richards' equation. In the simplified function soil drainage rate, the ratio of drainage (D) over storage (S), decreases exponentially with relative water content. This function is controlled by three parameters, the soil water storage at field capacity (SFC), the drainage fraction at field capacity (KFC) and a drainage function exponent (β). [ ] D- -S- S = KF C exp - β (1 - SFC ) To obtain spatially variable estimates of these three parameters, the Atlas of Australian Soils is used, which lists soil hydraulic properties for each soil profile type. For each soil profile type in the Atlas, 10 days of draining an initially fully saturated, freely draining soil is simulated using HYDRUS-1D. With field capacity defined as the volume of water in the soil after 1 day, the remaining parameters can be obtained by fitting the AWRA-L soil drainage function to the HYDRUS-1D results. This model conceptualisation fully exploits the data available in the Atlas of Australian Soils, without the need to solve the non-linear Richards' equation for each time-step. The spatial distribution of long term recharge and baseflow obtained with a 30 year simulation of historic data using this parameterisation, corresponds well with the spatial patterns of groundwater recharge inferred from field measurements.

  12. Atlas of Vega: 3850-6860 Å

    NASA Astrophysics Data System (ADS)

    Kim, Hyun-Sook; Han, Inwoo; Valyavin, G.; Lee, Byeong-Cheol; Shimansky, V.; Galazutdinov, G. A.

    2009-10-01

    We present a high resolving power (λ/Δλ = 90,000) and high signal-to-noise ratio (˜700) spectral atlas of Vega covering the 3850-6860 Å wavelength range. The atlas is a result of averaging of spectra recorded with the aid of the echelle spectrograph BOES fed by the 1.8 m telescope at Bohyunsan Observatory (Korea). The atlas is provided only in machine-readable form (electronic data file) and will be available in the SIMBAD database upon publication. Based on data collected with the 1.8 m telescope operated at BOAO Observatory, Korea.

  13. About the group - ATLAS group

    Science.gov Websites

    ATLAS group Studies of particle collisions at highest energy frontiers Home • About the group About the group Welcom to the home page of the ATLAS group of High-Energy Physics division of the Argonne National Laboratory ATLAS is one of the two general purpose detectors for the Large Hadron

  14. Atlas selection for hippocampus segmentation: Relevance evaluation of three meta-information parameters.

    PubMed

    Dill, Vanderson; Klein, Pedro Costa; Franco, Alexandre Rosa; Pinho, Márcio Sarroglia

    2018-04-01

    Current state-of-the-art methods for whole and subfield hippocampus segmentation use pre-segmented templates, also known as atlases, in the pre-processing stages. Typically, the input image is registered to the template, which provides prior information for the segmentation process. Using a single standard atlas increases the difficulty in dealing with individuals who have a brain anatomy that is morphologically different from the atlas, especially in older brains. To increase the segmentation precision in these cases, without any manual intervention, multiple atlases can be used. However, registration to many templates leads to a high computational cost. Researchers have proposed to use an atlas pre-selection technique based on meta-information followed by the selection of an atlas based on image similarity. Unfortunately, this method also presents a high computational cost due to the image-similarity process. Thus, it is desirable to pre-select a smaller number of atlases as long as this does not impact on the segmentation quality. To pick out an atlas that provides the best registration, we evaluate the use of three meta-information parameters (medical condition, age range, and gender) to choose the atlas. In this work, 24 atlases were defined and each is based on the combination of the three meta-information parameters. These atlases were used to segment 352 vol from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Hippocampus segmentation with each of these atlases was evaluated and compared to reference segmentations of the hippocampus, which are available from ADNI. The use of atlas selection by meta-information led to a significant gain in the Dice similarity coefficient, which reached 0.68 ± 0.11, compared to 0.62 ± 0.12 when using only the standard MNI152 atlas. Statistical analysis showed that the three meta-information parameters provided a significant improvement in the segmentation accuracy. Copyright © 2018 Elsevier Ltd. All rights reserved.

  15. High Resolution Tidal Modelling in the Arctic Ocean: Needs and Upcoming Developments

    NASA Astrophysics Data System (ADS)

    Cancet, M.; Andersen, O.; Stenseng, L.; Lyard, F.; Cotton, D.; Benveniste, J.; Schulz, A.

    2015-12-01

    The Arctic Ocean is a challenging region for tidal modelling, because of its complex and not well-documented bathymetry, together combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at such high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimetres in the Polar Regions. In particular, it has a large impact on the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission). Better knowledge of the tides would improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space are currently working on the development of a regional, high-resolution tidal atlas in the Arctic Ocean. In particular, this atlas will benefit from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites will give the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data will also be used either for assimilation or validation. This paper presents the performances of the available global tidal models in the Arctic Ocean and the on-going development of an improved regional tidal atlas in this region.

  16. High resolution tidal modeling in the Arctic Ocean: needs and upcoming developments

    NASA Astrophysics Data System (ADS)

    Cancet, Mathilde; Baltazar Andersen, Ole; Cotton, David; Lyard, Florent; Benveniste, Jerome

    2015-04-01

    The Arctic Ocean is a challenging region for tidal modeling, because of its complex and not well-documented bathymetry, combined with the intermittent presence of sea ice and the fact that the in situ tidal observations are rather scarce at high latitudes. As a consequence, the accuracy of the global tidal models decreases by several centimeters in the Polar Regions. As a consequence the quality of the satellite altimeter sea surface heights in these regions (ERS1/2, Envisat, CryoSat-2, SARAL/AltiKa and the future Sentinel-3 mission) are impacted. Better knowledge of the tides would improve the quality of the high latitudes altimeter sea surface heights and of all derived products, such as the altimetry-derived geostrophic currents, the mean sea surface and the mean dynamic topography. In addition, accurate tidal models are highly strategic information for ever-growing maritime and industrial activities in this region. NOVELTIS and DTU Space are currently working on the development of a regional, high-resolution tidal atlas in the Arctic Ocean. In particular, this atlas will benefit from the assimilation of the most complete satellite altimetry dataset ever used in this region, including Envisat and SARAL/AltiKa data up to 82°N and the CryoSat-2 reprocessed data between 82°N and 88°N. The combination of all these satellites will give the best possible coverage of altimetry-derived tidal constituents. The available tide gauge data will also be used either for assimilation or validation. This paper presents the deficiencies and needs of the global tidal models in the Arctic Ocean as identified using the CryoSat altimetry data, and the on-going work to develop an improved regional tidal atlas in this region.

  17. Readout Electronics for the ATLAS LAr Calorimeter at HL-LHC

    NASA Astrophysics Data System (ADS)

    Chen, Hucheng; ATLAS Liquid Argon Calorimeter Group

    The ATLAS Liquid Argon (LAr) calorimeters are high precision, high sensitivity and high granularity detectors designed to provide precision measurements of electrons, photons, jets and missing transverse energy. ATLAS and its LAr calorimeters have been operating and collecting proton-proton collisions at LHC since 2009. The current front-end electronics of the LAr calorimeters need to be upgraded to sustain the higher radiation levels and data rates expected at the upgraded high luminosity LHC machine (HL-LHC), which will have 5 times more luminosity than the LHC in its ultimate configuration. The complexity of the present electronics and the obsolescence of some of components of which it is made, will not allow a partial replacement of the system. A completely new readout architecture scheme is under study and many components are being developed in various R&D programs of the LAr Calorimeter Group.The new front-end readout electronics will send data continuously at each bunch crossing through high speed radiation resistant optical links. The data will be processed real-time with the possibility of implementing trigger algorithms for clusters and electron/photon identification at a higher granularity than that which is currently implemented. The new architecture will eliminate the intrinsic limitation presently existing on Level-1 trigger acceptance. This article is an overview of the R&D activities which covers architectural design aspects of the new electronics as well as some detailed progress on the development of several ASICs needed, and preliminary studies with FPGAs to cover the backend functions including part of the Level-1 trigger requirements. A recently proposed staged upgrade with hybrid Tower Builder Board (TBB) is also described.

  18. Forecasting of Storm Surge Floods Using ADCIRC and Optimized DEMs

    NASA Technical Reports Server (NTRS)

    Valenti, Elizabeth; Fitzpatrick, Patrick

    2005-01-01

    Increasing the accuracy of storm surge flood forecasts is essential for improving preparedness for hurricanes and other severe storms and, in particular, for optimizing evacuation scenarios. An interactive database, developed by WorldWinds, Inc., contains atlases of storm surge flood levels for the Louisiana/Mississippi gulf coast region. These atlases were developed to improve forecasting of flooding along the coastline and estuaries and in adjacent inland areas. Storm surge heights depend on a complex interaction of several factors, including: storm size, central minimum pressure, forward speed of motion, bottom topography near the point of landfall, astronomical tides, and most importantly, maximum wind speed. The information in the atlases was generated in over 100 computational simulations, partly by use of a parallel-processing version of the ADvanced CIRCulation (ADCIRC) model. ADCIRC is a nonlinear computational model of hydrodynamics, developed by the U.S. Army Corps of Engineers and the US Navy, as a family of two- and three-dimensional finite element based codes. It affords a capability for simulating tidal circulation and storm surge propagation over very large computational domains, while simultaneously providing high-resolution output in areas of complex shoreline and bathymetry. The ADCIRC finite-element grid for this project covered the Gulf of Mexico and contiguous basins, extending into the deep Atlantic Ocean with progressively higher resolution approaching the study area. The advantage of using ADCIRC over other storm surge models, such as SLOSH, is that input conditions can include all or part of wind stress, tides, wave stress, and river discharge, which serve to make the model output more accurate.

  19. KSC-2012-3012

    NASA Image and Video Library

    2012-05-24

    CAPE CANAVERAL, Fla. – The barge transporting the high-fidelity space shuttle model begins the journey from NASA’s Kennedy Space Center in Florida to Johnson Space Center's visitor center in Houston. Seen in the background are Cape Canaveral Air Force Station’s Space Launch Complex-41, left, and the Atlas V Spaceflight Operations Center, right. The model was built in Apopka, Fla., by Guard-Lee and installed at Kennedy Space Center Visitor Complex in 1993.The model has been parked at the turn basin the past five months to allow the Kennedy Space Center Visitor Complex to begin building a new facility to display space shuttle Atlantis in 2013. For more information about Johnson’s visitor center, called Space Center Houston, visit http://www.spacecenter.org. Photo credit: NASA/Jim Grossmann

  20. KSC-2013-1388

    NASA Image and Video Library

    2013-02-10

    VANDENBERG AFB, Calif. -- At Vandenberg Air Force Base, Calif., NASA's Landsat Data Continuity Mission, or LDCM, satellite is mounted atop a United Launch Alliance Atlas V rocket in the gantry at Space Launch Complex 3E. The Landsat Data Continuity Mission LDCM is the future of Landsat satellites. It will continue to obtain valuable data and imagery to be used in agriculture, education, business, science, and government. The Landsat Program provides repetitive acquisition of high resolution multispectral data of the Earth's surface on a global basis. The data from the Landsat spacecraft constitute the longest record of the Earth's continental surfaces as seen from space. It is a record unmatched in quality, detail, coverage, and value. Liftoff is planned for Feb. 11, 2013 aboard a United Launch Alliance Atlas V rocket. For more information, visit: http://www.nasa.gov/mission_pages/landsat/main/index.html Photo credit: NASA/Kim Shiflett

  1. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.

    PubMed

    Li, Gang; Wang, Li; Shi, Feng; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2015-10-01

    In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization of cortical surfaces across infant individuals, in comparison to the infant surface atlases constructed without longitudinal consistency and also the FreeSurfer adult surface atlas. Moreover, based on our 4D infant surface atlases, for the first time, we reveal the spatially-detailed, region-specific correlation patterns of the dynamic cortical developmental trajectories between different cortical regions during early brain development. Copyright © 2015 Elsevier B.V. All rights reserved.

  2. TDRS-M Atlas V Booster and Centaur Stages Arrival, Offload, and Transport (Booster) to ASOC

    NASA Image and Video Library

    2017-06-26

    The United Launch Alliance (ULA) Mariner arrives at Port Canaveral in Florida carrying an Atlas V rocket booster and centaur upper stage bounded for Cape Canaveral Air Force Station. The centaur upper stage is transported from the company's Mariner ship to the Delta Operations Center. The booster stage is transported to the Atlas Spaceflight Operations Center. The rocket is scheduled to launch the Tracking and Data Relay Satellite, TDRS-M. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 3, 2017 at 9:02 a.m. EDT.

  3. National Atlas of the United States Maps

    USGS Publications Warehouse

    ,

    2001-01-01

    The "National Atlas of the United States of America®", published by the U.S. Geological Survey (USGS) in 1970, is out of print, but many of its maps can be purchased separately. Maps that span facing pages in the atlas are printed on one sheet. Maps dated after 1970 and before 1997 are either revisions of original atlas maps or new maps published in the original atlas format. The USGS and its partners in government and industry began work on a new "National Atlas" in 1997. Though most new atlas products are designed for the World Wide Web, we are continuing our tradition of printing high-quality maps of America. In 1998, the first completely redesigned maps of the "National Atlas of the United States®" were published.

  4. A high-resolution probabilistic in vivo atlas of human subcortical brain nuclei

    PubMed Central

    Pauli, Wolfgang M.; Nili, Amanda N.; Tyszka, J. Michael

    2018-01-01

    Recent advances in magnetic resonance imaging methods, including data acquisition, pre-processing and analysis, have benefited research on the contributions of subcortical brain nuclei to human cognition and behavior. At the same time, these developments have led to an increasing need for a high-resolution probabilistic in vivo anatomical atlas of subcortical nuclei. In order to address this need, we constructed high spatial resolution, three-dimensional templates, using high-accuracy diffeomorphic registration of T1- and T2- weighted structural images from 168 typical adults between 22 and 35 years old. In these templates, many tissue boundaries are clearly visible, which would otherwise be impossible to delineate in data from individual studies. The resulting delineations of subcortical nuclei complement current histology-based atlases. We further created a companion library of software tools for atlas development, to offer an open and evolving resource for the creation of a crowd-sourced in vivo probabilistic anatomical atlas of the human brain. PMID:29664465

  5. High-resolution Ceres Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, Th.; Kersten, E.; Matz, K.-D.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2017-06-01

    The Dawn spacecraft Framing Camera (FC) acquired over 31,300 clear filter images of Ceres with a resolution of about 35 m/pxl during the eleven cycles in the Low Altitude Mapping Orbit (LAMO) phase between December 16 2015 and August 8 2016. We ortho-rectified the images from the first four cycles and produced a global, high-resolution, uncontrolled photomosaic of Ceres. This global mosaic is the basis for a high-resolution Ceres atlas that consists of 62 tiles mapped at a scale of 1:250,000. The nomenclature used in this atlas was proposed by the Dawn team and was approved by the International Astronomical Union (IAU). The full atlas is available to the public through the Dawn Geographical Information System (GIS) web page [http://dawngis.dlr.de/atlas] and will become available through the NASA Planetary Data System (PDS) (http://pdssbn.astro.umd.edu/).

  6. KSC-2009-2832

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage is being transferred from the hangar at the Atlas Space Operations Facility to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  7. KSC-2009-2831

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage is moved from the hangar at the Atlas Space Operations Facility. It is going to the Vertical Integration Facility near Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  8. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  9. KSC-20170816-MH-GEB01_0002-TDRS_M_Launch_Vehicle_Roll_H265-3161082

    NASA Image and Video Library

    2017-08-16

    A United Launch Alliance Atlas V rocket is rolled to Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The launch vehicle will send NASA's Tracking and Data Relay Satellite, TDRS-M to orbit. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18.

  10. TDRS-M Departure from Astrotech and Transport to VIF Pad 41

    NASA Image and Video Library

    2017-08-09

    Enclosed in its payload fairing, NASA's Tracking and Data Relay Satellite (TDRS-M) is transported from Astrotech Space Operations Facilityin Titusville Florida to the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station. TDRS-M will be stacked atop the United Launch Alliance Atlas V Centaur upper stage. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 18, 2017.

  11. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    NASA Astrophysics Data System (ADS)

    Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.

    2012-06-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for collecting and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This requires strong competence and experience in understanding and discovering problems and root causes, and often the meaningful information is not in the single message or update, but in the aggregated behavior in a certain time-line. The AAL project is meant at reducing the man power needs and at assuring a constant high quality of problem detection by automating most of the monitoring tasks and providing real-time correlation of data-taking and system metrics. This project combines technologies coming from different disciplines, in particular it leverages on an Event Driven Architecture to unify the flow of data from the ATLAS infrastructure, on a Complex Event Processing (CEP) engine for correlation of events and on a message oriented architecture for components integration. The project is composed of 2 main components: a core processing engine, responsible for correlation of events through expert-defined queries and a web based front-end to present real-time information and interact with the system. All components works in a loose-coupled event based architecture, with a message broker to centralize all communication between modules. The result is an intelligent system able to extract and compute relevant information from the flow of operational data to provide real-time feedback to human experts who can promptly react when needed. The paper presents the design and implementation of the AAL project, together with the results of its usage as automated monitoring assistant for the ATLAS data taking infrastructure.

  12. Application and histology-driven refinement of active contour models to functional region and nerve delineation: towards a digital brainstem atlas

    NASA Astrophysics Data System (ADS)

    Patel, Nirmal; Sultana, Sharmin; Rashid, Tanweer; Krusienski, Dean; Audette, Michel A.

    2015-03-01

    This paper presents a methodology for the digital formatting of a printed atlas of the brainstem and the delineation of cranial nerves from this digital atlas. It also describes on-going work on the 3D resampling and refinement of the 2D functional regions and nerve contours. In MRI-based anatomical modeling for neurosurgery planning and simulation, the complexity of the functional anatomy entails a digital atlas approach, rather than less descriptive voxel or surface-based approaches. However, there is an insufficiency of descriptive digital atlases, in particular of the brainstem. Our approach proceeds from a series of numbered, contour-based sketches coinciding with slices of the brainstem featuring both closed and open contours. The closed contours coincide with functionally relevant regions, whereby our objective is to fill in each corresponding label, which is analogous to painting numbered regions in a paint-by-numbers kit. Any open contour typically coincides with a cranial nerve. This 2D phase is needed in order to produce densely labeled regions that can be stacked to produce 3D regions, as well as identifying the embedded paths and outer attachment points of cranial nerves. Cranial nerves are modeled using an explicit contour based technique called 1-Simplex. The relevance of cranial nerves modeling of this project is two-fold: i) this atlas will fill a void left by the brain segmentation communities, as no suitable digital atlas of the brainstem exists, and ii) this atlas is necessary to make explicit the attachment points of major nerves (except I and II) having a cranial origin. Keywords: digital atlas, contour models, surface models

  13. A High-Resolution In Vivo Atlas of the Human Brain's Serotonin System.

    PubMed

    Beliveau, Vincent; Ganz, Melanie; Feng, Ling; Ozenne, Brice; Højgaard, Liselotte; Fisher, Patrick M; Svarer, Claus; Greve, Douglas N; Knudsen, Gitte M

    2017-01-04

    The serotonin (5-hydroxytryptamine, 5-HT) system modulates many important brain functions and is critically involved in many neuropsychiatric disorders. Here, we present a high-resolution, multidimensional, in vivo atlas of four of the human brain's 5-HT receptors (5-HT 1A , 5-HT 1B , 5-HT 2A , and 5-HT 4 ) and the 5-HT transporter (5-HTT). The atlas is created from molecular and structural high-resolution neuroimaging data consisting of positron emission tomography (PET) and magnetic resonance imaging (MRI) scans acquired in a total of 210 healthy individuals. Comparison of the regional PET binding measures with postmortem human brain autoradiography outcomes showed a high correlation for the five 5-HT targets and this enabled us to transform the atlas to represent protein densities (in picomoles per milliliter). We also assessed the regional association between protein concentration and mRNA expression in the human brain by comparing the 5-HT density across the atlas with data from the Allen Human Brain atlas and identified receptor- and transporter-specific associations that show the regional relation between the two measures. Together, these data provide unparalleled insight into the serotonin system of the human brain. We present a high-resolution positron emission tomography (PET)- and magnetic resonance imaging-based human brain atlas of important serotonin receptors and the transporter. The regional PET-derived binding measures correlate strongly with the corresponding autoradiography protein levels. The strong correlation enables the transformation of the PET-derived human brain atlas into a protein density map of the serotonin (5-hydroxytryptamine, 5-HT) system. Next, we compared the regional receptor/transporter protein densities with mRNA levels and uncovered unique associations between protein expression and density at high detail. This new in vivo neuroimaging atlas of the 5-HT system not only provides insight in the human brain's regional protein synthesis, transport, and density, but also represents a valuable source of information for the neuroscience community as a comparative instrument to assess brain disorders. Copyright © 2017 the authors 0270-6474/17/370120-09$15.00/0.

  14. 03pd2213

    NASA Image and Video Library

    2003-07-23

    KENNEDY SPACE CENTER, FLA. – This aerial view shows the Rocket Garden at the KSC Visitor Complex. A hallmark of the Complex, the display features eight authentic rockets from the past and a Mercury-Atlas rocket similar to one that lalunched John Glenn into space in 1962.

  15. KSC-03pd2213

    NASA Image and Video Library

    2003-07-23

    KENNEDY SPACE CENTER, FLA. - This aerial view shows the Rocket Garden at the KSC Visitor Complex. A hallmark of the Complex, the display features eight authentic rockets from the past and a Mercury-Atlas rocket similar to one that launched John Glenn into space in 1962.

  16. Syn- and post-rift anomalous vertical movements in the eastern Central Atlantic passive margin: a transect across the Moroccan passive continental margin.

    NASA Astrophysics Data System (ADS)

    Charton, Remi; Bertotti, Giovanni; Arantegui, Angel; Luber, Tim; Redfern, Jonathan

    2017-04-01

    Traditional models of passive margin evolution suggesting generalised regional subsidence with rates decreasing after the break-up have been questioned in the last decade by a number of detailed studies. The occurrence of episodic km-scale exhumation well within the post-rift stage, possibly associated with significant erosion, have been documented along the Atlantic continental margins. Despite the wide-spread and increasing body of evidence supporting post-rift exhumation, there is still limited understanding of the mechanism or scale of these phenomena. Most of these enigmatic vertical movements have been discovered using low-temperature geochronology and time-temperature modelling along strike of passive margins. As proposed in previous work, anomalous upward movements in the exhuming domain are coeval with higher-than-normal downward movements in the subsiding domain. These observations call for an integrated analysis of the entire source-to-sink system as a pre-requisite for a full understanding of the involved tectonics. We reconstruct the geological evolution of a 50km long transect across the Moroccan passive margin from the Western Anti-Atlas (Ifni area) to the offshore passive margin basin. Extending the presently available low-temperature geochronology database and using a new stratigraphic control of the Mesozoic sediments, we present a reconstruction of vertical movements in the area. Further, we integrate this with the analysis of an offshore seismic line and the pattern of vertical movements in the Anti-Atlas as documented in Gouiza et al. (2016). The results based on sampled rocks indicate exhumation by circa 6km after the Variscan orogeny until the Middle Jurassic. During the Late Jurassic to Early Cretaceous the region was subsequently buried by 1-2km, and later exhumed by 1-2km from late Early/Late Cretaceous onwards. From the Permian to present day, the Ifni region is the link between the generally exhuming Anti Atlas and continually subsiding offshore basins. Along strike, the rifted margin exhibits significant variability in the architecture of the Mesozoic deposits onshore and present day offshore shelf. North of the High Atlas, the ca. 2km thick Mesozoic succession is characterized by continuous sedimentation. South of the High Atlas the thickness increases to 6km in the offshore Tarfaya basin, where the Jurassic succession may be separated by a regional unconformity. Further south, close to the border with Mauritania, the Triassic to Jurassic succession is missing and the Cretaceous attains less than a kilometre of strata. In the Meseta and High Atlas, studies documented a similar kinematic Mesozoic evolution, whereas in the Anti-Atlas Gouiza et al. (2016) and this study document a different evolution. In addition, the kinematic evolution of the Reguibate domain to the south is also different from the other segments, showing post-Variscan exhumation with amplitudes lower than the ones observed in the Anti-Atlas. These observations highlight changes in the pattern of enigmatic movements along the same passive continental margin thereby showing that passive continental margins are more complex than expected only a few years ago. Gouiza, M., Charton, R., Bertotti, G., Andriessen, P. and Storms, J.E.A., 2016. Post-Variscan evolution of the Anti-Atlas belt of Morocco constrained from low-temperature geochronology: International Journal of Earth Sciences.

  17. Cristallisation fractionnée et contamination crustale dans la série magmatique jurassique transitionnelle du Haut Atlas central (Maroc)Fractional crystallisation and crustal contamination in the transitional Jurassic magmatic series of Central High Atlas (Morocco)

    NASA Astrophysics Data System (ADS)

    Zayane, Rachid; Essaifi, Abderrahim; Maury, René C.; Piqué, Alain; Laville, Edgard; Bouabdelli, Mohamed

    The Middle Jurassic plutonism of the Central High Atlas (Morocco) was emplaced in N45° trending anticlinal ridges. It is characterised by various petrographic facies including mafic rocks (troctolites), intermediate rocks (diorites, monzodiorites), and evolved rocks (syenites), together with heterogeneous facies resulting from mixing between acidic and the intermediate magmas. Mineralogical and chemical data show ( i) the transitional character of the Jurassic magmatic series of the Central High Atlas and ( ii) the implication of continental crust as a contaminant during fractional crystallization. To cite this article: R. Zayane et al., C. R. Geoscience 334 (2002) 97-104.

  18. Fast automated segmentation of multiple objects via spatially weighted shape learning

    NASA Astrophysics Data System (ADS)

    Chandra, Shekhar S.; Dowling, Jason A.; Greer, Peter B.; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-01

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice’s similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  19. Fast automated segmentation of multiple objects via spatially weighted shape learning.

    PubMed

    Chandra, Shekhar S; Dowling, Jason A; Greer, Peter B; Martin, Jarad; Wratten, Chris; Pichler, Peter; Fripp, Jurgen; Crozier, Stuart

    2016-11-21

    Active shape models (ASMs) have proved successful in automatic segmentation by using shape and appearance priors in a number of areas such as prostate segmentation, where accurate contouring is important in treatment planning for prostate cancer. The ASM approach however, is heavily reliant on a good initialisation for achieving high segmentation quality. This initialisation often requires algorithms with high computational complexity, such as three dimensional (3D) image registration. In this work, we present a fast, self-initialised ASM approach that simultaneously fits multiple objects hierarchically controlled by spatially weighted shape learning. Prominent objects are targeted initially and spatial weights are progressively adjusted so that the next (more difficult, less visible) object is simultaneously initialised using a series of weighted shape models. The scheme was validated and compared to a multi-atlas approach on 3D magnetic resonance (MR) images of 38 cancer patients and had the same (mean, median, inter-rater) Dice's similarity coefficients of (0.79, 0.81, 0.85), while having no registration error and a computational time of 12-15 min, nearly an order of magnitude faster than the multi-atlas approach.

  20. TDRS-M Spacecraft Lift and Mate

    NASA Image and Video Library

    2017-08-09

    NASA's Tracking and Data Relay Satellite (TDRS-M) is stacked atop the United Launch Alliance Atlas V Centaur upper stage. It will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 18, 2017.

  1. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster is transported to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  2. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    A crane lifts a United Launch Alliance Atlas V booster at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  3. Consensus between Pipelines in Structural Brain Networks

    PubMed Central

    Parker, Christopher S.; Deligianni, Fani; Cardoso, M. Jorge; Daga, Pankaj; Modat, Marc; Dayan, Michael; Clark, Chris A.

    2014-01-01

    Structural brain networks may be reconstructed from diffusion MRI tractography data and have great potential to further our understanding of the topological organisation of brain structure in health and disease. Network reconstruction is complex and involves a series of processesing methods including anatomical parcellation, registration, fiber orientation estimation and whole-brain fiber tractography. Methodological choices at each stage can affect the anatomical accuracy and graph theoretical properties of the reconstructed networks, meaning applying different combinations in a network reconstruction pipeline may produce substantially different networks. Furthermore, the choice of which connections are considered important is unclear. In this study, we assessed the similarity between structural networks obtained using two independent state-of-the-art reconstruction pipelines. We aimed to quantify network similarity and identify the core connections emerging most robustly in both pipelines. Similarity of network connections was compared between pipelines employing different atlases by merging parcels to a common and equivalent node scale. We found a high agreement between the networks across a range of fiber density thresholds. In addition, we identified a robust core of highly connected regions coinciding with a peak in similarity across network density thresholds, and replicated these results with atlases at different node scales. The binary network properties of these core connections were similar between pipelines but showed some differences in atlases across node scales. This study demonstrates the utility of applying multiple structural network reconstrution pipelines to diffusion data in order to identify the most important connections for further study. PMID:25356977

  4. 7T MRI subthalamic nucleus atlas for use with 3T MRI.

    PubMed

    Milchenko, Mikhail; Norris, Scott A; Poston, Kathleen; Campbell, Meghan C; Ushe, Mwiza; Perlmutter, Joel S; Snyder, Abraham Z

    2018-01-01

    Deep brain stimulation (DBS) of the subthalamic nucleus (STN) reduces motor symptoms in most patients with Parkinson disease (PD), yet may produce untoward effects. Investigation of DBS effects requires accurate localization of the STN, which can be difficult to identify on magnetic resonance images collected with clinically available 3T scanners. The goal of this study is to develop a high-quality STN atlas that can be applied to standard 3T images. We created a high-definition STN atlas derived from seven older participants imaged at 7T. This atlas was nonlinearly registered to a standard template representing 56 patients with PD imaged at 3T. This process required development of methodology for nonlinear multimodal image registration. We demonstrate mm-scale STN localization accuracy by comparison of our 3T atlas with a publicly available 7T atlas. We also demonstrate less agreement with an earlier histological atlas. STN localization error in the 56 patients imaged at 3T was less than 1 mm on average. Our methodology enables accurate STN localization in individuals imaged at 3T. The STN atlas and underlying 3T average template in MNI space are freely available to the research community. The image registration methodology developed in the course of this work may be generally applicable to other datasets.

  5. New Release of the High-Resolution Mimas Atlas derived from Cassini-ISS Images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.-D.; Porco, C. C.

    2017-09-01

    The Cassini Imaging Science Subsystem (ISS) acquired 128 high-resolution images (< 1 km/pixel) of Mimas during its tour through the Saturnian system since 2004. We combined new images from orbit 249 (Nov. 2016) and orbit 259 (Jan. 2017) with the high-resolution global semi-controlled mosaic of Mimas from 2012. This global mosaic is the baseline for the new high-resolution Mimas atlas that still consists of three tiles mapped at a scale of 1:1,000,000 [1]. The nomenclature used in this atlas was proposed by the Cassini imaging team and was approved by the International Astronomical Union (IAU). The entire atlas will become available to the public through the Imaging Team's website [http://ciclops.org/maps] and the Planetary Data System (PDS) [https://pds- imaging.jpl.nasa.gov/volumes/carto.html].

  6. Preparation for Bagging OA-7 CYGNUS

    NASA Image and Video Library

    2017-02-21

    In the Space Station Processing Facility high bay at NASA's Kennedy Space Center in Florida, technicians are preparing Orbital ATK's CYGNUS pressurized cargo module for bagging. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.

  7. KSC-2009-2836

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– At the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being raised to a vertical position. The Atlas will be lifted into the VIF. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  8. KSC-2009-2835

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– At the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41, cranes are attached to the Atlas V first stage to raise it to vertical. The Atlas will be lifted into the VIF. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  9. KSC-2009-2837

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– At the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being raised to a vertical position. The Atlas will be lifted into the VIF. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  10. KSC-2012-3883

    NASA Image and Video Library

    2012-07-13

    CAPE CANAVERAL, Fla. - At Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the first stage of the United Launch Alliance Atlas V rocket has been moved into the Vertical Integration Facility. The Atlas V is being prepared for the Radiation Belt Storm Probes, or RBSP, mission. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Cory Huston

  11. KSC-2012-3884

    NASA Image and Video Library

    2012-07-13

    CAPE CANAVERAL, Fla. - At Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the first stage of the United Launch Alliance Atlas V rocket has been moved into the Vertical Integration Facility. The Atlas V is being prepared for the Radiation Belt Storm Probes, or RBSP, mission. NASA’s RBSP mission will help us understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 23. For more information, visit http://www.nasa.gov/rbsp. Photo credit: NASA/Cory Huston

  12. Neonatal Atlas Construction Using Sparse Representation

    PubMed Central

    Shi, Feng; Wang, Li; Wu, Guorong; Li, Gang; Gilmore, John H.; Lin, Weili; Shen, Dinggang

    2014-01-01

    Atlas construction generally includes first an image registration step to normalize all images into a common space and then an atlas building step to fuse the information from all the aligned images. Although numerous atlas construction studies have been performed to improve the accuracy of the image registration step, unweighted or simply weighted average is often used in the atlas building step. In this article, we propose a novel patch-based sparse representation method for atlas construction after all images have been registered into the common space. By taking advantage of local sparse representation, more anatomical details can be recovered in the built atlas. To make the anatomical structures spatially smooth in the atlas, the anatomical feature constraints on group structure of representations and also the overlapping of neighboring patches are imposed to ensure the anatomical consistency between neighboring patches. The proposed method has been applied to 73 neonatal MR images with poor spatial resolution and low tissue contrast, for constructing a neonatal brain atlas with sharp anatomical details. Experimental results demonstrate that the proposed method can significantly enhance the quality of the constructed atlas by discovering more anatomical details especially in the highly convoluted cortical regions. The resulting atlas demonstrates superior performance of our atlas when applied to spatially normalizing three different neonatal datasets, compared with other start-of-the-art neonatal brain atlases. PMID:24638883

  13. InSight Atlas V LVOS

    NASA Image and Video Library

    2015-12-15

    A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  14. GOES-R Atlas V Solid Rocket Motor (SRM) Lift and Mate

    NASA Image and Video Library

    2016-10-27

    A United Launch Alliance (ULA) technician inspects the solid rocket motor for the ULA Atlas V rocket on its transporter near the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The solid rocket motor will be lifted and mated to the rocket in preparation for the launch of NOAA's Geostationary Operational Environmental Satellite (GOES-R) this month. GOES-R is the first satellite in a series of next-generation NOAA GOES Satellites.

  15. Earth Science

    NASA Image and Video Library

    1995-12-02

    The Solar Heliospheric Observatory (SOHO) is launched atop an ATLAS-IIAS expendable launch vehicle. Liftoff from launch complex 36B at Cape Canaveral Air Station marked the 10th Atlas launch from the Eastern range for 1995. SOHO is a cooperative effort involving NASA and the European Space Agency (ESA) within the framework of the International Solar-Terrestrial Physics Program. During its 2-year mission, the SOHO spacecraft gathered data on the internal structure of the Sun, its extensive outer atmosphere and the origin of the solar wind.

  16. KSC-2009-3300

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, workers check out the Lunar Reconnaissance Orbiter, or LRO, after its lift into the mobile service tower. The LRO/LCROSS will be mated to the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis

  17. KSC-2009-3299

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are moved into the mobile service tower. The LRO will be mated to the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis

  18. KSC-2009-3303

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are mated with the Atlas V rocket inside the mobile service tower for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2009-3301

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, workers prepare the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, for mating inside the mobile service tower with the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2009-3302

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are mated with the Atlas V rocket inside the mobile service tower for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis

  1. InSight Atlas V Centaur Lift and Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California, the United Launch Alliance Centaur upper stage is lifted and mated atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  2. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  3. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    A crane positions a United Launch Alliance Atlas V booster on the launch pad at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  4. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster departs building 7525 at Vandenberg Air Force Base in California on its way to Space Launch Complex 3. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  5. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is transported to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  6. InSight Atlas V LVOS

    NASA Image and Video Library

    2018-03-03

    Technicians, engineers and U.S. Air Force personnel prepare to support erection of a United Launch Alliance Atlas V booster at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  7. InSight Atlas V Centaur Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers mate a United Launch Alliance Centaur upper stage atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  8. InSight Atlas V Centaur Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California a crane lifts a United Launch Alliance Centaur upper stage for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  9. InSight Atlas V Booster Prep for Transport

    NASA Image and Video Library

    2018-03-01

    A United Launch Alliance Atlas V booster is prepared for transport to Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  10. InSight Atlas V Booster Transport

    NASA Image and Video Library

    2018-03-02

    A United Launch Alliance Atlas V booster arrives at Space Launch Complex 3 at Vandenberg Air Force Base in California. The rocket will be positioned on the pad to launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  11. Environmental Conditions and Threatened and Endangered Species Populations near the Titain, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1995-1998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for greater than 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally- listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitant resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycteria americana) and several state-listed species of special concern including the Snowy Egret (Egretta thula thula), Reddish Egret (Egretta rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egretta tricolor ruficolis), and Little Blue Heron (Egretta caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active launch complexes, remains important habitat for a variety of native plants and animals including threatened and endangered species. Direct negative effects of current launch systems appear limited. Additional monitoring of these populations and habitats is required to determine if subtle, long-term changes are occurring, to determine if new launch systems and facilities cause other effects, and to determine the effects of habitat restoration and management.

  12. Learning with the ATLAS Experiment at CERN

    ERIC Educational Resources Information Center

    Barnett, R. M.; Johansson, K. E.; Kourkoumelis, C.; Long, L.; Pequenao, J.; Reimers, C.; Watkins, P.

    2012-01-01

    With the start of the LHC, the new particle collider at CERN, the ATLAS experiment is also providing high-energy particle collisions for educational purposes. Several education projects--education scenarios--have been developed and tested on students and teachers in several European countries within the Learning with ATLAS@CERN project. These…

  13. The Offshore New European Wind Atlas

    NASA Astrophysics Data System (ADS)

    Karagali, I.; Hahmann, A. N.; Badger, M.; Hasager, C.; Mann, J.

    2017-12-01

    The New European Wind Atlas (NEWA) is a joint effort of research agencies from eight European countries, co-funded under the ERANET Plus Program. The project is structured around two areas of work: development of dynamical downscaling methodologies and measurement campaigns to validate these methodologies, leading to the creation and publication of a European wind atlas in electronic form. This atlas will contain an offshore component extending 100 km from the European coasts. To achieve this, mesoscale models along with various observational datasets are utilised. Scanning lidars located at the coastline were used to compare the coastal wind gradient reproduced by the meso-scale model. Currently, an experimental campaign is occurring in the Baltic Sea, with a lidar located in a commercial ship sailing from Germany to Lithuania, thus covering the entire span of the south Baltic basin. In addition, satellite wind retrievals from scatterometers and Synthetic Aperture Radar (SAR) instruments were used to generate mean wind field maps and validate offshore modelled wind fields and identify the optimal model set-up parameters.The aim of this study is to compare the initial outputs from the offshore wind atlas produced by the Weather & Research Forecasting (WRF) model, still in pre-operational phase, and the METOP-A/B Advanced Scatterometer (ASCAT) wind fields, reprocessed to stress equivalent winds at 10m. Different experiments were set-up to evaluate the model sensitivity for the various domains covered by the NEWA offshore atlas. ASCAT winds were utilised to assess the performance of the WRF offshore atlases. In addition, ASCAT winds were used to create an offshore atlas covering the years 2007 to 2016, capturing the signature of various spatial wind features, such as channelling and lee effects from complex coastal topographical elements.

  14. Polyphased Inversions of an Intracontinental Rift: Case Study of the Marrakech High Atlas, Morocco

    NASA Astrophysics Data System (ADS)

    Leprêtre, R.; Missenard, Y.; Barbarand, J.; Gautheron, C.; Jouvie, I.; Saddiqi, O.

    2018-03-01

    The High and Middle Atlas intraplate belts in Morocco correspond to Mesozoic rifted basins inverted during the Cenozoic during Africa/Eurasia convergence. The Marrakech High Atlas lies at a key location between Atlantic and Tethyan influences during the Mesozoic rifting phase but represents today high reliefs. Age and style of deformation and the mechanisms underlying the Cenozoic inversion are nevertheless still debated. To solve this issue, we produced new low-temperature thermochronology data (fission track and [U-Th]/He on apatite). Two cross sections were investigated in the western and eastern Marrakech High Atlas. Results of inverse modeling allow recognizing five cooling events attributed to erosion since Early Jurassic. Apart from a first erosional event from Middle/Late Jurassic to Early Cretaceous, four stages can be related to the convergence processes between Africa and Europe since the Late Cretaceous. Our data and thermal modeling results suggest that the inversion processes are guided at first order by the fault network inherited from the rifting episodes. The sedimentary cover and the Neogene lithospheric thinning produced a significant thermal weakening that facilitated the inversion of this ancient rift. Our data show that the Marrakech High Atlas has been behaving as a giant pop-up since the beginning of Cenozoic inversion stages.

  15. Volume measurements of individual muscles in human quadriceps femoris using atlas-based segmentation approaches.

    PubMed

    Le Troter, Arnaud; Fouré, Alexandre; Guye, Maxime; Confort-Gouny, Sylviane; Mattei, Jean-Pierre; Gondin, Julien; Salort-Campana, Emmanuelle; Bendahan, David

    2016-04-01

    Atlas-based segmentation is a powerful method for automatic structural segmentation of several sub-structures in many organs. However, such an approach has been very scarcely used in the context of muscle segmentation, and so far no study has assessed such a method for the automatic delineation of individual muscles of the quadriceps femoris (QF). In the present study, we have evaluated a fully automated multi-atlas method and a semi-automated single-atlas method for the segmentation and volume quantification of the four muscles of the QF and for the QF as a whole. The study was conducted in 32 young healthy males, using high-resolution magnetic resonance images (MRI) of the thigh. The multi-atlas-based segmentation method was conducted in 25 subjects. Different non-linear registration approaches based on free-form deformable (FFD) and symmetric diffeomorphic normalization algorithms (SyN) were assessed. Optimal parameters of two fusion methods, i.e., STAPLE and STEPS, were determined on the basis of the highest Dice similarity index (DSI) considering manual segmentation (MSeg) as the ground truth. Validation and reproducibility of this pipeline were determined using another MRI dataset recorded in seven healthy male subjects on the basis of additional metrics such as the muscle volume similarity values, intraclass coefficient, and coefficient of variation. Both non-linear registration methods (FFD and SyN) were also evaluated as part of a single-atlas strategy in order to assess longitudinal muscle volume measurements. The multi- and the single-atlas approaches were compared for the segmentation and the volume quantification of the four muscles of the QF and for the QF as a whole. Considering each muscle of the QF, the DSI of the multi-atlas-based approach was high 0.87 ± 0.11 and the best results were obtained with the combination of two deformation fields resulting from the SyN registration method and the STEPS fusion algorithm. The optimal variables for FFD and SyN registration methods were four templates and a kernel standard deviation ranging between 5 and 8. The segmentation process using a single-atlas-based method was more robust with DSI values higher than 0.9. From the vantage of muscle volume measurements, the multi-atlas-based strategy provided acceptable results regarding the QF muscle as a whole but highly variable results regarding individual muscle. On the contrary, the performance of the single-atlas-based pipeline for individual muscles was highly comparable to the MSeg, thereby indicating that this method would be adequate for longitudinal tracking of muscle volume changes in healthy subjects. In the present study, we demonstrated that both multi-atlas and single-atlas approaches were relevant for the segmentation of individual muscles of the QF in healthy subjects. Considering muscle volume measurements, the single-atlas method provided promising perspectives regarding longitudinal quantification of individual muscle volumes.

  16. Feasibility of creating a high-resolution 3D diffusion tensor imaging based atlas of the human brainstem: A case study at 11.7T

    PubMed Central

    Aggarwal, Manisha; Zhang, Jiangyang; Pletnikova, Olga; Crain, Barbara; Troncoso, Juan; Mori, Susumu

    2013-01-01

    A three-dimensional stereotaxic atlas of the human brainstem based on high resolution ex vivo diffusion tensor imaging (DTI) is introduced. The atlas consists of high resolution (125–255 μm isotropic) three-dimensional DT images of the formalin-fixed brainstem acquired at 11.7T. The DTI data revealed microscopic neuroanatomical details, allowing three-dimensional visualization and reconstruction of fiber pathways including the decussation of the pyramidal tract fibers, and interdigitating fascicles of the corticospinal and transverse pontine fibers. Additionally, strong grey-white matter contrasts in the apparent diffusion coefficient (ADC) maps enabled precise delineation of grey matter nuclei in the brainstem, including the cranial nerve and the inferior olivary nuclei. Comparison with myelin-stained histology shows that at the level of resolution achieved in this study, the structural details resolved with DTI contrasts in the brainstem were comparable to anatomical delineation obtained with histological sectioning. Major neural structures delineated from DTI contrasts in the brainstem are segmented and three-dimensionally reconstructed. Further, the ex vivo DTI data are nonlinearly mapped to a widely-used in vivo human brain atlas, to construct a high-resolution atlas of the brainstem in the Montreal Neurological Institute (MNI) stereotaxic coordinate space. The results demonstrate the feasibility of developing a 3D DTI based atlas for detailed characterization of brainstem neuroanatomy with high resolution and contrasts, which will be a useful resource for research and clinical applications. PMID:23384518

  17. An Open-Source Label Atlas Correction Tool and Preliminary Results on Huntingtons Disease Whole-Brain MRI Atlases

    PubMed Central

    Forbes, Jessica L.; Kim, Regina E. Y.; Paulsen, Jane S.; Johnson, Hans J.

    2016-01-01

    The creation of high-quality medical imaging reference atlas datasets with consistent dense anatomical region labels is a challenging task. Reference atlases have many uses in medical image applications and are essential components of atlas-based segmentation tools commonly used for producing personalized anatomical measurements for individual subjects. The process of manual identification of anatomical regions by experts is regarded as a so-called gold standard; however, it is usually impractical because of the labor-intensive costs. Further, as the number of regions of interest increases, these manually created atlases often contain many small inconsistently labeled or disconnected regions that need to be identified and corrected. This project proposes an efficient process to drastically reduce the time necessary for manual revision in order to improve atlas label quality. We introduce the LabelAtlasEditor tool, a SimpleITK-based open-source label atlas correction tool distributed within the image visualization software 3D Slicer. LabelAtlasEditor incorporates several 3D Slicer widgets into one consistent interface and provides label-specific correction tools, allowing for rapid identification, navigation, and modification of the small, disconnected erroneous labels within an atlas. The technical details for the implementation and performance of LabelAtlasEditor are demonstrated using an application of improving a set of 20 Huntingtons Disease-specific multi-modal brain atlases. Additionally, we present the advantages and limitations of automatic atlas correction. After the correction of atlas inconsistencies and small, disconnected regions, the number of unidentified voxels for each dataset was reduced on average by 68.48%. PMID:27536233

  18. An Open-Source Label Atlas Correction Tool and Preliminary Results on Huntingtons Disease Whole-Brain MRI Atlases.

    PubMed

    Forbes, Jessica L; Kim, Regina E Y; Paulsen, Jane S; Johnson, Hans J

    2016-01-01

    The creation of high-quality medical imaging reference atlas datasets with consistent dense anatomical region labels is a challenging task. Reference atlases have many uses in medical image applications and are essential components of atlas-based segmentation tools commonly used for producing personalized anatomical measurements for individual subjects. The process of manual identification of anatomical regions by experts is regarded as a so-called gold standard; however, it is usually impractical because of the labor-intensive costs. Further, as the number of regions of interest increases, these manually created atlases often contain many small inconsistently labeled or disconnected regions that need to be identified and corrected. This project proposes an efficient process to drastically reduce the time necessary for manual revision in order to improve atlas label quality. We introduce the LabelAtlasEditor tool, a SimpleITK-based open-source label atlas correction tool distributed within the image visualization software 3D Slicer. LabelAtlasEditor incorporates several 3D Slicer widgets into one consistent interface and provides label-specific correction tools, allowing for rapid identification, navigation, and modification of the small, disconnected erroneous labels within an atlas. The technical details for the implementation and performance of LabelAtlasEditor are demonstrated using an application of improving a set of 20 Huntingtons Disease-specific multi-modal brain atlases. Additionally, we present the advantages and limitations of automatic atlas correction. After the correction of atlas inconsistencies and small, disconnected regions, the number of unidentified voxels for each dataset was reduced on average by 68.48%.

  19. Le Toarcien inférieur du Haut Atlas de Todrha Dadès (Maroc) : sédimentologie et lithostratigraphie

    NASA Astrophysics Data System (ADS)

    Ettaki, Mohammed; Chellaï, El Hassane

    2005-07-01

    The survey of sedimentological and lithostratigraphic Liassic facies of the Todrha-Dades area (southwestern part of the central High Atlas) permits to establish new data on the Tagoudite formation. Its environment deposit and its micropalaeontological content are evidenced in relation with the geodynamic evolution of the High Atlas Basin during the Early Toarcian. To cite this article: M. Ettaki, E.H. Chellaï, C. R. Geoscience 337 (2005).

  20. MA-9 [FAITH 7] SITS POISED ON LAUNCH COMPLEX 14 PRIOR TO LIFTOFF

    NASA Technical Reports Server (NTRS)

    1963-01-01

    Pre-Launch! Mercury-Atlas 9 stands on Pad 14 at Cape Canaveral ready for launch. Liftoff occurred at 8:04 a.m. EST, two and one half hours after Astronaut L. Gordon Cooper was inserted into the spacecraft he named FAITH 7. NASA-MERCURY, Complex 14.

  1. Estimation of Mouse Organ Locations Through Registration of a Statistical Mouse Atlas With Micro-CT Images

    PubMed Central

    Stout, David B.; Chatziioannou, Arion F.

    2012-01-01

    Micro-CT is widely used in preclinical studies of small animals. Due to the low soft-tissue contrast in typical studies, segmentation of soft tissue organs from noncontrast enhanced micro-CT images is a challenging problem. Here, we propose an atlas-based approach for estimating the major organs in mouse micro-CT images. A statistical atlas of major trunk organs was constructed based on 45 training subjects. The statistical shape model technique was used to include inter-subject anatomical variations. The shape correlations between different organs were described using a conditional Gaussian model. For registration, first the high-contrast organs in micro-CT images were registered by fitting the statistical shape model, while the low-contrast organs were subsequently estimated from the high-contrast organs using the conditional Gaussian model. The registration accuracy was validated based on 23 noncontrast-enhanced and 45 contrast-enhanced micro-CT images. Three different accuracy metrics (Dice coefficient, organ volume recovery coefficient, and surface distance) were used for evaluation. The Dice coefficients vary from 0.45 ± 0.18 for the spleen to 0.90 ± 0.02 for the lungs, the volume recovery coefficients vary from for the liver to 1.30 ± 0.75 for the spleen, the surface distances vary from 0.18 ± 0.01 mm for the lungs to 0.72 ± 0.42 mm for the spleen. The registration accuracy of the statistical atlas was compared with two publicly available single-subject mouse atlases, i.e., the MOBY phantom and the DIGIMOUSE atlas, and the results proved that the statistical atlas is more accurate than the single atlases. To evaluate the influence of the training subject size, different numbers of training subjects were used for atlas construction and registration. The results showed an improvement of the registration accuracy when more training subjects were used for the atlas construction. The statistical atlas-based registration was also compared with the thin-plate spline based deformable registration, commonly used in mouse atlas registration. The results revealed that the statistical atlas has the advantage of improving the estimation of low-contrast organs. PMID:21859613

  2. Fusion set selection with surrogate metric in multi-atlas based image segmentation

    NASA Astrophysics Data System (ADS)

    Zhao, Tingting; Ruan, Dan

    2016-02-01

    Multi-atlas based image segmentation sees unprecedented opportunities but also demanding challenges in the big data era. Relevant atlas selection before label fusion plays a crucial role in reducing potential performance loss from heterogeneous data quality and high computation cost from extensive data. This paper starts with investigating the image similarity metric (termed ‘surrogate’), an alternative to the inaccessible geometric agreement metric (termed ‘oracle’) in atlas relevance assessment, and probes into the problem of how to select the ‘most-relevant’ atlases and how many such atlases to incorporate. We propose an inference model to relate the surrogates and the oracle geometric agreement metrics. Based on this model, we quantify the behavior of the surrogates in mimicking oracle metrics for atlas relevance ordering. Finally, analytical insights on the choice of fusion set size are presented from a probabilistic perspective, with the integrated goal of including the most relevant atlases and excluding the irrelevant ones. Empirical evidence and performance assessment are provided based on prostate and corpus callosum segmentation.

  3. Environmental Conditions and Threatened and Endangered Species Populations near the Titan, Atlas, and Delta Launch Complexes, Cape Canaveral Air Station

    NASA Technical Reports Server (NTRS)

    Oddy, Donna M.; Stolen, Eric D.; Schmalzer, Paul A.; Hensley, Melissa A.; Hall, Patrice; Larson, Vickie L.; Turek, Shannon R.

    1999-01-01

    Launches of Delta, Atlas, and Titan rockets from Cape Canaveral Air Station (CCAS) have potential environmental effects. These could occur from direct impacts of launches or indirectly from habitat alterations. This report summarizes a three-year study (1 995-1 998) characterizing the environment, with particular attention to threatened and endangered species, near Delta, Atlas, and Titan launch facilities. Cape Canaveral has been modified by Air Force development and by 50 years of fire suppression. The dominant vegetation type around the Delta and Atlas launch complexes is coastal oak hammock forest. Oak scrub is the predominant upland vegetation type near the Titan launch complexes. Compositionally, these are coastal scrub communities that has been unburned for > 40 years and have developed into closed canopy, low-stature forests. Herbaceous vegetation around active and inactive facilities, coastal strand and dune vegetation near the Atlantic Ocean, and exotic vegetation in disturbed areas are common. Marsh and estuarine vegetation is most common west of the Titan complexes. Launch effects to vegetation include scorch, acid, and particulate deposition. Discernable, cumulative effects are limited to small areas near the launch complexes. Water quality samples were collected at the Titan, Atlas, and Delta launch complexes in September 1995 (wet season) and January 1996 (dry season). Samples were analyzed for heavy metals, chloride, total organic carbon, calcium, iron, magnesium, sodium, total alkalinity, pH, and conductivity. Differences between fresh, brackish, and saline surface waters were evident. The natural buffering capacity of the environment surrounding the CCAS launch complexes is adequate for neutralizing acid deposition in rainfall and launch deposition. Populations of the Florida Scrub-Jay (Aphelocoma coerulescens), a Federally-listed, threatened species, reside near the launch complexes. Thirty-seven to forty-one scrub-jay territories were located at Titan, Atlas, and Delta launch complexes between 1995 and 1997. No direct impacts to scrub-jays were observed as a result of normal launches. The explosion of the Delta rocket in January 1997 caused direct impacts to the habitat of several scrub-jays families, from fire and debris; however, no scrub-jay mortality was observed. Mortality exceeded reproductive output at all areas over the course of the study. Populations of the southeastern beach mouse (Peromyscus polionotus niveiventris) populations, a Federally listed, threatened species, reside near all the launch complexes. Hurricane Erin and several other tropical storms impacted several areas at the inception of the study in 1995 causing coastal habitat alterations as a result of salt-water intrusion. Both the habitat and the beach mice populations recovered during the course of the study. No direct impacts to southeastern beach mice were observed as a result of normal launch operations. Direct impacts were observed to the habitat as a result of the explosion of the Delta rocket in January 1997. This alteration of the habitat resulted in a shift in use with the mice moving on to the newly burned part of the site. Waterbirds use wetlands and aquatic systems near the launch complexes. Species include the Federally-listed, endangered Wood Stork (Mycferia americana) and several state-listed species of special concern including the Snowy Egret (Egretfa thula fhula), Reddish Egret (Egreffa rufescens rufescens), White Ibis (Eudocimus albus), Roseate Spoonbill (Ajaia ajaja), Tricolored Heron (Egreffa tricolor ruficolis), and Little Blue Heron (Egreffa caerulea). No impacts to these populations resulting from any launch operations were observed. Gopher tortoises (Gopherus polyphemus) also occur around the launch complexes. Most of those observed appeared to be in good condition; however, upper respiratory tract disease is known to occur in the population. Cape Canaveral Air Station, including areas near active launch colexes, remains important habitat for a variety of native plants and animals including threatened and endangered species. Direct negative effects of current launch systems appear limited. Additional monitoring of these populations and habitats is required to determine if subtle, long-term changes are occurring, to determine if new launch systems and facilities cause other effects, and to determine the effects of habitat restoration and management.

  4. Role of the ATLAS Grid Information System (AGIS) in Distributed Data Analysis and Simulation

    NASA Astrophysics Data System (ADS)

    Anisenkov, A. V.

    2018-03-01

    In modern high-energy physics experiments, particular attention is paid to the global integration of information and computing resources into a unified system for efficient storage and processing of experimental data. Annually, the ATLAS experiment performed at the Large Hadron Collider at the European Organization for Nuclear Research (CERN) produces tens of petabytes raw data from the recording electronics and several petabytes of data from the simulation system. For processing and storage of such super-large volumes of data, the computing model of the ATLAS experiment is based on heterogeneous geographically distributed computing environment, which includes the worldwide LHC computing grid (WLCG) infrastructure and is able to meet the requirements of the experiment for processing huge data sets and provide a high degree of their accessibility (hundreds of petabytes). The paper considers the ATLAS grid information system (AGIS) used by the ATLAS collaboration to describe the topology and resources of the computing infrastructure, to configure and connect the high-level software systems of computer centers, to describe and store all possible parameters, control, configuration, and other auxiliary information required for the effective operation of the ATLAS distributed computing applications and services. The role of the AGIS system in the development of a unified description of the computing resources provided by grid sites, supercomputer centers, and cloud computing into a consistent information model for the ATLAS experiment is outlined. This approach has allowed the collaboration to extend the computing capabilities of the WLCG project and integrate the supercomputers and cloud computing platforms into the software components of the production and distributed analysis workload management system (PanDA, ATLAS).

  5. Efficient multi-atlas abdominal segmentation on clinically acquired CT with SIMPLE context learning.

    PubMed

    Xu, Zhoubing; Burke, Ryan P; Lee, Christopher P; Baucom, Rebeccah B; Poulose, Benjamin K; Abramson, Richard G; Landman, Bennett A

    2015-08-01

    Abdominal segmentation on clinically acquired computed tomography (CT) has been a challenging problem given the inter-subject variance of human abdomens and complex 3-D relationships among organs. Multi-atlas segmentation (MAS) provides a potentially robust solution by leveraging label atlases via image registration and statistical fusion. We posit that the efficiency of atlas selection requires further exploration in the context of substantial registration errors. The selective and iterative method for performance level estimation (SIMPLE) method is a MAS technique integrating atlas selection and label fusion that has proven effective for prostate radiotherapy planning. Herein, we revisit atlas selection and fusion techniques for segmenting 12 abdominal structures using clinically acquired CT. Using a re-derived SIMPLE algorithm, we show that performance on multi-organ classification can be improved by accounting for exogenous information through Bayesian priors (so called context learning). These innovations are integrated with the joint label fusion (JLF) approach to reduce the impact of correlated errors among selected atlases for each organ, and a graph cut technique is used to regularize the combined segmentation. In a study of 100 subjects, the proposed method outperformed other comparable MAS approaches, including majority vote, SIMPLE, JLF, and the Wolz locally weighted vote technique. The proposed technique provides consistent improvement over state-of-the-art approaches (median improvement of 7.0% and 16.2% in DSC over JLF and Wolz, respectively) and moves toward efficient segmentation of large-scale clinically acquired CT data for biomarker screening, surgical navigation, and data mining. Copyright © 2015 Elsevier B.V. All rights reserved.

  6. Structure, paleogeographic inheritance, and deformation history of the southern Atlas foreland fold and thrust belt of Tunisia

    NASA Astrophysics Data System (ADS)

    SaïD, Aymen; Baby, Patrice; Chardon, Dominique; Ouali, Jamel

    2011-12-01

    Structural analysis of the southern Tunisian Atlas was carried out using field observation, seismic interpretation, and cross section balancing. It shows a mix of thick-skinned and thin-skinned tectonics with lateral variations in regional structural geometry and amounts of shortening controlled by NW-SE oblique ramps and tear faults. It confirms the role of the Late Triassic-Early Jurassic rifting inheritance in the structuring of the active foreland fold and thrust belt of the southern Tunisian Atlas, in particular in the development of NW-SE oblique structures such as the Gafsa fault. The Late Triassic-Early Jurassic structural pattern is characterized by a family of first-order NW-SE trending normal faults dipping to the east and by second-order E-W trending normal faults limiting a complex system of grabens and horsts. These faults have been inverted during two contractional tectonic events. The first event occurred between the middle Turonian and the late Maastrichtian and can be correlated with the onset of the convergence between Africa and Eurasia. The second event corresponding to the principal shortening tectonic event in the southern Atlas started in the Serravalian-Tortonian and is still active. During the Neogene, the southern Atlas foreland fold and thrust belt propagated on the evaporitic décollement level infilling the Late Triassic-Early Jurassic rift. The major Eocene "Atlas event," described in hinterland domains and in eastern Tunisia, did not deform significantly the southern Tunisian Atlas, which corresponded in this period to a backbulge broad depozone.

  7. High-Performance Scalable Information Service for the ATLAS Experiment

    NASA Astrophysics Data System (ADS)

    Kolos, S.; Boutsioukis, G.; Hauser, R.

    2012-12-01

    The ATLAS[1] experiment is operated by a highly distributed computing system which is constantly producing a lot of status information which is used to monitor the experiment operational conditions as well as to assess the quality of the physics data being taken. For example the ATLAS High Level Trigger(HLT) algorithms are executed on the online computing farm consisting from about 1500 nodes. Each HLT algorithm is producing few thousands histograms, which have to be integrated over the whole farm and carefully analyzed in order to properly tune the event rejection. In order to handle such non-physics data the Information Service (IS) facility has been developed in the scope of the ATLAS Trigger and Data Acquisition (TDAQ)[2] project. The IS provides a high-performance scalable solution for information exchange in distributed environment. In the course of an ATLAS data taking session the IS handles about a hundred gigabytes of information which is being constantly updated with the update interval varying from a second to a few tens of seconds. IS provides access to any information item on request as well as distributing notification to all the information subscribers. In the latter case IS subscribers receive information within a few milliseconds after it was updated. IS can handle arbitrary types of information, including histograms produced by the HLT applications, and provides C++, Java and Python API. The Information Service is a unique source of information for the majority of the online monitoring analysis and GUI applications used to control and monitor the ATLAS experiment. Information Service provides streaming functionality allowing efficient replication of all or part of the managed information. This functionality is used to duplicate the subset of the ATLAS monitoring data to the CERN public network with a latency of a few milliseconds, allowing efficient real-time monitoring of the data taking from outside the protected ATLAS network. Each information item in IS has an associated URL which can be used to access that item online via HTTP protocol. This functionality is being used by many online monitoring applications which can run in a WEB browser, providing real-time monitoring information about the ATLAS experiment over the globe. This paper describes the design and implementation of the IS and presents performance results which have been taken in the ATLAS operational environment.

  8. A method of 2D/3D registration of a statistical mouse atlas with a planar X-ray projection and an optical photo.

    PubMed

    Wang, Hongkai; Stout, David B; Chatziioannou, Arion F

    2013-05-01

    The development of sophisticated and high throughput whole body small animal imaging technologies has created a need for improved image analysis and increased automation. The registration of a digital mouse atlas to individual images is a prerequisite for automated organ segmentation and uptake quantification. This paper presents a fully-automatic method for registering a statistical mouse atlas with individual subjects based on an anterior-posterior X-ray projection and a lateral optical photo of the mouse silhouette. The mouse atlas was trained as a statistical shape model based on 83 organ-segmented micro-CT images. For registration, a hierarchical approach is applied which first registers high contrast organs, and then estimates low contrast organs based on the registered high contrast organs. To register the high contrast organs, a 2D-registration-back-projection strategy is used that deforms the 3D atlas based on the 2D registrations of the atlas projections. For validation, this method was evaluated using 55 subjects of preclinical mouse studies. The results showed that this method can compensate for moderate variations of animal postures and organ anatomy. Two different metrics, the Dice coefficient and the average surface distance, were used to assess the registration accuracy of major organs. The Dice coefficients vary from 0.31 ± 0.16 for the spleen to 0.88 ± 0.03 for the whole body, and the average surface distance varies from 0.54 ± 0.06 mm for the lungs to 0.85 ± 0.10mm for the skin. The method was compared with a direct 3D deformation optimization (without 2D-registration-back-projection) and a single-subject atlas registration (instead of using the statistical atlas). The comparison revealed that the 2D-registration-back-projection strategy significantly improved the registration accuracy, and the use of the statistical mouse atlas led to more plausible organ shapes than the single-subject atlas. This method was also tested with shoulder xenograft tumor-bearing mice, and the results showed that the registration accuracy of most organs was not significantly affected by the presence of shoulder tumors, except for the lungs and the spleen. Copyright © 2013 Elsevier B.V. All rights reserved.

  9. The AMchip04 and the processing unit prototype for the FastTracker

    NASA Astrophysics Data System (ADS)

    Andreani, A.; Annovi, A.; Beretta, M.; Bogdan, M.; Citterio, M.; Alberti, F.; Giannetti, P.; Lanza, A.; Magalotti, D.; Piendibene, M.; Shochet, M.; Stabile, A.; Tang, J.; Tompkins, L.; Volpi, G.

    2012-08-01

    Modern experiments search for extremely rare processes hidden in much larger background levels. As the experiment`s complexity, the accelerator backgrounds and luminosity increase we need increasingly complex and exclusive event selection. We present the first prototype of a new Processing Unit (PU), the core of the FastTracker processor (FTK). FTK is a real time tracking device for the ATLAS experiment`s trigger upgrade. The computing power of the PU is such that a few hundred of them will be able to reconstruct all the tracks with transverse momentum above 1 GeV/c in ATLAS events up to Phase II instantaneous luminosities (3 × 1034 cm-2 s-1) with an event input rate of 100 kHz and a latency below a hundred microseconds. The PU provides massive computing power to minimize the online execution time of complex tracking algorithms. The time consuming pattern recognition problem, generally referred to as the ``combinatorial challenge'', is solved by the Associative Memory (AM) technology exploiting parallelism to the maximum extent; it compares the event to all pre-calculated ``expectations'' or ``patterns'' (pattern matching) simultaneously, looking for candidate tracks called ``roads''. This approach reduces to a linear behavior the typical exponential complexity of the CPU based algorithms. Pattern recognition is completed by the time data are loaded into the AM devices. We report on the design of the first Processing Unit prototypes. The design had to address the most challenging aspects of this technology: a huge number of detector clusters (``hits'') must be distributed at high rate with very large fan-out to all patterns (10 Million patterns will be located on 128 chips placed on a single board) and a huge number of roads must be collected and sent back to the FTK post-pattern-recognition functions. A network of high speed serial links is used to solve the data distribution problem.

  10. Deploying the ATLAS Metadata Interface (AMI) on the cloud with Jenkins

    NASA Astrophysics Data System (ADS)

    Lambert, F.; Odier, J.; Fulachier, J.; ATLAS Collaboration

    2017-10-01

    The ATLAS Metadata Interface (AMI) is a mature application of more than 15 years of existence. Mainly used by the ATLAS experiment at CERN, it consists of a very generic tool ecosystem for metadata aggregation and cataloguing. AMI is used by the ATLAS production system, therefore the service must guarantee a high level of availability. We describe our monitoring and administration systems, and the Jenkins-based strategy used to dynamically test and deploy cloud OpenStack nodes on demand.

  11. Mise en place syntectonique des minéralisations cuprifères du gîte d'Ifri (district du Haut Seksaoua, Haut Atlas occidental, Maroc)Syntectonic emplacement of the Ifri copper mineralization (High Seksaoua, western High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Gaouzi, Abdelaziz; Chauvet, Alain; Barbanson, Luc; Badra, Lakhlifi; Touray, Jean-Claude; Oukarou, Saı̈d; El Wartiti, Mohamed

    2001-09-01

    Structural and metallogenic studies of the Ifri copper deposit (western High Atlas, Morocco) demonstrate that a great part of the mineralization was linked to a stockwork developed during a Late-Variscan NNW-verging shearing event. With this significant result, the until now accepted syngenetic character for this mineralization has to be reconsidered and allows to suggest a new guide of prospection for this kind of deposit.

  12. Commissioning of the ATLAS pixel detector

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    ATLAS Collaboration; Golling, Tobias

    2008-09-01

    The ATLAS pixel detector is a high precision silicon tracking device located closest to the LHC interaction point. It belongs to the first generation of its kind in a hadron collider experiment. It will provide crucial pattern recognition information and will largely determine the ability of ATLAS to precisely track particle trajectories and find secondary vertices. It was the last detector to be installed in ATLAS in June 2007, has been fully connected and tested in-situ during spring and summer 2008, and is ready for the imminent LHC turn-on. The highlights of the past and future commissioning activities of themore » ATLAS pixel system are presented.« less

  13. The version control service for the ATLAS data acquisition configuration files

    NASA Astrophysics Data System (ADS)

    Soloviev, Igor

    2012-12-01

    The ATLAS experiment at the LHC in Geneva uses a complex and highly distributed Trigger and Data Acquisition system, involving a very large number of computing nodes and custom modules. The configuration of the system is specified by schema and data in more than 1000 XML files, with various experts responsible for updating the files associated with their components. Maintaining an error free and consistent set of XML files proved a major challenge. Therefore a special service was implemented; to validate any modifications; to check the authorization of anyone trying to modify a file; to record who had made changes, plus when and why; and to provide tools to compare different versions of files and to go back to earlier versions if required. This paper provides details of the implementation and exploitation experience, that may be interesting for other applications using many human-readable files maintained by different people, where consistency of the files and traceability of modifications are key requirements.

  14. KSC-2013-4396

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  15. KSC-2013-4394

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  16. KSC-2013-4428

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is positioned atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  17. KSC-2013-4395

    NASA Image and Video Library

    2013-12-12

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V first stage booster that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Kim Shiflett

  18. KSC-2013-4429

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is positioned atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  19. KSC-05pd2636

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - A Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility awaits the arrival of New Horizons at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  20. KSC-05pd2637

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - New Horizons arrives at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station where buildup of its Lockheed Martin Atlas V launch vehicle is complete. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  1. KSC-05pd2642

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing enclosing New Horizons arrives at the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  2. Two-stage atlas subset selection in multi-atlas based image segmentation.

    PubMed

    Zhao, Tingting; Ruan, Dan

    2015-06-01

    Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stage atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. The authors have developed a novel two-stage atlas subset selection scheme for multi-atlas based segmentation. It achieves good segmentation accuracy with significantly reduced computation cost, making it a suitable configuration in the presence of extensive heterogeneous atlases.

  3. The Complexity Analysis Tool

    DTIC Science & Technology

    1988-10-01

    overview of the complexity analysis tool ( CAT ), an automated tool which will analyze mission critical computer resources (MCCR) software. CAT is based...84 MAR UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE 19. ABSTRACT: (cont) CAT automates the metric for BASIC (HP-71), ATLAS (EQUATE), Ada (subset...UNIX 5.2). CAT analyzes source code and computes complexity on a module basis. CAT also generates graphic representations of the logic flow paths and

  4. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, arrives at Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  5. AGIS: Evolution of Distributed Computing information system for ATLAS

    NASA Astrophysics Data System (ADS)

    Anisenkov, A.; Di Girolamo, A.; Alandes, M.; Karavakis, E.

    2015-12-01

    ATLAS, a particle physics experiment at the Large Hadron Collider at CERN, produces petabytes of data annually through simulation production and tens of petabytes of data per year from the detector itself. The ATLAS computing model embraces the Grid paradigm and a high degree of decentralization of computing resources in order to meet the ATLAS requirements of petabytes scale data operations. It has been evolved after the first period of LHC data taking (Run-1) in order to cope with new challenges of the upcoming Run- 2. In this paper we describe the evolution and recent developments of the ATLAS Grid Information System (AGIS), developed in order to integrate configuration and status information about resources, services and topology of the computing infrastructure used by the ATLAS Distributed Computing applications and services.

  6. The SRI24 multichannel brain atlas: construction and applications

    NASA Astrophysics Data System (ADS)

    Rohlfing, Torsten; Zahr, Natalie M.; Sullivan, Edith V.; Pfefferbaum, Adolf

    2008-03-01

    We present a new standard atlas of the human brain based on magnetic resonance images. The atlas was generated using unbiased population registration from high-resolution images obtained by multichannel-coil acquisition at 3T in a group of 24 normal subjects. The final atlas comprises three anatomical channels (T I-weighted, early and late spin echo), three diffusion-related channels (fractional anisotropy, mean diffusivity, diffusion-weighted image), and three tissue probability maps (CSF, gray matter, white matter). The atlas is dynamic in that it is implicitly represented by nonrigid transformations between the 24 subject images, as well as distortion-correction alignments between the image channels in each subject. The atlas can, therefore, be generated at essentially arbitrary image resolutions and orientations (e.g., AC/PC aligned), without compounding interpolation artifacts. We demonstrate in this paper two different applications of the atlas: (a) region definition by label propagation in a fiber tracking study is enabled by the increased sharpness of our atlas compared with other available atlases, and (b) spatial normalization is enabled by its average shape property. In summary, our atlas has unique features and will be made available to the scientific community as a resource and reference system for future imaging-based studies of the human brain.

  7. KSC-2009-3298

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, are lifted into the mobile service tower. The LRO/LCROSS will be mated to the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis

  8. KSC-2009-3297

    NASA Image and Video Library

    2009-05-28

    CAPE CANAVERAL, Fla. – On Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a crane is attached to the Lunar Reconnaissance Orbiter, or LRO, and NASA's Lunar Crater Observation and Sensing Satellite, known as LCROSS, to lift them into the mobile service tower. The LRO/LCROSS will be mated to the Atlas V rocket for launch. The LRO includes five instruments that will help NASA characterize the moon's surface: DIVINER, LAMP, LEND, LOLA and LROC. Along with LCROSS, they will be launched aboard an Atlas V/Centaur rocket on June 17. Photo credit: NASA/Dimitri Gerondidakis

  9. OA-7 Lift and Mate to Booster

    NASA Image and Video Library

    2017-03-17

    United Launch Alliance (ULA) technicians monitor the progress as the payload fairing containing the Orbital ATK Cygnus pressurized cargo module is lowered onto the Centaur upper stage, or second stage, of the ULA Atlas V rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.

  10. TDRS-M Spacecraft Encapsulation

    NASA Image and Video Library

    2017-08-02

    Inside the Astrotech facility in Titusville, Florida, NASA's Tracking and Data Relay Satellite, TDRS-M, is encapsulated into ULA's Atlas V payload fairing. TDRS-M is the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop a United Launch Alliance Atlas V rocket is scheduled to take place from Space Launch Complex 41 at Cape Canaveral Air Force Station at 8:03 a.m. EDT Aug. 18, 2017.

  11. GOES-S Atlas V Centaur Stage OVI

    NASA Image and Video Library

    2018-02-08

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a Centaur upper stage is mated to a United Launch Alliance Atlas V rocket that will boost NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  12. GOES-S Atlas V First Stage Booster Lift to Vertical On Stand (LV

    NASA Image and Video Library

    2018-01-31

    A crane lifts a United Launch Alliance Atlas V first stage into the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket will be positioned on its launcher to boost the Geostationary Operational Environmental Satellite, or GOES-S. It will be the second in a series of four advanced geostationary weather satellites and will significantly improve the detection and observation of environmental phenomena that directly affect public safety. GOES-S is slated to launch March 1, 2018.

  13. GOES-S Atlas V First Stage Booster Lift to Vertical On Stand (LV

    NASA Image and Video Library

    2018-01-31

    A crane lifts a United Launch Alliance Atlas V first stage at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket will be positioned on its launcher to boost the Geostationary Operational Environmental Satellite, or GOES-S. It will be the second in a series of four advanced geostationary weather satellites and will significantly improve the detection and observation of environmental phenomena that directly affect public safety. GOES-S is slated to launch March 1, 2018.

  14. KSC-05pd2558

    NASA Image and Video Library

    2005-12-05

    KENNEDY SPACE CENTER, FLA. - The Lockheed Martin Atlas V rocket (center) undergoes a tanking test on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket was fully fueled with liquid hydrogen, liquid oxygen and RP 1 kerosene fuel. Seen surrounding the rocket are lightning towers that support the catenary wire that provides lightning protection. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch during a 35-day window that opens Jan. 11, and fly through the Pluto system as early as summer 2015.

  15. KSC-05pd2559

    NASA Image and Video Library

    2005-12-05

    KENNEDY SPACE CENTER, FLA. - The Lockheed Martin Atlas V rocket (center) undergoes a tanking test on Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket was fully fueled with liquid hydrogen, liquid oxygen and RP 1 kerosene fuel. Seen surrounding the rocket are lightning towers that support the catenary wire that provides lightning protection. The Atlas V is the launch vehicle for NASA’s New Horizons spacecraft, scheduled to launch during a 35-day window that opens Jan. 11, and fly through the Pluto system as early as summer 2015.

  16. OA-7 Lift and Mate to Booster

    NASA Image and Video Library

    2017-03-17

    The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is lifted by crane at the United Launch Alliance (ULA) Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The payload will be hoisted up and mated to the ULA Atlas V rocket. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.

  17. Atlas_V_OA-7_Payload_Mate_to_Booster

    NASA Image and Video Library

    2017-03-17

    The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is lifted and mated onto the Centaur upper stage, or second stage, of the United Launch Alliance (ULA) rocket in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.

  18. OA-7 Lift and Mate to Booster

    NASA Image and Video Library

    2017-03-17

    The payload fairing containing the Orbital ATK Cygnus pressurized cargo module is hoisted up by crane at the United Launch Alliance (ULA) Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The payload will be mated to the ULA Atlas V rocket. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.

  19. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Space Launch Complex 3 at Vandenberg Air Force Base in California technicians and engineers prepare a United Launch Alliance Centaur upper stage for lifting and mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  20. InSight Atlas V Centaur Transport / Lift & Mate

    NASA Image and Video Library

    2018-03-06

    At Vandenberg Air Force Base in California, a United Launch Alliance Centaur upper stage is prepared for transport to Space Launch Complex 3 for mating atop an Atlas V booster. The rocket will launch NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  1. GOES-S Rollout to Pad

    NASA Image and Video Library

    2018-02-28

    A United Launch Alliance Atlas V rocket is rolled to Space Launch Complex 41 at Cape Canaveral Air Force Station. The launch vehicle will send the National Oceanic and Atmospheric Administration's, or NOAA's, Geostationary Operational Environmental Satellite, or GOES-S, into orbit. The GOES series is designed to significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to lift off at 5:02 p.m. EST on March 1, 2018 aboard a United Launch Alliance Atlas V rocket.

  2. KAMAG Arrival for OA-7 CYGNUS

    NASA Image and Video Library

    2017-02-21

    In the Space Station Processing Facility at NASA's Kennedy Space Center in Florida, a KAMAG transporter has arrived in the high bay. Technicians are preparing Orbital ATK's CYGNUS pressurized cargo module for bagging. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop a United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on March 19, 2017. CYGNUS will deliver thousands of pounds of supplies, equipment and scientific research materials to the space station.

  3. Multi-Atlas Based Segmentation of Brainstem Nuclei from MR Images by Deep Hyper-Graph Learning.

    PubMed

    Dong, Pei; Guo, Yangrong; Gao, Yue; Liang, Peipeng; Shi, Yonghong; Wang, Qian; Shen, Dinggang; Wu, Guorong

    2016-10-01

    Accurate segmentation of brainstem nuclei (red nucleus and substantia nigra) is very important in various neuroimaging applications such as deep brain stimulation and the investigation of imaging biomarkers for Parkinson's disease (PD). Due to iron deposition during aging, image contrast in the brainstem is very low in Magnetic Resonance (MR) images. Hence, the ambiguity of patch-wise similarity makes the recently successful multi-atlas patch-based label fusion methods have difficulty to perform as competitive as segmenting cortical and sub-cortical regions from MR images. To address this challenge, we propose a novel multi-atlas brainstem nuclei segmentation method using deep hyper-graph learning. Specifically, we achieve this goal in three-fold. First , we employ hyper-graph to combine the advantage of maintaining spatial coherence from graph-based segmentation approaches and the benefit of harnessing population priors from multi-atlas based framework. Second , besides using low-level image appearance, we also extract high-level context features to measure the complex patch-wise relationship. Since the context features are calculated on a tentatively estimated label probability map, we eventually turn our hyper-graph learning based label propagation into a deep and self-refining model. Third , since anatomical labels on some voxels (usually located in uniform regions) can be identified much more reliably than other voxels (usually located at the boundary between two regions), we allow these reliable voxels to propagate their labels to the nearby difficult-to-label voxels. Such hierarchical strategy makes our proposed label fusion method deep and dynamic. We evaluate our proposed label fusion method in segmenting substantia nigra (SN) and red nucleus (RN) from 3.0 T MR images, where our proposed method achieves significant improvement over the state-of-the-art label fusion methods.

  4. Generation and evaluation of an ultra-high-field atlas with applications in DBS planning

    NASA Astrophysics Data System (ADS)

    Wang, Brian T.; Poirier, Stefan; Guo, Ting; Parrent, Andrew G.; Peters, Terry M.; Khan, Ali R.

    2016-03-01

    Purpose Deep brain stimulation (DBS) is a common treatment for Parkinson's disease (PD) and involves the use of brain atlases or intrinsic landmarks to estimate the location of target deep brain structures, such as the subthalamic nucleus (STN) and the globus pallidus pars interna (GPi). However, these structures can be difficult to localize with conventional clinical magnetic resonance imaging (MRI), and thus targeting can be prone to error. Ultra-high-field imaging at 7T has the ability to clearly resolve these structures and thus atlases built with these data have the potential to improve targeting accuracy. Methods T1 and T2-weighted images of 12 healthy control subjects were acquired using a 7T MR scanner. These images were then used with groupwise registration to generate an unbiased average template with T1w and T2w contrast. Deep brain structures were manually labelled in each subject by two raters and rater reliability was assessed. We compared the use of this unbiased atlas with two other methods of atlas-based segmentation (single-template and multi-template) for subthalamic nucleus (STN) segmentation on 7T MRI data. We also applied this atlas to clinical DBS data acquired at 1.5T to evaluate its efficacy for DBS target localization as compared to using a standard atlas. Results The unbiased templates provide superb detail of subcortical structures. Through one-way ANOVA tests, the unbiased template is significantly (p <0.05) more accurate than a single-template in atlas-based segmentation and DBS target localization tasks. Conclusion The generated unbiased averaged templates provide better visualization of deep brain nuclei and an increase in accuracy over single-template and lower field strength atlases.

  5. A 3D high resolution ex vivo white matter atlas of the common squirrel monkey (saimiri sciureus) based on diffusion tensor imaging

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G.; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S.; Ding, Zhaohua; Gore, John C.; Chen, Li min; Landman, Bennett A.; Anderson, Adam W.

    2016-03-01

    Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey - for which the primary published atlases date from the 1960's. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas.

  6. A 3D high resolution ex vivo white matter atlas of the common squirrel monkey (Saimiri sciureus) based on diffusion tensor imaging

    PubMed Central

    Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G.; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S.; Ding, Zhaohua; Gore, John C.; Chen, Li Min; Landman, Bennett A.; Anderson, Adam W.

    2016-01-01

    Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey – for which the primary published atlases date from the 1960’s. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas. PMID:27064328

  7. A 3D high resolution ex vivo white matter atlas of the common squirrel monkey (Saimiri sciureus) based on diffusion tensor imaging.

    PubMed

    Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S; Ding, Zhaohua; Gore, John C; Chen, Li Min; Landman, Bennett A; Anderson, Adam W

    2016-02-27

    Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey - for which the primary published atlases date from the 1960's. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas.

  8. Géochimie et cadre géodynamique du volcanisme néoprotérozoïque terminal (vendien) du Haut Atlas occidental, Maroc(Geochemical features and tectonic setting of late Neoproterozoic Vendian volcanism in the western High Atlas, Morocco)

    NASA Astrophysics Data System (ADS)

    Jouhari, A.; El-Archi, A.; Aarab, M.; El-Attari, A.; Ennih, N.; Laduron, D.

    2001-05-01

    Late Neoproterozoic Vendian volcanic and volcaniclastic rocks are widely distributed in the western High Atlas. They are located north of the Tizi n'Test Fault, separating the West African Craton from a northerly adjacent craton. These volcanic rocks overlie a semipelitic formation, which represents the equivalent of the Tidilline and Anzi Formations of the Anti-Atlas. The geochemical characteristics of these volcanic rocks suggest a calc-alkaline active margine environment associated with the post Pan-African tectonics. They differ from those of the Anti-Atlas by their lower content of K 2O. The later rock type was generated by a melting process of the crust subducted beneath the northern craton. A carbonate-shale unit, which contains examples of interstratified calc-alkaline dacite, overlies the volcanic succession, demonstrating that the volcanic activity continued sporadically until Early Cambrian times.

  9. KSC-2013-3791

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  10. KSC-2013-3793

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  11. KSC-2013-3794

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  12. KSC-2013-3784

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  13. KSC-2013-3788

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  14. KSC-2013-3787

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  15. KSC-2013-3785

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  16. KSC-2011-6055

    NASA Image and Video Library

    2011-07-27

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 41, the Atlas rocket stacked inside the Vertical Integration Facility stands ready to receive the Juno spacecraft, enclosed in an Atlas payload fairing. The spacecraft was prepared for launch in the Astrotech Space Operations' payload processing facility in Titusville, Fla. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Juno is scheduled to launch Aug. 5 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information, visit www.nasa.gov/juno. Photo credit: NASA/Cory Huston

  17. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, travels along the road toward Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  18. CCP Crew Access Arm Arrival

    NASA Image and Video Library

    2016-08-11

    A heavy-lift transport truck, carrying the Crew Access Arm for Space Launch Complex 41, backs up toward Complex 41 at Cape Canaveral Air Force Station in Florida. The arm will be installed on the Complex 41 Crew Access Tower. It will be used as a bridge by astronauts to board Boeing's CST-100 Starliner spacecraft as it stands on the launch pad atop a United Launch Alliance Atlas V rocket.

  19. Improving ATLAS grid site reliability with functional tests using HammerCloud

    NASA Astrophysics Data System (ADS)

    Elmsheuser, Johannes; Legger, Federica; Medrano Llamas, Ramon; Sciacca, Gianfranco; van der Ster, Dan

    2012-12-01

    With the exponential growth of LHC (Large Hadron Collider) data in 2011, and more coming in 2012, distributed computing has become the established way to analyse collider data. The ATLAS grid infrastructure includes almost 100 sites worldwide, ranging from large national computing centers to smaller university clusters. These facilities are used for data reconstruction and simulation, which are centrally managed by the ATLAS production system, and for distributed user analysis. To ensure the smooth operation of such a complex system, regular tests of all sites are necessary to validate the site capability of successfully executing user and production jobs. We report on the development, optimization and results of an automated functional testing suite using the HammerCloud framework. Functional tests are short lightweight applications covering typical user analysis and production schemes, which are periodically submitted to all ATLAS grid sites. Results from those tests are collected and used to evaluate site performances. Sites that fail or are unable to run the tests are automatically excluded from the PanDA brokerage system, therefore avoiding user or production jobs to be sent to problematic sites.

  20. EnviroAtlas - 303(d) Impairments by 12-digit HUC for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset depicts the total length of stream or river flowlines that have impairments submitted to the EPA by states under section 303(d) of the Clean Water Act. It also contains the total lengths of streams, rivers, and canals, total waterbody area, and stream density (stream length per area) from the US Geological Survey's high-resolution National Hydrography Dataset (NHD).This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  1. EnviroAtlas - New York, NY - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  2. EnviroAtlas - Paterson, NJ - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  3. EnviroAtlas - Fresno, CA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  4. EnviroAtlas - Green Bay, WI - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  5. EnviroAtlas - Des Moines, IA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  6. EnviroAtlas - Minneapolis/St. Paul, MN - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  7. EnviroAtlas - Woodbine, IA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  8. EnviroAtlas - Phoenix, AZ - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  9. EnviroAtlas - Pittsburgh, PA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  10. EnviroAtlas - New Bedford, MA - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  11. EnviroAtlas - Milwaukee, WI - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  12. EnviroAtlas - Austin, TX - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  13. Construction of brain atlases based on a multi-center MRI dataset of 2020 Chinese adults

    PubMed Central

    Liang, Peipeng; Shi, Lin; Chen, Nan; Luo, Yishan; Wang, Xing; Liu, Kai; Mok, Vincent CT; Chu, Winnie CW; Wang, Defeng; Li, Kuncheng

    2015-01-01

    Despite the known morphological differences (e.g., brain shape and size) in the brains of populations of different origins (e.g., age and race), the Chinese brain atlas is less studied. In the current study, we developed a statistical brain atlas based on a multi-center high quality magnetic resonance imaging (MRI) dataset of 2020 Chinese adults (18–76 years old). We constructed 12 Chinese brain atlas from the age 20 year to the age 75 at a 5 years interval. New Chinese brain standard space, coordinates, and brain area labels were further defined. The new Chinese brain atlas was validated in brain registration and segmentation. It was found that, as contrast to the MNI152 template, the proposed Chinese atlas showed higher accuracy in hippocampus segmentation and relatively smaller shape deformations during registration. These results indicate that a population-specific time varying brain atlas may be more appropriate for studies involving Chinese populations. PMID:26678304

  14. EnviroAtlas - Cleveland, OH - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  15. EnviroAtlas - Portland, ME - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. EnviroAtlas - Portland, OR - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  17. EnviroAtlas - Durham, NC - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  18. EnviroAtlas - Tampa, FL - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  19. EnviroAtlas - Memphis, TN - Estimated Intersection Density of Walkable Roads

    EPA Pesticide Factsheets

    This EnviroAtlas dataset estimates the intersection density of walkable roads within a 750 meter radius of any given 10 meter pixel in the community. Intersections are defined as any point where 3 or more roads meet and density is calculated using kernel density, where closer intersections are weighted higher than further intersections. Intersection density is highly correlated with walking for transportation. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  20. ATLAS: A High-cadence All-sky Survey System

    NASA Astrophysics Data System (ADS)

    Tonry, J. L.; Denneau, L.; Heinze, A. N.; Stalder, B.; Smith, K. W.; Smartt, S. J.; Stubbs, C. W.; Weiland, H. J.; Rest, A.

    2018-06-01

    Technology has advanced to the point that it is possible to image the entire sky every night and process the data in real time. The sky is hardly static: many interesting phenomena occur, including variable stationary objects such as stars or QSOs, transient stationary objects such as supernovae or M dwarf flares, and moving objects such as asteroids and the stars themselves. Funded by NASA, we have designed and built a sky survey system for the purpose of finding dangerous near-Earth asteroids (NEAs). This system, the “Asteroid Terrestrial-impact Last Alert System” (ATLAS), has been optimized to produce the best survey capability per unit cost, and therefore is an efficient and competitive system for finding potentially hazardous asteroids (PHAs) but also for tracking variables and finding transients. While carrying out its NASA mission, ATLAS now discovers more bright (m < 19) supernovae candidates than any ground based survey, frequently detecting very young explosions due to its 2 day cadence. ATLAS discovered the afterglow of a gamma-ray burst independent of the high energy trigger and has released a variable star catalog of 5 × 106 sources. This is the first of a series of articles describing ATLAS, devoted to the design and performance of the ATLAS system. Subsequent articles will describe in more detail the software, the survey strategy, ATLAS-derived NEA population statistics, transient detections, and the first data release of variable stars and transient light curves.

  1. Breakup of Pangaea and plate kinematics of the central Atlantic and Atlas regions

    NASA Astrophysics Data System (ADS)

    Schettino, Antonio; Turco, Eugenio

    2009-08-01

    A new central Pangaea fit (type A) is proposed for the late Ladinian (230 Ma), together with a plate motions model for the subsequent phases of rifting, continental breakup and initial spreading in the central Atlantic. This model is based on: (1) a reinterpretation of the process of formation of the East Coast Magnetic Anomaly along the eastern margin of North America and the corresponding magnetic anomalies at the conjugate margins of northwest Africa and the Moroccan Meseta; (2) an analysis of major rifting events in the central Atlantic, Atlas and central Mediterranean and (3) a crustal balancing of the stretched margins of North America, Moroccan Meseta and northwest Africa. The process of fragmentation of central Pangaea can be described by three major phases spanning the time interval from the late Ladinian (230 Ma) to the Tithonian (147.7 Ma). During the first phase, from the late Ladinian (230 Ma) to the latest Rhaetian (200 Ma), rifting proceeded along the eastern margin of North America, the northwest African margin and the High, Saharan and Tunisian Atlas, determining the formation of a separate Moroccan microplate at the interface between Gondwana and Laurasia. During the second phase, from the latest Rhaetian (200 Ma) to the late Pliensbachian (185 Ma), oceanic crust started forming between the East Coast and Blake Spur magnetic anomalies, whereas the Morrocan Meseta simply continued to rift away from North America. During this time interval, the Atlas rift reached its maximum extent. Finally, the third phase, encompassing the time interval from the late Pliensbachian (185 Ma) to chron M21 (147.7 Ma), was triggered by the northward jump of the main plate boundary connecting the central Atlantic with the Tethys area. Therefore, as soon as rifting in the Atlas zone ceased, plate motion started along complex fault systems between Morocco and Iberia, whereas a rift/drift transition occurred in the northern segment of the central Atlantic, between Morocco and the conjugate margin of Nova Scotia. The inversion of the Atlas rift and the subsequent formation of the Atlas mountain belt occurred during the Oligocene-early Miocene time interval. In the central Atlantic, this event was associated with higher spreading rates of the ridge segments north of the Atlantis FZ. An estimate of 170 km of dextral offset of Morocco relative to northwest Africa, in the central Atlantic, is required by an analysis of marine magnetic anomalies. Five plate tectonic reconstructions and a computer animation are proposed to illustrate the late Triassic and Jurassic process of breakup of Pangaea in the central Atlantic and Atlas regions.

  2. Development of a High Angular Resolution Diffusion Imaging Human Brain Template

    PubMed Central

    Varentsova, Anna; Zhang, Shengwei; Arfanakis, Konstantinos

    2014-01-01

    Brain diffusion templates contain rich information about the microstructure of the brain, and are used as references in spatial normalization or in the development of brain atlases. The accuracy of diffusion templates constructed based on the diffusion tensor (DT) model is limited in regions with complex neuronal micro-architecture. High angular resolution diffusion imaging (HARDI) overcomes limitations of the DT model and is capable of resolving intravoxel heterogeneity. However, when HARDI is combined with multiple-shot sequences to minimize image artifacts, the scan time becomes inappropriate for human brain imaging. In this work, an artifact-free HARDI template of the human brain was developed from low angular resolution multiple-shot diffusion data. The resulting HARDI template was produced in ICBM-152 space based on Turboprop diffusion data, was shown to resolve complex neuronal micro-architecture in regions with intravoxel heterogeneity, and contained fiber orientation information consistent with known human brain anatomy. PMID:24440528

  3. KSC-2013-4406

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  4. KSC-2013-4431

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a United Launch Alliance Atlas V rocket, with its Centaur second stage atop, stands in the Vertical Integration Facility as preparations continue for lift off of the Tracking and Data Relay Satellite, or TDRS-L. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  5. KSC-2013-4407

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  6. KSC-2013-4415

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  7. KSC-2013-4418

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  8. KSC-2013-4427

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is lifted for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  9. KSC-2013-4410

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  10. KSC-2013-4398

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  11. KSC-2013-4400

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  12. KSC-2013-4423

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support lifting a Centaur second stage for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  13. KSC-2013-4417

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  14. KSC-2013-4411

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  15. KSC-2013-4425

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support lifting a Centaur second stage for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  16. KSC-2013-4408

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, a technician supports lifting of a United Launch Alliance Atlas V rocket in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  17. KSC-2013-4403

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  18. KSC-2013-4416

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket positioned in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  19. KSC-2013-4405

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  20. KSC-2013-4430

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians inspect a Centaur second stage that was just stacked atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  1. KSC-2013-4401

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  2. KSC-2013-4414

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  3. KSC-2013-4424

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, engineers and technicians support lifting a Centaur second stage for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  4. KSC-2013-4419

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported from the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station to Launch Complex 41. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  5. KSC-2013-4399

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians prepare the United Launch Alliance Atlas V rocket for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  6. KSC-2013-4409

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, the first stage of the United Launch Alliance Atlas V rocket is lifted for stacking in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  7. KSC-2013-4426

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Launch Complex 41, a Centaur second stage is lifted for stacking atop a United Launch Alliance Atlas V rocket that will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  8. KSC-2013-4397

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41, a crane is positioned to support stacking of the United Launch Alliance Atlas V rocket that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  9. KSC-05pd2641

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture raises the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  10. KSC-05pd2646

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing enclosing New Horizons awaits further processing upon its arrival atop a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  11. KSC-05pd2644

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - Technicians monitor the fairing enclosing New Horizons as it is lowered onto the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  12. KSC-05pd2647

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing enclosing New Horizons awaits further processing upon its arrival atop a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  13. KSC-05pd2645

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - Technicians monitor the fairing enclosing New Horizons as it is positioned atop a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  14. KSC-05pd2640

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture lifts the fairing enclosing New Horizons to the top of a Lockheed Martin Atlas V launch vehicle at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  15. CBS Genome Atlas Database: a dynamic storage for bioinformatic results and sequence data.

    PubMed

    Hallin, Peter F; Ussery, David W

    2004-12-12

    Currently, new bacterial genomes are being published on a monthly basis. With the growing amount of genome sequence data, there is a demand for a flexible and easy-to-maintain structure for storing sequence data and results from bioinformatic analysis. More than 150 sequenced bacterial genomes are now available, and comparisons of properties for taxonomically similar organisms are not readily available to many biologists. In addition to the most basic information, such as AT content, chromosome length, tRNA count and rRNA count, a large number of more complex calculations are needed to perform detailed comparative genomics. DNA structural calculations like curvature and stacking energy, DNA compositions like base skews, oligo skews and repeats at the local and global level are just a few of the analysis that are presented on the CBS Genome Atlas Web page. Complex analysis, changing methods and frequent addition of new models are factors that require a dynamic database layout. Using basic tools like the GNU Make system, csh, Perl and MySQL, we have created a flexible database environment for storing and maintaining such results for a collection of complete microbial genomes. Currently, these results counts to more than 220 pieces of information. The backbone of this solution consists of a program package written in Perl, which enables administrators to synchronize and update the database content. The MySQL database has been connected to the CBS web-server via PHP4, to present a dynamic web content for users outside the center. This solution is tightly fitted to existing server infrastructure and the solutions proposed here can perhaps serve as a template for other research groups to solve database issues. A web based user interface which is dynamically linked to the Genome Atlas Database can be accessed via www.cbs.dtu.dk/services/GenomeAtlas/. This paper has a supplemental information page which links to the examples presented: www.cbs.dtu.dk/services/GenomeAtlas/suppl/bioinfdatabase.

  16. Large scale digital atlases in neuroscience

    NASA Astrophysics Data System (ADS)

    Hawrylycz, M.; Feng, D.; Lau, C.; Kuan, C.; Miller, J.; Dang, C.; Ng, L.

    2014-03-01

    Imaging in neuroscience has revolutionized our current understanding of brain structure, architecture and increasingly its function. Many characteristics of morphology, cell type, and neuronal circuitry have been elucidated through methods of neuroimaging. Combining this data in a meaningful, standardized, and accessible manner is the scope and goal of the digital brain atlas. Digital brain atlases are used today in neuroscience to characterize the spatial organization of neuronal structures, for planning and guidance during neurosurgery, and as a reference for interpreting other data modalities such as gene expression and connectivity data. The field of digital atlases is extensive and in addition to atlases of the human includes high quality brain atlases of the mouse, rat, rhesus macaque, and other model organisms. Using techniques based on histology, structural and functional magnetic resonance imaging as well as gene expression data, modern digital atlases use probabilistic and multimodal techniques, as well as sophisticated visualization software to form an integrated product. Toward this goal, brain atlases form a common coordinate framework for summarizing, accessing, and organizing this knowledge and will undoubtedly remain a key technology in neuroscience in the future. Since the development of its flagship project of a genome wide image-based atlas of the mouse brain, the Allen Institute for Brain Science has used imaging as a primary data modality for many of its large scale atlas projects. We present an overview of Allen Institute digital atlases in neuroscience, with a focus on the challenges and opportunities for image processing and computation.

  17. Effect of the transverse ligament rupture on the biomechanics of the cervical spine under a compressive loading.

    PubMed

    Mesfar, Wissal; Moglo, Kodjo

    2013-10-01

    In order to diagnosis a transverse ligament rupture in the cervical spine, clinicians normally measure the atlas-dens interval by using CT scan images. However, the impact of this tear on the head and neck complex biomechanics is not widely studied. The transverse ligament plays a very important role in stabilizing the joint and its alteration may have a substantial effect on the whole head and neck complex. A finite element model consisting of bony structures along with cartilage, intervertebral discs and all ligaments was developed based on CT and MRI images. The effect of head weights (compressive load) of 30 N to 57 N was investigated in the cases of intact and ruptured transverse ligament joints. The model was validated based on experimental studies investigating the response of the cervical spine under the extension-flexion moment. The predictions indicate a significant alteration of the kinematics and load distribution at the facet joints of the cervical spine with a transverse ligament tear. The vertebrae flexion, the contact force at the facets joints and the atlas-dens interval increase with the rupture of the transverse ligament and are dependent to the head weight. A transverse ligament tear increases the flexion angle of the head and the vertebrae as well as the atlas-dens interval. The atlas-dens interval reaches a critical value when the compressive loading exceeds 40 N. Supporting the head after an injury should be considered to avoid compression of the spinal cord and permanent neurologic damage. © 2013.

  18. Final Report: High Energy Physics at the Energy Frontier at Louisiana Tech

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sawyer, Lee; Wobisch, Markus; Greenwood, Zeno D.

    The Louisiana Tech University High Energy Physics group has developed a research program aimed at experimentally testing the Standard Model of particle physics and searching for new phenomena through a focused set of analyses in collaboration with the ATLAS experiment at the Large Hadron Collider (LHC) at the CERN laboratory in Geneva. This research program includes involvement in the current operation and maintenance of the ATLAS experiment and full involvement in Phase 1 and Phase 2 upgrades in preparation for future high luminosity (HL-LHC) operation of the LHC. Our focus is solely on the ATLAS experiment at the LHC, withmore » some related detector development and software efforts. We have established important service roles on ATLAS in five major areas: Triggers, especially jet triggers; Data Quality monitoring; grid computing; GPU applications for upgrades; and radiation testing for upgrades. Our physics research is focused on multijet measurements and top quark physics in final states containing tau leptons, which we propose to extend into related searches for new phenomena. Focusing on closely related topics in the jet and top analyses and coordinating these analyses in our group has led to high efficiency and increased visibility inside the ATLAS collaboration and beyond. Based on our work in the DØ experiment in Run II of the Fermilab Tevatron Collider, Louisiana Tech has developed a reputation as one of the leading institutions pursuing jet physics studies. Currently we are applying this expertise to the ATLAS experiment, with several multijet analyses in progress.« less

  19. High performance visual display for HENP detectors

    NASA Astrophysics Data System (ADS)

    McGuigan, Michael; Smith, Gordon; Spiletic, John; Fine, Valeri; Nevski, Pavel

    2001-08-01

    A high end visual display for High Energy Nuclear Physics (HENP) detectors is necessary because of the sheer size and complexity of the detector. For BNL this display will be of special interest because of STAR and ATLAS. To load, rotate, query, and debug simulation code with a modern detector simply takes too long even on a powerful work station. To visualize the HENP detectors with maximal performance we have developed software with the following characteristics. We develop a visual display of HENP detectors on BNL multiprocessor visualization server at multiple level of detail. We work with general and generic detector framework consistent with ROOT, GAUDI etc, to avoid conflicting with the many graphic development groups associated with specific detectors like STAR and ATLAS. We develop advanced OpenGL features such as transparency and polarized stereoscopy. We enable collaborative viewing of detector and events by directly running the analysis in BNL stereoscopic theatre. We construct enhanced interactive control, including the ability to slice, search and mark areas of the detector. We incorporate the ability to make a high quality still image of a view of the detector and the ability to generate animations and a fly through of the detector and output these to MPEG or VRML models. We develop data compression hardware and software so that remote interactive visualization will be possible among dispersed collaborators. We obtain real time visual display for events accumulated during simulations.

  20. Two-stage atlas subset selection in multi-atlas based image segmentation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhao, Tingting, E-mail: tingtingzhao@mednet.ucla.edu; Ruan, Dan, E-mail: druan@mednet.ucla.edu

    2015-06-15

    Purpose: Fast growing access to large databases and cloud stored data presents a unique opportunity for multi-atlas based image segmentation and also presents challenges in heterogeneous atlas quality and computation burden. This work aims to develop a novel two-stage method tailored to the special needs in the face of large atlas collection with varied quality, so that high-accuracy segmentation can be achieved with low computational cost. Methods: An atlas subset selection scheme is proposed to substitute a significant portion of the computationally expensive full-fledged registration in the conventional scheme with a low-cost alternative. More specifically, the authors introduce a two-stagemore » atlas subset selection method. In the first stage, an augmented subset is obtained based on a low-cost registration configuration and a preliminary relevance metric; in the second stage, the subset is further narrowed down to a fusion set of desired size, based on full-fledged registration and a refined relevance metric. An inference model is developed to characterize the relationship between the preliminary and refined relevance metrics, and a proper augmented subset size is derived to ensure that the desired atlases survive the preliminary selection with high probability. Results: The performance of the proposed scheme has been assessed with cross validation based on two clinical datasets consisting of manually segmented prostate and brain magnetic resonance images, respectively. The proposed scheme demonstrates comparable end-to-end segmentation performance as the conventional single-stage selection method, but with significant computation reduction. Compared with the alternative computation reduction method, their scheme improves the mean and medium Dice similarity coefficient value from (0.74, 0.78) to (0.83, 0.85) and from (0.82, 0.84) to (0.95, 0.95) for prostate and corpus callosum segmentation, respectively, with statistical significance. Conclusions: The authors have developed a novel two-stage atlas subset selection scheme for multi-atlas based segmentation. It achieves good segmentation accuracy with significantly reduced computation cost, making it a suitable configuration in the presence of extensive heterogeneous atlases.« less

  1. The Launch of an Atlas/Centaur Launch Vehicle

    NASA Technical Reports Server (NTRS)

    1978-01-01

    The launch of an Atlas/Centaur launch vehicle is shown in this photograph. The Atlas/Centaur, launched on November 13, 1978, carried the High Energy Astronomy Observatory (HEAO)-2 into the required orbit. The second observatory, the HEAO-2 (nicknamed the Einstein Observatory in honor of the centernial of the birth of Albert Einstein) carried the first telescope capable of producing actual photographs of x-ray objects.

  2. The history of Werner Spalteholz's Handatlas der Anatomie des Menschen.

    PubMed

    Williams, D J

    1999-12-01

    Werner Spalteholz's Handatlas der Anatomie des Menschen is one of the most elegantly illustrated anatomical atlases of all time. Originally published in Leipzig as three volumes from 1895 to 1903, the atlas is still widely used and remains highly regarded by many. The atlas was remarkably popular during the first half of the 20th century, especially the English version in North America and the UK. Unfortunately, the original illustrations and printing plates for the work disappeared following the Second World War and their fate remains a mystery. And, in spite of the atlas's popularity, little is known to the men who prepared the artwork for Spalteholz. It is commonly believed that Max Brödel contributed illustrations to the atlas, but a close examination of the work does not confirm this. A century after its inception, Spalteholz's atlas remains a classic milestone in the history of anatomical illustration.

  3. A computational atlas of the hippocampal formation using ex vivo, ultra-high resolution MRI: Application to adaptive segmentation of in vivo MRI.

    PubMed

    Iglesias, Juan Eugenio; Augustinack, Jean C; Nguyen, Khoa; Player, Christopher M; Player, Allison; Wright, Michelle; Roy, Nicole; Frosch, Matthew P; McKee, Ann C; Wald, Lawrence L; Fischl, Bruce; Van Leemput, Koen

    2015-07-15

    Automated analysis of MRI data of the subregions of the hippocampus requires computational atlases built at a higher resolution than those that are typically used in current neuroimaging studies. Here we describe the construction of a statistical atlas of the hippocampal formation at the subregion level using ultra-high resolution, ex vivo MRI. Fifteen autopsy samples were scanned at 0.13 mm isotropic resolution (on average) using customized hardware. The images were manually segmented into 13 different hippocampal substructures using a protocol specifically designed for this study; precise delineations were made possible by the extraordinary resolution of the scans. In addition to the subregions, manual annotations for neighboring structures (e.g., amygdala, cortex) were obtained from a separate dataset of in vivo, T1-weighted MRI scans of the whole brain (1mm resolution). The manual labels from the in vivo and ex vivo data were combined into a single computational atlas of the hippocampal formation with a novel atlas building algorithm based on Bayesian inference. The resulting atlas can be used to automatically segment the hippocampal subregions in structural MRI images, using an algorithm that can analyze multimodal data and adapt to variations in MRI contrast due to differences in acquisition hardware or pulse sequences. The applicability of the atlas, which we are releasing as part of FreeSurfer (version 6.0), is demonstrated with experiments on three different publicly available datasets with different types of MRI contrast. The results show that the atlas and companion segmentation method: 1) can segment T1 and T2 images, as well as their combination, 2) replicate findings on mild cognitive impairment based on high-resolution T2 data, and 3) can discriminate between Alzheimer's disease subjects and elderly controls with 88% accuracy in standard resolution (1mm) T1 data, significantly outperforming the atlas in FreeSurfer version 5.3 (86% accuracy) and classification based on whole hippocampal volume (82% accuracy). Copyright © 2015. Published by Elsevier Inc.

  4. Atlas-based automatic measurements of the morphology of the tibiofemoral joint

    NASA Astrophysics Data System (ADS)

    Brehler, M.; Thawait, G.; Shyr, W.; Ramsay, J.; Siewerdsen, J. H.; Zbijewski, W.

    2017-03-01

    Purpose: Anatomical metrics of the tibiofemoral joint support assessment of joint stability and surgical planning. We propose an automated, atlas-based algorithm to streamline the measurements in 3D images of the joint and reduce userdependence of the metrics arising from manual identification of the anatomical landmarks. Methods: The method is initialized with coarse registrations of a set of atlas images to the fixed input image. The initial registrations are then refined separately for the tibia and femur and the best matching atlas is selected. Finally, the anatomical landmarks of the best matching atlas are transformed onto the input image by deforming a surface model of the atlas to fit the shape of the tibial plateau in the input image (a mesh-to-volume registration). We apply the method to weight-bearing volumetric images of the knee obtained from 23 subjects using an extremity cone-beam CT system. Results of the automated algorithm were compared to an expert radiologist for measurements of Static Alignment (SA), Medial Tibial Slope (MTS) and Lateral Tibial Slope (LTS). Results: Intra-reader variability as high as 10% for LTS and 7% for MTS (ratio of standard deviation to the mean in repeated measurements) was found for expert radiologist, illustrating the potential benefits of an automated approach in improving the precision of the metrics. The proposed method achieved excellent registration of the atlas mesh to the input volumes. The resulting automated measurements yielded high correlations with expert radiologist, as indicated by correlation coefficients of 0.72 for MTS, 0.8 for LTS, and 0.89 for SA. Conclusions: The automated method for measurement of anatomical metrics of the tibiofemoral joint achieves high correlation with expert radiologist without the need for time consuming and error prone manual selection of landmarks.

  5. The Atlases of Vesta derived from Dawn Framing Camera images

    NASA Astrophysics Data System (ADS)

    Roatsch, T.; Kersten, E.; Matz, K.; Preusker, F.; Scholten, F.; Jaumann, R.; Raymond, C. A.; Russell, C. T.

    2013-12-01

    The Dawn Framing Camera acquired during its two HAMO (High Altitude Mapping Orbit) phases in 2011 and 2012 about 6,000 clear filter images with a resolution of about 60 m/pixel. We combined these images in a global ortho-rectified mosaic of Vesta (60 m/pixel resolution). Only very small areas near the northern pole were still in darkness and are missing in the mosaic. The Dawn Framing Camera also acquired about 10,000 high-resolution clear filter images (about 20 m/pixel) of Vesta during its Low Altitude Mapping Orbit (LAMO). Unfortunately, the northern part of Vesta was still in darkness during this phase, good illumination (incidence angle < 70°) was only available for 66.8 % of the surface [1]. We used the LAMO images to calculate another global mosaic of Vesta, this time with 20 m/pixel resolution. Both global mosaics were used to produce atlases of Vesta: a HAMO atlas with 15 tiles at a scale of 1:500,000 and a LAMO atlas with 30 tiles at a scale between 1:200,000 and 1:225,180. The nomenclature used in these atlases is based on names and places historically associated with the Roman goddess Vesta, and is compliant with the rules of the IAU. 65 names for geological features were already approved by the IAU, 39 additional names are currently under review. Selected examples of both atlases will be shown in this presentation. Reference: [1]Roatsch, Th., etal., High-resolution Vesta Low Altitude Mapping Orbit Atlas derived from Dawn Framing Camera images. Planetary and Space Science (2013), http://dx.doi.org/10.1016/j.pss.2013.06.024i

  6. Atlas-based automatic measurements of the morphology of the tibiofemoral joint.

    PubMed

    Brehler, M; Thawait, G; Shyr, W; Ramsay, J; Siewerdsen, J H; Zbijewski, W

    2017-02-11

    Anatomical metrics of the tibiofemoral joint support assessment of joint stability and surgical planning. We propose an automated, atlas-based algorithm to streamline the measurements in 3D images of the joint and reduce user-dependence of the metrics arising from manual identification of the anatomical landmarks. The method is initialized with coarse registrations of a set of atlas images to the fixed input image. The initial registrations are then refined separately for the tibia and femur and the best matching atlas is selected. Finally, the anatomical landmarks of the best matching atlas are transformed onto the input image by deforming a surface model of the atlas to fit the shape of the tibial plateau in the input image (a mesh-to-volume registration). We apply the method to weight-bearing volumetric images of the knee obtained from 23 subjects using an extremity cone-beam CT system. Results of the automated algorithm were compared to an expert radiologist for measurements of Static Alignment (SA), Medial Tibial Slope (MTS) and Lateral Tibial Slope (LTS). Intra-reader variability as high as ~10% for LTS and 7% for MTS (ratio of standard deviation to the mean in repeated measurements) was found for expert radiologist, illustrating the potential benefits of an automated approach in improving the precision of the metrics. The proposed method achieved excellent registration of the atlas mesh to the input volumes. The resulting automated measurements yielded high correlations with expert radiologist, as indicated by correlation coefficients of 0.72 for MTS, 0.8 for LTS, and 0.89 for SA. The automated method for measurement of anatomical metrics of the tibiofemoral joint achieves high correlation with expert radiologist without the need for time consuming and error prone manual selection of landmarks.

  7. Characterization and Management of Mandibular Fractures: Lessons Learned from Iraq and Afghanistan

    DTIC Science & Technology

    2013-03-01

    Anatomic reduction is the goal. In complex fractures, maintain large segments of bone and obtain soft tissue coverage. Atlas Oral Maxillofacial Surg...conflicts of Iraq and Afghanistan. J Oral Maxillofac Surg 2010;68(1):3e7; with permission.) Fig. 2 Complex facial injury with avulsive tissue loss...a point distant from the site of injury Complicated (complex)dfracture with considerable injury to the adjacent soft tissue or adjacent parts, may

  8. Magmatic evolution of the Jbel Boho alkaline complex in the Bou Azzer inlier (Anti-Atlas/Morocco) and its relation to REE mineralization

    NASA Astrophysics Data System (ADS)

    Benaouda, Rachid; Holzheid, Astrid; Schenk, Volker; Badra, Lakhlifi; Ennaciri, Aomar

    2017-05-01

    The Jbel Boho complex (Anti-Atlas/Morocco) is an alkaline magmatic complex that was formed during the Precambrian-Cambrian transition, contemporaneous with the lower early Cambrian dolomite sequence. The complex consists of a volcanic sequence comprising basanites, trachyandesites, trachytes and rhyolites that is intruded by a syenitic pluton. Both the volcanic suite and the pluton are cut by later microsyenitic and rhyolitic dykes. Although all Jbel Boho magmas were probably ultimately derived from the same, intraplate or plume-like source, new geochemical evidence supports the concept of a minimum three principal magma generations having formed the complex. Whereas all volcanic rocks (first generation) are LREE enriched and appear to be formed by fractional crystallization of a mantle-derived magma, resulting in strong negative Eu anomalies in the more evolved rocks associated with low Zr/Hf and Nb/Ta values, the younger syenitic pluton displays almost no negative Eu anomaly and very high Zr/Hf and Nb/Ta. The syenite is considered to be formed by a second generation of melt and likely formed through partial melting of underplated mafic rocks. The syenitic pluton consists of two types of syenitic rocks; olivine syenite and quartz syenite. The presence of quartz and a strong positive Pb anomaly in the quartz syenite contrasts strongly with the negative Pb anomaly in the olivine syenite and suggests the latter results from crustal contamination of the former. The late dyke swarm (third generation of melt) comprises microsyenitic and subalkaline rhyolitic compositions. The strong decrease of the alkali elements, Zr/Hf and Nb/Ta and the high SiO2 contents in the rhyolitic dykes might be the result of mineral fractionation and addition of mineralizing fluids, allowing inter-element fractionation of even highly incompatible HFSE due to the presence of fluorine. The occurrence of fluorite in some volcanic rocks and the Ca-REE-F carbonate mineral synchysite in the dykes with very high LREE contents (Ce ∼720 ppm found in one rhyolitic dyke) suggest the fluorine-rich nature of this system and the role played by addition of mineralizing fluids. The REE mineralization expressed as synchysite-(Ce) is detected in a subalkaline rhyolitic dyke (with ΣLREE = 1750 ppm) associated with quartz, chlorite and occasionally with Fe-oxides. The synchysite mineralization is probably the result of REE transport by acidic hydrothermal fluids as chloride complex and their neutralization during fluid-rock interaction. The major tectonic change from compressive to extensional regime in the late Neoproterozoic induced the emplacement of voluminous volcaniclastic series of the Ediacran Ouarzazate Group. The alkaline, within-plate nature of the Jbel Boho igneous complex implies that this extensional setting continued during the early Cambrian.

  9. Age, temperature and pressure of metamorphism in the Tasriwine Ophiolite Complex, Sirwa, Morocco

    NASA Astrophysics Data System (ADS)

    Samson, S. D.; Inglis, J.; Hefferan, K. P.; Admou, H.; Saquaque, A.

    2013-12-01

    Sm-Nd garnet-whole rock geochronology and phase equilbria modeling have been used to determine the age and conditions of regional metamorphism within the Tasriwine ophiolite complex,Sirwa, Morocco. Pressure and temperature estimates obtained using a NaCaKFMASHT phase diagram (pseudosection) and garnet core and rim compositions predict that garnet growth began at ~0.72GPa and ~615°C and ended at ~0.8GPa and ~640°C. A bulk garnet Sm-Nd age of 645.6 × 1.6 Ma, calculated from a four point isochron that combines whole rock, garnet full dissolution and two successively more aggressive partial dissolutions, provides a precise date for garnet formation and regional metamorphism. The age is nearly 20 million years younger than a previous age estimate of regional metamorphism of 663 × 14 Ma based upon a SHRIMP U-Pb date from rims on zircon from the Irri migmatite. The new data provide further constraints on the age and nature of regional metamorphism in the Anti-Atlas mountains and emphasizes that garnet growth during regional metamorphism may not necessarily coincide with magmatism/anatexis which predominate the signature witnessed by previous U-Pb studies. The ability to couple PT estimates for garnet formation with high precision Sm- Nd geochronology highlights the utility of garnet studies for uncovering the detailed metamorphic history of the Anti-Atlas mountain belt.

  10. Multi-atlas learner fusion: An efficient segmentation approach for large-scale data.

    PubMed

    Asman, Andrew J; Huo, Yuankai; Plassard, Andrew J; Landman, Bennett A

    2015-12-01

    We propose multi-atlas learner fusion (MLF), a framework for rapidly and accurately replicating the highly accurate, yet computationally expensive, multi-atlas segmentation framework based on fusing local learners. In the largest whole-brain multi-atlas study yet reported, multi-atlas segmentations are estimated for a training set of 3464 MR brain images. Using these multi-atlas estimates we (1) estimate a low-dimensional representation for selecting locally appropriate example images, and (2) build AdaBoost learners that map a weak initial segmentation to the multi-atlas segmentation result. Thus, to segment a new target image we project the image into the low-dimensional space, construct a weak initial segmentation, and fuse the trained, locally selected, learners. The MLF framework cuts the runtime on a modern computer from 36 h down to 3-8 min - a 270× speedup - by completely bypassing the need for deformable atlas-target registrations. Additionally, we (1) describe a technique for optimizing the weak initial segmentation and the AdaBoost learning parameters, (2) quantify the ability to replicate the multi-atlas result with mean accuracies approaching the multi-atlas intra-subject reproducibility on a testing set of 380 images, (3) demonstrate significant increases in the reproducibility of intra-subject segmentations when compared to a state-of-the-art multi-atlas framework on a separate reproducibility dataset, (4) show that under the MLF framework the large-scale data model significantly improve the segmentation over the small-scale model under the MLF framework, and (5) indicate that the MLF framework has comparable performance as state-of-the-art multi-atlas segmentation algorithms without using non-local information. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. DoE Early Career Research Program: Final Report: Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farbin, Amir

    2015-07-15

    This is the final report of for DoE Early Career Research Program Grant Titled "Model-Independent Dark-Matter Searches at the ATLAS Experiment and Applications of Many-core Computing to High Energy Physics".

  12. KSC-2013-3786

    NASA Image and Video Library

    2013-11-01

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V launch vehicle, left, and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to the hangar at the Atlas Spaceflight Operations Center on Cape Canaveral Air Force Station for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Jim Grossman

  13. KSC-2013-3782

    NASA Image and Video Library

    2013-11-01

    PORT CANAVERAL, Fla. – Following arrival at Port Canaveral, Fla., the United Launch Alliance Atlas V first stage and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to Cape Canaveral Air Force Station's Atlas Spaceflight Operations Center for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Kim Shiflett

  14. KSC-2013-3781

    NASA Image and Video Library

    2013-11-01

    PORT CANAVERAL, Fla. – Following arrival at Port Canaveral, Fla., the United Launch Alliance Atlas V first stage and Centaur upper stage that will boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit is being transported to Cape Canaveral Air Force Station's Atlas Spaceflight Operations Center for checkout in preparation for launch. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/ Kim Shiflett

  15. KSC-2011-6054

    NASA Image and Video Library

    2011-07-27

    CAPE CANAVERAL, Fla. -- At Space Launch Complex 41, the Juno spacecraft, enclosed in an Atlas payload fairing, nears the top of the Vertical Integration Facility where it will be positioned on top of the Atlas rocket already stacked inside. The spacecraft was prepared for launch in the Astrotech Space Operations' payload processing facility in Titusville, Fla. The fairing will protect the spacecraft from the impact of aerodynamic pressure and heating during ascent and will be jettisoned once the spacecraft is outside the Earth's atmosphere. Juno is scheduled to launch Aug. 5 aboard a United Launch Alliance Atlas V rocket from Cape Canaveral Air Force Station in Florida. The solar-powered spacecraft will orbit Jupiter's poles 33 times to find out more about the gas giant's origins, structure, atmosphere and magnetosphere and investigate the existence of a solid planetary core. For more information, visit www.nasa.gov/juno. Photo credit: NASA/Cory Huston

  16. Lunar Orbiter 4 - Photographic Mission Summary. Volume 1

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Photographic summary report of Lunar Orbiter 4 mission. The fourth of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 22:25 GMT on May 4, 1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final maneuvering and acceleration to the velocity required to maintain the 100-nauticalmile- altitude Earth orbit was controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-burn period required to inject the spacecraft on the cislunar trajectory 20 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the boost trajectory.

  17. Lunar Orbiter 5. Photographic Mission Summary. Volume 1

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Selected photographs and mission summary of Lunar Orbiter 5. The last of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 22:33 GMT on August 1, 1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final maneuvering and acceleration to the velocity required to maintain the 100-nautical-mile-altitude Earth orbit were controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-bum period required to inject the spacecraft on the cislunar trajectory about 33 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the boost trajectory.

  18. KSC-2011-6069

    NASA Image and Video Library

    2011-07-29

    CAPE CANAVERAL, Fla. -- The Atlas V first stage (right) and Centaur upper stage to support the Mars Science Laboratory (MSL) mission enter Cape Canaveral Air Force Station on their way to the Atlas Spaceflight Operations Center in Florida. Between the stages is a Navaho free-flying missile, on display at the station's main gate. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  19. KSC-2011-6067

    NASA Image and Video Library

    2011-07-29

    CAPE CANAVERAL, Fla. -- The Atlas V first stage (right) and Centaur upper stage to support the Mars Science Laboratory (MSL) mission approach the main gate of Cape Canaveral Air Force Station on their way to the Atlas Spaceflight Operations Center in Florida. At the far right is a Navaho free-flying missile, on display at the station's main gate. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  20. KSC-2011-6070

    NASA Image and Video Library

    2011-07-29

    CAPE CANAVERAL, Fla. -- The Atlas V first stage (right) and Centaur upper stage to support the Mars Science Laboratory (MSL) mission make their way onto Cape Canaveral Air Force Station for delivery to the Atlas Spaceflight Operations Center in Florida. At the far left is a Navaho free-flying missile, on display at the station's main gate. MSL's components include a compact car-sized rover, Curiosity, which has 10 science instruments designed to search for evidence on whether Mars has had environments favorable to microbial life, including chemical ingredients for life. The unique rover will use a laser to look inside rocks and release its gasses so that the rover’s spectrometer can analyze and send the data back to Earth. Launch of MSL aboard a United Launch Alliance Atlas V rocket is scheduled for Nov. 25 from Space Launch Complex 41 on Cape Canaveral Air Force Station. For more information, visit http://www.nasa.gov/msl. Photo credit: NASA/Dimitri Gerondidakis

  1. Lunar Orbiter 3 - Photographic Mission Summary

    NASA Technical Reports Server (NTRS)

    1968-01-01

    Systems performance, lunar photography, and launch operations of Lunar Orbiter 3 photographic mission. The third of five Lunar Orbiter spacecraft was successfully launched from Launch Complex 13 at the Air Force Eastern Test Range by an Atlas-Agena launch vehicle at 01:17 GMT on February 5,1967. Tracking data from the Cape Kennedy and Grand Bahama tracking stations were used to control and guide the launch vehicle during Atlas powered flight. The Agena-spacecraft combination was boosted to the proper coast ellipse by the Atlas booster prior to separation. Final 1 maneuvering and acceleration to the velocity required to maintain the 100-nautical-milealtitude Earth orbit was controlled by the preset on-board Agena computer. In addition, the Agena computer determined the maneuver and engine-burn period required to inject the spacecraft on the cislunar trajectory 20 minutes after launch. Tracking data from the downrange stations and the Johannesburg, South Africa station were used to monitor the entire boost trajectory.

  2. Development of 3D Atlas of Metalworking Equipment

    NASA Astrophysics Data System (ADS)

    Yevgenyevna Maslennikova, Olga; Borisovna Nazarova, Olga; Aleksandrovna Chudinova, Yulia

    2018-05-01

    The paper is dedicated to solving the problem of developing innovative educational systems able to train personnel of complex and dangerous manufacturing industries (such as in metallurgy) to control the process not only under regular conditions, but in emergency and pre-emergency situations as well. At that, such educational systems shall transform training of future and current engineers into a professional activity, model both subject matter and social content of their professional labor. Key characteristics of a 3D atlas of equipment as an educational system are given, as it provides immersion of trainees into professional environment. Requirements for such systems are defined (functional, information, software and technical). Stages of development of a 3D atlas of equipment as an automated system are given, allowing one to get closer to yet another problem that of IT specialist training so that they are able to design, implement and deploy such systems.

  3. TDRS-M Sign Photos: T-4 Days Until Launch

    NASA Image and Video Library

    2017-08-14

    A sign just inside the gate to NASA's Kennedy Space Center in Florida notes that in four days an Atlas V rocket is scheduled to launch the agency's Tracking and Data Relay Satellite (TDRS-M). Liftoff atop the Unite Launch Alliance Atlas V rocket is scheduled to take place from Cape Canaveral's Space Launch Complex 41 on Aug. 18, 2017. TDRS-M will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories.

  4. OA-7 Rollout from PHSF to VIF

    NASA Image and Video Library

    2017-03-17

    The Orbital ATK Cygnus pressurized cargo module, enclosed in its payload fairing and secured on a KAMAG transporter, is transported from the Payload Hazardous Servicing Facility at NASA's Kennedy Space Center in Florida to the Space Launch Complex 41 at Cape Canaveral Air Force Station, for mating to the United Launch Alliance (ULA) Atlas V rocket. The Orbital ATK CRS-7 commercial resupply services mission to the International Space Station is scheduled to launch atop the Atlas V from pad 41. Cygnus will deliver 7,600 pounds of supplies, equipment and scientific research materials to the space station.

  5. GOES-S Atlas V Centaur Stage Transport to VIF

    NASA Image and Video Library

    2018-02-08

    The Centaur upper stage that will help launch NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, arrives at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The Centaur will be mated to a United Launch Alliance Atlas V booster. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  6. GOES-S Atlas V Centaur Stage OVI

    NASA Image and Video Library

    2018-02-08

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a crane lifts a Centaur upper stage for mating to a United Launch Alliance Atlas V rocket that will boost NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  7. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, solid rocket boosters (SRBs) have been mated to a United Launch Alliance Atlas V first stage. The SRBs will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  8. GOES-S Atlas V First Stage Booster Lift to Vertical On Stand (LV

    NASA Image and Video Library

    2018-01-31

    A technician adjusts a crane that will lift a United Launch Alliance Atlas V first stage at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The rocket will be positioned on its launcher to boost the Geostationary Operational Environmental Satellite, or GOES-S. It will be the second in a series of four advanced geostationary weather satellites and will significantly improve the detection and observation of environmental phenomena that directly affect public safety. GOES-S is slated to launch March 1, 2018.

  9. KSC-2012-4557

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard rolls to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  10. KSC-2012-4562

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  11. KSC-2012-4564

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  12. KSC-2012-4567

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  13. KSC-2012-4568

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  14. KSC-2012-4566

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  15. KSC-2012-4563

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  16. KSC-2012-4556

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard rolls to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  17. KSC-2012-4565

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard stands at the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  18. KSC-2012-4561

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard rolls to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  19. TDRS-M Spacecraft Lift & Mate

    NASA Image and Video Library

    2017-08-09

    A crane is used to lift the payload fairing containing NASA's Tracking and Data Relay Satellite (TDRS-M) at the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. TDRS-M will be stacked atop the United Launch Alliance Atlas V Centaur upper stage. TDRS-M will be the latest spacecraft destined for the agency's constellation of communications satellites that allows nearly continuous contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. Liftoff atop the ULA Atlas V rocket is scheduled for Aug. 18, 2017.

  20. InSight Atlas V Centaur Stage Prep for Transport

    NASA Image and Video Library

    2018-02-27

    At Vandenberg Air Force Base in California, a cover is installed on a Centaur upper stage in preparation for its transport to Space Launch Complex 3. The Centaur will be mounted atop a United Launch Alliance Atlas V rocket to boost NASA's Interior Exploration using Seismic Investigations, Geodesy and Heat Transport, or InSight, mission to land on Mars. InSight is the first mission to explore the Red Planet's deep interior. It will investigate processes that shaped the rocky planets of the inner solar system including Earth. Liftoff is scheduled for May 5, 2018.

  1. GOES-S Atlas V Centaur Stage OVI

    NASA Image and Video Library

    2018-02-08

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, technicians and engineers monitor progress as a Centaur upper stage is mated to a United Launch Alliance Atlas V rocket that will boost NOAA's Geostationary Operational Environmental Satellite-S, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  2. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is mated to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  3. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is lifted for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  4. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is prepared for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  5. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A crane lifts a solid rocket booster (SRB) for mating to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  6. GOES-S Atlas V First SRB Mate to Booster

    NASA Image and Video Library

    2018-02-01

    A solid rocket booster (SRB) is mated to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  7. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    Technicians and engineers prepare to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage in the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  8. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is prepared for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  9. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is lifted for mating to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  10. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, a solid rocket booster (SRB) is mated to a United Launch Alliance Atlas V first stage. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  11. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, technicians support operations to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage. The SRB will be help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  12. GOES-S Atlas V Last SRB Lift to Booster

    NASA Image and Video Library

    2018-02-07

    At the Vertical Integration Facility at Space Launch Complex 41 at Cape Canaveral Air Force Station in Florida, technicians support operations to mate a solid rocket booster (SRB) to a United Launch Alliance Atlas V first stage. The SRB will help boost NOAA's Geostationary Operational Environmental Satellite, or GOES-S, to orbit. GOES-S is the second in a series of four advanced geostationary weather satellites that will significantly improve the detection and observation of environmental phenomena that directly affect public safety, protection of property and the nation's economic health and prosperity. GOES-S is slated to launch March 1, 2018.

  13. The ATLAS-1 Shuttle mission

    NASA Technical Reports Server (NTRS)

    Torr, Marsha R.; Sullivan, Kathryn D.

    1992-01-01

    The Atmospheric Laboratory for Applications and Science (ATLAS-1) encompasses instruments which will be useful in determining long-term solar variability as well as in forging links to the measurements obtained by other spacecraft for the perturbed middle and upper atmosphere. The simultaneous measurements that will be conducted by ATLAS-1 of stratospheric concentrations of ozone, chlorine monoxide and water vapor, at relatively high latitudes during the northern spring, will be especially timely.

  14. Access and use of the GUDMAP database of genitourinary development.

    PubMed

    Davies, Jamie A; Little, Melissa H; Aronow, Bruce; Armstrong, Jane; Brennan, Jane; Lloyd-MacGilp, Sue; Armit, Chris; Harding, Simon; Piu, Xinjun; Roochun, Yogmatee; Haggarty, Bernard; Houghton, Derek; Davidson, Duncan; Baldock, Richard

    2012-01-01

    The Genitourinary Development Molecular Atlas Project (GUDMAP) aims to document gene expression across time and space in the developing urogenital system of the mouse, and to provide access to a variety of relevant practical and educational resources. Data come from microarray gene expression profiling (from laser-dissected and FACS-sorted samples) and in situ hybridization at both low (whole-mount) and high (section) resolutions. Data are annotated to a published, high-resolution anatomical ontology and can be accessed using a variety of search interfaces. Here, we explain how to run typical queries on the database, by gene or anatomical location, how to view data, how to perform complex queries, and how to submit data.

  15. EnviroAtlas - Percent Stream Buffer Zone As Natural Land Cover for the Conterminous United States

    EPA Pesticide Factsheets

    This EnviroAtlas dataset shows the percentage of land area within a 30 meter buffer zone along the National Hydrography Dataset (NHD) high resolution stream network, and along water bodies such as lakes and ponds that are connected via flow to the streams, that is classified as forest land cover, modified forest land cover, and natural land cover using the 2006 National Land Cover Dataset (NLCD) for each Watershed Boundary Dataset (WBD) 12-digit hydrological unit (HUC) in the conterminous United States. This dataset was produced by the US EPA to support research and online mapping activities related to EnviroAtlas. EnviroAtlas (https://www.epa.gov/enviroatlas) allows the user to interact with a web-based, easy-to-use, mapping application to view and analyze multiple ecosystem services for the contiguous United States. The dataset is available as downloadable data (https://edg.epa.gov/data/Public/ORD/EnviroAtlas) or as an EnviroAtlas map service. Additional descriptive information about each attribute in this dataset can be found in its associated EnviroAtlas Fact Sheet (https://www.epa.gov/enviroatlas/enviroatlas-fact-sheets).

  16. Dealing with difficult deformations: construction of a knowledge-based deformation atlas

    NASA Astrophysics Data System (ADS)

    Thorup, S. S.; Darvann, T. A.; Hermann, N. V.; Larsen, P.; Ólafsdóttir, H.; Paulsen, R. R.; Kane, A. A.; Govier, D.; Lo, L.-J.; Kreiborg, S.; Larsen, R.

    2010-03-01

    Twenty-three Taiwanese infants with unilateral cleft lip and palate (UCLP) were CT-scanned before lip repair at the age of 3 months, and again after lip repair at the age of 12 months. In order to evaluate the surgical result, detailed point correspondence between pre- and post-surgical images was needed. We have previously demonstrated that non-rigid registration using B-splines is able to provide automated determination of point correspondences in populations of infants without cleft lip. However, this type of registration fails when applied to the task of determining the complex deformation from before to after lip closure in infants with UCLP. The purpose of the present work was to show that use of prior information about typical deformations due to lip closure, through the construction of a knowledge-based atlas of deformations, could overcome the problem. Initially, mean volumes (atlases) for the pre- and post-surgical populations, respectively, were automatically constructed by non-rigid registration. An expert placed corresponding landmarks in the cleft area in the two atlases; this provided prior information used to build a knowledge-based deformation atlas. We model the change from pre- to post-surgery using thin-plate spline warping. The registration results are convincing and represent a first move towards an automatic registration method for dealing with difficult deformations due to this type of surgery.

  17. ATLAS of Biochemistry: A Repository of All Possible Biochemical Reactions for Synthetic Biology and Metabolic Engineering Studies.

    PubMed

    Hadadi, Noushin; Hafner, Jasmin; Shajkofci, Adrian; Zisaki, Aikaterini; Hatzimanikatis, Vassily

    2016-10-21

    Because the complexity of metabolism cannot be intuitively understood or analyzed, computational methods are indispensable for studying biochemistry and deepening our understanding of cellular metabolism to promote new discoveries. We used the computational framework BNICE.ch along with cheminformatic tools to assemble the whole theoretical reactome from the known metabolome through expansion of the known biochemistry presented in the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. We constructed the ATLAS of Biochemistry, a database of all theoretical biochemical reactions based on known biochemical principles and compounds. ATLAS includes more than 130 000 hypothetical enzymatic reactions that connect two or more KEGG metabolites through novel enzymatic reactions that have never been reported to occur in living organisms. Moreover, ATLAS reactions integrate 42% of KEGG metabolites that are not currently present in any KEGG reaction into one or more novel enzymatic reactions. The generated repository of information is organized in a Web-based database ( http://lcsb-databases.epfl.ch/atlas/ ) that allows the user to search for all possible routes from any substrate compound to any product. The resulting pathways involve known and novel enzymatic steps that may indicate unidentified enzymatic activities and provide potential targets for protein engineering. Our approach of introducing novel biochemistry into pathway design and associated databases will be important for synthetic biology and metabolic engineering.

  18. Piecewise Delamination Drives Uplift in the Atlas Mountains Region of Morocco

    NASA Astrophysics Data System (ADS)

    Bezada, M. J.; Humphreys, E.; Martin Davila, J.; mimoun, H.; Josep, G.; Palomeras, I.

    2013-12-01

    The elevation of the intra-continental Atlas Mountains of Morocco and surrounding regions requires a mantle component of buoyancy, and there is consensus that this buoyancy results from an abnormally thin lithosphere. Lithospheric delamination under the Atlas Mountains and thermal erosion caused by upwelling mantle have each been suggested as thinning mechanisms. We use seismic tomography to image the upper mantle of Morocco by inverting teleseimic p-wave delay times, complemented with local delays, recorded on a dense array of stations in the Iberian peninsula and Morocco. A surface wave model provides constraint on the shallower layers. We determine the geometry of lithospheric cavities and mantle upwelling beneath the Middle Atlas and central High Atlas, and image delaminated lithosphere at ~400 km beneath the Middle Atlas. We propose discontinuous delamination of an intrinsically unstable Atlas lithosphere, enabled by the presence of anomalously hot mantle, as a mechanism for producing the imaged structures. The Atlas lithosphere was made unstable by a combination of tectonic shortening and eclogite loading during Mesozoic rifting and Cenozoic magmatism. The presence of hot mantle, sourced from regional upwellings in northern Africa or the Canary Islands, enabled the mobilization of this lithosphere. Flow around the retreating Alboran slab focused upwelling mantle under the Middle Atlas, where we image the most recent delamination. The Atlas Mountains of Morocco stand as an example of mantle-generated uplift and large-scale lithospheric loss in a mildly contractional orogen.

  19. Quality of leadership in multidisciplinary cancer tumor boards: development and evaluation of a leadership assessment instrument (ATLAS).

    PubMed

    Jalil, Rozh; Soukup, Tayana; Akhter, Waseem; Sevdalis, Nick; Green, James S A

    2018-03-03

    High-quality leadership and chairing skills are vital for good performance in multidisciplinary tumor boards (MTBs), but no instruments currently exist for assessing and improving these skills. To construct and validate a robust instrument for assessment of MTB leading and chairing skills. We developed an observational MTB leadership assessment instrument (ATLAS). ATLAS includes 12 domains that assess the leadership and chairing skills of the MTB chairperson. ATLAS has gone through a rigorous process of refinement and content validation prior to use to assess the MTB lead by two urological surgeons (blinded to each other) in 7 real-live (n = 286 cases) and 10 video-recorded (n = 131 cases) MTBs. ATLAS domains were analyzed via descriptive statistics. Instrument content was evaluated for validity using the content validation index (CVI). Intraclass correlation coefficients (ICCs) were used to assess inter-observer reliability. Instrument refining resulted in ATLAS including the following 12 domains: time management, communication, encouraging contribution, ability to summarize, ensuring all patients have treatment plan, case prioritization, keeping meeting focused, facilitate discussion, conflict management, leadership, creating good working atmosphere, and recruitment for clinical trials. CVI was acceptable and inter-rater agreement adequate to high for all domains. Agreement was somewhat higher in real-time MTBs compared to video ratings. Concurrent validation evidence was derived via positive and significant correlations between ATLAS and an established validated brief MTB leadership assessment scale. ATLAS is an observational assessment instrument that can be reliably used for assessing leadership and chairing skills in cancer MTBs (both live and video-recorded). The ability to assess and feedback on team leader performance provides the ground for promotion of good practice and continuing professional development of tumor board leaders.

  20. Scaling up ATLAS Event Service to production levels on opportunistic computing platforms

    NASA Astrophysics Data System (ADS)

    Benjamin, D.; Caballero, J.; Ernst, M.; Guan, W.; Hover, J.; Lesny, D.; Maeno, T.; Nilsson, P.; Tsulaia, V.; van Gemmeren, P.; Vaniachine, A.; Wang, F.; Wenaus, T.; ATLAS Collaboration

    2016-10-01

    Continued growth in public cloud and HPC resources is on track to exceed the dedicated resources available for ATLAS on the WLCG. Examples of such platforms are Amazon AWS EC2 Spot Instances, Edison Cray XC30 supercomputer, backfill at Tier 2 and Tier 3 sites, opportunistic resources at the Open Science Grid (OSG), and ATLAS High Level Trigger farm between the data taking periods. Because of specific aspects of opportunistic resources such as preemptive job scheduling and data I/O, their efficient usage requires workflow innovations provided by the ATLAS Event Service. Thanks to the finer granularity of the Event Service data processing workflow, the opportunistic resources are used more efficiently. We report on our progress in scaling opportunistic resource usage to double-digit levels in ATLAS production.

  1. Australasian Gastrointestinal Trials Group (AGITG) Contouring Atlas and Planning Guidelines for Intensity-Modulated Radiotherapy in Anal Cancer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ng, Michael, E-mail: mng@radoncvic.com.au; Leong, Trevor; University of Melbourne

    2012-08-01

    Purpose: To develop a high-resolution target volume atlas with intensity-modulated radiotherapy (IMRT) planning guidelines for the conformal treatment of anal cancer. Methods and Materials: A draft contouring atlas and planning guidelines for anal cancer IMRT were prepared at the Australasian Gastrointestinal Trials Group (AGITG) annual meeting in September 2010. An expert panel of radiation oncologists contoured an anal cancer case to generate discussion on recommendations regarding target definition for gross disease, elective nodal volumes, and organs at risk (OARs). Clinical target volume (CTV) and planning target volume (PTV) margins, dose fractionation, and other IMRT-specific issues were also addressed. A steeringmore » committee produced the final consensus guidelines. Results: Detailed contouring and planning guidelines and a high-resolution atlas are provided. Gross tumor and elective target volumes are described and pictorially depicted. All elective regions should be routinely contoured for all disease stages, with the possible exception of the inguinal and high pelvic nodes for select, early-stage T1N0. A 20-mm CTV margin for the primary, 10- to 20-mm CTV margin for involved nodes and a 7-mm CTV margin for the elective pelvic nodal groups are recommended, while respecting anatomical boundaries. A 5- to 10-mm PTV margin is suggested. When using a simultaneous integrated boost technique, a dose of 54 Gy in 30 fractions to gross disease and 45 Gy to elective nodes with chemotherapy is appropriate. Guidelines are provided for OAR delineation. Conclusion: These consensus planning guidelines and high-resolution atlas complement the existing Radiation Therapy Oncology Group (RTOG) elective nodal ano-rectal atlas and provide additional anatomic, clinical, and technical instructions to guide radiation oncologists in the planning and delivery of IMRT for anal cancer.« less

  2. KSC-2013-4402

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  3. KSC-2013-4413

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, a technician support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  4. KSC-2013-4420

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – The United Launch Alliance Centaur second stage that will help boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft into orbit arrives at Cape Canaveral Air Force Station's Launch Complex 41. It will be lifted and mounted atop the Atlas V first stage already in position inside the Vertical Integration Facility. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  5. KSC-2013-4412

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  6. KSC-2013-4404

    NASA Image and Video Library

    2013-12-13

    CAPE CANAVERAL, Fla. – At Cape Canaveral Air Force Station, engineers and technicians support lifting the first stage of the United Launch Alliance Atlas V rocket during stacking operations in the Vertical Integration Facility at Launch Complex 41. The vehicle will be used to boost the Tracking and Data Relay Satellite, or TDRS-L, spacecraft to orbit. TDRS-L is the second of three next-generation satellites designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop an Atlas V rocket in January 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay service to missions such as the Hubble Space Telescope and International Space Station. For more information, visit: http://www.nasa.gov/content/tracking-and-data-relay-satellite-tdrs/ Photo credit: NASA/Charisse Nahser

  7. TDRS-L spacecraft lift to mate on Atlas V

    NASA Image and Video Library

    2014-01-13

    CAPE CANAVERAL, Fla. – Encapsulated in its payload fairing, NASA's Tracking and Data Relay Satellite, or TDRS-L, spacecraft arrives at Cape Canaveral Air Force Station's Vertical Integration Facility at Launch Complex 41. The TDRS-L satellite will be a part of the second of three next-generation spacecraft designed to ensure vital operational continuity for the NASA Space Network. It is scheduled to launch from Cape Canaveral's Space Launch Complex 41 atop a United Launch Alliance Atlas V rocket on Jan. 23, 2014. The current Tracking and Data Relay Satellite system consists of eight in-orbit satellites distributed to provide near continuous information relay contact with orbiting spacecraft ranging from the International Space Station and Hubble Space Telescope to the array of scientific observatories. For more information, visit: http://www.nasa.gov/mission_pages/tdrs/home/index.html Photo credit: NASA/Dimitri Gerondidakis

  8. Analysis of The Surface Radiative Budget Using ATLAS Data for San Juan, Puerto Rico

    NASA Technical Reports Server (NTRS)

    Luvall, Jeffrey C.; Rickman, D. L.; Gonzalez, J.; Comarazamy, Daniel; Picon, Ana

    2007-01-01

    The additional beating of the air over the city is the result of the replacement of naturally vegetated surfaces with those composed of asphalt, concrete, rooftops and other man-made materials. The temperatures of these artificial surfaces can be 20 to 40 C higher than vegetated surfaces. This produces a dome of elevated air temperatures 5 to 8 C greater over the city, compared to the air temperatures over adjacent rural areas. Urban landscapes are a complex mixture of vegetated and nonvegetated surfaces. It is difficult to take enough temperature measurements over a large city area to characterize the complexity of urban radiant surface temperature variability. The NASA Airborne Thermal and Land Applications Sensor (ATLAS) operates in the visual and IR bands was used in February 2004 to collect data from San Juan, Puerto Rico with the main objective of investigating the Urban Heat Island (UHI) in tropical cities.

  9. KSC-05pd2638

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - The fairing lifting fixture is lowered toward the nose of the fairing enclosing New Horizons upon its arrival at the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. A Lockheed Martin Atlas V launch vehicle stands ready to receive it in the background. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  10. KSC-05pd2643

    NASA Image and Video Library

    2005-12-17

    KENNEDY SPACE CENTER, FLA. - InDyne employee Mic Miracle captures on video the arrival of the fairing enclosing New Horizons at the top of a Lockheed Martin Atlas V launch vehicle in the Vertical Integration Facility at Complex 41 on Cape Canaveral Air Force Station. New Horizons carries seven scientific instruments that will characterize the global geology and geomorphology of Pluto and its moon Charon, map their surface compositions and temperatures, and examine Pluto's complex atmosphere. After that, flybys of Kuiper Belt objects from even farther in the solar system may be undertaken in an extended mission. New Horizons is the first mission in NASA's New Frontiers program of medium-class planetary missions. The spacecraft, designed for NASA by the Johns Hopkins University Applied Physics Laboratory in Laurel, Md., will launch aboard a Lockheed Martin Atlas V rocket and fly by Pluto and Charon as early as summer 2015.

  11. Microallopatry caused strong diversification in Buthus scorpions (Scorpiones: Buthidae) in the Atlas Mountains (NW Africa).

    PubMed

    Habel, Jan C; Husemann, Martin; Schmitt, Thomas; Zachos, Frank E; Honnen, Ann-Christin; Petersen, Britt; Parmakelis, Aristeidis; Stathi, Iasmi

    2012-01-01

    The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale.

  12. Microallopatry Caused Strong Diversification in Buthus scorpions (Scorpiones: Buthidae) in the Atlas Mountains (NW Africa)

    PubMed Central

    Habel, Jan C.; Husemann, Martin; Schmitt, Thomas; Zachos, Frank E.; Honnen, Ann-Christin; Petersen, Britt; Parmakelis, Aristeidis; Stathi, Iasmi

    2012-01-01

    The immense biodiversity of the Atlas Mountains in North Africa might be the result of high rates of microallopatry caused by mountain barriers surpassing 4000 meters leading to patchy habitat distributions. We test the influence of geographic structures on the phylogenetic patterns among Buthus scorpions using mtDNA sequences. We sampled 91 individuals of the genus Buthus from 51 locations scattered around the Atlas Mountains (Antiatlas, High Atlas, Middle Atlas and Jebel Sahro). We sequenced 452 bp of the Cytochrome Oxidase I gene which proved to be highly variable within and among Buthus species. Our phylogenetic analysis yielded 12 distinct genetic groups one of which comprised three subgroups mostly in accordance with the orographic structure of the mountain systems. Main clades overlap with each other, while subclades are distributed parapatrically. Geographic structures likely acted as long-term barriers among populations causing restriction of gene flow and allowing for strong genetic differentiation. Thus, genetic structure and geographical distribution of genetic (sub)clusters follow the classical theory of allopatric differentiation where distinct groups evolve without range overlap until reproductive isolation and ecological differentiation has built up. Philopatry and low dispersal ability of Buthus scorpions are the likely causes for the observed strong genetic differentiation at this small geographic scale. PMID:22383951

  13. Spectral atlases of the Sun from 3980 to 7100 Å at the center and at the limb

    NASA Astrophysics Data System (ADS)

    Fathivavsari, H.; Ajabshirizadeh, A.; Koutchmy, S.

    2014-10-01

    In this work, we present digital and graphical atlases of spectra of both the solar disk-center and of the limb near the Solar poles using data taken at the UTS-IAP & RIAAM (the University of Tabriz Siderostat, telescope and spectrograph jointly developed with the Institut d'Astrophysique de Paris and Research Institute for Astronomy and Astrophysics of Maragha). High resolution and high signal-to-noise ratio (SNR) CCD-slit spectra of the sun for 2 different parts of the disk, namely for μ=1.0 (solar center) & for μ=0.3 (solar limb) are provided and discussed. While there are several spectral atlases of the solar disk-center, this is the first spectral atlas ever produced for the solar limb at this spectral range. The resolution of the spectra is about R˜70 000 (Δ λ˜0.09 Å) with the signal-to-noise ratio (SNR) of 400-600. The full atlas covers the 3980 to 7100 Å spectral regions and contains 44 pages with three partial spectra of the solar spectrum put on each page to make it compact. The difference spectrum of the normalized solar disk-center and the solar limb is also included in the graphic presentation of the atlas to show the difference of line profiles, including far wings. The identification of the most significant solar lines is included in the graphic presentation of the atlas. Telluric lines are producing a definite signature on the difference spectra which is easy to notice. At the end of this paper we present only two sample pages of the whole atlas while the graphic presentation of the whole atlas along with its ASCII file can be accessed via the ftp server of the CDS in Strasbourg via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via this link: http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/other/ApSS.

  14. Atlas-based head modeling and spatial normalization for high-density diffuse optical tomography: in vivo validation against fMRI.

    PubMed

    Ferradal, Silvina L; Eggebrecht, Adam T; Hassanpour, Mahlega; Snyder, Abraham Z; Culver, Joseph P

    2014-01-15

    Diffuse optical imaging (DOI) is increasingly becoming a valuable neuroimaging tool when fMRI is precluded. Recent developments in high-density diffuse optical tomography (HD-DOT) overcome previous limitations of sparse DOI systems, providing improved image quality and brain specificity. These improvements in instrumentation prompt the need for advancements in both i) realistic forward light modeling for accurate HD-DOT image reconstruction, and ii) spatial normalization for voxel-wise comparisons across subjects. Individualized forward light models derived from subject-specific anatomical images provide the optimal inverse solutions, but such modeling may not be feasible in all situations. In the absence of subject-specific anatomical images, atlas-based head models registered to the subject's head using cranial fiducials provide an alternative solution. In addition, a standard atlas is attractive because it defines a common coordinate space in which to compare results across subjects. The question therefore arises as to whether atlas-based forward light modeling ensures adequate HD-DOT image quality at the individual and group level. Herein, we demonstrate the feasibility of using atlas-based forward light modeling and spatial normalization methods. Both techniques are validated using subject-matched HD-DOT and fMRI data sets for visual evoked responses measured in five healthy adult subjects. HD-DOT reconstructions obtained with the registered atlas anatomy (i.e. atlas DOT) had an average localization error of 2.7mm relative to reconstructions obtained with the subject-specific anatomical images (i.e. subject-MRI DOT), and 6.6mm relative to fMRI data. At the group level, the localization error of atlas DOT reconstruction was 4.2mm relative to subject-MRI DOT reconstruction, and 6.1mm relative to fMRI. These results show that atlas-based image reconstruction provides a viable approach to individual head modeling for HD-DOT when anatomical imaging is not available. Copyright © 2013. Published by Elsevier Inc.

  15. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data

    PubMed Central

    James, G. Andrew; Hazaroglu, Onder; Bush, Keith A.

    2015-01-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI’s translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants’ functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group’s mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI= 0.72–0.85) than with the Random atlases (JI=0.59–0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task (r=0.75–0.80) than the Random atlases (r=0.64–0.72), further validating their utility. We expected regions governing higher-order cognition (such as frontal and anterior temporal lobes) to show greatest difference between Task and Rest atlases; contrary to expectations, these areas had greatest similarity between atlases. Our findings indicate that atlases derived from parcellation of task-based and resting-state fMRI data are highly comparable, and existing resting-state atlases are suitable for task-based analyses. We introduce an anatomically labeled fMRI-derived whole-brain human atlas for future Cognitive Connectome analyses. PMID:26523655

  16. A human brain atlas derived via n-cut parcellation of resting-state and task-based fMRI data.

    PubMed

    James, George Andrew; Hazaroglu, Onder; Bush, Keith A

    2016-02-01

    The growth of functional MRI has led to development of human brain atlases derived by parcellating resting-state connectivity patterns into functionally independent regions of interest (ROIs). All functional atlases to date have been derived from resting-state fMRI data. But given that functional connectivity between regions varies with task, we hypothesized that an atlas incorporating both resting-state and task-based fMRI data would produce an atlas with finer characterization of task-relevant regions than an atlas derived from resting-state alone. To test this hypothesis, we derived parcellation atlases from twenty-nine healthy adult participants enrolled in the Cognitive Connectome project, an initiative to improve functional MRI's translation into clinical decision-making by mapping normative variance in brain-behavior relationships. Participants underwent resting-state and task-based fMRI spanning nine cognitive domains: motor, visuospatial, attention, language, memory, affective processing, decision-making, working memory, and executive function. Spatially constrained n-cut parcellation derived brain atlases using (1) all participants' functional data (Task) or (2) a single resting-state scan (Rest). An atlas was also derived from random parcellation for comparison purposes (Random). Two methods were compared: (1) a parcellation applied to the group's mean edge weights (mean), and (2) a two-stage approach with parcellation of individual edge weights followed by parcellation of mean binarized edges (two-stage). The resulting Task and Rest atlases had significantly greater similarity with each other (mean Jaccard indices JI=0.72-0.85) than with the Random atlases (JI=0.59-0.63; all p<0.001 after Bonferroni correction). Task and Rest atlas similarity was greatest for the two-stage method (JI=0.85), which has been shown as more robust than the mean method; these atlases also better reproduced voxelwise seed maps of the left dorsolateral prefrontal cortex during rest and performing the n-back working memory task (r=0.75-0.80) than the Random atlases (r=0.64-0.72), further validating their utility. We expected regions governing higher-order cognition (such as frontal and anterior temporal lobes) to show greatest difference between Task and Rest atlases; contrary to expectations, these areas had greatest similarity between atlases. Our findings indicate that atlases derived from parcellation of task-based and resting-state fMRI data are highly comparable, and existing resting-state atlases are suitable for task-based analyses. We introduce an anatomically labeled fMRI-derived whole-brain human atlas for future Cognitive Connectome analyses. Copyright © 2015 Elsevier Inc. All rights reserved.

  17. Multi-atlas pancreas segmentation: Atlas selection based on vessel structure.

    PubMed

    Karasawa, Ken'ichi; Oda, Masahiro; Kitasaka, Takayuki; Misawa, Kazunari; Fujiwara, Michitaka; Chu, Chengwen; Zheng, Guoyan; Rueckert, Daniel; Mori, Kensaku

    2017-07-01

    Automated organ segmentation from medical images is an indispensable component for clinical applications such as computer-aided diagnosis (CAD) and computer-assisted surgery (CAS). We utilize a multi-atlas segmentation scheme, which has recently been used in different approaches in the literature to achieve more accurate and robust segmentation of anatomical structures in computed tomography (CT) volume data. Among abdominal organs, the pancreas has large inter-patient variability in its position, size and shape. Moreover, the CT intensity of the pancreas closely resembles adjacent tissues, rendering its segmentation a challenging task. Due to this, conventional intensity-based atlas selection for pancreas segmentation often fails to select atlases that are similar in pancreas position and shape to those of the unlabeled target volume. In this paper, we propose a new atlas selection strategy based on vessel structure around the pancreatic tissue and demonstrate its application to a multi-atlas pancreas segmentation. Our method utilizes vessel structure around the pancreas to select atlases with high pancreatic resemblance to the unlabeled volume. Also, we investigate two types of applications of the vessel structure information to the atlas selection. Our segmentations were evaluated on 150 abdominal contrast-enhanced CT volumes. The experimental results showed that our approach can segment the pancreas with an average Jaccard index of 66.3% and an average Dice overlap coefficient of 78.5%. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. TU-AB-BRA-02: An Efficient Atlas-Based Synthetic CT Generation Method

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Han, X

    2016-06-15

    Purpose: A major obstacle for MR-only radiotherapy is the need to generate an accurate synthetic CT (sCT) from MR image(s) of a patient for the purposes of dose calculation and DRR generation. We propose here an accurate and efficient atlas-based sCT generation method, which has a computation speed largely independent of the number of atlases used. Methods: Atlas-based sCT generation requires a set of atlases with co-registered CT and MR images. Unlike existing methods that align each atlas to the new patient independently, we first create an average atlas and pre-align every atlas to the average atlas space. When amore » new patient arrives, we compute only one deformable image registration to align the patient MR image to the average atlas, which indirectly aligns the patient to all pre-aligned atlases. A patch-based non-local weighted fusion is performed in the average atlas space to generate the sCT for the patient, which is then warped back to the original patient space. We further adapt a PatchMatch algorithm that can quickly find top matches between patches of the patient image and all atlas images, which makes the patch fusion step also independent of the number of atlases used. Results: Nineteen brain tumour patients with both CT and T1-weighted MR images are used as testing data and a leave-one-out validation is performed. Each sCT generated is compared against the original CT image of the same patient on a voxel-by-voxel basis. The proposed method produces a mean absolute error (MAE) of 98.6±26.9 HU overall. The accuracy is comparable with a conventional implementation scheme, but the computation time is reduced from over an hour to four minutes. Conclusion: An average atlas space patch fusion approach can produce highly accurate sCT estimations very efficiently. Further validation on dose computation accuracy and using a larger patient cohort is warranted. The author is a full time employee of Elekta, Inc.« less

  19. MA-9 [FAITH 7] SITS ON LAUNCH COMPLEX 14 AWAITING LIFTOFF

    NASA Technical Reports Server (NTRS)

    1963-01-01

    MA-9 [FAITH 7] SITS ON LAUNCH COMPLEX 14 AWAITING LIFTOFF LOC-63C-1410.01 LOC-63C-1410.1, P-06450-A, ARCHIVE-04040 Pre-launch: Mercury-Atlas 9 stands on Pad 14 at Cape Canaveral ready for launch. Lift-off occurred at 8:04 a.m. EST, two and one half hours after Astronaut L. Gordon Cooper was inserted into the spacecraft he named FAITH 7. NASA/Mercury Complex 14, CCMTA, Test 125.

  20. KSC-2013-1226

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  1. KSC-2013-1234

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  2. KSC-2013-1238

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  3. KSC-2013-1230

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  4. KSC-2013-1217

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves from the Vertical Integration Facility to the launch pad. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  5. KSC-2013-1219

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. . Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  6. KSC-2013-1228

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  7. KSC-2013-1221

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  8. KSC-2013-1239

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  9. KSC-2013-1232

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  10. KSC-2013-1236

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  11. KSC-2013-1223

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  12. KSC-2013-1235

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  13. KSC-2013-1222

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  14. KSC-2013-1227

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  15. KSC-2013-1218

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. . Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  16. KSC-2013-1220

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, moves toward the launch pad after leaving the Vertical Integration Facility. . Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  17. KSC-2013-1225

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  18. KSC-2013-1237

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, stands at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  19. KSC-2013-1224

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  20. KSC-2013-1229

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, nears the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  1. KSC-2013-1231

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  2. KSC-2013-1233

    NASA Image and Video Library

    2013-01-29

    CAPE CANAVERAL, Fla. -- At Cape Canaveral Air Force Station's Space Launch Complex 41, the United Launch Alliance Atlas V rocket set to carry NASA's Tracking and Data Relay Satellite, TDRS-K, arrives at the launch pad after leaving the Vertical Integration Facility. Liftoff for the TDRS-K is planned for Jan. 30, 2013. The TDRS-K spacecraft is part of the next-generation series in the Tracking and Data Relay Satellite System, a constellation of space-based communication satellites providing tracking, telemetry, command and high-bandwidth data return services. For more information, visit http://www.nasa.gov/mission_pages/tdrs/index.html Photo credit: NASA/Kim Shiflett

  3. Imaging the continental mantle beneath Iberia and Northern Morocco: the contribution of the Topo-Iberia project.

    NASA Astrophysics Data System (ADS)

    Diaz, Jordi

    2013-04-01

    One of the key assets of the Topo-Iberia research program, aiming to unravel the complex structure and mantle processes in the area of interaction between the African and European continental plates, has been the deploying of a technological observational platform, named IberArray, to provide new seismological, magnetotelluric and geodetical data with unprecedented resolution and coverage. Topo-Iberia has also benefited from the interaction with subsequent projects investigating the same area, as the USA Picasso, the French Pyrope or the Portuguese Wilas. This interaction includes sharing the available data to better assess the key geological questions. This contribution aims to present the current state of the most significant scientific investigations concerning the lithosphere-asthenosphere system beneath Iberia and Northern Morocco which are arising from the data acquired using the Iberarray platform. The area so far investigated extends from the Variscan Central Iberian Massif in the North to the border of the Sahara Platform in the South and includes areas of complex and still not completely understood geodynamics, as the Alboran domain or the Atlas Mountains. SKS splitting analysis clearly image this complexity; the fast polarization directions (FPD) beneath the Betics-Alboran show a spectacular rotation along the Gibraltar arc following the curvature of the Rif-Betic chain. Beneath the High Atlas and SW Iberia, there are a very significant number of high quality events without evidence for anisotropy, suggesting the presence of a large vertical component of flow in the upper mantle. These observations allow inferring a model of mantle flow at regional scale. New body wave tomographic images have confirmed the presence of a high-velocity slab beneath the Gibraltar Arc and allowed to define more precisely its geometry, appearing as a near-vertical feature extending from 50-75 km to about 600 km. Magnetotelluric profiles acquired using broad-band and long-period instrumentation along different N-S profiles from North Iberia to the Atlas have also provided relevant information along a 1500 km long N-S lithospheric transect. Receiver functions have revealed large crustal thickness variations, including a crustal root beneath the Rif not clearly documented previously. Beneath Iberia, the Variscan domain shows a quite uniform Moho depth, but the areas affected by the Alpine orogeny show significant variations, consistent with the results arising from ambient noise interferometry. Moving to the base of the upper mantle, the geometry of the 410-km and 660-km upper mantle discontinuities have been investigated using novel cross-correlation/stacking techniques, which have allowed to obtain a detailed map of the transition zone thickness variations.

  4. The INIA19 Template and NeuroMaps Atlas for Primate Brain Image Parcellation and Spatial Normalization

    PubMed Central

    Rohlfing, Torsten; Kroenke, Christopher D.; Sullivan, Edith V.; Dubach, Mark F.; Bowden, Douglas M.; Grant, Kathleen A.; Pfefferbaum, Adolf

    2012-01-01

    The INIA19 is a new, high-quality template for imaging-based studies of non-human primate brains, created from high-resolution, T1-weighted magnetic resonance (MR) images of 19 rhesus macaque (Macaca mulatta) animals. Combined with the comprehensive cortical and sub-cortical label map of the NeuroMaps atlas, the INIA19 is equally suitable for studies requiring both spatial normalization and atlas label propagation. Population-averaged template images are provided for both the brain and the whole head, to allow alignment of the atlas with both skull-stripped and unstripped data, and thus to facilitate its use for skull stripping of new images. This article describes the construction of the template using freely available software tools, as well as the template itself, which is being made available to the scientific community (http://nitrc.org/projects/inia19/). PMID:23230398

  5. Search for Dark Matter in events with a hight- pT photon and high missing transverse momentum in ATLAS

    NASA Astrophysics Data System (ADS)

    Ratti, M. G.

    2016-01-01

    We present the results of a search for new particles in events with a high-pT photon and high missing transverse momentum with the ATLAS experiment at the LHC. The analysis is performed on the data collected by ATLAS at a centre of mass energy of 8TeV and corresponding to a total integrated luminosity of 20.3 fb-1 . No excess has been found with respect to the Standard Model expectation. A model-independent upper limit on the fiducial cross section for the production of events with a photon and large missing transverse momentum is set. Exclusion limits on the direct pair production of dark matter candidates are presented.

  6. Task Management in the New ATLAS Production System

    NASA Astrophysics Data System (ADS)

    De, K.; Golubkov, D.; Klimentov, A.; Potekhin, M.; Vaniachine, A.; Atlas Collaboration

    2014-06-01

    This document describes the design of the new Production System of the ATLAS experiment at the LHC [1]. The Production System is the top level workflow manager which translates physicists' needs for production level processing and analysis into actual workflows executed across over a hundred Grid sites used globally by ATLAS. As the production workload increased in volume and complexity in recent years (the ATLAS production tasks count is above one million, with each task containing hundreds or thousands of jobs) there is a need to upgrade the Production System to meet the challenging requirements of the next LHC run while minimizing the operating costs. In the new design, the main subsystems are the Database Engine for Tasks (DEFT) and the Job Execution and Definition Interface (JEDI). Based on users' requests, DEFT manages inter-dependent groups of tasks (Meta-Tasks) and generates corresponding data processing workflows. The JEDI component then dynamically translates the task definitions from DEFT into actual workload jobs executed in the PanDA Workload Management System [2]. We present the requirements, design parameters, basics of the object model and concrete solutions utilized in building the new Production System and its components.

  7. Kernel Regression Estimation of Fiber Orientation Mixtures in Diffusion MRI

    PubMed Central

    Cabeen, Ryan P.; Bastin, Mark E.; Laidlaw, David H.

    2016-01-01

    We present and evaluate a method for kernel regression estimation of fiber orientations and associated volume fractions for diffusion MR tractography and population-based atlas construction in clinical imaging studies of brain white matter. This is a model-based image processing technique in which representative fiber models are estimated from collections of component fiber models in model-valued image data. This extends prior work in nonparametric image processing and multi-compartment processing to provide computational tools for image interpolation, smoothing, and fusion with fiber orientation mixtures. In contrast to related work on multi-compartment processing, this approach is based on directional measures of divergence and includes data-adaptive extensions for model selection and bilateral filtering. This is useful for reconstructing complex anatomical features in clinical datasets analyzed with the ball-and-sticks model, and our framework’s data-adaptive extensions are potentially useful for general multi-compartment image processing. We experimentally evaluate our approach with both synthetic data from computational phantoms and in vivo clinical data from human subjects. With synthetic data experiments, we evaluate performance based on errors in fiber orientation, volume fraction, compartment count, and tractography-based connectivity. With in vivo data experiments, we first show improved scan-rescan reproducibility and reliability of quantitative fiber bundle metrics, including mean length, volume, streamline count, and mean volume fraction. We then demonstrate the creation of a multi-fiber tractography atlas from a population of 80 human subjects. In comparison to single tensor atlasing, our multi-fiber atlas shows more complete features of known fiber bundles and includes reconstructions of the lateral projections of the corpus callosum and complex fronto-parietal connections of the superior longitudinal fasciculus I, II, and III. PMID:26691524

  8. ATLAS Distributed Computing Experience and Performance During the LHC Run-2

    NASA Astrophysics Data System (ADS)

    Filipčič, A.; ATLAS Collaboration

    2017-10-01

    ATLAS Distributed Computing during LHC Run-1 was challenged by steadily increasing computing, storage and network requirements. In addition, the complexity of processing task workflows and their associated data management requirements led to a new paradigm in the ATLAS computing model for Run-2, accompanied by extensive evolution and redesign of the workflow and data management systems. The new systems were put into production at the end of 2014, and gained robustness and maturity during 2015 data taking. ProdSys2, the new request and task interface; JEDI, the dynamic job execution engine developed as an extension to PanDA; and Rucio, the new data management system, form the core of Run-2 ATLAS distributed computing engine. One of the big changes for Run-2 was the adoption of the Derivation Framework, which moves the chaotic CPU and data intensive part of the user analysis into the centrally organized train production, delivering derived AOD datasets to user groups for final analysis. The effectiveness of the new model was demonstrated through the delivery of analysis datasets to users just one week after data taking, by completing the calibration loop, Tier-0 processing and train production steps promptly. The great flexibility of the new system also makes it possible to execute part of the Tier-0 processing on the grid when Tier-0 resources experience a backlog during high data-taking periods. The introduction of the data lifetime model, where each dataset is assigned a finite lifetime (with extensions possible for frequently accessed data), was made possible by Rucio. Thanks to this the storage crises experienced in Run-1 have not reappeared during Run-2. In addition, the distinction between Tier-1 and Tier-2 disk storage, now largely artificial given the quality of Tier-2 resources and their networking, has been removed through the introduction of dynamic ATLAS clouds that group the storage endpoint nucleus and its close-by execution satellite sites. All stable ATLAS sites are now able to store unique or primary copies of the datasets. ATLAS Distributed Computing is further evolving to speed up request processing by introducing network awareness, using machine learning and optimisation of the latencies during the execution of the full chain of tasks. The Event Service, a new workflow and job execution engine, is designed around check-pointing at the level of event processing to use opportunistic resources more efficiently. ATLAS has been extensively exploring possibilities of using computing resources extending beyond conventional grid sites in the WLCG fabric to deliver as many computing cycles as possible and thereby enhance the significance of the Monte-Carlo samples to deliver better physics results. The exploitation of opportunistic resources was at an early stage throughout 2015, at the level of 10% of the total ATLAS computing power, but in the next few years it is expected to deliver much more. In addition, demonstrating the ability to use an opportunistic resource can lead to securing ATLAS allocations on the facility, hence the importance of this work goes beyond merely the initial CPU cycles gained. In this paper, we give an overview and compare the performance, development effort, flexibility and robustness of the various approaches.

  9. Overview of ATLAS PanDA Workload Management

    NASA Astrophysics Data System (ADS)

    Maeno, T.; De, K.; Wenaus, T.; Nilsson, P.; Stewart, G. A.; Walker, R.; Stradling, A.; Caballero, J.; Potekhin, M.; Smith, D.; ATLAS Collaboration

    2011-12-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in addition to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.

  10. Overview of ATLAS PanDA Workload Management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maeno T.; De K.; Wenaus T.

    2011-01-01

    The Production and Distributed Analysis System (PanDA) plays a key role in the ATLAS distributed computing infrastructure. All ATLAS Monte-Carlo simulation and data reprocessing jobs pass through the PanDA system. We will describe how PanDA manages job execution on the grid using dynamic resource estimation and data replication together with intelligent brokerage in order to meet the scaling and automation requirements of ATLAS distributed computing. PanDA is also the primary ATLAS system for processing user and group analysis jobs, bringing further requirements for quick, flexible adaptation to the rapidly evolving analysis use cases of the early datataking phase, in additionmore » to the high reliability, robustness and usability needed to provide efficient and transparent utilization of the grid for analysis users. We will describe how PanDA meets ATLAS requirements, the evolution of the system in light of operational experience, how the system has performed during the first LHC data-taking phase and plans for the future.« less

  11. Statistical model of laminar structure for atlas-based segmentation of the fetal brain from in utero MR images

    NASA Astrophysics Data System (ADS)

    Habas, Piotr A.; Kim, Kio; Chandramohan, Dharshan; Rousseau, Francois; Glenn, Orit A.; Studholme, Colin

    2009-02-01

    Recent advances in MR and image analysis allow for reconstruction of high-resolution 3D images from clinical in utero scans of the human fetal brain. Automated segmentation of tissue types from MR images (MRI) is a key step in the quantitative analysis of brain development. Conventional atlas-based methods for adult brain segmentation are limited in their ability to accurately delineate complex structures of developing tissues from fetal MRI. In this paper, we formulate a novel geometric representation of the fetal brain aimed at capturing the laminar structure of developing anatomy. The proposed model uses a depth-based encoding of tissue occurrence within the fetal brain and provides an additional anatomical constraint in a form of a laminar prior that can be incorporated into conventional atlas-based EM segmentation. Validation experiments are performed using clinical in utero scans of 5 fetal subjects at gestational ages ranging from 20.5 to 22.5 weeks. Experimental results are evaluated against reference manual segmentations and quantified in terms of Dice similarity coefficient (DSC). The study demonstrates that the use of laminar depth-encoded tissue priors improves both the overall accuracy and precision of fetal brain segmentation. Particular refinement is observed in regions of the parietal and occipital lobes where the DSC index is improved from 0.81 to 0.82 for cortical grey matter, from 0.71 to 0.73 for the germinal matrix, and from 0.81 to 0.87 for white matter.

  12. A Multiatlas Segmentation Using Graph Cuts with Applications to Liver Segmentation in CT Scans

    PubMed Central

    2014-01-01

    An atlas-based segmentation approach is presented that combines low-level operations, an affine probabilistic atlas, and a multiatlas-based segmentation. The proposed combination provides highly accurate segmentation due to registrations and atlas selections based on the regions of interest (ROIs) and coarse segmentations. Our approach shares the following common elements between the probabilistic atlas and multiatlas segmentation: (a) the spatial normalisation and (b) the segmentation method, which is based on minimising a discrete energy function using graph cuts. The method is evaluated for the segmentation of the liver in computed tomography (CT) images. Low-level operations define a ROI around the liver from an abdominal CT. We generate a probabilistic atlas using an affine registration based on geometry moments from manually labelled data. Next, a coarse segmentation of the liver is obtained from the probabilistic atlas with low computational effort. Then, a multiatlas segmentation approach improves the accuracy of the segmentation. Both the atlas selections and the nonrigid registrations of the multiatlas approach use a binary mask defined by coarse segmentation. We experimentally demonstrate that this approach performs better than atlas selections and nonrigid registrations in the entire ROI. The segmentation results are comparable to those obtained by human experts and to other recently published results. PMID:25276219

  13. 4D Infant Cortical Surface Atlas Construction using Spherical Patch-based Sparse Representation.

    PubMed

    Wu, Zhengwang; Li, Gang; Meng, Yu; Wang, Li; Lin, Weili; Shen, Dinggang

    2017-09-01

    The 4D infant cortical surface atlas with densely sampled time points is highly needed for neuroimaging analysis of early brain development. In this paper, we build the 4D infant cortical surface atlas firstly covering 6 postnatal years with 11 time points (i.e., 1, 3, 6, 9, 12, 18, 24, 36, 48, 60, and 72 months), based on 339 longitudinal MRI scans from 50 healthy infants. To build the 4D cortical surface atlas, first , we adopt a two-stage groupwise surface registration strategy to ensure both longitudinal consistency and unbiasedness. Second , instead of simply averaging over the co-registered surfaces, a spherical patch-based sparse representation is developed to overcome possible surface registration errors across different subjects. The central idea is that, for each local spherical patch in the atlas space, we build a dictionary, which includes the samples of current local patches and their spatially-neighboring patches of all co-registered surfaces, and then the current local patch in the atlas is sparsely represented using the built dictionary. Compared to the atlas built with the conventional methods, the 4D infant cortical surface atlas constructed by our method preserves more details of cortical folding patterns, thus leading to boosted accuracy in registration of new infant cortical surfaces.

  14. Development and test of the DAQ system for a Micromegas prototype to be installed in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Bianco, M.; Martoiu, S.; Sidiropoulou, O.; Zibell, A.

    2015-12-01

    A Micromegas (MM) quadruplet prototype with an active area of 0.5 m2 that adopts the general design foreseen for the upgrade of the innermost forward muon tracking systems (Small Wheels) of the ATLAS detector in 2018-2019, has been built at CERN and is going to be tested in the ATLAS cavern environment during the LHC RUN-II period 2015-2017. The integration of this prototype detector into the ATLAS data acquisition system using custom ATCA equipment is presented. An ATLAS compatible Read Out Driver (ROD) based on the Scalable Readout System (SRS), the Scalable Readout Unit (SRU), will be used in order to transmit the data after generating valid event fragments to the high-level Read Out System (ROS). The SRU will be synchronized with the LHC bunch crossing clock (40.08 MHz) and will receive the Level-1 trigger signals from the Central Trigger Processor (CTP) through the TTCrx receiver ASIC. The configuration of the system will be driven directly from the ATLAS Run Control System. By using the ATLAS TDAQ Software, a dedicated Micromegas segment has been implemented, in order to include the detector inside the main ATLAS DAQ partition. A full set of tests, on the hardware and software aspects, is presented.

  15. Crustal Scale Magnetotelluric Imaging of the Central Atlas in Moocco

    NASA Astrophysics Data System (ADS)

    Ledo, J.; Jones, A. G.; Sinischalchi, A.; Rouais, M.; Campanyà, J.; Kiyan, D.; Moretti, P.; Piña, P.; Hogg, C.; Romano, G.; Picasso Team

    2010-12-01

    The Central Atlas of Morocco is an intracontinental fold-thrust belt with an ENE-WSW main strike that extends about 2000 km and 100 km wide, located in the foreland of the Mediterranean Alpine belt. The structure of the Atlas resulted from the tectonic inversion of a Mesozoic extensional basin, due to compression related to convergence between Africa and Europe occurred from cenozoic to present times. Previous MT data models based on stitched 1D inversion or using only the phases and the induction vector data following and trial and error approach (Schwarz et al., 1992), therefore the overall geoelectrical structure is partly unresolved. In this paper we will expose and discuss the results of new magnetotelluric data acquired along a profile crossing the Atlas that allows imaging its electrical crustal structure.In the lower crust two conductive units appear. One below the Moulouya plains that coincides with a minimum of the Bouguer anomaly, less earthquakes than the adjacent Middle and High Atlas and a low velocity anomaly at lower crustal levels. Moreover, the Moulouya plain and the Middle Atlas to the north are host of the largest Neogene-Quaternary intraplate alkaline volcanic field in Morocco. This feature has been associated either to a Canary mantle plume flow beneath Africa or to the interplay between reactivation of inherited geological structures and the thermal erosion of the metasomatized lithosphere. In any case, all the authors agree that are originated by low degree partial melting of sublithospheric mantle sources. Another low resistivity anomaly appears at lower crustal depths below the Anti-Atlas, that could be either a remnant of tectonic processes in the pre-mesozoic or a more recent overprint of the lower crust due to mantle processes. Two main events during the Pan African orogeny may be the cause of this anomaly, a relic of a subduction process or a deep mineralization associated to magmatism. The Anti-Atlas consists of of a Precambrian crystalline basement that collided at approximately 685 Ma with and oceanic convergent margin together with and ophiolitic assemblage (Saghro, Bou Azzer). The low resistivity structure could be associated to relic subducted oceanic sediments. On the other hand, the Anti-Atlas was affected at the end of the Pan-African orogeny (ca 585-560 Ma) by high-K calc-alkaline and alkaline magmatism. The proterozoic inliers in the Anti-Atlas are highly mineralized, among them, the Imiter Ag deposit is one of the largest silver deposits in the world.

  16. Upgrade of the ATLAS Hadronic Tile Calorimeter for the High Luminosity LHC

    NASA Astrophysics Data System (ADS)

    Tortajada, Ignacio Asensi

    2018-01-01

    The Large Hadron Collider (LHC) has envisaged a series of upgrades towards a High Luminosity LHC (HL-LHC) delivering five times the LHC nominal instantaneous luminosity. The ATLAS Phase II upgrade, in 2024, will accommodate the upgrade of the detector and data acquisition system for the HL-LHC. The Tile Calorimeter (TileCal) will undergo a major replacement of its on- and off-detector electronics. In the new architecture, all signals will be digitized and then transferred directly to the off-detector electronics, where the signals will be reconstructed, stored, and sent to the first level of trigger at the rate of 40 MHz. This will provide better precision of the calorimeter signals used by the trigger system and will allow the development of more complex trigger algorithms. Changes to the electronics will also contribute to the reliability and redundancy of the system. Three different front-end options are presently being investigated for the upgrade, two of them based on ASICs, and a final solution will be chosen after extensive laboratory and test beam studies that are in progress. A hybrid demonstrator module is being developed using the new electronics while conserving compatibility with the current system. The status of the developments will be presented, including results from the several tests with particle beams.

  17. A digital 3D atlas of the marmoset brain based on multi-modal MRI.

    PubMed

    Liu, Cirong; Ye, Frank Q; Yen, Cecil Chern-Chyi; Newman, John D; Glen, Daniel; Leopold, David A; Silva, Afonso C

    2018-04-01

    The common marmoset (Callithrix jacchus) is a New-World monkey of growing interest in neuroscience. Magnetic resonance imaging (MRI) is an essential tool to unveil the anatomical and functional organization of the marmoset brain. To facilitate identification of regions of interest, it is desirable to register MR images to an atlas of the brain. However, currently available atlases of the marmoset brain are mainly based on 2D histological data, which are difficult to apply to 3D imaging techniques. Here, we constructed a 3D digital atlas based on high-resolution ex-vivo MRI images, including magnetization transfer ratio (a T1-like contrast), T2w images, and multi-shell diffusion MRI. Based on the multi-modal MRI images, we manually delineated 54 cortical areas and 16 subcortical regions on one hemisphere of the brain (the core version). The 54 cortical areas were merged into 13 larger cortical regions according to their locations to yield a coarse version of the atlas, and also parcellated into 106 sub-regions using a connectivity-based parcellation method to produce a refined atlas. Finally, we compared the new atlas set with existing histology atlases and demonstrated its applications in connectome studies, and in resting state and stimulus-based fMRI. The atlas set has been integrated into the widely-distributed neuroimaging data analysis software AFNI and SUMA, providing a readily usable multi-modal template space with multi-level anatomical labels (including labels from the Paxinos atlas) that can facilitate various neuroimaging studies of marmosets. Published by Elsevier Inc.

  18. Estimate of the neutron fields in ATLAS based on ATLAS-MPX detectors data

    NASA Astrophysics Data System (ADS)

    Bouchami, J.; Dallaire, F.; Gutiérrez, A.; Idarraga, J.; Král, V.; Leroy, C.; Picard, S.; Pospíšil, S.; Scallon, O.; Solc, J.; Suk, M.; Turecek, D.; Vykydal, Z.; Žemlièka, J.

    2011-01-01

    The ATLAS-MPX detectors are based on Medipix2 silicon devices designed by CERN for the detection of different types of radiation. These detectors are covered with converting layers of 6LiF and polyethylene (PE) to increase their sensitivity to thermal and fast neutrons, respectively. These devices allow the measurement of the composition and spectroscopic characteristics of the radiation field in ATLAS, particularly of neutrons. These detectors can operate in low or high preset energy threshold mode. The signature of particles interacting in a ATLAS-MPX detector at low threshold are clusters of adjacent pixels with different size and form depending on their type, energy and incidence angle. The classification of particles into different categories can be done using the geometrical parameters of these clusters. The Medipix analysis framework (MAFalda) — based on the ROOT application — allows the recognition of particle tracks left in ATLAS-MPX devices located at various positions in the ATLAS detector and cavern. The pattern recognition obtained from the application of MAFalda was configured to distinguish the response of neutrons from other radiation. The neutron response at low threshold is characterized by clusters of adjoining pixels (heavy tracks and heavy blobs) left by protons and heavy ions resulting from neutron interactions in the converting layers of the ATLAS-MPX devices. The neutron detection efficiency of ATLAS-MPX devices has been determined by the exposure of two detectors of reference to radionuclide sources of neutrons (252Cf and 241AmBe). With these results, an estimate of the neutrons fields produced at the devices locations during ATLAS operation was done.

  19. The inverted Triassic rift of the Marrakech High Atlas: A reappraisal of basin geometries and faulting histories

    NASA Astrophysics Data System (ADS)

    Domènech, Mireia; Teixell, Antonio; Babault, Julien; Arboleya, Maria-Luisa

    2015-11-01

    The High Atlas of Morocco is an aborted rift developed during the Triassic-Jurassic and moderately inverted during the Cenozoic. The Marrakech High Atlas, with large exposures of basement and Triassic early syn-rift deposits, is ideal to investigate the geometries of the deepest parts of a rift, constituting a good analogue for pre-salt domains. It allows unraveling geometries and kinematics of the extensional and compressional structures and the influence that they exert over one another. A detailed structural study of the main Triassic basins and basin-margin faults of the Marrakech High Atlas shows that only a few rift faults were reactivated during the Cenozoic compressional stage in contrast to previous interpretations, and emphasizes that fault reactivation cannot be taken for granted in inverted rift systems. Preserved extensional features demonstrate a dominant dip-slip opening kinematics with strike-slip playing a minor role, at variance to models proposing a major strike-slip component along the main basin-bounding faults, including faults belonging to the Tizi n'Test fault zone. A new Middle Triassic paleogeographic reconstruction shows that the Marrakech High Atlas was a narrow and segmented orthogonal rift (sub-perpendicular to the main regional extension direction which was ~ NW-SE), in contrast to the central and eastern segments of the Atlas rift which developed obliquely. This difference in orientation is attributed to the indented Ouzellarh Precambrian salient, part of the West African Craton, which deflected the general rift trend in the area evidencing the major role of inherited lithospheric anisotropies in rift direction and evolution. As for the Cenozoic inversion, total orogenic shortening is moderate (~ 16%) and appears accommodated by basement-involved large-scale folding, and by newly formed shortcut and by-pass thrusting, with rare left-lateral strike-slip indicators. Triassic faults commonly acted as buttresses.

  20. Multi-Threaded Algorithms for GPGPU in the ATLAS High Level Trigger

    NASA Astrophysics Data System (ADS)

    Conde Muíño, P.; ATLAS Collaboration

    2017-10-01

    General purpose Graphics Processor Units (GPGPU) are being evaluated for possible future inclusion in an upgraded ATLAS High Level Trigger farm. We have developed a demonstrator including GPGPU implementations of Inner Detector and Muon tracking and Calorimeter clustering within the ATLAS software framework. ATLAS is a general purpose particle physics experiment located on the LHC collider at CERN. The ATLAS Trigger system consists of two levels, with Level-1 implemented in hardware and the High Level Trigger implemented in software running on a farm of commodity CPU. The High Level Trigger reduces the trigger rate from the 100 kHz Level-1 acceptance rate to 1.5 kHz for recording, requiring an average per-event processing time of ∼ 250 ms for this task. The selection in the high level trigger is based on reconstructing tracks in the Inner Detector and Muon Spectrometer and clusters of energy deposited in the Calorimeter. Performing this reconstruction within the available farm resources presents a significant challenge that will increase significantly with future LHC upgrades. During the LHC data taking period starting in 2021, luminosity will reach up to three times the original design value. Luminosity will increase further to 7.5 times the design value in 2026 following LHC and ATLAS upgrades. Corresponding improvements in the speed of the reconstruction code will be needed to provide the required trigger selection power within affordable computing resources. Key factors determining the potential benefit of including GPGPU as part of the HLT processor farm are: the relative speed of the CPU and GPGPU algorithm implementations; the relative execution times of the GPGPU algorithms and serial code remaining on the CPU; the number of GPGPU required, and the relative financial cost of the selected GPGPU. We give a brief overview of the algorithms implemented and present new measurements that compare the performance of various configurations exploiting GPGPU cards.

  1. 9. Photocopy of photograph (original photograph in possession of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    9. Photocopy of photograph (original photograph in possession of the Ralph M. Parsons Company, Los Angeles, California). Photography by the Ralph M. Parsons Co. circa 1959. VIEW FROM THE SOUTH OF ORIGINAL CONSTRUCTION OF A-FRAME ATLAS GANTRY AT POINT ARGUELLO LAUNCH COMPLEX 1, PAD 1 (SLC-3W) - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  2. ATLAS offline software performance monitoring and optimization

    NASA Astrophysics Data System (ADS)

    Chauhan, N.; Kabra, G.; Kittelmann, T.; Langenberg, R.; Mandrysch, R.; Salzburger, A.; Seuster, R.; Ritsch, E.; Stewart, G.; van Eldik, N.; Vitillo, R.; Atlas Collaboration

    2014-06-01

    In a complex multi-developer, multi-package software environment, such as the ATLAS offline framework Athena, tracking the performance of the code can be a non-trivial task in itself. In this paper we describe improvements in the instrumentation of ATLAS offline software that have given considerable insight into the performance of the code and helped to guide the optimization work. The first tool we used to instrument the code is PAPI, which is a programing interface for accessing hardware performance counters. PAPI events can count floating point operations, cycles, instructions and cache accesses. Triggering PAPI to start/stop counting for each algorithm and processed event results in a good understanding of the algorithm level performance of ATLAS code. Further data can be obtained using Pin, a dynamic binary instrumentation tool. Pin tools can be used to obtain similar statistics as PAPI, but advantageously without requiring recompilation of the code. Fine grained routine and instruction level instrumentation is also possible. Pin tools can additionally interrogate the arguments to functions, like those in linear algebra libraries, so that a detailed usage profile can be obtained. These tools have characterized the extensive use of vector and matrix operations in ATLAS tracking. Currently, CLHEP is used here, which is not an optimal choice. To help evaluate replacement libraries a testbed has been setup allowing comparison of the performance of different linear algebra libraries (including CLHEP, Eigen and SMatrix/SVector). Results are then presented via the ATLAS Performance Management Board framework, which runs daily with the current development branch of the code and monitors reconstruction and Monte-Carlo jobs. This framework analyses the CPU and memory performance of algorithms and an overview of results are presented on a web page. These tools have provided the insight necessary to plan and implement performance enhancements in ATLAS code by identifying the most common operations, with the call parameters well understood, and allowing improvements to be quantified in detail.

  3. Depleted fully monolithic CMOS pixel detectors using a column based readout architecture for the ATLAS Inner Tracker upgrade

    NASA Astrophysics Data System (ADS)

    Wang, T.; Barbero, M.; Berdalovic, I.; Bespin, C.; Bhat, S.; Breugnon, P.; Caicedo, I.; Cardella, R.; Chen, Z.; Degerli, Y.; Egidos, N.; Godiot, S.; Guilloux, F.; Hemperek, T.; Hirono, T.; Krüger, H.; Kugathasan, T.; Hügging, F.; Marin Tobon, C. A.; Moustakas, K.; Pangaud, P.; Schwemling, P.; Pernegger, H.; Pohl, D.-L.; Rozanov, A.; Rymaszewski, P.; Snoeys, W.; Wermes, N.

    2018-03-01

    Depleted monolithic active pixel sensors (DMAPS), which exploit high voltage and/or high resistivity add-ons of modern CMOS technologies to achieve substantial depletion in the sensing volume, have proven to have high radiation tolerance towards the requirements of ATLAS in the high-luminosity LHC era. DMAPS integrating fast readout architectures are currently being developed as promising candidates for the outer pixel layers of the future ATLAS Inner Tracker, which will be installed during the phase II upgrade of ATLAS around year 2025. In this work, two DMAPS prototype designs, named LF-Monopix and TJ-Monopix, are presented. LF-Monopix was fabricated in the LFoundry 150 nm CMOS technology, and TJ-Monopix has been designed in the TowerJazz 180 nm CMOS technology. Both chips employ the same readout architecture, i.e. the column drain architecture, whereas different sensor implementation concepts are pursued. The paper makes a joint description of the two prototypes, so that their technical differences and challenges can be addressed in direct comparison. First measurement results for LF-Monopix will also be shown, demonstrating for the first time a fully functional fast readout DMAPS prototype implemented in the LFoundry technology.

  4. Using the Logarithm of Odds to Define a Vector Space on Probabilistic Atlases

    PubMed Central

    Pohl, Kilian M.; Fisher, John; Bouix, Sylvain; Shenton, Martha; McCarley, Robert W.; Grimson, W. Eric L.; Kikinis, Ron; Wells, William M.

    2007-01-01

    The Logarithm of the Odds ratio (LogOdds) is frequently used in areas such as artificial neural networks, economics, and biology, as an alternative representation of probabilities. Here, we use LogOdds to place probabilistic atlases in a linear vector space. This representation has several useful properties for medical imaging. For example, it not only encodes the shape of multiple anatomical structures but also captures some information concerning uncertainty. We demonstrate that the resulting vector space operations of addition and scalar multiplication have natural probabilistic interpretations. We discuss several examples for placing label maps into the space of LogOdds. First, we relate signed distance maps, a widely used implicit shape representation, to LogOdds and compare it to an alternative that is based on smoothing by spatial Gaussians. We find that the LogOdds approach better preserves shapes in a complex multiple object setting. In the second example, we capture the uncertainty of boundary locations by mapping multiple label maps of the same object into the LogOdds space. Third, we define a framework for non-convex interpolations among atlases that capture different time points in the aging process of a population. We evaluate the accuracy of our representation by generating a deformable shape atlas that captures the variations of anatomical shapes across a population. The deformable atlas is the result of a principal component analysis within the LogOdds space. This atlas is integrated into an existing segmentation approach for MR images. We compare the performance of the resulting implementation in segmenting 20 test cases to a similar approach that uses a more standard shape model that is based on signed distance maps. On this data set, the Bayesian classification model with our new representation outperformed the other approaches in segmenting subcortical structures. PMID:17698403

  5. Les intrusions de Wirgane (Haut Atlas occidental, Maroc): témoins d'un magmatisme syn- à tardi-cinématique hercynien? (Intrusions of Wirgane [western High Atlas, Morocco]: evidence for a syn- to late kinematic magmatism of Variscan age?)

    NASA Astrophysics Data System (ADS)

    Eddif, A.; Gasquet, D.; Hoepffner, C.; Ayad, N. Ait

    2000-11-01

    The Wirgane intrusives were emplaced into the Late Neoproterozoic to Palæozoic series of the northeast of the Moroccan western High Atlas. The intrusions exhibit a large compositional range from monzogabbro to granite, and they have suffered, together with the country rocks, part of the Variscan tectonic evolution. In the immediate vicinity of the intrusions, thermal metamorphism developed in the country rocks. According to the mineral chemistry of igneous amphibole compositions of diorites and metamorphic minerals, the depth of intrusives was estimated to be less than 11 km. Strain patterns, mapped in both the plutons and the country rocks, and microtectonic data indicate that the intrusions were emplaced in a dextral transcurrent shearing context during the Variscan Orogen. When compared with other intrusions of the western High Atlas (Tichka, Azegour), the Wirgane intrusives are considered to be related to the late stages of the Variscan Belt of Morocco.

  6. High-resolution in vivo Wistar rodent brain atlas based on T1 weighted image

    NASA Astrophysics Data System (ADS)

    Huang, Su; Lu, Zhongkang; Huang, Weimin; Seramani, Sankar; Ramasamy, Boominathan; Sekar, Sakthivel; Guan, Cuntai; Bhakoo, Kishore

    2016-03-01

    Image based atlases for rats brain have a significant impact on pre-clinical research. In this project we acquired T1-weighted images from Wistar rodent brains with fine 59μm isotropical resolution for generation of the atlas template image. By applying post-process procedures using a semi-automatic brain extraction method, we delineated the brain tissues from source data. Furthermore, we applied a symmetric group-wise normalization method to generate an optimized template of T1 image of rodent brain, then aligned our template to the Waxholm Space. In addition, we defined several simple and explicit landmarks to corresponding our template with the well known Paxinos stereotaxic reference system. Anchoring at the origin of the Waxholm Space, we applied piece-wise linear transformation method to map the voxels of the template into the coordinates system in Paxinos' stereotoxic coordinates to facilitate the labelling task. We also cross-referenced our data with both published rodent brain atlas and image atlases available online, methodologically labelling the template to produce a Wistar brain atlas identifying more than 130 structures. Particular attention was paid to the cortex and cerebellum, as these areas encompass the most researched aspects of brain functions. Moreover, we adopted the structure hierarchy and naming nomenclature common to various atlases, so that the names and hierarchy structure presented in the atlas are readily recognised for easy use. It is believed the atlas will present a useful tool in rodent brain functional and pharmaceutical studies.

  7. ATLAS DataFlow Infrastructure: Recent results from ATLAS cosmic and first-beam data-taking

    NASA Astrophysics Data System (ADS)

    Vandelli, Wainer; ATLAS TDAQ Collaboration

    2010-04-01

    The ATLAS DataFlow infrastructure is responsible for the collection and conveyance of event data from the detector front-end electronics to the mass storage. Several optimized and multi-threaded applications fulfill this purpose operating over a multi-stage Gigabit Ethernet network which is the backbone of the ATLAS Trigger and Data Acquisition System. The system must be able to efficiently transport event-data with high reliability, while providing aggregated bandwidths larger than 5 GByte/s and coping with many thousands network connections. Nevertheless, routing and streaming capabilities and monitoring and data accounting functionalities are also fundamental requirements. During 2008, a few months of ATLAS cosmic data-taking and the first experience with the LHC beams provided an unprecedented test-bed for the evaluation of the performance of the ATLAS DataFlow, in terms of functionality, robustness and stability. Besides, operating the system far from its design specifications helped in exercising its flexibility and contributed in understanding its limitations. Moreover, the integration with the detector and the interfacing with the off-line data processing and management have been able to take advantage of this extended data taking-period as well. In this paper we report on the usage of the DataFlow infrastructure during the ATLAS data-taking. These results, backed-up by complementary performance tests, validate the architecture of the ATLAS DataFlow and prove that the system is robust, flexible and scalable enough to cope with the final requirements of the ATLAS experiment.

  8. In vivo delineation of subdivisions of the human amygdaloid complex in a high-resolution group template

    PubMed Central

    Tyszka, J. Michael; Pauli, Wolfgang M.

    2016-01-01

    The nuclei of the human amygdala remain difficult to distinguish in individual subject structural magnetic resonance images. However, interpretation of the amygdala’s role in whole brain networks requires accurate localization of functional activity to a particular nucleus or subgroup of nuclei. To address this, we constructed high spatial resolution, three-dimensional templates, using joint high accuracy diffeomorphic registration of T1- and T2-weighted structural images from 168 typical adults between 22 and 35 years old released by the Human Connectome Project. Several internuclear boundaries are clearly visible in these templates, which would otherwise be impossible to delineate in individual subject data. A probabilistic atlas of major nuclei and nuclear groups was constructed in this template space and mapped back to individual spaces by inversion of the individual diffeomorphisms. Group level analyses revealed a slight (approximately 2%) bias towards larger total amygdala and nuclear volumes in the right hemisphere. No substantial sex or age differences were found in amygdala volumes normalized to total intracranial volume, or subdivision volumes normalized to amygdala volume. The current delineation provides a finer parcellation of the amygdala with more accurate external boundary definition than current histology-based atlases when used in conjunction with high accuracy registration methods, such as diffeomorphic warping. These templates and delineation are intended to be an open and evolving resource for future functional and structural imaging studies of the human amygdala. PMID:27354150

  9. 10. Photocopy of photograph (original photograph in possession of the ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    10. Photocopy of photograph (original photograph in possession of the Ralph M. Parsons Company, Los Angeles California). Photography by the United States Air Force, May 4, 1960. VIEW OF SOUTH FACE OF POINT ARGUELLO LAUNCH COMPLEX 1, PAD 1 (SLC-3) FROM TOP OF CONTROL CENTER (BLDG. 763). ATLAS D BOOSTER FOR THE FIRST SAMOS LAUNCH FROM POINT ARGUELLO LAUNCH COMPLEX 1 (SLC-3) ERECT IN THE SERVICE TOWER. - Vandenberg Air Force Base, Space Launch Complex 3, Napa & Alden Roads, Lompoc, Santa Barbara County, CA

  10. Orbital ATK CRS-7 "What's on Board" Science Briefing

    NASA Image and Video Library

    2017-04-17

    NASA Social participants attend a "What's on Board" science briefing at the agency's Kennedy Space Center in Florida. Joe Fust, mission integrator for United Launch Alliance, gives an overview of the Atlas V rocket that will launch the Orbital ATK Cygnus pressurized cargo module to the International Space Station. The briefing is for Orbital ATK's seventh commercial resupply services mission, CRS-7, to the space station. Orbital ATK's Cygnus module is set to launch on the United Launch Alliance Atlas V rocket from Space Launch Complex 41 at Cape Canaveral Air Force Station on April 18. Liftoff is scheduled for 11:11 a.m. EDT.

  11. KSC-2009-2834

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage arrives at the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  12. KSC-2009-2839

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– On Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being moved into the Vertical Integration Facility. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  13. KSC-2009-2840

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– On Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being moved into the Vertical Integration Facility. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  14. KSC-2009-2841

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– On Cape Canaveral Air Force Station's Launch Complex 41, the Atlas V first stage is being moved into the Vertical Integration Facility. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  15. KSC-2009-2833

    NASA Image and Video Library

    2009-04-27

    CAPE CANAVERAL, Fla. –– The Atlas V first stage arrives at the Vertical Integration Facility on Cape Canaveral Air Force Station's Launch Complex 41. The Atlas V/Centaur is the launch vehicle for the Lunar Reconnaissance Orbiter, or LRO. The orbiter will carry seven instruments to provide scientists with detailed maps of the lunar surface and enhance our understanding of the moon's topography, lighting conditions, mineralogical composition and natural resources. Information gleaned from LRO will be used to select safe landing sites, determine locations for future lunar outposts and help mitigate radiation dangers to astronauts. Launch of LRO is targeted no earlier than June 2. Photo credit: NASA/Kim Shiflett

  16. OSIRIS-REx Atlas V Wet Dress Rehearsal

    NASA Image and Video Library

    2016-08-25

    The booster and Centaur upper stage of a United Launch Alliance Atlas V vent gaseous propellant during a “wet dress rehearsal” test at Space Launch Complex 41 on Florida’s Cape Canaveral Air Force Station. The rocket will boost NASA’s Origins, Spectral Interpretation, Resource Identification, Security-Regolith Explorer, or OSIRIS-REx spacecraft. Targeted for liftoff Sept. 8, 2016, OSIRIS-REx will be the first U.S. mission to sample an asteroid, retrieve at least two ounces of surface material and return it to Earth for study. The asteroid, Bennu, may hold clues to the origin of the solar system and the source of water and organic molecules found on Earth.

  17. KSC-2012-4560

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – Workers help guide the United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard as it moves to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  18. KSC-2012-4553

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard is readied for rollout to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  19. KSC-2012-4552

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard is readied for rollout to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

  20. KSC-2012-4554

    NASA Image and Video Library

    2012-08-22

    CAPE CANAVERAL, Fla. – The United Launch Alliance Atlas V rocket with the Radiation Belt Storm Probes, or RBSP, spacecraft aboard is readied for rollout to the launch pad at Space Launch Complex 41 at Cape Canaveral Air Force Station. NASA’s RBSP mission will help researchers understand the sun’s influence on Earth and near-Earth space by studying the Earth’s radiation belts on various scales of space and time. RBSP will begin its mission of exploration of Earth’s Van Allen radiation belts and the extremes of space weather after its launch aboard an Atlas V rocket. Launch is targeted for Aug. 24. Photo credit: NASA/Kim Shiflett

Top