Complex adaptive behavior and dexterous action
Harrison, Steven J.; Stergiou, Nicholas
2016-01-01
Dexterous action, as conceptualized by Bernstein in his influential ecological analysis of human behavior, is revealed in the ability to flexibly generate behaviors that are adaptively tailored to the demands of the context in which they are embedded. Conceived as complex adaptive behavior, dexterity depends upon the qualities of robustness and degeneracy, and is supported by the functional complexity of the agent-environment system. Using Bernstein’s and Gibson’s ecological analyses of behavior situated in natural environments as conceptual touchstones, we consider the hypothesis that complex adaptive behavior capitalizes upon general principles of self-organization. Here, we outline a perspective in which the complex interactivity of nervous-system, body, and environment is revealed as an essential resource for adaptive behavior. From this perspective, we consider the implications for interpreting the functionality and dysfunctionality of human behavior. This paper demonstrates that, optimal variability, the topic of this special issue, is a logical consequence of interpreting the functionality of human behavior as complex adaptive behavior. PMID:26375932
ERIC Educational Resources Information Center
Hayes, Steven C.; Bunting, Kara; Herbst, Scott; Bond, Frank W.; Barnes-Holmes, Dermot
2006-01-01
Behavior analysis in general and applied behavior analysis in particular requires a well developed, empirically supported, and useful approach to human language and cognition in order to fulfill its mission of providing a relatively adequate comprehensive account of complex human behavior. This article introduces a series of articles in which the…
Karwowski, Waldemar
2012-12-01
In this paper, the author explores a need for a greater understanding of the true nature of human-system interactions from the perspective of the theory of complex adaptive systems, including the essence of complexity, emergent properties of system behavior, nonlinear systems dynamics, and deterministic chaos. Human performance, more often than not, constitutes complex adaptive phenomena with emergent properties that exhibit nonlinear dynamical (chaotic) behaviors. The complexity challenges in the design and management of contemporary work systems, including service systems, are explored. Examples of selected applications of the concepts of nonlinear dynamics to the study of human physical performance are provided. Understanding and applications of the concepts of theory of complex adaptive and dynamical systems should significantly improve the effectiveness of human-centered design efforts of a large system of systems. Performance of many contemporary work systems and environments may be sensitive to the initial conditions and may exhibit dynamic nonlinear properties and chaotic system behaviors. Human-centered design of emergent human-system interactions requires application of the theories of nonlinear dynamics and complex adaptive system. The success of future human-systems integration efforts requires the fusion of paradigms, knowledge, design principles, and methodologies of human factors and ergonomics with those of the science of complex adaptive systems as well as modern systems engineering.
NASA Technical Reports Server (NTRS)
Yliniemi, Logan; Agogino, Adrian K.; Tumer, Kagan
2014-01-01
Accurate simulation of the effects of integrating new technologies into a complex system is critical to the modernization of our antiquated air traffic system, where there exist many layers of interacting procedures, controls, and automation all designed to cooperate with human operators. Additions of even simple new technologies may result in unexpected emergent behavior due to complex human/ machine interactions. One approach is to create high-fidelity human models coming from the field of human factors that can simulate a rich set of behaviors. However, such models are difficult to produce, especially to show unexpected emergent behavior coming from many human operators interacting simultaneously within a complex system. Instead of engineering complex human models, we directly model the emergent behavior by evolving goal directed agents, representing human users. Using evolution we can predict how the agent representing the human user reacts given his/her goals. In this paradigm, each autonomous agent in a system pursues individual goals, and the behavior of the system emerges from the interactions, foreseen or unforeseen, between the agents/actors. We show that this method reflects the integration of new technologies in a historical case, and apply the same methodology for a possible future technology.
Disorder in Complex Human System
NASA Astrophysics Data System (ADS)
Akdeniz, K. Gediz
2011-11-01
Since the world of human and whose life becomes more and more complex every day because of the digital technology and under the storm of knowledge (media, internet, governmental and non-governmental organizations, etc...) the simulation is rapidly growing in the social systems and in human behaviors. The formation of the body and mutual interactions are left to digital technological, communication mechanisms and coding the techno genetics of the body. Deconstruction begins everywhere. The linear simulation mechanism with modern realities are replaced by the disorder simulation of human behaviors with awareness realities. In this paper I would like to introduce simulation theory of "Disorder Sensitive Human Behaviors". I recently proposed this theory to critique the role of disorder human behaviors in social systems. In this theory the principle of realty is the chaotic awareness of the complexity of human systems inside of principle of modern thinking in Baudrillard's simulation theory. Proper examples will be also considered to investigate the theory.
Discrimination of Complex Human Behavior by Pigeons (Columba livia) and Humans
Qadri, Muhammad A. J.; Sayde, Justin M.; Cook, Robert G.
2014-01-01
The cognitive and neural mechanisms for recognizing and categorizing behavior are not well understood in non-human animals. In the current experiments, pigeons and humans learned to categorize two non-repeating, complex human behaviors (“martial arts” vs. “Indian dance”). Using multiple video exemplars of a digital human model, pigeons discriminated these behaviors in a go/no-go task and humans in a choice task. Experiment 1 found that pigeons already experienced with discriminating the locomotive actions of digital animals acquired the discrimination more rapidly when action information was available than when only pose information was available. Experiments 2 and 3 found this same dynamic superiority effect with naïve pigeons and human participants. Both species used the same combination of immediately available static pose information and more slowly perceived dynamic action cues to discriminate the behavioral categories. Theories based on generalized visual mechanisms, as opposed to embodied, species-specific action networks, offer a parsimonious account of how these different animals recognize behavior across and within species. PMID:25379777
[The evolution of human cultural behavior: notes on Darwinism and complexity].
Peric, Mikael; Murrieta, Rui Sérgio Sereni
2015-12-01
The article analyzes three schools that can be understood as central in studies of the evolution of human behavior within the paradigm of evolution by natural selection: human behavioral ecology (HBE), evolutionary psychology, and dual inheritance. These three streams of thought are used to depict the Darwinist landscape and pinpoint its strong suits and limitations. Theoretical gaps were identified that seem to reduce these schools' ability to account for the diversity of human evolutionary behavior. Their weak points include issues related to the concept of reproductive success, types of adaptation, and targets of selection. An interdisciplinary approach is proposed as the solution to this dilemma, where complex adaptive systems would serve as a source.
Mathematical concepts for modeling human behavior in complex man-machine systems
NASA Technical Reports Server (NTRS)
Johannsen, G.; Rouse, W. B.
1979-01-01
Many human behavior (e.g., manual control) models have been found to be inadequate for describing processes in certain real complex man-machine systems. An attempt is made to find a way to overcome this problem by examining the range of applicability of existing mathematical models with respect to the hierarchy of human activities in real complex tasks. Automobile driving is chosen as a baseline scenario, and a hierarchy of human activities is derived by analyzing this task in general terms. A structural description leads to a block diagram and a time-sharing computer analogy.
Coupled disease-behavior dynamics on complex networks: A review
NASA Astrophysics Data System (ADS)
Wang, Zhen; Andrews, Michael A.; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T.
2015-12-01
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years.
2017-11-13
behavior . The International Journal of Human-Computer Studies , 108, 105-121. https://doi.org/10.1016/j.ijhcs.2017.06.006 A second journal article...documenting the erroneous behavior generation approach and the case study analyses is currently being written. Planned submission is Spring 2017. RPPR...Belvoir, 2010. [3] A task-based taxonomy of erroneous human behavior . International Journal of Human-Computer Studies , 108:105–121, 2017. [4] M. L
Human Behavior from a Chronobiological Perspective.
ERIC Educational Resources Information Center
Hoskins, Carol Noll
1980-01-01
The rhythmic patterning of man's biochemical, physiological, and psychological behavior and the temporal relationships among various functions are the province of chronobiology. Citing animal and human studies, the author documents the progress of this new science and poses complex questions that it may answer about human behavior. (Editor/SJL)
Pigeons and humans use action and pose information to categorize complex human behaviors.
Qadri, Muhammad A J; Cook, Robert G
2017-02-01
The biological mechanisms used to categorize and recognize behaviors are poorly understood in both human and non-human animals. Using animated digital models, we have recently shown that pigeons can categorize different locomotive animal gaits and types of complex human behaviors. In the current experiments, pigeons (go/no-go task) and humans (choice task) both learned to conditionally categorize two categories of human behaviors that did not repeat and were comprised of the coordinated motions of multiple limbs. These "martial arts" and "Indian dance" action sequences were depicted by a digital human model. Depending upon whether the model was in motion or not, each species was required to engage in different and opposing responses to the two behavioral categories. Both species learned to conditionally and correctly act on this dynamic and static behavioral information, indicating that both species use a combination of static pose cues that are available from stimulus onset in addition to less rapidly available action information in order to successfully discriminate between the behaviors. Human participants additionally demonstrated a bias towards the dynamic information in the display when re-learning the task. Theories that rely on generalized, non-specific visual mechanisms involving channels for motion and static cues offer a parsimonious account of how humans and pigeons recognize and categorize behaviors within and across species. Copyright © 2016 Elsevier Ltd. All rights reserved.
Coupled disease-behavior dynamics on complex networks: A review.
Wang, Zhen; Andrews, Michael A; Wu, Zhi-Xi; Wang, Lin; Bauch, Chris T
2015-12-01
It is increasingly recognized that a key component of successful infection control efforts is understanding the complex, two-way interaction between disease dynamics and human behavioral and social dynamics. Human behavior such as contact precautions and social distancing clearly influence disease prevalence, but disease prevalence can in turn alter human behavior, forming a coupled, nonlinear system. Moreover, in many cases, the spatial structure of the population cannot be ignored, such that social and behavioral processes and/or transmission of infection must be represented with complex networks. Research on studying coupled disease-behavior dynamics in complex networks in particular is growing rapidly, and frequently makes use of analysis methods and concepts from statistical physics. Here, we review some of the growing literature in this area. We contrast network-based approaches to homogeneous-mixing approaches, point out how their predictions differ, and describe the rich and often surprising behavior of disease-behavior dynamics on complex networks, and compare them to processes in statistical physics. We discuss how these models can capture the dynamics that characterize many real-world scenarios, thereby suggesting ways that policy makers can better design effective prevention strategies. We also describe the growing sources of digital data that are facilitating research in this area. Finally, we suggest pitfalls which might be faced by researchers in the field, and we suggest several ways in which the field could move forward in the coming years. Copyright © 2015 Elsevier B.V. All rights reserved.
Creating virtual humans for simulation-based training and planning
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stansfield, S.; Sobel, A.
1998-05-12
Sandia National Laboratories has developed a distributed, high fidelity simulation system for training and planning small team Operations. The system provides an immersive environment populated by virtual objects and humans capable of displaying complex behaviors. The work has focused on developing the behaviors required to carry out complex tasks and decision making under stress. Central to this work are techniques for creating behaviors for virtual humans and for dynamically assigning behaviors to CGF to allow scenarios without fixed outcomes. Two prototype systems have been developed that illustrate these capabilities: MediSim, a trainer for battlefield medics and VRaptor, a system formore » planning, rehearsing and training assault operations.« less
A case for human systems neuroscience.
Gardner, J L
2015-06-18
Can the human brain itself serve as a model for a systems neuroscience approach to understanding the human brain? After all, how the brain is able to create the richness and complexity of human behavior is still largely mysterious. What better choice to study that complexity than to study it in humans? However, measurements of brain activity typically need to be made non-invasively which puts severe constraints on what can be learned about the internal workings of the brain. Our approach has been to use a combination of psychophysics in which we can use human behavioral flexibility to make quantitative measurements of behavior and link those through computational models to measurements of cortical activity through magnetic resonance imaging. In particular, we have tested various computational hypotheses about what neural mechanisms could account for behavioral enhancement with spatial attention (Pestilli et al., 2011). Resting both on quantitative measurements and considerations of what is known through animal models, we concluded that weighting of sensory signals by the magnitude of their response is a neural mechanism for efficient selection of sensory signals and consequent improvements in behavioral performance with attention. While animal models have many technical advantages over studying the brain in humans, we believe that human systems neuroscience should endeavor to validate, replicate and extend basic knowledge learned from animal model systems and thus form a bridge to understanding how the brain creates the complex and rich cognitive capacities of humans. Copyright © 2014 IBRO. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Yang, Hyun Mo
2015-12-01
Currently, discrete modellings are largely accepted due to the access to computers with huge storage capacity and high performance processors and easy implementation of algorithms, allowing to develop and simulate increasingly sophisticated models. Wang et al. [7] present a review of dynamics in complex networks, focusing on the interaction between disease dynamics and human behavioral and social dynamics. By doing an extensive review regarding to the human behavior responding to disease dynamics, the authors briefly describe the complex dynamics found in the literature: well-mixed populations networks, where spatial structure can be neglected, and other networks considering heterogeneity on spatially distributed populations. As controlling mechanisms are implemented, such as social distancing due 'social contagion', quarantine, non-pharmaceutical interventions and vaccination, adaptive behavior can occur in human population, which can be easily taken into account in the dynamics formulated by networked populations.
Metaphors to Drive By: Exploring New Ways to Guide Human-Robot Interaction
DOE Office of Scientific and Technical Information (OSTI.GOV)
David J. Bruemmer; David I. Gertman; Curtis W. Nielsen
2007-08-01
Autonomous behaviors created by the research and development community are not being extensively utilized within energy, defense, security, or industrial contexts. This paper provides evidence that the interaction methods used alongside these behaviors may not provide a mental model that can be easily adopted or used by operators. Although autonomy has the potential to reduce overall workload, the use of robot behaviors often increased the complexity of the underlying interaction metaphor. This paper reports our development of new metaphors that support increased robot complexity without passing the complexity of the interaction onto the operator. Furthermore, we illustrate how recognition ofmore » problems in human-robot interactions can drive the creation of new metaphors for design and how human factors lessons in usability, human performance, and our social contract with technology have the potential for enormous payoff in terms of establishing effective, user-friendly robot systems when appropriate metaphors are used.« less
NASA Astrophysics Data System (ADS)
Poyato, David; Soler, Juan
2016-09-01
The study of human behavior is a complex task, but modeling some aspects of this behavior is an even more complicated and exciting idea. From crisis management to decision making in evacuation protocols, understanding the complexity of humans in stress situations is more and more demanded in our society by obvious reasons [5,6,8,12]. In this context, [4] deals with crowd dynamics with special attention to evacuation.
Simulation of human behavior in exposure modeling is a complex task. Traditionally, inter-individual variation in human activity has been modeled by drawing from a pool of single day time-activity diaries such as the US EPA Consolidated Human Activity Database (CHAD). Here, an ag...
Rasmussen's model of human behavior in laparoscopy training.
Wentink, M; Stassen, L P S; Alwayn, I; Hosman, R J A W; Stassen, H G
2003-08-01
Compared to aviation, where virtual reality (VR) training has been standardized and simulators have proven their benefits, the objectives, needs, and means of VR training in minimally invasive surgery (MIS) still have to be established. The aim of the study presented is to introduce Rasmussen's model of human behavior as a practical framework for the definition of the training objectives, needs, and means in MIS. Rasmussen distinguishes three levels of human behavior: skill-, rule-, and knowledge-based behaviour. The training needs of a laparoscopic novice can be determined by identifying the specific skill-, rule-, and knowledge-based behavior that is required for performing safe laparoscopy. Future objectives of VR laparoscopy trainers should address all three levels of behavior. Although most commercially available simulators for laparoscopy aim at training skill-based behavior, especially the training of knowledge-based behavior during complications in surgery will improve safety levels. However, the cost and complexity of a training means increases when the training objectives proceed from the training of skill-based behavior to the training of complex knowledge-based behavior. In aviation, human behavior models have been used successfully to integrate the training of skill-, rule-, and knowledge-based behavior in a full flight simulator. Understanding surgeon behavior is one of the first steps towards a future full-scale laparoscopy simulator.
Nonneurocognitive Extended Consciousness
ERIC Educational Resources Information Center
Wojcik, Kevin; Chemero, Anthony
2012-01-01
One of the attributes necessary for Watson to be considered human is that it must be conscious. From Rachlin's (2012) point of view, that of teleological behaviorism, consciousness refers to the organization of behavioral complexity in which overt behavior is distributed widely over time. Consciousness is something that humans do, or achieve, in…
Observing Consistency in Online Communication Patterns for User Re-Identification.
Adeyemi, Ikuesan Richard; Razak, Shukor Abd; Salleh, Mazleena; Venter, Hein S
2016-01-01
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas.
Fogarty, Laurel; Wakano, Joe Yuichiro; Feldman, Marcus W; Aoki, Kenichi
2017-03-01
The forces driving cultural accumulation in human populations, both modern and ancient, are hotly debated. Did genetic, demographic, or cognitive features of behaviorally modern humans (as opposed to, say, early modern humans or Neanderthals) allow culture to accumulate to its current, unprecedented levels of complexity? Theoretical explanations for patterns of accumulation often invoke demographic factors such as population size or density, whereas statistical analyses of variation in cultural complexity often point to the importance of environmental factors such as food stability, in determining cultural complexity. Here we use both an analytical model and an agent-based simulation model to show that a full understanding of the emergence of behavioral modernity, and the cultural evolution that has followed, depends on understanding and untangling the complex relationships among culture, genetically determined cognitive ability, and demographic history. For example, we show that a small but growing population could have a different number of cultural traits from a shrinking population with the same absolute number of individuals in some circumstances.
The Brain Prize 2014: complex human functions.
Grigaityte, Kristina; Iacoboni, Marco
2014-11-01
Giacomo Rizzolatti, Stanislas Dehaene, and Trevor Robbins were recently awarded the 2014 Grete Lundbeck European Brain Research Prize for their 'pioneering research on higher brain mechanisms underpinning such complex human functions as literacy, numeracy, motivated behavior and social cognition, and for their effort to understand cognitive and behavioral disorders'. Why was their work highlighted? Is there anything that links together these seemingly disparate lines of research? Copyright © 2014 Elsevier Ltd. All rights reserved.
Human Sociobiology: Wilson's Fallacy.
ERIC Educational Resources Information Center
Lehrman, Nathaniel S.
1981-01-01
Presents an introduction to and a critique of E.O. Wilson's new science of sociobiology, which focuses on explaining the social behavior of species as diverse as ants, apes, and humans. Suggests that Wilson has gone beyond his data in claiming that complex human behaviors such as altruism are caused to any extent by genetic, as opposed to…
Radical behaviorist interpretation: Generating and evaluating an account of consumer behavior.
Foxall, G R
1998-01-01
This article considers an approach to the radical behaviorist interpretation of complex human social behavior. The chosen context is consumer psychology, a field currently dominated by cognitive models of purchase and consumption. The nature of operant interpretation is considered, and several levels of operant analysis of complex economic behavior in affluent marketing-oriented economies are developed. Empirical evidence for the interpretation is considered, and a case is made for the qualified use of the hypothetico-deductive method in the appraisal of operant interpretations of complex behaviors.
Radical behaviorist interpretation: Generating and evaluating an account of consumer behavior
Foxall, Gordon R.
1998-01-01
This article considers an approach to the radical behaviorist interpretation of complex human social behavior. The chosen context is consumer psychology, a field currently dominated by cognitive models of purchase and consumption. The nature of operant interpretation is considered, and several levels of operant analysis of complex economic behavior in affluent marketing-oriented economies are developed. Empirical evidence for the interpretation is considered, and a case is made for the qualified use of the hypothetico-deductive method in the appraisal of operant interpretations of complex behaviors. PMID:22478315
NASA Astrophysics Data System (ADS)
Sun, Gui-Quan; Jin, Zhen
2015-12-01
Modelling infectious diseases on complex networks is a significant tool to understand the transmission of epidemics in human society, and consequently it has commanded increasing attention in the community of mathematicians, physicists, epidemiologists, public health policy-makers and so on [1-4]. Human behavior responses are associated with the emergence of infectious disease, for instance, wearing masks [5], staying away from a thick crowd [6], cutting contacts with infected individuals [7] and receiving a vaccination [8]. However, infectious diseases and human behavior were often modeled as independent systems in the literature, despite the fact that in the real world they are often mutually influential on each other, and hence their coupling exerts significant impacts on disease spread [9,10].
Quantifying Trading Behavior in Financial Markets Using Google Trends
NASA Astrophysics Data System (ADS)
Preis, Tobias; Moat, Helen Susannah; Stanley, H. Eugene
2013-04-01
Crises in financial markets affect humans worldwide. Detailed market data on trading decisions reflect some of the complex human behavior that has led to these crises. We suggest that massive new data sources resulting from human interaction with the Internet may offer a new perspective on the behavior of market participants in periods of large market movements. By analyzing changes in Google query volumes for search terms related to finance, we find patterns that may be interpreted as ``early warning signs'' of stock market moves. Our results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior.
Quantifying Trading Behavior in Financial Markets Using Google Trends
Preis, Tobias; Moat, Helen Susannah; Stanley, H. Eugene
2013-01-01
Crises in financial markets affect humans worldwide. Detailed market data on trading decisions reflect some of the complex human behavior that has led to these crises. We suggest that massive new data sources resulting from human interaction with the Internet may offer a new perspective on the behavior of market participants in periods of large market movements. By analyzing changes in Google query volumes for search terms related to finance, we find patterns that may be interpreted as “early warning signs” of stock market moves. Our results illustrate the potential that combining extensive behavioral data sets offers for a better understanding of collective human behavior. PMID:23619126
Virtual Reality for Artificial Intelligence: human-centered simulation for social science.
Cipresso, Pietro; Riva, Giuseppe
2015-01-01
There is a long last tradition in Artificial Intelligence as use of Robots endowing human peculiarities, from a cognitive and emotional point of view, and not only in shape. Today Artificial Intelligence is more oriented to several form of collective intelligence, also building robot simulators (hardware or software) to deeply understand collective behaviors in human beings and society as a whole. Modeling has also been crucial in the social sciences, to understand how complex systems can arise from simple rules. However, while engineers' simulations can be performed in the physical world using robots, for social scientist this is impossible. For decades, researchers tried to improve simulations by endowing artificial agents with simple and complex rules that emulated human behavior also by using artificial intelligence (AI). To include human beings and their real intelligence within artificial societies is now the big challenge. We present an hybrid (human-artificial) platform where experiments can be performed by simulated artificial worlds in the following manner: 1) agents' behaviors are regulated by the behaviors shown in Virtual Reality involving real human beings exposed to specific situations to simulate, and 2) technology transfers these rules into the artificial world. These form a closed-loop of real behaviors inserted into artificial agents, which can be used to study real society.
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-01-01
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
1991 Annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1991-12-31
1991 was continued rapid growth for the Santa Fe Institute (SFI) as it broadened its interdisciplinary research into the organization, evolution and operation of complex systems and sought deeply the principles underlying their dynamic behavior. Research on complex systems--the focus of work at SFI--involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex behavior range upwards from proteins and DNA through cells and evolutionary systems to human societies. Research models exhibiting complexity include nonlinear equations, spin glasses, cellular automata, genetic algorithms, classifier systems, and an array of other computational models. Some of the majormore » questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simples components, (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy), and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions. The importance of understanding such systems in enormous: many of the most serious challenges facing humanity--e.g., environmental sustainability, economic stability, the control of disease--as well as many of the hardest scientific questions--e.g., protein folding, the distinction between self and non-self in the immune system, the nature of intelligence, the origin of life--require deep understanding of complex systems.« less
Unraveling dynamics of human physical activity patterns in chronic pain conditions
NASA Astrophysics Data System (ADS)
Paraschiv-Ionescu, Anisoara; Buchser, Eric; Aminian, Kamiar
2013-06-01
Chronic pain is a complex disabling experience that negatively affects the cognitive, affective and physical functions as well as behavior. Although the interaction between chronic pain and physical functioning is a well-accepted paradigm in clinical research, the understanding of how pain affects individuals' daily life behavior remains a challenging task. Here we develop a methodological framework allowing to objectively document disruptive pain related interferences on real-life physical activity. The results reveal that meaningful information is contained in the temporal dynamics of activity patterns and an analytical model based on the theory of bivariate point processes can be used to describe physical activity behavior. The model parameters capture the dynamic interdependence between periods and events and determine a `signature' of activity pattern. The study is likely to contribute to the clinical understanding of complex pain/disease-related behaviors and establish a unified mathematical framework to quantify the complex dynamics of various human activities.
Observing Consistency in Online Communication Patterns for User Re-Identification
Venter, Hein S.
2016-01-01
Comprehension of the statistical and structural mechanisms governing human dynamics in online interaction plays a pivotal role in online user identification, online profile development, and recommender systems. However, building a characteristic model of human dynamics on the Internet involves a complete analysis of the variations in human activity patterns, which is a complex process. This complexity is inherent in human dynamics and has not been extensively studied to reveal the structural composition of human behavior. A typical method of anatomizing such a complex system is viewing all independent interconnectivity that constitutes the complexity. An examination of the various dimensions of human communication pattern in online interactions is presented in this paper. The study employed reliable server-side web data from 31 known users to explore characteristics of human-driven communications. Various machine-learning techniques were explored. The results revealed that each individual exhibited a relatively consistent, unique behavioral signature and that the logistic regression model and model tree can be used to accurately distinguish online users. These results are applicable to one-to-one online user identification processes, insider misuse investigation processes, and online profiling in various areas. PMID:27918593
Scaling behavior of online human activity
NASA Astrophysics Data System (ADS)
Zhao, Zhi-Dan; Cai, Shi-Min; Huang, Junming; Fu, Yan; Zhou, Tao
2012-11-01
The rapid development of the Internet technology enables humans to explore the web and record the traces of online activities. From the analysis of these large-scale data sets (i.e., traces), we can get insights about the dynamic behavior of human activity. In this letter, the scaling behavior and complexity of human activity in the e-commerce, such as music, books, and movies rating, are comprehensively investigated by using the detrended fluctuation analysis technique and the multiscale entropy method. Firstly, the interevent time series of rating behaviors of these three types of media show similar scaling properties with exponents ranging from 0.53 to 0.58, which implies that the collective behaviors of rating media follow a process embodying self-similarity and long-range correlation. Meanwhile, by dividing the users into three groups based on their activities (i.e., rating per unit time), we find that the scaling exponents of the interevent time series in the three groups are different. Hence, these results suggest that a stronger long-range correlations exist in these collective behaviors. Furthermore, their information complexities vary in the three groups. To explain the differences of the collective behaviors restricted to the three groups, we study the dynamic behavior of human activity at the individual level, and find that the dynamic behaviors of a few users have extremely small scaling exponents associated with long-range anticorrelations. By comparing the interevent time distributions of four representative users, we can find that the bimodal distributions may bring forth the extraordinary scaling behaviors. These results of the analysis of the online human activity in the e-commerce may not only provide insight into its dynamic behaviors but may also be applied to acquire potential economic interest.
COREBA (cognition-oriented emergent behavior architecture)
NASA Astrophysics Data System (ADS)
Kwak, S. David
2000-06-01
Currently, many behavior implementation technologies are available for modeling human behaviors in Department of Defense (DOD) computerized systems. However, it is commonly known that any single currently adopted behavior implementation technology is not so capable of fully representing complex and dynamic human decision-making and cognition behaviors. The author views that the current situation can be greatly improved if multiple technologies are integrated within a well designed overarching architecture that amplifies the merits of each of the participating technologies while suppressing the limitations that are inherent with each of the technologies. COREBA uses an overarching behavior integration architecture that makes the multiple implementation technologies cooperate in a homogeneous environment while collectively transcending the limitations associated with the individual implementation technologies. Specifically, COREBA synergistically integrates Artificial Intelligence and Complex Adaptive System under Rational Behavior Model multi-level multi- paradigm behavior architecture. This paper will describe applicability of COREBA in DOD domain, behavioral capabilities and characteristics of COREBA and how the COREBA architectural integrates various behavior implementation technologies.
Creating a Strategy for Progress: A Contextual Behavioral Science Approach
ERIC Educational Resources Information Center
Vilardaga, Roger; Hayes, Steven C.; Levin, Michael E.; Muto, Takashi
2009-01-01
Behavior analysis is a field dedicated to the development and application of behavioral principles to the understanding and modification of the psychological actions of organisms. As such, behavior analysis was committed from the beginning to a comprehensive account of behavior, stretching from animal learning to complex human behavior. Despite…
Validating Computational Human Behavior Models: Consistency and Accuracy Issues
2004-06-01
includes a discussion of SME demographics, content, and organization of the datasets . This research generalizes data from two pilot studies and two base...meet requirements for validating the varied and complex behavioral models. Through a series of empirical studies , this research identifies subject...meet requirements for validating the varied and complex behavioral models. Through a series of empirical studies , this research identifies subject
Luk, Berkley; Veeraragavan, Surabi; Engevik, Melinda; Balderas, Miriam; Major, Angela; Runge, Jessica; Luna, Ruth Ann; Versalovic, James
2018-01-01
Accumulating studies have defined a role for the intestinal microbiota in modulation of host behavior. Research using gnotobiotic mice emphasizes that early microbial colonization with a complex microbiota (conventionalization) can rescue some of the behavioral abnormalities observed in mice that grow to adulthood completely devoid of bacteria (germ-free mice). However, the human infant and adult microbiomes vary greatly, and effects of the neonatal microbiome on neurodevelopment are currently not well understood. Microbe-mediated modulation of neural circuit patterning in the brain during neurodevelopment may have significant long-term implications that we are only beginning to appreciate. Modulation of the host central nervous system by the early-life microbiota is predicted to have pervasive and lasting effects on brain function and behavior. We sought to replicate this early microbe-host interaction by colonizing gnotobiotic mice at the neonatal stage with a simplified model of the human infant gut microbiota. This model consortium consisted of four "infant-type" Bifidobacterium species known to be commensal members of the human infant microbiota present in high abundance during postnatal development. Germ-free mice and mice neonatally-colonized with a complex, conventional murine microbiota were used for comparison. Motor and non-motor behaviors of the mice were tested at 6-7 weeks of age, and colonization patterns were characterized by 16S ribosomal RNA gene sequencing. Adult germ-free mice were observed to have abnormal memory, sociability, anxiety-like behaviors, and motor performance. Conventionalization at the neonatal stage rescued these behavioral abnormalities, and mice colonized with Bifidobacterium spp. also exhibited important behavioral differences relative to the germ-free controls. The ability of Bifidobacterium spp. to improve the recognition memory of both male and female germ-free mice was a prominent finding. Together, these data demonstrate that the early-life gut microbiome, and human "infant-type" Bifidobacterium species, affect adult behavior in a strongly sex-dependent manner, and can selectively recapitulate the results observed when mice are colonized with a complex microbiota.
NASA Astrophysics Data System (ADS)
Müller-Hansen, Finn; Schlüter, Maja; Mäs, Michael; Donges, Jonathan F.; Kolb, Jakob J.; Thonicke, Kirsten; Heitzig, Jobst
2017-11-01
Today, humans have a critical impact on the Earth system and vice versa, which can generate complex feedback processes between social and ecological dynamics. Integrating human behavior into formal Earth system models (ESMs), however, requires crucial modeling assumptions about actors and their goals, behavioral options, and decision rules, as well as modeling decisions regarding human social interactions and the aggregation of individuals' behavior. Here, we review existing modeling approaches and techniques from various disciplines and schools of thought dealing with human behavior at different levels of decision making. We demonstrate modelers' often vast degrees of freedom but also seek to make modelers aware of the often crucial consequences of seemingly innocent modeling assumptions. After discussing which socioeconomic units are potentially important for ESMs, we compare models of individual decision making that correspond to alternative behavioral theories and that make diverse modeling assumptions about individuals' preferences, beliefs, decision rules, and foresight. We review approaches to model social interaction, covering game theoretic frameworks, models of social influence, and network models. Finally, we discuss approaches to studying how the behavior of individuals, groups, and organizations can aggregate to complex collective phenomena, discussing agent-based, statistical, and representative-agent modeling and economic macro-dynamics. We illustrate the main ingredients of modeling techniques with examples from land-use dynamics as one of the main drivers of environmental change bridging local to global scales.
Experimental econophysics: Complexity, self-organization, and emergent properties
NASA Astrophysics Data System (ADS)
Huang, J. P.
2015-03-01
Experimental econophysics is concerned with statistical physics of humans in the laboratory, and it is based on controlled human experiments developed by physicists to study some problems related to economics or finance. It relies on controlled human experiments in the laboratory together with agent-based modeling (for computer simulations and/or analytical theory), with an attempt to reveal the general cause-effect relationship between specific conditions and emergent properties of real economic/financial markets (a kind of complex adaptive systems). Here I review the latest progress in the field, namely, stylized facts, herd behavior, contrarian behavior, spontaneous cooperation, partial information, and risk management. Also, I highlight the connections between such progress and other topics of traditional statistical physics. The main theme of the review is to show diverse emergent properties of the laboratory markets, originating from self-organization due to the nonlinear interactions among heterogeneous humans or agents (complexity).
Human Error In Complex Systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1991-01-01
Report presents results of research aimed at understanding causes of human error in such complex systems as aircraft, nuclear powerplants, and chemical processing plants. Research considered both slips (errors of action) and mistakes (errors of intention), and influence of workload on them. Results indicated that: humans respond to conditions in which errors expected by attempting to reduce incidence of errors; and adaptation to conditions potent influence on human behavior in discretionary situations.
Unto Others: Illustrating the Human Capacity for Cooperation
ERIC Educational Resources Information Center
Morris, J. Andrew; Urbanski, John; Hunt, Jason
2011-01-01
Research in both evolutionary economics and evolutionary psychology provides strong evidence that human behavior can be, and is, a complex mix of hedonism and altruism with a strong inclination toward cooperation under certain conditions. In this article, behavioral assumptions made in mainstream business theory are compared and contrasted with…
Snowflakes, Living Systems, and the Mystery of Giftedness
ERIC Educational Resources Information Center
Dai, David Yun; Renzulli, Joseph S.
2008-01-01
The main argument of this article is that human living systems are open, dynamic, intentional systems and, therefore, are capable of building ever more complex behaviors through self-organization and self-direction. This principle underlying general human development is also applicable to the development of gifted and talented behaviors. These…
Saving Human Lives: What Complexity Science and Information Systems can Contribute
NASA Astrophysics Data System (ADS)
Helbing, Dirk; Brockmann, Dirk; Chadefaux, Thomas; Donnay, Karsten; Blanke, Ulf; Woolley-Meza, Olivia; Moussaid, Mehdi; Johansson, Anders; Krause, Jens; Schutte, Sebastian; Perc, Matjaž
2015-02-01
We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.
Saving Human Lives: What Complexity Science and Information Systems can Contribute.
Helbing, Dirk; Brockmann, Dirk; Chadefaux, Thomas; Donnay, Karsten; Blanke, Ulf; Woolley-Meza, Olivia; Moussaid, Mehdi; Johansson, Anders; Krause, Jens; Schutte, Sebastian; Perc, Matjaž
We discuss models and data of crowd disasters, crime, terrorism, war and disease spreading to show that conventional recipes, such as deterrence strategies, are often not effective and sufficient to contain them. Many common approaches do not provide a good picture of the actual system behavior, because they neglect feedback loops, instabilities and cascade effects. The complex and often counter-intuitive behavior of social systems and their macro-level collective dynamics can be better understood by means of complexity science. We highlight that a suitable system design and management can help to stop undesirable cascade effects and to enable favorable kinds of self-organization in the system. In such a way, complexity science can help to save human lives.
A Qualitative Model of Human Interaction with Complex Dynamic Systems
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1987-01-01
A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.
A qualitative model of human interaction with complex dynamic systems
NASA Technical Reports Server (NTRS)
Hess, Ronald A.
1987-01-01
A qualitative model describing human interaction with complex dynamic systems is developed. The model is hierarchical in nature and consists of three parts: a behavior generator, an internal model, and a sensory information processor. The behavior generator is responsible for action decomposition, turning higher level goals or missions into physical action at the human-machine interface. The internal model is an internal representation of the environment which the human is assumed to possess and is divided into four submodel categories. The sensory information processor is responsible for sensory composition. All three parts of the model act in consort to allow anticipatory behavior on the part of the human in goal-directed interaction with dynamic systems. Human workload and error are interpreted in this framework, and the familiar example of an automobile commute is used to illustrate the nature of the activity in the three model elements. Finally, with the qualitative model as a guide, verbal protocols from a manned simulation study of a helicopter instrument landing task are analyzed with particular emphasis on the effect of automation on human-machine performance.
Human Nature and Research Paradigms: Theory Meets Physical Therapy Practice
ERIC Educational Resources Information Center
Plack, Margaret M.
2005-01-01
Human nature is a very complex phenomenon. In physical therapy this complexity is enhanced by the need to understand the intersection between the art and science of human behavior and patient care. A paradigm is a set of basic beliefs that represent a worldview, defines the nature of the world and the individual's place in it, and helps to…
Modeling driver behavior in a cognitive architecture.
Salvucci, Dario D
2006-01-01
This paper explores the development of a rigorous computational model of driver behavior in a cognitive architecture--a computational framework with underlying psychological theories that incorporate basic properties and limitations of the human system. Computational modeling has emerged as a powerful tool for studying the complex task of driving, allowing researchers to simulate driver behavior and explore the parameters and constraints of this behavior. An integrated driver model developed in the ACT-R (Adaptive Control of Thought-Rational) cognitive architecture is described that focuses on the component processes of control, monitoring, and decision making in a multilane highway environment. This model accounts for the steering profiles, lateral position profiles, and gaze distributions of human drivers during lane keeping, curve negotiation, and lane changing. The model demonstrates how cognitive architectures facilitate understanding of driver behavior in the context of general human abilities and constraints and how the driving domain benefits cognitive architectures by pushing model development toward more complex, realistic tasks. The model can also serve as a core computational engine for practical applications that predict and recognize driver behavior and distraction.
The Manipulative Complexity of Lower Paleolithic Stone Toolmaking
Faisal, Aldo; Stout, Dietrich; Apel, Jan; Bradley, Bruce
2010-01-01
Background Early stone tools provide direct evidence of human cognitive and behavioral evolution that is otherwise unavailable. Proper interpretation of these data requires a robust interpretive framework linking archaeological evidence to specific behavioral and cognitive actions. Methodology/Principal Findings Here we employ a data glove to record manual joint angles in a modern experimental toolmaker (the 4th author) replicating ancient tool forms in order to characterize and compare the manipulative complexity of two major Lower Paleolithic technologies (Oldowan and Acheulean). To this end we used a principled and general measure of behavioral complexity based on the statistics of joint movements. Conclusions/Significance This allowed us to confirm that previously observed differences in brain activation associated with Oldowan versus Acheulean technologies reflect higher-level behavior organization rather than lower-level differences in manipulative complexity. This conclusion is consistent with a scenario in which the earliest stages of human technological evolution depended on novel perceptual-motor capacities (such as the control of joint stiffness) whereas later developments increasingly relied on enhanced mechanisms for cognitive control. This further suggests possible links between toolmaking and language evolution. PMID:21072164
Fractal analysis on human dynamics of library loans
NASA Astrophysics Data System (ADS)
Fan, Chao; Guo, Jin-Li; Zha, Yi-Long
2012-12-01
In this paper, the fractal characteristic of human behaviors is investigated from the perspective of time series constructed with the amount of library loans. The values of the Hurst exponent and length of non-periodic cycle calculated through rescaled range analysis indicate that the time series of human behaviors and their sub-series are fractal with self-similarity and long-range dependence. Then the time series are converted into complex networks by the visibility algorithm. The topological properties of the networks such as scale-free property and small-world effect imply that there is a close relationship among the numbers of repetitious behaviors performed by people during certain periods of time. Our work implies that there is intrinsic regularity in the human collective repetitious behaviors. The conclusions may be helpful to develop some new approaches to investigate the fractal feature and mechanism of human dynamics, and provide some references for the management and forecast of human collective behaviors.
Biomechanical behavior of muscle-tendon complex during dynamic human movements.
Fukashiro, Senshi; Hay, Dean C; Nagano, Akinori
2006-05-01
This paper reviews the research findings regarding the force and length changes of the muscle-tendon complex during dynamic human movements, especially those using ultrasonography and computer simulation. The use of ultrasonography demonstrated that the tendinous structures of the muscle-tendon complex are compliant enough to influence the biomechanical behavior (length change, shortening velocity, and so on) of fascicles substantially. It was discussed that the fascicles are a force generator rather than a work generator; the tendinous structures function not only as an energy re-distributor but also as a power amplifier, and the interaction between fascicles and tendinous structures is essential for generating higher joint power outputs during the late pushoff phase in human vertical jumping. This phenomenon could be explained based on the force-length/velocity relationships of each element (contractile and series elastic elements) in the muscle-tendon complex during movements. Through computer simulation using a Hill-type muscle-tendon complex model, the benefit of making a countermovement was examined in relation to the compliance of the muscle-tendon complex and the length ratio between the contractile and series elastic elements. Also, the integral roles of the series elastic element were simulated in a cyclic human heel-raise exercise. It was suggested that the storage and reutilization of elastic energy by the tendinous structures play an important role in enhancing work output and movement efficiency in many sorts of human movements.
Strategies for the Integration of Cough and Swallow to Maintain Airway Protection in Humans.
Huff, Alyssa; Reed, Mitchell D; Smith, Barbara K; Brown, Edward H; Ovechkin, Alexander V; Pitts, Teresa
2018-06-20
Airway protective behaviors, like cough and swallow, deteriorate in many populations suffering from neurologic disorders. While coordination of these behaviors has been investigated in an animal model, it has not been tested in humans. We used a novel protocol, adapted from previous work in the cat, to assess cough and swallow independently and their coordination strategies in seven healthy males (26 ± 6 years). Surface electromyograms of the submental complex and external oblique complex, spirometry, and thoracic and abdominal wall kinematics, were used to evaluate the timing of swallow, cough, and breathing as well as lung volume (LV) during these behaviors. Unlike the cat, there was significant variability in the cough-swallow phase preference; however, there was a targeted LV range in which swallow occurred. These results give insight into the differences between the cat and human models in airway protective strategies related to the coordination of cough and swallow behaviors, allowing for better understanding of dystussia and dysphagia.
Real-Time Assessment of Wellness and Disease in Daily Life.
Ausiello, Dennis; Lipnick, Scott
2015-09-01
The next frontier in medicine involves better quantifying human traits, known as "phenotypes." Biological markers have been directly associated with disease risks, but poor measurement of behaviors such as diet and exercise limits our understanding of preventive measures. By joining together an uncommonly wide range of disciplines and expertise, the Kavli HUMAN Project will advance measurement of behavioral phenotypes, as well as environmental factors that impact behavior. By following the same individuals over time, KHP will liberate new understanding of dynamic links between behavioral phenotypes, disease, and the broader environment. As KHP advances understanding of the bio-behavioral complex, it will seed new approaches to the diagnosis, prevention, and treatment of human disease.
Robot-assisted surgery: an emerging platform for human neuroscience research
Jarc, Anthony M.; Nisky, Ilana
2015-01-01
Classic studies in human sensorimotor control use simplified tasks to uncover fundamental control strategies employed by the nervous system. Such simple tasks are critical for isolating specific features of motor, sensory, or cognitive processes, and for inferring causality between these features and observed behavioral changes. However, it remains unclear how these theories translate to complex sensorimotor tasks or to natural behaviors. Part of the difficulty in performing such experiments has been the lack of appropriate tools for measuring complex motor skills in real-world contexts. Robot-assisted surgery (RAS) provides an opportunity to overcome these challenges by enabling unobtrusive measurements of user behavior. In addition, a continuum of tasks with varying complexity—from simple tasks such as those in classic studies to highly complex tasks such as a surgical procedure—can be studied using RAS platforms. Finally, RAS includes a diverse participant population of inexperienced users all the way to expert surgeons. In this perspective, we illustrate how the characteristics of RAS systems make them compelling platforms to extend many theories in human neuroscience, as well as, to develop new theories altogether. PMID:26089785
Double dynamic scaling in human communication dynamics
NASA Astrophysics Data System (ADS)
Wang, Shengfeng; Feng, Xin; Wu, Ye; Xiao, Jinhua
2017-05-01
In the last decades, human behavior has been deeply understanding owing to the huge quantities data of human behavior available for study. The main finding in human dynamics shows that temporal processes consist of high-activity bursty intervals alternating with long low-activity periods. A model, assuming the initiator of bursty follow a Poisson process, is widely used in the modeling of human behavior. Here, we provide further evidence for the hypothesis that different bursty intervals are independent. Furthermore, we introduce a special threshold to quantitatively distinguish the time scales of complex dynamics based on the hypothesis. Our results suggest that human communication behavior is a composite process of double dynamics with midrange memory length. The method for calculating memory length would enhance the performance of many sequence-dependent systems, such as server operation and topic identification.
Editorial: Cognitive Architectures, Model Comparison and AGI
NASA Astrophysics Data System (ADS)
Lebiere, Christian; Gonzalez, Cleotilde; Warwick, Walter
2010-12-01
Cognitive Science and Artificial Intelligence share compatible goals of understanding and possibly generating broadly intelligent behavior. In order to determine if progress is made, it is essential to be able to evaluate the behavior of complex computational models, especially those built on general cognitive architectures, and compare it to benchmarks of intelligent behavior such as human performance. Significant methodological challenges arise, however, when trying to extend approaches used to compare model and human performance from tightly controlled laboratory tasks to complex tasks involving more open-ended behavior. This paper describes a model comparison challenge built around a dynamic control task, the Dynamic Stocks and Flows. We present and discuss distinct approaches to evaluating performance and comparing models. Lessons drawn from this challenge are discussed in light of the challenge of using cognitive architectures to achieve Artificial General Intelligence.
Peng, Zhen; Genewein, Tim; Braun, Daniel A.
2014-01-01
Complexity is a hallmark of intelligent behavior consisting both of regular patterns and random variation. To quantitatively assess the complexity and randomness of human motion, we designed a motor task in which we translated subjects' motion trajectories into strings of symbol sequences. In the first part of the experiment participants were asked to perform self-paced movements to create repetitive patterns, copy pre-specified letter sequences, and generate random movements. To investigate whether the degree of randomness can be manipulated, in the second part of the experiment participants were asked to perform unpredictable movements in the context of a pursuit game, where they received feedback from an online Bayesian predictor guessing their next move. We analyzed symbol sequences representing subjects' motion trajectories with five common complexity measures: predictability, compressibility, approximate entropy, Lempel-Ziv complexity, as well as effective measure complexity. We found that subjects' self-created patterns were the most complex, followed by drawing movements of letters and self-paced random motion. We also found that participants could change the randomness of their behavior depending on context and feedback. Our results suggest that humans can adjust both complexity and regularity in different movement types and contexts and that this can be assessed with information-theoretic measures of the symbolic sequences generated from movement trajectories. PMID:24744716
Comer, Sandra D.; Bickel, Warren K.; Yi, Richard; de Wit, Harriet; Higgins, Stephen T.; Wenger, Galen R.; Johanson, Chris-Ellyn; Kreek, Mary Jeanne
2010-01-01
A symposium held at the 50th annual meeting of the Behavioral Pharmacology Society in May 2007 reviewed progress in the human behavioral pharmacology of drug abuse. Studies on drug self-administration in humans are reviewed that assessed reinforcing and subjective effects of drugs of abuse. The close parallels observed between studies in humans and laboratory animals using similar behavioral techniques have broadened our understanding of the complex nature of the pharmacological and behavioral factors controlling drug self-administration. The symposium also addressed the role that individual differences, such as gender, personality, and genotype play in determining the extent of self-administration of illicit drugs in human populations. Knowledge of how these factors influence human drug self-administration has helped validate similar differences observed in laboratory animals. In recognition that drug self-administration is but one of many choices available in the lives of humans, the symposium addressed the ways in which choice behavior can be studied in humans. These choice studies in human drug abusers have opened up new and exciting avenues of research in laboratory animals. Finally, the symposium reviewed behavioral pharmacology studies conducted in drug abuse treatment settings and the therapeutic benefits that have emerged from these studies. PMID:20664330
Interactive social contagions and co-infections on complex networks
NASA Astrophysics Data System (ADS)
Liu, Quan-Hui; Zhong, Lin-Feng; Wang, Wei; Zhou, Tao; Eugene Stanley, H.
2018-01-01
What we are learning about the ubiquitous interactions among multiple social contagion processes on complex networks challenges existing theoretical methods. We propose an interactive social behavior spreading model, in which two behaviors sequentially spread on a complex network, one following the other. Adopting the first behavior has either a synergistic or an inhibiting effect on the spread of the second behavior. We find that the inhibiting effect of the first behavior can cause the continuous phase transition of the second behavior spreading to become discontinuous. This discontinuous phase transition of the second behavior can also become a continuous one when the effect of adopting the first behavior becomes synergistic. This synergy allows the second behavior to be more easily adopted and enlarges the co-existence region of both behaviors. We establish an edge-based compartmental method, and our theoretical predictions match well with the simulation results. Our findings provide helpful insights into better understanding the spread of interactive social behavior in human society.
Following Human Footsteps: Proposal of a Decision Theory Based on Human Behavior
NASA Technical Reports Server (NTRS)
Mahmud, Faisal
2011-01-01
Human behavior is a complex nature which depends on circumstances and decisions varying from time to time as well as place to place. The way a decision is made either directly or indirectly related to the availability of the options. These options though appear at random nature, have a solid directional way for decision making. In this paper, a decision theory is proposed which is based on human behavior. The theory is structured with model sets that will show the all possible combinations for making a decision, A virtual and simulated environment is considered to show the results of the proposed decision theory
What every conservation biologist should know about economic theory.
Gowdy, John; Hall, Charles; Klitgaard, Kent; Krall, Lisi
2010-12-01
The last century has seen the ascendance of a core economic model, which we will refer to as Walrasian economics. This model is driven by the psychological assumptions that humans act only in a self-referential and narrowly rational way and that production can be described as a self-contained circular flow between firms and households. These assumptions have critical implications for the way economics is used to inform conservation biology. Yet the Walrasian model is inconsistent with a large body of empirical evidence about actual human behavior, and it violates a number of basic physical laws. Research in behavioral science and neuroscience shows that humans are uniquely social animals and not self-centered rational economic beings. Economic production is subject to physical laws including the laws of thermodynamics and mass balance. In addition, some contemporary economic theory, spurred by exciting new research in human behavior and a wealth of data about the negative global impact of the human economy on natural systems, is moving toward a world view that places consumption and production squarely in its behavioral and biophysical context. We argue that abandoning the straightjacket of the Walrasian core is essential to further progress in understanding the complex, coupled interactions between the human economy and the natural world. We call for a new framework for economic theory and policy that is consistent with observed human behavior, recognizes the complex and frequently irreversible interaction between human and natural systems, and directly confronts the cumulative negative effects of the human economy on the Earth's life support systems. Biophysical economics and ecological economics are two emerging economic frameworks in this movement. © 2010 Society for Conservation Biology.
Rouse, Andrew A; Cook, Peter F; Large, Edward W; Reichmuth, Colleen
2016-01-01
Human capacity for entraining movement to external rhythms-i.e., beat keeping-is ubiquitous, but its evolutionary history and neural underpinnings remain a mystery. Recent findings of entrainment to simple and complex rhythms in non-human animals pave the way for a novel comparative approach to assess the origins and mechanisms of rhythmic behavior. The most reliable non-human beat keeper to date is a California sea lion, Ronan, who was trained to match head movements to isochronous repeating stimuli and showed spontaneous generalization of this ability to novel tempos and to the complex rhythms of music. Does Ronan's performance rely on the same neural mechanisms as human rhythmic behavior? In the current study, we presented Ronan with simple rhythmic stimuli at novel tempos. On some trials, we introduced "perturbations," altering either tempo or phase in the middle of a presentation. Ronan quickly adjusted her behavior following all perturbations, recovering her consistent phase and tempo relationships to the stimulus within a few beats. Ronan's performance was consistent with predictions of mathematical models describing coupled oscillation: a model relying solely on phase coupling strongly matched her behavior, and the model was further improved with the addition of period coupling. These findings are the clearest evidence yet for parity in human and non-human beat keeping and support the view that the human ability to perceive and move in time to rhythm may be rooted in broadly conserved neural mechanisms.
Human behavior recognition using a context-free grammar
NASA Astrophysics Data System (ADS)
Rosani, Andrea; Conci, Nicola; De Natale, Francesco G. B.
2014-05-01
Automatic recognition of human activities and behaviors is still a challenging problem for many reasons, including limited accuracy of the data acquired by sensing devices, high variability of human behaviors, and gap between visual appearance and scene semantics. Symbolic approaches can significantly simplify the analysis and turn raw data into chains of meaningful patterns. This allows getting rid of most of the clutter produced by low-level processing operations, embedding significant contextual information into the data, as well as using simple syntactic approaches to perform the matching between incoming sequences and models. We propose a symbolic approach to learn and detect complex activities through the sequences of atomic actions. Compared to previous methods based on context-free grammars, we introduce several important novelties, such as the capability to learn actions based on both positive and negative samples, the possibility of efficiently retraining the system in the presence of misclassified or unrecognized events, and the use of a parsing procedure that allows correct detection of the activities also when they are concatenated and/or nested one with each other. An experimental validation on three datasets with different characteristics demonstrates the robustness of the approach in classifying complex human behaviors.
Evolution of cooperative behavior in simulation agents
NASA Astrophysics Data System (ADS)
Stroud, Phillip D.
1998-03-01
A simulated automobile factory paint shop is used as a testbed for exploring the emulation of human decision-making behavior. A discrete-events simulation of the paint shop as a collection of interacting Java actors is described. An evolutionary cognitive architecture is under development for building software actors to emulate humans in simulations of human- dominated complex systems. In this paper, the cognitive architecture is extended by implementing a persistent population of trial behaviors with an incremental fitness valuation update strategy, and by allowing a group of cognitive actors to share information. A proof-of-principle demonstration is presented.
Humane Education: Resource Guide. A Guide for Elementary School Teachers.
ERIC Educational Resources Information Center
New York City Board of Education, Brooklyn, NY. Div. of Curriculum and Instruction.
Humane education promotes responsible behavior and improves the quality of life for animals and humans. Teaching the humane treatment of animals is a complex, philosophical, and values-oriented subject. Lessons for each grade level have performance objectives, materials, and activities. Student activity sheets are provided for follow-up…
Control of cognition and adaptive behavior by the GLP/G9a epigenetic suppressor complex
Schaefer, Anne; Sampath, Srihari C.; Intrator, Adam; Min, Alice; Gertler, Tracy S.; Surmeier, D. James; Tarakhovsky, Alexander; Greengard, Paul
2009-01-01
SUMMARY The genetic basis of cognition and behavioral adaptation to the environment remains poorly understood. Here we demonstrate that the histone methyltransferase complex GLP/G9a controls cognition and adaptive responses in a region-specific fashion in the adult brain. Using conditional mutagenesis in mice, we show that postnatal, neuron-specific deficiency of GLP/G9a leads to de-repression of numerous non-neuronal and neuron progenitor genes in adult neurons. This transcriptional alteration is associated with complex behavioral abnormalities, including defects in learning, motivation and environmental adaptation. The behavioral changes triggered by GLP/G9a deficiency are similar to key symptoms of the human 9q34 mental retardation syndrome that is associated with structural alterations of the GLP gene. The likely causal role of GLP/G9a in mental retardation in mice and humans suggests a key role for the GLP/G9a controlled histone H3K9 di-methylation in regulation of brain function through maintenance of the transcriptional homeostasis in adult neurons. PMID:20005824
Augmenting team cognition in human-automation teams performing in complex operational environments.
Cuevas, Haydee M; Fiore, Stephen M; Caldwell, Barrett S; Strater, Laura
2007-05-01
There is a growing reliance on automation (e.g., intelligent agents, semi-autonomous robotic systems) to effectively execute increasingly cognitively complex tasks. Successful team performance for such tasks has become even more dependent on team cognition, addressing both human-human and human-automation teams. Team cognition can be viewed as the binding mechanism that produces coordinated behavior within experienced teams, emerging from the interplay between each team member's individual cognition and team process behaviors (e.g., coordination, communication). In order to better understand team cognition in human-automation teams, team performance models need to address issues surrounding the effect of human-agent and human-robot interaction on critical team processes such as coordination and communication. Toward this end, we present a preliminary theoretical framework illustrating how the design and implementation of automation technology may influence team cognition and team coordination in complex operational environments. Integrating constructs from organizational and cognitive science, our proposed framework outlines how information exchange and updating between humans and automation technology may affect lower-level (e.g., working memory) and higher-level (e.g., sense making) cognitive processes as well as teams' higher-order "metacognitive" processes (e.g., performance monitoring). Issues surrounding human-automation interaction are discussed and implications are presented within the context of designing automation technology to improve task performance in human-automation teams.
ERIC Educational Resources Information Center
Grigorenko, Elena L.
2007-01-01
The present article offers comments on the infusion of methodologies, approaches, reasoning strategies, and findings from the fields of genetics and genomics into studies of complex human behaviors (hereafter, complex phenotypes). Specifically, I discuss issues of generality and specificity, causality, and replicability as they pertain to…
Human behavioral assessments in current research of Parkinson's disease.
Asakawa, Tetsuya; Fang, Huan; Sugiyama, Kenji; Nozaki, Takao; Kobayashi, Susumu; Hong, Zhen; Suzuki, Katsuaki; Mori, Norio; Yang, Yilin; Hua, Fei; Ding, Guanghong; Wen, Guoqiang; Namba, Hiroki; Xia, Ying
2016-09-01
Parkinson's disease (PD) is traditionally classified as a movement disorder because patients mainly complain about motor symptoms. Recently, non-motor symptoms of PD have been recognized by clinicians and scientists as early signs of PD, and they are detrimental factors in the quality of life in advanced PD patients. It is crucial to comprehensively understand the essence of behavioral assessments, from the simplest measurement of certain symptoms to complex neuropsychological tasks. We have recently reviewed behavioral assessments in PD research with animal models (Asakawa et al., 2016). As a companion volume, this article will systematically review the behavioral assessments of motor and non-motor PD symptoms of human patients in current research. The major aims of this article are: (1) promoting a comparative understanding of various behavioral assessments in terms of the principle and measuring indexes; (2) addressing the major strengths and weaknesses of these behavioral assessments for a better selection of tasks/tests in order to avoid biased conclusions due to inappropriate assessments; and (3) presenting new concepts regarding the development of wearable devices and mobile internet in future assessments. In conclusion we emphasize the importance of improving the assessments for non-motor symptoms because of their complex and unique mechanisms in human PD brains. Copyright © 2016 Elsevier Ltd. All rights reserved.
The fractal based analysis of human face and DNA variations during aging.
Namazi, Hamidreza; Akrami, Amin; Hussaini, Jamal; Silva, Osmar N; Wong, Albert; Kulish, Vladimir V
2017-01-16
Human DNA is the main unit that shapes human characteristics and features such as behavior. Thus, it is expected that changes in DNA (DNA mutation) influence human characteristics and features. Face is one of the human features which is unique and also dependent on his gen. In this paper, for the first time we analyze the variations of human DNA and face simultaneously. We do this job by analyzing the fractal dimension of DNA walk and face during human aging. The results of this study show the human DNA and face get more complex by aging. These complexities are mapped on fractal exponents of DNA walk and human face. The method discussed in this paper can be further developed in order to investigate the direct influence of DNA mutation on the face variations during aging, and accordingly making a model between human face fractality and the complexity of DNA walk.
ERIC Educational Resources Information Center
Levine, Felice J.; Abler, Ronald F.; Rosich, Katherine J.
2004-01-01
Over the last quarter of a century, the world has undergone rapid change. Almost every aspect of human life is more complex and interdependent, requiring knowledge of human and social systems as well as physical and biological systems. The social, behavioral, and economic (SBE) sciences contribute penetrating insights on such issues as the causes…
ERIC Educational Resources Information Center
Chu, Yee Han; Quinn, Andrew
2018-01-01
Advocacy is a complex set of applications that applies knowledge of human behavior in the social environment to promote the rights of others. The purpose of this study was to explore the usefulness of student-created public service announcements (PSAs) to help BSW students learn cause-based advocacy. Our results suggest that assigning a PSA…
Towards a framework of human factors certification of complex human-machine systems
NASA Technical Reports Server (NTRS)
Bukasa, Birgit
1994-01-01
As far as total automation is not realized, the combination of technical and social components in man-machine systems demands not only contributions from engineers but at least to an equal extent from behavioral scientists. This has been neglected far too long. The psychological, social and cultural aspects of technological innovations were almost totally overlooked. Yet, along with expected safety improvements the institutionalization of human factors is on the way. The introduction of human factors certification of complex man-machine systems will be a milestone in this process.
Accommodating complexity and human behaviors in decision analysis.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Backus, George A.; Siirola, John Daniel; Schoenwald, David Alan
2007-11-01
This is the final report for a LDRD effort to address human behavior in decision support systems. One sister LDRD effort reports the extension of this work to include actual human choices and additional simulation analyses. Another provides the background for this effort and the programmatic directions for future work. This specific effort considered the feasibility of five aspects of model development required for analysis viability. To avoid the use of classified information, healthcare decisions and the system embedding them became the illustrative example for assessment.
Oxytocin, vasopressin, and the neurogenetics of sociality.
Donaldson, Zoe R; Young, Larry J
2008-11-07
There is growing evidence that the neuropeptides oxytocin and vasopressin modulate complex social behavior and social cognition. These ancient neuropeptides display a marked conservation in gene structure and expression, yet diversity in the genetic regulation of their receptors seems to underlie natural variation in social behavior, both between and within species. Human studies are beginning to explore the roles of these neuropeptides in social cognition and behavior and suggest that variation in the genes encoding their receptors may contribute to variation in human social behavior by altering brain function. Understanding the neurobiology and neurogenetics of social cognition and behavior has important implications, both clinically and for society.
Third nature: the co-evolution of human behavior, culture, and technology.
Johnston, William A
2005-07-01
Within a dynamical-systems framework, human behavior is seen as emergent from broad evolutionary processes associated with three basic forms of nature. First nature, matter, emerged from the big bang some 12-15 billion years ago; second nature, life, from the first bacteria up to 4 billion years ago; third nature, ideology and cultural artifacts (e.g., institutions and technology), with a shift to self-reflective, symbolic thought and agrarianism in humans some 8-40 thousand years ago. The co-evolution of these three natures has dramatically altered human behavior and its relationship to the whole planet. Third nature has infused human minds with several powerful ideas, or memes, including the idea of progress. These ideas have fueled the evolution of a complex institutional order (e.g., political systems and technology) and myriad attendant global problems (e.g., wars and environmental degradation). The human brain/mind is seen as the primary medium by which third nature governs human behavior and, therefore, self perpetuates.
MINATO, TAKASHI; SHIMADA, MICHIHIRO; ITAKURA, SHOJI; LEE, KANG; ISHIGURO, HIROSHI
2008-01-01
Our research goal is to discover the principles underlying natural communication among individuals and to establish a methodology for the development of expressive humanoid robots. For this purpose we have developed androids that closely resemble human beings. The androids enable us to investigate a number of phenomena related to human interaction that could not otherwise be investigated with mechanical-looking robots. This is because more human-like devices are in a better position to elicit the kinds of responses that people direct toward each other. Moreover, we cannot ignore the role of appearance in giving us a subjective impression of human presence or intelligence. However, this impression is influenced by behavior and the complex relationship between appearance and behavior. This paper proposes a hypothesis about how appearance and behavior are related, and maps out a plan for android research to investigate this hypothesis. We then examine a study that evaluates the human likeness of androids according to the gaze behavior they elicit. Studies such as these, which integrate the development of androids with the investigation of human behavior, constitute a new research area that fuses engineering and science. PMID:18985174
Behavioral Signal Processing: Deriving Human Behavioral Informatics From Speech and Language
Narayanan, Shrikanth; Georgiou, Panayiotis G.
2013-01-01
The expression and experience of human behavior are complex and multimodal and characterized by individual and contextual heterogeneity and variability. Speech and spoken language communication cues offer an important means for measuring and modeling human behavior. Observational research and practice across a variety of domains from commerce to healthcare rely on speech- and language-based informatics for crucial assessment and diagnostic information and for planning and tracking response to an intervention. In this paper, we describe some of the opportunities as well as emerging methodologies and applications of human behavioral signal processing (BSP) technology and algorithms for quantitatively understanding and modeling typical, atypical, and distressed human behavior with a specific focus on speech- and language-based communicative, affective, and social behavior. We describe the three important BSP components of acquiring behavioral data in an ecologically valid manner across laboratory to real-world settings, extracting and analyzing behavioral cues from measured data, and developing models offering predictive and decision-making support. We highlight both the foundational speech and language processing building blocks as well as the novel processing and modeling opportunities. Using examples drawn from specific real-world applications ranging from literacy assessment and autism diagnostics to psychotherapy for addiction and marital well being, we illustrate behavioral informatics applications of these signal processing techniques that contribute to quantifying higher level, often subjectively described, human behavior in a domain-sensitive fashion. PMID:24039277
Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang
2012-01-01
Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs), here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior.
The Role of Atomic Repertoires in Complex Behavior
ERIC Educational Resources Information Center
Palmer, David C.
2012-01-01
Evolution and reinforcement shape adaptive forms and adaptive behavior through many cycles of blind variation and selection, and therein lie their parsimony and power. Human behavior is distinctive in that this shaping process is commonly "short circuited": Critical variations are induced in a single trial. The processes by which this economy is…
Söderlund, Johan; Lindskog, Maria
2018-04-23
The diagnosis of a mental disorder generally depends on clinical observations and phenomenological symptoms reported by the patient. The definition of a given diagnosis is criteria based and relies on the ability to accurately interpret subjective symptoms and complex behavior. This type of diagnosis comprises a challenge to translate to reliable animal models, and these translational uncertainties hamper the development of new treatments. In this review, we will discuss how depressive-like behavior can be induced in rodents, and the relationship between these models and depression in humans. Specifically, we suggest similarities between triggers of depressive-like behavior in animal models and human conditions known to increase the risk of depression, for example exhaustion and bullying. Although we acknowledge the potential problems in comparing animal findings to human conditions, such comparisons are useful for understanding the complexity of depression, and we highlight the need to develop clinical diagnoses and animal models in parallel to overcome translational uncertainties.
Lonstein, Joseph S.; Lévy, Frédéric; Fleming, Alison S.
2015-01-01
Maternal interactions with young occupy most of the reproductive period for female mammals and are absolutely essential for offspring survival and development. The hormonal, sensory, reward-related, emotional, cognitive and neurobiological regulators of maternal caregiving behaviors have been well studied in numerous subprimate mammalian species, and some of the importance of this body of work is thought to be its relevance for understanding similar controls in humans. We here review many of the important biopsychological influences on maternal behaviors in the two best studied non-human animals, laboratory rats and sheep, and directly examine how the conceptual framework established by some of the major discoveries in these animal “models” do or do not hold for our understanding of human mothering. We also explore some of the limits for extrapolating from non-human animals to humans. We conclude that there are many similarities between non-human and human mothers in the biological and psychological factors influencing their early maternal behavior and that many of the differences are due to species-characteristic features related to the role of hormones, the relative importance of each sensory system, flexibility in what behaviors are exhibited, the presence or absence of language, and the complexity of cortical function influencing the behavior. PMID:26122301
Animal Models in Sexual Medicine: The Need and Importance of Studying Sexual Motivation.
Ventura-Aquino, Elisa; Paredes, Raúl G
2017-01-01
Many different animal models of sexual medicine have been developed, demonstrating the complexity of studying the many interactions that influence sexual responses. A great deal of effort has been invested in measuring sexual motivation using different behavioral models mainly because human behavior is more complex than any model can reproduce. To compare different animal models of male and female behaviors that measure sexual motivation as a key element in sexual medicine and focus on models that use a combination of molecular techniques and behavioral measurements. We review the literature to describe models that evaluate different aspects of sexual motivation. No single test is sufficient to evaluate sexual motivation. The best approach is to evaluate animals in different behavioral tests to measure the motivational state of the subject. Different motivated behaviors such as aggression, singing in the case of birds, and sexual behavior, which are crucial for reproduction, are associated with changes in mRNA levels of different receptors in brain areas that are important in the control of reproduction. Research in animal models is crucial to understand the complexity of sexual behavior and all the mechanisms that influence such an important aspect of human well-being to decrease the physiologic and psychological impact of sexual dysfunctions. In other cases, research in different models is necessary to understand and recognize, not cure, the variability of sexuality, such as asexuality, which is another form of sexual orientation. Copyright © 2016 International Society for Sexual Medicine. Published by Elsevier Inc. All rights reserved.
Dopamine in the medial amygdala network mediates human bonding.
Atzil, Shir; Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M; Dickerson, Bradford C; Catana, Ciprian; Barrett, Lisa Feldman
2017-02-28
Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers' dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the "medial amygdala network") that supports social functioning. We also measured the mothers' behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother's infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted.
NASA Astrophysics Data System (ADS)
In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute's book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems - the focus of work at SFI - involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, and the Gross National Product (GNP) of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.
1992 annual report on scientific programs: A broad research program on the sciences of complexity
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1992-12-31
In 1992 the Santa Fe Institute hosted more than 100 short- and long-term research visitors who conducted a total of 212 person-months of residential research in complex systems. To date this 1992 work has resulted in more than 50 SFI Working Papers and nearly 150 publications in the scientific literature. The Institute`s book series in the sciences of complexity continues to grow, now numbering more than 20 volumes. The fifth annual complex systems summer school brought nearly 60 graduate students and postdoctoral fellows to Santa Fe for an intensive introduction to the field. Research on complex systems-the focus of workmore » at SFI-involves an extraordinary range of topics normally studied in seemingly disparate fields. Natural systems displaying complex adaptive behavior range upwards from DNA through cells and evolutionary systems to human societies. Research models exhibiting complex behavior include spin glasses, cellular automata, and genetic algorithms. Some of the major questions facing complex systems researchers are: (1) explaining how complexity arises from the nonlinear interaction of simple components; (2) describing the mechanisms underlying high-level aggregate behavior of complex systems (such as the overt behavior of an organism, the flow of energy in an ecology, the GNP of an economy); and (3) creating a theoretical framework to enable predictions about the likely behavior of such systems in various conditions.« less
New Communitarianism Movements and Complex Utopia
NASA Astrophysics Data System (ADS)
Akdeniz, K. Gediz
Simulation is a rapidly growing field in social sciences. Simulation theories in social sciences are considered to critique social dynamics and societies which are mostly simulated by media, cinema, TV, internet, etc. Recently we (Akdeniz KG, Disorder in complex human system. In: Fritzsch H, Phua KK (eds) Singapore: proceedings of the conference in Honour of Murray Gell-Mann's 80th birthday quantum mechanics, elementary particles, quantum cosmology and complexity. World Scientific Publishing, Hackensack, pp 630-637, 2009) purposed a simulation theory as a critique theory to investigate disordered human behaviors. In this theory, "Disorder-Sensitive Human Behaviors (DSHB) Simulation Theory", chaotic awareness is also considered as a reality principle in simulation world to complete Baudrillard Simulation Theory (Baudrillard J, Simulacra and simulation. University of Michigan Press, Michigan, 1995). We call the emergence of this reality as zuhur which is different than simulacra. More recently we proposed the complex utopia (Akdeniz KG, From Simulacra to Zuhur in Complex Utopia. 11th International Conference of the Utopian Studies Society, Lublin, 2010; Akdeniz KG, The new identities of the physicist: cyborg-physicist and post-physicist. In: Proceedings of the conference of world international conference of technology and education, Beirut, 2010) to critique the complex societies and communities in simulation world. The challenging agents in the complex utopia are both simulacra and zuhur. In this paper we would like to review "What is the complex utopia?" And we shall critique some global events in framework of complex utopia with particular examples in socio-economic and political contexts.
Myosin Heavy Chain Composition of the Human Genioglossus Muscle
ERIC Educational Resources Information Center
Daugherty, Megan; Luo, Qingwei; Sokoloff, Alan J.
2012-01-01
Background: The human tongue muscle genioglossus (GG) is active in speech, swallowing, respiration, and oral transport, behaviors encompassing a wide range of tongue shapes and movement speeds. Studies demonstrate substantial diversity in patterns of human GG motor unit activation, but whether this is accompanied by complex expression of muscle…
An integrated approach to rotorcraft human factors research
NASA Technical Reports Server (NTRS)
Hart, Sandra G.; Hartzell, E. James; Voorhees, James W.; Bucher, Nancy M.; Shively, R. Jay
1988-01-01
As the potential of civil and military helicopters has increased, more complex and demanding missions in increasingly hostile environments have been required. Users, designers, and manufacturers have an urgent need for information about human behavior and function to create systems that take advantage of human capabilities, without overloading them. Because there is a large gap between what is known about human behavior and the information needed to predict pilot workload and performance in the complex missions projected for pilots of advanced helicopters, Army and NASA scientists are actively engaged in Human Factors Research at Ames. The research ranges from laboratory experiments to computational modeling, simulation evaluation, and inflight testing. Information obtained in highly controlled but simpler environments generates predictions which can be tested in more realistic situations. These results are used, in turn, to refine theoretical models, provide the focus for subsequent research, and ensure operational relevance, while maintaining predictive advantages. The advantages and disadvantages of each type of research are described along with examples of experimental results.
The Photographic Affect Meter: A Novel Application to Measure Momentary Emotional States
ERIC Educational Resources Information Center
Pollak, John P.
2012-01-01
Emotion plays an ever-present role in human existence, impacting nearly every behavior and decision in some way. Research in the behavioral sciences is rife with exploration of emotion and the role it plays in everything from business decision making to health-related behavior. However, affect, the feeling or experience of emotion, is complex and…
Narayanan, Shrikanth; Georgiou, Panayiotis G
2013-02-07
The expression and experience of human behavior are complex and multimodal and characterized by individual and contextual heterogeneity and variability. Speech and spoken language communication cues offer an important means for measuring and modeling human behavior. Observational research and practice across a variety of domains from commerce to healthcare rely on speech- and language-based informatics for crucial assessment and diagnostic information and for planning and tracking response to an intervention. In this paper, we describe some of the opportunities as well as emerging methodologies and applications of human behavioral signal processing (BSP) technology and algorithms for quantitatively understanding and modeling typical, atypical, and distressed human behavior with a specific focus on speech- and language-based communicative, affective, and social behavior. We describe the three important BSP components of acquiring behavioral data in an ecologically valid manner across laboratory to real-world settings, extracting and analyzing behavioral cues from measured data, and developing models offering predictive and decision-making support. We highlight both the foundational speech and language processing building blocks as well as the novel processing and modeling opportunities. Using examples drawn from specific real-world applications ranging from literacy assessment and autism diagnostics to psychotherapy for addiction and marital well being, we illustrate behavioral informatics applications of these signal processing techniques that contribute to quantifying higher level, often subjectively described, human behavior in a domain-sensitive fashion.
Resource Recovery-based Sustainable Water Systems - the City of Tomorrow
Urban water systems are an example of complex, dynamic human-environment coupled systems which exhibit emergent behaviors that transcends individual scientific disciplines. To address the complexities associated with municipal water issues there is a need to shift from our tradi...
1984-01-01
The locomotory behavior of human blood neutrophil leukocytes was studied at a boundary between two surfaces with different chemokinetic properties. This was achieved by time-lapse cinematography of neutrophils moving on coverslips coated with BSA, then part-coated with immune complexes by adding anti-BSA IgG with a straight-line boundary between the BSA and the immune complexes. Cell locomotion was filmed in microscopic fields bisected by the boundary, and kinetic behavior was assessed by comparing speed (orthokinesis), turning behavior (klinokinesis), and the rate of diffusion of the cells on each side of the boundary, using a recently described mathematical analysis of kinesis. In the absence of serum or complement, the proportion of motile cells and their speed and rate of diffusion were greater on BSA than on antiBSA, but there was no consistent difference in turning behavior between cells on the two surfaces. The immune complexes were therefore negatively chemokinetic in comparison with BSA, and this resulted from a negative orthokinesis with little or no contribution from klinokinesis. As would be predicted theoretically, this resulted in gradual accumulation of cells on the immune complexes even in the absence of a chemotactic factor. In further studies, a parallel plate flow chamber was used to show that, under conditions of flow, neutrophils accumulated much more rapidly on a surface coated with BSA- anti-BSA than on BSA alone. Moreover, neutrophils on immune complex- coated surfaces lost their ability to form rosettes with IgG-coated erythrocytes. This suggests that neutrophils on immune complex-coated surfaces redistribute their Fc receptors (RFc gamma) to the under surface, and that the lowered speed of locomotion is due to tethering of neutrophils by substratum-bound IgG-Fc. PMID:6490719
Human performance cognitive-behavioral modeling: a benefit for occupational safety.
Gore, Brian F
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Human performance cognitive-behavioral modeling: a benefit for occupational safety
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2002-01-01
Human Performance Modeling (HPM) is a computer-aided job analysis software methodology used to generate predictions of complex human-automation integration and system flow patterns with the goal of improving operator and system safety. The use of HPM tools has recently been increasing due to reductions in computational cost, augmentations in the tools' fidelity, and usefulness in the generated output. An examination of an Air Man-machine Integration Design and Analysis System (Air MIDAS) model evaluating complex human-automation integration currently underway at NASA Ames Research Center will highlight the importance to occupational safety of considering both cognitive and physical aspects of performance when researching human error.
Bolton, Matthew L.; Bass, Ellen J.; Siminiceanu, Radu I.
2012-01-01
Breakdowns in complex systems often occur as a result of system elements interacting in unanticipated ways. In systems with human operators, human-automation interaction associated with both normative and erroneous human behavior can contribute to such failures. Model-driven design and analysis techniques provide engineers with formal methods tools and techniques capable of evaluating how human behavior can contribute to system failures. This paper presents a novel method for automatically generating task analytic models encompassing both normative and erroneous human behavior from normative task models. The generated erroneous behavior is capable of replicating Hollnagel’s zero-order phenotypes of erroneous action for omissions, jumps, repetitions, and intrusions. Multiple phenotypical acts can occur in sequence, thus allowing for the generation of higher order phenotypes. The task behavior model pattern capable of generating erroneous behavior can be integrated into a formal system model so that system safety properties can be formally verified with a model checker. This allows analysts to prove that a human-automation interactive system (as represented by the model) will or will not satisfy safety properties with both normative and generated erroneous human behavior. We present benchmarks related to the size of the statespace and verification time of models to show how the erroneous human behavior generation process scales. We demonstrate the method with a case study: the operation of a radiation therapy machine. A potential problem resulting from a generated erroneous human action is discovered. A design intervention is presented which prevents this problem from occurring. We discuss how our method could be used to evaluate larger applications and recommend future paths of development. PMID:23105914
Is a Universal Science of Complexity Conceivable?
NASA Astrophysics Data System (ADS)
West, Geoffrey B.
Over the past quarter of a century, terms like complex adaptive system, the science of complexity, emergent behavior, self-organization, and adaptive dynamics have entered the literature, reflecting the rapid growth in collaborative, trans-disciplinary research on fundamental problems in complex systems ranging across the entire spectrum of science from the origin and dynamics of organisms and ecosystems to financial markets, corporate dynamics, urbanization and the human brain...
NASA Astrophysics Data System (ADS)
Xia, Cheng-Yi; Ding, Shuai; Sun, Shi-Wen; Wang, Li; Gao, Zhong-Ke; Wang, Juan
2015-12-01
As is well known, outbreak of epidemics may drive the human population to take some necessary measures to protect themselves from not being infected by infective ones, these precautions in turn will also keep from the further spreading of infectious diseases among the population. Thus, to fully comprehend the epidemic spreading behavior within real-world systems, the interplay between disease dynamics and human behavioral and social dynamics needs to be considered simultaneously, such that some effective containment-measures can be successfully developed [1-3].
Lake, Spencer P; Miller, Kristin S; Elliott, Dawn M; Soslowsky, Louis J
2009-12-01
Tendon exhibits nonlinear stress-strain behavior that may be partly due to movement of collagen fibers through the extracellular matrix. While a few techniques have been developed to evaluate the fiber architecture of other soft tissues, the organizational behavior of tendon under load has not been determined. The supraspinatus tendon (SST) of the rotator cuff is of particular interest for investigation due to its complex mechanical environment and corresponding inhomogeneity. In addition, SST injury occurs frequently with limited success in treatment strategies, illustrating the need for a better understanding of SST properties. Therefore, the objective of this study was to quantitatively evaluate the inhomogeneous tensile mechanical properties, fiber organization, and fiber realignment under load of human SST utilizing a novel polarized light technique. Fiber distributions were found to become more aligned under load, particularly during the low stiffness toe-region, suggesting that fiber realignment may be partly responsible for observed nonlinear behavior. Fiber alignment was found to correlate significantly with mechanical parameters, providing evidence for strong structure-function relationships in tendon. Human SST exhibits complex, inhomogeneous mechanical properties and fiber distributions, perhaps due to its complex loading environment. Surprisingly, histological grade of degeneration did not correlate with mechanical properties.
The applied importance of research on the matching law
Pierce, W. David; Epling, W. Frank
1995-01-01
In this essay, we evaluate the applied implications of two articles related to the matching law and published in the Journal of the Experimental Analysis of Behavior, May 1994. Building on Mace's (1994) criteria for increasing the applied relevance of basic research, we evaluate the applied implications of basic research studies. Research by Elsmore and McBride (1994) and Savastano and Fantino (1994) involve an extension of the behavioral model of choice. Elsmore and McBride used rats as subjects, but arranged a multioperant environment that resembles some of the complex contingencies of human behavior. Savastino and Fantino used human subjects and extended the matching law to ratio and interval contingencies. These experiments contribute to a growing body of knowledge on the matching law and its relevance for human behavior. PMID:16795866
de Borst, Aline W.; de Gelder, Beatrice
2015-01-01
Recent developments in neuroimaging research support the increased use of naturalistic stimulus material such as film, avatars, or androids. These stimuli allow for a better understanding of how the brain processes information in complex situations while maintaining experimental control. While avatars and androids are well suited to study human cognition, they should not be equated to human stimuli. For example, the uncanny valley hypothesis theorizes that artificial agents with high human-likeness may evoke feelings of eeriness in the human observer. Here we review if, when, and how the perception of human-like avatars and androids differs from the perception of humans and consider how this influences their utilization as stimulus material in social and affective neuroimaging studies. First, we discuss how the appearance of virtual characters affects perception. When stimuli are morphed across categories from non-human to human, the most ambiguous stimuli, rather than the most human-like stimuli, show prolonged classification times and increased eeriness. Human-like to human stimuli show a positive linear relationship with familiarity. Secondly, we show that expressions of emotions in human-like avatars can be perceived similarly to human emotions, with corresponding behavioral, physiological and neuronal activations, with exception of physical dissimilarities. Subsequently, we consider if and when one perceives differences in action representation by artificial agents versus humans. Motor resonance and predictive coding models may account for empirical findings, such as an interference effect on action for observed human-like, natural moving characters. However, the expansion of these models to explain more complex behavior, such as empathy, still needs to be investigated in more detail. Finally, we broaden our outlook to social interaction, where virtual reality stimuli can be utilized to imitate complex social situations. PMID:26029133
Acquiring neural signals for developing a perception and cognition model
NASA Astrophysics Data System (ADS)
Li, Wei; Li, Yunyi; Chen, Genshe; Shen, Dan; Blasch, Erik; Pham, Khanh; Lynch, Robert
2012-06-01
The understanding of how humans process information, determine salience, and combine seemingly unrelated information is essential to automated processing of large amounts of information that is partially relevant, or of unknown relevance. Recent neurological science research in human perception, and in information science regarding contextbased modeling, provides us with a theoretical basis for using a bottom-up approach for automating the management of large amounts of information in ways directly useful for human operators. However, integration of human intelligence into a game theoretic framework for dynamic and adaptive decision support needs a perception and cognition model. For the purpose of cognitive modeling, we present a brain-computer-interface (BCI) based humanoid robot system to acquire brainwaves during human mental activities of imagining a humanoid robot-walking behavior. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model. The BCI system consists of a data acquisition unit with an electroencephalograph (EEG), a humanoid robot, and a charge couple CCD camera. An EEG electrode cup acquires brainwaves from the skin surface on scalp. The humanoid robot has 20 degrees of freedom (DOFs); 12 DOFs located on hips, knees, and ankles for humanoid robot walking, 6 DOFs on shoulders and arms for arms motion, and 2 DOFs for head yaw and pitch motion. The CCD camera takes video clips of the human subject's hand postures to identify mental activities that are correlated to the robot-walking behaviors. We use the neural signals to investigate relationships between complex humanoid robot behaviors and human mental activities for developing the perception and cognition model.
Embracing chaos and complexity: a quantum change for public health.
Resnicow, Kenneth; Page, Scott E
2008-08-01
Public health research and practice have been guided by a cognitive, rational paradigm where inputs produce linear, predictable changes in outputs. However, the conceptual and statistical assumptions underlying this paradigm may be flawed. In particular, this perspective does not adequately account for nonlinear and quantum influences on human behavior. We propose that health behavior change is better understood through the lens of chaos theory and complex adaptive systems. Key relevant principles include that behavior change (1) is often a quantum event; (2) can resemble a chaotic process that is sensitive to initial conditions, highly variable, and difficult to predict; and (3) occurs within a complex adaptive system with multiple components, where results are often greater than the sum of their parts.
NASA Astrophysics Data System (ADS)
Wells, Chad R.; Galvani, Alison P.
2015-12-01
In a loop of dynamic feedback, behavior such as the decision to vaccinate, hand washing, or avoidance influences the progression of the epidemic, yet behavior is driven by the individual's and population's perceived risk of infection during an outbreak. In what we believe will become a seminal paper that stimulates future research as well as an informative teaching aid, Wang et. al. comprehensively review methodological advances that have been used to incorporate human behavior into epidemiological models on the effects of coupling disease transmission and behavior on complex social networks [1]. As illustrated by the recent outbreaks of measles and Middle Eastern Respiratory Syndrome (MERS), here we highlight the importance of coupling behavior and disease transmission that Wang et al. address.
Dopamine in the medial amygdala network mediates human bonding
Touroutoglou, Alexandra; Rudy, Tali; Salcedo, Stephanie; Feldman, Ruth; Hooker, Jacob M.; Dickerson, Bradford C.; Catana, Ciprian; Barrett, Lisa Feldman
2017-01-01
Research in humans and nonhuman animals indicates that social affiliation, and particularly maternal bonding, depends on reward circuitry. Although numerous mechanistic studies in rodents demonstrated that maternal bonding depends on striatal dopamine transmission, the neurochemistry supporting maternal behavior in humans has not been described so far. In this study, we tested the role of central dopamine in human bonding. We applied a combined functional MRI-PET scanner to simultaneously probe mothers’ dopamine responses to their infants and the connectivity between the nucleus accumbens (NAcc), the amygdala, and the medial prefrontal cortex (mPFC), which form an intrinsic network (referred to as the “medial amygdala network”) that supports social functioning. We also measured the mothers’ behavioral synchrony with their infants and plasma oxytocin. The results of this study suggest that synchronous maternal behavior is associated with increased dopamine responses to the mother’s infant and stronger intrinsic connectivity within the medial amygdala network. Moreover, stronger network connectivity is associated with increased dopamine responses within the network and decreased plasma oxytocin. Together, these data indicate that dopamine is involved in human bonding. Compared with other mammals, humans have an unusually complex social life. The complexity of human bonding cannot be fully captured in nonhuman animal models, particularly in pathological bonding, such as that in autistic spectrum disorder or postpartum depression. Thus, investigations of the neurochemistry of social bonding in humans, for which this study provides initial evidence, are warranted. PMID:28193868
Designing To Learn about Complex Systems.
ERIC Educational Resources Information Center
Hmelo, Cindy E.; Holton, Douglas L.; Kolodner, Janet L.
2000-01-01
Indicates the presence of complex structural, behavioral, and functional relations to understanding. Reports on a design experiment in which 6th grade children learned about the human respiratory system by designing artificial lungs and building partial working models. Makes suggestions for successful learning from design activities. (Contains 44…
ERIC Educational Resources Information Center
Eoyang, Glenda H.
2007-01-01
Complex human interactions involve more than just performance toward pre-determined goals. For this reason, systems that measure and seek to improve performance must adapt to a wide range of ever-changing patterns of individual and group behavior. Historically, HPT professionals have recognized these complexities and responded in a variety of…
Stampfl, Thomas G.
1987-01-01
Why do human phobias last for months or years when such behavior should undergo extinction? This failure of extinction or persistence of self-defeating behavior of human disorders was labeled by Mowrer as the neurotic paradox. The paradox is cited by an ever-increasing number of critics who challenge any laboratory-based learning model of human psychopathology. Laboratory research, of course, omits essential requirements in the analysis of behavior, and the principles derived from such analyses must be combined in order to explain complex human behavaior. Validation for a behavioral model can thus be achieved if (a) basic principles inferred from observation of humans treated with a laboratory-derived extinction procedure (e.g., implosive therapy) are combined with (b) principles examined in laboratory research that are combined to generate unique predictions that correspond to known features of human phobic behavior. The latter evidence is briefly reviewed in research demonstrating sustained responding over one thousand consecutive active avoidance responses with complete avoidance of the “phobic” CS for an initial single shock trial. Differential reinforcement for responses to early sequential stimuli depends on minimal work requirement, and reinforcement by timeout from avoidance. This combination of factors effectively precludes extinction to main conditioned aversive stimuli for nonhumans, as it does for human phobias. Support for a laboratory model of human phobia is thereby attained. PMID:22477974
ERIC Educational Resources Information Center
Ivie, Stanley D.
1987-01-01
Analysis of the key educational concepts of behaviorism contrasts those concepts with parallel thoughts drawn from more humanistic educators and concludes that behaviorist psychology's attempts to reduce complex human learning to simple animal learning prevents educators from recognizing and helping humans to develop their unique inner resources.…
Theoretical Perspectives on Fishing Vessel Accidents and Their Prevention.
ERIC Educational Resources Information Center
Boshier, Roger
Fishing vessel accidents occur because of complex interactions of human, technical, and environmental factors. Although they usually occur because of human actions, thoughts, or behavior, investigators and prevention educators are preoccupied with technical matters and equipment. Equipment, machinery, weather, and other objective facts are…
Statistical and methodological considerations for the interpretation of intranasal oxytocin studies
Walum, Hasse; Waldman, Irwin D.; Young, Larry J.
2015-01-01
Over the last decade, oxytocin (OT) has received focus in numerous studies associating intranasal administration of this peptide with various aspects of human social behavior. These studies in humans are inspired by animal research, especially in rodents, showing that central manipulations of the OT system affect behavioral phenotypes related to social cognition, including parental behavior, social bonding and individual recognition. Taken together, these studies in humans appear to provide compelling, but sometimes bewildering evidence for the role of OT in influencing a vast array of complex social cognitive processes in humans. In this paper we investigate to what extent the human intranasal OT literature lends support to the hypothesis that intranasal OT consistently influences a wide spectrum of social behavior in humans. We do this by considering statistical features of studies within this field, including factors like statistical power, pre-study odds and bias. Our conclusion is that intranasal OT studies are generally underpowered and that there is a high probability that most of the published intranasal OT findings do not represent true effects. Thus the remarkable reports that intranasal OT influences a large number of human social behaviors should be viewed with healthy skepticism, and we make recommendations to improve the reliability of human OT studies in the future. PMID:26210057
Son, Seokshin; Kang, Ah Reum; Kim, Hyun-chul; Kwon, Taekyoung; Park, Juyong; Kim, Huy Kang
2012-01-01
Rapid advances in modern computing and information technology have enabled millions of people to interact online via various social network and gaming services. The widespread adoption of such online services have made possible analysis of large-scale archival data containing detailed human interactions, presenting a very promising opportunity to understand the rich and complex human behavior. In collaboration with a leading global provider of Massively Multiplayer Online Role-Playing Games (MMORPGs), here we present a network science-based analysis of the interplay between distinct types of user interaction networks in the virtual world. We find that their properties depend critically on the nature of the context-interdependence of the interactions, highlighting the complex and multilayered nature of human interactions, a robust understanding of which we believe may prove instrumental in the designing of more realistic future virtual arenas as well as provide novel insights to the science of collective human behavior. PMID:22496771
The Neuroanatomy and Neuroendocrinology of Fragile X Syndrome
ERIC Educational Resources Information Center
Hessl, David; Rivera, Susan M.; Reiss, Allan L.
2004-01-01
Fragile X syndrome (FXS), caused by a single gene mutation on the X chromosome, offers a unique opportunity for investigation of gene-brain-behavior relationships. Recent advances in molecular genetics, human brain imaging, and behavioral studies have started to unravel the complex pathways leading to the cognitive, psychiatric, and physical…
Educational Administration and Organizational Behavior.
ERIC Educational Resources Information Center
Hanson, E. Mark
Schools are perhaps the most complex of all U.S. formal organizations. The primary objective of this book is to enhance insight into human behavior within organizations in order to promote greater skill in governing skills. The book develops three major conceptual frameworks that have important implications for schools. Chapter 1 develops the…
A Clinical Application of Applied Humanism for Young Adults with Severe and Profound Retardation.
ERIC Educational Resources Information Center
Mazzelli, AnnaMaria; Polirstok, Susan Rovet; Dana, Lawrence; Buono, Serafina; Mongelli, Vita; Trubia, Grazia; Ayala, Giovanni
2000-01-01
Describes an intensive habilitation program in Sicily for young adults with severe and profound retardation. Participants in the program showed significant improvement in functional skills and an accompanying reduction in maladaptive and stereotypic behaviors, without complex behavior plans; punishing contingencies; or high dose neuroleptic,…
Orca Behavior and Subsequent Aggression Associated with Oceanarium Confinement
Anderson, Robert; Waayers, Robyn; Knight, Andrew
2016-01-01
Simple Summary Orca behaviors interacting with humans within apparent friendship bonds are reviewed, and some impediments to the human evaluation of delphinid intelligence are discussed. The subsequent involvement of these orcas and their offspring in aggressive incidents with humans is also documented and examined. This is particularly relevant given that the highest recorded rates of aggressive incidents have occurred among orcas who had previously established unstructured human friendship bonds prior to their inclusion within oceanaria performances. It is concluded that the confinement of orcas within aquaria, and their use in entertainment programs, is morally indefensible, given their high intelligence, complex behaviors, and the apparent adverse effects on orcas of such confinement and use. Abstract Based on neuroanatomical indices such as brain size and encephalization quotient, orcas are among the most intelligent animals on Earth. They display a range of complex behaviors indicative of social intelligence, but these are difficult to study in the open ocean where protective laws may apply, or in captivity, where access is constrained for commercial and safety reasons. From 1979 to 1980, however, we were able to interact with juvenile orcas in an unstructured way at San Diego’s SeaWorld facility. We observed in the animals what appeared to be pranks, tests of trust, limited use of tactical deception, emotional self-control, and empathetic behaviors. Our observations were consistent with those of a former Seaworld trainer, and provide important insights into orca cognition, communication, and social intelligence. However, after being trained as performers within Seaworld’s commercial entertainment program, a number of orcas began to exhibit aggressive behaviors. The orcas who previously established apparent friendships with humans were most affected, although significant aggression also occurred in some of their descendants, and among the orcas they lived with. Such oceanaria confinement and commercial use can no longer be considered ethically defensible, given the current understanding of orcas’ advanced cognitive, social, and communicative capacities, and of their behavioral needs. PMID:27548232
NASA Astrophysics Data System (ADS)
Hagen, Stephen J.; Son, Minjun
2017-02-01
Bacterial pathogens rely on chemical signaling and environmental cues to regulate disease-causing behavior in complex microenvironments. The human pathogen Streptococcus mutans employs a particularly complex signaling and sensing scheme to regulate genetic competence and other virulence behaviors in the oral biofilms it inhabits. Individual S. mutans cells make the decision to enter the competent state by integrating chemical and physical cues received from their microenvironment along with endogenously produced peptide signals. Studies at the single-cell level, using microfluidics to control the extracellular environment, provide physical insight into how the cells process these inputs to generate complex and often heterogeneous outputs. Fine changes in environmental stimuli can dramatically alter the behavior of the competence circuit. Small shifts in pH can switch the quorum sensing response on or off, while peptide-rich media appear to switch the output from a unimodal to a bimodal behavior. Therefore, depending on environmental cues, the quorum sensing circuitry can either synchronize virulence across the population, or initiate and amplify heterogeneity in that behavior. Much of this complex behavior can be understood within the framework of a quorum sensing system that can operate both as an intercellular signaling mechanism and intracellularly as a noisy bimodal switch.
Nature and Nurture of Human Pain
2013-01-01
Humans are very different when it comes to pain. Some get painful piercings and tattoos; others can not stand even a flu shot. Interindividual variability is one of the main characteristics of human pain on every level including the processing of nociceptive impulses at the periphery, modification of pain signal in the central nervous system, perception of pain, and response to analgesic strategies. As for many other complex behaviors, the sources of this variability come from both nurture (environment) and nature (genes). Here, I will discuss how these factors contribute to human pain separately and via interplay and how epigenetic mechanisms add to the complexity of their effects. PMID:24278778
The N2-P3 complex of the evoked potential and human performance
NASA Technical Reports Server (NTRS)
Odonnell, Brian F.; Cohen, Ronald A.
1988-01-01
The N2-P3 complex and other endogenous components of human evoked potential provide a set of tools for the investigation of human perceptual and cognitive processes. These multidimensional measures of central nervous system bioelectrical activity respond to a variety of environmental and internal factors which have been experimentally characterized. Their application to the analysis of human performance in naturalistic task environments is just beginning. Converging evidence suggests that the N2-P3 complex reflects processes of stimulus evaluation, perceptual resource allocation, and decision making that proceed in parallel, rather than in series, with response generation. Utilization of these EP components may provide insights into the central nervous system mechanisms modulating task performance unavailable from behavioral measures alone. The sensitivity of the N2-P3 complex to neuropathology, psychopathology, and pharmacological manipulation suggests that these components might provide sensitive markers for the effects of environmental stressors on the human central nervous system.
Bogenpohl, James W; Mignogna, Kristin M; Smith, Maren L; Miles, Michael F
2017-01-01
Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce nonbiased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA, and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x environmental interactions affecting brain functioning in health and disease.
Bogenpohl, James W.; Mignogna, Kristin M.; Smith, Maren L.; Miles, Michael F.
2016-01-01
Complex behavioral traits, such as alcohol abuse, are caused by an interplay of genetic and environmental factors, producing deleterious functional adaptations in the central nervous system. The long-term behavioral consequences of such changes are of substantial cost to both the individual and society. Substantial progress has been made in the last two decades in understanding elements of brain mechanisms underlying responses to ethanol in animal models and risk factors for alcohol use disorder (AUD) in humans. However, treatments for AUD remain largely ineffective and few medications for this disease state have been licensed. Genome-wide genetic polymorphism analysis (GWAS) in humans, behavioral genetic studies in animal models and brain gene expression studies produced by microarrays or RNA-seq have the potential to produce non-biased and novel insight into the underlying neurobiology of AUD. However, the complexity of such information, both statistical and informational, has slowed progress toward identifying new targets for intervention in AUD. This chapter describes one approach for integrating behavioral, genetic, and genomic information across animal model and human studies. The goal of this approach is to identify networks of genes functioning in the brain that are most relevant to the underlying mechanisms of a complex disease such as AUD. We illustrate an example of how genomic studies in animal models can be used to produce robust gene networks that have functional implications, and to integrate such animal model genomic data with human genetic studies such as GWAS for AUD. We describe several useful analysis tools for such studies: ComBAT, WGCNA and EW_dmGWAS. The end result of this analysis is a ranking of gene networks and identification of their cognate hub genes, which might provide eventual targets for future therapeutic development. Furthermore, this combined approach may also improve our understanding of basic mechanisms underlying gene x environmental interactions affecting brain functioning in health and disease. PMID:27933543
Human-human reliance in the context of automation.
Lyons, Joseph B; Stokes, Charlene K
2012-02-01
The current study examined human-human reliance during a computer-based scenario where participants interacted with a human aid and an automated tool simultaneously. Reliance on others is complex, and few studies have examined human-human reliance in the context of automation. Past research found that humans are biased in their perceived utility of automated tools such that they view them as more accurate than humans. Prior reviews have postulated differences in human-human versus human-machine reliance, yet few studies have examined such reliance when individuals are presented with divergent information from different sources. Participants (N = 40) engaged in the Convoy Leader experiment.They selected a convoy route based on explicit guidance from a human aid and information from an automated map. Subjective and behavioral human-human reliance indices were assessed. Perceptions of risk were manipulated by creating three scenarios (low, moderate, and high) that varied in the amount of vulnerability (i.e., potential for attack) associated with the convoy routes. Results indicated that participants reduced their behavioral reliance on the human aid when faced with higher risk decisions (suggesting increased reliance on the automation); however, there were no reported differences in intentions to rely on the human aid relative to the automation. The current study demonstrated that when individuals are provided information from both a human aid and automation,their reliance on the human aid decreased during high-risk decisions. This study adds to a growing understanding of the biases and preferences that exist during complex human-human and human-machine interactions.
Complex Systems and Human Performance Modeling
2013-12-01
human communication patterns can be implemented in a task network modeling tool. Although queues are a basic feature in many task network modeling...time. MODELING COMMUNICATIVE BEHAVIOR Barabasi (2010) argues that human communication patterns are “bursty”; that is, the inter-event arrival...Having implemented the methods advocated by Clauset et al. in C3TRACE, we have grown more confident that the human communication data discussed above
Controlling Uncertainty: A Review of Human Behavior in Complex Dynamic Environments
ERIC Educational Resources Information Center
Osman, Magda
2010-01-01
Complex dynamic control (CDC) tasks are a type of problem-solving environment used for examining many cognitive activities (e.g., attention, control, decision making, hypothesis testing, implicit learning, memory, monitoring, planning, and problem solving). Because of their popularity, there have been many findings from diverse domains of research…
Aviation Safety: Modeling and Analyzing Complex Interactions between Humans and Automated Systems
NASA Technical Reports Server (NTRS)
Rungta, Neha; Brat, Guillaume; Clancey, William J.; Linde, Charlotte; Raimondi, Franco; Seah, Chin; Shafto, Michael
2013-01-01
The on-going transformation from the current US Air Traffic System (ATS) to the Next Generation Air Traffic System (NextGen) will force the introduction of new automated systems and most likely will cause automation to migrate from ground to air. This will yield new function allocations between humans and automation and therefore change the roles and responsibilities in the ATS. Yet, safety in NextGen is required to be at least as good as in the current system. We therefore need techniques to evaluate the safety of the interactions between humans and automation. We think that current human factor studies and simulation-based techniques will fall short in front of the ATS complexity, and that we need to add more automated techniques to simulations, such as model checking, which offers exhaustive coverage of the non-deterministic behaviors in nominal and off-nominal scenarios. In this work, we present a verification approach based both on simulations and on model checking for evaluating the roles and responsibilities of humans and automation. Models are created using Brahms (a multi-agent framework) and we show that the traditional Brahms simulations can be integrated with automated exploration techniques based on model checking, thus offering a complete exploration of the behavioral space of the scenario. Our formal analysis supports the notion of beliefs and probabilities to reason about human behavior. We demonstrate the technique with the Ueberligen accident since it exemplifies authority problems when receiving conflicting advices from human and automated systems.
Moral Enhancement Using Non-invasive Brain Stimulation
Darby, R. Ryan; Pascual-Leone, Alvaro
2017-01-01
Biomedical enhancement refers to the use of biomedical interventions to improve capacities beyond normal, rather than to treat deficiencies due to diseases. Enhancement can target physical or cognitive capacities, but also complex human behaviors such as morality. However, the complexity of normal moral behavior makes it unlikely that morality is a single capacity that can be deficient or enhanced. Instead, our central hypothesis will be that moral behavior results from multiple, interacting cognitive-affective networks in the brain. First, we will test this hypothesis by reviewing evidence for modulation of moral behavior using non-invasive brain stimulation. Next, we will discuss how this evidence affects ethical issues related to the use of moral enhancement. We end with the conclusion that while brain stimulation has the potential to alter moral behavior, such alteration is unlikely to improve moral behavior in all situations, and may even lead to less morally desirable behavior in some instances. PMID:28275345
Basal ganglia systems in ritualistic social displays: reptiles and humans; function and illness.
Baxter, Lewis R
2003-08-01
Complex, situation-specific territorial maintenance routines are similar across living terrestrial vertebrates (=amniotes). Decades ago, Paul MacLean et al., at the Laboratory of Brain Evolution and Behavior of the National Institute of Mental Health, postulated that these are evolutionarily conserved behaviors whose expression is mediated by the similarly conserved amniote basal ganglia and related brain systems (BG systems). Therefore, they undertook studies in nonhuman primates and in small social lizards (the common green anole, Anolis carolinensis) to examine this idea. MacLean et al. also postulated that when BG systems misfunction in humans, behavioral abnormalities result, some of them under the rubric of psychiatric illnesses. Obsessive-compulsive disorder (OCD) was singled out as one likely candidate. In the last dozen years, functional brain imaging studies of OCD patients have validated the contention that this is, in fact, a condition involving dysfunctioning BG systems. Inspired by the MacLean group's original investigations, my colleagues and I have now applied related functional imaging techniques in naturalistic experiments using Anolis to better understand BG systems' roles in the mediation of complex behavioral routines in healthy amniotes. Here, I will review this functional imaging work in primates (man, and a little in monkey) and in lizards. I believe the literature not only supports MacLean et al.'s contentions about BG systems and behavior in general, but also validates Paul MacLean's life-long contention that human behavioral medicine can profit from a broad comparative approach.
A Human-Robot Co-Manipulation Approach Based on Human Sensorimotor Information.
Peternel, Luka; Tsagarakis, Nikos; Ajoudani, Arash
2017-07-01
This paper aims to improve the interaction and coordination between the human and the robot in cooperative execution of complex, powerful, and dynamic tasks. We propose a novel approach that integrates online information about the human motor function and manipulability properties into the hybrid controller of the assistive robot. Through this human-in-the-loop framework, the robot can adapt to the human motor behavior and provide the appropriate assistive response in different phases of the cooperative task. We experimentally evaluate the proposed approach in two human-robot co-manipulation tasks that require specific complementary behavior from the two agents. Results suggest that the proposed technique, which relies on a minimum degree of task-level pre-programming, can achieve an enhanced physical human-robot interaction performance and deliver appropriate level of assistance to the human operator.
Prospect Theory and Interval-Valued Hesitant Set for Safety Evacuation Model
NASA Astrophysics Data System (ADS)
Kou, Meng; Lu, Na
2018-01-01
The study applies the research results of prospect theory and multi attribute decision making theory, combined with the complexity, uncertainty and multifactor influence of the underground mine fire system and takes the decision makers’ psychological behavior of emotion and intuition into full account to establish the intuitionistic fuzzy multiple attribute decision making method that is based on the prospect theory. The model established by this method can explain the decision maker’s safety evacuation decision behavior in the complex system of underground mine fire due to the uncertainty of the environment, imperfection of the information and human psychological behavior and other factors.
Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Ádám; Rónai, Zsolt; Kubinyi, Enikő
2014-01-01
The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (−212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5′ and 3′ UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3′ and 5′ UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene–behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system. PMID:24454713
Kis, Anna; Bence, Melinda; Lakatos, Gabriella; Pergel, Enikő; Turcsán, Borbála; Pluijmakers, Jolanda; Vas, Judit; Elek, Zsuzsanna; Brúder, Ildikó; Földi, Levente; Sasvári-Székely, Mária; Miklósi, Adám; Rónai, Zsolt; Kubinyi, Enikő
2014-01-01
The oxytocin system has a crucial role in human sociality; several results prove that polymorphisms of the oxytocin receptor gene are related to complex social behaviors in humans. Dogs' parallel evolution with humans and their adaptation to the human environment has made them a useful species to model human social interactions. Previous research indicates that dogs are eligible models for behavioral genetic research, as well. Based on these previous findings, our research investigated associations between human directed social behaviors and two newly described (-212AG, 19131AG) and one known (rs8679684) single nucleotide polymorphisms (SNPs) in the regulatory regions (5' and 3' UTR) of the oxytocin receptor gene in German Shepherd (N = 104) and Border Collie (N = 103) dogs. Dogs' behavior traits have been estimated in a newly developed test series consisting of five episodes: Greeting by a stranger, Separation from the owner, Problem solving, Threatening approach, Hiding of the owner. Buccal samples were collected and DNA was isolated using standard protocols. SNPs in the 3' and 5' UTR regions were analyzed by polymerase chain reaction based techniques followed by subsequent electrophoresis analysis. The gene-behavior association analysis suggests that oxytocin receptor gene polymorphisms have an impact in both breeds on (i) proximity seeking towards an unfamiliar person, as well as their owner, and on (ii) how friendly dogs behave towards strangers, although the mediating molecular regulatory mechanisms are yet unknown. Based on these results, we conclude that similarly to humans, the social behavior of dogs towards humans is influenced by the oxytocin system.
Monitoring and decision making by people in man machine systems
NASA Technical Reports Server (NTRS)
Johannsen, G.
1979-01-01
The analysis of human monitoring and decision making behavior as well as its modeling are described. Classic and optimal control theoretical, monitoring models are surveyed. The relationship between attention allocation and eye movements is discussed. As an example of applications, the evaluation of predictor displays by means of the optimal control model is explained. Fault detection involving continuous signals and decision making behavior of a human operator engaged in fault diagnosis during different operation and maintenance situations are illustrated. Computer aided decision making is considered as a queueing problem. It is shown to what extent computer aids can be based on the state of human activity as measured by psychophysiological quantities. Finally, management information systems for different application areas are mentioned. The possibilities of mathematical modeling of human behavior in complex man machine systems are also critically assessed.
Primate beta oscillations and rhythmic behaviors.
Merchant, Hugo; Bartolo, Ramón
2018-03-01
The study of non-human primates in complex behaviors such as rhythm perception and entrainment is critical to understand the neurophysiological basis of human cognition. Next to reviewing the role of beta oscillations in human beat perception, here we discuss the role of primate putaminal oscillatory activity in the control of rhythmic movements that are guided by a sensory metronome or internally gated. The analysis of the local field potentials of the behaving macaques showed that gamma-oscillations reflect local computations associated with stimulus processing of the metronome, whereas beta-activity involves the entrainment of large putaminal circuits, probably in conjunction with other elements of cortico-basal ganglia-thalamo-cortical circuit, during internally driven rhythmic tapping. Thus, this review emphasizes the need of parametric neurophysiological observations in non-human primates that display a well-controlled behavior during high-level cognitive processes.
Exploring Ownership in a Developmental Context
ERIC Educational Resources Information Center
Noles, Nicholaus S.; Keil, Frank C.
2011-01-01
Ownership and economic behaviors are highly salient elements of the human social landscape. Indeed, the human world is literally constructed of property. Individuals perceive and manipulate a complex web of people and property that is largely invisible and abstract. In this chapter, the authors focus on drawing together information from a variety…
ERIC Educational Resources Information Center
Anderson, C. C.
1981-01-01
Discusses three sorts of psychological science: Science 1, a natural science with conditional (causal) laws; Science 2, with probabilistic laws; and Science 3, a "human science" trying to capture the complexity of human experience and behavior. Argues that Science 2 and Science 3 should be treated as belief systems which people may find useful for…
Human Neuroimaging of Oxytocin and Vasopressin in Social Cognition
Zink, Caroline F; Meyer-Lindenberg, Andreas
2012-01-01
The neuropeptides oxytocin and vasopressin have increasingly been identified as modulators of human social behaviors and associated with neuropsychiatric disorders characterized by social dysfunction, such as autism. Identifying the human brain regions that are impacted by oxytocin and vasopressin in a social context is essential to fully characterize the role of oxytocin and vasopressin in complex human social cognition. Advances in human non-invasive neuroimaging techniques and genetics have enabled scientists to begin to elucidate the neurobiological basis of the influence of oxytocin and vasopressin on human social behaviors. Here we review the findings to-date from investigations of the acute and chronic effects of oxytocin and vasopressin on neural activity underlying social cognitive processes using “pharmacological fMRI” and “imaging genetics”, respectively. PMID:22326707
The Use of Behavior Models for Predicting Complex Operations
NASA Technical Reports Server (NTRS)
Gore, Brian F.
2010-01-01
Modeling and simulation (M&S) plays an important role when complex human-system notions are being proposed, developed and tested within the system design process. National Aeronautics and Space Administration (NASA) as an agency uses many different types of M&S approaches for predicting human-system interactions, especially when it is early in the development phase of a conceptual design. NASA Ames Research Center possesses a number of M&S capabilities ranging from airflow, flight path models, aircraft models, scheduling models, human performance models (HPMs), and bioinformatics models among a host of other kinds of M&S capabilities that are used for predicting whether the proposed designs will benefit the specific mission criteria. The Man-Machine Integration Design and Analysis System (MIDAS) is a NASA ARC HPM software tool that integrates many models of human behavior with environment models, equipment models, and procedural / task models. The challenge to model comprehensibility is heightened as the number of models that are integrated and the requisite fidelity of the procedural sets are increased. Model transparency is needed for some of the more complex HPMs to maintain comprehensibility of the integrated model performance. This will be exemplified in a recent MIDAS v5 application model and plans for future model refinements will be presented.
Linking brain, mind and behavior.
Makeig, Scott; Gramann, Klaus; Jung, Tzyy-Ping; Sejnowski, Terrence J; Poizner, Howard
2009-08-01
Cortical brain areas and dynamics evolved to organize motor behavior in our three-dimensional environment also support more general human cognitive processes. Yet traditional brain imaging paradigms typically allow and record only minimal participant behavior, then reduce the recorded data to single map features of averaged responses. To more fully investigate the complex links between distributed brain dynamics and motivated natural behavior, we propose the development of wearable mobile brain/body imaging (MoBI) systems that continuously capture the wearer's high-density electrical brain and muscle signals, three-dimensional body movements, audiovisual scene and point of regard, plus new data-driven analysis methods to model their interrelationships. The new imaging modality should allow new insights into how spatially distributed brain dynamics support natural human cognition and agency.
Learning Predictive Statistics: Strategies and Brain Mechanisms.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-08-30
When immersed in a new environment, we are challenged to decipher initially incomprehensible streams of sensory information. However, quite rapidly, the brain finds structure and meaning in these incoming signals, helping us to predict and prepare ourselves for future actions. This skill relies on extracting the statistics of event streams in the environment that contain regularities of variable complexity from simple repetitive patterns to complex probabilistic combinations. Here, we test the brain mechanisms that mediate our ability to adapt to the environment's statistics and predict upcoming events. By combining behavioral training and multisession fMRI in human participants (male and female), we track the corticostriatal mechanisms that mediate learning of temporal sequences as they change in structure complexity. We show that learning of predictive structures relates to individual decision strategy; that is, selecting the most probable outcome in a given context (maximizing) versus matching the exact sequence statistics. These strategies engage distinct human brain regions: maximizing engages dorsolateral prefrontal, cingulate, sensory-motor regions, and basal ganglia (dorsal caudate, putamen), whereas matching engages occipitotemporal regions (including the hippocampus) and basal ganglia (ventral caudate). Our findings provide evidence for distinct corticostriatal mechanisms that facilitate our ability to extract behaviorally relevant statistics to make predictions. SIGNIFICANCE STATEMENT Making predictions about future events relies on interpreting streams of information that may initially appear incomprehensible. Past work has studied how humans identify repetitive patterns and associative pairings. However, the natural environment contains regularities that vary in complexity from simple repetition to complex probabilistic combinations. Here, we combine behavior and multisession fMRI to track the brain mechanisms that mediate our ability to adapt to changes in the environment's statistics. We provide evidence for an alternate route for learning complex temporal statistics: extracting the most probable outcome in a given context is implemented by interactions between executive and motor corticostriatal mechanisms compared with visual corticostriatal circuits (including hippocampal cortex) that support learning of the exact temporal statistics. Copyright © 2017 Wang et al.
Human operator response to error-likely situations in complex engineering systems
NASA Technical Reports Server (NTRS)
Morris, Nancy M.; Rouse, William B.
1988-01-01
The causes of human error in complex systems are examined. First, a conceptual framework is provided in which two broad categories of error are discussed: errors of action, or slips, and errors of intention, or mistakes. Conditions in which slips and mistakes might be expected to occur are identified, based on existing theories of human error. Regarding the role of workload, it is hypothesized that workload may act as a catalyst for error. Two experiments are presented in which humans' response to error-likely situations were examined. Subjects controlled PLANT under a variety of conditions and periodically provided subjective ratings of mental effort. A complex pattern of results was obtained, which was not consistent with predictions. Generally, the results of this research indicate that: (1) humans respond to conditions in which errors might be expected by attempting to reduce the possibility of error, and (2) adaptation to conditions is a potent influence on human behavior in discretionary situations. Subjects' explanations for changes in effort ratings are also explored.
Brain and Social Networks: Fundamental Building Blocks of Human Experience.
Falk, Emily B; Bassett, Danielle S
2017-09-01
How do brains shape social networks, and how do social ties shape the brain? Social networks are complex webs by which ideas spread among people. Brains comprise webs by which information is processed and transmitted among neural units. While brain activity and structure offer biological mechanisms for human behaviors, social networks offer external inducers or modulators of those behaviors. Together, these two axes represent fundamental contributors to human experience. Integrating foundational knowledge from social and developmental psychology and sociology on how individuals function within dyads, groups, and societies with recent advances in network neuroscience can offer new insights into both domains. Here, we use the example of how ideas and behaviors spread to illustrate the potential of multilayer network models. Copyright © 2017 Elsevier Ltd. All rights reserved.
Settlement-Size Scaling among Prehistoric Hunter-Gatherer Settlement Systems in the New World
Haas, W. Randall; Klink, Cynthia J.; Maggard, Greg J.; Aldenderfer, Mark S.
2015-01-01
Settlement size predicts extreme variation in the rates and magnitudes of many social and ecological processes in human societies. Yet, the factors that drive human settlement-size variation remain poorly understood. Size variation among economically integrated settlements tends to be heavy tailed such that the smallest settlements are extremely common and the largest settlements extremely large and rare. The upper tail of this size distribution is often formalized mathematically as a power-law function. Explanations for this scaling structure in human settlement systems tend to emphasize complex socioeconomic processes including agriculture, manufacturing, and warfare—behaviors that tend to differentially nucleate and disperse populations hierarchically among settlements. But, the degree to which heavy-tailed settlement-size variation requires such complex behaviors remains unclear. By examining the settlement patterns of eight prehistoric New World hunter-gatherer settlement systems spanning three distinct environmental contexts, this analysis explores the degree to which heavy-tailed settlement-size scaling depends on the aforementioned socioeconomic complexities. Surprisingly, the analysis finds that power-law models offer plausible and parsimonious statistical descriptions of prehistoric hunter-gatherer settlement-size variation. This finding reveals that incipient forms of hierarchical settlement structure may have preceded socioeconomic complexity in human societies and points to a need for additional research to explicate how mobile foragers came to exhibit settlement patterns that are more commonly associated with hierarchical organization. We propose that hunter-gatherer mobility with preferential attachment to previously occupied locations may account for the observed structure in site-size variation. PMID:26536241
Research activities in the field of human factors: Evaluation and prospects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Larchier-Boulanger, J.; Grosdeva, T.
1988-01-01
The industrial systems are sociotechnical i.e., conceived, directed, checked, run, and repaired by individuals belonging to structured organizations for either individual or group work. Hence, a better understanding of how their behavior, competences, and know-how is a must. At the DER and ESF department human factors group is given the mission to enlarge, through a pluridisciplinary approach, the knowledge of human factors in complex systems. Human interventions are analyzed both for their positive aspects (competences and know-how to retrieve complex situations) and their negative aspects (human weaknesses). For safety reasons such analyses are mainly directed toward the nuclear plant operators,more » considered individually (intervening of one operator) or as a team (group behavior). The aims of the studies on human factors are various, and such studies justify the research in this field. They make it possible, through a better consideration of the variables specific to individuals, to bring to the enterprise means for: (1) increasing reliability and helping performance, (2) improving the adjustment of work demands to the real environment, and (3) creating a better energy between the individual and his/her enterprise. The variables specific to human factors that keep developing thus the perspectives for research, in this field, are to recenter and redefine the undertaken studies.« less
Kusev, Petko; Purser, Harry; Heilman, Renata; Cooke, Alex J; Van Schaik, Paul; Baranova, Victoria; Martin, Rose; Ayton, Peter
2017-01-01
Financial risky decisions and evaluations pervade many human everyday activities. Scientific research in such decision-making typically explores the influence of socio-economic and cognitive factors on financial behavior. However, very little research has explored the holistic influence of contextual, emotional, and hormonal factors on preferences for risk in insurance and investment behaviors. Accordingly, the goal of this review article is to address the complexity of individual risky behavior and its underlying psychological factors, as well as to critically examine current regulations on financial behavior.
Kusev, Petko; Purser, Harry; Heilman, Renata; Cooke, Alex J.; Van Schaik, Paul; Baranova, Victoria; Martin, Rose; Ayton, Peter
2017-01-01
Financial risky decisions and evaluations pervade many human everyday activities. Scientific research in such decision-making typically explores the influence of socio-economic and cognitive factors on financial behavior. However, very little research has explored the holistic influence of contextual, emotional, and hormonal factors on preferences for risk in insurance and investment behaviors. Accordingly, the goal of this review article is to address the complexity of individual risky behavior and its underlying psychological factors, as well as to critically examine current regulations on financial behavior. PMID:28203215
Intergenerational Neuroimaging of Human Brain Circuitry
Ho, Tiffany C.; Sanders, Stephan J.; Gotlib, Ian H.; Hoeft, Fumiko
2016-01-01
Neuroscientists are increasingly using advanced neuroimaging methods to elucidate the intergenerational transmission of human brain circuitry. This new line of work promises to shed insight into the ontogeny of complex behavioral traits, including psychiatric disorders, and possible mechanisms of transmission. Here, we highlight recent intergenerational neuroimaging studies and provide recommendations for future work. PMID:27623194
Research on Sexual Orientation and Human Development: A Commentary.
ERIC Educational Resources Information Center
Strickland, Bonnie R.
1995-01-01
Reviews the evolution of research over the past 25 years on sexual orientation and its effects on human development, concluding that gay and lesbian interests and behavior appear to result from a complex interplay of genetic, prenatal, and environmental influences. Notes that gender identity develops early, especially for males, and is difficult…
ERIC Educational Resources Information Center
Oxford, Rebecca L.
2015-01-01
Emotion is "the primary human motive" (MacIntyre, 2002, p. 61). The human brain is an emotional brain, creating relationships among thought, emotion, and motivation in a complex dynamic system (Dörnyei, 2009). Emotion "functions as an amplifier, providing the intensity, urgency, and energy to propel our behavior" in…
Laban Movement Analysis towards Behavior Patterns
NASA Astrophysics Data System (ADS)
Santos, Luís; Dias, Jorge
This work presents a study about the use of Laban Movement Analysis (LMA) as a robust tool to describe human basic behavior patterns, to be applied in human-machine interaction. LMA is a language used to describe and annotate dancing movements and is divided in components [1]: Body, Space, Shape and Effort. Despite its general framework is widely used in physical and mental therapy [2], it has found little application in the engineering domain. Rett J. [3] proposed to implement LMA using Bayesian Networks. However LMA component models have not yet been fully implemented. A study on how to approach behavior using LMA is presented. Behavior is a complex feature and movement chain, but we believe that most basic behavior primitives can be discretized in simple features. Correctly identifying Laban parameters and the movements the authors feel that good patterns can be found within a specific set of basic behavior semantics.
Combining Modeling and Gaming for Predictive Analytics
DOE Office of Scientific and Technical Information (OSTI.GOV)
Riensche, Roderick M.; Whitney, Paul D.
2012-08-22
Many of our most significant challenges involve people. While human behavior has long been studied, there are recent advances in computational modeling of human behavior. With advances in computational capabilities come increases in the volume and complexity of data that humans must understand in order to make sense of and capitalize on these modeling advances. Ultimately, models represent an encapsulation of human knowledge. One inherent challenge in modeling is efficient and accurate transfer of knowledge from humans to models, and subsequent retrieval. The simulated real-world environment of games presents one avenue for these knowledge transfers. In this paper we describemore » our approach of combining modeling and gaming disciplines to develop predictive capabilities, using formal models to inform game development, and using games to provide data for modeling.« less
A mechanism for social selection and successful altruism.
Simon, H A
1990-12-21
Within the framework of neo-Darwinism, with its focus on fitness, it has been hard to account for altruism behavior that reduces the fitness of the altruist but increases average fitness in society. Many population biologists argue that, except for altruism to close relatives, human behavior that appears to be altruistic amounts to reciprocal altruism, behavior undertaken with an expectation of reciprocation, hence incurring no net cost to fitness. Herein is proposed a simple and robust mechanism, based on human docility and bounded rationality that can account for the evolutionary success of genuinely altruistic behavior. Because docility-receptivity to social influence-contributes greatly to fitness in the human species, it will be positively selected. As a consequence, society can impose a "tax" on the gross benefits gained by individuals from docility by inducing docile individuals to engage in altruistic behaviors. Limits on rationality in the face of environmental complexity prevent the individual from avoiding this "tax." An upper bound is imposed on altruism by the condition that there must remain a net fitness advantage for docile behavior after the cost to the individual of altruism has been deducted.
Developing Culture-Adaptive Competency Through Experiences with Expressive Avatars
NASA Technical Reports Server (NTRS)
Silverglate, Daniel S.; Sims, Edward M.; Glover, Gerald; Friedman, Harris
2012-01-01
Modern Warfighters often find themselves in a variety of non-combat roles such as negotiator, peacekeeper, reconstruction, and disaster relief. They are expected to perform these roles within a culture alien to their own. Each individual they encounter brings their own set of values to the interaction that must be understood and reconciled. To navigate the human terrain of these complex interactions, the Warfighter must not only consider the specifics of the target culture, but also identify the stakeholders, recognize the influencing cultural dimensions, and adapt to the situation to achieve the best possible outcome. Vcom3D is using game-based scenarios to develop culturally adaptive competency. The avatars that represent the stakeholders must be able to portray culturally accurate behavior, display complex emotion, and communicate through verbal and non-verbal cues. This paper will discuss the use of emerging game technologies to better simulate human behavior in cross-cultural dilemmas. Nomenclature: culture, adaptive, values, cultural values dimensions, dilemmas, virtual humans, non-verbal communications
Organization and evolution of parieto-frontal processing streams in macaque monkeys and humans.
Caminiti, Roberto; Innocenti, Giorgio M; Battaglia-Mayer, Alexandra
2015-09-01
The functional organization of the parieto-frontal system is crucial for understanding cognitive-motor behavior and provides the basis for interpreting the consequences of parietal lesions in humans from a neurobiological perspective. The parieto-frontal connectivity defines some main information streams that, rather than being devoted to restricted functions, underlie a rich behavioral repertoire. Surprisingly, from macaque to humans, evolution has added only a few, new functional streams, increasing however their complexity and encoding power. In fact, the characterization of the conduction times of parietal and frontal areas to different target structures has recently opened a new window on cortical dynamics, suggesting that evolution has amplified the probability of dynamic interactions between the nodes of the network, thanks to communication patterns based on temporally-dispersed conduction delays. This might allow the representation of sensory-motor signals within multiple neural assemblies and reference frames, as to optimize sensory-motor remapping within an action space characterized by different and more complex demands across evolution. Copyright © 2015 Elsevier Ltd. All rights reserved.
Robonaut Mobile Autonomy: Initial Experiments
NASA Technical Reports Server (NTRS)
Diftler, M. A.; Ambrose, R. O.; Goza, S. M.; Tyree, K. S.; Huber, E. L.
2006-01-01
A mobile version of the NASA/DARPA Robonaut humanoid recently completed initial autonomy trials working directly with humans in cluttered environments. This compact robot combines the upper body of the Robonaut system with a Segway Robotic Mobility Platform yielding a dexterous, maneuverable humanoid ideal for interacting with human co-workers in a range of environments. This system uses stereovision to locate human teammates and tools and a navigation system that uses laser range and vision data to follow humans while avoiding obstacles. Tactile sensors provide information to grasping algorithms for efficient tool exchanges. The autonomous architecture utilizes these pre-programmed skills to form complex behaviors. The initial behavior demonstrates a robust capability to assist a human by acquiring a tool from a remotely located individual and then following the human in a cluttered environment with the tool for future use.
Liu, Quan-Hui; Wang, Wei; Tang, Ming; Zhang, Hai-Feng
2016-01-01
Information diffusion and disease spreading in communication-contact layered network are typically asymmetrically coupled with each other, in which disease spreading can be significantly affected by the way an individual being aware of disease responds to the disease. Many recent studies have demonstrated that human behavioral adoption is a complex and non-Markovian process, where the probability of behavior adoption is dependent on the cumulative times of information received and the social reinforcement effect of the cumulative information. In this paper, the impacts of such a non-Markovian vaccination adoption behavior on the epidemic dynamics and the control effects are explored. It is found that this complex adoption behavior in the communication layer can significantly enhance the epidemic threshold and reduce the final infection rate. By defining the social cost as the total cost of vaccination and treatment, it can be seen that there exists an optimal social reinforcement effect and optimal information transmission rate allowing the minimal social cost. Moreover, a mean-field theory is developed to verify the correctness of simulation results. PMID:27156574
Liu, Quan-Hui; Wang, Wei; Tang, Ming; Zhang, Hai-Feng
2016-05-09
Information diffusion and disease spreading in communication-contact layered network are typically asymmetrically coupled with each other, in which disease spreading can be significantly affected by the way an individual being aware of disease responds to the disease. Many recent studies have demonstrated that human behavioral adoption is a complex and non-Markovian process, where the probability of behavior adoption is dependent on the cumulative times of information received and the social reinforcement effect of the cumulative information. In this paper, the impacts of such a non-Markovian vaccination adoption behavior on the epidemic dynamics and the control effects are explored. It is found that this complex adoption behavior in the communication layer can significantly enhance the epidemic threshold and reduce the final infection rate. By defining the social cost as the total cost of vaccination and treatment, it can be seen that there exists an optimal social reinforcement effect and optimal information transmission rate allowing the minimal social cost. Moreover, a mean-field theory is developed to verify the correctness of simulation results.
I want what you've got: Cross platform portabiity and human-robot interaction assessment.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Julie L. Marble, Ph.D.*.; Douglas A. Few; David J. Bruemmer
2005-08-01
Human-robot interaction is a subtle, yet critical aspect of design that must be assessed during the development of both the human-robot interface and robot behaviors if the human-robot team is to effectively meet the complexities of the task environment. Testing not only ensures that the system can successfully achieve the tasks for which it was designed, but more importantly, usability testing allows the designers to understand how humans and robots can, will, and should work together to optimize workload distribution. A lack of human-centered robot interface design, the rigidity of sensor configuration, and the platform-specific nature of research robot developmentmore » environments are a few factors preventing robotic solutions from reaching functional utility in real word environments. Often the difficult engineering challenge of implementing adroit reactive behavior, reliable communication, trustworthy autonomy that combines with system transparency and usable interfaces is overlooked in favor of other research aims. The result is that many robotic systems never reach a level of functional utility necessary even to evaluate the efficacy of the basic system, much less result in a system that can be used in a critical, real-world environment. Further, because control architectures and interfaces are often platform specific, it is difficult or even impossible to make usability comparisons between them. This paper discusses the challenges inherent to the conduct of human factors testing of variable autonomy control architectures and across platforms within a complex, real-world environment. It discusses the need to compare behaviors, architectures, and interfaces within a structured environment that contains challenging real-world tasks, and the implications for system acceptance and trust of autonomous robotic systems for how humans and robots interact in true interactive teams.« less
Bertti, Poliana; Tejada, Julian; Martins, Ana Paula Pinheiro; Dal-Cól, Maria Luiza Cleto; Terra, Vera Cristina; de Oliveira, José Antônio Cortes; Velasco, Tonicarlo Rodrigues; Sakamoto, Américo Ceiki; Garcia-Cairasco, Norberto
2014-09-01
Epileptic syndromes and seizures are the expression of complex brain systems. Because no analysis of complexity has been applied to epileptic seizure semiology, our goal was to apply neuroethology and graph analysis to the study of the complexity of behavioral manifestations of epileptic seizures in human frontal lobe epilepsy (FLE) and temporal lobe epilepsy (TLE). We analyzed the video recordings of 120 seizures of 18 patients with FLE and 28 seizures of 28 patients with TLE. All patients were seizure-free >1 year after surgery (Engel Class I). All patients' behavioral sequences were analyzed by means of a glossary containing all behaviors and analyzed for neuroethology (Ethomatic software). The same series were used for graph analysis (CYTOSCAPE). Behaviors, displayed as nodes, were connected by edges to other nodes according to their temporal sequence of appearance. Using neuroethology analysis, we confirmed data in the literature such as in FLE: brief/frequent seizures, complex motor behaviors, head and eye version, unilateral/bilateral tonic posturing, speech arrest, vocalization, and rapid postictal recovery and in the case of TLE: presence of epigastric aura, lateralized dystonias, impairment of consciousness/speech during ictal and postictal periods, and development of secondary generalization. Using graph analysis metrics of FLE and TLE confirmed data from flowcharts. However, because of the algorithms we used, they highlighted more powerfully the connectivity and complex associations among behaviors in a quite selective manner, depending on the origin of the seizures. The algorithms we used are commonly employed to track brain connectivity from EEG and MRI sources, which makes our study very promising for future studies of complexity in this field. Copyright © 2014 Elsevier Inc. All rights reserved.
Contrarian behavior in a complex adaptive system
NASA Astrophysics Data System (ADS)
Liang, Y.; An, K. N.; Yang, G.; Huang, J. P.
2013-01-01
Contrarian behavior is a kind of self-organization in complex adaptive systems (CASs). Here we report the existence of a transition point in a model resource-allocation CAS with contrarian behavior by using human experiments, computer simulations, and theoretical analysis. The resource ratio and system predictability serve as the tuning parameter and order parameter, respectively. The transition point helps to reveal the positive or negative role of contrarian behavior. This finding is in contrast to the common belief that contrarian behavior always has a positive role in resource allocation, say, stabilizing resource allocation by shrinking the redundancy or the lack of resources. It is further shown that resource allocation can be optimized at the transition point by adding an appropriate size of contrarians. This work is also expected to be of value to some other fields ranging from management and social science to ecology and evolution.
Spatiotemporal property and predictability of large-scale human mobility
NASA Astrophysics Data System (ADS)
Zhang, Hai-Tao; Zhu, Tao; Fu, Dongfei; Xu, Bowen; Han, Xiao-Pu; Chen, Duxin
2018-04-01
Spatiotemporal characteristics of human mobility emerging from complexity on individual scale have been extensively studied due to the application potential on human behavior prediction and recommendation, and control of epidemic spreading. We collect and investigate a comprehensive data set of human activities on large geographical scales, including both websites browse and mobile towers visit. Numerical results show that the degree of activity decays as a power law, indicating that human behaviors are reminiscent of scale-free random walks known as Lévy flight. More significantly, this study suggests that human activities on large geographical scales have specific non-Markovian characteristics, such as a two-segment power-law distribution of dwelling time and a high possibility for prediction. Furthermore, a scale-free featured mobility model with two essential ingredients, i.e., preferential return and exploration, and a Gaussian distribution assumption on the exploration tendency parameter is proposed, which outperforms existing human mobility models under scenarios of large geographical scales.
Behavioral genetics in Polish print news media between 2000 and 2014.
Domaradzki, Jan
2016-12-23
The aim of this paper is to describe how Polish print news media frame relations between genetics and human behaviors and what images of behavioral genetics dominate in press discourse. A content and frame analysis of 72 print news articles about behavioral genetics published between 2000 and 2014 in four major Polish weekly magazines: "Polityka", "Wprost", "Newsweek" and "Przekrój" was conducted. Twenty one different behaviors were mentioned in the sample and six major analytic frames were identified: essentialist, materialistic, deterministic, probabilistic, optimistic and pessimistic. The most common was the tendency to describe human behaviors in terms of genetic essentialism, reductionism and determinism, as almost one half of the articles was focused solely on genetic determinants of human behaviors and lacked any reference to polygenetic and/or environmental conditioning. Although most of the articles were balanced in tone, benefits were stressed more often than potential risks. Stories that confirmed existence of genetic determinants of human behavior were favored over those that did not. One third of the articles stressed the social or ethical consequences of the development of behavioral genetics. The complex and abstract character of genetic knowledge results in a simplistic portrayal of behavioral genetics in the press, which may lead to a misunderstood interpretation of the complicated interplay between behavior, genetics and environment by the public. Consequently, print news media contribute to geneticization of behaviors. It is important to improve the quality of science reporting on behavioral genetics and to educate researchers how to communicate with the media more effectively.
Chiral metallohelices enantioselectively target hybrid human telomeric G-quadruplex DNA
Zhao, Andong; Howson, Suzanne E.; Ren, Jinsong; Scott, Peter; Wang, Chunyu
2017-01-01
Abstract The design and synthesis of metal complexes that can specifically target DNA secondary structure has attracted considerable attention. Chiral metallosupramolecular complexes (e.g. helicates) in particular display unique DNA-binding behavior, however until recently few examples which are both water-compatible and enantiomerically pure have been reported. Herein we report that one metallohelix enantiomer Δ1a, available from a diastereoselective synthesis with no need for resolution, can enantioselectively stabilize human telomeric hybrid G-quadruplex and strongly inhibit telomerase activity with IC50 of 600 nM. In contrast, no such a preference is observed for the mirror image complex Λ1a. More intriguingly, neither of the two enantiomers binds specifically to human telomeric antiparallel G-quadruplex. To the best of our knowledge, this is the first example of one pair of enantiomers with contrasting selectivity for human telomeric hybrid G-quadruplex. Further studies show that Δ1a can discriminate human telomeric G-quadruplex from other telomeric G-quadruplexes. PMID:28398500
On the Characterization of Revisitation Patterns in Complex Human Dynamics - A Data Science Approach
NASA Astrophysics Data System (ADS)
Barbosa Filho, Hugo Serrano
When it comes to visitation patterns, humans beings are extremely regular and predictable, with recurrent activities responsible for most of our movements. In recent years, we have seen scientists attempt to model and explain human dynamics and in particular human movement. Akin to other human behaviors, traveling patterns evolve from the convolution between internal and external factors. A better understanding on the mechanisms responsible for transforming and incorporating individual events into regular patterns is of fundamental importance. Many aspects of our complex lives are affected by human movements such as disease spread and epidemics modeling, city planning, wireless network development, and disaster relief, to name a few. Given the myriad of applications, it is clear that a complete understanding of how people move in space can lead to considerable benefits to our society. In most of the recent works, scientists have focused on the idea that people movements are biased towards frequently-visited locations. According to them, human movement is based on a exploration/exploitation dichotomy in which individuals choose new locations (exploration) or return to frequently-visited locations (exploitation). In this dissertation we present some of our contributions to the field, such as the presence of a recency effect in human mobility and Web browsing behaviors as well as the Returner vs. Explorers dichotomy in Web browsing trajectories.
Can vocal conditioning trigger a semiotic ratchet in marmosets?
Turesson, Hjalmar K; Ribeiro, Sidarta
2015-01-01
The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders.
Can vocal conditioning trigger a semiotic ratchet in marmosets?
Turesson, Hjalmar K.; Ribeiro, Sidarta
2015-01-01
The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders. PMID:26500583
Ecosystem services and preventive medicine a natural connection
Viniece L. Jennings; Claire K. Larson; Lincoln R. Larson
2016-01-01
Modern public health challenges require inter- disciplinary solutions that integrate knowl- edge of  human behavior and its complex relationship with the physical environment. Historically, this discourse was dominated by studies  of hazards and other negative health consequences associated with humanâenvironment interactions.  However, growing evidence1 suggests that...
Examining fire-prone forest landscapes as coupled human and natural systems
Thomas A. Spies; Eric M. White; Jeffrey D. Kline; A. Paige Fisher; Alan Ager; John Bailey; John Bolte; Jennifer Koch; Emily Platt; Christine S. Olsen; Derric Jacobs; Bruce Shindler; Michelle M. Steen-Adams; Roger Hammer
2014-01-01
Fire-prone landscapes are not well studied as coupled human and natural systems (CHANS) and present many challenges for understanding and promoting adaptive behaviors and institutions. Here, we explore how heterogeneity, feedbacks, and external drivers in this type of natural hazard system can lead to complexity and can limit the development of more adaptive approaches...
ERIC Educational Resources Information Center
Mandel, Lauren Heather
2012-01-01
Wayfinding is the method by which humans orient and navigate in space, and particularly in built environments such as cities and complex buildings, including public libraries. In order to wayfind successfully in the built environment, humans need information provided by wayfinding systems and tools, for instance architectural cues, signs, and…
Hammerschlag, Richard; Linda Baldwin, Ann; Schwartz, Gary E
When a human subject sits beneath a wire mesh, hemispheric torsion pendulum (TP) a rapid-onset series of oscillations at frequencies both higher and lower than the fundamental frequency of the TP have been consistently observed. This study was designed to replicate and extend prior findings that suggest the human subject effect on TP behavior is due to subject-generated, heat-induced convection currents. Effects on pendulum behavior were tested after draping an aluminized "space blanket" over the subject and by replacing the subject with a thermal mattress pad shaped to approximate the human form. Experiments were performed in a basic science university research laboratory. Real-time recordings and Fast Fourier Transform frequency spectra of pendulum oscillatory movement. The space blanket blocked, while the mattress pad mimicked, the human subject induced complex array of pendulum oscillations. Our findings support and strengthen previous results that suggest the effects of human subjects on behavior of a torsion pendulum are mediated by body-heat-induced air convection rather than an unknown type of biofield. Copyright © 2016 Elsevier Inc. All rights reserved.
ERIC Educational Resources Information Center
Sanchez, Robert
2016-01-01
Student retention is considered a complex human behavior. Adding to the complex nature of student retention is the ever changing landscape of higher education due in large part to the growth of Hispanic undergraduate student enrollment on college campuses. While notable gains have been made increasing the number of Hispanic students graduating…
Learning predictive statistics from temporal sequences: Dynamics and strategies
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E.; Kourtzi, Zoe
2017-01-01
Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics—that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments. PMID:28973111
Learning predictive statistics from temporal sequences: Dynamics and strategies.
Wang, Rui; Shen, Yuan; Tino, Peter; Welchman, Andrew E; Kourtzi, Zoe
2017-10-01
Human behavior is guided by our expectations about the future. Often, we make predictions by monitoring how event sequences unfold, even though such sequences may appear incomprehensible. Event structures in the natural environment typically vary in complexity, from simple repetition to complex probabilistic combinations. How do we learn these structures? Here we investigate the dynamics of structure learning by tracking human responses to temporal sequences that change in structure unbeknownst to the participants. Participants were asked to predict the upcoming item following a probabilistic sequence of symbols. Using a Markov process, we created a family of sequences, from simple frequency statistics (e.g., some symbols are more probable than others) to context-based statistics (e.g., symbol probability is contingent on preceding symbols). We demonstrate the dynamics with which individuals adapt to changes in the environment's statistics-that is, they extract the behaviorally relevant structures to make predictions about upcoming events. Further, we show that this structure learning relates to individual decision strategy; faster learning of complex structures relates to selection of the most probable outcome in a given context (maximizing) rather than matching of the exact sequence statistics. Our findings provide evidence for alternate routes to learning of behaviorally relevant statistics that facilitate our ability to predict future events in variable environments.
Behaviors induced or disrupted by complex partial seizures.
Leung, L S; Ma, J; McLachlan, R S
2000-09-01
We reviewed the neural mechanisms underlying some postictal behaviors that are induced or disrupted by temporal lobe seizures in humans and animals. It is proposed that the psychomotor behaviors and automatisms induced by temporal lobe seizures are mediated by the nucleus accumbens. A non-convulsive hippocampal afterdischarge in rats induced an increase in locomotor activity, which was suppressed by the injection of dopamine D(2) receptor antagonist in the nucleus accumbens, and blocked by inactivation of the medial septum. In contrast, a convulsive hippocampal or amygdala seizure induced behavioral hypoactivity, perhaps by the spread of the seizure into the frontal cortex and opiate-mediated postictal depression. Mechanisms underlying postictal psychosis, memory disruption and other long-term behavioral alterations after temporal lobe seizures, are discussed. In conclusion, many of the changes of postictal behaviors observed after temporal lobe seizures in humans may be found in animals, and the basis of the behavioral change may be explained as a change in neural processing in the temporal lobe and the connecting subcortical structures.
Artistic creativity and dementia.
Miller, Zachary A; Miller, Bruce L
2013-01-01
Artistic ability and creativity are defining characteristics of human behavior. Behavioral neurology, as a specialty, believes that even the most complex behaviors can be modeled and understood as the summation of smaller cognitive functions. Literature from individuals with specific brain lesions has helped to map out these smaller regions of cognitive abilities. More recently, models based on neurodegenerative conditions, especially from the frontotemporal dementias, have allowed for greater nuanced investigations into the various functional anatomies necessary for artistic behavior and possibly the underlying networks that promote creativity. © 2013 Elsevier B.V. All rights reserved.
On the evolution of misunderstandings about evolutionary psychology.
Young, J; Persell, R
2000-04-01
Some of the controversy surrounding evolutionary explanations of human behavior may be due to cognitive information-processing patterns that are themselves the result of evolutionary processes. Two such patterns are (1) the tendency to oversimplify information so as to reduce demand on cognitive resources and (2) our strong desire to generate predictability and stability from perceptions of the external world. For example, research on social stereotyping has found that people tend to focus automatically on simplified social-categorical information, to use such information when deciding how to behave, and to rely on such information even in the face of contradictory evidence. Similarly, an undying debate over nature vs. nurture is shaped by various data-reduction strategies that frequently oversimplify, and thus distort, the intent of the supporting arguments. This debate is also often marked by an assumption that either the nature or the nurture domain may be justifiably excluded at an explanatory level because one domain appears to operate in a sufficiently stable and predictable way for a particular argument. As a result, critiques in-veighed against evolutionary explanations of behavior often incorporate simplified--and erroneous--assumptions about either the mechanics of how evolution operates or the inevitable implications of evolution for understanding human behavior. The influences of these tendencies are applied to a discussion of the heritability of behavioral characteristics. It is suggested that the common view that Mendelian genetics can explain the heritability of complex behaviors, with a one-gene-one-trait process, is misguided. Complex behaviors are undoubtedly a product of a more complex interaction between genes and environment, ensuring that both nature and nurture must be accommodated in a yet-to-be-developed post-Mendelian model of genetic influence. As a result, current public perceptions of evolutionary explanations of behavior are handicapped by the lack of clear articulation of the relationship between inherited genes and manifest behavior.
Neuroscience of Self and Self-Regulation
Heatherton, Todd F.
2011-01-01
As a social species, humans have a fundamental need to belong that encourages behaviors consistent with being a good group member. Being a good group member requires the capacity for self-regulation, which allows people to alter or inhibit behaviors that would place them at risk for group exclusion. Self-regulation requires four psychological components. First, people need to be aware of their behavior so as to gauge it against societal norms. Second, people need to understand how others are reacting to their behavior so as to predict how others will respond to them. This necessitates a third mechanism, which detects threat, especially in complex social situations. Finally, there needs to be a mechanism for resolving discrepancies between self-knowledge and social expectations or norms, thereby motivating behavior to resolve any conflict that exists. This article reviews recent social neuroscience research on the psychological components that support the human capacity for self-regulation. PMID:21126181
Quantifying Pilot Visual Attention in Low Visibility Terminal Operations
NASA Technical Reports Server (NTRS)
Ellis, Kyle K.; Arthur, J. J.; Latorella, Kara A.; Kramer, Lynda J.; Shelton, Kevin J.; Norman, Robert M.; Prinzel, Lawrence J.
2012-01-01
Quantifying pilot visual behavior allows researchers to determine not only where a pilot is looking and when, but holds implications for specific behavioral tracking when these data are coupled with flight technical performance. Remote eye tracking systems have been integrated into simulators at NASA Langley with effectively no impact on the pilot environment. This paper discusses the installation and use of a remote eye tracking system. The data collection techniques from a complex human-in-the-loop (HITL) research experiment are discussed; especially, the data reduction algorithms and logic to transform raw eye tracking data into quantified visual behavior metrics, and analysis methods to interpret visual behavior. The findings suggest superior performance for Head-Up Display (HUD) and improved attentional behavior for Head-Down Display (HDD) implementations of Synthetic Vision System (SVS) technologies for low visibility terminal area operations. Keywords: eye tracking, flight deck, NextGen, human machine interface, aviation
Processing of social and monetary rewards in the human striatum.
Izuma, Keise; Saito, Daisuke N; Sadato, Norihiro
2008-04-24
Despite an increasing focus on the neural basis of human decision making in neuroscience, relatively little attention has been paid to decision making in social settings. Moreover, although human social decision making has been explored in a social psychology context, few neural explanations for the observed findings have been considered. To bridge this gap and improve models of human social decision making, we investigated whether acquiring a good reputation, which is an important incentive in human social behaviors, activates the same reward circuitry as monetary rewards. In total, 19 subjects participated in functional magnetic resonance imaging (fMRI) experiments involving monetary and social rewards. The acquisition of one's good reputation robustly activated reward-related brain areas, notably the striatum, and these overlapped with the areas activated by monetary rewards. Our findings support the idea of a "common neural currency" for rewards and represent an important first step toward a neural explanation for complex human social behaviors.
3D abnormal behavior recognition in power generation
NASA Astrophysics Data System (ADS)
Wei, Zhenhua; Li, Xuesen; Su, Jie; Lin, Jie
2011-06-01
So far most research of human behavior recognition focus on simple individual behavior, such as wave, crouch, jump and bend. This paper will focus on abnormal behavior with objects carrying in power generation. Such as using mobile communication device in main control room, taking helmet off during working and lying down in high place. Taking account of the color and shape are fixed, we adopted edge detecting by color tracking to recognize object in worker. This paper introduces a method, which using geometric character of skeleton and its angle to express sequence of three-dimensional human behavior data. Then adopting Semi-join critical step Hidden Markov Model, weighing probability of critical steps' output to reduce the computational complexity. Training model for every behavior, mean while select some skeleton frames from 3D behavior sample to form a critical step set. This set is a bridge linking 2D observation behavior with 3D human joints feature. The 3D reconstruction is not required during the 2D behavior recognition phase. In the beginning of recognition progress, finding the best match for every frame of 2D observed sample in 3D skeleton set. After that, 2D observed skeleton frames sample will be identified as a specifically 3D behavior by behavior-classifier. The effectiveness of the proposed algorithm is demonstrated with experiments in similar power generation environment.
Ontology-Based High-Level Context Inference for Human Behavior Identification
Villalonga, Claudia; Razzaq, Muhammad Asif; Khan, Wajahat Ali; Pomares, Hector; Rojas, Ignacio; Lee, Sungyoung; Banos, Oresti
2016-01-01
Recent years have witnessed a huge progress in the automatic identification of individual primitives of human behavior, such as activities or locations. However, the complex nature of human behavior demands more abstract contextual information for its analysis. This work presents an ontology-based method that combines low-level primitives of behavior, namely activity, locations and emotions, unprecedented to date, to intelligently derive more meaningful high-level context information. The paper contributes with a new open ontology describing both low-level and high-level context information, as well as their relationships. Furthermore, a framework building on the developed ontology and reasoning models is presented and evaluated. The proposed method proves to be robust while identifying high-level contexts even in the event of erroneously-detected low-level contexts. Despite reasonable inference times being obtained for a relevant set of users and instances, additional work is required to scale to long-term scenarios with a large number of users. PMID:27690050
Expression of the G72/G30 gene in transgenic mice induces behavioral changes
Cheng, Lijun; Hattori, Eiji; Nakajima, Akira; Woehrle, Nancy S.; Opal, Mark D.; Zhang, Chunling; Grennan, Kay; Dulawa, Stephanie C.; Tang, Ya-Ping; Gershon, Elliot S.; Liu, Chunyu
2012-01-01
The G72/G30 gene complex is a candidate gene for schizophrenia and bipolar disorder. However, G72 and G30 mRNAs are expressed at very low levels in human brain, with only rare splicing forms observed. We report here G72/G30 expression profiles and behavioral changes in a G72/G30 transgenic mouse model. A human BAC clone containing the G72/G30 genomic region was used to establish the transgenic mouse model, on which gene expression studies, Western blot and behavioral tests were performed. Relative to their minimal expression in humans, G72 and G30 mRNAs were highly expressed in the transgenic mice, and had a more complex splicing pattern. The highest G72 transcript levels were found in testis, followed by cerebral cortex, with very low or undetectable levels in other tissues. No LG72 (the long putative isoform of G72) protein was detected in the transgenic mice. Whole-genome expression profiling identified 361 genes differentially-expressed in transgenic mice compared to wild-type, including genes previously implicated in neurological and psychological disorders. Relative to wild-type mice, the transgenic mice exhibited fewer stereotypic movements in the open field test, higher baseline startle responses in the course of the prepulse inhibition test, and lower hedonic responses in the sucrose preference test. The transcriptome profile changes and multiple mouse behavioral effects suggest that the G72 gene may play a role in modulating behaviors relevant to psychiatric disorders. PMID:23337943
Obregon, Rafael; Coleman, Michael; Hickler, Benjamin; SteelFisher, Gillian
2017-01-01
Abstract Today, acceptance of oral polio vaccine is the highest ever. Reaching this level of acceptance has depended on decades of engaging with communities, building trust amid extraordinary social contexts, and responding to the complex variables that trigger behavioral and social change. Drawing on both the successes and setbacks in the 28 years of the Global Polio Eradication Initiative (GPEI), this article articulates what happened when the GPEI began to pay more attention to the dynamics of human and social behavior change. Three particular lessons for other health and immunization programs can be drawn from the experience of GPEI: change begins from within (ie, success needs institutional recognition of the importance of human behavior), good data are not enough for good decision-making, and health workers are important agents of behavior change. These lessons should be harnessed and put into practice to build demand and trust for the last stages of polio eradication, as well as for other life-saving health interventions. PMID:28838157
Guirguis, Sherine; Obregon, Rafael; Coleman, Michael; Hickler, Benjamin; SteelFisher, Gillian
2017-07-01
Today, acceptance of oral polio vaccine is the highest ever. Reaching this level of acceptance has depended on decades of engaging with communities, building trust amid extraordinary social contexts, and responding to the complex variables that trigger behavioral and social change. Drawing on both the successes and setbacks in the 28 years of the Global Polio Eradication Initiative (GPEI), this article articulates what happened when the GPEI began to pay more attention to the dynamics of human and social behavior change. Three particular lessons for other health and immunization programs can be drawn from the experience of GPEI: change begins from within (ie, success needs institutional recognition of the importance of human behavior), good data are not enough for good decision-making, and health workers are important agents of behavior change. These lessons should be harnessed and put into practice to build demand and trust for the last stages of polio eradication, as well as for other life-saving health interventions. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America.
Young, Jared W.; Minassian, Arpi; Paulus, Martin P.; Geyer, Mark A.; Perry, William
2007-01-01
Mania is the defining feature of Bipolar Disorder (BD). There has been limited progress in understanding the neurobiological underpinnings of BD mania and developing novel therapeutics, in part due to a paucity of relevant animal models with translational potential. Hyperactivity is a cardinal symptom of mania, traditionally measured in humans using observer-rated scales. Multivariate assessment of unconditioned locomotor behavior using the rat Behavioral Pattern Monitor (BPM) developed in our laboratory has shown that hyperactivity includes complex multifaceted behaviors. The BPM has been used to demonstrate differential effects of drugs on locomotor activity and exploratory behavior in rats. Studies of genetically engineered mice in a mouse BPM have confirmed its utility as a cross-species tool. In a “reverse-translational” approach to this work, we developed the human BPM to characterize motor activity in BD patients. Increased activity, object interactions, and altered locomotor patterns provide multidimensional phenotypes to model in the rodent BPM. This unique approach to modeling BD provides an opportunity to identify the neurobiology underlying BD mania and test novel antimanic agents. PMID:17706782
Lindström, Björn; Olsson, Andreas
2015-06-01
Many nonhuman animals preferentially copy the actions of others when the environment contains predation risk or other types of danger. In humans, the role of social learning in avoidance of danger is still unknown, despite the fundamental importance of social learning for complex social behaviors. Critically, many social behaviors, such as cooperation and adherence to religious taboos, are maintained by threat of punishment. However, the psychological mechanisms allowing threat of punishment to generate such behaviors, even when actual punishment is rare or absent, are largely unknown. To address this, we used both computer simulations and behavioral experiments. First, we constructed a model where simulated agents interacted under threat of punishment and showed that mechanisms' (a) tendency to copy the actions of others through social learning, together with (b) the rewarding properties of avoiding a threatening punishment, could explain the emergence, maintenance, and transmission of large-scale behavioral traditions, both when punishment is common and when it is rare or nonexistent. To provide empirical support for our model, including the 2 mechanisms, we conducted 4 experiments, showing that humans, if threatened with punishment, are exceptionally prone to copy and transmit the behavior observed in others. Our results show that humans, similar to many nonhuman animals, use social learning if the environment is perceived as dangerous. We provide a novel psychological and computational basis for a range of human behaviors characterized by the threat of punishment, such as the adherence to cultural norms and religious taboos. (c) 2015 APA, all rights reserved).
Arginine Vasopressin selectively enhances recognition of sexual cues in male humans.
Guastella, Adam J; Kenyon, Amanda R; Unkelbach, Christian; Alvares, Gail A; Hickie, Ian B
2011-02-01
Arginine Vasopressin modulates complex social and sexual behavior by enhancing social recognition, pair bonding, and aggression in non-human mammals. The influence of Arginine Vasopressin in human social and sexual behavior is, however, yet to be fully understood. We evaluated whether Arginine Vasopressin nasal spray facilitated recognition of positive and negative social and sexual stimuli over non-social stimuli. We used a recognition task that has already been shown to be sensitive to the influence of Oxytocin nasal spray (Unkelbach et al., 2008). In a double-blind, randomized, placebo-controlled, between-subjects design, 41 healthy male volunteers were administered Arginine Vasopressin (20 IU) or a placebo nasal spray after a 45 min wait period and then completed the recognition task. Results showed that the participants administered Arginine Vasopressin nasal spray were faster to detect sexual words over other types of words. This effect appeared for both positively and negatively valenced words. Results demonstrate for the first time that Arginine Vasopressin selectively enhances human cognition for sexual stimuli, regardless of valence. They further extend animal and human genetic studies linking Arginine Vasopressin to sexual behavior in males. Findings suggest an important cognitive mechanism that could enhance sexual behaviors in humans. Crown Copyright © 2010. Published by Elsevier Ltd. All rights reserved.
Harris, Christine R; Prouvost, Caroline
2014-01-01
It is commonly assumed that jealousy is unique to humans, partially because of the complex cognitions often involved in this emotion. However, from a functional perspective, one might expect that an emotion that evolved to protect social bonds from interlopers might exist in other social species, particularly one as cognitively sophisticated as the dog. The current experiment adapted a paradigm from human infant studies to examine jealousy in domestic dogs. We found that dogs exhibited significantly more jealous behaviors (e.g., snapping, getting between the owner and object, pushing/touching the object/owner) when their owners displayed affectionate behaviors towards what appeared to be another dog as compared to nonsocial objects. These results lend support to the hypothesis that jealousy has some "primordial" form that exists in human infants and in at least one other social species besides humans.
Cultural Neuroscience: Progress and Promise
Chiao, Joan Y.; Cheon, Bobby K.; Pornpattanangkul, Narun; Mrazek, Alissa J.; Blizinsky, Katherine D.
2013-01-01
The nature and origin of human diversity has been a source of intellectual curiosity since the beginning of human history. Contemporary advances in cultural and biological sciences provide unique opportunities for the emerging field of cultural neuroscience. Research in cultural neuroscience examines how cultural and genetic diversity shape the human mind, brain and behavior across multiple time scales: situation, ontogeny and phylogeny. Recent progress in cultural neuroscience provides novel theoretical frameworks for understanding the complex interaction of environmental, cultural and genetic factors in the production of adaptive human behavior. Here, we provide a brief history of cultural neuroscience, theoretical and methodological advances, as well as empirical evidence of the promise of and progress in the field. Implications of this research for population health disparities and public policy are discussed. PMID:23914126
Towards Assessing the Human Trajectory Planning Horizon
Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models. PMID:27936015
Towards Assessing the Human Trajectory Planning Horizon.
Carton, Daniel; Nitsch, Verena; Meinzer, Dominik; Wollherr, Dirk
2016-01-01
Mobile robots are envisioned to cooperate closely with humans and to integrate seamlessly into a shared environment. For locomotion, these environments resemble traversable areas which are shared between multiple agents like humans and robots. The seamless integration of mobile robots into these environments requires accurate predictions of human locomotion. This work considers optimal control and model predictive control approaches for accurate trajectory prediction and proposes to integrate aspects of human behavior to improve their performance. Recently developed models are not able to reproduce accurately trajectories that result from sudden avoidance maneuvers. Particularly, the human locomotion behavior when handling disturbances from other agents poses a problem. The goal of this work is to investigate whether humans alter their trajectory planning horizon, in order to resolve abruptly emerging collision situations. By modeling humans as model predictive controllers, the influence of the planning horizon is investigated in simulations. Based on these results, an experiment is designed to identify, whether humans initiate a change in their locomotion planning behavior while moving in a complex environment. The results support the hypothesis, that humans employ a shorter planning horizon to avoid collisions that are triggered by unexpected disturbances. Observations presented in this work are expected to further improve the generalizability and accuracy of prediction methods based on dynamic models.
Vergara-Aragón, Patricia; Domínguez-Marrufo, Leonardo Eduardo; Ibarra-Guerrero, Patricia; Hernandez-Ramírez, Heidi; Hernández-Téllez, Beatriz; López-Martínez, Irma Elena; Sánchez-Cervantes, Ivonne; Santiago-Jacinto, Patricia; García-Macedo, Jorge Alberto; Valverde-Aguilar, Guadalupe; Santiago, Julio
2011-01-01
Parkinson's disease (PD) is characterized by malfunction of dopaminergic systems, and the current symptomatic treatment is to replace lost dopamine. For investigating mechanisms of pathogenesis and alternative treatments to compensate lack of dopamine (DA) activity in PD, the 6-hydroxydopamine (6-OHDA)-lesioned rat model of PD has been useful, these animals display apomorphine-induced contralateral rotational behavior, when they are examined after lesion. The purpose of this study was to assess Titania-dopamine (TiO2-DA) complexes implanted on the caudate nucleus for diminishing motor behavior alterations of the 6-OHDA rat model. Rats with 6-OHDA unilateral lesions received TiO2 alone or TiO2-DA implants, and were tested for open field (OF) gross motor crossing and rearing behaviors, and apomorphine-induced rotation (G) behavior. TiO2 complex have no effects on rearing OF and G behaviors, and a significant reducing effect on crossing motor behavior of normal rats compared to control non-treated rats throughout 56 days of observation. Interestingly, TiO2-DA treatment significant recovered motor crossing and rearing behaviors in 6-OHDA-lesioned rats, and diminished the G behaviors during 56 days of examination. Additionally, in the 6-OHDA-lesioned rats TiO2 treatment had a moderate recovering effect only on crossing behavior compared to lesioned non treated rats. Our results suggest that continuous release of dopamine in the caudate nucleus from TiO2-DA complex is capable of reversing gross motor deficits observed in the 6-OHDA-lesioned rat model of PD. Thistype of delivery system of DA represents a promising therapy for PD in humans.
Controlling uncertainty: a review of human behavior in complex dynamic environments.
Osman, Magda
2010-01-01
Complex dynamic control (CDC) tasks are a type of problem-solving environment used for examining many cognitive activities (e.g., attention, control, decision making, hypothesis testing, implicit learning, memory, monitoring, planning, and problem solving). Because of their popularity, there have been many findings from diverse domains of research (economics, engineering, ergonomics, human-computer interaction, management, psychology), but they remain largely disconnected from each other. The objective of this article is to review theoretical developments and empirical work on CDC tasks, and to introduce a novel framework (monitoring and control framework) as a tool for integrating theory and findings. The main thesis of the monitoring and control framework is that CDC tasks are characteristically uncertain environments, and subjective judgments of uncertainty guide the way in which monitoring and control behaviors attempt to reduce it. The article concludes by discussing new insights into continuing debates and future directions for research on CDC tasks.
Nahmias, Susa Beckman; Nahmias, Daniella
2011-08-01
The last few decades have provided new perspectives on the increasingly complex interrelationships between the evolutionary epidemiology of STDs and their agents, human sexuality, and economic, social, cultural, and technological developments. Rapidly emerging HIV/AIDS, globalization, migration, and information technology are some factors that stress the importance of focusing on how old and new sexually transmitted infections (STIs) are spread, both in and between networks and populations. This review of determinants of STI transmission emphasizes their impact on disease prevalence and transmission, as well as their potential for affecting the agents themselves--directly or indirectly. Interventions aiming to control the spread of STIs and HIV on the different levels of society need to be adapted to the specific environment and need to integrate social structures, such as economic and gender inequality and mobility, as well as the great variability and complexity of sexual behavior. © 2011 New York Academy of Sciences.
Neuroscience, moral reasoning, and the law.
Knabb, Joshua J; Welsh, Robert K; Ziebell, Joseph G; Reimer, Kevin S
2009-01-01
Modern advancements in functional magnetic resonance imaging (fMRI) technology have given neuroscientists the opportunity to more fully appreciate the brain's contribution to human behavior and decision making. Morality and moral reasoning are relative newcomers to the growing literature on decision neuroscience. With recent attention given to the salience of moral factors (e.g. moral emotions, moral reasoning) in the process of decision making, neuroscientists have begun to offer helpful frameworks for understanding the interplay between the brain, morality, and human decision making. These frameworks are relatively unfamiliar to the community of forensic psychologists, despite the fact that they offer an improved understanding of judicial decision making from a biological perspective. This article presents a framework reviewing how event-feature-emotion complexes (EFEC) are relevant to jurors and understanding complex criminal behavior. Future directions regarding converging fields of neuroscience and legal decision making are considered. Copyright 2009 John Wiley & Sons, Ltd.
The Influence of (Dis)belief in Free Will on Immoral Behavior.
Caspar, Emilie A; Vuillaume, Laurène; Magalhães De Saldanha da Gama, Pedro A; Cleeremans, Axel
2017-01-01
One of the hallmarks of human existence is that we all hold beliefs that determine how we act. Amongst such beliefs, the idea that we are endowed with free will appears to be linked to prosocial behaviors, probably by enhancing the feeling of responsibility of individuals over their own actions. However, such effects appear to be more complex that one might have initially thought. Here, we aimed at exploring how induced disbeliefs in free will impact the sense of agency over the consequences of one's own actions in a paradigm that engages morality. To do so, we asked participants to choose to inflict or to refrain from inflicting an electric choc to another participant in exchange of a small financial benefit. Our results show that participants who were primed with a text defending neural determinism - the idea that humans are a mere bunch of neurons guided by their biology - administered fewer shocks and were less vindictive toward the other participant. Importantly, this finding only held for female participants. These results show the complex interaction between gender, (dis)beliefs in free will and moral behavior.
Watanabe, Jun-ichiro; Ishibashi, Nozomu; Yano, Kazuo
2014-01-01
Quantitative analyses of human-generated data collected in various fields have uncovered many patterns of complex human behaviors. However, thus far the quantitative evaluation of the relationship between the physical behaviors of employees and their performance has been inadequate. Here, we present findings demonstrating the significant relationship between the physical behaviors of employees and their performance via experiments we conducted in inbound call centers while the employees wore sensor badges. There were two main findings. First, we found that face-to-face interaction among telecommunicators and the frequency of their bodily movements caused by the face-to-face interaction had a significant correlation with the entire call center performance, which we measured as "Calls per Hour." Second, our trial to activate face-to-face interaction on the basis of data collected by the wearable sensor badges the employees wore significantly increased their performance. These results demonstrate quantitatively that human-human interaction in the physical world plays an important role in team performance.
Watanabe, Jun-ichiro; Ishibashi, Nozomu; Yano, Kazuo
2014-01-01
Quantitative analyses of human-generated data collected in various fields have uncovered many patterns of complex human behaviors. However, thus far the quantitative evaluation of the relationship between the physical behaviors of employees and their performance has been inadequate. Here, we present findings demonstrating the significant relationship between the physical behaviors of employees and their performance via experiments we conducted in inbound call centers while the employees wore sensor badges. There were two main findings. First, we found that face-to-face interaction among telecommunicators and the frequency of their bodily movements caused by the face-to-face interaction had a significant correlation with the entire call center performance, which we measured as “Calls per Hour.” Second, our trial to activate face-to-face interaction on the basis of data collected by the wearable sensor badges the employees wore significantly increased their performance. These results demonstrate quantitatively that human-human interaction in the physical world plays an important role in team performance. PMID:25501748
Individual Differences in Human Reliability Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jeffrey C. Joe; Ronald L. Boring
2014-06-01
While human reliability analysis (HRA) methods include uncertainty in quantification, the nominal model of human error in HRA typically assumes that operator performance does not vary significantly when they are given the same initiating event, indicators, procedures, and training, and that any differences in operator performance are simply aleatory (i.e., random). While this assumption generally holds true when performing routine actions, variability in operator response has been observed in multiple studies, especially in complex situations that go beyond training and procedures. As such, complexity can lead to differences in operator performance (e.g., operator understanding and decision-making). Furthermore, psychological research hasmore » shown that there are a number of known antecedents (i.e., attributable causes) that consistently contribute to observable and systematically measurable (i.e., not random) differences in behavior. This paper reviews examples of individual differences taken from operational experience and the psychological literature. The impact of these differences in human behavior and their implications for HRA are then discussed. We propose that individual differences should not be treated as aleatory, but rather as epistemic. Ultimately, by understanding the sources of individual differences, it is possible to remove some epistemic uncertainty from analyses.« less
Female perception of male body odor.
Sergeant, Mark J T
2010-01-01
Olfaction is one of the most crucial forms of communication among nonhuman animals. Historically, olfaction has been perceived as being of limited importance for humans, but recent research has documented that not only do humans have sensitive olfactory abilities, but also odors have the potential to influence our physiology and behavior. This chapter reviews research on olfactory communication among humans, focusing on the effects of male bodily odors on female physiology and behavior. The process of body odor production and the detection of olfactory signals are reviewed, focusing on potential sex differences in these abilities. The effects of male body odors on female physiological and behavioral effects of body odors are considered. Finally, with specific regard to female mate choice, evidence regarding the influence of the major histocompatibility complex and fluctuating asymmetry on male olfactory cues is reviewed. Copyright © 2010 Elsevier Inc. All rights reserved.
Human behavioral complexity peaks at age 25
Brugger, Peter
2017-01-01
Random Item Generation tasks (RIG) are commonly used to assess high cognitive abilities such as inhibition or sustained attention. They also draw upon our approximate sense of complexity. A detrimental effect of aging on pseudo-random productions has been demonstrated for some tasks, but little is as yet known about the developmental curve of cognitive complexity over the lifespan. We investigate the complexity trajectory across the lifespan of human responses to five common RIG tasks, using a large sample (n = 3429). Our main finding is that the developmental curve of the estimated algorithmic complexity of responses is similar to what may be expected of a measure of higher cognitive abilities, with a performance peak around 25 and a decline starting around 60, suggesting that RIG tasks yield good estimates of such cognitive abilities. Our study illustrates that very short strings of, i.e., 10 items, are sufficient to have their complexity reliably estimated and to allow the documentation of an age-dependent decline in the approximate sense of complexity. PMID:28406953
NASA Astrophysics Data System (ADS)
El-Boraey, Hanaa A.
2012-11-01
Novel eight Co(II), Ni(II), Cu(II), Cu(I) and Pd(II) complexes with [N4] ligand (L) i.e. 2-amino-N-{2-[(2-aminobenzoyl)amino]ethyl}benzamide have been synthesized and structurally characterized by elemental analysis, spectral, thermal (TG/DTG), magnetic, and molar conductivity measurements. On the basis of IR, mass, electronic and EPR spectral studies an octahedral geometry has been proposed for Co(II), Ni(II) complexes and Cu(II) chloride complex, square-pyramidal for Cu(I) bromide complex. For Cu(II) nitrate complex (6), Pd(II) complex (8) square planar geometry was proposed. The EPR data of Cu(II) complexes in powdered form indicate dx2-y2 ground state of Cu(II) ion. The antitumor activity of the synthesized ligand and some selected metal complexes has been studied. The palladium(II) complex (8) was found to display cytotoxicity (IC50 = 25.6 and 41 μM) against human breast cancer cell line MCF-7 and human hepatocarcinoma HEPG2 cell line.
Effects of task and image properties on visual-attention deployment in image-quality assessment
NASA Astrophysics Data System (ADS)
Alers, Hani; Redi, Judith; Liu, Hantao; Heynderickx, Ingrid
2015-03-01
It is important to understand how humans view images and how their behavior is affected by changes in the properties of the viewed images and the task they are given, particularly the task of scoring the image quality (IQ). This is a complex behavior that holds great importance for the field of image-quality research. This work builds upon 4 years of research work spanning three databases studying image-viewing behavior. Using eye-tracking equipment, it was possible to collect information on human viewing behavior of different kinds of stimuli and under different experimental settings. This work performs a cross-analysis on the results from all these databases using state-of-the-art similarity measures. The results strongly show that asking the viewers to score the IQ significantly changes their viewing behavior. Also muting the color saturation seems to affect the saliency of the images. However, a change in IQ was not consistently found to modify visual attention deployment, neither under free looking nor during scoring. These results are helpful in gaining a better understanding of image viewing behavior under different conditions. They also have important implications on work that collects subjective image-quality scores from human observers.
Humans' perceptions of animal mentality: ascriptions of thinking.
Rasmussen, J L; Rajecki, D W; Craft, H D
1993-09-01
On rating scales, 294 students indicated whether it was reasonable to say that a dog, cat, bird, fish, and school-age child had the capacity for 12 commonplace human mental operations or experiences. Factor analysis of responses identified 2 levels of attributions, simple thinking and complex thinking. The child and all animals were credited with simple thinking, but respondents were much more likely to ascribe complex thinking to the child. (A pilot study with 8 animal-behavior professionals generally replicated these results.) Certain mental categories (e.g., emotion) were judged by students to be simple for all target types; others (e.g., conservation) were judged to be universally complex. Further factoring revealed articulate ascriptions for key mental categories. Play and imagine was seen as simple in the animals but complex for the child, but enumeration and sorting and dream were seen as simple in the child but complex for the animals.
Kamilar-Britt, Philip; Bedi, Gillinder
2015-01-01
Users of ±3,4-Methylenedioxymethamphetamine (MDMA; ‘ecstasy’) report prosocial effects such as sociability and empathy. Supporting these apparently unique social effects, data from controlled laboratory studies indicate that MDMA alters social feelings, information processing, and behavior in humans, and social behavior in rodents. Here, we review this growing body of evidence. In rodents, MDMA increases passive prosocial behavior (adjacent lying) and social reward while decreasing aggression, effects that may involve serotonin 1A receptor mediated oxytocin release interacting with vasopressin receptor 1A. In humans, MDMA increases plasma oxytocin and produces feelings of social affiliation. It decreases identification of negative facial expressions (cognitive empathy) and blunts responses to social rejection, while enhancing responses to others’ positive emotions (emotional empathy) and increasing social approach. Thus, consistent with drug folklore, laboratory administration of MDMA robustly alters social processing in humans and increases social approach in humans and animals. Effects are consistent with increased sociability, with mixed evidence about enhanced empathy. These neurobiologically-complex prosocial effects likely motivate recreational ecstasy use. PMID:26408071
Kamilar-Britt, Philip; Bedi, Gillinder
2015-10-01
Users of ±3,4-methylenedioxymethamphetamine (MDMA; 'ecstasy') report prosocial effects such as sociability and empathy. Supporting these apparently unique social effects, data from controlled laboratory studies indicate that MDMA alters social feelings, information processing, and behavior in humans, and social behavior in rodents. Here, we review this growing body of evidence. In rodents, MDMA increases passive prosocial behavior (adjacent lying) and social reward while decreasing aggression, effects that may involve serotonin 1A receptor mediated oxytocin release interacting with vasopressin receptor 1A. In humans, MDMA increases plasma oxytocin and produces feelings of social affiliation. It decreases identification of negative facial expressions (cognitive empathy) and blunts responses to social rejection, while enhancing responses to others' positive emotions (emotional empathy) and increasing social approach. Thus, consistent with drug folklore, laboratory administration of MDMA robustly alters social processing in humans and increases social approach in humans and animals. Effects are consistent with increased sociability, with mixed evidence about enhanced empathy. These neurobiologically-complex prosocial effects likely motivate recreational ecstasy use. Copyright © 2015. Published by Elsevier Ltd.
Glynn, Pierre D.; Ames, D.P.; Quinn, N. W. T.; Rizzoli, A.E.
2014-01-01
Integrated environmental modeling (IEM) can organize and increase our knowledge of the complex, dynamic ecosystems that house our natural resources and control the quality of our environments. Human behavior, however, must be taken into account. Human biases/heuristics reflect adaptation over our evolutionary past to frequently experienced situations that affected our survival and that provided sharply distinguished feedbacks at the level of the individual. Unfortunately, human behavior is not adapted to the more diffusely experienced, less frequently encountered, problems and issues that IEM typically seeks to address in the simulation of natural resources and environments. While seeking inspiration from the prophetic traditions of the Oracle of Delphi, several human biases are identified that may affect how the science base of IEM is assembled, and how IEM results are interpreted and used. These biases are supported by personal observations, and by the findings of behavioral scientists. A process for critical analysis is proposed that solicits explicit accounting and cognizance of potential human biases. A number of suggestions are made to address the human challenges of IEM, in addition to maintaining attitudes of watchful humility, open-mindedness, honesty, and transparent accountability. These include creating a new area of study in the behavioral biogeosciences, using structured processes for engaging the modeling and stakeholder community in IEM, and using “red teams” to increase resilience of IEM constructs and use.
Mokarzel-Falcón, Leonardo; Padrón-García, Juan Alexander; Carrasco-Velar, Ramón; Berry, Colin; Montero-Cabrera, Luis A
2008-03-01
We propose two models of the human S-arrestin/rhodopsin complex in the inactive dark adapted rhodopsin and meta rhodopsin II form, obtained by homology modeling and knowledge based docking. First, a homology model for the human S-arrestin was built and validated by molecular dynamics, showing an average root mean square deviation difference from the pattern behavior of 0.76 A. Then, combining the human S-arrestin model and the modeled structure of the two human rhodopsin forms, we propose two models of interaction for the human S-arrestin/rhodopsin complex. The models involve two S-arrestin regions related to the N domain (residues 68-78; 170-182) and a third constituent of the C domain (248-253), with the rhodopsin C terminus (330-348). Of the 22 single point mutations related to retinitis pigmentosa and congenital night blindness located in the cytoplasmatic portion of rhodopsin or in S-arrestin, our models locate 16 in the interaction region and relate two others to possible dimer formation. Our calculations also predict that the light activated complex is more stable than the dark adapted rhodopsin and, therefore, of higher affinity to S-arrestin. 2008 Wiley-Liss, Inc.
Mattei, Tobias A
2014-12-01
In self-adapting dynamical systems, a significant improvement in the signaling flow among agents constitutes one of the most powerful triggering events for the emergence of new complex behaviors. Ackermann and colleagues' comprehensive phylogenetic analysis of the brain structures involved in acoustic communication provides further evidence of the essential role which speech, as a breakthrough signaling resource, has played in the evolutionary development of human cognition viewed from the standpoint of complex adaptive system analysis.
Zebrafish neurobehavioral phenomics for aquatic neuropharmacology and toxicology research.
Kalueff, Allan V; Echevarria, David J; Homechaudhuri, Sumit; Stewart, Adam Michael; Collier, Adam D; Kaluyeva, Aleksandra A; Li, Shaomin; Liu, Yingcong; Chen, Peirong; Wang, JiaJia; Yang, Lei; Mitra, Anisa; Pal, Subharthi; Chaudhuri, Adwitiya; Roy, Anwesha; Biswas, Missidona; Roy, Dola; Podder, Anupam; Poudel, Manoj K; Katare, Deepshikha P; Mani, Ruchi J; Kyzar, Evan J; Gaikwad, Siddharth; Nguyen, Michael; Song, Cai
2016-01-01
Zebrafish (Danio rerio) are rapidly emerging as an important model organism for aquatic neuropharmacology and toxicology research. The behavioral/phenotypic complexity of zebrafish allows for thorough dissection of complex human brain disorders and drug-evoked pathological states. As numerous zebrafish models become available with a wide spectrum of behavioral, genetic, and environmental methods to test novel drugs, here we discuss recent zebrafish phenomics methods to facilitate drug discovery, particularly in the field of biological psychiatry. Additionally, behavioral, neurological, and endocrine endpoints are becoming increasingly well-characterized in zebrafish, making them an inexpensive, robust and effective model for toxicology research and pharmacological screening. We also discuss zebrafish behavioral phenotypes, experimental considerations, pharmacological candidates and relevance of zebrafish neurophenomics to other 'omics' (e.g., genomic, proteomic) approaches. Finally, we critically evaluate the limitations of utilizing this model organism, and outline future strategies of research in the field of zebrafish phenomics. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Sorokoumov, P. S.; Khabibullin, T. R.; Tolstaya, A. M.
2017-01-01
The existing psychological theories associate the movement of a human eye with its reactions to external change: what we see, hear and feel. By analyzing the glance, we can compare the external human response (which shows the behavior of a person), and the natural reaction (that they actually feels). This article describes the complex for detection of visual activity and its application for evaluation of the psycho-physiological state of a person. The glasses with a camera capture all the movements of the human eye in real time. The data recorded by the camera are transmitted to the computer for processing implemented with the help of the software developed by the authors. The result is given in an informative and an understandable report, which can be used for further analysis. The complex shows a high efficiency and stable operation and can be used both, for the pedagogic personnel recruitment and for testing students during the educational process.
Cyclic Game Dynamics Driven by Iterated Reasoning
Frey, Seth; Goldstone, Robert L.
2013-01-01
Recent theories from complexity science argue that complex dynamics are ubiquitous in social and economic systems. These claims emerge from the analysis of individually simple agents whose collective behavior is surprisingly complicated. However, economists have argued that iterated reasoning–what you think I think you think–will suppress complex dynamics by stabilizing or accelerating convergence to Nash equilibrium. We report stable and efficient periodic behavior in human groups playing the Mod Game, a multi-player game similar to Rock-Paper-Scissors. The game rewards subjects for thinking exactly one step ahead of others in their group. Groups that play this game exhibit cycles that are inconsistent with any fixed-point solution concept. These cycles are driven by a “hopping” behavior that is consistent with other accounts of iterated reasoning: agents are constrained to about two steps of iterated reasoning and learn an additional one-half step with each session. If higher-order reasoning can be complicit in complex emergent dynamics, then cyclic and chaotic patterns may be endogenous features of real-world social and economic systems. PMID:23441191
Motor heuristics and embodied choices: how to choose and act.
Raab, Markus
2017-08-01
Human performance requires choosing what to do and how to do it. The goal of this theoretical contribution is to advance understanding of how the motor and cognitive components of choices are intertwined. From a holistic perspective I extend simple heuristics that have been tested in cognitive tasks to motor tasks, coining the term motor heuristics. Similarly I extend the concept of embodied cognition, that has been tested in simple sensorimotor processes changing decisions, to complex sport behavior coining the term embodied choices. Thus both motor heuristics and embodied choices explain complex behavior such as studied in sport and exercise psychology. Copyright © 2017 Elsevier Ltd. All rights reserved.
[Factors behind action, emotion, and decision making].
Watanabe, Katsumi
2009-12-01
Human actions, emotions, and decision making are products of complex interactions between explicit and implicit processes at various levels of spatial and temporal scales. Although it may not be possible to obtain to experimental data for all the complexity of human behavioral and emotional processes in our everyday life, recent studies have investigated the effects of social contexts on actions, emotions, and decision making; these studies include those in the fields of experimental psychology, cognitive science, and neuroscience. In this paper, we review several empirical studies that exemplify how our actions, social emotions, and decision making are influenced by the presence of implicit external, rather than internal factors, particularly by presence of other individuals. The following are the main principles identified. (1) Unconscious behavioral contagion: Individuals tend to mimic others' actions. This tendency occurs unconsciously even when the observed and the to-be-executed movements are unrelated at various levels and aspects of behaviors (e. g., behavioral tempo and speed). (2) Neural substrates of social emotions: Various social emotions, including admiration, compassion, envy, and schadenfreude, are represented in neuronal networks that are similar to those of basic emotional processes. (3) Evasive nature of human decision making: Individuals tend to overrate their own subjective impression of and emotional reaction in forecasting affective reaction to events in the future, even though the predictive power of information from peer group is much larger in this regard. Individuals are seldom aware of the dissociation between their intended choice and excuted actions and are willing to give elaborate explanations for the choices they, in fact, did not make. Using these empirical examples, I will illustrate the considerable influences of implicit, unconscious processes on human actions, emotions, and decision making.
Modeling Complex Cross-Systems Software Interfaces Using SysML
NASA Technical Reports Server (NTRS)
Mandutianu, Sanda; Morillo, Ron; Simpson, Kim; Liepack, Otfrid; Bonanne, Kevin
2013-01-01
The complex flight and ground systems for NASA human space exploration are designed, built, operated and managed as separate programs and projects. However, each system relies on one or more of the other systems in order to accomplish specific mission objectives, creating a complex, tightly coupled architecture. Thus, there is a fundamental need to understand how each system interacts with the other. To determine if a model-based system engineering approach could be utilized to assist with understanding the complex system interactions, the NASA Engineering and Safety Center (NESC) sponsored a task to develop an approach for performing cross-system behavior modeling. This paper presents the results of applying Model Based Systems Engineering (MBSE) principles using the System Modeling Language (SysML) to define cross-system behaviors and how they map to crosssystem software interfaces documented in system-level Interface Control Documents (ICDs).
Human Consciousness: Where Is It From and What Is It for
Kotchoubey, Boris
2018-01-01
Consciousness is not a process in the brain but a kind of behavior that, of course, is controlled by the brain like any other behavior. Human consciousness emerges on the interface between three components of animal behavior: communication, play, and the use of tools. These three components interact on the basis of anticipatory behavioral control, which is common for all complex forms of animal life. All three do not exclusively distinguish our close relatives, i.e., primates, but are broadly presented among various species of mammals, birds, and even cephalopods; however, their particular combination in humans is unique. The interaction between communication and play yields symbolic games, most importantly language; the interaction between symbols and tools results in human praxis. Taken together, this gives rise to a mechanism that allows a creature, instead of performing controlling actions overtly, to play forward the corresponding behavioral options in a “second reality” of objectively (by means of tools) grounded symbolic systems. The theory possesses the following properties: (1) It is anti-reductionist and anti-eliminativist, and yet, human consciousness is considered as a purely natural (biological) phenomenon. (2) It avoids epiphenomenalism and indicates in which conditions human consciousness has evolutionary advantages, and in which it may even be disadvantageous. (3) It allows to easily explain the most typical features of consciousness, such as objectivity, seriality and limited resources, the relationship between consciousness and explicit memory, the feeling of conscious agency, etc. PMID:29740366
Human Consciousness: Where Is It From and What Is It for.
Kotchoubey, Boris
2018-01-01
Consciousness is not a process in the brain but a kind of behavior that, of course, is controlled by the brain like any other behavior. Human consciousness emerges on the interface between three components of animal behavior: communication, play, and the use of tools. These three components interact on the basis of anticipatory behavioral control, which is common for all complex forms of animal life. All three do not exclusively distinguish our close relatives, i.e., primates, but are broadly presented among various species of mammals, birds, and even cephalopods; however, their particular combination in humans is unique. The interaction between communication and play yields symbolic games, most importantly language; the interaction between symbols and tools results in human praxis. Taken together, this gives rise to a mechanism that allows a creature, instead of performing controlling actions overtly, to play forward the corresponding behavioral options in a "second reality" of objectively (by means of tools) grounded symbolic systems. The theory possesses the following properties: (1) It is anti-reductionist and anti-eliminativist, and yet, human consciousness is considered as a purely natural (biological) phenomenon. (2) It avoids epiphenomenalism and indicates in which conditions human consciousness has evolutionary advantages, and in which it may even be disadvantageous. (3) It allows to easily explain the most typical features of consciousness, such as objectivity, seriality and limited resources, the relationship between consciousness and explicit memory, the feeling of conscious agency, etc.
Human centromedian-parafascicular complex signals sensory cues for goal-oriented behavior selection.
Schepers, Inga M; Beck, Anne-Kathrin; Bräuer, Susann; Schwabe, Kerstin; Abdallat, Mahmoud; Sandmann, Pascale; Dengler, Reinhard; Rieger, Jochem W; Krauss, Joachim K
2017-05-15
Experimental research has shown that the centromedian-parafascicular complex (CM-Pf) of the intralaminar thalamus is activated in attentional orienting and processing of behaviorally relevant stimuli. These observations resulted in the hypothesis that the CM-Pf plays a pivotal role in goal-oriented behavior selection. We here set out to test this hypothesis with electrophysiological recordings from patients with electrodes implanted in CM-Pf for deep brain stimulation (DBS) treatment of chronic neuropathic pain. Six patients participated in (1) an auditory three-class oddball experiment, which required a button press to target tones, but not to standard and deviant tones and in (2) a multi-speaker experiment with a target word that required attention selection and a target image that required response selection. Subjects showed transient neural responses (8-15Hz) to the target tone and the target word. Two subjects additionally showed transient neural responses (15-25Hz) to the target image. All sensory target stimuli were related to an internal goal and required a behavior selection (attention selection, response selection). In group analyses, neural responses were greater to target tones than deviant and standard tones and to target words than other task-relevant words that did not require attention selection. The transient neural responses occurred after the target stimuli but prior to the overt behavioral response. Our results demonstrate that in human subjects the CM-Pf is involved in signaling sensory inputs related to goal-oriented selection of behavior. Copyright © 2017 Elsevier Inc. All rights reserved.
The advantage of flexible neuronal tunings in neural network models for motor learning
Marongelli, Ellisha N.; Thoroughman, Kurt A.
2013-01-01
Human motor adaptation to novel environments is often modeled by a basis function network that transforms desired movement properties into estimated forces. This network employs a layer of nodes that have fixed broad tunings that generalize across the input domain. Learning is achieved by updating the weights of these nodes in response to training experience. This conventional model is unable to account for rapid flexibility observed in human spatial generalization during motor adaptation. However, added plasticity in the widths of the basis function tunings can achieve this flexibility, and several neurophysiological experiments have revealed flexibility in tunings of sensorimotor neurons. We found a model, Locally Weighted Projection Regression (LWPR), which uniquely possesses the structure of a basis function network in which both the weights and tuning widths of the nodes are updated incrementally during adaptation. We presented this LWPR model with training functions of different spatial complexities and monitored incremental updates to receptive field widths. An inverse pattern of dependence of receptive field adaptation on experienced error became evident, underlying both a relationship between generalization and complexity, and a unique behavior in which generalization always narrows after a sudden switch in environmental complexity. These results implicate a model that is flexible in both basis function widths and weights, like LWPR, as a viable alternative model for human motor adaptation that can account for previously observed plasticity in spatial generalization. This theory can be tested by using the behaviors observed in our experiments as novel hypotheses in human studies. PMID:23888141
Diverse behaviors of outer radial glia in developing ferret and human cortex.
Gertz, Caitlyn C; Lui, Jan H; LaMonica, Bridget E; Wang, Xiaoqun; Kriegstein, Arnold R
2014-02-12
The dramatic increase in neocortical size and folding during mammalian brain evolution has been attributed to the elaboration of the subventricular zone (SVZ) and the associated increase in neural progenitors. However, recent studies have shown that SVZ size and the abundance of resident progenitors do not directly predict cortical topography, suggesting that complex behaviors of the progenitors themselves may contribute to the overall size and shape of the adult cortex. Using time-lapse imaging, we examined the dynamic behaviors of SVZ progenitors in the ferret, a gyrencephalic carnivore, focusing our analysis on outer radial glial cells (oRGs). We identified a substantial population of oRGs by marker expression and their unique mode of division, termed mitotic somal translocation (MST). Ferret oRGs exhibited diverse behaviors in terms of division location, cleavage angle, and MST distance, as well as fiber orientation and dynamics. We then examined the human fetal cortex and found that a subset of human oRGs displayed similar characteristics, suggesting that diversity in oRG behavior may be a general feature. Similar to the human, ferret oRGs underwent multiple rounds of self-renewing divisions but were more likely to undergo symmetric divisions that expanded the oRG population, as opposed to producing intermediate progenitor cells (IPCs). Differences in oRG behaviors, including proliferative potential and daughter cell fates, may contribute to variations in cortical structure between mammalian species.
NASA Technical Reports Server (NTRS)
Johannsen, G.; Rouse, W. B.
1978-01-01
A hierarchy of human activities is derived by analyzing automobile driving in general terms. A structural description leads to a block diagram and a time-sharing computer analogy. The range of applicability of existing mathematical models is considered with respect to the hierarchy of human activities in actual complex tasks. Other mathematical tools so far not often applied to man machine systems are also discussed. The mathematical descriptions at least briefly considered here include utility, estimation, control, queueing, and fuzzy set theory as well as artificial intelligence techniques. Some thoughts are given as to how these methods might be integrated and how further work might be pursued.
A Simple Exploration of Complexity at the Climate-Weather-Social-Conflict Nexus
NASA Astrophysics Data System (ADS)
Shaw, M.
2017-12-01
The conceptualization, exploration, and prediction of interplay between climate, weather, important resources, and social and economic - so political - human behavior is cast, and analyzed, in terms familiar from statistical physics and nonlinear dynamics. A simple threshold toy model is presented which emulates human tendencies to either actively engage in responses deriving, in part, from environmental circumstances or to maintain some semblance of status quo, formulated based on efforts drawn from the sociophysics literature - more specifically vis a vis a model akin to spin glass depictions of human behavior - with threshold/switching of individual and collective dynamics influenced by relatively more detailed weather and land surface model (hydrological) analyses via a land data assimilation system (a custom rendition of the NASA GSFC Land Information System). Parameters relevant to human systems' - e.g., individual and collective switching - sensitivity to hydroclimatology are explored towards investigation of overall system behavior; i.e., fixed points/equilibria, oscillations, and bifurcations of systems composed of human interactions and responses to climate and weather through, e.g., agriculture. We discuss implications in terms of conceivable impacts of climate change and associated natural disasters on socioeconomics, politics, and power transfer, drawing from relatively recent literature concerning human conflict.
Harris, Christine R.; Prouvost, Caroline
2014-01-01
It is commonly assumed that jealousy is unique to humans, partially because of the complex cognitions often involved in this emotion. However, from a functional perspective, one might expect that an emotion that evolved to protect social bonds from interlopers might exist in other social species, particularly one as cognitively sophisticated as the dog. The current experiment adapted a paradigm from human infant studies to examine jealousy in domestic dogs. We found that dogs exhibited significantly more jealous behaviors (e.g., snapping, getting between the owner and object, pushing/touching the object/owner) when their owners displayed affectionate behaviors towards what appeared to be another dog as compared to nonsocial objects. These results lend support to the hypothesis that jealousy has some “primordial” form that exists in human infants and in at least one other social species besides humans. PMID:25054800
Genome-wide analysis identifies 12 loci influencing human reproductive behavior.
Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J; Tropf, Felix C; Shen, Xia; Wilson, James F; Chasman, Daniel I; Nolte, Ilja M; Tragante, Vinicius; van der Laan, Sander W; Perry, John R B; Kong, Augustine; Ahluwalia, Tarunveer S; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J; Gieger, Christian; Gunderson, Erica P; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F; McMahon, George; Meddens, S Fleur W; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A; Monnereau, Claire; van der Most, Peter J; Myhre, Ronny; Nalls, Mike A; Nutile, Teresa; Kalafati, Ioanna Panagiota; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B; Rich-Edwards, Janet; Rietveld, Cornelius A; Robino, Antonietta; Rose, Lynda M; Rueedi, Rico; Ryan, Kathleen A; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A; Stolk, Lisette; Streeten, Elizabeth; Tönjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I; Buring, Julie E; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R; Cucca, Francesco; Toniolo, Daniela; Davey-Smith, George; Deary, Ian J; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M; de Geus, Eco J C; Eriksson, Johan G; Evans, Denis A; Faul, Jessica D; Sala, Cinzia Felicita; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J F; de Haan, Hugoline G; Haerting, Johannes; Harris, Tamara B; Heath, Andrew C; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hyppönen, Elina; Jacobsson, Bo; Jaddoe, Vincent W V; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L R; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William G; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia M; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K E; Martin, Nicholas G; McGue, Matt; McQuillan, Ruth; Medland, Sarah E; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Traglia, Michela; Milani, Lili; Mitchell, Paul; Montgomery, Grant W; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda W J H; Perola, Markus; Peyser, Patricia A; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M; Ring, Susan M; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D; Starr, John M; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A; Thorsteinsdottir, Unnur; Thurik, A Roy; Timpson, Nicholas J; Tung, Joyce Y; Uitterlinden, André G; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G; Wang, Jie Jin; Wareham, Nicholas J; Weir, David R; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F; Zondervan, Krina T; Stefansson, Kari; Krueger, Robert F; Lee, James J; Benjamin, Daniel J; Cesarini, David; Koellinger, Philipp D; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C
2016-12-01
The genetic architecture of human reproductive behavior-age at first birth (AFB) and number of children ever born (NEB)-has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified, and the underlying mechanisms of AFB and NEB are poorly understood. We report a large genome-wide association study of both sexes including 251,151 individuals for AFB and 343,072 individuals for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study and 4 additional loci associated in a gene-based effort. These loci harbor genes that are likely to have a role, either directly or by affecting non-local gene expression, in human reproduction and infertility, thereby increasing understanding of these complex traits.
Moskell, Christine; Allred, Shorna Broussard
2013-03-01
Community psychology (CP) research on the natural environment lacks a theoretical framework for analyzing the complex relationship between human systems and the natural world. We introduce other academic fields concerned with the interactions between humans and the natural environment, including environmental sociology and coupled human and natural systems. To demonstrate how the natural environment can be included within CP's ecological framework, we propose an ecological model of urban forest stewardship action. Although ecological models of behavior in CP have previously modeled health behaviors, we argue that these frameworks are also applicable to actions that positively influence the natural environment. We chose the environmental action of urban forest stewardship because cities across the United States are planting millions of trees and increased citizen participation in urban tree planting and stewardship will be needed to sustain the benefits provided by urban trees. We used the framework of an ecological model of behavior to illustrate multiple levels of factors that may promote or hinder involvement in urban forest stewardship actions. The implications of our model for the development of multi-level ecological interventions to foster stewardship actions are discussed, as well as directions for future research to further test and refine the model.
Sustainable Water Systems for the City of Tomorrow—A Conceptual Framework
Urban water systems are an example of complex, dynamic human-environment coupled systems, which exhibit emergent behaviors that transcends individual scientific disciplines. While previous siloed approaches to water services (i.e., water resources, drinking water, wastewater, and...
On the nature and evolution of the neural bases of human language
NASA Technical Reports Server (NTRS)
Lieberman, Philip
2002-01-01
The traditional theory equating the brain bases of language with Broca's and Wernicke's neocortical areas is wrong. Neural circuits linking activity in anatomically segregated populations of neurons in subcortical structures and the neocortex throughout the human brain regulate complex behaviors such as walking, talking, and comprehending the meaning of sentences. When we hear or read a word, neural structures involved in the perception or real-world associations of the word are activated as well as posterior cortical regions adjacent to Wernicke's area. Many areas of the neocortex and subcortical structures support the cortical-striatal-cortical circuits that confer complex syntactic ability, speech production, and a large vocabulary. However, many of these structures also form part of the neural circuits regulating other aspects of behavior. For example, the basal ganglia, which regulate motor control, are also crucial elements in the circuits that confer human linguistic ability and abstract reasoning. The cerebellum, traditionally associated with motor control, is active in motor learning. The basal ganglia are also key elements in reward-based learning. Data from studies of Broca's aphasia, Parkinson's disease, hypoxia, focal brain damage, and a genetically transmitted brain anomaly (the putative "language gene," family KE), and from comparative studies of the brains and behavior of other species, demonstrate that the basal ganglia sequence the discrete elements that constitute a complete motor act, syntactic process, or thought process. Imaging studies of intact human subjects and electrophysiologic and tracer studies of the brains and behavior of other species confirm these findings. As Dobzansky put it, "Nothing in biology makes sense except in the light of evolution" (cited in Mayr, 1982). That applies with as much force to the human brain and the neural bases of language as it does to the human foot or jaw. The converse follows: the mark of evolution on the brains of human beings and other species provides insight into the evolution of the brain bases of human language. The neural substrate that regulated motor control in the common ancestor of apes and humans most likely was modified to enhance cognitive and linguistic ability. Speech communication played a central role in this process. However, the process that ultimately resulted in the human brain may have started when our earliest hominid ancestors began to walk.
ERIC Educational Resources Information Center
Hellweg, Rainer; Huber, Roman; Kuhl, Alexander; Riepe, Matthias W.; Lohmann, Peter
2006-01-01
Impairment of hippocampal function precedes frontal and parietal cortex impairment in human Alzheimer's disease(AD). Neurotrophins are critical for behavioral performance and neuronal survival in AD. We used complex and radial mazes to assess spatial orientation and learning in wild-type and B6-Tg(ThylAPP)23Sdz (APP23) animals, a transgenic mouse…
Martin, W
1999-01-01
Physicians often determine the demand for health care services, as well as control the clinical processes aimed at improving health outcomes at the individual and population level. Given their important role in enhancing health status and improving the health care delivery system, it is critical that physician executives master the tools necessary to positively influence physician behavior. But changing behavior is far more complex than "doing it or not doing it." The Nike slogan "just do it" is motivating, but over-simplified. The roots of human change include: consciousness-raising, emotional arousal, commitment, helping relationships, self-reevaluation, reward, and environmental control. A model to effectively influence behavior is presented and includes setting clear expectations, measuring and monitoring performance, providing feedback, and rewarding and recognizing improvement. If all else fails, try discipline. This five-step approach is based on the science of human behavior and working with physicians in diverse settings, ranging from academic medical centers to small practices.
Centromere pairing – tethering partner chromosomes in meiosis I
Kurdzo, Emily L; Dawson, Dean S
2015-01-01
In meiosis, homologous chromosomes face the obstacle of finding, holding onto and segregating away from their partner chromosome. There is increasing evidence, in a diverse range of organisms, that centromere–centromere interactions that occur in late prophase are an important mechanism in ensuring segregation fidelity. Centromere pairing appears to initiate when homologous chromosomes synapse in meiotic prophase. Structural proteins of the synaptonemal complex have been shown to help mediate centromere pairing, but how the structure that maintains centromere pairing differs from the structure of the synaptonemal complex along the chromosomal arms remains unknown. When the synaptonemal complex proteins disassemble from the chromosome arms in late prophase, some of these synaptonemal complex components persist at the centromeres. In yeast and Drosophila these centromere-pairing behaviors promote the proper segregation of chromosome partners that have failed to become linked by chiasmata. Recent studies of mouse spermatocytes have described centromere pairing behaviors that are similar in several respects to what has been described in the fly and yeast systems. In humans, chromosomes that fail to experience crossovers in meiosis are error-prone and are a major source of aneuploidy. The finding that centromere pairing is a conserved phenomenon raises the possibility that it may play a role in promoting the segregation fidelity of non-exchange chromosome pairs in humans. PMID:25817724
Cumulative cultural learning: Development and diversity
2017-01-01
The complexity and variability of human culture is unmatched by any other species. Humans live in culturally constructed niches filled with artifacts, skills, beliefs, and practices that have been inherited, accumulated, and modified over generations. A causal account of the complexity of human culture must explain its distinguishing characteristics: It is cumulative and highly variable within and across populations. I propose that the psychological adaptations supporting cumulative cultural transmission are universal but are sufficiently flexible to support the acquisition of highly variable behavioral repertoires. This paper describes variation in the transmission practices (teaching) and acquisition strategies (imitation) that support cumulative cultural learning in childhood. Examining flexibility and variation in caregiver socialization and children’s learning extends our understanding of evolution in living systems by providing insight into the psychological foundations of cumulative cultural transmission—the cornerstone of human cultural diversity. PMID:28739945
Cumulative cultural learning: Development and diversity.
Legare, Cristine H
2017-07-24
The complexity and variability of human culture is unmatched by any other species. Humans live in culturally constructed niches filled with artifacts, skills, beliefs, and practices that have been inherited, accumulated, and modified over generations. A causal account of the complexity of human culture must explain its distinguishing characteristics: It is cumulative and highly variable within and across populations. I propose that the psychological adaptations supporting cumulative cultural transmission are universal but are sufficiently flexible to support the acquisition of highly variable behavioral repertoires. This paper describes variation in the transmission practices (teaching) and acquisition strategies (imitation) that support cumulative cultural learning in childhood. Examining flexibility and variation in caregiver socialization and children's learning extends our understanding of evolution in living systems by providing insight into the psychological foundations of cumulative cultural transmission-the cornerstone of human cultural diversity.
Cognitive engineering models in space systems
NASA Technical Reports Server (NTRS)
Mitchell, Christine M.
1992-01-01
NASA space systems, including mission operations on the ground and in space, are complex, dynamic, predominantly automated systems in which the human operator is a supervisory controller. The human operator monitors and fine-tunes computer-based control systems and is responsible for ensuring safe and efficient system operation. In such systems, the potential consequences of human mistakes and errors may be very large, and low probability of such events is likely. Thus, models of cognitive functions in complex systems are needed to describe human performance and form the theoretical basis of operator workstation design, including displays, controls, and decision support aids. The operator function model represents normative operator behavior-expected operator activities given current system state. The extension of the theoretical structure of the operator function model and its application to NASA Johnson mission operations and space station applications is discussed.
Unifying Human Centered Design and Systems Engineering for Human Systems Integration
NASA Technical Reports Server (NTRS)
Boy, Guy A.; McGovernNarkevicius, Jennifer
2013-01-01
Despite the holistic approach of systems engineering (SE), systems still fail, and sometimes spectacularly. Requirements, solutions and the world constantly evolve and are very difficult to keep current. SE requires more flexibility and new approaches to SE have to be developed to include creativity as an integral part and where the functions of people and technology are appropriately allocated within our highly interconnected complex organizations. Instead of disregarding complexity because it is too difficult to handle, we should take advantage of it, discovering behavioral attractors and the emerging properties that it generates. Human-centered design (HCD) provides the creativity factor that SE lacks. It promotes modeling and simulation from the early stages of design and throughout the life cycle of a product. Unifying HCD and SE will shape appropriate human-systems integration (HSI) and produce successful systems.
Al-Jaroudi, Said S; Monim-ul-Mehboob, M; Altaf, Muhammad; Al-Saadi, Abdulaziz A; Wazeer, Mohammed I M; Altuwaijri, Saleh; Isab, Anvarhusein A
2014-12-01
The gold(III) complexes of the type [(DACH)Au(en)]Cl3, 1,2-Diaminocyclohexane ethylenediamine gold(III) chloride [where 1,2-DACH = cis-, trans-1,2- and S,S-1,2diaminocyclohexane and en = ethylenediamine] have been synthesized and characterized using various analytical and spectroscopic techniques including elemental analysis, UV-Vis and FTIR spectra; and solution as well as solid-state NMR measurements. The solid-state (13)C NMR shows that 1,2-diaminocyclohexane (1,2-DACH) and ethylenediamine (en) are strongly bound to the gold(III) center via N donor atoms. The stability of the mixed diamine ligand gold(III) was determined by (1)H and (13)C NMR spectra. Their electrochemical behavior was studied by cyclic voltammetry. The structural details and relative stabilities of the four possible isomers of the complexes were also reported at the B3LYP/LANL2DZ level of theory. The coordination sphere of these complexes around gold(III) center adopts distorted square planar geometry. The computational study also demonstrates that trans- conformations is slightly more stable than the cis-conformations. The antiproliferative effects and cytotoxic properties of the mixed diamine ligand gold(III) complexes were evaluated in vitro on human gastric SGC7901 and prostate PC3 cancer cells using MTT assay. The antiproliferative study of the gold(III) complexes on PC3 and SGC7901 cells indicate that complex 1 is the most effective antiproliferative agent among mixed ligand based gold(III) complexes 1-3. The IC50 data reveal that the in vitro cytotoxicity of complexes 1 and 3 against SGC7901 cancer cells are fairly better than that of cisplatin.
Thomas, Amanda L; Davis, Shaun M; Dierick, Herman A
2015-08-01
Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression.
Dierick, Herman A.
2015-01-01
Aggressive behavior is widespread in the animal kingdom, but the degree of molecular conservation between distantly related species is still unclear. Recent reports suggest that at least some of the molecular mechanisms underlying this complex behavior in flies show remarkable similarities with such mechanisms in mice and even humans. Surprisingly, some aspects of neuronal control of aggression also show remarkable similarity between these distantly related species. We will review these recent findings, address the evolutionary implications, and discuss the potential impact for our understanding of human diseases characterized by excessive aggression. PMID:26312756
Social interaction shapes babbling: Testing parallels between birdsong and speech
NASA Astrophysics Data System (ADS)
Goldstein, Michael H.; King, Andrew P.; West, Meredith J.
2003-06-01
Birdsong is considered a model of human speech development at behavioral and neural levels. Few direct tests of the proposed analogs exist, however. Here we test a mechanism of phonological development in human infants that is based on social shaping, a selective learning process first documented in songbirds. By manipulating mothers' reactions to their 8-month-old infants' vocalizations, we demonstrate that phonological features of babbling are sensitive to nonimitative social stimulation. Contingent, but not noncontingent, maternal behavior facilitates more complex and mature vocal behavior. Changes in vocalizations persist after the manipulation. The data show that human infants use social feedback, facilitating immediate transitions in vocal behavior. Social interaction creates rapid shifts to developmentally more advanced sounds. These transitions mirror the normal development of speech, supporting the predictions of the avian social shaping model. These data provide strong support for a parallel in function between vocal precursors of songbirds and infants. Because imitation is usually considered the mechanism for vocal learning in both taxa, the findings introduce social shaping as a general process underlying the development of speech and song.
Animal Models of Suicide Trait-Related Behaviors
Malkesman, Oz; Pine, Daniel; Tragon, Tyson; Austin, Daniel R.; Henter, Ioline D.; Chen, Guang; Manji, Husseini K.
2009-01-01
Although antidepressants are at least moderately effective in treating major depressive disorder (MDD), concerns have arisen that selective serotonin reuptake inhibitors (SSRIs) are associated with suicidal thinking and behavior, especially in children, adolescents, and young adults. Virtually no experimental research in model systems has considered the mechanisms by which SSRIs may be associated with this potential side effect in some susceptible individuals. Suicide is a complex behavior that is, at best, complicated to study in humans and impossible to fully reproduce in an animal model. However, by investigating traits that show strong cross-species parallels as well as associations with suicide in humans, animal models may elucidate the mechanisms by which SSRIs are associated with suicidal thinking and behavior in the young. Traits linked with suicide in humans that can be successfully modeled in rodents include aggression, impulsivity, irritability, and hopelessness/helplessness. Differences in animal response to particular paradigms and to SSRIs across the lifespan are also discussed. Modeling these relevant traits in animals can help clarify the impact of SSRIs on these traits, suggesting avenues for reducing suicide risk in this vulnerable population. PMID:19269045
Particularism and the retreat from theory in the archaeology of agricultural origins
Gremillion, Kristen J.; Barton, Loukas; Piperno, Dolores R.
2014-01-01
The introduction of new analytic methods and expansion of research into previously untapped regions have greatly increased the scale and resolution of data relevant to the origins of agriculture (OA). As a result, the recognition of varied historical pathways to agriculture and the continuum of management strategies have complicated the search for general explanations for the transition to food production. In this environment, higher-level theoretical frameworks are sometimes rejected on the grounds that they force conclusions that are incompatible with real-world variability. Some of those who take this position argue instead that OA should be explained in terms of local and historically contingent factors. This retreat from theory in favor of particularism is based on the faulty beliefs that complex phenomena such as agricultural origins demand equally complex explanations and that explanation is possible in the absence of theoretically based assumptions. The same scholars who are suspicious of generalization are reluctant to embrace evolutionary approaches to human behavior on the grounds that they are ahistorical, overly simplistic, and dismissive of agency and intent. We argue that these criticisms are misplaced and explain why a coherent theory of human behavior that acknowledges its evolutionary history is essential to advancing understanding of OA. Continued progress depends on the integration of human behavior and culture into the emerging synthesis of evolutionary developmental biology that informs contemporary research into plant and animal domestication. PMID:24753601
Particularism and the retreat from theory in the archaeology of agricultural origins.
Gremillion, Kristen J; Barton, Loukas; Piperno, Dolores R
2014-04-29
The introduction of new analytic methods and expansion of research into previously untapped regions have greatly increased the scale and resolution of data relevant to the origins of agriculture (OA). As a result, the recognition of varied historical pathways to agriculture and the continuum of management strategies have complicated the search for general explanations for the transition to food production. In this environment, higher-level theoretical frameworks are sometimes rejected on the grounds that they force conclusions that are incompatible with real-world variability. Some of those who take this position argue instead that OA should be explained in terms of local and historically contingent factors. This retreat from theory in favor of particularism is based on the faulty beliefs that complex phenomena such as agricultural origins demand equally complex explanations and that explanation is possible in the absence of theoretically based assumptions. The same scholars who are suspicious of generalization are reluctant to embrace evolutionary approaches to human behavior on the grounds that they are ahistorical, overly simplistic, and dismissive of agency and intent. We argue that these criticisms are misplaced and explain why a coherent theory of human behavior that acknowledges its evolutionary history is essential to advancing understanding of OA. Continued progress depends on the integration of human behavior and culture into the emerging synthesis of evolutionary developmental biology that informs contemporary research into plant and animal domestication.
Ethics in Publishing: Complexity Science and Human Factors Offer Insights to Develop a Just Culture.
Saurin, Tarcisio Abreu
2016-12-01
While ethics in publishing has been increasingly debated, there seems to be a lack of a theoretical framework for making sense of existing rules of behavior as well as for designing, managing and enforcing such rules. This letter argues that systems-oriented disciplines, such as complexity science and human factors, offer insights into new ways of dealing with ethics in publishing. Some examples of insights are presented. Also, a call is made for empirical studies that unveil the context and details of both retracted papers and the process of writing and publishing academic papers. This is expected to shed light on the complexity of the publication system as well as to support the development of a just culture, in which all participants are accountable.
Krayukhina, Elena; Noda, Masanori; Ishii, Kentaro; Maruno, Takahiro; Wakabayashi, Hirotsugu; Tada, Minoru; Suzuki, Takuo; Ishii-Watabe, Akiko; Kato, Masahiko; Uchiyama, Susumu
2017-01-01
ABSTRACT A number of studies have attempted to elucidate the binding mechanism between tumor necrosis factor (TNF) and clinically relevant antagonists. None of these studies, however, have been conducted as close as possible to physiologic conditions, and so the relationship between the size distribution of TNF-antagonist complexes and the antagonists' biological activity or adverse effects remains elusive. Here, we characterized the binding stoichiometry and sizes of soluble TNF-antagonist complexes for adalimumab, infliximab, and etanercept that were formed in human serum and in phosphate-buffered saline (PBS). Fluorescence-detected sedimentation velocity analytical ultracentrifugation analyses revealed that adalimumab and infliximab formed a range of complexes with TNF, with the major complexes consisting of 3 molcules of the respective antagonist and one or 2 molcules of TNF. Considerably greater amounts of high-molecular-weight complexes were detected for infliximab in human serum. The emergence of peaks with higher sedimentation coefficients than the adalimumab monomer as a function of added human serum albumin (HSA) concentration in PBS suggested weak reversible interactions between HSA and immunoglobulins. Etanerept exclusively formed 1:1 complexes with TNF in PBS, and a small amount of complexes with higher stoichiometry was detected in human serum. Consistent with these biophysical characterizations, a reporter assay showed that adalimumab and infliximab, but not etanercept, exerted FcγRIIa- and FcγRIIIa-mediated cell signaling in the presence of TNF and that infliximab exhibited higher potency than adalimumab. This study shows that assessing distribution profiles in serum will contribute to a more comprehensive understanding of the in vivo behavior of therapeutic proteins. PMID:28387583
Howerton, Christopher L; Garner, Joseph P; Mench, Joy A
2012-07-30
Pre-clinical investigation of human CNS disorders relies heavily on mouse models. However these show low predictive validity for translational success to humans, partly due to the extensive use of rapid, high-throughput behavioral assays. Improved assays to monitor rodent behavior over longer time scales in a variety of contexts while still maintaining the efficiency of data collection associated with high-throughput assays are needed. We developed an apparatus that uses radio frequency identification device (RFID) technology to facilitate long-term automated monitoring of the behavior of mice in socially or structurally complex cage environments. Mice that were individually marked and implanted with transponders were placed in pairs in the apparatus, and their locations continuously tracked for 24 h. Video observation was used to validate the RFID readings. The apparatus and its associated software accurately tracked the locations of all mice, yielding information about each mouse's location over time, its diel activity patterns, and the amount of time it was in the same location as the other mouse in the pair. The information that can be efficiently collected in this apparatus has a variety of applications for pre-clinical research on human CNS disorders, for example major depressive disorder and autism spectrum disorder, in that it can be used to quantify validated endophenotypes or biomarkers of these disorders using rodent models. While the specific configuration of the apparatus described here was designed to answer particular experimental questions, it can be modified in various ways to accommodate different experimental designs. Copyright © 2012 Elsevier B.V. All rights reserved.
The Influence of (Dis)belief in Free Will on Immoral Behavior
Caspar, Emilie A.; Vuillaume, Laurène; Magalhães De Saldanha da Gama, Pedro A.; Cleeremans, Axel
2017-01-01
One of the hallmarks of human existence is that we all hold beliefs that determine how we act. Amongst such beliefs, the idea that we are endowed with free will appears to be linked to prosocial behaviors, probably by enhancing the feeling of responsibility of individuals over their own actions. However, such effects appear to be more complex that one might have initially thought. Here, we aimed at exploring how induced disbeliefs in free will impact the sense of agency over the consequences of one’s own actions in a paradigm that engages morality. To do so, we asked participants to choose to inflict or to refrain from inflicting an electric choc to another participant in exchange of a small financial benefit. Our results show that participants who were primed with a text defending neural determinism – the idea that humans are a mere bunch of neurons guided by their biology – administered fewer shocks and were less vindictive toward the other participant. Importantly, this finding only held for female participants. These results show the complex interaction between gender, (dis)beliefs in free will and moral behavior. PMID:28144228
Actin Out: Regulation of the Synaptic Cytoskeleton
Spence, Erin F.; Soderling, Scott H.
2015-01-01
The small size of dendritic spines belies the elaborate role they play in excitatory synaptic transmission and ultimately complex behaviors. The cytoskeletal architecture of the spine is predominately composed of actin filaments. These filaments, which at first glance might appear simple, are also surprisingly complex. They dynamically assemble into different structures and serve as a platform for orchestrating the elaborate responses of the spine during spinogenesis and experience-dependent plasticity. Multiple mutations associated with human neurodevelopmental and psychiatric disorders involve genes that encode regulators of the synaptic cytoskeleton. A major, unresolved question is how the disruption of specific actin filament structures leads to the onset and progression of complex synaptic and behavioral phenotypes. This review will cover established and emerging mechanisms of actin cytoskeletal remodeling and how this influences specific aspects of spine biology that are implicated in disease. PMID:26453304
Evolution of Cooperation in Social Dilemmas on Complex Networks
Iyer, Swami; Killingback, Timothy
2016-01-01
Cooperation in social dilemmas is essential for the functioning of systems at multiple levels of complexity, from the simplest biological organisms to the most sophisticated human societies. Cooperation, although widespread, is fundamentally challenging to explain evolutionarily, since natural selection typically favors selfish behavior which is not socially optimal. Here we study the evolution of cooperation in three exemplars of key social dilemmas, representing the prisoner’s dilemma, hawk-dove and coordination classes of games, in structured populations defined by complex networks. Using individual-based simulations of the games on model and empirical networks, we give a detailed comparative study of the effects of the structural properties of a network, such as its average degree, variance in degree distribution, clustering coefficient, and assortativity coefficient, on the promotion of cooperative behavior in all three classes of games. PMID:26928428
ADAPT: The Agent Development and Prototyping Testbed.
Shoulson, Alexander; Marshak, Nathan; Kapadia, Mubbasir; Badler, Norman I
2014-07-01
We present ADAPT, a flexible platform for designing and authoring functional, purposeful human characters in a rich virtual environment. Our framework incorporates character animation, navigation, and behavior with modular interchangeable components to produce narrative scenes. The animation system provides locomotion, reaching, gaze tracking, gesturing, sitting, and reactions to external physical forces, and can easily be extended with more functionality due to a decoupled, modular structure. The navigation component allows characters to maneuver through a complex environment with predictive steering for dynamic obstacle avoidance. Finally, our behavior framework allows a user to fully leverage a character's animation and navigation capabilities when authoring both individual decision-making and complex interactions between actors using a centralized, event-driven model.
Dunbar's number: group size and brain physiology in humans reexamined.
de Ruiter, Jan; Weston, Gavin; Lyon, Stephen M
2011-01-01
Popular academic ideas linking physiological adaptations to social behaviors are spreading disconcertingly into wider societal contexts. In this article, we note our skepticism with one particularly popular—in our view, problematic—supposed causal correlation between neocortex size and social group size. The resulting Dunbar's Number, as it has come to be called, has been statistically tested against observed group size in different primate species. Although there may be reason to doubt the Dunbar's Number hypothesis among nonhuman primate species, we restrict ourselves here to the application of such an explanatory hypothesis to human, culture-manipulating populations. Human information process management, we argue, cannot be understood as a simple product of brain physiology. Cross-cultural comparison of not only group size but also relationship-reckoning systems like kinship terminologies suggests that although neocortices are undoubtedly crucial to human behavior, they cannot be given such primacy in explaining complex group composition, formation, or management.
Genome-wide analysis identifies 12 loci influencing human reproductive behavior
Barban, Nicola; Jansen, Rick; de Vlaming, Ronald; Vaez, Ahmad; Mandemakers, Jornt J.; Tropf, Felix C.; Shen, Xia; Wilson, James F.; Chasman, Daniel I.; Nolte, Ilja M.; Tragante, Vinicius; van der Laan, Sander W.; Perry, John R. B.; Kong, Augustine; Ahluwalia, Tarunveer; Albrecht, Eva; Yerges-Armstrong, Laura; Atzmon, Gil; Auro, Kirsi; Ayers, Kristin; Bakshi, Andrew; Ben-Avraham, Danny; Berger, Klaus; Bergman, Aviv; Bertram, Lars; Bielak, Lawrence F.; Bjornsdottir, Gyda; Bonder, Marc Jan; Broer, Linda; Bui, Minh; Barbieri, Caterina; Cavadino, Alana; Chavarro, Jorge E; Turman, Constance; Concas, Maria Pina; Cordell, Heather J.; Davies, Gail; Eibich, Peter; Eriksson, Nicholas; Esko, Tõnu; Eriksson, Joel; Falahi, Fahimeh; Felix, Janine F.; Fontana, Mark Alan; Franke, Lude; Gandin, Ilaria; Gaskins, Audrey J.; Gieger, Christian; Gunderson, Erica P.; Guo, Xiuqing; Hayward, Caroline; He, Chunyan; Hofer, Edith; Huang, Hongyan; Joshi, Peter K.; Kanoni, Stavroula; Karlsson, Robert; Kiechl, Stefan; Kifley, Annette; Kluttig, Alexander; Kraft, Peter; Lagou, Vasiliki; Lecoeur, Cecile; Lahti, Jari; Li-Gao, Ruifang; Lind, Penelope A.; Liu, Tian; Makalic, Enes; Mamasoula, Crysovalanto; Matteson, Lindsay; Mbarek, Hamdi; McArdle, Patrick F.; McMahon, George; Meddens, S. Fleur W.; Mihailov, Evelin; Miller, Mike; Missmer, Stacey A.; Monnereau, Claire; van der Most, Peter J.; Myhre, Ronny; Nalls, Mike A.; Nutile, Teresa; Panagiota, Kalafati Ioanna; Porcu, Eleonora; Prokopenko, Inga; Rajan, Kumar B.; Rich-Edwards, Janet; Rietveld, Cornelius A.; Robino, Antonietta; Rose, Lynda M.; Rueedi, Rico; Ryan, Kathy; Saba, Yasaman; Schmidt, Daniel; Smith, Jennifer A.; Stolk, Lisette; Streeten, Elizabeth; Tonjes, Anke; Thorleifsson, Gudmar; Ulivi, Sheila; Wedenoja, Juho; Wellmann, Juergen; Willeit, Peter; Yao, Jie; Yengo, Loic; Zhao, Jing Hua; Zhao, Wei; Zhernakova, Daria V.; Amin, Najaf; Andrews, Howard; Balkau, Beverley; Barzilai, Nir; Bergmann, Sven; Biino, Ginevra; Bisgaard, Hans; Bønnelykke, Klaus; Boomsma, Dorret I.; Buring, Julie E.; Campbell, Harry; Cappellani, Stefania; Ciullo, Marina; Cox, Simon R.; Cucca, Francesco; Daniela, Toniolo; Davey-Smith, George; Deary, Ian J.; Dedoussis, George; Deloukas, Panos; van Duijn, Cornelia M.; de Geus, Eco JC.; Eriksson, Johan G.; Evans, Denis A.; Faul, Jessica D.; Felicita, Sala Cinzia; Froguel, Philippe; Gasparini, Paolo; Girotto, Giorgia; Grabe, Hans-Jörgen; Greiser, Karin Halina; Groenen, Patrick J.F.; de Haan, Hugoline G.; Haerting, Johannes; Harris, Tamara B.; Heath, Andrew C.; Heikkilä, Kauko; Hofman, Albert; Homuth, Georg; Holliday, Elizabeth G; Hopper, John; Hypponen, Elina; Jacobsson, Bo; Jaddoe, Vincent W. V.; Johannesson, Magnus; Jugessur, Astanand; Kähönen, Mika; Kajantie, Eero; Kardia, Sharon L.R.; Keavney, Bernard; Kolcic, Ivana; Koponen, Päivikki; Kovacs, Peter; Kronenberg, Florian; Kutalik, Zoltan; La Bianca, Martina; Lachance, Genevieve; Iacono, William; Lai, Sandra; Lehtimäki, Terho; Liewald, David C; Lindgren, Cecilia; Liu, Yongmei; Luben, Robert; Lucht, Michael; Luoto, Riitta; Magnus, Per; Magnusson, Patrik K.E.; Martin, Nicholas G.; McGue, Matt; McQuillan, Ruth; Medland, Sarah E.; Meisinger, Christa; Mellström, Dan; Metspalu, Andres; Michela, Traglia; Milani, Lili; Mitchell, Paul; Montgomery, Grant W.; Mook-Kanamori, Dennis; de Mutsert, Renée; Nohr, Ellen A; Ohlsson, Claes; Olsen, Jørn; Ong, Ken K.; Paternoster, Lavinia; Pattie, Alison; Penninx, Brenda WJH; Perola, Markus; Peyser, Patricia A.; Pirastu, Mario; Polasek, Ozren; Power, Chris; Kaprio, Jaakko; Raffel, Leslie J.; Räikkönen, Katri; Raitakari, Olli; Ridker, Paul M.; Ring, Susan M.; Roll, Kathryn; Rudan, Igor; Ruggiero, Daniela; Rujescu, Dan; Salomaa, Veikko; Schlessinger, David; Schmidt, Helena; Schmidt, Reinhold; Schupf, Nicole; Smit, Johannes; Sorice, Rossella; Spector, Tim D.; Starr, John M.; Stöckl, Doris; Strauch, Konstantin; Stumvoll, Michael; Swertz, Morris A.; Thorsteinsdottir, Unnur; Thurik, A. Roy; Timpson, Nicholas J.; Tönjes, Anke; Tung, Joyce Y.; Uitterlinden, André G.; Vaccargiu, Simona; Viikari, Jorma; Vitart, Veronique; Völzke, Henry; Vollenweider, Peter; Vuckovic, Dragana; Waage, Johannes; Wagner, Gert G.; Wang, Jie Jin; Wareham, Nicholas J.; Weir, David R.; Willemsen, Gonneke; Willeit, Johann; Wright, Alan F.; Zondervan, Krina T.; Stefansson, Kari; Krueger, Robert F.; Lee, James J.; Benjamin, Daniel J.; Cesarini, David; Koellinger, Philipp D.; den Hoed, Marcel; Snieder, Harold; Mills, Melinda C.
2017-01-01
The genetic architecture of human reproductive behavior – age at first birth (AFB) and number of children ever born (NEB) – has a strong relationship with fitness, human development, infertility and risk of neuropsychiatric disorders. However, very few genetic loci have been identified and the underlying mechanisms of AFB and NEB are poorly understood. We report the largest genome-wide association study to date of both sexes including 251,151 individuals for AFB and 343,072 for NEB. We identified 12 independent loci that are significantly associated with AFB and/or NEB in a SNP-based genome-wide association study, and four additional loci in a gene-based effort. These loci harbor genes that are likely to play a role – either directly or by affecting non-local gene expression – in human reproduction and infertility, thereby increasing our understanding of these complex traits. PMID:27798627
Modeling a flexible representation machinery of human concept learning.
Matsuka, Toshihiko; Sakamoto, Yasuaki; Chouchourelou, Arieta
2008-01-01
It is widely acknowledged that categorically organized abstract knowledge plays a significant role in high-order human cognition. Yet, there are many unknown issues about the nature of how categories are internally represented in our mind. Traditionally, it has been considered that there is a single innate internal representation system for categorical knowledge, such as Exemplars, Prototypes, or Rules. However, results of recent empirical and computational studies collectively suggest that the human internal representation system is apparently capable of exhibiting behaviors consistent with various types of internal representation schemes. We, then, hypothesized that humans' representational system as a dynamic mechanism, capable of selecting a representation scheme that meets situational characteristics, including complexities of category structure. The present paper introduces a framework for a cognitive model that integrates robust and flexible internal representation machinery. Three simulation studies were conducted. The results showed that SUPERSET, our new model, successfully exhibited cognitive behaviors that are consistent with three main theories of the human internal representation system. Furthermore, a simulation study on social cognitive behaviors showed that the model was capable of acquiring knowledge with high commonality, even for a category structure with numerous valid conceptualizations.
Artifacts as Authoritative Actors in Educational Reform
ERIC Educational Resources Information Center
März, Virginie; Kelchtermans, Geert; Vermeir, Karen
2017-01-01
Educational reforms are often translated in and implemented through artifacts. Although research has frequently treated artifacts as merely functional, more recent work acknowledges the complex relationship between material artifacts and human/organizational behavior. This article aims at disentangling this relationship in order to deepen our…
Effects of LSD on grooming behavior in serotonin transporter heterozygous (Sert⁺/⁻) mice.
Kyzar, Evan J; Stewart, Adam Michael; Kalueff, Allan V
2016-01-01
Serotonin (5-HT) plays a crucial role in the brain, modulating mood, cognition and reward. The serotonin transporter (SERT) is responsible for the reuptake of 5-HT from the synaptic cleft and regulates serotonin signaling in the brain. In humans, SERT genetic variance is linked to the pathogenesis of various psychiatric disorders, including anxiety, autism spectrum disorders (ASD) and obsessive-compulsive disorder (OCD). Rodent self-grooming is a complex, evolutionarily conserved patterned behavior relevant to stress, ASD and OCD. Genetic ablation of mouse Sert causes various behavioral deficits, including increased anxiety and grooming behavior. The hallucinogenic drug lysergic acid diethylamide (LSD) is a potent serotonergic agonist known to modulate human and animal behavior. Here, we examined heterozygous Sert(+/-) mouse behavior following acute administration of LSD (0.32 mg/kg). Overall, Sert(+/-) mice displayed a longer duration of self-grooming behavior regardless of LSD treatment. In contrast, LSD increased serotonin-sensitive behaviors, such as head twitching, tremors and backwards gait behaviors in both Sert(+/+) and Sert(+/-) mice. There were no significant interactions between LSD treatment and Sert gene dosage in any of the behavioral domains measured. These results suggest that Sert(+/-) mice may respond to the behavioral effects of LSD in a similar manner to wild-type mice. Copyright © 2015 Elsevier B.V. All rights reserved.
Spatiotemporal Detection of Unusual Human Population Behavior Using Mobile Phone Data
Dobra, Adrian; Williams, Nathalie E.; Eagle, Nathan
2015-01-01
With the aim to contribute to humanitarian response to disasters and violent events, scientists have proposed the development of analytical tools that could identify emergency events in real-time, using mobile phone data. The assumption is that dramatic and discrete changes in behavior, measured with mobile phone data, will indicate extreme events. In this study, we propose an efficient system for spatiotemporal detection of behavioral anomalies from mobile phone data and compare sites with behavioral anomalies to an extensive database of emergency and non-emergency events in Rwanda. Our methodology successfully captures anomalous behavioral patterns associated with a broad range of events, from religious and official holidays to earthquakes, floods, violence against civilians and protests. Our results suggest that human behavioral responses to extreme events are complex and multi-dimensional, including extreme increases and decreases in both calling and movement behaviors. We also find significant temporal and spatial variance in responses to extreme events. Our behavioral anomaly detection system and extensive discussion of results are a significant contribution to the long-term project of creating an effective real-time event detection system with mobile phone data and we discuss the implications of our findings for future research to this end. PMID:25806954
Genetic and non-genetic animal models for autism spectrum disorders (ASD).
Ergaz, Zivanit; Weinstein-Fudim, Liza; Ornoy, Asher
2016-09-01
Autism spectrum disorder (ASD) is associated, in addition to complex genetic factors, with a variety of prenatal, perinatal and postnatal etiologies. We discuss the known animal models, mostly in mice and rats, of ASD that helps us to understand the etiology, pathogenesis and treatment of human ASD. We describe only models where behavioral testing has shown autistic like behaviors. Some genetic models mimic known human syndromes like fragile X where ASD is part of the clinical picture, and others are without defined human syndromes. Among the environmentally induced ASD models in rodents, the most common model is the one induced by valproic acid (VPA) either prenatally or early postnatally. VPA induces autism-like behaviors following single exposure during different phases of brain development, implying that the mechanism of action is via a general biological mechanism like epigenetic changes. Maternal infection and inflammation are also associated with ASD in man and animal models. Copyright © 2016 Elsevier Inc. All rights reserved.
Prosocial preferences do not explain human cooperation in public-goods games
Burton-Chellew, Maxwell N.; West, Stuart A.
2013-01-01
It has become an accepted paradigm that humans have “prosocial preferences” that lead to higher levels of cooperation than those that would maximize their personal financial gain. However, the existence of prosocial preferences has been inferred post hoc from the results of economic games, rather than with direct experimental tests. Here, we test how behavior in a public-goods game is influenced by knowledge of the consequences of actions for other players. We found that (i) individuals cooperate at similar levels, even when they are not informed that their behavior benefits others; (ii) an increased awareness of how cooperation benefits others leads to a reduction, rather than an increase, in the level of cooperation; and (iii) cooperation can be either lower or higher than expected, depending on experimental design. Overall, these results contradict the suggested role of the prosocial preferences hypothesis and show how the complexity of human behavior can lead to misleading conclusions from controlled laboratory experiments. PMID:23248298
Prosocial preferences do not explain human cooperation in public-goods games.
Burton-Chellew, Maxwell N; West, Stuart A
2013-01-02
It has become an accepted paradigm that humans have "prosocial preferences" that lead to higher levels of cooperation than those that would maximize their personal financial gain. However, the existence of prosocial preferences has been inferred post hoc from the results of economic games, rather than with direct experimental tests. Here, we test how behavior in a public-goods game is influenced by knowledge of the consequences of actions for other players. We found that (i) individuals cooperate at similar levels, even when they are not informed that their behavior benefits others; (ii) an increased awareness of how cooperation benefits others leads to a reduction, rather than an increase, in the level of cooperation; and (iii) cooperation can be either lower or higher than expected, depending on experimental design. Overall, these results contradict the suggested role of the prosocial preferences hypothesis and show how the complexity of human behavior can lead to misleading conclusions from controlled laboratory experiments.
Culinary plants and their potential impact on metabolic overload.
Kim, Ji Yeon; Kwon, Oran
2011-07-01
Contemporary human behavior has led a large proportion of the population to metabolic overload and obesity. Postprandial hyperlipidemia and hyperglycemia evoke redox imbalance in the short term and lead to complex chronic disease in the long term with repeated occurrence. Complex diseases are best prevented with complex components of plants; thus, current nutrition research has begun to focus on the development of plant-based functional foods and dietary supplements for health and well-being. Furthermore, given the wide range of species, parts, and secondary metabolites, culinary plants can contribute significant variety and complexity to the human diet. Although understanding the health benefits of culinary plants has been one of the great challenges in nutritional science due to their inherent complexity, it is an advantageous pursuit. This review will address the challenges and opportunities relating to studies of the health benefits of culinary plants, with an emphasis on obesity attributed to metabolic overload. © 2011 New York Academy of Sciences.
Sweitzer, Maggie M; Donny, Eric C; Hariri, Ahmad R
2012-06-01
Addictive disorders are heritable, but the search for candidate functional polymorphisms playing an etiological role in addiction is hindered by complexity of the phenotype and the variety of factors interacting to impact behavior. Advances in human genome sequencing and neuroimaging technology provide an unprecedented opportunity to explore the impact of functional genetic variants on variability in behaviorally relevant neural circuitry. Here, we present a model for merging these technologies to trace the links between genes, brain, and addictive behavior. We describe imaging genetics and discuss the utility of its application to addiction. We then review data pertaining to impulsivity and reward circuitry as an example of how genetic variation may lead to variation in behavioral phenotype. Finally, we present preliminary data relating the neural basis of reward processing to individual differences in nicotine dependence. Complex human behaviors such as addiction can be traced to their basic genetic building blocks by identifying intermediate behavioral phenotypes, associated neural circuitry, and underlying molecular signaling pathways. Impulsivity has been linked with variation in reward-related activation in the ventral striatum (VS), altered dopamine signaling, and functional polymorphisms of DRD2 and DAT1 genes. In smokers, changes in reward-related VS activation induced by smoking abstinence may be associated with severity of nicotine dependence. Variation in genes related to dopamine signaling may contribute to heterogeneity in VS sensitivity to reward and, ultimately, to addiction. These findings illustrate the utility of the imaging genetics approach for investigating the neurobiological basis for vulnerability to addiction. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Dopamine Modulates Egalitarian Behavior In Humans
Sáez, Ignacio; Zhu, Lusha; Set, Eric; Kayser, Andrew; Hsu, Ming
2015-01-01
SUMMARY Egalitarian motives form a powerful force in promoting prosocial behavior and enabling large-scale cooperation in the human species [1]. At the neural level, there is substantial, albeit correlational, evidence suggesting a link between dopamine and such behavior [2, 3]. However, important questions remain about the specific role of dopamine in setting or modulating behavioral sensitivity to prosocial concerns. Here, using a combination of pharmacological tools and economic games, we provide critical evidence for a causal involvement of dopamine in human egalitarian tendencies. Specifically, using the brain-penetrant catechol-O-methyl transferase (COMT) inhibitor tolcapone [4, 5], we investigated the causal relationship between dopaminergic mechanisms and two prosocial concerns at the core of a number of widely used economic games: (i) the extent to which individuals directly value the material payoffs of others, i.e., generosity, and (ii) the extent to which they are averse to differences between their own payoffs and those of others, i.e., inequity. We found that dopaminergic augmentation via COMT inhibition increased egalitarian tendencies in participants who played an extended version of the dictator game [6]. Strikingly, computational modeling of choice behavior [7] revealed that tolcapone exerted selective effects on inequity aversion, and not on other computational components such as the extent to which individuals directly value the material payoffs of others. Together, these data shed light on the causal relationship between neurochemical systems and human prosocial behavior, and have potential implications for our understanding of the complex array of social impairments accompanying neuropsychiatric disorders involving dopaminergic dysregulation. PMID:25802148
Microfluidics-Based in Vivo Mimetic Systems for the Study of Cellular Biology
2015-01-01
Conspectus The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system’s components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it occurs within the human body, but some state-of-the-art analytical techniques have revealed distinct cellular behaviors that occur only in the context of the interactions. These types of findings have inspired bioanalytical chemists to provide new tools to better understand these cellular behaviors and interactions. What blocks us from understanding critical biological interactions in the human body? Conventional approaches are often too naïve to provide realistic data and in vivo whole animal studies give complex results that may or may not be relevant for humans. Microfluidics offers an opportunity to bridge these two extremes: while these studies will not model the complexity of the in vivo human system, they can control the complexity so researchers can examine critical factors of interest carefully and quantitatively. In addition, the use of human cells, such as cells isolated from donated blood, captures human-relevant data and limits the use of animals in research. In addition, researchers can adapt these systems easily and cost-effectively to a variety of high-end signal transduction mechanisms, facilitating high-throughput studies that are also spatially, temporally, or chemically resolved. These strengths should allow microfluidic platforms to reveal critical parameters in the human body and provide insights that will help with the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations within the last 5 years that focus on modeling both biophysical and biochemical interactions in cellular communication, such as flow and cell–cell networks. We also describe more advanced systems that mimic higher level biological networks, such as organ on-a-chip and animal on-a-chip models. Since the first papers in the early 1990s, interest in the bioanalytical use of microfluidics has grown significantly. Advances in micro-/nanofabrication technology have allowed researchers to produce miniaturized, biocompatible assay platforms suitable for microfluidic studies in biochemistry and chemical biology. Well-designed microfluidic platforms can achieve quick, in vitro analyses on pico- and femtoliter volume samples that are temporally, spatially, and chemically resolved. In addition, controlled cell culture techniques using a microfluidic platform have produced biomimetic systems that allow researchers to replicate and monitor physiological interactions. Pioneering work has successfully created cell–fluid, cell–cell, cell–tissue, tissue–tissue, even organ-like level interfaces. Researchers have monitored cellular behaviors in these biomimetic microfluidic environments, producing validated model systems to understand human pathophysiology and to support the development of new therapeutics. PMID:24555566
Microfluidics-based in vivo mimetic systems for the study of cellular biology.
Kim, Donghyuk; Wu, Xiaojie; Young, Ashlyn T; Haynes, Christy L
2014-04-15
The human body is a complex network of molecules, organelles, cells, tissues, and organs: an uncountable number of interactions and transformations interconnect all the system's components. In addition to these biochemical components, biophysical components, such as pressure, flow, and morphology, and the location of all of these interactions play an important role in the human body. Technical difficulties have frequently limited researchers from observing cellular biology as it occurs within the human body, but some state-of-the-art analytical techniques have revealed distinct cellular behaviors that occur only in the context of the interactions. These types of findings have inspired bioanalytical chemists to provide new tools to better understand these cellular behaviors and interactions. What blocks us from understanding critical biological interactions in the human body? Conventional approaches are often too naïve to provide realistic data and in vivo whole animal studies give complex results that may or may not be relevant for humans. Microfluidics offers an opportunity to bridge these two extremes: while these studies will not model the complexity of the in vivo human system, they can control the complexity so researchers can examine critical factors of interest carefully and quantitatively. In addition, the use of human cells, such as cells isolated from donated blood, captures human-relevant data and limits the use of animals in research. In addition, researchers can adapt these systems easily and cost-effectively to a variety of high-end signal transduction mechanisms, facilitating high-throughput studies that are also spatially, temporally, or chemically resolved. These strengths should allow microfluidic platforms to reveal critical parameters in the human body and provide insights that will help with the translation of pharmacological advances to clinical trials. In this Account, we describe selected microfluidic innovations within the last 5 years that focus on modeling both biophysical and biochemical interactions in cellular communication, such as flow and cell-cell networks. We also describe more advanced systems that mimic higher level biological networks, such as organ on-a-chip and animal on-a-chip models. Since the first papers in the early 1990s, interest in the bioanalytical use of microfluidics has grown significantly. Advances in micro-/nanofabrication technology have allowed researchers to produce miniaturized, biocompatible assay platforms suitable for microfluidic studies in biochemistry and chemical biology. Well-designed microfluidic platforms can achieve quick, in vitro analyses on pico- and femtoliter volume samples that are temporally, spatially, and chemically resolved. In addition, controlled cell culture techniques using a microfluidic platform have produced biomimetic systems that allow researchers to replicate and monitor physiological interactions. Pioneering work has successfully created cell-fluid, cell-cell, cell-tissue, tissue-tissue, even organ-like level interfaces. Researchers have monitored cellular behaviors in these biomimetic microfluidic environments, producing validated model systems to understand human pathophysiology and to support the development of new therapeutics.
NASA Astrophysics Data System (ADS)
Kong, Zhaodan
Guidance behavior generated either by artificial agents or humans has been actively studied in the fields of both robotics and cognitive science. The goals of these two fields are different. The former is the automatic generation of appropriate or even optimal behavior, while the latter is the understanding of the underlying mechanism. Their challenges, though, are closely related, the most important one being the lack of a unified, formal and grounded framework where the guidance behavior can be modeled and studied. This dissertation presents such a framework. In this framework, guidance behavior is analyzed as the closed-loop dynamics of the whole agent-environment system. The resulting dynamics give rise to interaction patterns. The central points of this dissertation are that: first of all, these patterns, which can be explained in terms of symmetries that are inherent to the guidance behavior, provide building blocks for the organization of behavior; second, the existence of these patterns and humans' organization of their guidance behavior based on these patterns are the reasons that humans can generate successful behavior in spite of all the complexities involved in the planning and control. This dissertation first gives an overview of the challenges existing in both scientific endeavors, such as human and animal spatial behavior study, and engineering endeavors, such as autonomous guidance system design. It then lays out the foundation for our formal framework, which states that guidance behavior should be interpreted as the collection of the closed-loop dynamics resulting from the agent's interaction with the environment. The following, illustrated by examples of three different UAVs, shows that the study of the closed-loop dynamics should not be done without the consideration of vehicle dynamics, as is the common practice in some of the studies in both autonomous guidance and human behavior analysis. The framework, the core concepts of which are symmetries and interaction patterns, is then elaborated on with the example of Dubins' vehicle's guidance behavior. The dissertation then describes the details of the agile human guidance experiments using miniature helicopters, the technique that is developed for the analysis of the experimental data and the analysis results. The results confirm that human guidance behavior indeed exhibits invariance as defined by interaction patterns. Subsequently, the behavior in each interaction pattern is investigated using piecewise affine model identification. Combined, the results provide a natural and formal decomposition of the behavior that can be unified under a hierarchical hidden Markov model. By employing the languages of dynamical system and control and by adopting algorithms from system identification and machine learning, the framework presented in this dissertation provides a fertile ground where these different disciplines can meet. It also promises multiple potential directions where future research can be headed.
Animal Models of Post-Traumatic Stress Disorder and Recent Neurobiological Insights
Whitaker, Annie M.; Gilpin, Nicholas W.; Edwards, Scott
2014-01-01
Post-traumatic stress disorder (PTSD) is a complex psychiatric disorder characterized by the intrusive re-experiencing of past trauma, avoidant behavior, enhanced fear, and hyperarousal following a traumatic event in vulnerable populations. Preclinical animal models do not replicate the human condition in its entirety, but seek to mimic symptoms or endophenotypes associated with PTSD. Although many models of traumatic stress exist, few adequately capture the complex nature of the disorder and the observed individual variability in susceptibility of humans to develop PTSD. In addition, various types of stressors may produce different molecular neuroadaptations that likely contribute to the various behavioral disruptions produced by each model, although certain consistent neurobiological themes related to PTSD have emerged. For example, animal models report traumatic stress- and trauma reminder-induced alterations in neuronal activity in the amygdala and prefrontal cortex, in agreement with the human PTSD literature. Models have also provided a conceptual framework for the often observed combination of PTSD and co-morbid conditions such as alcohol use disorder (AUD). Future studies will continue to refine preclinical PTSD models in hopes of capitalizing on their potential to deliver new and more efficacious treatments for PTSD and associated psychiatric disorders. PMID:25083568
Yoon, Jong H; Grandelis, Anthony; Maddock, Richard J
2016-11-16
The discovery of neural mechanisms of working memory (WM) would significantly enhance our understanding of complex human behaviors and guide treatment development for WM-related impairments found in neuropsychiatric conditions and aging. Although the dorsolateral prefrontal cortex (DLPFC) has long been considered critical for WM, we still know little about the neural elements and pathways within the DLPFC that support WM in humans. In this study, we tested whether an individual's DLPFC gamma-aminobutryic acid (GABA) content predicts individual differences in WM task performance using a novel behavioral approach. Twenty-three healthy adults completed a task that measured the unique contribution of major WM components (memory load, maintenance, and distraction resistance) to performance. This was done to address the possibility that components have differing GABA dependencies and the failure to parse WM into components would lead to missing true associations with GABA. The subjects then had their DLPFC GABA content measured by single-voxel proton magnetic spectroscopy. We found that individuals with lower DLPFC GABA showed greater performance degradation with higher load, accounting for 31% of variance, p (corrected) = 0.015. This relationship was component, neurochemical, and brain region specific. DLPFC GABA content did not predict performance sensitivity to other components tested; DLPFC glutamate + glutamine and visual cortical GABA content did not predict load sensitivity. These results confirm the involvement of DLPFC GABA in WM load processing in humans and implicate factors controlling DLPFC GABA content in the neural mechanisms of WM and its impairments. This study demonstrated for the first time that the amount of gamma-aminobutryic acid (GABA), the major inhibitory neurotransmitter of the brain, in an individual's prefrontal cortex predicts working memory (WM) task performance. Given that WM is required for many of the most characteristic cognitive and behavioral capabilities in humans, this finding could have a significant impact on our understanding of the neural basis of complex human behavior. Furthermore, this finding suggests that efforts to preserve or increase brain GABA levels could be fruitful in remediating WM-related deficits associated with neuropsychiatric conditions. Copyright © 2016 the authors 0270-6474/16/3611788-07$15.00/0.
Smith, Jennifer E; Petelle, Matthew B; Jerome, Emily L; Cristofari, Hélène; Blumstein, Daniel T
2017-09-01
Oxytocin has gained a reputation in popular culture as a simple "love drug" or "cuddle hormone", yet emerging biological evidence indicates that the effects of oxytocin are complex, mediating a suite of behavioral traits that range from ultrasocial to antisocial. Here we provide a comprehensive review to assess the salience of oxytocin in the lives of free-living social mammals. We reviewed the literature to understand the potential effects of oxytocin in promoting prosocial and antisocial behaviors in non-human mammals. Our review highlights a strong bias for studies of model organisms in highly-controlled settings, and emerging evidence for oxytocin's antisocial, context-specific and sex-specific effects. We discuss the results of the review in the context of insights gained from a pilot study aimed to investigate the potential for oxytocin to promote social cohesion in free-living yellow-bellied marmots (Marmota flaviventer). Our field experiment offers an example of the diverse issues that arise when conducting oxytocin manipulations in ecologically relevant contexts. Our synthesis highlights the challenges associated with acquiring adequate sample sizes for field-based, manipulative studies that require standardized measures of social behavior. Taken together, our findings lead us to join others in calling for revision of a simplistic view of oxytocin's role in regulating patterns of behavior. We draw from classical approaches used to study the mechanistic basis of behavior and offer a useful guide for disentangling these effects while appreciating the complex actions of oxytocin in shaping mammalian social behavior. © The Author 2017. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.
Mathuru, Ajay S
2018-06-01
Rewarding and aversive experiences influence emotions, motivate specific behaviors, and modify future action in animals. Multiple conserved vertebrate neural circuits have been discovered that act in a species-specific manner to reinforce behaviors that are rewarding, while attenuating those with an adverse outcome. A growing body of research now suggests that malfunction of the same circuits is an underlying cause for many human disorders and mental ailments. The habenula (Latin for "little rein") complex, an epithalamic structure that regulates midbrain monoaminergic activity has emerged in recent years as one such region in the vertebrate brain that modulates behavior. Its dysfunction, on the other hand, is implicated in a spectrum of psychiatric disorders in humans such as schizophrenia, depression and addiction. Here, I review the progress in identification of potential mechanisms involving the habenula in addiction. Copyright © 2017. Published by Elsevier Ltd.
What can animal research tell us about the link between androgens and social competition in humans?
Fuxjager, Matthew J; Trainor, Brian C; Marler, Catherine A
2017-06-01
A contribution to a special issue on Hormones and Human Competition. The relationship between androgenic hormones, like testosterone (T), and aggression is extensively studied in human populations. Yet, while this work has illuminated a variety of principals regarding the behavioral and phenotypic effects of T, it is also hindered by inherent limitations of performing research on people. In these instances, animal research can be used to gain further insight into the complex mechanisms by which T influences aggression. Here, we explore recent studies on T and aggression in numerous vertebrate species, although we focus primarily on males and on a New World rodent called the California mouse (Peromyscus californicus). This species is highly territorial and monogamous, resembling the modern human social disposition. We review (i) how baseline and dynamic T levels predict and/or impact aggressive behavior and disposition; (ii) how factors related to social and physical context influence T and aggression; (iii) the reinforcing or "rewarding" aspects of aggressive behavior; and (iv) the function of T on aggression before and during a combative encounter. Included are areas that may need further research. We argue that animal studies investigating these topics fill in gaps to help paint a more complete picture of how androgenic steroids drive the output of aggressive behavior in all animals, including humans. Copyright © 2016. Published by Elsevier Inc.
Model-based safety analysis of human-robot interactions: the MIRAS walking assistance robot.
Guiochet, Jérémie; Hoang, Quynh Anh Do; Kaaniche, Mohamed; Powell, David
2013-06-01
Robotic systems have to cope with various execution environments while guaranteeing safety, and in particular when they interact with humans during rehabilitation tasks. These systems are often critical since their failure can lead to human injury or even death. However, such systems are difficult to validate due to their high complexity and the fact that they operate within complex, variable and uncertain environments (including users), in which it is difficult to foresee all possible system behaviors. Because of the complexity of human-robot interactions, rigorous and systematic approaches are needed to assist the developers in the identification of significant threats and the implementation of efficient protection mechanisms, and in the elaboration of a sound argumentation to justify the level of safety that can be achieved by the system. For threat identification, we propose a method called HAZOP-UML based on a risk analysis technique adapted to system description models, focusing on human-robot interaction models. The output of this step is then injected in a structured safety argumentation using the GSN graphical notation. Those approaches have been successfully applied to the development of a walking assistant robot which is now in clinical validation.
The evolution of human warfare.
Pitman, George R
2011-01-01
Here we propose a new theory for the origins and evolution of human warfare as a complex social phenomenon involving several behavioral traits, including aggression, risk taking, male bonding, ingroup altruism, outgroup xenophobia, dominance and subordination, and territoriality, all of which are encoded in the human genome. Among the family of great apes only chimpanzees and humans engage in war; consequently, warfare emerged in their immediate common ancestor that lived in patrilocal groups who fought one another for females. The reasons for warfare changed when the common ancestor females began to immigrate into the groups of their choice, and again, during the agricultural revolution.
Proceedings of the Conference on Environmental Toxicology (11th), 18-20 November 1980, Dayton, OH
1981-06-01
here to enrich your own understanding, to infuse new ideas and, I believe, ultimately to develop practical solutions to the problem of ensuring human...behavioral batteries evaluate the development of various reflexes and complex behaviors and usually include time of appearance of developmental landmarks...that there has been tremendous effort expended in the development of research methods for use with rats. I also see a number of problems and I’m
Understanding Emergency Medicine Physicians Multitasking Behaviors Around Interruptions.
Fong, Allan; Ratwani, Raj M
2018-06-11
Interruptions can adversely impact human performance, particularly in fast-paced and high-risk environments such as the emergency department (ED). Understanding physician behaviors before, during, and after interruptions is important to the design and promotion of safe and effective workflow solutions. However, traditional human factors based interruption models do not accurately reflect the complexities of real-world environments like the ED and may not capture multiple interruptions and multitasking. We present a more comprehensive framework for understanding interruptions that is composed of three phases, each with multiple levels: Interruption Start Transition, Interruption Engagement, and Interruption End Transition. This three-phase framework is not constrained to discrete task transitions, providing a robust method to categorize multitasking behaviors around interruptions. We apply this framework in categorizing 457 interruption episodes. 457 interruption episodes were captured during 36 hours of observation. The interrupted task was immediately suspended 348 (76.1%) times. Participants engaged in new self-initiated tasks during the interrupting task 164 (35.9%) times and did not directly resume the interrupted task in 284 (62.1%) interruption episodes. Using this framework provides a more detailed description of the types of physician behaviors in complex environments. Understanding the different types of interruption and resumption patterns, which may have a different impact on performance, can support the design of interruption mitigation strategies. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
TRAINING IN INDUSTRY--THE MANAGEMENT OF LEARNING.
ERIC Educational Resources Information Center
BASS, BERNARD M.; VAUGHAN, JAMES A.
THE PRINCIPLES OF LEARNING BEHAVIOR DERIVED THROUGH LABORATORY STUDY CAN BE EXTENDED TO EXPLAIN MUCH OF THE COMPLEX LEARNING REQUIRED IN INDUSTRIAL TRAINING PROGRAMS. A REVIEW OF THE BASIC PRINCIPLES OF HUMAN LEARNING INTRODUCES FOUR BASIC CONCEPTS--DRIVE, STIMULUS, RESPONSE, AND REINFORCER--AND DISCUSSES CLASSICAL AND INSTRUMENTAL CONDITIONING…
USDA-ARS?s Scientific Manuscript database
The pig is increasingly popular as a laboratory animal either as the target species in its own right or as a model for humans in biomedical science. As an intelligent, social animal it has a complex behavioral repertoire reminiscent of its ancestor, the wild boar. Within a laboratory setting, the pi...
Due to complex population dynamics and migration behaviors, the well-being of animal populations that host human diseases sometimes varies across landscapes in ways that cannot be deduced from geographic abundance patterns alone. In such cases, efficient management of ecological...
On the Genetics of Altruism and the Counter-Hedonic Components in Human Culture
ERIC Educational Resources Information Center
Campbell, Donald T.
1972-01-01
Unlike the social insect, man is profoundly ambivalent in his social role: the behavioral dispositions which produce complex social interdependence and self-sacrificial altruism must be produced by culturally evolved indoctrination, which has had to counter self-serving genetic tendencies. (Author/JM)
RISK COMMUNICATION AS A RISK MANAGEMENT TOOL: A RISK COMMUNICATION WORKBOOK
Communicating information about environmental risk to the people most affected by it is one of the major challenges faced by risk managers and community decision makers. Changing human behavior is a far more complex task than designing water retention systems or managing storm wa...
Ghosh, Arijit; Kaur, Navneet; Kumar, Abhishek; Goswami, Chandan
2016-09-02
Every individual varies in character and so do their sensory functions and perceptions. The molecular mechanism and the molecular candidates involved in these processes are assumed to be similar if not same. So far several molecular factors have been identified which are fairly conserved across the phylogenetic tree and are involved in these complex sensory functions. Among all, members belonging to Transient Receptor Potential (TRP) channels have been widely characterized for their involvement in thermo-sensation. These include TRPV1 to TRPV4 channels which reveal complex thermo-gating behavior in response to changes in temperature. The molecular evolution of these channels is highly correlative with the thermal response of different species. However, recent 2504 human genome data suggest that these thermo-sensitive TRPV channels are highly variable and carry possible deleterious mutations in human population. These unexpected findings may explain the individual differences in terms of complex sensory functions.
Laryngeal Motor Cortex and Control of Speech in Humans
Simonyan, Kristina; Horwitz, Barry
2011-01-01
Speech production is one of the most complex and rapid motor behaviors and involves a precise coordination of over 100 laryngeal, orofacial and respiratory muscles. Yet, we lack a complete understanding of laryngeal motor cortical control during production of speech and other voluntary laryngeal behaviors. In recent years, a number of studies have confirmed the laryngeal motor cortical representation in humans and provided some information about its interactions with other cortical and subcortical regions that are principally involved in vocal motor control of speech production. In this review, we discuss the organization of the peripheral and central laryngeal control based on neuroimaging and electrical stimulation studies in humans and neuroanatomical tracing studies in non-human primates. We hypothesize that the location of the laryngeal motor cortex in the primary motor cortex and its direct connections with the brainstem laryngeal motoneurons in humans, as oppose to its location in the premotor cortex with only indirect connections to the laryngeal motoneurons in non-human primates, may represent one of the major evolutionary developments in humans towards the ability to speak and vocalize voluntarily. PMID:21362688
Modeling human behavior in economics and social science.
Dolfin, M; Leonida, L; Outada, N
2017-12-01
The complex interactions between human behaviors and social economic sciences is critically analyzed in this paper in view of possible applications of mathematical modeling as an attainable interdisciplinary approach to understand and simulate the aforementioned dynamics. The quest is developed along three steps: Firstly an overall analysis of social and economic sciences indicates the main requirements that a contribution of mathematical modeling should bring to these sciences; subsequently the focus moves to an overview of mathematical tools and to the selection of those which appear, according to the authors bias, appropriate to the modeling; finally, a survey of applications is presented looking ahead to research perspectives. Copyright © 2017 Elsevier B.V. All rights reserved.
Cruz, Rafael Mesquita Bastos; Gil, Luiz Herman Soares; de Almeida e Silva, Alexandre; da Silva Araújo, Maisa; Katsuragawa, Tony Hiroshi
2009-11-01
Malaria is currently highly prevalent and restricted to the north of Brazil, and its dynamics are severely affected by human environmental changes, such as the large dam construction recently approved by the Brazilian Government in Rondônia. We studied the mosquito fauna and behavior before hydroelectric construction. Mosquitoes were captured by human landing catches on the riversides of the Madeira River in Porto Velho, Rondônia. A total of 3121 mosquitoes from eight different genera were collected; only Mansonia and Anopheles darlingi were found in all 21 collection sites throughout the night. These results suggest that the riverines of the study area are exposed to malaria.
Recent Advances in the Genetics of Vocal Learning
Condro, Michael C.; White, Stephanie A.
2015-01-01
Language is a complex communicative behavior unique to humans, and its genetic basis is poorly understood. Genes associated with human speech and language disorders provide some insights, originating with the FOXP2 transcription factor, a mutation in which is the source of an inherited form of developmental verbal dyspraxia. Subsequently, targets of FOXP2 regulation have been associated with speech and language disorders, along with other genes. Here, we review these recent findings that implicate genetic factors in human speech. Due to the exclusivity of language to humans, no single animal model is sufficient to study the complete behavioral effects of these genes. Fortunately, some animals possess subcomponents of language. One such subcomponent is vocal learning, which though rare in the animal kingdom, is shared with songbirds. We therefore discuss how songbird studies have contributed to the current understanding of genetic factors that impact human speech, and support the continued use of this animal model for such studies in the future. PMID:26052371
Xue, Angli; Wang, Hongcheng; Zhu, Jun
2017-09-28
Startle behavior is important for survival, and abnormal startle responses are related to several neurological diseases. Drosophila melanogaster provides a powerful system to investigate the genetic underpinnings of variation in startle behavior. Since mechanically induced, startle responses and environmental conditions can be readily quantified and precisely controlled. The 156 wild-derived fully sequenced lines of the Drosophila Genetic Reference Panel (DGRP) were used to identify SNPs and transcripts associated with variation in startle behavior. The results validated highly significant effects of 33 quantitative trait SNPs (QTSs) and 81 quantitative trait transcripts (QTTs) directly associated with phenotypic variation of startle response. We also detected QTT variation controlled by 20 QTSs (tQTSs) and 73 transcripts (tQTTs). Association mapping based on genomic and transcriptomic data enabled us to construct a complex genetic network that underlies variation in startle behavior. Based on principles of evolutionary conservation, human orthologous genes could be superimposed on this network. This study provided both genetic and biological insights into the variation of startle response behavior of Drosophila melanogaster, and highlighted the importance of genetic network to understand the genetic architecture of complex traits.
Madlon-Kay, Seth; Montague, Michael J; Brent, Lauren J N; Ellis, Samuel; Zhong, Brian; Snyder-Mackler, Noah; Horvath, Julie E; Skene, Jesse Haynes Pate; Platt, Michael L
2018-06-21
The neuropeptides oxytocin (OT) and arginine vasopressin (AVP) influence pair bonding, attachment, and sociality, as well as anxiety and stress responses in humans and other mammals. The effects of these peptides are mediated by genetic variability in their associated receptors, OXTR and the AVPR gene family. However, the role of these genes in regulating social behaviors in non-human primates is not well understood. To address this question, we examined whether genetic variation in the OT receptor gene OXTR and the AVP receptor genes AVPR1A and AVPR1B influence naturally-occurring social behavior in free-ranging rhesus macaques-gregarious primates that share many features of their biology and social behavior with humans. We assessed rates of social behavior across 3,250 hr of observational behavioral data from 201 free-ranging rhesus macaques on Cayo Santiago island in Puerto Rico, and used genetic sequence data to identify 25 OXTR, AVPR1A, and AVPR1B single-nucleotide variants (SNVs) in the population. We used an animal model to estimate the effects of 12 SNVs (n = 3 OXTR; n = 5 AVPR1A; n = 4 AVPR1B) on rates of grooming, approaches, passive contact, contact aggression, and non-contact aggression, given and received. Though we found evidence for modest heritability of these behaviors, estimates of effect sizes of the selected SNVs were close to zero, indicating that common OXTR and AVPR variation contributed little to social behavior in these animals. Our results are consistent with recent findings in human genetics that the effects of individual common genetic variants on complex phenotypes are generally small. © 2018 Wiley Periodicals, Inc.
Agent-Based Models in Social Physics
NASA Astrophysics Data System (ADS)
Quang, Le Anh; Jung, Nam; Cho, Eun Sung; Choi, Jae Han; Lee, Jae Woo
2018-06-01
We review the agent-based models (ABM) on social physics including econophysics. The ABM consists of agent, system space, and external environment. The agent is autonomous and decides his/her behavior by interacting with the neighbors or the external environment with the rules of behavior. Agents are irrational because they have only limited information when they make decisions. They adapt using learning from past memories. Agents have various attributes and are heterogeneous. ABM is a non-equilibrium complex system that exhibits various emergence phenomena. The social complexity ABM describes human behavioral characteristics. In ABMs of econophysics, we introduce the Sugarscape model and the artificial market models. We review minority games and majority games in ABMs of game theory. Social flow ABM introduces crowding, evacuation, traffic congestion, and pedestrian dynamics. We also review ABM for opinion dynamics and voter model. We discuss features and advantages and disadvantages of Netlogo, Repast, Swarm, and Mason, which are representative platforms for implementing ABM.
NASA Astrophysics Data System (ADS)
Anwar, Muhammad Ayaz; Panneerselvam, Suresh; Shah, Masaud; Choi, Sangdun
2015-01-01
TLR4 in complex with MD2 senses the presence of lipid A (LA) and initiates a signaling cascade that curb the infection. This complex is evolutionarily conserved and can initiate the immune system in response to a variety of LAs. In this study, molecular dynamics simulation (25 ns) was performed to elucidate the differential behavior of TLR4/MD2 complex in response to Rhodobacter sphaeroides lipid A (RsLA). Penta-acyl chain-containing RsLA is at the verge of agonist (6 acyl-chains) and antagonist (4 acyl-chains) structure, and activates the TLR4 pathway in horses and hamsters, while inhibiting in humans and murine. In the time-evolved coordinates, the promising factors that dictated the differential response included the local and global mobility pattern of complexes, solvent-accessible surface area of ligand, and surface charge distributions of TLR4 and MD2. We showed that the GlcN1-GlcN2 backbone acquires agonist (3FXI)-like configurations in horses and hamsters, while acquiring antagonist (2E59)-like configurations in humans and murine systems. Moreover, analysis of F126 behavior in the MD2 F126 loop (amino acids 123-129) and loop EF (81-89) suggested that certain sequence variations also contribute to species-specific response. This study underlines the TLR4 signaling mechanism and provides new therapeutic opportunities.
[Representation and mathematical analysis of human crystalline lens].
Tălu, Stefan; Giovanzana, Stefano; Tălu, Mihai
2011-01-01
The surface of human crystalline lens can be described and analyzed using mathematical models based on parametric representations, used in biomechanical studies and 3D solid modeling of the lens. The mathematical models used in lens biomechanics allow the study and the behavior of crystalline lens on variables and complex dynamic loads. Also, the lens biomechanics has the potential to improve the results in the development of intraocular lenses and cataract surgery. The paper presents the most representative mathematical models currently used for the modeling of human crystalline lens, both optically and biomechanically.
NASA Astrophysics Data System (ADS)
Leder, Helmut; Markey, Patrick S.; Pelowski, Matthew
2015-06-01
Establishing a functional understanding of emotional processes is crucial for profound insight into human cognition and behavior [6]. The study of human interactions with art provides an excellent window into the complex emotional reactions that can be had with the environment. Recent advances in the empirical study of art reception have given rise to new models [8,9], and a growing interest in aesthetic affect and emotion.
Logical Interactions in AN Expanded Space
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka
Understanding the emergent behavior in many complex systems in the physical world and society requires a detailed study of dynamical phenomena occurring and mutually coupled at different scales. The brain processes underlying the social conduct of each, and the emergent social behavior of interacting individuals on a larger scale, represent striking examples of the multiscale complexity. Studies of the human brain, a paradigm of a complex functional system, are enabled by a wealth of brain imaging data that provide clues of how we comprehend space, time, languages, numbers, and differentiate normal from diseased individuals, for example. The social brain, a neural basis for social cognition, represents a dynamically organized part of the brain which is involved in the inference of thoughts, feelings, and intentions going on in the brains of others. Research in this currently unexplored area opens a new perspective on the genesis of the societal organization at different levels and the associated social values...
Tocheri, M W; Razdan, A; Williams, R C; Marzke, M W
2005-11-01
The structure and functions of the modern human hand are critical components of what distinguishes Homo sapiens from the great apes (Gorilla, Pan, and Pongo). In this study, attention is focused on the trapezium and trapezoid, the two most lateral bones of the distal carpal row, in the four extant hominid genera, representing the first time they have been quantified and analyzed together as a morphological-functional complex. Our objective is to quantify the relative articular and nonarticular surface areas of these two bones and to test whether modern humans exhibit significant shape differences from the great apes, as predicted by previous qualitative analyses and the functional demands of differing manipulative and locomotor strategies. Modern humans were predicted to show larger relative first metacarpal and scaphoid surfaces on the trapezium because of the regular recruitment of the thumb during manipulative behaviors; alternatively, great apes were predicted to show larger relative second metacarpal and scaphoid surfaces on the trapezoid because of the functional demands on the hands during locomotor behaviors. Modern humans were also expected to exhibit larger relative mutual joint surfaces between the trapezoid and adjacent carpals than do the great apes because of assumed transverse loads generated by the functional demands of the modern human power grip. Using 3D bone models acquired through laser digitizing, the relative articular and nonarticular areas on each bone are quantified and compared. Multivariate analyses of these data clearly distinguish modern humans from the great apes. In total, the observed differences between modern humans and the great apes support morphological predictions based on the fact that this region of the human wrist is no longer involved in weight-bearing during locomotor behavior and is instead recruited solely for manipulative behaviors. The results provide the beginnings of a 3D comparative standard against which further extant and fossil primate wrist bones can be compared within the contexts of manipulative and locomotor behaviors.
Formally verifying human–automation interaction as part of a system model: limitations and tradeoffs
Bass, Ellen J.
2011-01-01
Both the human factors engineering (HFE) and formal methods communities are concerned with improving the design of safety-critical systems. This work discusses a modeling effort that leveraged methods from both fields to perform formal verification of human–automation interaction with a programmable device. This effort utilizes a system architecture composed of independent models of the human mission, human task behavior, human-device interface, device automation, and operational environment. The goals of this architecture were to allow HFE practitioners to perform formal verifications of realistic systems that depend on human–automation interaction in a reasonable amount of time using representative models, intuitive modeling constructs, and decoupled models of system components that could be easily changed to support multiple analyses. This framework was instantiated using a patient controlled analgesia pump in a two phased process where models in each phase were verified using a common set of specifications. The first phase focused on the mission, human-device interface, and device automation; and included a simple, unconstrained human task behavior model. The second phase replaced the unconstrained task model with one representing normative pump programming behavior. Because models produced in the first phase were too large for the model checker to verify, a number of model revisions were undertaken that affected the goals of the effort. While the use of human task behavior models in the second phase helped mitigate model complexity, verification time increased. Additional modeling tools and technological developments are necessary for model checking to become a more usable technique for HFE. PMID:21572930
The behavioral genetics of nonhuman primates: Status and prospects.
Rogers, Jeffrey
2018-01-01
The complexity and diversity of primate behavior have long attracted the attention of ethologists, psychologists, behavioral ecologists, and neuroscientists. Recent studies have advanced our understanding of the nature of genetic influences on differences in behavior among individuals within species. A number of analyses have focused on the genetic analysis of behavioral reactions to specific experimental tests, providing estimates of the degree of genetic control over reactivity, and beginning to identify the genes involved. Substantial progress is also being made in identifying genetic factors that influence the structure and function of the primate brain. Most of the published studies on these topics have examined either cercopithecines or chimpanzees, though a few studies have addressed these questions in other primate species. One potentially important line of research is beginning to identify the epigenetic processes that influence primate behavior, thus revealing specific cellular and molecular mechanisms by which environmental experiences can influence gene expression or gene function relevant to behavior. This review summarizes many of these studies of non-human primate behavioral genetics. The primary focus is on analyses that address the nature of the genes and genetic processes that affect differences in behavior among individuals within non-human primate species. Analyses of between species differences and potential avenues for future research are also discussed. © 2018 American Association of Physical Anthropologists.
A Review of Computer-Based Human Behavior Representations and Their Relation to Military Simulations
2003-08-01
described by Emery and Trist (1960), activity theory introduced by Vygotsky in the 1930s and formalized by Leont’ev (1979) and situated cognition theory by...II-6 B. Adaptive Resonance Theory (ART) .......................................................... II-6 1. Model...II-31 G. Cognitive Complexity Theory (CCT
Relational Frame Theory and Industrial/Organizational Psychology
ERIC Educational Resources Information Center
Stewart, Ian; Barnes-Holmes, Dermot; Barnes-Holmes, Yvonne; Bond, Frank W.; Hayes, Steven C.
2006-01-01
The current paper argues that a Relational Frame Theory account of complex human behavior including an analysis of relational frames, relational networks, rules and the concept of self can provide a potentially powerful new perspective on phenomena in the applied science of industrial/organizational (I/O) psychology. In this article, we first…
System Models and Aging: A Driving Example.
ERIC Educational Resources Information Center
Melichar, Joseph F.
Chronological age is a marker in time but it fails to measure accurately the performance or behavioral characteristics of individuals. This paper models the complexity of aging by using a system model and a human function paradigm. These models help facilitate representation of older adults, integrate research agendas, and enhance remediative…
Due to complex population dynamics and migration behaviors, the well-being of animal populations that host human diseases sometimes varies across landscapes in ways that cannot be deduced from geographic abundance patterns alone. In such cases, efficient management of ecologica...
DOT National Transportation Integrated Search
2017-11-30
Trip purpose is crucial to travel behavior modeling and travel demand estimation for transportation planning and investment decisions. However, the spatial-temporal complexity of human activities makes the prediction of trip purpose a challenging pro...
Play: The Reversal Theory Perspective.
ERIC Educational Resources Information Center
Kerr, J. H.
The intention of this theoretical paper is to present a reversal theory interpretation of play phenomena. Reversal theory, a developing theory in psychology, concerns the complex relationship between experience and motivation. One of the central charactieristics of the theory is that it attempts to understand why so much of human behavior is…
Neuroscience, Education and Mental Health
ERIC Educational Resources Information Center
Arboccó de los Heros, Manuel
2016-01-01
The following article presents a series of investigations, reflections, and quotes about neuroscience, education, and psychology. Each area is specialized in some matters but at some point they share territory and mutually benefit one another, and help us to increasingly understand the complex world of learning, the brain, and human behavior. We…
NASA Astrophysics Data System (ADS)
Sala, Nohemi; Conard, Nicholas
2016-10-01
The symbolic behavior of human beings usually is manifested in different ways such as figurative art, musical traditions, spoken language or complex funerary behavior. The Paleolithic sites of the Swabian Jura contain a rich archaeological record including the oldest evidence of musical instruments and figurative art which indicates complex cognitive abilities of the Paleolithic Homo sapiens that colonized Europe. Nevertheless, there is no evidence for burials in the Swabian caves during the Paleolithic. This raises questions regarding the kind of mortuary practices that existed in this region during the Paleolithic. In this paper, we address these questions from a taphonomic perspective by analyzing the hominin remains recovered in caves of the Swabian Jura. Whatever the funerary behavior was during the Early and Middle Upper Paleolithic, we have no evidence to document these practices. The Magdalenian hominin remains from Brillenhöhle, however, display anthropic modifications that have been hotly debated in the past. Our taphonomic analysis indicates that the assemblage displays traces of butchery similar to those recorded in the faunal remains. In addition to the cut marks, we have documented intentional breakage and human tooth marks, suggesting that the consumption of human corpses took place during the Magdalenian at Brillenhöhle. Similar anthropic modifications have also been documented in Magdalenian horizon at Hohle Fels. This suggests that the cannibalism practices during the Magdalenian were more common than previously expected during the Magdalenian in the Swabian Jura.
Testosterone, oxytocin, and the development of human parental care.
Gordon, Ilanit; Pratt, Maayan; Bergunde, Katharina; Zagoory-Sharon, Orna; Feldman, Ruth
2017-07-01
The steroid testosterone (T) and neuropeptide oxytocin (OT) have each been implicated in the development of parental care in humans and animals, yet very little research addressed the interaction between these hormones at the transition to parenthood in mothers and fathers. One hundred and sixty mothers and fathers (80 couples) were visited 1 and 6months after the birth of their first child, plasma OT and T were assayed at each time-point, and interactions between each parent and the infant were observed and micro-coded for two key parental behaviors; affectionate touch and parent-infant synchrony. T showed gender-specific effects. While paternal T was individually stable across the first six months of parenting and predicted lower father-infant synchrony, maternal T was neither stable nor predictive of maternal behavior. An interaction of OT and T showed that T has complex modulatory effects on the relations of OT and parenting. Slope analysis revealed that among fathers, only when T was high (+1SD), negative associations emerged between OT and father affectionate touch. In contrast, among mothers, the context of high T was related to a positive association between OT and maternal touch. Our findings, the first to test the interaction of OT and T in relation to observed maternal behavior, underscore the need for much further research on the complex bidirectional effects of steroid and neuropeptide systems on human mothering and fathering. Copyright © 2017 Elsevier Inc. All rights reserved.
A new view of “dream enactment” in REM sleep behavior disorder
Blumberg, Mark S.; Plumeau, Alan M.
2015-01-01
SUMMARY REM sleep behavior disorder (RBD) is a disorder in which patients exhibit increased muscle tone and exaggerated myoclonic twitching during REM sleep. In addition, violent movements of the limbs, and complex behaviors that can sometimes appear to involve the enactment of dreams, are associated with RBD. These behaviors are widely thought to result from a dysfunction involving atonia-producing neural circuitry in the brainstem, thereby unmasking cortically generated dreams. Here we scrutinize the assumptions that led to this interpretation of RBD. In particular, we challenge the assumption that motor cortex produces twitches during REM sleep, thus calling into question the related assumption that motor cortex is primarily responsible for all of the pathological movements of RBD. Moreover, motor cortex is not even necessary to produce complex behavior; for example, stimulation of some brainstem structures can produce defensive and aggressive behaviors in rats and monkeys that are striking similar to those reported in human patients with RBD. Accordingly, we suggest an interpretation of RBD that focuses increased attention on the brainstem as a source of the pathological movements and that considers sensory feedback from moving limbs as an important influence on the content of dream mentation. PMID:26802823
William L. Woolverton: a case history in unraveling the behavioral pharmacology of stimulants.
Nader, Michael A; Balster, Robert L; Henningfield, Jack E
2014-12-01
Clinical findings suggest that the most promising strategy for cocaine addiction is a combination of indirect-acting monoamine agonists with some form of behavioral intervention. This approach can be traced back to preclinical research, some of which was conducted by William L. Woolverton. The goal of this brief review is to provide readers with an appreciation for the experimental breadth involving both behavior and pharmacology that encompassed Woolverton's amazing career, from the evaluation of abuse liability of drugs to the use of complex behavioral contingencies to better model the human condition. We begin with Woolverton's research using simple and complex schedules of reinforcement to evaluate abuse liability and how that has impacted current animal models. We also discuss his use of cocaine vs. food choice schedules of reinforcement as a model to evaluate potential medications for treating cocaine use disorders. Woolverton concluded that drug taking behavior was not "impulsive" and "out of control" as has often been proposed, but rather directly determined by the environmental contingencies and the context of its availability, providing a nuanced understanding of drug-behavior interactions. This article is part of the Special Issue entitled 'CNS Stimulants' Copyright © 2014 Elsevier Ltd. All rights reserved.
Barch, Deanna M
A key tenet of modern psychiatry is that psychiatric disorders arise from abnormalities in brain circuits that support human behavior. Our ability to examine hypotheses around circuit-level abnormalities in psychiatric disorders has been made possible by advances in human neuroimaging technologies. These advances have provided the basis for recent efforts to develop a more complex understanding of the function of brain circuits in health and of their relationship to behavior-providing, in turn, a foundation for our understanding of how disruptions in such circuits contribute to the development of psychiatric disorders. This review focuses on the use of resting-state functional connectivity MRI to assess brain circuits, on the advances generated by the Human Connectome Project, and on how these advances potentially contribute to understanding neural circuit dysfunction in psychopathology. The review gives particular attention to the methods developed by the Human Connectome Project that may be especially relevant to studies of psychopathology; it outlines some of the key findings about what constitutes a brain region; and it highlights new information about the nature and stability of brain circuits. Some of the Human Connectome Project's new findings particularly relevant to psychopathology-about neural circuits and their relationships to behavior-are also presented. The review ends by discussing the extension of Human Connectome Project methods across the lifespan and into manifest illness. Potential treatment implications are also considered.
Ko, Jaewon
2017-01-01
Social behavior encompasses a number of distinctive and complex constructs that form the core elements of human imitative culture, mainly represented as either affiliative or antagonistic interactions with conspecifics. Traditionally considered in the realm of psychology, social behavior research has benefited from recent advancements in neuroscience that have accelerated identification of the neural systems, circuits, causative genes and molecular mechanisms that underlie distinct social cognitive traits. In this review article, I summarize recent findings regarding the neuroanatomical substrates of key social behaviors, focusing on results from experiments conducted in rodent models. In particular, I will review the role of the medial prefrontal cortex (mPFC) and downstream subcortical structures in controlling social behavior, and discuss pertinent future research perspectives.
Ko, Jaewon
2017-01-01
Social behavior encompasses a number of distinctive and complex constructs that form the core elements of human imitative culture, mainly represented as either affiliative or antagonistic interactions with conspecifics. Traditionally considered in the realm of psychology, social behavior research has benefited from recent advancements in neuroscience that have accelerated identification of the neural systems, circuits, causative genes and molecular mechanisms that underlie distinct social cognitive traits. In this review article, I summarize recent findings regarding the neuroanatomical substrates of key social behaviors, focusing on results from experiments conducted in rodent models. In particular, I will review the role of the medial prefrontal cortex (mPFC) and downstream subcortical structures in controlling social behavior, and discuss pertinent future research perspectives. PMID:28659766
The Emparassment of Complexity
NASA Astrophysics Data System (ADS)
Nowotny, Helga
My vision of complexity sciences targets their potential to extend the range, precision, and depth in making predictions. While this has always been the ambition and yardstick for the physicalmathematical sciences, complexity sciences now allow to include society and social behavior - to some extent. There is agreement that society is a complex adaptive system, CAS, with a few peculiarities. Ignoring, downplaying, or naturalizing them, i.e. to take them as essential and given, carries the risk to end up with abstractions which are cutoff from the dynamics of societal contexts. One of the peculiarities of society as a CAS is that the models with which we try to make sense of the world are invented and constructed by us. It is humans who make observations and provide the assumptions on which models are based. Humans leave traces that are collected and processed to be transformed into data. Humans decide to which purpose they will be put and how they will be repurposed. Humans are object of research and subject. Coping with these peculiarities requires an inbuilt reflexivity. Practioners must perform a double act and do so repeatedly. They must engage in a focused way with their scientific work and equally distance themselves by critically reflecting their often tacit assumptions. A friend of mine, Yehuda Elkana, called this twotier thinking...
Selden, Steven
2005-06-01
In the early 1920s, determinist conceptions of biology helped to transform Better Babies contest into Fitter Families competitions with a strong commitment to controlled human breeding. While the earlier competitions were concerned for physical and mental standards, the latter contests collected data on a broad range of presumed hereditary characters. The complex behaviors thought to be determined by one's heredity included being generous, jealous, and cruel. In today's context, the popular media often interpret advances in molecular genetics in a similarly reductive and determinist fashion. This paper argues that such a narrow interpretation of contemporary biology unnecessarily constrains the public in developing social policies concerning complex social behavior ranging from crime to intelligence.
Soto-Icaza, Patricia; Aboitiz, Francisco; Billeke, Pablo
2015-01-01
Social skills refer to a wide group of abilities that allow us to interact and communicate with others. Children learn how to solve social situations by predicting and understanding other's behaviors. The way in which humans learn to interact successfully with others encompasses a complex interaction between neural, behavioral, and environmental elements. These have a role in the accomplishment of positive developmental outcomes, including peer acceptance, academic achievement, and mental health. All these social abilities depend on widespread brain networks that are recently being studied by neuroscience. In this paper, we will first review the studies on this topic, aiming to clarify the behavioral and neural mechanisms related to the acquisition of social skills during infancy and their appearance in time. Second, we will briefly describe how developmental diseases like Autism Spectrum Disorders (ASD) can inform about the neurobiological mechanisms of social skills. We finally sketch a general framework for the elaboration of cognitive models in order to facilitate the comprehension of human social development. PMID:26483621
Soto-Icaza, Patricia; Aboitiz, Francisco; Billeke, Pablo
2015-01-01
Social skills refer to a wide group of abilities that allow us to interact and communicate with others. Children learn how to solve social situations by predicting and understanding other's behaviors. The way in which humans learn to interact successfully with others encompasses a complex interaction between neural, behavioral, and environmental elements. These have a role in the accomplishment of positive developmental outcomes, including peer acceptance, academic achievement, and mental health. All these social abilities depend on widespread brain networks that are recently being studied by neuroscience. In this paper, we will first review the studies on this topic, aiming to clarify the behavioral and neural mechanisms related to the acquisition of social skills during infancy and their appearance in time. Second, we will briefly describe how developmental diseases like Autism Spectrum Disorders (ASD) can inform about the neurobiological mechanisms of social skills. We finally sketch a general framework for the elaboration of cognitive models in order to facilitate the comprehension of human social development.
History of Cognitive-Behavioral Therapy (CBT) in Youth
Benjamin, Courtney L.; Puleo, Connor M.; Settipani, Cara A.; Brodman, Douglas M.; Edmunds, Julie M.; Cummings, Colleen M.
2011-01-01
Synopsis CBT represents a combination of behavioral and cognitive theories of human behavior and psychopathology, and a melding of emotional, familial, and peer influences. The numerous intervention strategies that comprise CBT reflect its complex and integrative nature and include such topics as extinction, habituation, modeling, cognitive restructuring, problem-solving, and the development of coping strategies, mastery, and a sense of self-control. CBT targets multiple areas of potential vulnerability (e.g., cognitive, behavioral, affective) with developmentally-guided strategies and traverses multiple intervention pathways. Although CBT is often considered the “first line treatment” for many psychological disorders in youth, additional work is necessary to address treatment non-responders and to facilitate the dissemination of efficacious CBT approaches. PMID:21440849
Complex systems as lenses on learning and teaching
NASA Astrophysics Data System (ADS)
Hurford, Andrew C.
From metaphors to mathematized models, the complexity sciences are changing the ways disciplines view their worlds, and ideas borrowed from complexity are increasingly being used to structure conversations and guide research on teaching and learning. The purpose of this corpus of research is to further those conversations and to extend complex systems ideas, theories, and modeling to curricula and to research on learning and teaching. A review of the literatures of learning and of complexity science and a discussion of the intersections between those disciplines are provided. The work reported represents an evolving model of learning qua complex system and that evolution is the result of iterative cycles of design research. One of the signatures of complex systems is the presence of scale invariance and this line of research furnishes empirical evidence of scale invariant behaviors in the activity of learners engaged in participatory simulations. The offered discussion of possible causes for these behaviors and chaotic phase transitions in human learning favors real-time optimization of decision-making as the means for producing such behaviors. Beyond theoretical development and modeling, this work includes the development of teaching activities intended to introduce pre-service mathematics and science teachers to complex systems. While some of the learning goals for this activity focused on the introduction of complex systems as a content area, we also used complex systems to frame perspectives on learning. Results of scoring rubrics and interview responses from students illustrate attributes of the proposed model of complex systems learning and also how these pre-service teachers made sense of the ideas. Correlations between established theories of learning and a complex adaptive systems model of learning are established and made explicit, and a means for using complex systems ideas for designing instruction is offered. It is a fundamental assumption of this research and researcher that complex systems ideas and understandings can be appropriated from more complexity-developed disciplines and put to use modeling and building increasingly productive understandings of learning and teaching.
Vaginal ecosystem modeling of growth patterns of anaerobic bacteria in microaerophilic conditions.
Medina-Colorado, Audrie A; Vincent, Kathleen L; Miller, Aaron L; Maxwell, Carrie A; Dawson, Lauren N; Olive, Trevelyn; Kozlova, Elena V; Baum, Marc M; Pyles, Richard B
2017-06-01
The human vagina constitutes a complex ecosystem created through relationships established between host mucosa and bacterial communities. In this ecosystem, classically defined bacterial aerobes and anaerobes thrive as communities in the microaerophilic environment. Levels of CO 2 and O 2 present in the vaginal lumen are impacted by both the ecosystem's physiology and the behavior and health of the human host. Study of such complex relationships requires controlled and reproducible causational approaches that are not possible in the human host that, until recently, was the only place these bacterial communities thrived. To address this need we have utilized our ex vivo human vaginal mucosa culture system to support controlled, reproducible colonization by vaginal bacterial communities (VBC) collected from healthy, asymptomatic donors. Parallel vaginal epithelial cells (VEC)-VBC co-cultures were exposed to two different atmospheric conditions to study the impact of CO 2 concentrations upon the anaerobic bacteria associated with dysbiosis and inflammation. Our data suggest that in the context of transplanted VBC, increased CO 2 favored specific lactobacilli species defined as microaerophiles when grown as monocultures. In preliminary studies, the observed community changes also led to shifts in host VEC phenotypes with significant changes in the host transcriptome, including altered expression of select molecular transporter genes. These findings support the need for additional study of the environmental changes associated with behavior and health upon the symbiotic and adversarial relationships that are formed in microbial communities present in the human vaginal ecosystem. Copyright © 2017 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Brenner, F.; Hoffmann, P.; Marwan, N.
2016-12-01
Infectious diseases are a major threat to human health. The spreading of airborne diseases has become fast and hard to predict. Global air travelling created a network which allows a pathogen to migrate worldwide in only a few days. Pandemics of SARS (2002/03) and H1N1 (2009) have impressively shown the epidemiological danger in a strongly connected world. In this study we simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. We use a regular Susceptible-Infected-Recovered (SIR) model and a modified Susceptible-Exposed-Infected-Recovered (SEIR) compartmental approach with the basis of a complex network built by global air traffic data (from openflights.org). Local Disease propagation is modeled with a global population dataset (from SEDAC and MaxMind) and parameterizations of human behavior regarding mobility, contacts and awareness. As a final component we combine the worldwide outbreak simulation with daily averaged climate data from WATCH-Forcing-Data-ERA-Interim (WFDEI) and Coupled Model Intercomparison Project Phase 5 (CMIP5). Here we focus on Influenza-like illnesses (ILI), whose transmission rate has a dependency on relative humidity and temperature. Even small changes in relative humidity are sufficient to trigger significant differences in the global outbreak behavior. Apart from the direct effect of climate change on the transmission of airborne diseases, there are indirect ramifications that alter spreading patterns. For example seasonal changing human mobility is influenced by climate settings.
Neural basis of processing threatening voices in a crowded auditory world
Mothes-Lasch, Martin; Becker, Michael P. I.; Miltner, Wolfgang H. R.
2016-01-01
In real world situations, we typically listen to voice prosody against a background crowded with auditory stimuli. Voices and background can both contain behaviorally relevant features and both can be selectively in the focus of attention. Adequate responses to threat-related voices under such conditions require that the brain unmixes reciprocally masked features depending on variable cognitive resources. It is unknown which brain systems instantiate the extraction of behaviorally relevant prosodic features under varying combinations of prosody valence, auditory background complexity and attentional focus. Here, we used event-related functional magnetic resonance imaging to investigate the effects of high background sound complexity and attentional focus on brain activation to angry and neutral prosody in humans. Results show that prosody effects in mid superior temporal cortex were gated by background complexity but not attention, while prosody effects in the amygdala and anterior superior temporal cortex were gated by attention but not background complexity, suggesting distinct emotional prosody processing limitations in different regions. Crucially, if attention was focused on the highly complex background, the differential processing of emotional prosody was prevented in all brain regions, suggesting that in a distracting, complex auditory world even threatening voices may go unnoticed. PMID:26884543
The 14th Annual Conference on Manual Control. [digital simulation of human operator dynamics
NASA Technical Reports Server (NTRS)
1978-01-01
Human operator dynamics during actual manual control or while monitoring the automatic control systems involved in air-to-air tracking, automobile driving, the operator of undersea vehicles, and remote handling are examined. Optimal control models and the use of mathematical theory in representing man behavior in complex man machine system tasks are discussed with emphasis on eye/head tracking and scanning; perception and attention allocation; decision making; and motion simulation and effects.
Dopamine modulates egalitarian behavior in humans.
Sáez, Ignacio; Zhu, Lusha; Set, Eric; Kayser, Andrew; Hsu, Ming
2015-03-30
Egalitarian motives form a powerful force in promoting prosocial behavior and enabling large-scale cooperation in the human species [1]. At the neural level, there is substantial, albeit correlational, evidence suggesting a link between dopamine and such behavior [2, 3]. However, important questions remain about the specific role of dopamine in setting or modulating behavioral sensitivity to prosocial concerns. Here, using a combination of pharmacological tools and economic games, we provide critical evidence for a causal involvement of dopamine in human egalitarian tendencies. Specifically, using the brain penetrant catechol-O-methyl transferase (COMT) inhibitor tolcapone [4, 5], we investigated the causal relationship between dopaminergic mechanisms and two prosocial concerns at the core of a number of widely used economic games: (1) the extent to which individuals directly value the material payoffs of others, i.e., generosity, and (2) the extent to which they are averse to differences between their own payoffs and those of others, i.e., inequity. We found that dopaminergic augmentation via COMT inhibition increased egalitarian tendencies in participants who played an extended version of the dictator game [6]. Strikingly, computational modeling of choice behavior [7] revealed that tolcapone exerted selective effects on inequity aversion, and not on other computational components such as the extent to which individuals directly value the material payoffs of others. Together, these data shed light on the causal relationship between neurochemical systems and human prosocial behavior and have potential implications for our understanding of the complex array of social impairments accompanying neuropsychiatric disorders involving dopaminergic dysregulation. Copyright © 2015 Elsevier Ltd. All rights reserved.
Arginine vasopressin and oxytocin modulate human social behavior.
Ebstein, Richard P; Israel, Salomon; Lerer, Elad; Uzefovsky, Florina; Shalev, Idan; Gritsenko, Inga; Riebold, Mathias; Salomon, Shahaf; Yirmiya, Nurit
2009-06-01
Increasing evidence suggests that two nonapeptides, arginine vasopressin and oxytocin, shape human social behavior in both nonclinical and clinical subjects. Evidence is discussed that in autism spectrum disorders genetic polymorphisms in the vasopressin-oxytocin pathway, notably the arginine vasopressin receptor 1a (AVPR1a), the oxytocin receptor (OXTR), neurophysin I and II, and CD38 (recently shown to be critical for social behavior by mediating oxytocin secretion) contribute to deficits in socialization skills in this group of patients. We also present first evidence that CD38 expression in lymphoblastoid cells derived from subjects diagnosed with autism is correlated with social skill phenotype inventoried by the Vineland Adaptive Behavioral Scales. Additionally, we discuss molecular genetic evidence that in nonclinical subjects both AVPR1a and OXTR genes contribute to prosocial or altruistic behavior inventoried by two experimental paradigms, the dictator game and social values orientation. The role of the AVPR1a is also analyzed in prepulse inhibition. Prepulse inhibition of the startle response to auditory stimuli is a largely autonomic response that resonates with social cognition in both animal models and humans. First results are presented showing that intranasal administration of arginine vasopressin increases salivary cortisol levels in the Trier Social Stress test. To summarize, accumulating studies employing a broad array of cutting-edge tools in psychology, neuroeconomics, molecular genetics, pharmacology, electrophysiology, and brain imaging are beginning to elaborate the intriguing role of oxytocin and arginine vasopressin in human social behavior. We expect that future studies will continue this advance and deepen our understanding of these complex events.
Representation matters: quantitative behavioral variation in wild worm strains
NASA Astrophysics Data System (ADS)
Brown, Andre
Natural genetic variation in populations is the basis of genome-wide association studies, an approach that has been applied in large studies of humans to study the genetic architecture of complex traits including disease risk. Of course, the traits you choose to measure determine which associated genes you discover (or miss). In large-scale human studies, the measured traits are usually taken as a given during the association step because they are expensive to collect and standardize. Working with the nematode worm C. elegans, we do not have the same constraints. In this talk I will describe how large-scale imaging of worm behavior allows us to develop alternative representations of behavior that vary differently across wild populations. The alternative representations yield novel traits that can be used for genome-wide association studies and may reveal basic properties of the genotype-phenotype map that are obscured if only a small set of fixed traits are used.
Single Molecule Study of the Intrinsically Disordered FG-Repeat Nucleoporin 153
Milles, Sigrid; Lemke, Edward A.
2011-01-01
Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (RE) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (RE/RE,RC = 0.99 ± 0.15 with RE,RC corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (RE/RE,RC = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. PMID:21961597
The role of redundant information in cultural transmission and cultural stabilization.
Acerbi, Alberto; Tennie, Claudio
2016-02-01
Redundant copying has been proposed as a manner to achieve the high-fidelity necessary to pass on and preserve complex traits in human cultural transmission. There are at least 2 ways to define redundant copying. One refers to the possibility of copying repeatedly the same trait over time, and another to the ability to exploit multiple layers of information pointing to the same trait during a single copying event. Using an individual-based model, we explore how redundant copying (defined as in the latter way) helps to achieve successful transmission. The authors show that increasing redundant copying increases the likelihood of accurately transmitting a behavior more than either augmenting the number of copying occasions across time or boosting the general accuracy of social learning. They also investigate how different cost functions, deriving, for example, from the need to invest more energy in cognitive processing, impact the evolution of redundant copying. The authors show that populations converge either to high-fitness/high-costs states (with high redundant copying and complex culturally transmitted behaviors; resembling human culture) or to low-fitness/low-costs states (with low redundant copying and simple transmitted behaviors; resembling social learning forms typical of nonhuman animals). This outcome may help to explain why cumulative culture is rare in the animal kingdom. (c) 2016 APA, all rights reserved).
The complex relation between morality and empathy.
Decety, Jean; Cowell, Jason M
2014-07-01
Morality and empathy are fundamental components of human nature across cultures. However, the wealth of empirical findings from developmental, behavioral, and social neuroscience demonstrates a complex relation between morality and empathy. At times, empathy guides moral judgment, yet other times empathy can interfere with it. To better understand such relations, we propose abandoning the catchall term of empathy in favor of more precise concepts, such as emotional sharing, empathic concern, and affective perspective-taking. Copyright © 2014 Elsevier Ltd. All rights reserved.
Schizophrenia and Human Self-Domestication: An Evolutionary Linguistics Approach.
Benítez-Burraco, Antonio; Di Pietro, Lorena; Barba, Marta; Lattanzi, Wanda
2017-01-01
Schizophrenia (SZ) is a pervasive neurodevelopmental disorder that entails social and cognitive deficits, including marked language problems. Its complex multifactorial etiopathogenesis, including genetic and environmental factors, is still widely uncertain. SZ incidence has always been high and quite stable in human populations, across time and regardless of cultural implications, for unclear reasons. It has been hypothesized that SZ pathophysiology may involve the biological components that changed during the recent human evolutionary history, and led to our distinctive mode of cognition, which includes language skills. In this paper we explore this hypothesis, focusing on the self-domestication of the human species. This has been claimed to account for many human-specific distinctive traits, including aspects of our behavior and cognition, and to favor the emergence of complex languages through cultural evolution. The "domestication syndrome" in mammals comprises the constellation of traits exhibited by domesticated strains, seemingly resulting from the hypofunction of the neural crest. It is our intention to show that people with SZ exhibit more marked domesticated traits at the morphological, physiological, and behavioral levels. We also show that genes involved in domestication and neural crest development and function comprise nearly 20% of SZ candidates, most of which exhibit altered expression profiles in the brain of SZ patients, specifically in areas involved in language processing. Based on these observations, we conclude that SZ may represent an abnormal ontogenetic itinerary for the human faculty of language, resulting, at least in part, from changes in genes important for the domestication syndrome and primarily involving the neural crest. © 2017 S. Karger AG, Basel.
Using Apex To Construct CPM-GOMS Models
NASA Technical Reports Server (NTRS)
John, Bonnie; Vera, Alonso; Matessa, Michael; Freed, Michael; Remington, Roger
2006-01-01
process for automatically generating computational models of human/computer interactions as well as graphical and textual representations of the models has been built on the conceptual foundation of a method known in the art as CPM-GOMS. This method is so named because it combines (1) the task decomposition of analysis according to an underlying method known in the art as the goals, operators, methods, and selection (GOMS) method with (2) a model of human resource usage at the level of cognitive, perceptual, and motor (CPM) operations. CPM-GOMS models have made accurate predictions about behaviors of skilled computer users in routine tasks, but heretofore, such models have been generated in a tedious, error-prone manual process. In the present process, CPM-GOMS models are generated automatically from a hierarchical task decomposition expressed by use of a computer program, known as Apex, designed previously to be used to model human behavior in complex, dynamic tasks. An inherent capability of Apex for scheduling of resources automates the difficult task of interleaving the cognitive, perceptual, and motor resources that underlie common task operators (e.g., move and click mouse). The user interface of Apex automatically generates Program Evaluation Review Technique (PERT) charts, which enable modelers to visualize the complex parallel behavior represented by a model. Because interleaving and the generation of displays to aid visualization are automated, it is now feasible to construct arbitrarily long sequences of behaviors. The process was tested by using Apex to create a CPM-GOMS model of a relatively simple human/computer-interaction task and comparing the time predictions of the model and measurements of the times taken by human users in performing the various steps of the task. The task was to withdraw $80 in cash from an automated teller machine (ATM). For the test, a Visual Basic mockup of an ATM was created, with a provision for input from (and measurement of the performance of) the user via a mouse. The times predicted by the automatically generated model turned out to approximate the measured times fairly well (see figure). While these results are promising, there is need for further development of the process. Moreover, it will also be necessary to test other, more complex models: The actions required of the user in the ATM task are too sequential to involve substantial parallelism and interleaving and, hence, do not serve as an adequate test of the unique strength of CPM-GOMS models to accommodate parallelism and interleaving.
Farajollahi, Ary; Fonseca, Dina M; Kramer, Laura D; Marm Kilpatrick, A
2011-10-01
The transmission of vector-borne pathogens is greatly influenced by the ecology of their vector, which is in turn shaped by genetic ancestry, the environment, and the hosts that are fed on. One group of vectors, the mosquitoes in the Culex pipiens complex, play key roles in the transmission of a range of pathogens including several viruses such as West Nile and St. Louis encephalitis viruses, avian malaria (Plasmodium spp.), and filarial worms. The Cx. pipiens complex includes Culex pipiens pipiens with two forms, pipiens and molestus, Culex pipiens pallens, Culex quinquefasciatus, Culex australicus, and Culex globocoxitus. While several members of the complex have limited geographic distributions, Cx. pipienspipiens and Cx. quinquefasciatus are found in all known urban and sub-urban temperate and tropical regions, respectively, across the world, where they are often principal disease vectors. In addition, hybrids are common in areas of overlap. Although gaps in our knowledge still remain, the advent of genetic tools has greatly enhanced our understanding of the history of speciation, domestication, dispersal, and hybridization. We review the taxonomy, genetics, evolution, behavior, and ecology of members of the Cx. pipiens complex and their role in the transmission of medically important pathogens. The adaptation of Cx. pipiens complex mosquitoes to human-altered environments led to their global distribution through dispersal via humans and, combined with their mixed feeding patterns on birds and mammals (including humans), increased the transmission of several avian pathogens to humans. We highlight several unanswered questions that will increase our ability to control diseases transmitted by these mosquitoes. Copyright © 2011 Elsevier B.V. All rights reserved.
Automated Discovery and Modeling of Sequential Patterns Preceding Events of Interest
NASA Technical Reports Server (NTRS)
Rohloff, Kurt
2010-01-01
The integration of emerging data manipulation technologies has enabled a paradigm shift in practitioners' abilities to understand and anticipate events of interest in complex systems. Example events of interest include outbreaks of socio-political violence in nation-states. Rather than relying on human-centric modeling efforts that are limited by the availability of SMEs, automated data processing technologies has enabled the development of innovative automated complex system modeling and predictive analysis technologies. We introduce one such emerging modeling technology - the sequential pattern methodology. We have applied the sequential pattern methodology to automatically identify patterns of observed behavior that precede outbreaks of socio-political violence such as riots, rebellions and coups in nation-states. The sequential pattern methodology is a groundbreaking approach to automated complex system model discovery because it generates easily interpretable patterns based on direct observations of sampled factor data for a deeper understanding of societal behaviors that is tolerant of observation noise and missing data. The discovered patterns are simple to interpret and mimic human's identifications of observed trends in temporal data. Discovered patterns also provide an automated forecasting ability: we discuss an example of using discovered patterns coupled with a rich data environment to forecast various types of socio-political violence in nation-states.
Goltz, Sonia M.
2000-01-01
Decision fiascoes such as escalation of commitment, the tendency of decision makers to “throw good money after bad,” can have serious consequences for organizations and are therefore of great interest in applied research. This paper discusses the use of behavior analysis in organizational behavior research on escalation. Among the most significant aspects of behavior-analytic research on escalation is that it has indicated that both the patterns of outcomes that decision makers have experienced for past decisions and the patterns of responses that they make are critical for understanding escalation. This research has also stimulated the refinement of methods by researchers to better assess decision making and the role reinforcement plays in it. Finally, behavior-analytic escalation research has not only indicated the utility of reinforcement principles for predicting more complex human behavior but has also suggested some additional areas for future exploration of decision making using behavior analysis. PMID:22478347
Investigation of possible causes for human-performance degradation during microgravity flight
NASA Technical Reports Server (NTRS)
Schroeder, James E.; Tuttle, Megan L.
1992-01-01
The results of the first year of a three year study of the effects of microgravity on human performance are given. Test results show support for the hypothesis that the effects of microgravity can be studied indirectly on Earth by measuring performance in an altered gravitational field. The hypothesis was that an altered gravitational field could disrupt performance on previously automated behaviors if gravity was a critical part of the stimulus complex controlling those behaviors. In addition, it was proposed that performance on secondary cognitive tasks would also degrade, especially if the subject was provided feedback about degradation on the previously automated task. In the initial experimental test of these hypotheses, there was little statistical support. However, when subjects were categorized as high or low in automated behavior, results for the former group supported the hypotheses. The predicted interaction between body orientation and level of workload in their joint effect on performance in the secondary cognitive task was significant for the group high in automatized behavior and receiving feedback, but no such interventions were found for the group high in automatized behavior but not receiving feedback, or the group low in automatized behavior.
Behavioral health: the propaedeutic requirement.
Brady, Joseph V
2005-06-01
Concern about the behavioral effects of spaceflight can be traced back a half century to the earliest preparatory bioastronautics experiments in the mid-1 950s. A central focus of the first primate suborbital flights, as well as the orbital chimpanzee pretest flights of Project Mercury, was the effects of such stressful ventures on the learned performances of these space behavioral health pioneers. The hiatus in spaceflight behavioral health experimental investments that followed these early initiatives began with the advent of the 'human astronaut' era of the mid-1960s, and has dominated the last several decades. Contemporary concerns in this regard have most recently been articulated by a turn-of-the-century Committee of the Institute of Medicine, National Academy of Sciences, providing a visionary view of space medicine during travel beyond Earth orbit. This 2-yr study focused on those most complex behavioral health interactions involving humans in extreme, isolated, and confined microsocieties-areas that have not received the necessary level of attention. The evident behavioral health issues raised by the prospect of long-duration exploratory missions beyond Earth orbit, including performance and general living conditions, recovery and support systems, and the screening, selection, and training of candidate participants are reviewed and discussed.
Oxytocin, Motivation and the Role of Dopamine
Love, Tiffany M.
2013-01-01
The hypothalamic neuropeptide oxytocin has drawn the attention of scientists for more than a century. The understanding of the function of oxytocin has expanded dramatically over the years from a simple peptide adept at inducing uterine contractions and milk ejection to a complex neuromodulator with a capacity to shape human social behavior. Decades of research have outlined oxytocin’s ability to enhance intricate social activities ranging from pair bonding, sexual activity, affiliative preferences, and parental behaviors. The precise neural mechanisms underlying oxytocin’s influence on such behaviors have just begun to be understood. Research suggests that oxytocin interacts closely with the neural pathways responsible for processing motivationally relevant stimuli. In particular, oxytocin appears to impact dopaminergic activity within the mesocorticolimbic dopamine system, which is crucial not only for reward and motivated behavior but also for the expression of affiliative behaviors. Though most of the work performed in this area has been done using animal models, several neuroimaging studies suggest similar relationships may be observed in humans. In order to introduce this topic further, this paper will review the recent evidence that oxytocin may exert some of its social-behavioral effects through its impact on motivational networks. PMID:23850525
Punctuated equilibrium dynamics in human communications
NASA Astrophysics Data System (ADS)
Peng, Dan; Han, Xiao-Pu; Wei, Zong-Wen; Wang, Bing-Hong
2015-10-01
A minimal model based on network incorporating individual interactions is proposed to study the non-Poisson statistical properties of human behavior: individuals in system interact with their neighbors, the probability of an individual acting correlates to its activity, and all the individuals involved in action will change their activities randomly. The model reproduces varieties of spatial-temporal patterns observed in empirical studies of human daily communications, providing insight into various human activities and embracing a range of realistic social interacting systems, particularly, intriguing bimodal phenomenon. This model bridges priority queueing theory and punctuated equilibrium dynamics, and our modeling and analysis is likely to shed light on non-Poisson phenomena in many complex systems.
Hyperscanning: simultaneous fMRI during linked social interactions.
Montague, P Read; Berns, Gregory S; Cohen, Jonathan D; McClure, Samuel M; Pagnoni, Giuseppe; Dhamala, Mukesh; Wiest, Michael C; Karpov, Igor; King, Richard D; Apple, Nathan; Fisher, Ronald E
2002-08-01
"Plain question and plain answer make the shortest road out of most perplexities." Mark Twain-Life on the Mississippi. A new methodology for the measurement of the neural substrates of human social interaction is described. This technology, termed "Hyperscan," embodies both the hardware and the software necessary to link magnetic resonance scanners through the internet. Hyperscanning allows for the performance of human behavioral experiments in which participants can interact with each other while functional MRI is acquired in synchrony with the behavioral interactions. Data are presented from a simple game of deception between pairs of subjects. Because people may interact both asymmetrically and asynchronously, both the design and the analysis must accommodate this added complexity. Several potential approaches are described.
Human behavior in Prisoner's Dilemma experiments suppresses network reciprocity
NASA Astrophysics Data System (ADS)
Gracia-Lázaro, Carlos; Cuesta, José A.; Sánchez, Angel; Moreno, Yamir
2012-03-01
During the last few years, much research has been devoted to strategic interactions on complex networks. In this context, the Prisoner's Dilemma has become a paradigmatic model, and it has been established that imitative evolutionary dynamics lead to very different outcomes depending on the details of the network. We here report that when one takes into account the real behavior of people observed in the experiments, both at the mean-field level and on utterly different networks, the observed level of cooperation is the same. We thus show that when human subjects interact in a heterogeneous mix including cooperators, defectors and moody conditional cooperators, the structure of the population does not promote or inhibit cooperation with respect to a well mixed population.
Food or threat? Wild capuchin monkeys (Sapajus libidinosus) as both predators and prey of snakes.
Falótico, Tiago; Verderane, Michele P; Mendonça-Furtado, Olívia; Spagnoletti, Noemi; Ottoni, Eduardo B; Visalberghi, Elisabetta; Izar, Patrícia
2018-01-01
Snakes present a hazard to primates, both as active predators and by defensive envenomation. This risk might have been a selective pressure on the evolution of primate visual and cognitive systems, leading to several behavioral traits present in human and non-human primates, such as the ability to quickly learn to fear snakes. Primates seldom prey on snakes, and humans are one of the few primate species that do. We report here another case, the wild capuchin monkey (Sapajus libidinosus), which preys on snakes. We hypothesized that capuchin monkeys, due to their behavioral plasticity, and cognitive and visual skills, would be capable of discriminating dangerous and non-dangerous snakes and behave accordingly. We recorded the behavioral patterns exhibited toward snakes in two populations of S. libidinosus living 320 km apart in Piauí, Brazil. As expected, capuchins have a fear reaction to dangerous snakes (usually venomous or constricting snakes), presenting mobbing behavior toward them. In contrast, they hunt and consume non-dangerous snakes without presenting the fear response. Our findings support the tested hypothesis that S. libidinosus are capable of differentiating snakes by level of danger: on the one hand they protect themselves from dangerous snakes, on the other hand they take opportunities to prey on non-dangerous snakes. Since capuchins and humans are both predators and prey of snakes, further studies of this complex relationship may shed light on the evolution of these traits in the human lineage.
City rats: insight from rat spatial behavior into human cognition in urban environments.
Yaski, Osnat; Portugali, Juval; Eilam, David
2011-09-01
The structure and shape of the urban environment influence our ability to find our way about in the city. Understanding how the physical properties of the environment affect spatial behavior and cognition is therefore a necessity. However, there are inherent difficulties in empirically studying complex and large-scale urban environments. These include the need to isolate the impact of specific urban features and to acquire data on the physical activity of individuals. In the present study, we attempted to overcome the above obstacles and examine the relation between urban environments and spatial cognition by testing the spatial behavior of rats. This idea originated from the resemblance in the operative brain functions and in the mechanisms and strategies employed by humans and other animals when acquiring spatial information and establishing an internal representation, as revealed in past studies. Accordingly, we tested rats in arenas that simulated a grid urban layout (e.g. Manhattan streets) and an irregular urban layout (e.g. Jerusalem streets). We found that in the grid layout, rat movement was more structured and extended over a greater area compared with their restricted movement in the irregular layout. These movement patterns recall those of humans in respective urban environments, illustrating that the structure and shape of the environment affect spatial behavior similarly in humans and rats. Overall, testing rats in environments that simulate facets of urban environments can provide new insights into human spatial cognition in urban environments.
Behavioral Priming 2.0: Enter a Dynamical Systems Perspective
Krpan, Dario
2017-01-01
On a daily basis, people are exposed to numerous stimuli, ranging from colors and smells to sounds and words, that could potentially activate different cognitive constructs and influence their actions. This type of influence on human behavior is referred to as priming. Roughly two decades ago, behavioral priming was hailed as one of the core forces that shape automatic behavior. However, failures to replicate some of the representative findings in this domain soon followed, which posed the following question: “How robust are behavioral priming effects, and to what extent are they actually important in shaping people's actions?” To shed a new light on this question, I revisit behavioral priming through the prism of a dynamical systems perspective (DSP). The DSP is a scientific paradigm that has been developed through a combined effort of many different academic disciplines, ranging from mathematics and physics to biology, economics, psychology, etc., and it deals with behavior of simple and complex systems over time. In the present paper, I use conceptual and methodological tools stemming from the DSP to propose circumstances under which behavioral priming effects are likely to occur. More precisely, I outline three possible types of the influence of priming on human behavior, to which I refer as emergence, readjustment, and attractor switch, and propose experimental designs to examine them. Finally, I discuss relevant implications for behavioral priming effects and their replications. PMID:28769846
Vairis, Achilles; Stefanoudakis, George; Petousis, Markos; Vidakis, Nectarios; Tsainis, Andreas-Marios; Kandyla, Betina
2016-02-01
The human knee joint has a three-dimensional geometry with multiple body articulations that produce complex mechanical responses under loads that occur in everyday life and sports activities. Understanding the complex mechanical interactions of these load-bearing structures is of use when the treatment of relevant diseases is evaluated and assisting devices are designed. The anterior cruciate ligament (ACL) in the knee is one of four main ligaments that connects the femur to the tibia and is often torn during sudden twisting motions, resulting in knee instability. The objective of this work is to study the mechanical behavior of the human knee joint and evaluate the differences in its response for three different states, i.e., intact, ACL-deficient, and surgically treated (reconstructed) knee. The finite element models corresponding to these states were developed. For the reconstructed model, a novel repair device was developed and patented by the author in previous work. Static load cases were applied, as have already been presented in a previous work, in order to compare the calculated results produced by the two models the ACL-deficient and the surgically reconstructed knee joint, under the exact same loading conditions. Displacements were calculated in different directions for the load cases studied and were found to be very close to those from previous modeling work and were in good agreement with experimental data presented in literature. The developed finite element model for both the intact and the ACL-deficient human knee joint is a reliable tool to study the kinematics of the human knee, as results of this study show. In addition, the reconstructed human knee joint model had kinematic behavior similar to the intact knee joint, showing that such reconstruction devices can restore human knee stability to an adequate extent.
The mind-body-microbial continuum
Gonzalez, Antonio; Stombaugh, Jesse; Lozupone, Catherine; Turnbaugh, Peter J.; Gordon, Jeffrey I.; Knight, Rob
2011-01-01
Our understanding of the vast collection of microbes that live on and inside us (microbiota) and their collective genes (microbiome) has been revolutionized by culture-independent “metagenomic” techniques and DNA sequencing technologies. Most of our microbes live in our gut, where they function as a metabolic organ and provide attributes not encoded in our human genome. Metagenomic studies are revealing shared and distinctive features of microbial communities inhabiting different humans. A central question in psychiatry is the relative role of genes and environment in shaping behavior. The human microbiome serves as the interface between our genes and our history of environmental exposures; explorations of our microbiomes thus offer the possibility of providing new insights into our neurodevelopment and our behavioral phenotypes by affecting complex processes such as inter- and intra personal variations in cognition, personality, mood, sleep, and eating behavior, and perhaps even a variety of neuropsychiatric diseases ranging from affective disorders to autism. Better understanding of microbiome-encoded pathways for xenobiotic metabolism also has important implications for improving the efficacy of pharmacologic interventions with neuromodulator agents. PMID:21485746
Changing a Generation's Way of Thinking: Teaching Computational Thinking through Programming
ERIC Educational Resources Information Center
Buitrago Flórez, Francisco; Casallas, Rubby; Hernández, Marcela; Reyes, Alejandro; Restrepo, Silvia; Danies, Giovanna
2017-01-01
Computational thinking (CT) uses concepts that are essential to computing and information science to solve problems, design and evaluate complex systems, and understand human reasoning and behavior. This way of thinking has important implications in computer sciences as well as in almost every other field. Therefore, we contend that CT should be…
ERIC Educational Resources Information Center
Cox, Conor D.; Palmer, Linda C.; Pham, Danielle T.; Trieu, Brian H.; Gall, Christine M.; Lynch, Gary
2017-01-01
Humans routinely use past experience with complexity to deal with novel, challenging circumstances. This fundamental aspect of real-world behavior has received surprisingly little attention in animal studies, and the underlying brain mechanisms are unknown. The present experiments tested for transfer from past experience in rats and then used…
The Effects of Work Group Structure on Social Psychological Aspects of the Human Organization.
ERIC Educational Resources Information Center
Fine, B. D.
To investigate the effects of work group structure on measures of organizational behavior, questionnaire data from employees in a department characterized by complex, unstable work group structure and variable supervisory reporting relationships were compared with data from similar employees in two departments characterized by stable work group…
Gender Differences in AIDS-Relevant Condom Attitudes and Condom Use.
ERIC Educational Resources Information Center
Sacco, William P.; And Others
Many heterosexuals have not altered their sexual practices in response to the threat of Acquired Immune Deficiency Syndrome (AIDS). Knowledge of risk alone appears to have little effect on altering sexual behavior; more complex psychological factors seem to be involved. Condom use to prevent the spread of Human Immunodeficiency Virus is a unique…
Sundberg, Mark L.
1996-01-01
Savage-Rumbaugh et al.'s (1993) monograph describes a study that compared the language comprehension of an 8-year-old ape (a bonobo named Kanzi) with that of a normal 2-year-old human (Alia). The primary purpose of the research was to see if Kanzi could comprehend novel and compound spoken English commands without imitative prompts, contrived reinforcement contingencies, or explicit training procedures. As it turned out, Kanzi acquired a complex comprehension repertoire in a pattern similar to the human child's and even performed better than the human child in many cases. Although this review describes these empirical results favorably, it questions the authors' claim that the subjects learned the repertoire on their own, without reinforcement or training. A close examination of the subjects' histories and of the procedures, transcripts, and videos suggested that the training and testing procedures involved a number of independent variables and processes that were not discussed by the authors, including conditioned reinforcement and punishment, verbal prompts, stimulus control, establishing operations, and extinction. Nonetheless, the methodological and empirical contributions to ape and human language research are substantial and deserve behavior analysts' attention and support. Behavior analysts could contribute to this kind of research by applying the analytic and conceptual tools of behavior analysis in general and the concepts from Verbal Behavior (Skinner, 1957) in particular.
The adhesion and hysteresis effect in friction skin with artificial materials
NASA Astrophysics Data System (ADS)
Subhi, K. A.; Tudor, A.; Hussein, E. K.; Wahad, H. S.
2017-02-01
Human skin is a soft biomaterial with a complex anatomical structure and it has a complex material behavior during the mechanical contact with objects and surfaces. The friction adhesion component is defined by means of the theories of Johnson-Kendall-Roberts (JKR), Derjaguin-Muller-Toporov (DMT) and Maugis - Dugdale (MD). We shall consider the human skin entering into contact with a rigid surface. The deformation (hysteresis) component of the skin friction is evaluated with Voigt rheological model for the spherical contact, with the original model, developed in MATHCAD software. The adhesive component of the skin friction is greater than the hysteresis component for all friction parameters (load, velocity, the strength of interface between skin and the artificial material).
Impairment of social and moral behavior related to early damage in human prefrontal cortex.
Anderson, S W; Bechara, A; Damasio, H; Tranel, D; Damasio, A R
1999-11-01
The long-term consequences of early prefrontal cortex lesions occurring before 16 months were investigated in two adults. As is the case when such damage occurs in adulthood, the two early-onset patients had severely impaired social behavior despite normal basic cognitive abilities, and showed insensitivity to future consequences of decisions, defective autonomic responses to punishment contingencies and failure to respond to behavioral interventions. Unlike adult-onset patients, however, the two patients had defective social and moral reasoning, suggesting that the acquisition of complex social conventions and moral rules had been impaired. Thus early-onset prefrontal damage resulted in a syndrome resembling psychopathy.
Nabi, Robin L; Southwell, Brian; Hornik, Robert
2002-01-01
A central assumption of many models of human behavior is that intention to perform a behavior is highly predictive of actual behavior. This article presents evidence that belies this notion. Based on a survey of 1,250 Philadelphia adults, a clear and consistent pattern emerged suggesting that beliefs related to domestic violence correlate with intentions to act with respect to domestic violence but rarely correlate with reported actions (e.g., talking to the abused woman). Numerous methodological and substantive explanations for this finding are offered with emphasis placed on the complexity of the context in which an action to prevent a domestic violence incident occurs. We conclude by arguing that despite the small, insignificant relationships between beliefs and behaviors found, worthwhile aggregate effects on behavior might still exist, thus reaffirming the role of communication campaign efforts.
2009-05-21
32 Sigmund Freud , Civilization and Its Discontents (New York: W.W. Norton, 1962) and Abraham Maslow, ―Theory of Human...Recognizing and Avoiding Error in Complex Situations. New York: Basic Books, 1996. Freud , Sigmund . Civilization and Its Discontents. New York: W.W...better than a one-to-one scale map? Return to the factor of change over time and even a stable model of human behavior, whether from Freud or Maslow
Studies of Complex Behavior and Their Relation to Trouble Shooting in Electronic Equipment.
1957-06-01
discussed. It has been concluded that the study of human problem • . solving, concept formation, probability learning, and so forth, has i. provided litt 1...five actions) used by men in trouble shooting radio problemson the MASTS , AUTOMI STS, arid a job—sample test . There were five L categories so defined...Defense Human Research Unit ’ s proposed Task MA INTRAIN• will be drawn upon as needed for the non—trouble —shooting topics. I
Functional Dynamics within the Human Ribosome Regulate the Rate of Active Protein Synthesis.
Ferguson, Angelica; Wang, Leyi; Altman, Roger B; Terry, Daniel S; Juette, Manuel F; Burnett, Benjamin J; Alejo, Jose L; Dass, Randall A; Parks, Matthew M; Vincent, C Theresa; Blanchard, Scott C
2015-11-05
The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome, demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule fluorescence resonance energy transfer (smFRET) methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. Copyright © 2015 Elsevier Inc. All rights reserved.
Modeling infectious disease dynamics in the complex landscape of global health
Heesterbeek, Hans; Anderson, Roy; Andreasen, Viggo; Bansal, Shweta; De Angelis, Daniela; Dye, Chris; Eames, Ken; Edmunds, John; Frost, Simon; Funk, Sebastian; Hollingsworth, Deirdre; House, Thomas; Isham, Valerie; Klepac, Petra; Lessler, Justin; Lloyd-Smith, James; Metcalf, Jessica; Mollison, Denis; Pellis, Lorenzo; Pulliam, Juliet; Roberts, Mick; Viboud, Cecile
2015-01-01
Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational and spatial scales, which even within a single pathogen often span hours to months, cellular to ecosystem levels, and local to pandemic spread. Some pathogens are directly transmitted between individuals of a single species, while others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity, and dynamic human behavior, raise prevention and control from formerly national to international issues. In the face of this complexity, mathematical models offer essential tools for synthesizing information to understand epidemiological patterns, and for developing the quantitative evidence base for decision-making in global health. PMID:25766240
Functional dynamics within the human ribosome regulate the rate of active protein synthesis
Ferguson, Angelica; Wang, Leyi; Altman, Roger B.; Terry, Daniel S.; Juette, Manuel F.; Burnett, Benjamin J.; Alejo, Jose L.; Dass, Randall A.; Parks, Matthew M.; Vincent, Theresa C.; Blanchard, Scott C.
2015-01-01
SUMMARY The regulation of protein synthesis contributes to gene expression in both normal physiology and disease, yet kinetic investigations of the human translation mechanism are currently lacking. Using single-molecule fluorescence imaging methods, we have quantified the nature and timing of structural processes in human ribosomes during single-turnover and processive translation reactions. These measurements reveal that functional complexes exhibit dynamic behaviors and thermodynamic stabilities distinct from those observed for bacterial systems. Structurally defined sub-states of pre- and post-translocation complexes were sensitive to specific inhibitors of the eukaryotic ribosome demonstrating the utility of this platform to probe drug mechanism. The application of three-color single-molecule FRET methods further revealed a long-distance allosteric coupling between distal tRNA binding sites within ribosomes bearing three tRNAs, which contributed to the rate of processive translation. PMID:26593721
Modeling infectious disease dynamics in the complex landscape of global health.
Heesterbeek, Hans; Anderson, Roy M; Andreasen, Viggo; Bansal, Shweta; De Angelis, Daniela; Dye, Chris; Eames, Ken T D; Edmunds, W John; Frost, Simon D W; Funk, Sebastian; Hollingsworth, T Deirdre; House, Thomas; Isham, Valerie; Klepac, Petra; Lessler, Justin; Lloyd-Smith, James O; Metcalf, C Jessica E; Mollison, Denis; Pellis, Lorenzo; Pulliam, Juliet R C; Roberts, Mick G; Viboud, Cecile
2015-03-13
Despite some notable successes in the control of infectious diseases, transmissible pathogens still pose an enormous threat to human and animal health. The ecological and evolutionary dynamics of infections play out on a wide range of interconnected temporal, organizational, and spatial scales, which span hours to months, cells to ecosystems, and local to global spread. Moreover, some pathogens are directly transmitted between individuals of a single species, whereas others circulate among multiple hosts, need arthropod vectors, or can survive in environmental reservoirs. Many factors, including increasing antimicrobial resistance, increased human connectivity and changeable human behavior, elevate prevention and control from matters of national policy to international challenge. In the face of this complexity, mathematical models offer valuable tools for synthesizing information to understand epidemiological patterns, and for developing quantitative evidence for decision-making in global health. Copyright © 2015, American Association for the Advancement of Science.
A coupled human-water system from a systems dynamics perspective
NASA Astrophysics Data System (ADS)
Kuil, Linda; Blöschl, Günter; Carr, Gemma
2013-04-01
Traditionally, models used in hydrological studies have frequently assumed stationarity. Moreover, human-induced water resources management activities are often included as external forcings in water cycle dynamics. However, considering humans' current impact on the water cycle in terms of a growing population, river basins increasingly being managed and a climate considerably changing, it has recently been questioned whether this is still correct. Furthermore, research directed at the evolution of water resources and society has shown that the components constituting the human-water system are changing interdependently. Goal of this study is therefore to approach water cycle dynamics from an integrated perspective in which humans are considered as endogenous forces to the system. The method used to model a coupled, urban human-water system is system dynamics. In system dynamics, particular emphasis is placed on feedback loops resulting in dynamic behavior. Time delays and non-linearity can relatively easily be included, making the method appropriate for studying complex systems that change over time. The approach of this study is as follows. First, a conceptual model is created incorporating the key components of the urban human-water system. Subsequently, only those components are selected that are both relevant and show causal loop behavior. Lastly, the causal narratives are translated into mathematical relationships. The outcome will be a simple model that shows only those characteristics with which we are able to explore the two-way coupling between the societal behavior and the water system we depend on.
Characterizing time series: when Granger causality triggers complex networks
NASA Astrophysics Data System (ADS)
Ge, Tian; Cui, Yindong; Lin, Wei; Kurths, Jürgen; Liu, Chong
2012-08-01
In this paper, we propose a new approach to characterize time series with noise perturbations in both the time and frequency domains by combining Granger causality and complex networks. We construct directed and weighted complex networks from time series and use representative network measures to describe their physical and topological properties. Through analyzing the typical dynamical behaviors of some physical models and the MIT-BIHMassachusetts Institute of Technology-Beth Israel Hospital. human electrocardiogram data sets, we show that the proposed approach is able to capture and characterize various dynamics and has much potential for analyzing real-world time series of rather short length.
Head Motion Modeling for Human Behavior Analysis in Dyadic Interaction
Xiao, Bo; Georgiou, Panayiotis; Baucom, Brian; Narayanan, Shrikanth S.
2015-01-01
This paper presents a computational study of head motion in human interaction, notably of its role in conveying interlocutors’ behavioral characteristics. Head motion is physically complex and carries rich information; current modeling approaches based on visual signals, however, are still limited in their ability to adequately capture these important properties. Guided by the methodology of kinesics, we propose a data driven approach to identify typical head motion patterns. The approach follows the steps of first segmenting motion events, then parametrically representing the motion by linear predictive features, and finally generalizing the motion types using Gaussian mixture models. The proposed approach is experimentally validated using video recordings of communication sessions from real couples involved in a couples therapy study. In particular we use the head motion model to classify binarized expert judgments of the interactants’ specific behavioral characteristics where entrainment in head motion is hypothesized to play a role: Acceptance, Blame, Positive, and Negative behavior. We achieve accuracies in the range of 60% to 70% for the various experimental settings and conditions. In addition, we describe a measure of motion similarity between the interaction partners based on the proposed model. We show that the relative change of head motion similarity during the interaction significantly correlates with the expert judgments of the interactants’ behavioral characteristics. These findings demonstrate the effectiveness of the proposed head motion model, and underscore the promise of analyzing human behavioral characteristics through signal processing methods. PMID:26557047
The cultural niche: Why social learning is essential for human adaptation
Boyd, Robert; Richerson, Peter J.; Henrich, Joseph
2011-01-01
In the last 60,000 y humans have expanded across the globe and now occupy a wider range than any other terrestrial species. Our ability to successfully adapt to such a diverse range of habitats is often explained in terms of our cognitive ability. Humans have relatively bigger brains and more computing power than other animals, and this allows us to figure out how to live in a wide range of environments. Here we argue that humans may be smarter than other creatures, but none of us is nearly smart enough to acquire all of the information necessary to survive in any single habitat. In even the simplest foraging societies, people depend on a vast array of tools, detailed bodies of local knowledge, and complex social arrangements and often do not understand why these tools, beliefs, and behaviors are adaptive. We owe our success to our uniquely developed ability to learn from others. This capacity enables humans to gradually accumulate information across generations and develop well-adapted tools, beliefs, and practices that are too complex for any single individual to invent during their lifetime. PMID:21690340
Chang, Stephanie W; Lewis, Andrew R; Prosser, Kathleen E; Thompson, John R; Gladkikh, Margarita; Bally, Marcel B; Warren, Jeffrey J; Walsby, Charles J
2016-05-16
The Ru(III) complexes indazolium [trans-RuCl4(1H-indazole)2] (KP1019) and sodium [trans-RuCl4(1H-indazole)2] (NKP-1339) are leading candidates for the next generation of metal-based chemotherapeutics. Trifluoromethyl derivatives of these compounds and their imidazole and pyridine analogues were synthesized to probe the effect of ligand lipophilicity on the pharmacological properties of these types of complexes. Addition of CF3 groups also provided a spectroscopic handle for (19)F NMR studies of ligand exchange processes and protein interactions. The lipophilicities of the CF3-functionalized compounds and their unsubstituted parent complexes were quantified by the shake-flask method to give the distribution coefficient D at pH 7.4 (log D7.4). The solution behavior of the CF3-functionalized complexes was characterized in phosphate-buffered saline (PBS) using (19)F NMR, electron paramagnetic resonance (EPR), and UV-vis spectroscopies. These techniques, along with fluorescence competition experiments, were also used to characterize interactions with human serum albumin (HSA). From these studies it was determined that increased lipophilicity correlates with reduced solubility in PBS but enhancement of noncoordinate interactions with hydrophobic domains of HSA. These protein interactions improve the solubility of the complexes and inhibit the formation of oligomeric species. EPR measurements also demonstrated the formation of HSA-coordinated species with longer incubation. (19)F NMR spectra show that the trifluoromethyl complexes release axial ligands in PBS and in the presence of HSA. In vitro testing showed that the most lipophilic complexes had the greatest cytotoxic activity. Addition of CF3 groups enhances the activity of the indazole complex against A549 nonsmall cell lung carcinoma cells. Furthermore, in the case of the pyridine complexes, the parent compound was inactive against the HT-29 human colon carcinoma cell line but showed strong cytotoxicity with CF3 functionalization. Overall, these studies demonstrate that lipophilicity may be a determining factor in the anticancer activity and pharmacological behavior of these types of Ru(III) complexes.
Hruby, Radovan; Maas, Lili M; Fedor-Freybergh, P G
2013-01-01
The article introduces an integrative psychoneurodevelopmental model of complex human brain and mind development based on the latest findings in prenatal and perinatal medicine in terms of integrative neuroscience. The human brain development is extraordinarily complex set of events and could be influenced by a lot of factors. It is supported by new insights into the early neuro-ontogenic processes with the help of structural 3D magnetic resonance imaging or diffusion tensor imaging of fetal human brain. Various factors and targets for neural development including birth weight variability, fetal and early-life programming, fetal neurobehavioral states and fetal behavioral responses to various stimuli and others are discussed. Molecular biology reveals increasing sets of genes families as well as transcription and neurotropic factors together with critical epigenetic mechanisms to be deeply employed in the crucial neurodevelopmental events. Another field of critical importance is psychoimmuno-neuroendocrinology. Various effects of glucocorticoids as well as other hormones, prenatal stress and fetal HPA axis modulation are thought to be of special importance for brain development. The early postnatal period is characterized by the next intense shaping of complex competences, induced mainly by the very unique mother - newborn´s interactions and bonding. All these mechanisms serve to shape individual human mind with complex abilities and neurobehavioral strategies. Continuous research elucidating these special competences of human fetus and newborn/child supports integrative neuroscientific approach to involve various scientific disciplines for the next progress in human brain and mind research, and opens new scientific challenges and philosophic attitudes. New findings and approaches in this field could establish new methods in science, in primary prevention and treatment strategies, and markedly contribute to the development of modern integrative and personalized medicine.
Feedforward object-vision models only tolerate small image variations compared to human
Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi
2014-01-01
Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986
Bold endeavors: behavioral lessons from polar and space exploration
NASA Technical Reports Server (NTRS)
Stuster, J. W.
2000-01-01
Anecdotal comparisons frequently are made between expeditions of the past and space missions of the future. Spacecraft are far more complex than sailing ships, but from a psychological perspective, the differences are few between confinement in a small wooden ship locked in the polar ice cap and confinement in a small high-technology ship hurtling through interplanetary space. This paper discusses some of the behavioral lessons that can be learned from previous expeditions and applied to facilitate human adjustment and performance during future space expeditions of long duration.
Zhang, Xuebo; Zeng, Shaoju; Zhang, Xinwen; Zuo, Mingxue
2011-09-12
Songbirds can produce a remarkable diversity of songs, which is well-characterized learned behavior that reflects the basic processes of language learning in humans. As song control nuclei governing song behavior has been identified, bird song provides an excellent model to address the relationship between brain areas and their controlling behavior. The Mongolian lark (Melanocorypha mongolica), a species of the Alaudidae family, is well known for its elaborate singing and ability to learn new songs, even in adulthood. Here, we studied the singing behavior and underlying neural structures of the Mongolian lark in both sexes. We found that the sizes of song bouts and song phrases (song repertoires) in male Mongolian larks are extremely large, and that each song repertoire or phrase has a complex structure, comprising several different syllables that seldom appear in other types of song bouts. In accordance with these complex songs, Mongolian lark song control nuclei are well developed and can be easily detected by Nissl staining. In contrast to male Mongolian larks, females were not observed to sing. However, they possess significant song control nuclei with abundant neural connectivity within them despite their small sizes compared with males. These data provide new evidence that help further clarify the mechanisms by which songbirds sing. Our results also have implications for the evolution of complex birdsongs and song control nuclei in oscine birds. Copyright © 2011 Elsevier B.V. All rights reserved.
Increasing honesty in humans with noninvasive brain stimulation
Maréchal, Michel André; Cohn, Alain; Ugazio, Giuseppe
2017-01-01
Honesty plays a key role in social and economic interactions and is crucial for societal functioning. However, breaches of honesty are pervasive and cause significant societal and economic problems that can affect entire nations. Despite its importance, remarkably little is known about the neurobiological mechanisms supporting honest behavior. We demonstrate that honesty can be increased in humans with transcranial direct current stimulation (tDCS) over the right dorsolateral prefrontal cortex. Participants (n = 145) completed a die-rolling task where they could misreport their outcomes to increase their earnings, thereby pitting honest behavior against personal financial gain. Cheating was substantial in a control condition but decreased dramatically when neural excitability was enhanced with tDCS. This increase in honesty could not be explained by changes in material self-interest or moral beliefs and was dissociated from participants’ impulsivity, willingness to take risks, and mood. A follow-up experiment (n = 156) showed that tDCS only reduced cheating when dishonest behavior benefited the participants themselves rather than another person, suggesting that the stimulated neural process specifically resolves conflicts between honesty and material self-interest. Our results demonstrate that honesty can be strengthened by noninvasive interventions and concur with theories proposing that the human brain has evolved mechanisms dedicated to control complex social behaviors. PMID:28396395
Predicting Pilot Behavior in Medium Scale Scenarios Using Game Theory and Reinforcement Learning
NASA Technical Reports Server (NTRS)
Yildiz, Yildiray; Agogino, Adrian; Brat, Guillaume
2013-01-01
Effective automation is critical in achieving the capacity and safety goals of the Next Generation Air Traffic System. Unfortunately creating integration and validation tools for such automation is difficult as the interactions between automation and their human counterparts is complex and unpredictable. This validation becomes even more difficult as we integrate wide-reaching technologies that affect the behavior of different decision makers in the system such as pilots, controllers and airlines. While overt short-term behavior changes can be explicitly modeled with traditional agent modeling systems, subtle behavior changes caused by the integration of new technologies may snowball into larger problems and be very hard to detect. To overcome these obstacles, we show how integration of new technologies can be validated by learning behavior models based on goals. In this framework, human participants are not modeled explicitly. Instead, their goals are modeled and through reinforcement learning their actions are predicted. The main advantage to this approach is that modeling is done within the context of the entire system allowing for accurate modeling of all participants as they interact as a whole. In addition such an approach allows for efficient trade studies and feasibility testing on a wide range of automation scenarios. The goal of this paper is to test that such an approach is feasible. To do this we implement this approach using a simple discrete-state learning system on a scenario where 50 aircraft need to self-navigate using Automatic Dependent Surveillance-Broadcast (ADS-B) information. In this scenario, we show how the approach can be used to predict the ability of pilots to adequately balance aircraft separation and fly efficient paths. We present results with several levels of complexity and airspace congestion.
A Rose by Naming: How We May Learn How to Do It
ERIC Educational Resources Information Center
Greer, R. Douglas; Longano, Jennifer
2010-01-01
Naming appears to be the source of the explosion in language development and involves the integration of the initially separate listener and speaker responses. This integration has a role in the development of reading, writing, and the following and construction of verbal algorithms that make types of complex human behavior possible. Considerable…
Moral judgments, emotions and the utilitarian brain.
Moll, Jorge; de Oliveira-Souza, Ricardo
2007-08-01
The investigation of the neural and cognitive mechanisms underlying the moral mind is of paramount importance for understanding complex human behaviors, from altruism to antisocial acts. A new study on patients with prefrontal damage provides key insights on the neurobiology of moral judgment and raises new questions on the mechanisms by which reason and emotion contribute to moral cognition.
ERIC Educational Resources Information Center
Willis, Mike
2008-01-01
This article identifies a range of personal relationships observable in Sino foreign strategic alliances. Guanxi relationships remained the key to a successful alliance; and encompassed various levels, stages, and dimensions--making them complex and changeable forms of human behavior. Other types of relationships identified included "basic…
Eye Movements in Reading as Rational Behavior
ERIC Educational Resources Information Center
Bicknell, Klinton
2011-01-01
Moving one's eyes while reading is one of the most complex everyday tasks humans face. To perform efficiently, readers must make decisions about when and where to move their eyes every 200-300ms. Over the past decades, it has been demonstrated that these fine-grained decisions are influenced by a range of linguistic properties of the text, and…
Econophysics: from Game Theory and Information Theory to Quantum Mechanics
NASA Astrophysics Data System (ADS)
Jimenez, Edward; Moya, Douglas
2005-03-01
Rationality is the universal invariant among human behavior, universe physical laws and ordered and complex biological systems. Econophysics isboth the use of physical concepts in Finance and Economics, and the use of Information Economics in Physics. In special, we will show that it is possible to obtain the Quantum Mechanics principles using Information and Game Theory.
How It's Done: Using "Hitch" as a Guide to Uncertainty Reduction Theory
ERIC Educational Resources Information Center
Dawkins, Marcia Alesan
2010-01-01
Popular films can be important pedagogical tools in today's communication courses. Constructing classroom experiences that use film can make theory come alive for students. At the same time, theory can be used to probe deeper into the complexities of human behavior via astute film analysis. In the case of Uncertainty Reduction Theory (URT), a…
ERIC Educational Resources Information Center
Pociask, Fredrick D.; Morrison, Gary
2004-01-01
Human working memory can be defined as a component system responsible for the temporary storage and manipulation of information related to higher level cognitive behaviors, such as understanding and reasoning (Baddeley, 1992; Becker & Morris, 1999). Working memory, while able to manage a complex array of cognitive activities, presents with an…
ERIC Educational Resources Information Center
Vale, G. L.; Flynn, E. G.; Kendal, R. L.
2012-01-01
Cumulative culture denotes the, arguably, human capacity to build on the cultural behaviors of one's predecessors, allowing increases in cultural complexity to occur such that many of our cultural artifacts, products and technologies have progressed beyond what a single individual could invent alone. This process of cumulative cultural evolution…
Introduction to Architectures: HSCB Information - What It Is and How It Fits (or Doesn’t Fit)
2010-10-01
Simulation Interoperability Workshop, 01E- SIW -080 [15] Barry G. Silverman, Gnana Gharathy, Kevin O’Brien, Jason Cornwell, “Human Behavior Models for Agents...Workshop, 10F- SIW -023, September 2010. [17] Christiansen, John H., “A flexible object-based software framework for modelling complex systems with
Complex Sequencing Rules of Birdsong Can be Explained by Simple Hidden Markov Processes
Katahira, Kentaro; Suzuki, Kenta; Okanoya, Kazuo; Okada, Masato
2011-01-01
Complex sequencing rules observed in birdsongs provide an opportunity to investigate the neural mechanism for generating complex sequential behaviors. To relate the findings from studying birdsongs to other sequential behaviors such as human speech and musical performance, it is crucial to characterize the statistical properties of the sequencing rules in birdsongs. However, the properties of the sequencing rules in birdsongs have not yet been fully addressed. In this study, we investigate the statistical properties of the complex birdsong of the Bengalese finch (Lonchura striata var. domestica). Based on manual-annotated syllable labeles, we first show that there are significant higher-order context dependencies in Bengalese finch songs, that is, which syllable appears next depends on more than one previous syllable. We then analyze acoustic features of the song and show that higher-order context dependencies can be explained using first-order hidden state transition dynamics with redundant hidden states. This model corresponds to hidden Markov models (HMMs), well known statistical models with a large range of application for time series modeling. The song annotation with these models with first-order hidden state dynamics agreed well with manual annotation, the score was comparable to that of a second-order HMM, and surpassed the zeroth-order model (the Gaussian mixture model; GMM), which does not use context information. Our results imply that the hierarchical representation with hidden state dynamics may underlie the neural implementation for generating complex behavioral sequences with higher-order dependencies. PMID:21915345
Parasuraman, Raja; Jiang, Yang
2012-01-01
We describe the use of behavioral, neuroimaging, and genetic methods to examine individual differences in cognition and affect, guided by three criteria: (1) relevance to human performance in work and everyday settings; (2) interactions between working memory, decision-making, and affective processing; and (3) examination of individual differences. The results of behavioral, functional MRI (fMRI), event-related potential (ERP), and molecular genetic studies show that analyses at the group level often mask important findings associated with sub-groups of individuals. Dopaminergic/noradrenergic genes influencing prefrontal cortex activity contribute to inter-individual variation in working memory and decision behavior, including performance in complex simulations of military decision-making. The interactive influences of individual differences in anxiety, sensation seeking, and boredom susceptibility on evaluative decision-making can be systematically described using ERP and fMRI methods. We conclude that a multi-modal neuroergonomic approach to examining brain function (using both neuroimaging and molecular genetics) can be usefully applied to understanding individual differences in cognition and affect and has implications for human performance at work. PMID:21569853
Cognitive Aspects of Power in a Two-Level Game
NASA Astrophysics Data System (ADS)
Juvina, Ion; Lebiere, Christian; Martin, Jolie; Gonzalez, Cleotilde
The Intergroup Prisoner's Dilemma with Intragroup Power Dynamics (IPD^2) is a new game paradigm for studying human behavior in conflict situations. IPD^2 adds the concept of intragroup power to an intergroup version of the standard Iterated Prisoner's Dilemma game. We conducted an exploratory laboratory study in which individual human participants played the game against computer strategies of various complexities. We also developed a cognitive model of human decision making in this game. The model was run in place of the human participant under the same conditions as in the laboratory study. Results from the human study and the model simulations are presented and discussed, emphasizing the value of including intragroup power in game theoretic models of conflict.
NASA Astrophysics Data System (ADS)
Burghardt, Gordon M.
2017-03-01
Nobuo Masataka [1] has provided a novel and ambitious approach to understanding variations in mental and neural functioning in humans by embedding them in the concept of neurodiversity. He is particularly interested in Autism Spectrum Disorder (ASD) and views it as on a continuum falling within normal human behavioral variation. If this is true and ASD has been maintained in a population by selection, then, he argues, ASD individuals may have had survival advantages during the EEA (environment of evolutionary adaptiveness), before the advent of large and complex societies. After this point, properly interpreting and responding to social and global cues gained importance at the expense of detailed feature based processing of nonsocial features of the environment.
Modeling the human as a controller in a multitask environment
NASA Technical Reports Server (NTRS)
Govindaraj, T.; Rouse, W. B.
1978-01-01
Modeling the human as a controller of slowly responding systems with preview is considered. Along with control tasks, discrete noncontrol tasks occur at irregular intervals. In multitask situations such as these, it has been observed that humans tend to apply piecewise constant controls. It is believed that the magnitude of controls and the durations for which they remain constant are dependent directly on the system bandwidth, preview distance, complexity of the trajectory to be followed, and nature of the noncontrol tasks. A simple heuristic model of human control behavior in this situation is presented. The results of a simulation study, whose purpose was determination of the sensitivity of the model to its parameters, are discussed.
Oxytocin promotes social bonding in dogs.
Romero, Teresa; Nagasawa, Miho; Mogi, Kazutaka; Hasegawa, Toshikazu; Kikusui, Takefumi
2014-06-24
Recent evidence suggests that enduring social bonds have fitness benefits. However, very little is known about the neural circuitry and neurochemistry underlying the formation and maintenance of stable social bonds outside reproductive contexts. Oxytocin (OT), a neuropeptide synthetized by the hypothalamus in mammals, regulates many complex forms of social behavior and cognition in both human and nonhuman animals. Animal research, however, has concentrated on monogamous mammals, and it remains unknown whether OT also modulates social bonds in nonreproductive contexts. In this study we provide behavioral evidence that exogenous OT promotes positive social behaviors in the domestic dog toward not only conspecifics but also human partners. Specifically, when sprayed with OT, dogs showed higher social orientation and affiliation toward their owners and higher affiliation and approach behaviors toward dog partners than when sprayed with placebo. Additionally, the exchange of socio-positive behaviors with dog partners triggered the release of endogenous OT, highlighting the involvement of OT in the development of social relationships in the domestic dog. These data provide new insight into the mechanisms that facilitate the maintenance of close social bonds beyond immediate reproductive interest or genetic ties and complement a growing body of evidence that identifies OT as one of the neurochemical foundations of sociality in mammalian species.
Neuroendocrine-Immune Circuits, Phenotypes, and Interactions
Ashley, Noah T.; Demas, Gregory E.
2016-01-01
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. PMID:27765499
Neuroendocrine-immune circuits, phenotypes, and interactions.
Ashley, Noah T; Demas, Gregory E
2017-01-01
Multidirectional interactions among the immune, endocrine, and nervous systems have been demonstrated in humans and non-human animal models for many decades by the biomedical community, but ecological and evolutionary perspectives are lacking. Neuroendocrine-immune interactions can be conceptualized using a series of feedback loops, which culminate into distinct neuroendocrine-immune phenotypes. Behavior can exert profound influences on these phenotypes, which can in turn reciprocally modulate behavior. For example, the behavioral aspects of reproduction, including courtship, aggression, mate selection and parental behaviors can impinge upon neuroendocrine-immune interactions. One classic example is the immunocompetence handicap hypothesis (ICHH), which proposes that steroid hormones act as mediators of traits important for female choice while suppressing the immune system. Reciprocally, neuroendocrine-immune pathways can promote the development of altered behavioral states, such as sickness behavior. Understanding the energetic signals that mediate neuroendocrine-immune crosstalk is an active area of research. Although the field of psychoneuroimmunology (PNI) has begun to explore this crosstalk from a biomedical standpoint, the neuroendocrine-immune-behavior nexus has been relatively underappreciated in comparative species. The field of ecoimmunology, while traditionally emphasizing the study of non-model systems from an ecological evolutionary perspective, often under natural conditions, has focused less on the physiological mechanisms underlying behavioral responses. This review summarizes neuroendocrine-immune interactions using a comparative framework to understand the ecological and evolutionary forces that shape these complex physiological interactions. Copyright © 2016 Elsevier Inc. All rights reserved.
Comparison of visual sensitivity to human and object motion in autism spectrum disorder.
Kaiser, Martha D; Delmolino, Lara; Tanaka, James W; Shiffrar, Maggie
2010-08-01
Successful social behavior requires the accurate detection of other people's movements. Consistent with this, typical observers demonstrate enhanced visual sensitivity to human movement relative to equally complex, nonhuman movement [e.g., Pinto & Shiffrar, 2009]. A psychophysical study investigated visual sensitivity to human motion relative to object motion in observers with autism spectrum disorder (ASD). Participants viewed point-light depictions of a moving person and, for comparison, a moving tractor and discriminated between coherent and scrambled versions of these stimuli in unmasked and masked displays. There were three groups of participants: young adults with ASD, typically developing young adults, and typically developing children. Across masking conditions, typical observers showed enhanced visual sensitivity to human movement while observers in the ASD group did not. Because the human body is an inherently social stimulus, this result is consistent with social brain theories [e.g., Pelphrey & Carter, 2008; Schultz, 2005] and suggests that the visual systems of individuals with ASD may not be tuned for the detection of socially relevant information such as the presence of another person. Reduced visual sensitivity to human movements could compromise important social behaviors including, for example, gesture comprehension.
Using APEX to Model Anticipated Human Error: Analysis of a GPS Navigational Aid
NASA Technical Reports Server (NTRS)
VanSelst, Mark; Freed, Michael; Shefto, Michael (Technical Monitor)
1997-01-01
The interface development process can be dramatically improved by predicting design facilitated human error at an early stage in the design process. The approach we advocate is to SIMULATE the behavior of a human agent carrying out tasks with a well-specified user interface, ANALYZE the simulation for instances of human error, and then REFINE the interface or protocol to minimize predicted error. This approach, incorporated into the APEX modeling architecture, differs from past approaches to human simulation in Its emphasis on error rather than e.g. learning rate or speed of response. The APEX model consists of two major components: (1) a powerful action selection component capable of simulating behavior in complex, multiple-task environments; and (2) a resource architecture which constrains cognitive, perceptual, and motor capabilities to within empirically demonstrated limits. The model mimics human errors arising from interactions between limited human resources and elements of the computer interface whose design falls to anticipate those limits. We analyze the design of a hand-held Global Positioning System (GPS) device used for radical and navigational decisions in small yacht recalls. The analysis demonstrates how human system modeling can be an effective design aid, helping to accelerate the process of refining a product (or procedure).
Dopamine modulates risk-taking as a function of baseline sensation-seeking trait.
Norbury, Agnes; Manohar, Sanjay; Rogers, Robert D; Husain, Masud
2013-08-07
Trait sensation-seeking, defined as a need for varied, complex, and intense sensations, represents a relatively underexplored hedonic drive in human behavioral neuroscience research. It is related to increased risk for a range of behaviors including substance use, gambling, and risky sexual practice. Individual differences in self-reported sensation-seeking have been linked to brain dopamine function, particularly at D2-like receptors, but so far no causal evidence exists for a role of dopamine in sensation-seeking behavior in humans. Here, we investigated the effects of the selective D2/D3 agonist cabergoline on performance of a probabilistic risky choice task in healthy humans using a sensitive within-subject, placebo-controlled design. Cabergoline significantly influenced the way participants combined different explicit signals regarding probability and loss when choosing between response options associated with uncertain outcomes. Importantly, these effects were strongly dependent on baseline sensation-seeking score. Overall, cabergoline increased sensitivity of choice to information about probability of winning; while decreasing discrimination according to magnitude of potential losses associated with different options. The largest effects of the drug were observed in participants with lower sensation-seeking scores. These findings provide evidence that risk-taking behavior in humans can be directly manipulated by a dopaminergic drug, but that the effectiveness of such a manipulation depends on baseline differences in sensation-seeking trait. This emphasizes the importance of considering individual differences when investigating manipulation of risky decision-making, and may have relevance for the development of pharmacotherapies for disorders involving excessive risk-taking in humans, such as pathological gambling.
Pruetz, Jill D; LaDuke, Thomas C
2010-04-01
The use and control of fire are uniquely human traits thought to have come about fairly late in the evolution of our lineage, and they are hypothesized to correlate with an increase in intellectual complexity. Given the relatively sophisticated cognitive abilities yet small brain size of living apes compared to humans and even early hominins, observations of wild chimpanzees' reactions to naturally occurring fire can help inform hypotheses about the likely responses of early hominins to fire. We use data on the behavior of savanna chimpanzees (Pan troglodytes verus) at Fongoli, Senegal during two encounters with wildfires to illuminate the similarities between great apes and humans regarding their reaction to fire. Chimpanzees' close relatedness to our lineage makes them phylogenetically relevant to the study of hominid evolution, and the open, hot and dry environment at Fongoli, similar to the savanna mosaic thought to characterize much of hominid evolution, makes these apes ecologically important as a living primate model as well. Chimpanzees at Fongoli calmly monitor wildfires and change their behavior in anticipation of the fire's movement. The ability to conceptualize the "behavior" of fire may be a synapomorphic trait characterizing the human-chimpanzee clade. If the cognitive underpinnings of fire conceptualization are a primitive hominid trait, hypotheses concerning the origins of the control and use of fire may need revision. We argue that our findings exemplify the importance of using living chimpanzees as models for better understanding human evolution despite recently published suggestions to the contrary. (c) 2009 Wiley-Liss, Inc.
Anker, Justin J; Carroll, Marilyn E
2010-11-01
This review summarizes findings from human and animal research investigating the influence of progesterone and its metabolites allopreganolone and pregnanolone (progestins) on the effects of cocaine and other drugs of abuse. Since a majority of these studies have used cocaine, this will be the primary focus; however, the influence of progestins on other drugs of abuse will also be discussed. Collectively, findings from these studies support a role for progestins in (1) attenuating the subjective and physiological effects of cocaine in humans, (2) blocking the reinforcing and other behavioral effects of cocaine in animal models of drug abuse, and (3) influencing behavioral responses to other drugs of abuse such as alcohol and nicotine in animals. Administration of several drugs of abuse in both human and nonhuman animals significantly increased progestin levels, and this is explained in terms of progestins acting as homeostatic regulators that decrease and normalize heightened stress and reward responses which lead to increased drug craving and relapse. The findings discussed here highlight the complexity of progestin-drug interactions, and they suggest a possible use for these agents in understanding the etiology of and developing treatments for drug abuse. Copyright © 2010 Elsevier Ltd. All rights reserved.
Fam, Justine; Westbrook, Fred; Arabzadeh, Ehsan
2016-01-01
Identifying similarities and differences in choice behavior across species is informative about how basic mechanisms give rise to more complex processes. In the present study, we compared pre- and post-choice latencies between rats and humans under two paradigms. In Experiment 1, we used a cued choice paradigm where subjects were presented with a cue that directed them as to which of two options to respond for rewards. In Experiment 2, subjects were free to choose between two options in order to procure rewards. In both Experiments rewards were delivered with distinct probabilities. The trial structure used in these experiments allowed the choice process to be decomposed into pre- and post-choice processes. Overall, post-choice latencies reflected the difference in reward probability between the two options, where latencies for the option with higher probability of reward were longer than those for the option with lower probability of reward. An interesting difference between rats and humans was observed: the choice behavior for humans, but not rats, was sensitive to the free-choice aspect of the tasks, such that in free-choice trials post-choice latencies no longer reflected the difference in reward probabilities between the two options. PMID:26862000
Oxytocin mediated behavior in invertebrates: An evolutionary perspective.
Lockard, Meghan A; Ebert, Margaret S; Bargmann, Cornelia I
2017-02-01
The molecular and functional conservation of oxytocin-related neuropeptides in behavior is striking. In animals separated by at least 600 million years of evolution, from roundworms to humans, oxytocin homologs play critical roles in the modulation of reproductive behavior and other biological functions. Here, we review the roles of oxytocin in invertebrate behavior from an evolutionary perspective. We begin by tracing the evolution of oxytocin through the invertebrate animal lineages, and then describe common themes in invertebrate behaviors that are mediated by oxytocin-related peptides, including reproductive behavior, learning and memory, food arousal, and predator/prey relationships. Finally, we discuss interesting future directions that have recently become experimentally tractable. Studying oxytocin in invertebrates offers precise insights into the activity of neuropeptides on well-defined neural circuits; the principles that emerge may also be represented in the more complex vertebrate brain. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 128-142, 2017. © 2016 Wiley Periodicals, Inc.
Single molecule study of the intrinsically disordered FG-repeat nucleoporin 153.
Milles, Sigrid; Lemke, Edward A
2011-10-05
Nucleoporins (Nups), which are intrinsically disordered, form a selectivity filter inside the nuclear pore complex, taking a central role in the vital nucleocytoplasmic transport mechanism. These Nups display a complex and nonrandom amino-acid architecture of phenylalanine glycine (FG)-repeat clusters and intra-FG linkers. How such heterogeneous sequence composition relates to function and could give rise to a transport mechanism is still unclear. Here we describe a combined chemical biology and single-molecule fluorescence approach to study the large human Nup153 FG-domain. In order to obtain insights into the properties of this domain beyond the average behavior, we probed the end-to-end distance (R(E)) of several ∼50-residues long FG-repeat clusters in the context of the whole protein domain. Despite the sequence heterogeneity of these FG-clusters, we detected a reoccurring and consistent compaction from a relaxed coil behavior under denaturing conditions (R(E)/R(E,RC) = 0.99 ± 0.15 with R(E,RC) corresponding to ideal relaxed coil behavior) to a collapsed state under native conditions (R(E)/R(E,RC) = 0.79 ± 0.09). We then analyzed the properties of this protein on the supramolecular level, and determined that this human FG-domain was in fact able to form a hydrogel with physiological permeability barrier properties. Copyright © 2011 Biophysical Society. Published by Elsevier Inc. All rights reserved.
Network Theory: A Primer and Questions for Air Transportation Systems Applications
NASA Technical Reports Server (NTRS)
Holmes, Bruce J.
2004-01-01
A new understanding (with potential applications to air transportation systems) has emerged in the past five years in the scientific field of networks. This development emerges in large part because we now have a new laboratory for developing theories about complex networks: The Internet. The premise of this new understanding is that most complex networks of interest, both of nature and of human contrivance, exhibit a fundamentally different behavior than thought for over two hundred years under classical graph theory. Classical theory held that networks exhibited random behavior, characterized by normal, (e.g., Gaussian or Poisson) degree distributions of the connectivity between nodes by links. The new understanding turns this idea on its head: networks of interest exhibit scale-free (or small world) degree distributions of connectivity, characterized by power law distributions. The implications of scale-free behavior for air transportation systems include the potential that some behaviors of complex system architectures might be analyzed through relatively simple approximations of local elements of the system. For air transportation applications, this presentation proposes a framework for constructing topologies (architectures) that represent the relationships between mobility, flight operations, aircraft requirements, and airspace capacity, and the related externalities in airspace procedures and architectures. The proposed architectures or topologies may serve as a framework for posing comparative and combinative analyses of performance, cost, security, environmental, and related metrics.
Young, Kimberly A.; Liu, Yan; Wang, Zuoxin
2008-01-01
The formation and maintenance of social bonds in adulthood is an essential component of human health. However studies investigating the underlying neurobiology of such behaviors have been scarce. Microtine rodents offer a unique comparative animal model to explore the neural processes responsible for pair bonding and its associated behaviors. Studies using monogamous prairie voles and other related species have recently offered insight into the neuroanatomical, neurobiological, and neurochemical underpinnings of social attachment. In this review, we will discuss the utility of the microtine rodents in comparative studies by exploring their natural history and social behavior in the laboratory. We will then summarize the data implicating vasopressin, oxytocin, and dopamine in the regulation of pair bonding. Finally, we will discuss the ways in which these neurochemical systems may interact to mediate this complex behavior. PMID:18417423
Choices Matter, but How Do We Model Them?
NASA Astrophysics Data System (ADS)
Brelsford, C.; Dumas, M.
2017-12-01
Quantifying interactions between social systems and the physical environment we live within has long been a major scientific challenge. Humans have had such a large influence on our environment that it is no longer reasonable to consider the behavior of an ecological or hydrological system from a purely `physical' perspective: imagining a system that excludes the influence of human choices and behavior. Understanding the role that human social choices play in the energy water nexus is crucial for developing accurate models in that space. The relatively new field of socio-hydrology is making progress towards understanding the role humans play in hydrological systems. While this fact is now widely recognized across the many academic fields that study water systems, we have yet to develop a coherent set of theories for how to model the behavior of these complex and highly interdependent socio-hydrological systems. How should we conceptualize hydrological systems as socio-ecological systems (i.e. system with variables, states, parameters, actors who can control certain variables and a sense of the desirability of states) within which the rigorous study of feedbacks becomes possible? This talk reviews the state of knowledge of how social decisions around water consumption, allocation, and transport influence and are influenced by the physical hydrology that water also moves within. We cover recent papers in socio-hydrology, engineering, water law, and institutional analysis. There have been several calls within socio-hydrology to model human social behavior endogenously along with the hydrology. These improvements are needed across a range of spatial and temporal scales. We suggest two potential strategies for coupled models that allow endogenous water consumption behavior: a social first model which looks for empirical relationships between water consumption and allocation choices and the hydrological state, and a hydrology first model in which we look for regularities in how water regimes influence behavior, regional economies, or allocation institutions.
Theiner, Sarah; Grabarics, Márkó; Galvez, Luis; Varbanov, Hristo P; Sommerfeld, Nadine S; Galanski, Markus; Keppler, Bernhard K; Koellensperger, Gunda
2018-04-17
The potential advantage of platinum(iv) complexes as alternatives to classical platinum(ii)-based drugs relies on their kinetic stability in the body before reaching the tumor site and on their activation by reduction inside cancer cells. In this study, an analytical workflow has been developed to investigate the reductive biotransformation and kinetic inertness of platinum(iv) prodrugs comprising different ligand coordination spheres (respectively, lipophilicity and redox behavior) in whole human blood. The distribution of platinum(iv) complexes in blood pellets and plasma was determined by inductively coupled plasma-mass spectrometry (ICP-MS) after microwave digestion. An analytical approach based on reversed-phase (RP)-ICP-MS was used to monitor the parent compound and the formation of metabolites using two different extraction procedures. The ligand coordination sphere of the platinum(iv) complexes had a significant impact on their accumulation in red blood cells and on their degree of kinetic inertness in whole human blood. The most lipophilic platinum(iv) compound featuring equatorial chlorido ligands showed a pronounced penetration into blood cells and a rapid reductive biotransformation. In contrast, the more hydrophilic platinum(iv) complexes with a carboplatin- and oxaliplatin-core exerted kinetic inertness on a pharmacologically relevant time scale with notable amounts of the compound accumulated in the plasma fraction.
Shoaling develops with age in Zebrafish (Danio rerio)
Buske, Christine; Gerlai, Robert
2010-01-01
The biological mechanisms of human social behavior are complex. Animal models may facilitate the understanding of these mechanisms and may help one to develop treatment strategies for abnormal human social behavior, a core symptom in numerous clinical conditions. The zebrafish is perhaps the most social vertebrate among commonly used laboratory species. Given its practical features and the numerous genetic tools developed for it, it should be a promising tool. Zebrafish shoal, i.e. form tight multimember groups, but the ontogenesis of this behavior has not been described. Analyzing the development of shoaling is a step towards discovering the mechanisms of this behavior. Here we study age-dependent changes of shoaling in zebrafish from day 7 post fertilization to over 5 months of age by measuring the distance between all pairs of fish in freely swimming groups of ten subjects. Our longitudinal (repeated measure within subject) and cross sectional (non-repeated measure between subject) analyses both demonstrated a significant increase of shoaling with age (decreased distance between shoal members). Given the sophisticated genetic and developmental biology methods already available for zebrafish, we argue that our behavioral results open a new avenue towards the understanding of the development of vertebrate social behavior and of its mechanisms and abnormalities. PMID:20837077
LINEBACKER: LINE-speed Bio-inspired Analysis and Characterization for Event Recognition
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oehmen, Christopher S.; Bruillard, Paul J.; Matzke, Brett D.
2016-08-04
The cyber world is a complex domain, with digital systems mediating a wide spectrum of human and machine behaviors. While this is enabling a revolution in the way humans interact with each other and data, it also is exposing previously unreachable infrastructure to a worldwide set of actors. Existing solutions for intrusion detection and prevention that are signature-focused typically seek to detect anomalous and/or malicious activity for the sake of preventing or mitigating negative impacts. But a growing interest in behavior-based detection is driving new forms of analysis that move the emphasis from static indicators (e.g. rule-based alarms or tripwires)more » to behavioral indicators that accommodate a wider contextual perspective. Similar to cyber systems, biosystems have always existed in resource-constrained hostile environments where behaviors are tuned by context. So we look to biosystems as an inspiration for addressing behavior-based cyber challenges. In this paper, we introduce LINEBACKER, a behavior-model based approach to recognizing anomalous events in network traffic and present the design of this approach of bio-inspired and statistical models working in tandem to produce individualized alerting for a collection of systems. Preliminary results of these models operating on historic data are presented along with a plugin to support real-world cyber operations.« less
A chaotic view of behavior change: a quantum leap for health promotion.
Resnicow, Ken; Vaughan, Roger
2006-09-12
The study of health behavior change, including nutrition and physical activity behaviors, has been rooted in a cognitive-rational paradigm. Change is conceptualized as a linear, deterministic process where individuals weigh pros and cons, and at the point at which the benefits outweigh the cost change occurs. Consistent with this paradigm, the associated statistical models have almost exclusively assumed a linear relationship between psychosocial predictors and behavior. Such a perspective however, fails to account for non-linear, quantum influences on human thought and action. Consider why after years of false starts and failed attempts, a person succeeds at increasing their physical activity, eating healthier or losing weight. Or, why after years of success a person relapses. This paper discusses a competing view of health behavior change that was presented at the 2006 annual ISBNPA meeting in Boston. Rather than viewing behavior change from a linear perspective it can be viewed as a quantum event that can be understood through the lens of Chaos Theory and Complex Dynamic Systems. Key principles of Chaos Theory and Complex Dynamic Systems relevant to understanding health behavior change include: 1) Chaotic systems can be mathematically modeled but are nearly impossible to predict; 2) Chaotic systems are sensitive to initial conditions; 3) Complex Systems involve multiple component parts that interact in a nonlinear fashion; and 4) The results of Complex Systems are often greater than the sum of their parts. Accordingly, small changes in knowledge, attitude, efficacy, etc may dramatically alter motivation and behavioral outcomes. And the interaction of such variables can yield almost infinite potential patterns of motivation and behavior change. In the linear paradigm unaccounted for variance is generally relegated to the catch all "error" term, when in fact such "error" may represent the chaotic component of the process. The linear and chaotic paradigms are however, not mutually exclusive, as behavior change may include both chaotic and cognitive processes. Studies of addiction suggest that many decisions to change are quantum rather than planned events; motivation arrives as opposed to being planned. Moreover, changes made through quantum processes appear more enduring than those that involve more rational, planned processes. How such processes may apply to nutrition and physical activity behavior and related interventions merits examination.
Effects of Task Complexity on L2 Writing Behaviors and Linguistic Complexity
ERIC Educational Resources Information Center
Révész, Andrea; Kourtali, Nektaria-Efstathia; Mazgutova, Diana
2017-01-01
This study investigated whether task complexity influences second language (L2) writers' fluency, pausing, and revision behaviors and the cognitive processes underlying these behaviors; whether task complexity affects linguistic complexity of written output; and whether relationships between writing behaviors and linguistic complexity are…
Connected Worlds: Connecting the public with complex environmental systems
NASA Astrophysics Data System (ADS)
Uzzo, S. M.; Chen, R. S.; Downs, R. R.
2016-12-01
Among the most important concepts in environmental science learning is the structure and dynamics of coupled human and natural systems (CHANS). But the fundamental epistemology for understanding CHANS requires systems thinking, interdisciplinarity, and complexity. Although the Next Generation Science Standards mandate connecting ideas across disciplines and systems, traditional approaches to education do not provide more than superficial understanding of this concept. Informal science learning institutions have a key role in bridging gaps between the reductive nature of classroom learning and contemporary data-driven science. The New York Hall of Science, in partnership with Design I/O and Columbia University's Center for International Earth Science Information Network, has developed an approach to immerse visitors in complex human nature interactions and provide opportunities for those of all ages to elicit and notice environmental consequences of their actions. Connected Worlds is a nearly 1,000 m2 immersive, playful environment in which students learn about complexity and interconnectedness in ecosystems and how ecosystems might respond to human intervention. It engages students through direct interactions with fanciful flora and fauna within and among six biomes: desert, rainforest, grassland, mountain valley, reservoir, and wetlands, which are interconnected through stocks and flows of water. Through gestures and the manipulation of a dynamic water system, Connected Worlds enables students, teachers, and parents to experience how the ecosystems of planet Earth are connected and to observe relationships between the behavior of Earth's inhabitants and our shared world. It is also a cyberlearning platform to study how visitors notice and scaffold their understanding of complex environmental processes and the responses of these processes to human intervention, to help inform the improvement of education practices in complex environmental science.
Micromechanical model for protein materials: From macromolecules to macroscopic fibers
NASA Astrophysics Data System (ADS)
Puglisi, G.; De Tommasi, D.; Pantano, M. F.; Pugno, N. M.; Saccomandi, G.
2017-10-01
We propose a model for the mechanical behavior of protein materials. Based on a limited number of experimental macromolecular parameters (persistence and contour length) we obtain the macroscopic behavior of keratin fibers (human, cow, and rabbit hair), taking into account the damage and residual stretches effects that are fundamental in many functions of life. We also show the capability of our approach to describe the main dissipation and permanent strain effects observed in the more complex spider silk fibers. The comparison between our results and the data obtained experimentally from cyclic tests demonstrates that our model is robust and is able to reproduce with a remarkable accuracy the experimental behavior of all protein materials we tested.
Robustness of critical points in a complex adaptive system: Effects of hedge behavior
NASA Astrophysics Data System (ADS)
Liang, Yuan; Huang, Ji-Ping
2013-08-01
In our recent papers, we have identified a class of phase transitions in the market-directed resource-allocation game, and found that there exists a critical point at which the phase transitions occur. The critical point is given by a certain resource ratio. Here, by performing computer simulations and theoretical analysis, we report that the critical point is robust against various kinds of human hedge behavior where the numbers of herds and contrarians can be varied widely. This means that the critical point can be independent of the total number of participants composed of normal agents, herds and contrarians, under some conditions. This finding means that the critical points we identified in this complex adaptive system (with adaptive agents) may also be an intensive quantity, similar to those revealed in traditional physical systems (with non-adaptive units).
Electromagnetic game modeling through Tensor Analysis of Networks and Game Theory
NASA Astrophysics Data System (ADS)
Maurice, Olivier; Reineix, Alain; Lalléchère, Sébastien
2014-10-01
A complex system involves events coming from natural behaviors. Whatever is the complicated face of machines, they are still far from the complexity of natural systems. Currently, economy is one of the rare science trying to find out some ways to model human behavior. These attempts involve game theory and psychology. Our purpose is to develop a formalism able to take in charge both game and hardware modeling. We first present the Tensorial Analysis of Networks, used for the material part of the system. Then, we detail the mathematical objects defined in order to describe the evolution of the system and its gaming side. To illustrate the discussion we consider the case of a drone whose electronic can be disturbed by a radar field, but this drone must fly as near as possible close to this radar.
Effects of male sex hormones on gender identity, sexual behavior, and cognitive function.
Zhu, Yuan-shan; Cai, Li-qun
2006-04-01
Androgens, the male sex hormones, play an essential role in male sexual differentiation and development. However, the influence of these sex hormones extends beyond their roles in sexual differentiation and development. In many animal species, sex hormones have been shown to be essential for sexual differentiation of the brain during development and for maintaining sexually dimorphic behavior throughout life. The principals of sex determination in humans have been demonstrated to be similar to other mammals. However, the hormonal influence on sexual dimorphic differences in the nervous system in humans, sex differences in behaviors, and its correlations with those of other mammals is still an emerging field. In this review, the roles of androgens in gender and cognitive function are discussed with the emphasis on subjects with androgen action defects including complete androgen insensitivity due to androgen receptor mutations and 5alpha-reductase-2 deficiency syndromes due to 5alpha-reductase-2 gene mutations. The issue of the complex interaction of nature versus nurture is addressed.
Tschentscher, Nadja; Mitchell, Daniel; Duncan, John
2017-05-03
Fluid intelligence has been associated with a distributed cognitive control or multiple-demand (MD) network, comprising regions of lateral frontal, insular, dorsomedial frontal, and parietal cortex. Human fluid intelligence is also intimately linked to task complexity, and the process of solving complex problems in a sequence of simpler, more focused parts. Here, a complex target detection task included multiple independent rules, applied one at a time in successive task epochs. Although only one rule was applied at a time, increasing task complexity (i.e., the number of rules) impaired performance in participants of lower fluid intelligence. Accompanying this loss of performance was reduced response to rule-critical events across the distributed MD network. The results link fluid intelligence and MD function to a process of attentional focus on the successive parts of complex behavior. SIGNIFICANCE STATEMENT Fluid intelligence is intimately linked to the ability to structure complex problems in a sequence of simpler, more focused parts. We examine the basis for this link in the functions of a distributed frontoparietal or multiple-demand (MD) network. With increased task complexity, participants of lower fluid intelligence showed reduced responses to task-critical events. Reduced responses in the MD system were accompanied by impaired behavioral performance. Low fluid intelligence is linked to poor foregrounding of task-critical information across a distributed MD system. Copyright © 2017 Tschentscher et al.
Wolstenholme, Jennifer T.; Edwards, Michelle; Shetty, Savera R. J.; Gatewood, Jessica D.; Taylor, Julia A.; Connelly, Jessica J.
2012-01-01
Bisphenol A (BPA) is a plasticizer and an endocrine-disrupting chemical. It is present in a variety of products used daily including food containers, paper, and dental sealants and is now widely detected in human urine and blood. Exposure to BPA during development may affect brain organization and behavior, perhaps as a consequence of its actions as a steroid hormone agonist/antagonist and/or an epigenetic modifier. Here we show that BPA produces transgenerational alterations in genes and behavior. Female mice received phytoestrogen-free chow with or without BPA before mating and throughout gestation. Plasma levels of BPA in supplemented dams were in a range similar to those measured in humans. Juveniles in the first generation exposed to BPA in utero displayed fewer social interactions as compared with control mice, whereas in later generations (F2 and F4), the effect of BPA was to increase these social interactions. Brains from embryos (embryonic d 18.5) exposed to BPA had lower gene transcript levels for several estrogen receptors, oxytocin, and vasopressin as compared with controls; decreased vasopressin mRNA persisted into the F4 generation, at which time oxytocin was also reduced but only in males. Thus, exposure to a low dose of BPA, only during gestation, has immediate and long-lasting, transgenerational effects on mRNA in brain and social behaviors. Heritable effects of an endocrine-disrupting chemical have implications for complex neurological diseases and highlight the importance of considering gene-environment interactions in the etiology of complex disease. PMID:22707478
Koshiba, Mamiko; Karino, Genta; Mimura, Koki; Nakamura, Shun; Yui, Kunio; Kunikata, Tetsuya; Yamanouchi, Hideo
2016-01-01
Educational treatment to support social development of children with autism spectrum disorder (ASD) is an important topic in developmental psychiatry. However, it remains difficult to objectively quantify the socio-emotional development of ASD children. To address this problem, we developed a novel analytical method that assesses subjects' complex behaviors using multivariate analysis, 'Behavior Output analysis for Quantitative Emotional State Translation' (BOUQUET). Here, we examine the potential for psycho-cognitive ASD therapy based on comparative evaluations of clinical (human) and experimental (animal) models. Our observations of ASD children (vs. their normally developing siblings) and the domestic chick in socio-sensory deprivation models show the importance of unimodal sensory stimulation, particularly important for tactile- and auditory-biased socialization. Identifying psycho-cognitive elements in early neural development, human newborn infants in neonatal intensive care unit as well as a New World monkey, the common marmoset, also prompted us to focus on the development of voluntary movement against gravity. In summary, striking behavioral similarities between children with ASD and domestic chicks' socio-sensory deprivation models support the role of multimodal sensory-motor integration as a prerequisite step for normal development of socio-emotional and psycho-cognitive functions. Data obtained in the common marmoset model also suggest that switching from primitive anti-gravity reflexes to complex voluntary movement may be a critical milestone for psycho-cognitive development. Combining clinical findings with these animal models, and using multivariate integrative analyses may facilitate the development of effective interventions to improve social functions in infants and in children with neurodevelopmental disorders.
The Evolutionary Psychology of Envy and Jealousy
Ramachandran, Vilayanur S.; Jalal, Baland
2017-01-01
The old dogma has always been that the most complex aspects of human emotions are driven by culture; Germans and English are thought to be straight-laced whereas Italians and Indians are effusive. Yet in the last two decades there has been a growing realization that even though culture plays a major role in the final expression of human nature, there must be a basic scaffolding specified by genes. While this is recognized to be true for simple emotions like anger, fear, and joy, the relevance of evolutionary arguments for more complex nuances of emotion have been inadequately explored. In this paper, we consider envy or jealousy as an example; the feeling evoked when someone is better off than you. Our approach is broadly consistent with traditional evolutionary psychology (EP) approaches, but takes it further by exploring the complexity and functional logic of the emotion – and the precise social triggers that elicit them – by using deliberately farfetched, and contrived “thought experiments” that the subject is asked to participate in. When common sense (e.g., we should be jealous of Bill Gates – not of our slightly richer neighbor) appears to contradict observed behavior (i.e., we are more envious of our neighbor) the paradox can often be resolved by evolutionary considerations which h predict the latter. Many – but not all – EP approaches fail because evolution and common sense do not make contradictory predictions. Finally, we briefly raise the possibility that gaining deeper insight into the evolutionary origins of certain undesirable emotions or behaviors can help shake them off, and may therefore have therapeutic utility. Such an approach would complement current therapies (such as cognitive behavior therapies, psychoanalysis, psychopharmacologies, and hypnotherapy), rather than negate them. PMID:28970815
Archaeology as a social science.
Smith, Michael E; Feinman, Gary M; Drennan, Robert D; Earle, Timothy; Morris, Ian
2012-05-15
Because of advances in methods and theory, archaeology now addresses issues central to debates in the social sciences in a far more sophisticated manner than ever before. Coupled with methodological innovations, multiscalar archaeological studies around the world have produced a wealth of new data that provide a unique perspective on long-term changes in human societies, as they document variation in human behavior and institutions before the modern era. We illustrate these points with three examples: changes in human settlements, the roles of markets and states in deep history, and changes in standards of living. Alternative pathways toward complexity suggest how common processes may operate under contrasting ecologies, populations, and economic integration.
Archaeology as a social science
Smith, Michael E.; Feinman, Gary M.; Drennan, Robert D.; Earle, Timothy; Morris, Ian
2012-01-01
Because of advances in methods and theory, archaeology now addresses issues central to debates in the social sciences in a far more sophisticated manner than ever before. Coupled with methodological innovations, multiscalar archaeological studies around the world have produced a wealth of new data that provide a unique perspective on long-term changes in human societies, as they document variation in human behavior and institutions before the modern era. We illustrate these points with three examples: changes in human settlements, the roles of markets and states in deep history, and changes in standards of living. Alternative pathways toward complexity suggest how common processes may operate under contrasting ecologies, populations, and economic integration. PMID:22547811
A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning.
Chung, Michael Jae-Yoon; Friesen, Abram L; Fox, Dieter; Meltzoff, Andrew N; Rao, Rajesh P N
2015-01-01
A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration.
A Bayesian Developmental Approach to Robotic Goal-Based Imitation Learning
Chung, Michael Jae-Yoon; Friesen, Abram L.; Fox, Dieter; Meltzoff, Andrew N.; Rao, Rajesh P. N.
2015-01-01
A fundamental challenge in robotics today is building robots that can learn new skills by observing humans and imitating human actions. We propose a new Bayesian approach to robotic learning by imitation inspired by the developmental hypothesis that children use self-experience to bootstrap the process of intention recognition and goal-based imitation. Our approach allows an autonomous agent to: (i) learn probabilistic models of actions through self-discovery and experience, (ii) utilize these learned models for inferring the goals of human actions, and (iii) perform goal-based imitation for robotic learning and human-robot collaboration. Such an approach allows a robot to leverage its increasing repertoire of learned behaviors to interpret increasingly complex human actions and use the inferred goals for imitation, even when the robot has very different actuators from humans. We demonstrate our approach using two different scenarios: (i) a simulated robot that learns human-like gaze following behavior, and (ii) a robot that learns to imitate human actions in a tabletop organization task. In both cases, the agent learns a probabilistic model of its own actions, and uses this model for goal inference and goal-based imitation. We also show that the robotic agent can use its probabilistic model to seek human assistance when it recognizes that its inferred actions are too uncertain, risky, or impossible to perform, thereby opening the door to human-robot collaboration. PMID:26536366
Rogers, Christina N; Ross, Amy P; Sahu, Shweta P; Siegel, Ethan R; Dooyema, Jeromy M; Cree, Mary Ann; Stopa, Edward G; Young, Larry J; Rilling, James K; Albers, H Elliott; Preuss, Todd M
2018-05-24
Oxytocin (OT) and arginine-vasopressin (AVP) are involved in the regulation of complex social behaviors across a wide range of taxa. Despite this, little is known about the neuroanatomy of the OT and AVP systems in most non-human primates, and less in humans. The effects of OT and AVP on social behavior, including aggression, mating, and parental behavior, may be mediated primarily by the extensive connections of OT- and AVP-producing neurons located in the hypothalamus with the basal forebrain and amygdala, as well as with the hypothalamus itself. However, OT and AVP also influence social cognition, including effects on social recognition, cooperation, communication, and in-group altruism, which suggests connectivity with cortical structures. While OT and AVP V1a receptors have been demonstrated in the cortex of rodents and primates, and intranasal administration of OT and AVP has been shown to modulate cortical activity, there is to date little evidence that OT-and AVP-containing neurons project into the cortex. Here, we demonstrate the existence of OT- and AVP-containing fibers in cortical regions relevant to social cognition using immunohistochemistry in humans, chimpanzees, and rhesus macaques. OT-immunoreactive fibers were found in the straight gyrus of the orbitofrontal cortex as well as the anterior cingulate gyrus in human and chimpanzee brains, while no OT-immunoreactive fibers were found in macaque cortex. AVP-immunoreactive fibers were observed in the anterior cingulate gyrus in all species, as well as in the insular cortex in humans, and in a more restricted distribution in chimpanzees. This is the first report of OT and AVP fibers in the cortex in human and non-human primates. Our findings provide a potential mechanism by which OT and AVP might exert effects on brain regions far from their production site in the hypothalamus, as well as potential species differences in the behavioral functions of these target regions. © 2018 Wiley Periodicals, Inc.
The influence of essential oils on human attention. I: alertness.
Ilmberger, J; Heuberger, E; Mahrhofer, C; Dessovic, H; Kowarik, D; Buchbauer, G
2001-03-01
Scientific research on the effects of essential oils on human behavior lags behind the promises made by popular aromatherapy. Nearly all aspects of human behavior are closely linked to processes of attention, the basic level being that of alertness, which ranges from sleep to wakefulness. In our study we measured the influence of essential oils and components of essential oils [peppermint, jasmine, ylang-ylang, 1,8-cineole (in two different dosages) and menthol] on this core attentional function, which can be experimentally defined as speed of information processing. Substances were administered by inhalation; levels of alertness were assessed by measuring motor and reaction times in a reaction time paradigm. The performances of the six experimental groups receiving substances (n = 20 in four groups, n = 30 in two groups) were compared with those of corresponding control groups receiving water. Between-group analysis, i.e. comparisons between experimental groups and their respective control groups, mainly did not reach statistical significance. However, within-group analysis showed complex correlations between subjective evaluations of substances and objective performance, indicating that effects of essentials oils or their components on basic forms of attentional behavior are mainly psychological.
The Nucleus Accumbens and Pavlovian Reward Learning
Day, Jeremy J.
2011-01-01
The ability to form associations between predictive environmental events and rewarding outcomes is a fundamental aspect of learned behavior. This apparently simple ability likely requires complex neural processing evolved to identify, seek, and utilize natural rewards and redirect these activities based on updated sensory information. Emerging evidence from both animal and human research suggests that this type of processing is mediated in part by the nucleus accumbens and a closely associated network of brain structures. The nucleus accumbens is required for a number of reward-related behaviors, and processes specific information about reward availability, value, and context. Additionally, this structure is critical for the acquisition and expression of most Pavlovian stimulus-reward relationships, and cues that predict rewards produce robust changes in neural activity in the nucleus accumbens. While processing within the nucleus accumbens may enable or promote Pavlovian reward learning in natural situations, it has also been implicated in aspects of human drug addiction, including the ability of drug-paired cues to control behavior. This article will provide a critical review of the existing animal and human literature concerning the role of the NAc in Pavlovian learning with non-drug rewards and consider some clinical implications of these findings. PMID:17404375
Visual Data Mining: An Exploratory Approach to Analyzing Temporal Patterns of Eye Movements
ERIC Educational Resources Information Center
Yu, Chen; Yurovsky, Daniel; Xu, Tian
2012-01-01
Infant eye movements are an important behavioral resource to understand early human development and learning. But the complexity and amount of gaze data recorded from state-of-the-art eye-tracking systems also pose a challenge: how does one make sense of such dense data? Toward this goal, this article describes an interactive approach based on…
Cognitive And Neural Sciences Division 1992 Programs
1992-08-01
Thalamic short-term plasticity in the auditory system: Associative retuning of receptive fields in the ventral medial geniculate body . Behavioral...prediction and enhancement of human performance in training and operational environments. A second goal is to understand the neurobiological constraints and...such complex, structured bodies of knowledge and skill are acquired. Fourth, to provide a precise theory of instruction, founded on cognitive theory
The Promise of the New Actor Training--A Professional Challenge for Teachers.
ERIC Educational Resources Information Center
Gross, Roger
1982-01-01
In recent years, theatre faculty have come to understand that advanced degrees do not guarantee that a person is qualified for the subtle, complex, and dangerous job of teaching acting, and that actor training has more to do with the problems of human behavior than with the theatre. The fundamental problem with acting is the fear that controls…
USDA-ARS?s Scientific Manuscript database
Starting in the 1990’s, the International Potato Center (CIP)’s integrated pest management team for potato late blight (IPM-LB) realized the importance of addressing the management of this complex potato disease by combining crop protection and management sciences, with social and behavioral science...
The Role of Temperament in the Etiopathogenesis of Bipolar Spectrum Illness.
Fountoulakis, Konstantinos N; Gonda, Xenia; Koufaki, Ioanna; Hyphantis, Thomas; Cloninger, C Robert
2016-01-01
Bipolar disorder constitutes a challenge for clinicians in everyday clinical practice. Our knowledge concerning this clinical entity is incomplete, and contemporary classification systems are unable to reflect the complexity of this disorder. The concept of temperament, which was first described in antiquity, provides a helpful framework for synthesizing our knowledge on how the human body works and what determines human behavior. Although the concept of temperament originally included philosophical and sociocultural approaches, the biomedical model is dominant today. It is possible that specific temperaments might constitute vulnerability factors, determine the clinical picture, or modify the course of illness. Temperaments might even act as a bridge between genes and clinical manifestations, thus giving rise to the concept of the bipolar spectrum, with major implications for mental health research and treatment. More specifically, it has been reported that the hyperthymic and the depressive temperaments are related to the more "classic" bipolar disorder, whereas cyclothymic, anxious, and irritable temperaments are related to more complex manifestations and might predict poor response to treatment, violent or suicidal behavior, and high comorbidity. Incorporating of the concept of temperament and the bipolar spectrum into the standard training of psychiatric residents might well result in an improvement of everyday clinical practice.
Endocannabinoid Signaling in Autism.
Chakrabarti, Bhismadev; Persico, Antonio; Battista, Natalia; Maccarrone, Mauro
2015-10-01
Autism spectrum disorder (ASD) is a complex behavioral condition with onset during early childhood and a lifelong course in the vast majority of cases. To date, no behavioral, genetic, brain imaging, or electrophysiological test can specifically validate a clinical diagnosis of ASD. However, these medical procedures are often implemented in order to screen for syndromic forms of the disorder (i.e., autism comorbid with known medical conditions). In the last 25 years a good deal of information has been accumulated on the main components of the "endocannabinoid (eCB) system", a rather complex ensemble of lipid signals ("endocannabinoids"), their target receptors, purported transporters, and metabolic enzymes. It has been clearly documented that eCB signaling plays a key role in many human health and disease conditions of the central nervous system, thus opening the avenue to the therapeutic exploitation of eCB-oriented drugs for the treatment of psychiatric, neurodegenerative, and neuroinflammatory disorders. Here we present a modern view of the eCB system, and alterations of its main components in human patients and animal models relevant to ASD. This review will thus provide a critical perspective necessary to explore the potential exploitation of distinct elements of eCB system as targets of innovative therapeutics against ASD.
Villarreal, Wilmer; Colina-Vegas, Legna; Rodrigues de Oliveira, Clayton; Tenorio, Juan C; Ellena, Javier; Gozzo, Fábio C; Cominetti, Marcia Regina; Ferreira, Antonio G; Ferreira, Marco Antonio Barbosa; Navarro, Maribel; Batista, Alzir A
2015-12-21
Chiral molecules in nature are involved in many biological events; their selectivity and specificity make them of great interest for understanding the behavior of bioactive molecules, by providing information about the chiral discrimination. Inspired by these conformational properties, we present the design and synthesis of novel chiral platinum(II) complexes featuring phosphine and chloroquine ligands with the general formula [PtCl(P)2(CQ)]PF6 (where (P)2 = triphenylphosphine (PPh3) (5), 1,3-bis(diphenylphosphine)propane (dppp) (6), 1,4-bis(diphenylphosphine)butane (dppb) (7), 1,1'-bis(diphenylphosphine)ferrocene (dppf) (8), and CQ = chloroquine] and their precursors of the type [PtCl2(P)2] are described. The complexes were characterized by elemental analysis, absorption spectroscopy in the infrared and ultraviolet-visible (UV-vis) regions, multinuclear ((1)H, (13)C, (31)P, (15)N, and (195)Pt) NMR spectroscopy, cyclic voltammetry, and mass spectrometry (in the case of chloroquine complexes). The interactions of the new platinum-chloroquine complexes with both albumin (BSA), using fluorescence spectroscopy, and DNA, by four widely reported methods were also evaluated. These experiments showed that these Pt-CQ complexes interact strongly with DNA and have high affinities for BSA, in contrast to CQ and CQDP (chloroquine diphosphate), which interact weakly with these biomolecules. Additional assays were performed in order to investigate the cytotoxicity of the platinum complexes against two healthy cell lines (mouse fibroblasts (L929) and the Chinese hamster lung (V79-4)) and four tumor cell lines (human breast (MDA-MB-231 and MCF-7), human lung (A549), and human prostate (DU-145)). The results suggest that the Pt-CQ complexes are generally more cytotoxic than the free CQ, showing that they are promising as anticancer drugs.
Rodent Brain Microinjection to Study Molecular Substrates of Motivated Behavior
Poland, Ryan S.; Bull, Cecilia; Syed, Wahab A.; Bowers, M. Scott
2015-01-01
Brain microinjection can aid elucidation of the molecular substrates of complex behaviors, such as motivation. For this purpose rodents can serve as appropriate models, partly because the response to behaviorally relevant stimuli and the circuitry parsing stimulus-action outcomes is astonishingly similar between humans and rodents. In studying molecular substrates of complex behaviors, the microinjection of reagents that modify, augment, or silence specific systems is an invaluable technique. However, it is crucial that the microinjection site is precisely targeted in order to aid interpretation of the results. We present a method for the manufacture of surgical implements and microinjection needles that enables accurate microinjection and unlimited customizability with minimal cost. Importantly, this technique can be successfully completed in awake rodents if conducted in conjunction with other JoVE articles that covered requisite surgical procedures. Additionally, there are many behavioral paradigms that are well suited for measuring motivation. The progressive ratio is a commonly used method that quantifies the efficacy of a reinforcer to maintain responding despite an (often exponentially) increasing work requirement. This assay is sensitive to reinforcer magnitude and pharmacological manipulations, which allows reinforcing efficacy and/ or motivation to be determined. We also present a straightforward approach to program operant software to accommodate a progressive ratio reinforcement schedule. PMID:26437131
Disentangling prenatal and inherited influences in humans with an experimental design.
Rice, Frances; Harold, Gordon T; Boivin, Jacky; Hay, Dale F; van den Bree, Marianne; Thapar, Anita
2009-02-17
Exposure to adversity in utero at a sensitive period of development can bring about physiological, structural, and metabolic changes in the fetus that affect later development and behavior. However, the link between prenatal environment and offspring outcomes could also arise and confound because of the relation between maternal and offspring genomes. As human studies cannot randomly assign offspring to prenatal conditions, it is difficult to test whether in utero events have true causal effects on offspring outcomes. We used an unusual approach to overcome this difficulty whereby pregnant mothers are either biologically unrelated or related to their child as a result of in vitro fertilization (IVF). In this sample, prenatal smoking reduces offspring birth weight in both unrelated and related offspring, consistent with effects arising through prenatal mechanisms independent of the relation between the maternal and offspring genomes. In contrast, the association between prenatal smoking and offspring antisocial behavior depended on inherited factors because association was only present in related mothers and offspring. The results demonstrate that this unusual prenatal cross-fostering design is feasible and informative for disentangling inherited and prenatal effects on human health and behavior. Disentangling these different effects is invaluable for pinpointing markers of prenatal adversity that have a causal effect on offspring outcomes. The origins of behavior and many common complex disorders may begin in early life, therefore this experimental design could pave the way for identifying prenatal factors that affect behavior in future generations.
Oxytocin in animal models of autism spectrum disorder.
Peñagarikano, Olga
2017-02-01
Autism spectrum disorder is a behavioral disorder characterized by impairments in social interaction and communication together with the presence of stereotyped behaviors and restricted interests. Although highly genetic, its etiology is complex which correlates with the extensive heterogeneity found in its clinical manifestation, adding to the challenge of understanding its pathophysiology and develop targeted pharmacotherapies. The neuropeptide oxytocin is part of a highly conserved system involved in the regulation of social behavior, and both animal and human research have shown that variation in the oxytocin system accounts for interindividual differences in the expression of social behaviors in mammals. In autism, recent studies in human patients and animal models are starting to reveal that alterations in the oxytocin system are more common than previously anticipated. Genetic variation in the key players involved in the system (i.e., oxytocin receptor, oxytocin, and CD38) has been found associated with autism in humans, and animal models of the disorder converge in an altered oxytocin system and/or dysfunction in oxytocin related biological processes. Furthermore, oxytocin administration exerts a behavioral and neurobiological response, and thus, the oxytocin system has become a promising potential therapeutical target for autism. Animal models represent a valuable tool to aid in the research into the potential therapeutic use of oxytocin. In this review, I aim to discuss the main findings related to oxytocin research in autism with a focus on findings in animal models. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 77: 202-213, 2017. © 2016 Wiley Periodicals, Inc.
The mirror mechanism and mu rhythm in social development.
Vanderwert, Ross E; Fox, Nathan A; Ferrari, Pier F
2013-04-12
Since the discovery of mirror neurons (MNs) in the monkey there has been a renewed interest in motor theories of cognitive and social development in humans by providing a potential neural mechanism underlying an action observation/execution matching system. It has been proposed that this system plays a fundamental role in the development of complex social and cognitive behaviors such as imitation and action recognition. In this review we discuss what is known about MNs from the work using single-cell recordings in the adult monkey, the evidence for the putative MN system in humans, and the extent to which research using electroencephalography (EEG) methods has contributed to our understanding of the development of these motor systems and their role in the social behaviors postulated by the MN hypothesis. We conclude with directions for future research that will improve our understanding of the putative human MN system and the functional role of MNs in social development. Copyright © 2012 Elsevier Ireland Ltd. All rights reserved.
Meanings and Functions of Money in Different Cultural Milieus.
Cohen, Dov; Shin, Faith; Liu, Xi
2018-06-27
We explore the psychological meanings of money that parallel its economic functions. We explore money's ability to ascribe value, give autonomy, and provide security for the future, and we show how each of these functions may play out differently in different cultural milieus. In particular, we explore the meanings and uses of money across ethnic groups and at different positions on the socioeconomic ladder, highlighting changes over the last 50 years.We examine the dynamics of redistribution between the individual, the family, and the state in different cultures, and we analyze the gendering of money in the world of high finance and in contexts of economic need. The field of behavioral economics has illustrated how human psychology complicates the process of moving from normative to descriptive models of human behavior; such complexity increases as we incorporate the great diversity within human psychology. Expected final online publication date for the Annual Review of Psychology Volume 70 is January 4, 2019. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Joint Center Estimation Using Single-Frame Optimization: Part 1: Numerical Simulation.
Frick, Eric; Rahmatalla, Salam
2018-04-04
The biomechanical models used to refine and stabilize motion capture processes are almost invariably driven by joint center estimates, and any errors in joint center calculation carry over and can be compounded when calculating joint kinematics. Unfortunately, accurate determination of joint centers is a complex task, primarily due to measurements being contaminated by soft-tissue artifact (STA). This paper proposes a novel approach to joint center estimation implemented via sequential application of single-frame optimization (SFO). First, the method minimizes the variance of individual time frames’ joint center estimations via the developed variance minimization method to obtain accurate overall initial conditions. These initial conditions are used to stabilize an optimization-based linearization of human motion that determines a time-varying joint center estimation. In this manner, the complex and nonlinear behavior of human motion contaminated by STA can be captured as a continuous series of unique rigid-body realizations without requiring a complex analytical model to describe the behavior of STA. This article intends to offer proof of concept, and the presented method must be further developed before it can be reasonably applied to human motion. Numerical simulations were introduced to verify and substantiate the efficacy of the proposed methodology. When directly compared with a state-of-the-art inertial method, SFO reduced the error due to soft-tissue artifact in all cases by more than 45%. Instead of producing a single vector value to describe the joint center location during a motion capture trial as existing methods often do, the proposed method produced time-varying solutions that were highly correlated ( r > 0.82) with the true, time-varying joint center solution.
Convergent transcriptional specializations in the brains of humans and song-learning birds
Pfenning, Andreas R.; Hara, Erina; Whitney, Osceola; Rivas, Miriam V.; Wang, Rui; Roulhac, Petra L.; Howard, Jason T.; Wirthlin, Morgan; Lovell, Peter V.; Ganapathy, Ganeshkumar; Mouncastle, Jacquelyn; Moseley, M. Arthur; Thompson, J. Will; Soderblom, Erik J.; Iriki, Atsushi; Kato, Masaki; Gilbert, M. Thomas P.; Zhang, Guojie; Bakken, Trygve; Bongaarts, Angie; Bernard, Amy; Lein, Ed; Mello, Claudio V.; Hartemink, Alexander J.; Jarvis, Erich D.
2015-01-01
Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes. PMID:25504733
Investigation of musicality in birdsong.
Rothenberg, David; Roeske, Tina C; Voss, Henning U; Naguib, Marc; Tchernichovski, Ofer
2014-02-01
Songbirds spend much of their time learning, producing, and listening to complex vocal sequences we call songs. Songs are learned via cultural transmission, and singing, usually by males, has a strong impact on the behavioral state of the listeners, often promoting affiliation, pair bonding, or aggression. What is it in the acoustic structure of birdsong that makes it such a potent stimulus? We suggest that birdsong potency might be driven by principles similar to those that make music so effective in inducing emotional responses in humans: a combination of rhythms and pitches-and the transitions between acoustic states-affecting emotions through creating expectations, anticipations, tension, tension release, or surprise. Here we propose a framework for investigating how birdsong, like human music, employs the above "musical" features to affect the emotions of avian listeners. First we analyze songs of thrush nightingales (Luscinia luscinia) by examining their trajectories in terms of transitions in rhythm and pitch. These transitions show gradual escalations and graceful modifications, which are comparable to some aspects of human musicality. We then explore the feasibility of stripping such putative musical features from the songs and testing how this might affect patterns of auditory responses, focusing on fMRI data in songbirds that demonstrate the feasibility of such approaches. Finally, we explore ideas for investigating whether musical features of birdsong activate avian brains and affect avian behavior in manners comparable to music's effects on humans. In conclusion, we suggest that birdsong research would benefit from current advances in music theory by attempting to identify structures that are designed to elicit listeners' emotions and then testing for such effects experimentally. Birdsong research that takes into account the striking complexity of song structure in light of its more immediate function - to affect behavioral state in listeners - could provide a useful animal model for studying basic principles of music neuroscience in a system that is very accessible for investigation, and where developmental auditory and social experience can be tightly controlled. Copyright © 2013 Elsevier B.V. All rights reserved.
Investigation of musicality in birdsong
Rothenberg, David; Roeske, Tina C.; Voss, Henning U.; Naguib, Marc; Tchernichovski, Ofer
2013-01-01
Songbirds spend much of their time learning, producing, and listening to complex vocal sequences we call songs. Songs are learned via cultural transmission, and singing, usually by males, has a strong impact on the behavioral state of the listeners, often promoting affiliation, pair bonding, or aggression. What is it in the acoustic structure of birdsong that makes it such a potent stimulus? We suggest that birdsong potency might be driven by principles similar to those that make music so effective in inducing emotional responses in humans: a combination of rhythms and pitches —and the transitions between acoustic states—affecting emotions through creating expectations, anticipations, tension, tension release, or surprise. Here we propose a framework for investigating how birdsong, like human music, employs the above “musical” features to affect the emotions of avian listeners. First we analyze songs of thrush nightingales (Luscinia luscinia) by examining their trajectories in terms of transitions in rhythm and pitch. These transitions show gradual escalations and graceful modifications, which are comparable to some aspects of human musicality. We then explore the feasibility of stripping such putative musical features from the songs and testing how this might affect patterns of auditory responses, focusing on fMRI data in songbirds that demonstrate the feasibility of such approaches. Finally, we explore ideas for investigating whether musical features of birdsong activate avian brains and affect avian behavior in manners comparable to music’s effects on humans. In conclusion, we suggest that birdsong research would benefit from current advances in music theory by attempting to identify structures that are designed to elicit listeners’ emotions and then testing for such effects experimentally. Birdsong research that takes into account the striking complexity of song structure in light of its more immediate function – to affect behavioral state in listeners – could provide a useful animal model for studying basic principles of music neuroscience in a system that is very accessible for investigation, and where developmental auditory and social experience can be tightly controlled. PMID:24036130
Global spatio-temporal patterns in human migration: a complex network perspective.
Davis, Kyle F; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca
2013-01-01
Migration is a powerful adaptive strategy for humans to navigate hardship and pursue a better quality of life. As a universal vehicle facilitating exchanges of ideas, culture, money and goods, international migration is a major contributor to globalization. Consisting of countries linked by multiple connections of human movements, global migration constitutes a network. Despite the important role of human migration in connecting various communities in different parts of the world, the topology and behavior of the international migration network and its changes through time remain poorly understood. Here we show that the global human migration network became more interconnected during the latter half of the twentieth century and that migrant destination choice partly reflects colonial and postcolonial histories, language, religion, and distances. From 1960 to 2000 we found a steady increase in network transitivity (i.e. connectivity between nodes connected to the same node), a decrease in average path length and an upward shift in degree distribution, all of which strengthened the 'small-world' behavior of the migration network. Furthermore, we found that distinct groups of countries preferentially interact to form migration communities based largely on historical, cultural and economic factors.
Learning and Recognition of a Non-conscious Sequence of Events in Human Primary Visual Cortex.
Rosenthal, Clive R; Andrews, Samantha K; Antoniades, Chrystalina A; Kennard, Christopher; Soto, David
2016-03-21
Human primary visual cortex (V1) has long been associated with learning simple low-level visual discriminations [1] and is classically considered outside of neural systems that support high-level cognitive behavior in contexts that differ from the original conditions of learning, such as recognition memory [2, 3]. Here, we used a novel fMRI-based dichoptic masking protocol-designed to induce activity in V1, without modulation from visual awareness-to test whether human V1 is implicated in human observers rapidly learning and then later (15-20 min) recognizing a non-conscious and complex (second-order) visuospatial sequence. Learning was associated with a change in V1 activity, as part of a temporo-occipital and basal ganglia network, which is at variance with the cortico-cerebellar network identified in prior studies of "implicit" sequence learning that involved motor responses and visible stimuli (e.g., [4]). Recognition memory was associated with V1 activity, as part of a temporo-occipital network involving the hippocampus, under conditions that were not imputable to mechanisms associated with conscious retrieval. Notably, the V1 responses during learning and recognition separately predicted non-conscious recognition memory, and functional coupling between V1 and the hippocampus was enhanced for old retrieval cues. The results provide a basis for novel hypotheses about the signals that can drive recognition memory, because these data (1) identify human V1 with a memory network that can code complex associative serial visuospatial information and support later non-conscious recognition memory-guided behavior (cf. [5]) and (2) align with mouse models of experience-dependent V1 plasticity in learning and memory [6]. Copyright © 2016 Elsevier Ltd. All rights reserved.
Behaviorally Relevant Abstract Object Identity Representation in the Human Parietal Cortex
Jeong, Su Keun
2016-01-01
The representation of object identity is fundamental to human vision. Using fMRI and multivoxel pattern analysis, here we report the representation of highly abstract object identity information in human parietal cortex. Specifically, in superior intraparietal sulcus (IPS), a region previously shown to track visual short-term memory capacity, we found object identity representations for famous faces varying freely in viewpoint, hairstyle, facial expression, and age; and for well known cars embedded in different scenes, and shown from different viewpoints and sizes. Critically, these parietal identity representations were behaviorally relevant as they closely tracked the perceived face-identity similarity obtained in a behavioral task. Meanwhile, the task-activated regions in prefrontal and parietal cortices (excluding superior IPS) did not exhibit such abstract object identity representations. Unlike previous studies, we also failed to observe identity representations in posterior ventral and lateral visual object-processing regions, likely due to the greater amount of identity abstraction demanded by our stimulus manipulation here. Our MRI slice coverage precluded us from examining identity representation in anterior temporal lobe, a likely region for the computing of identity information in the ventral region. Overall, we show that human parietal cortex, part of the dorsal visual processing pathway, is capable of holding abstract and complex visual representations that are behaviorally relevant. These results argue against a “content-poor” view of the role of parietal cortex in attention. Instead, the human parietal cortex seems to be “content rich” and capable of directly participating in goal-driven visual information representation in the brain. SIGNIFICANCE STATEMENT The representation of object identity (including faces) is fundamental to human vision and shapes how we interact with the world. Although object representation has traditionally been associated with human occipital and temporal cortices, here we show, by measuring fMRI response patterns, that a region in the human parietal cortex can robustly represent task-relevant object identities. These representations are invariant to changes in a host of visual features, such as viewpoint, and reflect an abstract level of representation that has not previously been reported in the human parietal cortex. Critically, these neural representations are behaviorally relevant as they closely track the perceived object identities. Human parietal cortex thus participates in the moment-to-moment goal-directed visual information representation in the brain. PMID:26843642
Transient visual pathway critical for normal development of primate grasping behavior.
Mundinano, Inaki-Carril; Fox, Dylan M; Kwan, William C; Vidaurre, Diego; Teo, Leon; Homman-Ludiye, Jihane; Goodale, Melvyn A; Leopold, David A; Bourne, James A
2018-02-06
An evolutionary hallmark of anthropoid primates, including humans, is the use of vision to guide precise manual movements. These behaviors are reliant on a specialized visual input to the posterior parietal cortex. Here, we show that normal primate reaching-and-grasping behavior depends critically on a visual pathway through the thalamic pulvinar, which is thought to relay information to the middle temporal (MT) area during early life and then swiftly withdraws. Small MRI-guided lesions to a subdivision of the inferior pulvinar subnucleus (PIm) in the infant marmoset monkey led to permanent deficits in reaching-and-grasping behavior in the adult. This functional loss coincided with the abnormal anatomical development of multiple cortical areas responsible for the guidance of actions. Our study reveals that the transient retino-pulvinar-MT pathway underpins the development of visually guided manual behaviors in primates that are crucial for interacting with complex features in the environment.
A Neurobehavioral Model of Flexible Spatial Language Behaviors
Lipinski, John; Schneegans, Sebastian; Sandamirskaya, Yulia; Spencer, John P.; Schöner, Gregor
2012-01-01
We propose a neural dynamic model that specifies how low-level visual processes can be integrated with higher level cognition to achieve flexible spatial language behaviors. This model uses real-word visual input that is linked to relational spatial descriptions through a neural mechanism for reference frame transformations. We demonstrate that the system can extract spatial relations from visual scenes, select items based on relational spatial descriptions, and perform reference object selection in a single unified architecture. We further show that the performance of the system is consistent with behavioral data in humans by simulating results from 2 independent empirical studies, 1 spatial term rating task and 1 study of reference object selection behavior. The architecture we present thereby achieves a high degree of task flexibility under realistic stimulus conditions. At the same time, it also provides a detailed neural grounding for complex behavioral and cognitive processes. PMID:21517224
Mallepally, Rajender Reddy; Putta, Venkat Reddy; Chintakuntla, Nagamani; Vuradi, Ravi Kumar; Kotha, Laxma Reddy; Sirasani, Satyanarayana
2016-05-01
The four novel Ru(II) polypyridyl complexes of [Ru(Hdpa)2dmbip](2+) (1), [Ru(Hdpa)2NO2-dmbip](2+) (2), [Ru(Hdpa)2debip](2+) (3) and [Ru(Hdpa)2OH-debip](2+) (4) where Hdpa = 2,2'-bipyridylamine, dmbip = 2-(4-N,N-dimethylbenzenamine)1H-imidazo[4,5-f][1,10]phenanthroline, debip = 2-(4-N,N-diethylbenzenamine)1H-imidazo[4,5-f][1,10]phenanthroline, NO2-dmbip = NO2-2-(4-N,N-dimethylbenzenamine)1H-imidazo[4,5-f][1,10]phenanthroline, OH-debip = OH-2-(4-N,N-diethylbenzenamine)1H-imidazo[4,5-f][1,10]phenanthroline were synthesized and fully characterized using elemental analysis, Mass, NMR and FT-IR. The DNA binding behavior of all synthesized complexes were investigated by using electronic absorption spectra, emission spectra, cyclic light switch on and off, sensor studies, electrochemical method and viscosity titrations. Docking studies were performed with human DNA TOP1 by using LibDock. Furthermore explore antimicrobial activity, photocleavage and in vitro cytotoxicity assay of four Ru(II) complexes.
Chang, Steve W. C.; Platt, Michael L.
2013-01-01
Converging evidence from humans and non-human animals indicates that the neurohypophysial hormone oxytocin (OT) evolved to serve a specialized function in social behavior in mammals. Although OT-based therapies are currently being evaluated as remedies for social deficits in neuropsychiatric disorders, precisely how OT regulates complex social processes remains largely unknown. Here we describe how a non-human primate model can be used to understand the mechanisms by which OT regulates social cognition and thereby inform its clinical application in humans. We focus primarily on recent advances in our understanding of OT-mediated social cognition in rhesus macaques (Macaca mulatta), supplemented by discussion of recent work in humans, other primates, and rodents. Together, these studies endorse the hypothesis that OT promotes social exploration both by amplifying social motivation and by attenuating social vigilance. PMID:24231551
Laterality of Grooming and Tool Use in a Group of Captive Bonobos (Pan paniscus).
Brand, Colin M; Marchant, Linda F; Boose, Klaree J; White, Frances J; Rood, Tabatha M; Meinelt, Audra
2017-01-01
Humans exhibit population level handedness for the right hand; however, the evolution of this behavioral phenotype is poorly understood. Here, we compared the laterality of a simple task (grooming) and a complex task (tool use) to investigate whether increasing task difficulty elicited individual hand preference among a group of captive bonobos (Pan paniscus). Subjects were 17 bonobos housed at the Columbus Zoo and Aquarium. Laterality of grooming was recorded using group scans; tool use was recorded using all-occurrence sampling. Grooming was characterized as unimanual or bimanual, and both tasks were scored as right-handed or left-handed. Most individuals did not exhibit significant hand preference for unimanual or bimanual (asymmetrical hand use) grooming, although 1 individual was lateralized for each. For the 8 subjects who engaged in termite fishing enough for statistical testing, 7 individuals exhibited significant laterality and strong individual hand preference. Four subjects preferred their left hand, 3 preferred their right, and 1 had no preference. Grooming, a simple behavior, was not lateralized in this group, yet a more complex behavior revealed a strong individual hand preference, and these results are congruent with other recent findings that demonstrate complex tasks elicit hand preference in bonobos. © 2017 S. Karger AG, Basel.
Masson, Patrick; Lockridge, Oksana
2009-01-01
Butyrylcholinesterase is a promiscuous enzyme that displays complex kinetic behavior. It is toxicologically important because it detoxifies organophosphorus poisons (OP) by making a covalent bond with the OP. The OP and the butyrylcholinesterase are both inactivated in the process. Inactivation of butyrylcholinesterase has no adverse effects. However inactivation of acetylcholinesterase in nerve synapses can be lethal. OP-inhibited butyrylcholinesterase and acetylcholinesterase can be reactivated with oximes provided the OP has not aged. Strategies for preventing the toxicity of OP include a) treatment with an OP scavenger, b) reaction of nonaged enzyme with oximes, c) reactivation of aged enzyme, d) slowing down aging with peripheral site ligands, and e) design of mutants that rapidly hydrolyze OP. Option (a) has progressed through phase I clinical trials with human butyrylcholinesterase. Option (b) is in routine clinical use. The others are at the basic research level. Butyrylcholinesterase displays complex kinetic behavior including activation by positively charged esters, ability to hydrolyze amides, and a lag time (hysteresis) preceding hydrolysis of benzoylcholine and N-methyl indoxyl acetate. Mass spectrometry has identified new OP binding motifs on tyrosine and lysine in proteins that have no active site serine. It is proposed, but not yet proven, that low dose exposure involves OP modification of proteins that have no active site serine. PMID:20004171
Leishmania infection: painful or painless?
Borghi, Sergio M; Fattori, Victor; Conchon-Costa, Ivete; Pinge-Filho, Phileno; Pavanelli, Wander R; Verri, Waldiceu A
2017-02-01
The complex life cycle and immunopathological features underpinning the interaction of Leishmania parasites and their mammalian hosts poses frequent poorly explored and inconclusively resolved questions. The altered nociceptive signals over the course of leishmaniasis remain an intriguing issue for nociceptive and parasitology researchers. Experimental investigations have utilized behavioral, morphological, and neuro-immune approaches in the study of experimental cutaneous leishmaniasis (CL). The data generated indicates new venues for the study of the pathological characteristics of nociceptive processing in this parasitic disease. Leishmania-induced pain may be easily observed in mice and rats. However, nociceptive data is more complex in human investigations, including the occurrence of painless lesions in mucocutaneous and cutaneous leishmaniasis. Data from recent decades indicate that humans can also be affected by pain-related symptoms, often distinct from the region of body infection. The molecular and cellular mechanisms underlying such variable nociceptive states in humans during the course of leishmaniasis are an active area of research. The present article reviews nociception in leishmaniasis, including in experimental models of CL and clinical reports.
[Clinical decision making and critical thinking in the nursing diagnostic process].
Müller-Staub, Maria
2006-10-01
The daily routine requires complex thinking processes of nurses, but clinical decision making and critical thinking are underestimated in nursing. A great demand for educational measures in clinical judgement related with the diagnostic process was found in nurses. The German literature hardly describes nursing diagnoses as clinical judgements about human reactions on health problems / life processes. Critical thinking is described as an intellectual, disciplined process of active conceptualisation, application and synthesis of information. It is gained through observation, experience, reflection and communication and leads thinking and action. Critical thinking influences the aspects of clinical decision making a) diagnostic judgement, b) therapeutic reasoning and c) ethical decision making. Human reactions are complex processes and in their course, human behavior is interpreted in the focus of health. Therefore, more attention should be given to the nursing diagnostic process. This article presents the theoretical framework of the paper "Clinical decision making: Fostering critical thinking in the nursing diagnostic process through case studies".
Doss, C. George Priya; NagaSundaram, N.
2012-01-01
Background Elucidating the molecular dynamic behavior of Protein-DNA complex upon mutation is crucial in current genomics. Molecular dynamics approach reveals the changes on incorporation of variants that dictate the structure and function of Protein-DNA complexes. Deleterious mutations in APE1 protein modify the physicochemical property of amino acids that affect the protein stability and dynamic behavior. Further, these mutations disrupt the binding sites and prohibit the protein to form complexes with its interacting DNA. Principal Findings In this study, we developed a rapid and cost-effective method to analyze variants in APE1 gene that are associated with disease susceptibility and evaluated their impacts on APE1-DNA complex dynamic behavior. Initially, two different in silico approaches were used to identify deleterious variants in APE1 gene. Deleterious scores that overlap in these approaches were taken in concern and based on it, two nsSNPs with IDs rs61730854 (I64T) and rs1803120 (P311S) were taken further for structural analysis. Significance Different parameters such as RMSD, RMSF, salt bridge, H-bonds and SASA applied in Molecular dynamic study reveals that predicted deleterious variants I64T and P311S alters the structure as well as affect the stability of APE1-DNA interacting functions. This study addresses such new methods for validating functional polymorphisms of human APE1 which is critically involved in causing deficit in repair capacity, which in turn leads to genetic instability and carcinogenesis. PMID:22384055
Puts, David A.; Pope, Lauramarie E.; Hill, Alexander K.; Cárdenas, Rodrigo A.; Welling, Lisa L. M.; Wheatley, John R.; Breedlove, S. Marc
2015-01-01
Across human societies and many nonhuman animals, males have greater interest in uncommitted sex (more unrestricted sociosexuality) than do females. Testosterone shows positive associations with male-typical sociosexual behavior in nonhuman animals. Yet, it remains unclear whether the human sex difference in sociosexual psychology (attitudes and desires) is mediated by testosterone, whether any relationships between testosterone and sociosexuality differ between men and women, and what the nature of these possible relationships might be. In studies to resolve these questions, we examined relationships between salivary testosterone concentrations and sociosexual psychology and behavior in men and women. We measured testosterone in all men in our sample, but only in those women taking oral contraception (OC-using women) in order to reduce the influence of ovulatory cycle variation in ovarian hormone production. We found that OC-using women did not differ from normally-ovulating women in sociosexual psychology or behavior, but that circulating testosterone mediated the sex difference in human sociosexuality and predicted sociosexual psychology in men but not OC-using women. Moreover, when sociosexual psychology was controlled, men’s sociosexual behavior (number of sexual partners) was negatively related to testosterone, suggesting that testosterone drives sociosexual psychology in men and is inhibited when those desires are fulfilled. This more complex relationship between androgen and male sexuality may reconcile some conflicting prior reports. PMID:25644313
Puts, David A; Pope, Lauramarie E; Hill, Alexander K; Cárdenas, Rodrigo A; Welling, Lisa L M; Wheatley, John R; Marc Breedlove, S
2015-04-01
Across human societies and many nonhuman animals, males have greater interest in uncommitted sex (more unrestricted sociosexuality) than do females. Testosterone shows positive associations with male-typical sociosexual behavior in nonhuman animals. Yet, it remains unclear whether the human sex difference in sociosexual psychology (attitudes and desires) is mediated by testosterone, whether any relationships between testosterone and sociosexuality differ between men and women, and what the nature of these possible relationships might be. In studies to resolve these questions, we examined relationships between salivary testosterone concentrations and sociosexual psychology and behavior in men and women. We measured testosterone in all men in our sample, but only in those women taking oral contraception (OC-using women) in order to reduce the influence of ovulatory cycle variation in ovarian hormone production. We found that OC-using women did not differ from normally-ovulating women in sociosexual psychology or behavior, but that circulating testosterone mediated the sex difference in human sociosexuality and predicted sociosexual psychology in men but not OC-using women. Moreover, when sociosexual psychology was controlled, men's sociosexual behavior (number of sexual partners) was negatively related to testosterone, suggesting that testosterone drives sociosexual psychology in men and is inhibited when those desires are fulfilled. This more complex relationship between androgens and male sexuality may reconcile some conflicting prior reports. Copyright © 2015 Elsevier Inc. All rights reserved.
Prospective Optimization with Limited Resources
Snider, Joseph; Lee, Dongpyo; Poizner, Howard; Gepshtein, Sergei
2015-01-01
The future is uncertain because some forthcoming events are unpredictable and also because our ability to foresee the myriad consequences of our own actions is limited. Here we studied how humans select actions under such extrinsic and intrinsic uncertainty, in view of an exponentially expanding number of prospects on a branching multivalued visual stimulus. A triangular grid of disks of different sizes scrolled down a touchscreen at a variable speed. The larger disks represented larger rewards. The task was to maximize the cumulative reward by touching one disk at a time in a rapid sequence, forming an upward path across the grid, while every step along the path constrained the part of the grid accessible in the future. This task captured some of the complexity of natural behavior in the risky and dynamic world, where ongoing decisions alter the landscape of future rewards. By comparing human behavior with behavior of ideal actors, we identified the strategies used by humans in terms of how far into the future they looked (their “depth of computation”) and how often they attempted to incorporate new information about the future rewards (their “recalculation period”). We found that, for a given task difficulty, humans traded off their depth of computation for the recalculation period. The form of this tradeoff was consistent with a complete, brute-force exploration of all possible paths up to a resource-limited finite depth. A step-by-step analysis of the human behavior revealed that participants took into account very fine distinctions between the future rewards and that they abstained from some simple heuristics in assessment of the alternative paths, such as seeking only the largest disks or avoiding the smaller disks. The participants preferred to reduce their depth of computation or increase the recalculation period rather than sacrifice the precision of computation. PMID:26367309
Prospective Optimization with Limited Resources.
Snider, Joseph; Lee, Dongpyo; Poizner, Howard; Gepshtein, Sergei
2015-09-01
The future is uncertain because some forthcoming events are unpredictable and also because our ability to foresee the myriad consequences of our own actions is limited. Here we studied how humans select actions under such extrinsic and intrinsic uncertainty, in view of an exponentially expanding number of prospects on a branching multivalued visual stimulus. A triangular grid of disks of different sizes scrolled down a touchscreen at a variable speed. The larger disks represented larger rewards. The task was to maximize the cumulative reward by touching one disk at a time in a rapid sequence, forming an upward path across the grid, while every step along the path constrained the part of the grid accessible in the future. This task captured some of the complexity of natural behavior in the risky and dynamic world, where ongoing decisions alter the landscape of future rewards. By comparing human behavior with behavior of ideal actors, we identified the strategies used by humans in terms of how far into the future they looked (their "depth of computation") and how often they attempted to incorporate new information about the future rewards (their "recalculation period"). We found that, for a given task difficulty, humans traded off their depth of computation for the recalculation period. The form of this tradeoff was consistent with a complete, brute-force exploration of all possible paths up to a resource-limited finite depth. A step-by-step analysis of the human behavior revealed that participants took into account very fine distinctions between the future rewards and that they abstained from some simple heuristics in assessment of the alternative paths, such as seeking only the largest disks or avoiding the smaller disks. The participants preferred to reduce their depth of computation or increase the recalculation period rather than sacrifice the precision of computation.
Karimi, Alireza; Rahmati, Seyed Mohammadali; Razaghi, Reza
2017-09-01
Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain. The constrained nonlinear minimization method was employed to identify the brain coefficients according to the axial and transversal compressive data. The pseudo-elastic damage model data was also well compared with that of the experimental data and it not only up to the primary loading but also the discontinuous softening could well address the mechanical behavior of the brain tissue.
Effects of guest feeding programs on captive giraffe behavior.
Orban, David A; Siegford, Janice M; Snider, Richard J
2016-01-01
Zoological institutions develop human-animal interaction opportunities for visitors to advance missions of conservation, education, and recreation; however, the animal welfare implications largely have yet to be evaluated. This behavioral study was the first to quantify impacts of guest feeding programs on captive giraffe behavior and welfare, by documenting giraffe time budgets that included both normal and stereotypic behaviors. Thirty giraffes from nine zoos (six zoos with varying guest feeding programs and three without) were observed using both instantaneous scan sampling and continuous behavioral sampling techniques. All data were collected during summer 2012 and analyzed using linear mixed models. The degree of individual giraffe participation in guest feeding programs was positively associated with increased time spent idle and marginally associated with reduced time spent ruminating. Time spent participating in guest feeding programs had no effect on performance of stereotypic behaviors. When time spent eating routine diets was combined with time spent participating in guest feeding programs, individuals that spent more time engaged in total feeding behaviors tended to perform less oral stereotypic behavior such as object-licking and tongue-rolling. By extending foraging time and complexity, guest feeding programs have the potential to act as environmental enrichment and alleviate unfulfilled foraging motivations that may underlie oral stereotypic behaviors observed in many captive giraffes. However, management strategies may need to be adjusted to mitigate idleness and other program consequences. Further studies, especially pre-and-post-program implementation comparisons, are needed to better understand the influence of human-animal interactions on zoo animal behavior and welfare. © 2016 Wiley Periodicals, Inc.
Comparative psychology and the great apes - Their competence in learning, language, and numbers
NASA Technical Reports Server (NTRS)
Rumbaugh, Duane M.
1990-01-01
An overview of comparative studies conducted for the past three decades is presented. These studies have led to the establishment of the Language Research Center that provides facilities for research into questions of primate behavior and cognition. Several experiments conducted among chimpanzees are discussed and comparative analyses with the lesser apes, monkeys, and humans are offered. Among the primates, brain complexity varies widely and the evidence is strong that encephalization and enhanced brain complexity facilitate the learning of concepts, the transfer of learning to an advantage, and mediational and observational learning.
Das De, Tanwee; Thomas, Tina; Verma, Sonia; Singla, Deepak; Chauhan, Charu; Srivastava, Vartika; Sharma, Punita; Kumari, Seena; Tevatiya, Sanjay; Rani, Jyoti; Hasija, Yasha; Pandey, Kailash C; Dixit, Rajnikant
2018-01-01
Decoding the molecular basis of host seeking and blood feeding behavioral evolution/adaptation in the adult female mosquitoes may provide an opportunity to design new molecular strategy to disrupt human-mosquito interactions. Although there is a great progress in the field of mosquito olfaction and chemo-detection, little is known about the sex-specific evolution of the specialized olfactory system of adult female mosquitoes that enables them to drive and manage the complex blood-feeding associated behavioral responses. A comprehensive RNA-Seq analysis of prior and post blood meal olfactory system of An. culicifacies mosquito revealed a minor but unique change in the nature and regulation of key olfactory genes that may play a pivotal role in managing diverse behavioral responses. Based on age-dependent transcriptional profiling, we further demonstrated that adult female mosquito's chemosensory system gradually learned and matured to drive the host-seeking and blood feeding behavior at the age of 5-6 days. A time scale expression analysis of Odorant Binding Proteins (OBPs) unravels unique association with a late evening to midnight peak biting time. Blood meal-induced switching of unique sets of OBP genes and Odorant Receptors (Ors) expression coincides with the change in the innate physiological status of the mosquitoes. Blood meal follows up experiments further provide enough evidence that how a synergistic and concurrent action of OBPs-Ors may drive "prior and post blood meal" associated complex behavioral events. A dominant expression of two sensory appendages proteins (SAP-1 & SAP2) in the legs of An. culicifacies suggests that this mosquito species may draw an extra advantage of having more sensitive appendages than An. stephensi , an urban malarial vector in the Indian subcontinents. Finally, our molecular modeling analysis predicts crucial amino acid residues for future functional characterization of the sensory appendages proteins which may play a central role in regulating multiple behaviors of An. culicifacies mosquito. SIGNIFICANCE Evolution and adaptation of blood feeding behavior not only favored the reproductive success of adult female mosquitoes but also make them important disease-transmitting vectors. An environmental exposure after emergence may favor the broadly tuned olfactory system of mosquitoes to drive complex behavioral responses. But, how these olfactory derived genetic factors manage female specific "pre and post" blood meal associated complex behavioral responses are not well known. Our findings suggest that a synergistic action of olfactory factors may govern an innate to prime learning strategy to facilitate rapid blood meal acquisition and downstream behavioral activities. A species-specific transcriptional profiling and an in-silico analysis predict that "sensory appendages protein" may be a unique target to design disorientation strategy against the mosquito Anopheles culicifacies .
Aramesh-Boroujeni, Zahra; Bordbar, Abdol-Khalegh; Khorasani-Motlagh, Mozhgan; Sattarinezhad, Elham; Fani, Najme; Noroozifar, Meissam
2018-05-18
In this work, the terbium(III), dysprosium(III), and ytterbium(III) complexes containing 2, 2'-bipyridine (bpy) ligand have been synthesized and characterized using CHN elemental analysis, FT-IR, UV-Vis and 1 H-NMR techniques and their binding behavior with human serum albumin (HSA) was studied by UV-Vis, fluorescence and molecular docking examinations. The experimental data indicated that all three lanthanide complexes have high binding affinity to HSA with effective quenching of HSA fluorescence via static mechanism. The binding parameters, the type of interaction, the value of resonance energy transfer, and the binding distance between complexes and HSA were estimated from the analysis of fluorescence measurements and Förster theory. The thermodynamic parameters suggested that van der Waals interactions and hydrogen bonds play an important role in the binding mechanism. While, the energy transfer from HSA molecules to all these complexes occurs with high probability, the order of binding constants (BpyTb > BpyDy > BpyYb) represents the importance of radius of Ln 3+ ion in the complex-HSA interaction. The results of molecular docking calculation and competitive experiments assessed site 3 of HSA, located in subdomain IB, as the most probable binding site for these ligands and also indicated the microenvironment residues around the bound mentioned complexes. The computational results kept in good agreement with experimental data.
Intrinsic Amygdala-Cortical Functional Connectivity Predicts Social Network Size in Humans
Bickart, Kevin C.; Hollenbeck, Mark C.; Barrett, Lisa Feldman; Dickerson, Bradford C.
2012-01-01
Using resting-state functional MRI data from two independent samples of healthy adults, we parsed the amygdala’s intrinsic connectivity into three partially-distinct large-scale networks that strongly resemble the known anatomical organization of amygdala connectivity in rodents and monkeys. Moreover, in a third independent sample, we discovered that people who fostered and maintained larger and more complex social networks not only had larger amygdala volumes, but also amygdalae with stronger intrinsic connectivity within two of these networks, one putatively subserving perceptual abilities and one subserving affiliative behaviors. Our findings were anatomically specific to amygdalar circuitry in that individual differences in social network size and complexity could not be explained by the strength of intrinsic connectivity between nodes within two networks that do not typically involve the amygdala (i.e., the mentalizing and mirror networks), and were behaviorally specific in that amygdala connectivity did not correlate with other self-report measures of sociality. PMID:23077058
Selective attention determines emotional responses to novel visual stimuli.
Raymond, Jane E; Fenske, Mark J; Tavassoli, Nader T
2003-11-01
Distinct complex brain systems support selective attention and emotion, but connections between them suggest that human behavior should reflect reciprocal interactions of these systems. Although there is ample evidence that emotional stimuli modulate attentional processes, it is not known whether attention influences emotional behavior. Here we show that evaluation of the emotional tone (cheery/dreary) of complex but meaningless visual patterns can be modulated by the prior attentional state (attending vs. ignoring) used to process each pattern in a visual selection task. Previously ignored patterns were evaluated more negatively than either previously attended or novel patterns. Furthermore, this emotional devaluation of distracting stimuli was robust across different emotional contexts and response scales. Finding that negative affective responses are specifically generated for ignored stimuli points to a new functional role for attention and elaborates the link between attention and emotion. This finding also casts doubt on the conventional marketing wisdom that any exposure is good exposure.
Continuous monitoring the vehicle dynamics and driver behavior using navigation systems
NASA Astrophysics Data System (ADS)
Ene, George
2017-10-01
In all fields cost is very important and the increasing amount of data that are needed for active safety systems, like ADAS, lead to implementation of some complex and powerful unit for processing raw data. In this manner is necessary a cost-effective method to estimate the maximum available tire road friction during acceleration and braking by continuous monitoring the vehicle dynamics and driver behavior. The method is based on the hypothesis that short acceleration and braking periods can indicate vehicle dynamics, and thus the available tire road friction coefficient, and also human behavior and his limits. Support for this hypothesis is found in the literature and is supported by the result of experiments conducted under different conditions and seasons.
Big Data, Global Development, and Complex Social Systems
NASA Astrophysics Data System (ADS)
Eagle, Nathan
2010-03-01
Petabytes of data about human movements, transactions, and communication patterns are continuously being generated by everyday technologies such as mobile phones and credit cards. This unprecedented volume of information facilitates a novel set of research questions applicable to a wide range of development issues. In collaboration with the mobile phone, internet, and credit card industries, my colleagues and I are aggregating and analyzing behavioral data from over 250 million people from North and South America, Europe, Asia and Africa. I will discuss a selection of projects arising from these collaborations that involve inferring behavioral dynamics on a broad spectrum of scales; from risky behavior in a group of MIT freshman to population-level behavioral signatures, including cholera outbreaks in Rwanda and wealth in the UK. Access to the movement patterns of the majority of mobile phones in East Africa also facilitates realistic models of disease transmission as well as slum formations. This vast volume of data requires new analytical tools - we are developing a range of large-scale network analysis and machine learning algorithms that we hope will provide deeper insight into human behavior. However, ultimately our goal is to determine how we can use these insights to actively improve the lives of the billions of people who generate this data and the societies in which they live.
Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.
Our Children: Parental Decisions - How Much to Invest in Your Offspring
NASA Astrophysics Data System (ADS)
Shenk, Mary K.
Reproduction is the most fundamental of evolutionary behaviors, yet human parents face especially complex tradeoffs when deciding how many children to have and how much to invest in each of them. This chapter reviews parental investment theory, including both the key concepts and some important questions to which they have been applied in humans. Written primarily from the perspective of human behavioral ecology, this chapter also discusses how evolutionary social scientists have approached cross-cultural variation in parenting behavior. The chapter begins with an overview of life history theory and the concept of reproductive tradeoffs, focusing especially on the tradeoffs between current vs. future reproduction and quantity vs. quality of offspring. Discussing the critical question of who invests in offspring, I next compare motivations for investment between mothers and fathers, and explore the roles of many types of kin in investment, while considering whether humans can be viewed as cooperative breeders. I then explore the role of parent-offspring conflict and sibling conflict in parental investment and inheritance systems, followed by an exploration of sex biases in investment, including the Trivers-Willard effect local resource competition, and local resource enhancement. In conclusion, I argue that parental investment has been one of the most active areas of enquiry among evolutionary researchers over the last twenty years, and is likely to remain one of the mainstays of the field during the coming decades.
ALCOHOL AND THE PREFRONTAL CORTEX
Abernathy, Kenneth; Chandler, L. Judson; Woodward, John J.
2013-01-01
The prefrontal cortex occupies the anterior portion of the frontal lobes and is thought to be one of the most complex anatomical and functional structures of the mammalian brain. Its major role is to integrate and interpret inputs from cortical and sub-cortical structures and use this information to develop purposeful responses that reflect both present and future circumstances. This includes both action-oriented sequences involved in obtaining rewards and inhibition of behaviors that pose undue risk or harm to the individual. Given the central role in initiating and regulating these often complex cognitive and behavioral responses, it is no surprise that alcohol has profound effects on the function of the prefrontal cortex. In this chapter, we review the basic anatomy and physiology of the prefrontal cortex and discuss what is known about the actions of alcohol on the function of this brain region. This includes a review of both the human and animal literature including information on the electrophysiological and behavioral effects that follow acute and chronic exposure to alcohol. The chapter concludes with a discussion of unanswered questions and areas needing further investigation. PMID:20813246
Drewnowski, Adam; Kawachi, Ichiro
2015-09-01
Health is shaped by both personal choices and features of the food environment. Food-choice decisions depend on complex interactions between biology and behavior, and are further modulated by the built environment and community structure. That lower-income families have lower-quality diets is well established. Yet, diet quality also varies across small geographic neighborhoods and can be influenced by transportation, retail, and ease of access to healthy foods, as well as by attitudes, beliefs, and social interactions. The learnings from the Seattle Obesity Study (SOS II) can be usefully applied to the much larger, more complex, and far more socially and ethnically diverse urban environment of New York City. The Kavli HUMAN Project (KHP) is ideally positioned to advance the understanding of health disparities by exploring the multiple underpinnings of food decision making. By combining geo-localized food shopping and consumption data with health behaviors, diet quality measures, and biomarkers, also coded by geographic location, the KHP will create the first-of-its-kind bio-behavioral, economic, and cultural atlas of diet quality and health for New York City.
Role of Graph Architecture in Controlling Dynamical Networks with Applications to Neural Systems.
Kim, Jason Z; Soffer, Jonathan M; Kahn, Ari E; Vettel, Jean M; Pasqualetti, Fabio; Bassett, Danielle S
2018-01-01
Networked systems display complex patterns of interactions between components. In physical networks, these interactions often occur along structural connections that link components in a hard-wired connection topology, supporting a variety of system-wide dynamical behaviors such as synchronization. While descriptions of these behaviors are important, they are only a first step towards understanding and harnessing the relationship between network topology and system behavior. Here, we use linear network control theory to derive accurate closed-form expressions that relate the connectivity of a subset of structural connections (those linking driver nodes to non-driver nodes) to the minimum energy required to control networked systems. To illustrate the utility of the mathematics, we apply this approach to high-resolution connectomes recently reconstructed from Drosophila, mouse, and human brains. We use these principles to suggest an advantage of the human brain in supporting diverse network dynamics with small energetic costs while remaining robust to perturbations, and to perform clinically accessible targeted manipulation of the brain's control performance by removing single edges in the network. Generally, our results ground the expectation of a control system's behavior in its network architecture, and directly inspire new directions in network analysis and design via distributed control.
Beldzik, Ewa; Chialvo, Dante R.; Domagalik, Aleksandra; Fafrowicz, Magdalena; Gudowska-Nowak, Ewa; Marek, Tadeusz; Nowak, Maciej A.; Oginska, Halszka; Szwed, Jerzy
2014-01-01
The timing and dynamics of many diverse behaviors of mammals, e.g., patterns of animal foraging or human communication in social networks exhibit complex self-similar properties reproducible over multiple time scales. In this paper, we analyze spontaneous locomotor activity of healthy individuals recorded in two different conditions: during a week of regular sleep and a week of chronic partial sleep deprivation. After separating activity from rest with a pre-defined activity threshold, we have detected distinct statistical features of duration times of these two states. The cumulative distributions of activity periods follow a stretched exponential shape, and remain similar for both control and sleep deprived individuals. In contrast, rest periods, which follow power-law statistics over two orders of magnitude, have significantly distinct distributions for these two groups and the difference emerges already after the first night of shortened sleep. We have found steeper distributions for sleep deprived individuals, which indicates fewer long rest periods and more turbulent behavior. This separation of power-law exponents is the main result of our investigations, and might constitute an objective measure demonstrating the severity of sleep deprivation and the effects of sleep disorders. PMID:25222128
The ecology of religious beliefs
Botero, Carlos A.; Gardner, Beth; Kirby, Kathryn R.; Bulbulia, Joseph; Gavin, Michael C.; Gray, Russell D.
2014-01-01
Although ecological forces are known to shape the expression of sociality across a broad range of biological taxa, their role in shaping human behavior is currently disputed. Both comparative and experimental evidence indicate that beliefs in moralizing high gods promote cooperation among humans, a behavioral attribute known to correlate with environmental harshness in nonhuman animals. Here we combine fine-grained bioclimatic data with the latest statistical tools from ecology and the social sciences to evaluate the potential effects of environmental forces, language history, and culture on the global distribution of belief in moralizing high gods (n = 583 societies). After simultaneously accounting for potential nonindependence among societies because of shared ancestry and cultural diffusion, we find that these beliefs are more prevalent among societies that inhabit poorer environments and are more prone to ecological duress. In addition, we find that these beliefs are more likely in politically complex societies that recognize rights to movable property. Overall, our multimodel inference approach predicts the global distribution of beliefs in moralizing high gods with an accuracy of 91%, and estimates the relative importance of different potential mechanisms by which this spatial pattern may have arisen. The emerging picture is neither one of pure cultural transmission nor of simple ecological determinism, but rather a complex mixture of social, cultural, and environmental influences. Our methods and findings provide a blueprint for how the increasing wealth of ecological, linguistic, and historical data can be leveraged to understand the forces that have shaped the behavior of our own species. PMID:25385605
García-Guerrero, Estefanía; Pérez-Simón, José Antonio; Sánchez-Abarca, Luis Ignacio; Díaz-Moreno, Irene; De la Rosa, Miguel A; Díaz-Quintana, Antonio
2016-01-01
Generating the immune response requires the discrimination of peptides presented by the human leukocyte antigen complex (HLA) through the T-cell receptor (TCR). However, how a single amino acid substitution in the antigen bonded to HLA affects the response of T cells remains uncertain. Hence, we used molecular dynamics computations to analyze the molecular interactions between peptides, HLA and TCR. We compared immunologically reactive complexes with non-reactive and weakly reactive complexes. MD trajectories were produced to simulate the behavior of isolated components of the various p-HLA-TCR complexes. Analysis of the fluctuations showed that p-HLA binding barely restrains TCR motions, and mainly affects the CDR3 loops. Conversely, inactive p-HLA complexes displayed significant drop in their dynamics when compared with its free versus ternary forms (p-HLA-TCR). In agreement, the free non-reactive p-HLA complexes showed a lower amount of salt bridges than the responsive ones. This resulted in differences between the electrostatic potentials of reactive and inactive p-HLA species and larger vibrational entropies in non-elicitor complexes. Analysis of the ternary p-HLA-TCR complexes also revealed a larger number of salt bridges in the responsive complexes. To summarize, our computations indicate that the affinity of each p-HLA complex towards TCR is intimately linked to both, the dynamics of its free species and its ability to form specific intermolecular salt-bridges in the ternary complexes. Of outstanding interest is the emerging concept of antigen reactivity involving its interplay with the HLA head sidechain dynamics by rearranging its salt-bridges.
Psychological safety: The key to high performance in high stress, potentially traumatic environments
James Saveland
2011-01-01
Safety is typically talked about in a context of the absence of injury. The field of resilience engineering has been advocating that we think about safety differently, by taking a systems view and begin to see how people create safety in unsafe systems by managing risk. There is growing recognition that safety is an emergent behavior of our complex system of human...
ERIC Educational Resources Information Center
Jackson, Douglas N.
The term "conative" is used to describe constructs that span both motivational and volitional aspects of human behavior, distinguished from constructs that emphasize cognition and affection. Among the conative constructs are achievement strivings, beliefs about self-esteem and self-efficacy, interests and attitudes about learning,…
Applied Cognitive Models of Behavior and Errors Patterns
2017-09-01
methods offer an opportunity to deliver good , effective introductory and basic training , thus potentially enabling a single human instructor to train ...emergency medical technician (EMT) domain, which offers a standardized curriculum on which we can create training scenarios. 2. Develop...complexity of software integration and limited access to physical devices can result in commitment to a de- sign that turns out to not offer many training
1986-01-30
main food. Elephant brains are three times human size. Elephants form matriarchal tribal societies and exhibit complex behavior. Indian domestic...line triangulation. In XVth Int’l Congress of Photogrammetry and Remote Sensing, Commission III, Part 3a, - ’ * pages 342-362. Int’l Society for...a rigid motion. Psychometrlka 35(2):245-255, June, 1970. [15] C.C. Slama (edltor-in-chlef). I Manual of photo grammfetry. American Society of
Huckans, Marilyn; Wilhelm, Clare J.; Phillips, Tamara J.; Huang, Elaine T.; Hudson, Rebekah; Loftis, Jennifer M.
2018-01-01
Background Methamphetamine (MA) abuse causes immune dysfunction and neuropsychiatric impairment. The mechanisms underlying these deficits remain unidentified. Methods The effects of MA on anxiety-like behavior and immune function were investigated in mice selectively bred to voluntarily consume high amounts of MA [i.e., MA high drinking (MAHDR) mice]. MA (or saline) was administered to mice using a chronic (14-day), binge-like model. Performance in the elevated zero maze (EZM) was determined 5 days after the last MA dose to examine anxiety-like behavior. Cytokine and chemokine expressions were measured in the hippocampus using quantitative polymerase chain reaction (qPCR). Human studies were also conducted to evaluate symptoms of anxiety using the General Anxiety Disorder-7 Scale in adults with and without a history of MA dependence. Plasma samples collected from human research participants were used for confirmatory analysis of murine qPCR results using an enzyme-linked immunosorbent assay. Results During early remission from MA, MAHDR mice exhibited increased anxiety-like behavior on the EZM and reduced expression of chemokine (C-C motif) ligand 3 (ccl3) in the hippocampus relative to saline-treated mice. Human adults actively dependent on MA and those in early remission had elevated symptoms of anxiety as well as reductions in plasma levels of CCL3, relative to adults with no history of MA abuse. Conclusions The results highlight the complex effects of MA on immune and behavioral function and suggest that alterations in CCL3 signaling may contribute to the mood impairments observed during remission from MA addiction. PMID:29402784
DNA/RNA binding and anticancer/antimicrobial activities of polymer-copper(II) complexes
NASA Astrophysics Data System (ADS)
Lakshmipraba, Jagadeesan; Arunachalam, Sankaralingam; Riyasdeen, Anvarbatcha; Dhivya, Rajakumar; Vignesh, Sivanandham; Akbarsha, Mohammad Abdulkader; James, Rathinam Arthur
2013-05-01
Water soluble polymer-copper(II) complexes with various degrees of coordination in the polymer chain were synthesized and characterized by elemental analysis, IR, UV-visible and EPR spectra. The DNA/RNA binding behavior of these polymer-copper(II) complexes was examined by UV-visible absorption, emission and circular dichroism spectroscopic methods, and cyclic voltammetry techniques. The binding of the polymer-copper(II) complexes with DNA/RNA was mainly through intercalation but some amount of electrostatic interaction was also observed. This binding capacity increased with the degree of coordination of the complexes. The polymer-copper(II) complex having the highest degree of coordination was subjected to analysis of cytotoxic and antimicrobial properties. The cytotoxicity study indicated that the polymer-copper(II) complexes affected the viability of MCF-7 mammary carcinoma cells, and the cells responded to the treatment with mostly through apoptosis although a few cells succumbed to necrosis. The antimicrobial screening showed activity against some human pathogens.
Dynamic Primitives of Motor Behavior
Hogan, Neville; Sternad, Dagmar
2013-01-01
We present in outline a theory of sensorimotor control based on dynamic primitives, which we define as attractors. To account for the broad class of human interactive behaviors—especially tool use—we propose three distinct primitives: submovements, oscillations and mechanical impedances, the latter necessary for interaction with objects. Due to fundamental features of the neuromuscular system, most notably its slow response, we argue that encoding in terms of parameterized primitives may be an essential simplification required for learning, performance, and retention of complex skills. Primitives may simultaneously and sequentially be combined to produce observable forces and motions. This may be achieved by defining a virtual trajectory composed of submovements and/or oscillations interacting with impedances. Identifying primitives requires care: in principle, overlapping submovements would be sufficient to compose all observed movements but biological evidence shows that oscillations are a distinct primitive. Conversely, we suggest that kinematic synergies, frequently discussed as primitives of complex actions, may be an emergent consequence of neuromuscular impedance. To illustrate how these dynamic primitives may account for complex actions, we briefly review three types of interactive behaviors: constrained motion, impact tasks, and manipulation of dynamic objects. PMID:23124919
Uguccioni, Ginevra; Golmard, Jean-Louis; de Fontréaux, Alix Noël; Leu-Semenescu, Smaranda; Brion, Agnès; Arnulf, Isabelle
2013-05-01
Dreams enacted during sleepwalking or sleep terrors (SW/ST) may differ from those enacted during rapid eye movement sleep behavior disorder (RBD). Subjects completed aggression, depression, and anxiety questionnaires. The mentations associated with SW/ST and RBD behaviors were collected over their lifetime and on the morning after video polysomnography (PSG). The reports were analyzed for complexity, length, content, setting, bizarreness, and threat. Ninety-one percent of 32 subjects with SW/ST and 87.5% of 24 subjects with RBD remembered an enacted dream (121 dreams in a lifetime and 41 dreams recalled on the morning). These dreams were more complex and less bizarre, with a higher level of aggression in the RBD than in SW/ST subjects. In contrast, we found low aggression, anxiety, and depression scores during the daytime in both groups. As many as 70% of enacted dreams in SW/ST and 60% in RBD involved a threat, but there were more misfortunes and disasters in the SW/ST dreams and more human and animal aggressions in the RBD dreams. The response to these threats differed, as the sleepwalkers mostly fled from a disaster (and 25% fought back when attacked), while 75% of RBD subjects counterattacked when assaulted. The dreams setting included their bedrooms in 42% SW/ST dreams, though this finding was exceptional in the RBD dreams. Different threat simulations and modes of defense seem to play a role during dream-enacted behaviors (e.g., fleeing a disaster during SW/ST, counterattacking a human or animal assault during RBD), paralleling and exacerbating the differences observed between normal dreaming in nonrapid eye movement (NREM) vs rapid eye movement (REM) sleep. Copyright © 2013 Elsevier B.V. All rights reserved.
Learning and inference using complex generative models in a spatial localization task.
Bejjanki, Vikranth R; Knill, David C; Aslin, Richard N
2016-01-01
A large body of research has established that, under relatively simple task conditions, human observers integrate uncertain sensory information with learned prior knowledge in an approximately Bayes-optimal manner. However, in many natural tasks, observers must perform this sensory-plus-prior integration when the underlying generative model of the environment consists of multiple causes. Here we ask if the Bayes-optimal integration seen with simple tasks also applies to such natural tasks when the generative model is more complex, or whether observers rely instead on a less efficient set of heuristics that approximate ideal performance. Participants localized a "hidden" target whose position on a touch screen was sampled from a location-contingent bimodal generative model with different variances around each mode. Over repeated exposure to this task, participants learned the a priori locations of the target (i.e., the bimodal generative model), and integrated this learned knowledge with uncertain sensory information on a trial-by-trial basis in a manner consistent with the predictions of Bayes-optimal behavior. In particular, participants rapidly learned the locations of the two modes of the generative model, but the relative variances of the modes were learned much more slowly. Taken together, our results suggest that human performance in a more complex localization task, which requires the integration of sensory information with learned knowledge of a bimodal generative model, is consistent with the predictions of Bayes-optimal behavior, but involves a much longer time-course than in simpler tasks.
A Comparative View of Face Perception
Leopold, David A.; Rhodes, Gillian
2010-01-01
Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and fMRI experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and non-primates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Since the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. PMID:20695655
A comparative view of face perception.
Leopold, David A; Rhodes, Gillian
2010-08-01
Face perception serves as the basis for much of human social exchange. Diverse information can be extracted about an individual from a single glance at their face, including their identity, emotional state, and direction of attention. Neuropsychological and functional magnetic resonance imaging (fMRI) experiments reveal a complex network of specialized areas in the human brain supporting these face-reading skills. Here we consider the evolutionary roots of human face perception by exploring the manner in which different animal species view and respond to faces. We focus on behavioral experiments collected from both primates and nonprimates, assessing the types of information that animals are able to extract from the faces of their conspecifics, human experimenters, and natural predators. These experiments reveal that faces are an important category of visual stimuli for animals in all major vertebrate taxa, possibly reflecting the early emergence of neural specialization for faces in vertebrate evolution. At the same time, some aspects of facial perception are only evident in primates and a few other social mammals, and may therefore have evolved to suit the needs of complex social communication. Because the human brain likely utilizes both primitive and recently evolved neural specializations for the processing of faces, comparative studies may hold the key to understanding how these parallel circuits emerged during human evolution. 2010 APA, all rights reserved
Sexing the brain: the science and pseudoscience of sex differences.
Rogers, Lesley J
2010-06-01
A recent upsurge in unitary biological explanations for gender differences in behavior (i.e. that they are "hard-wired" in the genetic code), put forward not only in books written for a general audience but also in scientific papers, makes it important to examine the fallacies of these ideas. Such genetic and hormonal explanations of human behavior, formulated with little consideration of the influences of experience, and often without taking experience into account at all, are part of a new wave of genetic explanations for a broad range of human behavior, as explained in the paper. These ideas are far from new; moreover, they are pseudoscientific and are used for political influence under the guise of science. They are a conservative social force that maintains social and educational inequalities between women and men. This paper explains that causal explanations of differences between the sexes are of two completely different types: unitary (genetic determinist) versus interactive explanations. The false reasoning used to support genetic determinist explanations of sex differences in behavior is discussed. To illustrate what biology really tells us about gender differentiation, the paper discusses the interactive roles of genetic, hormonal and environmental influences on the development of gender differences. These interactions are illustrated using two model biological systems (e.g. the intertwined influences of genes, sex hormones and experience on the development of sex differences in behavior in rats, and sex differences in neuronal connections in chickens). There is plenty of scientific evidence to show the complex interactive, and ever changing, influences of experience and genes that take place as an organism develops and throughout its life. Malleability of brain and behavior can be shown clearly using animal models, and the processes involved apply also to the development of brain and behavior in humans. We diminish our understanding of the functions of a host of contributing factors to gender differentiation by parceling out the largest portion of control to the genes. The biology and behavior of humans is dynamic and flexible and need not restrict women to inferior positions in society. 2010 Elsevier. Published by Elsevier B.V. All rights reserved.
Tanana, Michael; Hallgren, Kevin A; Imel, Zac E; Atkins, David C; Srikumar, Vivek
2016-06-01
Motivational interviewing (MI) is an efficacious treatment for substance use disorders and other problem behaviors. Studies on MI fidelity and mechanisms of change typically use human raters to code therapy sessions, which requires considerable time, training, and financial costs. Natural language processing techniques have recently been utilized for coding MI sessions using machine learning techniques, rather than human coders, and preliminary results have suggested these methods hold promise. The current study extends this previous work by introducing two natural language processing models for automatically coding MI sessions via computer. The two models differ in the way they semantically represent session content, utilizing either 1) simple discrete sentence features (DSF model) and 2) more complex recursive neural networks (RNN model). Utterance- and session-level predictions from these models were compared to ratings provided by human coders using a large sample of MI sessions (N=341 sessions; 78,977 clinician and client talk turns) from 6 MI studies. Results show that the DSF model generally had slightly better performance compared to the RNN model. The DSF model had "good" or higher utterance-level agreement with human coders (Cohen's kappa>0.60) for open and closed questions, affirm, giving information, and follow/neutral (all therapist codes); considerably higher agreement was obtained for session-level indices, and many estimates were competitive with human-to-human agreement. However, there was poor agreement for client change talk, client sustain talk, and therapist MI-inconsistent behaviors. Natural language processing methods provide accurate representations of human derived behavioral codes and could offer substantial improvements to the efficiency and scale in which MI mechanisms of change research and fidelity monitoring are conducted. Copyright © 2016 Elsevier Inc. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hong, Tianzhen; Yan, Da; D'Oca, Simona
Occupant behavior has significant impacts on building energy performance and occupant comfort. However, occupant behavior is not well understood and is often oversimplified in the building life cycle, due to its stochastic, diverse, complex, and interdisciplinary nature. The use of simplified methods or tools to quantify the impacts of occupant behavior in building performance simulations significantly contributes to performance gaps between simulated models and actual building energy consumption. Therefore, it is crucial to understand occupant behavior in a comprehensive way, integrating qualitative approaches and data- and model-driven quantitative approaches, and employing appropriate tools to guide the design and operation ofmore » low-energy residential and commercial buildings that integrate technological and human dimensions. This paper presents ten questions, highlighting some of the most important issues regarding concepts, applications, and methodologies in occupant behavior research. The proposed questions and answers aim to provide insights into occupant behavior for current and future researchers, designers, and policy makers, and most importantly, to inspire innovative research and applications to increase energy efficiency and reduce energy use in buildings.« less
Behavioral Competence as a Positive Youth Development Construct: A Conceptual Review
Ma, Hing Keung
2012-01-01
Behavioral competence is delineated in terms of four parameters: (a) Moral and Social Knowledge, (b) Social Skills, (c) Positive Characters and Positive Attributes, and (d) Behavioral Decision Process and Action Taking. Since Ma's other papers in this special issue have already discussed the moral and social knowledge as well as the social skills associated in detail, this paper focuses on the last two parameters. It is hypothesized that the following twelve positive characters are highly related to behavioral competence: humanity, intelligence, courage, conscience, autonomy, respect, responsibility, naturalness, loyalty, humility, assertiveness, and perseverance. Large-scale empirical future studies should be conducted to substantiate the predictive validity of the complete set of these positive characters. The whole judgment and behavioral decision process is constructed based on the information processing approach. The direction of future studies should focus more on the complex input, central control, and output subprocesses and the interactions among these sub-processes. The understanding of the formation of behavior is crucial to whole-person education and positive youth development. PMID:22645434
The Role of Neurotrophins in Major Depressive Disorder.
Jiang, Cheng; Salton, Stephen R
2013-03-01
Neurotrophins and other growth factors have been advanced as critical modulators of depressive behavior. Support for this model is based on analyses of knockout and transgenic mouse models, human genetic studies, and screens for gene products that are regulated by depressive behavior and/or antidepressants. Even subtle alteration in the regulated secretion of brain-derived neurotrophic factor (BDNF), for example, due to a single nucleotide polymorphism (SNP)-encoded Val-Met substitution in proBDNF that affects processing and sorting, impacts behavior and cognition. Alterations in growth factor expression result in changes in neurogenesis as well as structural changes in neuronal cytoarchitecture, including effects on dendritic length and spine density, in the hippocampus, nucleus accumbens, and prefrontal cortex. These changes have the potential to impact the plasticity and stability of synapses in the CNS, and the complex brain circuitry that regulates behavior. Here we review the role that neurotrophins play in the modulation of depressive behavior, and the downstream signaling targets they regulate that potentially mediate these behavioral pro-depressant and antidepressant effects.
The Role of Neurotrophins in Major Depressive Disorder
Jiang, Cheng; Salton, Stephen R.
2013-01-01
Neurotrophins and other growth factors have been advanced as critical modulators of depressive behavior. Support for this model is based on analyses of knockout and transgenic mouse models, human genetic studies, and screens for gene products that are regulated by depressive behavior and/or antidepressants. Even subtle alteration in the regulated secretion of brain-derived neurotrophic factor (BDNF), for example, due to a single nucleotide polymorphism (SNP)-encoded Val-Met substitution in proBDNF that affects processing and sorting, impacts behavior and cognition. Alterations in growth factor expression result in changes in neurogenesis as well as structural changes in neuronal cytoarchitecture, including effects on dendritic length and spine density, in the hippocampus, nucleus accumbens, and prefrontal cortex. These changes have the potential to impact the plasticity and stability of synapses in the CNS, and the complex brain circuitry that regulates behavior. Here we review the role that neurotrophins play in the modulation of depressive behavior, and the downstream signaling targets they regulate that potentially mediate these behavioral pro-depressant and antidepressant effects. PMID:23691270
An agent-based hydroeconomic model to evaluate water policies in Jordan
NASA Astrophysics Data System (ADS)
Yoon, J.; Gorelick, S.
2014-12-01
Modern water systems can be characterized by a complex network of institutional and private actors that represent competing sectors and interests. Identifying solutions to enhance water security in such systems calls for analysis that can adequately account for this level of complexity and interaction. Our work focuses on the development of a hierarchical, multi-agent, hydroeconomic model that attempts to realistically represent complex interactions between hydrologic and multi-faceted human systems. The model is applied to Jordan, one of the most water-poor countries in the world. In recent years, the water crisis in Jordan has escalated due to an ongoing drought and influx of refugees from regional conflicts. We adopt a modular approach in which biophysical modules simulate natural and engineering phenomena, and human modules represent behavior at multiple scales of decision making. The human modules employ agent-based modeling, in which agents act as autonomous decision makers at the transboundary, state, organizational, and user levels. A systematic nomenclature and conceptual framework is used to characterize model agents and modules. Concepts from the Unified Modeling Language (UML) are adopted to promote clear conceptualization of model classes and process sequencing, establishing a foundation for full deployment of the integrated model in a scalable object-oriented programming environment. Although the framework is applied to the Jordanian water context, it is generalizable to other regional human-natural freshwater supply systems.
Ballesta, Sébastien; Reymond, Gilles; Pozzobon, Matthieu; Duhamel, Jean-René
2016-01-01
3,4-methylenedioxy-N-methyl amphetamine (MDMA) is one of the few known molecules to increase human and rodent prosocial behaviors. However, this effect has never been assessed on the social behavior of non-human primates. In our study, we subcutaneously injected three different doses of MDMA (1.0, 1.5 or 2.0mg/kg) to a group of three, socially housed, young male long-tailed macaques. More than 200 hours of behavioral data were recorded, during 68 behavioral sessions, by an automatic color-based video device that tracked the 3D positions of each animal and of a toy. This data was then categorized into 5 exclusive behaviors (resting, locomotion, foraging, social contact and object play). In addition, received and given social grooming was manually scored. Results show several significant dose-dependent behavioral effects. At 1.5mg/kg only, MDMA induces a significant increase in social grooming behavior, thus confirming the prosocial effect of MDMA in macaques. Additionally, at 1.5 and 2.0 mg/kg MDMA injection substantially decreases foraging behavior, which is consistent with the known anorexigenic effect of this compound. Furthermore, at 2.0 mg/kg MDMA injection induces an increase in locomotor behavior, which is also in accordance with its known stimulant property. Interestingly, MDMA injected at 1.0mg/kg increases the rate of object play, which might be interpreted as a decrease of the inhibition to manipulate a unique object in presence of others, or, as an increase of the intrinsic motivation to manipulate this object. Together, our results support the effectiveness of MDMA to study the complex neurobiology of primates' social behaviors.
Habitual control of goal selection in humans
Cushman, Fiery; Morris, Adam
2015-01-01
Humans choose actions based on both habit and planning. Habitual control is computationally frugal but adapts slowly to novel circumstances, whereas planning is computationally expensive but can adapt swiftly. Current research emphasizes the competition between habits and plans for behavioral control, yet many complex tasks instead favor their integration. We consider a hierarchical architecture that exploits the computational efficiency of habitual control to select goals while preserving the flexibility of planning to achieve those goals. We formalize this mechanism in a reinforcement learning setting, illustrate its costs and benefits, and experimentally demonstrate its spontaneous application in a sequential decision-making task. PMID:26460050
[Suicide and euthanasia : Discourse on physician-assisted suicide].
Lewitzka, Dr U; Bauer, R
2016-05-01
Suicidal thoughts and behavior have been a part of human nature since the beginning of mankind. In his autobiographical work From my Life: Poetry and Truth Goethe summarized two important aspects: "Suicide is an event of human nature which, whatever may be said and done with respect to it, demands the sympathy of every man, and in every epoch must be discussed anew". The authors of this article aim to motivate the readership to question and analyze this complex topic and the accompanying multifaceted positions with a summarized presentation of historical aspects and the more recent political developments.
Bachrach, Susan
2007-01-01
This article discusses the methods the United States Holocaust Memorial Museum used to make an exhibition on the complex history of Nazi eugenics accessible to the museum's mass public and at the same time, provocative for special audiences consisting of professionals and students from the biomedical fields. Deadly Medicine: Creating the Master Race showed how both eugenics and related "euthanasia" programs in Nazi Germany helped pave the road to the Holocaust. The exhibition implicitly evoked the present-day appeal of biological explanations for human behavior and of new visions of human perfection. Educational programs used the exhibition as a springboard for discussions of bioethics and medical ethics.
Modeling of the U1 snRNP assembly pathway in alternative splicing in human cells using Petri nets.
Kielbassa, J; Bortfeldt, R; Schuster, S; Koch, I
2009-02-01
The investigation of spliceosomal processes is currently a topic of intense research in molecular biology. In the molecular mechanism of alternative splicing, a multi-protein-RNA complex - the spliceosome - plays a crucial role. To understand the biological processes of alternative splicing, it is essential to comprehend the biogenesis of the spliceosome. In this paper, we propose the first abstract model of the regulatory assembly pathway of the human spliceosomal subunit U1. Using Petri nets, we describe its highly ordered assembly that takes place in a stepwise manner. Petri net theory represents a mathematical formalism to model and analyze systems with concurrent processes at different abstraction levels with the possibility to combine them into a uniform description language. There exist many approaches to determine static and dynamic properties of Petri nets, which can be applied to analyze biochemical systems. In addition, Petri net tools usually provide intuitively understandable graphical network representations, which facilitate the dialog between experimentalists and theoreticians. Our Petri net model covers binding, transport, signaling, and covalent modification processes. Through the computation of structural and behavioral Petri net properties and their interpretation in biological terms, we validate our model and use it to get a better understanding of the complex processes of the assembly pathway. We can explain the basic network behavior, using minimal T-invariants which represent special pathways through the network. We find linear as well as cyclic pathways. We determine the P-invariants that represent conserved moieties in a network. The simulation of the net demonstrates the importance of the stability of complexes during the maturation pathway. We can show that complexes that dissociate too fast, hinder the formation of the complete U1 snRNP.
Li, Xiang; Sun, Ming-Zhu; Li, Xu; Zhang, Shu-Hui; Dai, Liang-Ti; Liu, Xing-Yu; Zhao, Xin; Chen, Dong-Yan; Feng, Xi-Zeng
2017-11-01
The extensive usage of xenobiotic endocrine disrupting chemicals (XEDCs), such as Bisphenol A (BPA), has created obvious threat to aquatic ecosystems worldwide. Although a comprehensive understanding of the adverse effect of BPA on behaviors and physiology have been proven, the potential impact of low-dose BPA on altering the basic ability of aquatic organism in adapting to the surrounded complex environment still remains elusive. In this research, we report that treatment of adult male zebrafish with chronic (7 weeks) low-dose (0.22 nM-2.2 nM) BPA, altered the ability in adapting the complex environment by disturbing the natural color preference patterns. In addition, chronic 50 ng/L (0.22 nM) BPA exposure alleviated the anxiety behavior of male zebrafish confronted with the novel environment by enhancing the preference towards light in the light/dark preference test. This phenotype was associated with less expression of serotonin (5-TH) in the hypothalamus and the down-regulation of tyrosine hydroxylase (TH) in brain tissues. As such, our results show that low-dose BPA remnant in surface waters altered zebrafish behavior that are known to have ecological and evolutionary consequences. Here we reported that the impact of chronic low-dose BPA exposure on the basic capability of zebrafish to adapt to the environmental complexity. Specifically, BPA at low concentration, under the environmental safety level and 3000-fold lower than the accepted human daily exposure, interfered with the ability to discriminate color and alleviate anxiety induced by the novel environment, which finally altered the capability of male zebrafish to adapt to the environmental complexity. These findings revealed the ecological effect of low-dose BPA and regular BPA concentration standard are not necessarily safe. The result also provided the consideration of retuning the hazard concentration level of BPA. Copyright © 2017 Elsevier Ltd. All rights reserved.
Complexity and compositionality in fluid intelligence.
Duncan, John; Chylinski, Daphne; Mitchell, Daniel J; Bhandari, Apoorva
2017-05-16
Compositionality, or the ability to build complex cognitive structures from simple parts, is fundamental to the power of the human mind. Here we relate this principle to the psychometric concept of fluid intelligence, traditionally measured with tests of complex reasoning. Following the principle of compositionality, we propose that the critical function in fluid intelligence is splitting a complex whole into simple, separately attended parts. To test this proposal, we modify traditional matrix reasoning problems to minimize requirements on information integration, working memory, and processing speed, creating problems that are trivial once effectively divided into parts. Performance remains poor in participants with low fluid intelligence, but is radically improved by problem layout that aids cognitive segmentation. In line with the principle of compositionality, we suggest that effective cognitive segmentation is important in all organized behavior, explaining the broad role of fluid intelligence in successful cognition.
Vale, Gillian L.; Davis, Sarah J.; Lambeth, Susan P.; Schapiro, Steven J.; Whiten, Andrew
2017-01-01
Cumulative culture underpins humanity’s enormous success as a species. Claims that other animals are incapable of cultural ratcheting are prevalent, but are founded on just a handful of empirical studies. Whether cumulative culture is unique to humans thus remains a controversial and understudied question that has far-reaching implications for our understanding of the evolution of this phenomenon. We investigated whether one of human’s two closest living primate relatives, chimpanzees, are capable of a degree of cultural ratcheting by exposing captive populations to a novel juice extraction task. We found that groups (N = 3) seeded with a model trained to perform a tool modification that built upon simpler, unmodified tool use developed the seeded tool method that allowed greater juice returns than achieved by groups not exposed to a trained model (non-seeded controls; N = 3). One non-seeded group also discovered the behavioral sequence, either by coupling asocial and social learning or by repeated invention. This behavioral sequence was found to be beyond what an additional control sample of chimpanzees (N = 1 group) could discover for themselves without a competent model and lacking experience with simpler, unmodified tool behaviors. Five chimpanzees tested individually with no social information, but with experience of simple unmodified tool use, invented part, but not all, of the behavioral sequence. Our findings indicate that (i) social learning facilitated the propagation of the model-demonstrated tool modification technique, (ii) experience with simple tool behaviors may facilitate individual discovery of more complex tool manipulations, and (iii) a subset of individuals were capable of learning relatively complex behaviors either by learning asocially and socially or by repeated invention over time. That chimpanzees learn increasingly complex behaviors through social and asocial learning suggests that humans’ extraordinary ability to do so was built on such prior foundations. PMID:29333058
A computational model of the human hand 93-ERI-053
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hollerbach, K.; Axelrod, T.
1996-03-01
The objectives of the Computational Hand Modeling project were to prove the feasibility of the Laboratory`s NIKE3D finite element code to orthopaedic problems. Because of the great complexity of anatomical structures and the nonlinearity of their behavior, we have focused on a subset of joints of the hand and lower extremity and have developed algorithms to model their behavior. The algorithms developed here solve fundamental problems in computational biomechanics and can be expanded to describe any other joints of the human body. This kind of computational modeling has never successfully been attempted before, due in part to a lack ofmore » biomaterials data and a lack of computational resources. With the computational resources available at the National Laboratories and the collaborative relationships we have established with experimental and other modeling laboratories, we have been in a position to pursue our innovative approach to biomechanical and orthopedic modeling.« less
The neurophysiology of sexual arousal.
Schober, Justine M; Pfaff, Donald
2007-09-01
Our understanding of the process and initiation of sexual arousal is being enhanced by both animal and human studies, inclusive of basic science principles and research on clinical outcomes. Sexual arousal is dependent on neural (sensory and cognitive) factors, hormonal factors, genetic factors and, in the human case, the complex influences of culture and context. Sexual arousal activates the cognitive and physiologic processes that can eventually lead to sexual behavior. Sexual arousal comprises a particular subset of central nervous system arousal functions which depend on primitive, fundamental arousal mechanisms that cause generalized brain activity, but are manifest in a sociosexual context. The neurophysiology of sexual arousal is seen as a bidirectional system universal to all vertebrates. The following review includes known neural and genomic mechanisms of a hormone-dependent circuit for simple sex behavior. New information about hormone effects on causal steps related to sex hormones' nuclear receptor isoforms expressed by hypothalamic neurons continues to enrich our understanding of this neurophysiology.
Tandem internal models execute motor learning in the cerebellum.
Honda, Takeru; Nagao, Soichi; Hashimoto, Yuji; Ishikawa, Kinya; Yokota, Takanori; Mizusawa, Hidehiro; Ito, Masao
2018-06-25
In performing skillful movement, humans use predictions from internal models formed by repetition learning. However, the computational organization of internal models in the brain remains unknown. Here, we demonstrate that a computational architecture employing a tandem configuration of forward and inverse internal models enables efficient motor learning in the cerebellum. The model predicted learning adaptations observed in hand-reaching experiments in humans wearing a prism lens and explained the kinetic components of these behavioral adaptations. The tandem system also predicted a form of subliminal motor learning that was experimentally validated after training intentional misses of hand targets. Patients with cerebellar degeneration disease showed behavioral impairments consistent with tandemly arranged internal models. These findings validate computational tandemization of internal models in motor control and its potential uses in more complex forms of learning and cognition. Copyright © 2018 the Author(s). Published by PNAS.
Striatal BOLD Response Reflects the Impact of Herd Information on Financial Decisions
Burke, Christopher J.; Tobler, Philippe N.; Schultz, Wolfram; Baddeley, Michelle
2010-01-01
Like other species, humans are sensitive to the decisions and actions of conspecifics, which can lead to herd behavior and undesirable outcomes such as stock market bubbles and bank runs. However, how the brain processes this socially derived influence is only poorly understood. Using functional magnetic resonance imaging (fMRI), we scanned participants as they made decisions on whether to buy stocks after observing others’ buying decisions. We demonstrate that activity in the ventral striatum, an area heavily implicated in reward processing, tracked the degree of influence on participants’ decisions arising from the observation of other peoples’ decisions. The signal did not track non-human, non-social control decisions. These findings lend weight to the notion that the ventral striatum is involved in the processing of complex social aspects of decision making and identify a possible neural basis for herd behavior. PMID:20589242
The space station and human productivity: An agenda for research
NASA Technical Reports Server (NTRS)
Schoonhoven, C. B.
1985-01-01
Organizational problems in permanent organizations in outer space were analyzed. The environment of space provides substantial opportunities for organizational research. Questions about how to organize professional workers in a technologically complex setting with novel dangers and uncertainties present in the immediate environment are examined. It is suggested that knowledge from organization theory/behavior is an underutilized resource in the U.S. space program. A U.S. space station will be operable by the mid-1990's. Organizational issues will take on increasing importance, because a space station requires the long term organization of human and robotic work in the isolated and confined environment of outer space. When an organizational analysis of the space station is undertaken, there are research implications at multiple levels of analysis: for the individual, small group, organizational, and environmental levels of analysis. The research relevant to organization theory and behavior is reviewed.
Long-distance stone transport and pigment use in the earliest Middle Stone Age
NASA Astrophysics Data System (ADS)
Brooks, Alison S.; Yellen, John E.; Potts, Richard; Behrensmeyer, Anna K.; Deino, Alan L.; Leslie, David E.; Ambrose, Stanley H.; Ferguson, Jeffrey R.; d’Errico, Francesco; Zipkin, Andrew M.; Whittaker, Scott; Post, Jeffrey; Veatch, Elizabeth G.; Foecke, Kimberly; Clark, Jennifer B.
2018-04-01
Previous research suggests that the complex symbolic, technological, and socioeconomic behaviors that typify Homo sapiens had roots in the middle Pleistocene <200,000 years ago, but data bearing on human behavioral origins are limited. We present a series of excavated Middle Stone Age sites from the Olorgesailie basin, southern Kenya, dating from ≥295,000 to ~320,000 years ago by argon-40/argon-39 and uranium-series methods. Hominins at these sites made prepared cores and points, exploited iron-rich rocks to obtain red pigment, and procured stone tool materials from ≥25- to 50-kilometer distances. Associated fauna suggests a broad resource strategy that included large and small prey. These practices imply notable changes in how individuals and groups related to the landscape and to one another and provide documentation relevant to human social and cognitive evolution.
Training Knowledge Bots for Physics-Based Simulations Using Artificial Neural Networks
NASA Technical Reports Server (NTRS)
Samareh, Jamshid A.; Wong, Jay Ming
2014-01-01
Millions of complex physics-based simulations are required for design of an aerospace vehicle. These simulations are usually performed by highly trained and skilled analysts, who execute, monitor, and steer each simulation. Analysts rely heavily on their broad experience that may have taken 20-30 years to accumulate. In addition, the simulation software is complex in nature, requiring significant computational resources. Simulations of system of systems become even more complex and are beyond human capacity to effectively learn their behavior. IBM has developed machines that can learn and compete successfully with a chess grandmaster and most successful jeopardy contestants. These machines are capable of learning some complex problems much faster than humans can learn. In this paper, we propose using artificial neural network to train knowledge bots to identify the idiosyncrasies of simulation software and recognize patterns that can lead to successful simulations. We examine the use of knowledge bots for applications of computational fluid dynamics (CFD), trajectory analysis, commercial finite-element analysis software, and slosh propellant dynamics. We will show that machine learning algorithms can be used to learn the idiosyncrasies of computational simulations and identify regions of instability without including any additional information about their mathematical form or applied discretization approaches.
Convergent Differential Regulation of Parvalbumin in the Brains of Vocal Learners
Hara, Erina; Rivas, Miriam V.; Ward, James M.; Okanoya, Kazuo; Jarvis, Erich D.
2012-01-01
Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds – songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV). In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65–300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling. PMID:22238614
Ha, Sungji; Park, Hyunjun; Mahmood, Usman; Ra, Jeong Chan; Suh, Yoo-Hun; Chang, Keun-A
2017-01-15
Autism spectrum disorder (ASD) is a complex neurodevelopmental disorder characterized by impairments in social interaction and communication, and patients often display co-occurring repetitive behaviors. Although the global prevalence of ASD has increased over time, the etiology and treatments for ASD are poorly understood. Recently, some researchers have suggested that stem cells have therapeutic potential for ASD. Thus, in the present study, we investigated the therapeutic effects of human adipose-derived stem cells (hASCs), a kind of autologous mesenchymal stem cells (MSCs) isolated from adipose tissue, on valproic acid (VPA)-induced autism model mice. Human ASCs were injected into the neonatal pups (P2 or P3) intraventricularly and then we evaluated major behavior symptoms of ASD. VPA-treated mice showed increased repetitive behaviors, decreased social interactions and increased anxiety but these autistic behaviors were ameliorated through transplantation of hASCs. In addition, hASCs transplantation restored the alteration of phosphatase and tensin homolog (PTEN) expression and p-AKT/AKT ratio in the brains of VPA-induced ASD model mice. The decreased level of vascular endothelial growth factor (VEGF) and interleukin 10 (IL-10) by VPA were rescued in the brains of the hASC-injected VPA mice. With these results, we experimentally found hASCs' therapeutic effects on autistic phenotypes in a ASD model mice for the first time. This animal model system can be used to elucidate further mechanisms of therapeutic effects of hASCs in ASD. Copyright © 2016 Elsevier B.V. All rights reserved.
Signaling equilibria in sensorimotor interactions.
Leibfried, Felix; Grau-Moya, Jordi; Braun, Daniel A
2015-08-01
Although complex forms of communication like human language are often assumed to have evolved out of more simple forms of sensorimotor signaling, less attention has been devoted to investigate the latter. Here, we study communicative sensorimotor behavior of humans in a two-person joint motor task where each player controls one dimension of a planar motion. We designed this joint task as a game where one player (the sender) possesses private information about a hidden target the other player (the receiver) wants to know about, and where the sender's actions are costly signals that influence the receiver's control strategy. We developed a game-theoretic model within the framework of signaling games to investigate whether subjects' behavior could be adequately described by the corresponding equilibrium solutions. The model predicts both separating and pooling equilibria, in which signaling does and does not occur respectively. We observed both kinds of equilibria in subjects and found that, in line with model predictions, the propensity of signaling decreased with increasing signaling costs and decreasing uncertainty on the part of the receiver. Our study demonstrates that signaling games, which have previously been applied to economic decision-making and animal communication, provide a framework for human signaling behavior arising during sensorimotor interactions in continuous and dynamic environments. Copyright © 2015 Elsevier B.V. All rights reserved.
Vasopressin increases human risky cooperative behavior
Brunnlieb, Claudia; Nave, Gideon; Camerer, Colin F.; Schosser, Stephan; Vogt, Bodo; Münte, Thomas F.; Heldmann, Marcus
2016-01-01
The history of humankind is an epic of cooperation, which is ubiquitous across societies and increasing in scale. Much human cooperation occurs where it is risky to cooperate for mutual benefit because successful cooperation depends on a sufficient level of cooperation by others. Here we show that arginine vasopressin (AVP), a neuropeptide that mediates complex mammalian social behaviors such as pair bonding, social recognition and aggression causally increases humans’ willingness to engage in risky, mutually beneficial cooperation. In two double-blind experiments, male participants received either AVP or placebo intranasally and made decisions with financial consequences in the “Stag hunt” cooperation game. AVP increases humans’ willingness to cooperate. That increase is not due to an increase in the general willingness to bear risks or to altruistically help others. Using functional brain imaging, we show that, when subjects make the risky Stag choice, AVP down-regulates the BOLD signal in the left dorsolateral prefrontal cortex (dlPFC), a risk-integration region, and increases the left dlPFC functional connectivity with the ventral pallidum, an AVP receptor-rich region previously associated with AVP-mediated social reward processing in mammals. These findings show a previously unidentified causal role for AVP in social approach behavior in humans, as established by animal research. PMID:26858433