Sample records for complex hydrogen bonding

  1. Matrix isolation studies of hydrogen bonding - An historical perspective

    NASA Astrophysics Data System (ADS)

    Barnes, Austin J.

    2018-07-01

    An historical introduction sets matrix isolation in perspective with other spectroscopic techniques for studying hydrogen-bonded complexes. This is followed by detailed accounts of various aspects of hydrogen-bonded complexes that have been studied using matrix isolation spectroscopy: Matrix effects: stabilisation of complexes. Strongly hydrogen-bonded molecular complexes: the vibrational correlation diagram. Anomalous spectra: the Ratajczak-Yaremko model. Metastable complexes. Csbnd H hydrogen bonding and blue shifting hydrogen bonds.

  2. A polarizable dipole-dipole interaction model for evaluation of the interaction energies for N-H···O=C and C-H···O=C hydrogen-bonded complexes.

    PubMed

    Li, Shu-Shi; Huang, Cui-Ying; Hao, Jiao-Jiao; Wang, Chang-Sheng

    2014-03-05

    In this article, a polarizable dipole-dipole interaction model is established to estimate the equilibrium hydrogen bond distances and the interaction energies for hydrogen-bonded complexes containing peptide amides and nucleic acid bases. We regard the chemical bonds N-H, C=O, and C-H as bond dipoles. The magnitude of the bond dipole moment varies according to its environment. We apply this polarizable dipole-dipole interaction model to a series of hydrogen-bonded complexes containing the N-H···O=C and C-H···O=C hydrogen bonds, such as simple amide-amide dimers, base-base dimers, peptide-base dimers, and β-sheet models. We find that a simple two-term function, only containing the permanent dipole-dipole interactions and the van der Waals interactions, can produce the equilibrium hydrogen bond distances compared favorably with those produced by the MP2/6-31G(d) method, whereas the high-quality counterpoise-corrected (CP-corrected) MP2/aug-cc-pVTZ interaction energies for the hydrogen-bonded complexes can be well-reproduced by a four-term function which involves the permanent dipole-dipole interactions, the van der Waals interactions, the polarization contributions, and a corrected term. Based on the calculation results obtained from this polarizable dipole-dipole interaction model, the natures of the hydrogen bonding interactions in these hydrogen-bonded complexes are further discussed. Copyright © 2013 Wiley Periodicals, Inc.

  3. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol.

    PubMed

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-12-30

    Amides are important atmospheric organic-nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N -methylformamide, N , N -dimethylformamide, acetamide, N -methylacetamide and N , N -dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH-amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O-H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components.

  4. Hydrogen Bonding Interaction between Atmospheric Gaseous Amides and Methanol

    PubMed Central

    Zhao, Hailiang; Tang, Shanshan; Xu, Xiang; Du, Lin

    2016-01-01

    Amides are important atmospheric organic–nitrogen compounds. Hydrogen bonded complexes of methanol (MeOH) with amides (formamide, N-methylformamide, N,N-dimethylformamide, acetamide, N-methylacetamide and N,N-dimethylacetamide) have been investigated. The carbonyl oxygen of the amides behaves as a hydrogen bond acceptor and the NH group of the amides acts as a hydrogen bond donor. The dominant hydrogen bonding interaction occurs between the carbonyl oxygen and the OH group of methanol as well as the interaction between the NH group of amides and the oxygen of methanol. However, the hydrogen bonds between the CH group and the carbonyl oxygen or the oxygen of methanol are also important for the overall stability of the complexes. Comparable red shifts of the C=O, NH- and OH-stretching transitions were found in these MeOH–amide complexes with considerable intensity enhancement. Topological analysis shows that the electron density at the bond critical points of the complexes fall in the range of hydrogen bonding criteria, and the Laplacian of charge density of the O–H∙∙∙O hydrogen bond slightly exceeds the upper value of the Laplacian criteria. The energy decomposition analysis further suggests that the hydrogen bonding interaction energies can be mainly attributed to the electrostatic, exchange and dispersion components. PMID:28042825

  5. An AAA-DDD triply hydrogen-bonded complex easily accessible for supramolecular polymers.

    PubMed

    Han, Yi-Fei; Chen, Wen-Qiang; Wang, Hong-Bo; Yuan, Ying-Xue; Wu, Na-Na; Song, Xiang-Zhi; Yang, Lan

    2014-12-15

    For a complementary hydrogen-bonded complex, when every hydrogen-bond acceptor is on one side and every hydrogen-bond donor is on the other, all secondary interactions are attractive and the complex is highly stable. AAA-DDD (A=acceptor, D=donor) is considered to be the most stable among triply hydrogen-bonded sequences. The easily synthesized and further derivatized AAA-DDD system is very desirable for hydrogen-bonded functional materials. In this case, AAA and DDD, starting from 4-methoxybenzaldehyde, were synthesized with the Hantzsch pyridine synthesis and Friedländer annulation reaction. The association constant determined by fluorescence titration in chloroform at room temperature is 2.09×10(7)  M(-1) . The AAA and DDD components are not coplanar, but form a V shape in the solid state. Supramolecular polymers based on AAA-DDD triply hydrogen bonded have also been developed. This work may make AAA-DDD triply hydrogen-bonded sequences easily accessible for stimuli-responsive materials. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  6. Hydrogen bonding between nitriles and hydrogen halides and the topological properties of molecular charge distributions

    NASA Astrophysics Data System (ADS)

    Boyd, Russell J.; Choi, Sai Cheng

    1986-08-01

    The topological properties of the charge density of the hydrogen-bonded complexes between nitrites and hydrogen chloride correlate linearly with theoretical estimates of the hydrogen-bond energy. At the 6-31G ** level, the hydrogenbond energies range from a low of 10 kJ/mol m NCCN—HC1 to a high of 38 kJ/mol in LiCN—HCl. A linear relationship between the charge density at the hydrogen-bond critical point and the NH internuclear distance of the RCN—HC1 complexes indicates that the generalization of the bond-length-bond-order relationship of CC bonds due to Bader, Tang, Tal and Biegler-König can be extended to intermolecular hydrogen bonding.

  7. Altering intra- to inter-molecular hydrogen bonding by dimethylsulfoxide: A TDDFT study of charge transfer for coumarin 343

    NASA Astrophysics Data System (ADS)

    Liu, Xiaochun; Yin, Hang; Li, Hui; Shi, Ying

    2017-04-01

    DFT and TDDFT methods were carried out to investigate the influences of intramolecular and intermolecular hydrogen bonding on excited state charge transfer for coumarin 343 (C343). Intramolecular hydrogen bonding is formed between carboxylic acid group and carbonyl group in C343 monomer. However, in dimethylsulfoxide (DMSO) solution, DMSO 'opens up' the intramolecular hydrogen bonding and forms solute-solvent intermolecular hydrogen bonded C343-DMSO complex. Analysis of frontier molecular orbitals reveals that intramolecular charge transfer (ICT) occurs in the first excited state both for C343 monomer and complex. The results of optimized geometric structures indicate that the intramolecular hydrogen bonding interaction is strengthened while the intermolecular hydrogen bonding is weakened in excited state, which is confirmed again by monitoring the shifts of characteristic peaks of infrared spectra. We demonstrated that DMSO solvent can not only break the intramolecular hydrogen bonding to form intermolecular hydrogen bonding with C343 but also alter the mechanism of excited state hydrogen bonding strengthening.

  8. Hydrogen-bonding Interactions between Apigenin and Ethanol/Water: A Theoretical Study

    NASA Astrophysics Data System (ADS)

    Zheng, Yan-Zhen; Zhou, Yu; Liang, Qin; Chen, Da-Fu; Guo, Rui; Lai, Rong-Cai

    2016-10-01

    In this work, hydrogen-bonding interactions between apigenin and water/ethanol were investigated from a theoretical perspective using quantum chemical calculations. Two conformations of apigenin molecule were considered in this work. The following results were found. (1) For apigenin monomer, the molecular structure is non-planar, and all of the hydrogen and oxygen atoms can be hydrogen-bonding sites. (2) Eight and seven optimized geometries are obtained for apigenin (I)-H2O/CH3CH2OH and apigenin (II)-H2O/CH3CH2OH complexes, respectively. In apigenin, excluding the aromatic hydrogen atoms in the phenyl substituent, all other hydrogen atoms and the oxygen atoms form hydrogen-bonds with H2O and CH3CH2OH. (3) In apigenin-H2O/CH3CH2OH complexes, the electron density and the E(2) in the related localized anti-bonding orbital are increased upon hydrogen-bond formation. These are the cause of the elongation and red-shift of the X-H bond. The sum of the charge change transfers from the hydrogen-bond acceptor to donor. The stronger interaction makes the charge change more intense than in the less stable structures. (4) Most of the hydrogen-bonds in the complexes are electrostatic in nature. However, the C4-O5···H, C9-O4···H and C13-O2···H hydrogen-bonds have some degree of covalent character. Furthermore, the hydroxyl groups of the apigenin molecule are the preferred hydrogen-bonding sites.

  9. Solute-solvent complex switching dynamics of chloroform between acetone and dimethylsulfoxide-two-dimensional IR chemical exchange spectroscopy.

    PubMed

    Kwak, Kyungwon; Rosenfeld, Daniel E; Chung, Jean K; Fayer, Michael D

    2008-11-06

    Hydrogen bonds formed between C-H and various hydrogen bond acceptors play important roles in the structure of proteins and organic crystals, and the mechanisms of C-H bond cleavage reactions. Chloroform, a C-H hydrogen bond donor, can form weak hydrogen-bonded complexes with acetone and with dimethylsulfoxide (DMSO). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO, both types of hydrogen-bonded complexes exist. The two complexes, chloroform-acetone and chloroform-DMSO, are in equilibrium, and they rapidly interconvert by chloroform exchanging hydrogen bond acceptors. This fast hydrogen bond acceptor substitution reaction is probed using ultrafast two-dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy. Deuterated chloroform is used in the experiments, and the 2D-IR spectrum of the C-D stretching mode is measured. The chemical exchange of the chloroform hydrogen bonding partners is tracked by observing the time-dependent growth of off-diagonal peaks in the 2D-IR spectra. The measured substitution rate is 1/30 ps for an acetone molecule to replace a DMSO molecule in a chloroform-DMSO complex and 1/45 ps for a DMSO molecule to replace an acetone molecule in a chloroform-acetone complex. Free chloroform exists in the mixed solvent, and it acts as a reactive intermediate in the substitution reaction, analogous to a SN1 type reaction. From the measured rates and the equilibrium concentrations of acetone and DMSO, the dissociation rates for the chloroform-DMSO and chloroform-acetone complexes are found to be 1/24 ps and 1/5.5 ps, respectively. The difference between the measured rate for the complete substitution reaction and the rate for complex dissociation corresponds to the diffusion limited rate. The estimated diffusion limited rate agrees well with the result from a Smoluchowski treatment of diffusive reactions.

  10. Can HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, or HN[double bond, length as m-dash]CHOH bridge the σ-hole and the lone pair at P in binary complexes with H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H?

    PubMed

    Del Bene, Janet E; Alkorta, Ibon; Elguero, José

    2015-11-11

    Ab initio MP2/aug'-cc-pVTZ calculations have been carried out to investigate the properties of complexes formed between H2XP, for X = F, Cl, NC, OH, CN, CCH, CH3, and H, and the possible bridging molecules HN[double bond, length as m-dash]NH, FN[double bond, length as m-dash]NH, and HN[double bond, length as m-dash]CHOH. H2XP:HNNH and H2XP:FNNH complexes are stabilized by PN pnicogen bonds, except for H2(CH3)P:FNNH and H3P:FNNH which are stabilized by N-HP hydrogen bonds. H2XP:HNCHOH complexes are stabilized by PN pnicogen bonds and nonlinear O-HP hydrogen bonds. For a fixed H2XP molecule, binding energies decrease in the order HNCHOH > HNNH > FNNH, except for the binding energies of H2(CH3)P and H3P with HNNH and FNNH. Binding energies of complexes with HNCHOH and HNNH increase as the P-N1 distance decreases, but binding energies of complexes with FNNH show little dependence on this distance. The large binding energies of H2XP:HNCHOH complexes arise from a cooperative effect involving electron-pair acceptance by P to form a pnicogen bond, and electron-pair donation by P to form a hydrogen bond. The dominant charge-transfer interaction in these complexes involves electron-pair donation by N across the pnicogen bond, except for complexes in which X is one of the more electropositive substituents, CCH, CH3, and H. For these, lone-pair donation by P across the hydrogen bond dominates. AIM and NBO data for these complexes are consistent with their bonding characteristics, showing molecular graphs with bond critical points and charge-transfer interactions associated with hydrogen and pnicogen bonds. EOM-CCSD spin-spin coupling constants (1p)J(P-N) across the pnicogen bond for each series of complexes correlate with the P-N distance. In contrast, (2h)J(O-P) values for complexes H2XP:HNCHOH do not correlate with the O-P distance, a consequence of the nonlinearity of these hydrogen bonds.

  11. Theoretical study of the changes in the vibrational characteristics arising from the hydrogen bonding between Vitamin C ( L-ascorbic acid) and H 2O

    NASA Astrophysics Data System (ADS)

    Dimitrova, Yordanka

    2006-02-01

    The vibrational characteristics (vibrational frequencies, infrared intensities and Raman activities) for the hydrogen-bonded system of Vitamin C ( L-ascorbic acid) with five water molecules have been predicted using ab initio SCF/6-31G(d, p) calculations and DFT (BLYP) calculations with 6-31G(d, p) and 6-31++G(d, p) basis sets. The changes in the vibrational characteristics from free monomers to a complex have been calculated. The ab initio and BLYP calculations show that the complexation between Vitamin C and five water molecules leads to large red shifts of the stretching vibrations for the monomer bonds involved in the hydrogen bonding and very strong increase in their IR intensity. The predicted frequency shifts for the stretching vibrations from Vitamin C taking part in the hydrogen bonding are up to -508 cm -1. The magnitude of the wavenumber shifts is indicative of relatively strong OH···H hydrogen-bonded interactions. In the same time the IR intensity and Raman activity of these vibrations increase upon complexation. The IR intensity increases dramatically (up to 12 times) and Raman activity increases up to three times. The ab initio and BLYP calculations show, that the symmetric OH vibrations of water molecules are more sensitive to the complexation. The hydrogen bonding leads to very large red shifts of these vibrations and very strong increase in their IR intensity. The asymmetric OH stretching vibrations of water, free from hydrogen bonding are less sensitive to the complexation than the hydrogen-bonded symmetric O sbnd H stretching vibrations. The increases of the IR intensities for these vibrations are lower and red shifts are negligible.

  12. Multiple hydrogen bonding in excited states of aminopyrazine in methanol solution: time-dependent density functional theory study.

    PubMed

    Chai, Shuo; Yu, Jie; Han, Yong-Chang; Cong, Shu-Lin

    2013-11-01

    Aminopyrazine (AP) and AP-methanol complexes have been theoretically studied by using density functional theory (DFT) and time-dependent density functional theory (TDDFT). The excited-state hydrogen bonds are discussed in detail. In the ground state the intermolecular multiple hydrogen bonds can be formed between AP molecule and protic solvents. The AP monomer and hydrogen-bonded complex of AP with one methanol are photoexcited initially to the S2 state, and then transferred to the S1 state via internal conversion. However the complex of AP with two methanol molecules is directly excited to the S1 state. From the calculated electronic excited energies and simulated absorption spectra, we find that the intermolecular hydrogen bonds are strengthened in the electronic excited states. The strengthening is confirmed by the optimized excited-state geometries. The photochemical processes in the electronic excited states are significantly influenced by the excited-state hydrogen bond strengthening. Copyright © 2013 Elsevier B.V. All rights reserved.

  13. Hydrogen bond docking preference in furans: Osbnd H ⋯ π vs. Osbnd H ⋯ O

    NASA Astrophysics Data System (ADS)

    Jiang, Xiaotong; Tsona, Narcisse T.; Tang, Shanshan; Du, Lin

    2018-02-01

    The docking sites of hydrogen bonds in complexes formed between 2,2,2-trifluoroethanol (TFE), furan (Fu), and 2-methyl furan (MF) have been investigated. Using density functional theory (DFT) calculations, gas phase and matrix isolation FTIR spectroscopies, the strengths of Osbnd H ⋯ O and Osbnd H ⋯ π hydrogen bonds in the complexes were compared to find the docking preference. Calculations suggest that the hydrogen bond donor, TFE, is more likely to dock onto the oxygen atom of the aromatic furans ring, and consequently, the Osbnd H ⋯ O type hydrogen bond is relatively stronger than the Osbnd H ⋯ π type. The FTIR spectrum in the OH-stretching fundamental range obtained at room temperatures has been compared with that obtained at extremely low temperatures in the matrix. The fundamental and the red shifts of OH-stretching vibrations were observed in both FTIR spectra, confirming the formation of hydrogen bonded complexes. By assessing the ability of furan and MF to participate in the formation of Osbnd H ⋯ O hydrogen bond, the effect of ring methylation has been highlighted. From the calculated geometric and thermodynamic parameters as well as the frequency shift of the OH-stretching vibrations in complexes, TFE-MF is found to be more stable than TFE-Fu, which suggests that the strength of the Osbnd H ⋯ O hydrogen bond in TFE-MF originates from the high activity of the furan molecule caused by the methylation of the aromatic ring. The present study furthers the knowledge of docking preference in heteroaromatic molecules and is helpful to understand the nature of intermolecular interactions between hydrogen bond donors and acceptors, including both electron-deficient atoms and π cloud.

  14. Vibrational dynamics of hydrogen-bonded complexes in solutions studied with ultrafast infrared pump-probe spectroscopy.

    PubMed

    Banno, Motohiro; Ohta, Kaoru; Yamaguchi, Sayuri; Hirai, Satori; Tominaga, Keisuke

    2009-09-15

    In aqueous solution, the basis of all living processes, hydrogen bonding exerts a powerful effect on chemical reactivity. The vibrational energy relaxation (VER) process in hydrogen-bonded complexes in solution is sensitive to the microscopic environment around the oscillator and to the geometrical configuration of the hydrogen-bonded complexes. In this Account, we describe the use of time-resolved infrared (IR) pump-probe spectroscopy to study the vibrational dynamics of (i) the carbonyl CO stretching modes in protic solvents and (ii) the OH stretching modes of phenol and carboxylic acid. In these cases, the carbonyl group acts as a hydrogen-bond acceptor, whereas the hydroxyl group acts as a hydrogen-bond donor. These vibrational modes have different properties depending on their respective chemical bonds, suggesting that hydrogen bonding may have different mechanisms and effects on the VER of the CO and OH modes than previously understood. The IR pump-probe signals of the CO stretching mode of 9-fluorenone and methyl acetate in alcohol, as well as that of acetic acid in water, include several components with different time constants. Quantum chemical calculations indicate that the dynamical components are the result of various hydrogen-bonded complexes that form between solute and solvent molecules. The acceleration of the VER is due to the increasing vibrational density of states caused by the formation of hydrogen bonds. The vibrational dynamics of the OH stretching mode in hydrogen-bonded complexes were studied in several systems. For phenol-base complexes, the decay time constant of the pump-probe signal decreases as the band peak of the IR absorption spectrum shifts to lower wavenumbers (the result of changing the proton acceptor). For phenol oligomers, the decay time constant of the pump-probe signal decreases as the probe wavenumber decreases. These observations show that the VER time strongly correlates with the strength of hydrogen bonding. This acceleration may be due to increased coupling between the OH stretching mode and the accepting mode of the VER, because the low-frequency shift caused by hydrogen bond formation is very large. Unlike phenol oligomers, however, the pump-probe signals of phenol-base complexes did not exhibit probe frequency dependence. For these complexes, rapid interconversion between different conformations causes rapid fluctuations in the vibrational frequency of the OH stretching modes, and these fluctuations level the VER times of different conformations. For the benzoic acid dimer, a quantum beat at a frequency of around 100 cm(-1) is superimposed on the pump-probe signal. This result indicates the presence of strong anharmonic coupling between the intramolecular OH stretching and the intermolecular stretching modes. From a two-dimensional plot of the OH stretching wavenumber and the low-frequency wavenumber, the wavenumber of the low-frequency mode is found to increase monotonically as the probe wavenumber is shifted toward lower wavenumbers. Our results represent a quantitative determination of the acceleration of VER by the formation of hydrogen bonds. Our studies merit further evaluation and raise fundamental questions about the current theory of vibrational dynamics in the condensed phase.

  15. Hydrogen bond docking site competition in methyl esters

    NASA Astrophysics Data System (ADS)

    Zhao, Hailiang; Tang, Shanshan; Du, Lin

    2017-06-01

    The Osbnd H ⋯ O hydrogen bonds in the 2,2,2-trifluoroethanol (TFE)-methyl ester complexes in the gas phase have been investigated by FTIR spectroscopy and DFT calculations. Methyl formate (MF), methyl acetate (MA), and methyl trifluoroacetate (MTFA) were chosen as the hydrogen bond acceptors. A dominant inter-molecular hydrogen bond was formed between the OH group of TFE and different docking sites in the methyl esters (carbonyl oxygen or ester oxygen). The competition of the two docking sites decides the structure and spectral properties of the complexes. On the basis of the observed red shifts of the OH-stretching transition with respect to the TFE monomer, the order of the hydrogen bond strength can be sorted as TFE-MA (119 cm- 1) > TFE-MF (93 cm- 1) > TFE-MTFA (44 cm- 1). Combining the experimental infrared spectra with the DFT calculations, the Gibbs free energies of formation were determined to be 1.5, 4.5 and 8.6 kJ mol- 1 for TFE-MA, TFE-MF and TFE-MTFA, respectively. The hydrogen bonding in the MTFA complex is much weaker than those of the TFE-MA and TFE-MF complexes due to the effect of the CF3 substitution on MTFA, while the replacement of an H atom with a CH3 group in methyl ester only slightly increases the hydrogen bond strength. Topological analysis and localized molecular orbital energy decomposition analysis was also applied to compare the interactions in the complexes.

  16. Orientation hydrogen-bonding effect on vibronic spectra of isoquinoline in water solvent: Franck-Condon simulation and interpretation

    NASA Astrophysics Data System (ADS)

    Liu, Yu-Hui; Wang, Shi-Ming; Wang, Chen-Wen; Zhu, Chaoyuan; Han, Ke-Li; Lin, Sheng-Hsien

    2016-10-01

    The excited-state orientation hydrogen-bonding dynamics, and vibronic spectra of isoquinoline (IQ) and its cationic form IQc in water have been investigated at the time-dependent density functional theory quantum chemistry level plus Franck-Condon simulation and interpretation. The excited-state orientation hydrogen bond strengthening has been found in IQ:H2O complex due to the charge redistribution upon excitation; this is interpreted by simulated 1:1 mixed absorption spectra of free IQ and IQ:H2O complex having best agreement with experimental results. Conversely, the orientation hydrogen bond in IQc:H2O complex would be strongly weakening in the S1 state and this is interpreted by simulated absorption spectra of free IQc having best agreement with experimental results. By performing Franck-Condon simulation, it reveals that several important vibrational normal modes with frequencies about 1250 cm-1 involving the wagging motion of the hydrogen atoms are very sensitive to the formation of the orientation hydrogen bond for the IQ/IQc:H2O complex and this is confirmed by damped Franck-Condon simulation with free IQ/IQc in water. However, the emission spectra of the IQ and IQc in water have been found differently. Upon the excitation, the simulated fluorescence of IQ in water is dominated by the IQ:H2O complex; thus hydrogen bond between IQ and H2O is much easier to form in the S1 state. While the weakened hydrogen bond in IQc:H2O complex is probably cleaved upon the laser pulse because the simulated emission spectrum of the free IQc is in better agreement with the experimental results.

  17. Intramolecular Hydrogen Bonding Restricts Gd-Aqua-Ligand Dynamics [The Day the Water Stood Still: Intramolecular Hydrogen Bonding to Restrict Gd-Aqua Ligand Dynamics

    DOE PAGES

    Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung; ...

    2017-04-11

    Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less

  18. Site-specific binding of a water molecule to the sulfa drugs sulfamethoxazole and sulfisoxazole: a laser-desorption isomer-specific UV and IR study.

    PubMed

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2018-03-07

    To determine the preferred water molecule binding sites of the polybasic sulfa drugs sulfamethoxazole (SMX) and sulfisoxazole (SIX), we have studied their monomers and monohydrated complexes through laser-desorption conformer-specific UV and IR spectroscopy. Both the SMX and SIX monomer adopt a single conformer in the molecular beam. On the basis of their conformer-specific IR spectra in the NH stretch region, these conformers were assigned to the SMX and SIX global minimum structures, both exhibiting a staggered sulfonamide group and an intramolecular C-HO[double bond, length as m-dash]S hydrogen bond. The SMX-H 2 O and SIX-H 2 O complexes each adopt a single isomer in the molecular beam. Their isomeric structures were determined based on their isomer-specific IR spectra in the NH/OH stretch region. Quantum Theory of Atoms in Molecules analysis of the calculated electron densities revealed that in the SMX-H 2 O complex the water molecule donates an O-HN hydrogen bond to the heterocycle nitrogen atom and accepts an N-HO hydrogen bond from the sulfonamide NH group. In the SIX-H 2 O complex, however, the water molecule does not bind to the heterocycle but instead donates an O-HO[double bond, length as m-dash]S hydrogen bond to the sulfonamide group and accepts an N-HO hydrogen bond from the sulfonamide NH group. Both water complexes are additionally stabilized by a C ph -HOH 2 hydrogen bond. Interacting Quantum Atoms analysis suggests that all intermolecular hydrogen bonds are dominated by the short-range exchange-correlation contribution.

  19. Synthesis, Structure, and Physical Properties for a Series of Monomeric Iron(III) Hydroxo Complexes with Varying Hydrogen-Bond Networks

    PubMed Central

    Mukherjee, Jhumpa; Lucas, Robie L.; Zart, Matthew K.; Powell, Douglas R.; Day, Victor W.; Borovik, A. S.

    2013-01-01

    Mononuclear iron(III) complexes with terminal hydroxo ligands are proposed to be important species in several metalloproteins, but they have been difficult to isolate in synthetic systems. Using a series of amidate/ureido tripodal ligands, we have prepared and characterized monomeric FeIIIOH complexes with similar trigonal-bipyramidal primary coordination spheres. Three anionic nitrogen donors define the trigonal plane, and the hydroxo oxygen atom is trans to an apical amine nitrogen atom. The complexes have varied secondary coordination spheres that are defined by intramolecular hydrogen bonds between the FeIIIOH unit and the urea NH groups. Structural trends were observed between the number of hydrogen bonds and the Fe–Ohydroxo bond distances: the more intramolecular hydrogen bonds there were, the longer the Fe–O bond became. Spectroscopic trends were also found, including an increase in the energy of the O–H vibrations with a decrease in the number of hydrogen bonds. However, the FeIII/II reduction potentials were constant throughout the series (∼2.0 V vs [Cp2Fe]0/+1), which is ascribed to a balancing of the primary and secondary coordination-sphere effects. PMID:18498155

  20. Use of π-π forces to steer the assembly of a NTA complex of Cu(II) into hydrogen bonded supramolecular layers (H 3NTA = nitrilotriacetic acid)

    NASA Astrophysics Data System (ADS)

    Dey, Biswajit; Choudhury, Somnath Ray; Suresh, Eringathodi; Jana, Atish Dipankar; Mukhopadhyay, Subrata

    2009-03-01

    We propose a crystal engineering principle where we show that it might be possible to direct the organization of molecular complexes into hydrogen bonded supramolecular layers through the use of suitable co-ligands possessing both the hydrogen-bonding as well as π-π stacking capability. This principle has been tested for the organization of [Cu(NTA) 2] units (H 3NTA = nitrilotriacetic acid, N(CH 2CO 2H) 3) in the molecular complex with formula (2-A-PH) 4[Cu(NTA) 2]·6H 2O ( 1), where 2-A-PH is protonated 2-amino-4-picoline. In 1, the 2-amino-4-picoline co-ligands have been utilized to direct the organization of [Cu(NTA) 2] units into hydrogen bonded layers. The linear stacking of π-π bonded protonated 2-amino-4-picoline molecules can be thought as the influencing agent for the organization of [Cu(NTA) 2] units into hydrogen bonded layers.

  1. Hydrogen-bond formation between isoindolo[2,1-a]indol-6-one and aliphatic alcohols in n-hexane.

    PubMed

    Demeter, Attila; Bérces, Tibor

    2005-03-17

    The spectroscopic, kinetic, and equilibrium properties of isoindolo[2,1-a]indol-6-one (I) were studied in n-hexane in the presence and absence of alcohols (X). Hydrogen-bonded-complex formation was found to occur between the alcohol and the ground state as well as the excited state of the I molecule. The spectra of I and its singly complexed derivative (IX) are similar; however, that of IX is red shifted. The extent of red shift increases with the hydrogen-bonding ability of the alcohol. Equilibrium constant measurements were made to determine the hydrogen-bond basicity (beta(2)(H)) for I and the singlet excited (1)I. The beta(2)(H) value for (1)I is found to be about twice that of the ground-state I. Time-resolved fluorescence decay measurements indicate that the reaction of singlet excited I with fluorinated alcohols is diffusion controlled, while the rate of complexation with nonfluorinated (weaker hydrogen bonding) aliphatic alcohols depends on the Gibbs energy change in the complexation reaction. The quantitative correlation between the rate coefficient of complexation of (1)I with alcohols and the Gibbs energy change in the complexation process allowed us to estimate the rate coefficient for the complexation of the ground-state I with alcohols. The formation of the singlet excited hydrogen-bonded complex is irreversible; (1)IX disappears in a first order and an alcohol induced second order reaction. The first order decay is predominantly due to internal conversion to the ground state, the rate of which depends on the ionization energy of the complexing alcohol.

  2. Inverse Temperature Dependence of Nuclear Quantum Effects in DNA Base Pairs

    PubMed Central

    2016-01-01

    Despite the inherently quantum mechanical nature of hydrogen bonding, it is unclear how nuclear quantum effects (NQEs) alter the strengths of hydrogen bonds. With this in mind, we use ab initio path integral molecular dynamics to determine the absolute contribution of NQEs to the binding in DNA base pair complexes, arguably the most important hydrogen-bonded systems of all. We find that depending on the temperature, NQEs can either strengthen or weaken the binding within the hydrogen-bonded complexes. As a somewhat counterintuitive consequence, NQEs can have a smaller impact on hydrogen bond strengths at cryogenic temperatures than at room temperature. We rationalize this in terms of a competition of NQEs between low-frequency and high-frequency vibrational modes. Extending this idea, we also propose a simple model to predict the temperature dependence of NQEs on hydrogen bond strengths in general. PMID:27195654

  3. An ab initio study of the molecular properties of the propyne water hydrogen-bonded complex

    NASA Astrophysics Data System (ADS)

    Lopes, Kelson C.; Araújo, Regiane C. M. U.; Rusu, Victor H.; Ramos, Mozart N.

    2007-05-01

    We have employed ab initio MP2 and DFT/B3LYP calculations with the 6-31++G(d,p) basis set to obtain structural, electronic and vibrational properties of the H-bonded complex between propyne and water. This study has revealed that H 2O can doubly complex with propyne forming a quasi five-membered ring. The first complexation occurs through the hydrogen bond between the acid hydrogen of H 2O and the C tbnd C triple bond, whereas the second complexation involves the oxygen atom of H 2O and the in-plane hydrogen atom of the methyl group in propyne. Our calculations have shown that the H-bond lengths between H⋯π and O⋯HC) are 2.419 and 2.707 Å, respectively, employing the DFT/B3LYP calculation whereas the corresponding MP2 values are 2.373 and 2.651 Å. The binding energies including both BSSE and ZPE corrections are -6.16 and -6.72 kJ mol -1, respectively, using the DFT/B3LYP and MP2 calculations. For example, the O-H stretching frequencies of water are decreased by -60 and -29 cm -1 using the DFT/B3LYP calculation, whereas the bending frequency is increased by +15 cm -1. As expected, the infrared intensities for the stretching modes are increased after complexation, especially involving the O-H b bond forming the hydrogen bond with the C tbnd C triple bond.

  4. The effect of intermolecular hydrogen bonding on the fluorescence of a bimetallic platinum complex.

    PubMed

    Zhao, Guang-Jiu; Northrop, Brian H; Han, Ke-Li; Stang, Peter J

    2010-09-02

    The bimetallic platinum complexes are known as unique building blocks and arewidely utilized in the coordination-driven self-assembly of functionalized supramolecular metallacycles. Hence, photophysical study of the bimetallic platinum complexes will be very helpful for the understanding on the optical properties and further applications of coordination-driven self-assembled supramolecular metallacycles. Herein, we report steady-state and time-resolved spectroscopic experiments as well as quantum chemistry calculations to investigate the significant intermolecular hydrogen bonding effects on the intramolecular charge transfer (ICT) fluorescence of a bimetallic platinum compound 4,4'-bis(trans-Pt(PEt(3))(2)OTf)benzophenone 3 in solution. We demonstrated that the fluorescent state of compound 3 can be assigned as a metal-to-ligand charge transfer (MLCT) state. Moreover, it was observed that the formation of intermolecular hydrogen bonds can effectively lengthen the fluorescence lifetime of 3 in alcoholic solvents compared with that in hexane solvent. At the same time, the electronically excited states of 3 in solution are definitely changed by intermolecular hydrogen bonding interactions. As a consequence, we propose a new fluorescence modulation mechanism by hydrogen bonding to explain different fluorescence emissions of 3 in hydrogen-bonding solvents and nonhydrogen-bonding solvents.

  5. Hydrogen Bond Lifetimes and Energetics for Solute-Solvent Complexes Studied with 2D-IR Vibrational Echo Spectroscopy

    PubMed Central

    Zheng, Junrong; Fayer, Michael D.

    2008-01-01

    Weak π hydrogen bonded solute-solvent complexes are studied with ultrafast two dimensional infrared (2D-IR) vibrational echo chemical exchange spectroscopy, temperature dependent IR absorption spectroscopy, and density functional theory calculations. Eight solute-solvent complexes composed of a number of phenol derivatives and various benzene derivatives are investigated. The complexes are formed between the phenol derivative (solute) in a mixed solvent of the benzene derivative and CCl4. The time dependence of the 2D-IR vibrational echo spectra of the phenol hydroxyl stretch is used to directly determine the dissociation and formation rates of the hydrogen bonded complexes. The dissociation rates of the weak hydrogen bonds are found to be strongly correlated with their formation enthalpies. The correlation can be described with an equation similar to the Arrhenius equation. The results are discussed in terms of transition state theory. PMID:17373792

  6. Computational study of red- and blue-shifted Csbnd H⋯Se hydrogen bond in Q3Csbnd H⋯SeH2 (Q = Cl, F, H) complexes

    NASA Astrophysics Data System (ADS)

    Chopra, Pragya; Chakraborty, Shamik

    2018-01-01

    This work presents Csbnd H⋯Se hydrogen bonding interaction at the MP2 level of theory. The system Q3Csbnd H⋯SeH2 (Q = Cl, F, and H) provides an opportunity to investigate red- and blue-shifted hydrogen bonds. The origin of the red- and blue-shift in Csbnd H stretching frequency has been investigated using Natural Bond Orbital analysis. A large amount of electron density is being transferred to the σ∗Csbnd H orbital in red-shifted Cl3Csbnd H⋯SeH2. Electron density transfer in the blue-shifted F3Csbnd H⋯SeH2 is primarily to the remote fluorine atoms. Further, due to polarization of the Csbnd H bond, the contradicting effects of rehybridization and hyperconjugation are important. The extent of hyperconjugation reigns predominant in explaining the nature of the Csbnd H⋯Se hydrogen bond in Q3Csbnd H⋯SeH2 complexes as the hydrogen bond acceptor remain same in this investigation. Red- and blue-shift in Q3Csbnd H⋯SeH2 (Q = Cl and F) complexes is best described by pro-improper hydrogen bond donor concept.

  7. Chloroform molecules donate hydrogen bonds to S, Se, and Te acceptors: evidence from a published series of terminal chalcogenido complexes

    NASA Astrophysics Data System (ADS)

    Steiner, Thomas

    1998-06-01

    Structural data on three chalcogenido complexes published by M. C. Kuchta and G. Parkin, J. Chem. Soc., Chem. Commun. (1994) 1351, provide sound evidence that chloroform molecules can donate hydrogen bonds to S, Se and Te acceptors. This is the first documented example of CHżTe hydrogen bonding. The HżTe distance is only 2.67 Å.

  8. New look at the Badger-Bauer rule: Correlations of spectroscopic IR and NMR parameters with hydrogen bond energy and geometry. FHF complexes

    NASA Astrophysics Data System (ADS)

    Tupikina, E. Yu.; Denisov, G. S.; Melikova, S. M.; Kucherov, S. Yu.; Tolstoy, P. M.

    2018-07-01

    In this work correlation dependencies between hydrogen bond energy ΔE for complexes with Fsbnd H⋯F hydrogen bond and their spectroscopic characteristics of the IR and NMR spectra are presented. We considered 26 complexes in a wide hydrogen bond energy range 0.2-47 kcal/mol. For each complex we calculated complexation energy (MP2/6-311++G(d,p)), IR spectroscopic parameters (FH stretching frequency ν, FH stretching frequency in local mode approximation νLM at MP2/6-311++G(d,p) level) and NMR parameters (chemical shift of hydrogen δH and fluorine nuclei δF, Nuclear Independent Chemical Shielding and spin-spin coupling constants 1JFH, 1hJH...F, 2hJFF at B3LYP/pcSseg-2 level). It was shown that changes of parameters upon complexation, i.e. changes of the stretching frequency in local mode approximation ΔνLM, change of the proton chemical shift ΔδH and change of the absolute value of spin-spin coupling constant 1JFH could be used for estimation of corresponding hydrogen bond strength. Furthermore, we build correlation dependencies between abovementioned spectroscopic characteristics and geometric ones, such as the asymmetry of bridging proton position q1 = 0.5·(rFH - rH…F).

  9. The H2O-CH3F Complex: a Combined Microwave and Infrared Spectroscopic Study Supported by Structure Calculations

    NASA Astrophysics Data System (ADS)

    Gnanasekar, Sharon Priya; Goubet, Manuel; Arunan, Elangannan; Georges, Robert; Soulard, Pascale; Asselin, Pierre; Huet, T. R.; Pirali, Olivier

    2015-06-01

    The H2O-CH3F complex could have two geometries, one with a hydrogen bond and one with the newly proposed carbon bond. While in general carbon bonds are weaker than hydrogen bonds, this complex appears to have comparable energies for the two structures. Infrared (IR) and microwave (MW) spectroscopic measurements using, respectively, the Jet-AILES apparatus and the FTMW spectrometer at the PhLAM laboratory, have been carried out to determine the structure of this complex. The IR spectrum shows the formation of the CH3F- H2O hydrogen bonded complex and small red-shifts in OH frequency most probably due to (CH3F)m-(H2O)n clusters. Noticeably, addition of CH_3F in the mixture promotes the formation of small water clusters. Preliminary MW spectroscopic measurements indicate the formation of the hydrogen bonded complex. So far, we have no experimental evidence for the carbon bonded structure. However, calculations of the Ar-CH3F complex show three energetically equivalent structures: a T-shape, a "fluorine" bond and a carbon bond. The MW spectrum of the (Ar)n-CH3F complexes is currently under analysis. Mani, D; Arunan, E. Phys. Chem. Chem. Phys. 2013, 15, 14377. Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebene, B; Alikhani, M. E; Georges, R; Moudens, A; Goubet, M; Huet, T.R; Pirali, O; Roy, P. J. Phys. Chem. A. 2011, 115, 2523 Kassi, S; Petitprez, D; Wlodarczak, G. J. Mol. Struct. 2000, 517-518, 375

  10. The CH/π hydrogen bond: Implication in chemistry

    NASA Astrophysics Data System (ADS)

    Nishio, M.

    2012-06-01

    The CH/π hydrogen bond is the weakest extreme of hydrogen bonds that occurs between a soft acid CH and a soft base π-system. Implication in chemistry of the CH/π hydrogen bond includes issues of conformation, crystal packing, and specificity in host/guest complexes. The result obtained by analyzing the Cambridge Structural Database is reviewed. The peculiar axial preference of isopropyl group in α-phellandrene and folded conformation of levopimaric acid have been explained in terms of the CH/π hydrogen bond, by high-level ab initio MO calculations. Implication of the CH/π hydrogen bond in structural biology is also discussed, briefly.

  11. Hydrogen bonding effects on the reorganization energy for photoinduced charge separation reaction between porphyrin and quinone studied by nanosecond laser flash photolysis.

    PubMed

    Yago, Tomoaki; Gohdo, Masao; Wakasa, Masanobu

    2010-02-25

    Alcohol concentration dependences of photoinduced charge separation (CS) reaction of zinc tetraphenyl-porphyrin (ZnTPP) and duroquinone (DQ) were investigated in benzonitrile by a nanosecond laser flash photolysis technique. The photoinduced CS reaction was accelerated by the addition of alcohols, whereas the addition of acetonitrile caused little effect on the CS reactions. The simple theory was developed to calculate an increase in reorganization energies induced by the hydrogen bonding interactions between DQ and alcohols using the chemical equilibrium constants for the hydrogen bonding complexes through the concerted pathway and the stepwise one. The experimental results were analyzed by using the Marcus equation where we took into account the hydrogen bonding effects on the reorganization energy and the reaction free energy for the CS reaction. The observed alcohol concentration dependence of the CS reaction rates was well explained by the formation of the hydrogen bonding complexes through the concerted pathway, demonstrating the increase in the reorganization energy by the hydrogen bonding interactions.

  12. Visual pigments. 11. Spectroscopy and photophysics of retinoic acids and all-trans-methyl retinoate. [Photophysical properties at 77/sup 0/K

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Takemura, T.; Chihara, K.; Becker, R.S.

    1980-04-09

    The photophysics of hydrogen-bonded complexes of retinoic acid and its 9-cis and 13-cis isomers and the photophysics of the dimers of these isomers of retinoic acid were studied. The investigation indicated that complexes of retinoic acid and molecules that form hydrogen bonds with the carbonyl oxygen of retinoic acid (type I complexes) have both higher radiative and nonradiative rate constants than do hydrogen-bonded complexes of retinoic acid and molecules that form hydrogen bonds only with the hydroxyl oxygen of retinoic acid (type II complexes). For all-trans-retinoic acid in 3-methylpentane at 77 K, the type I complexes have radiative rate constantsmore » approximately equal to or greater than 2 x 10/sup 8/ s/sup -1/ and nonradiative rate constants greater than 3 x 10/sup 8/ s/sup -1/. Both the radiative and nonradiative rate constants of the type II complexes of all-trans-retinoic acid at 77 K in 3-methylpentane are less than 1 x 10/sup 8/ s/sup -1/. The dimer of retinoic acid (K(association) = 1 x 10/sup 4/ M/sup -1/ at room temperature for the all-trans isomer) behaves like a type I complex, and its excited-state properties are better understood in terms of hydrogen bonding than in terms of an exciton model. The photophysical properties and triplet-triplet absorption spectrum of methyl retinoate were measured. The study concluded with an examination of some of the implications of this work for the role of hydrogen bonding in the dimers and monomers of retinal and retinol.« less

  13. Non-covalent synthesis of supermicelles with complex architectures using spatially confined hydrogen-bonding interactions

    PubMed Central

    Li, Xiaoyu; Gao, Yang; Boott, Charlotte E.; Winnik, Mitchell A.; Manners, Ian

    2015-01-01

    Nature uses orthogonal interactions over different length scales to construct structures with hierarchical levels of order and provides an important source of inspiration for the creation of synthetic functional materials. Here, we report the programmed assembly of monodisperse cylindrical block comicelle building blocks with crystalline cores to create supermicelles using spatially confined hydrogen-bonding interactions. We also demonstrate that it is possible to further program the self-assembly of these synthetic building blocks into structures of increased complexity by combining hydrogen-bonding interactions with segment solvophobicity. The overall approach offers an efficient, non-covalent synthesis method for the solution-phase fabrication of a range of complex and potentially functional supermicelle architectures in which the crystallization, hydrogen-bonding and solvophobic interactions are combined in an orthogonal manner. PMID:26337527

  14. Molecular dynamics simulation study of hydrogen bonding in aqueous poly(ethylene oxide) solutions.

    PubMed

    Smith, G D; Bedrov, D; Borodin, O

    2000-12-25

    A molecular dynamics simulation study of hydrogen bonding in poly(ethylene oxide) (PEO)/water solutions was performed. PEO-water and water-water hydrogen bonding manifested complex dependence on both composition and temperature. Strong water clustering in concentrated solutions was seen. Saturation of hydrogen bonding at w(p) approximately equal to 0.5 and a dramatic decrease in PEO-water hydrogen bonding with increasing temperature, consistent with experimentally observed closed-loop phase behavior, were observed. Little tendency toward intermolecular bridging of PEO chains by water molecules was seen.

  15. A high level Ab initio study of the anionic hydrogen-bonded complexes FH-CN-, FH-NC-, H2O-CN- and H2O-NC-

    NASA Technical Reports Server (NTRS)

    Lee, Timothy J.

    1989-01-01

    HF, H2O, CN- and their hydrogen-bonded complexes were studied using state-of-the-art ab initio quantum mechanical methods. A large Gaussian one particle basis set consisting of triple zeta plus double polarization plus diffuse s and p functions (TZ2P + diffuse) was used. The theoretical methods employed include self consistent field, second order Moller-Plesset perturbation theory, singles and doubles configuration interaction theory and the singles and doubles coupled cluster approach. The FH-CN- and FH-NC- and H2O-CN-, H2O-NC- pairs of complexes are found to be essentially isoenergetic. The first pair of complexes are predicted to be bound by approx. 24 kcal/mole and the latter pair bound by approximately 15 kcal/mole. The ab initio binding energies are in good agreement with the experimental values. The two being shorter than the analogous C-N hydrogen bond. The infrared (IR) spectra of the two pairs of complexes are also very similar, though a severe perturbation of the potential energy surface by proton exchange means that the accurate prediction of the band center of the most intense IR mode requires a high level of electronic structure theory as well as a complete treatment of anharmonic effects. The bonding of anionic hydrogen-bonded complexes is discussed and contrasted with that of neutral hydrogen-bonded complexes.

  16. Microwave spectroscopy of 2-(trifluoromethyl)pyridine⋯water complex: Molecular structure and hydrogen bond

    NASA Astrophysics Data System (ADS)

    Li, Xiaolong; Zheng, Yang; Gou, Qian; Feng, Gang; Xia, Zhining

    2018-01-01

    In order to explore the -CF3 substitution effect on the complexation of pyridine, we investigated the 2-(trifluoromethyl)pyridine⋯water complex by using pulsed jet Fourier transform microwave spectroscopy complemented with quantum chemical calculations. Experimental assignment and ab initio calculations confirmed that the observed complex is stabilized through N⋯H-O and O⋯H-C hydrogen bonds forming a five-membered ring structure. The bonding distance in N⋯H-O is determined to be 2.027(2) Å, whilst that in O⋯H-C interaction is 2.728(2) Å. The quantum theory of atoms in molecules analysis indicates that the interaction energy of N⋯H-O hydrogen bond is ˜22 kJ mol-1 and that for O⋯H-C hydrogen bond is ˜5 kJ mol-1. The water molecule lies almost in the plane of the aromatic ring in the complex. The -CF3 substitution to pyridine quenches the tunneling splitting path of the internal motion of water molecule.

  17. A quantum chemical study of the structures, stability, and spectroscopy of halogen- and hydrogen-boned complexes between cyanoacetaldehyde and hypochlorous acids

    NASA Astrophysics Data System (ADS)

    Tang, Qingjie; Guo, Zhenfu; Li, Qingzhong

    2014-03-01

    The complexes of cyanoacetaldehyde and hypohalous acid (HOX, X = Cl, Br, and I) have been investigated. They can form six different structures (A, B, C, D, E, and F), the former three structures are mainly combined through a N(O)⋯X halogen bond and the latter three structures are maintained mainly by a N(O)⋯H hydrogen bond, although other weaker interactions are also present in most structures. The hydrogen-bonded structures are more stable than the respective halogen-bonded structures. The Osbnd H and Osbnd X bonds in the halogen- and hydrogen-bonded complexes are lengthened and show an observed red shift, while those in the weaker secondary interactions are contracted and display a small blue shift. The orbital interactions in NBO analysis and the electron densities in AIM analysis provide useful and reliable information for the strength of each type of interaction in different structures.

  18. Rapid Sampling of Hydrogen Bond Networks for Computational Protein Design.

    PubMed

    Maguire, Jack B; Boyken, Scott E; Baker, David; Kuhlman, Brian

    2018-05-08

    Hydrogen bond networks play a critical role in determining the stability and specificity of biomolecular complexes, and the ability to design such networks is important for engineering novel structures, interactions, and enzymes. One key feature of hydrogen bond networks that makes them difficult to rationally engineer is that they are highly cooperative and are not energetically favorable until the hydrogen bonding potential has been satisfied for all buried polar groups in the network. Existing computational methods for protein design are ill-equipped for creating these highly cooperative networks because they rely on energy functions and sampling strategies that are focused on pairwise interactions. To enable the design of complex hydrogen bond networks, we have developed a new sampling protocol in the molecular modeling program Rosetta that explicitly searches for sets of amino acid mutations that can form self-contained hydrogen bond networks. For a given set of designable residues, the protocol often identifies many alternative sets of mutations/networks, and we show that it can readily be applied to large sets of residues at protein-protein interfaces or in the interior of proteins. The protocol builds on a recently developed method in Rosetta for designing hydrogen bond networks that has been experimentally validated for small symmetric systems but was not extensible to many larger protein structures and complexes. The sampling protocol we describe here not only recapitulates previously validated designs with performance improvements but also yields viable hydrogen bond networks for cases where the previous method fails, such as the design of large, asymmetric interfaces relevant to engineering protein-based therapeutics.

  19. Predictive Models for the Free Energy of Hydrogen Bonded Complexes with Single and Cooperative Hydrogen Bonds.

    PubMed

    Glavatskikh, Marta; Madzhidov, Timur; Solov'ev, Vitaly; Marcou, Gilles; Horvath, Dragos; Varnek, Alexandre

    2016-12-01

    In this work, we report QSPR modeling of the free energy ΔG of 1 : 1 hydrogen bond complexes of different H-bond acceptors and donors. The modeling was performed on a large and structurally diverse set of 3373 complexes featuring a single hydrogen bond, for which ΔG was measured at 298 K in CCl 4 . The models were prepared using Support Vector Machine and Multiple Linear Regression, with ISIDA fragment descriptors. The marked atoms strategy was applied at fragmentation stage, in order to capture the location of H-bond donor and acceptor centers. Different strategies of model validation have been suggested, including the targeted omission of individual H-bond acceptors and donors from the training set, in order to check whether the predictive ability of the model is not limited to the interpolation of H-bond strength between two already encountered partners. Successfully cross-validating individual models were combined into a consensus model, and challenged to predict external test sets of 629 and 12 complexes, in which donor and acceptor formed single and cooperative H-bonds, respectively. In all cases, SVM models outperform MLR. The SVM consensus model performs well both in 3-fold cross-validation (RMSE=1.50 kJ/mol), and on the external test sets containing complexes with single (RMSE=3.20 kJ/mol) and cooperative H-bonds (RMSE=1.63 kJ/mol). © 2016 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Competition of hydrogen bonds and halogen bonds in complexes of hypohalous acids with nitrogenated bases.

    PubMed

    Alkorta, Ibon; Blanco, Fernando; Solimannejad, Mohammad; Elguero, Jose

    2008-10-30

    A theoretical study of the complexes formed by hypohalous acids (HOX, X = F, Cl, Br, I, and At) with three nitrogenated bases (NH 3, N 2, and NCH) has been carried out by means of ab initio methods, up to MP2/aug-cc-pVTZ computational method. In general, two minima complexes are found, one with an OH...N hydrogen bond and the other one with a X...N halogen bond. While the first one is more stable for the smallest halogen derivatives, the two complexes present similar stabilities for the iodine case and the halogen-bonded structure is the most stable one for the hypoastatous acid complexes.

  1. Conformational equilibrium in supramolecular chemistry: Dibutyltriuret case.

    PubMed

    Mroczyńska, Karina; Kaczorowska, Małgorzata; Kolehmainen, Erkki; Grubecki, Ireneusz; Pietrzak, Marek; Ośmiałowski, Borys

    2015-01-01

    The association of substituted benzoates and naphthyridine dianions was used to study the complexation of dibutyltriuret. The title molecule is the simplest molecule able to form two intramolecular hydrogen bonds. The naphthyridine salt was used to break two intramolecular hydrogen bonds at a time while with the use of substituted benzoates the systematic approach to study association was achieved. Both, titrations and variable temperature measurements shed the light on the importance of conformational equilibrium and its influence on association in solution. Moreover, the associates were observed by mass spectrometry. The DFT-based computations for complexes and single bond rotational barriers supports experimental data and helps understanding the properties of multiply hydrogen bonded complexes.

  2. Hydrogen bonded C-H···Y (Y = O, S, Hal) molecular complexes: A natural bond orbital analysis

    NASA Astrophysics Data System (ADS)

    Isaev, A. N.

    2016-03-01

    Hydrogen bonded C-H···Y complexes formed by H2O, H2S molecules, hydrogen halides, and halogen-ions with methane, halogen substituted methane as well as with the C2H2 and NCH molecules were studied at the MP2/aug-cc-pVDZ level. The structure of NBOs corresponding to lone pair of acceptor Y, n Y, and vacant anti-σ-bond C-H of proton donor was analyzed and estimates of second order perturbation energy E(2) characterizing donor-acceptor n Y → σ C-H * charge-transfer interaction were obtained. Computational results for complexes of methane and its halogen substituted derivatives show that for each set of analogous structures, the EnY→σ*C-H (2) energy tends to grow with an increase in the s-component percentage in the lone pair NBO of acceptor Y. Calculations for different C···Y distances show that the equilibrium geometries of complexes lie in the region where the E(2) energy is highest and it changes symbatically with the length of the covalent E-H bond when the R(C···Y) distance is varied. The performed analysis allows us to divide the hydrogen bonded complexes into two groups, depending on the pattern of overlapping for NBOs of the hydrogen bridge.

  3. Hydrogen bonds in the vicinity of the special pair of the bacterial reaction center probed by hydrostatic high-pressure absorption spectroscopy.

    PubMed

    Kangur, Liina; Jones, Michael R; Freiberg, Arvi

    2017-12-01

    Using the native bacteriochlorophyll a pigment cofactors as local probes, we investigated the response to external hydrostatic high pressure of reaction center membrane protein complexes from the photosynthetic bacterium Rhodobacter sphaeroides. Wild-type and engineered complexes were used with a varied number (0, 1 or 2) of hydrogen bonds that bind the reaction center primary donor bacteriochlorophyll cofactors to the surrounding protein scaffold. A pressure-induced breakage of hydrogen bonds was established for both detergent-purified and membrane-embedded reaction centers, but at rather different pressures: between 0.2 and 0.3GPa and at about 0.55GPa, respectively. The free energy change associated with the rupture of the single hydrogen bond present in wild-type reaction centers was estimated to be equal to 13-14kJ/mol. In the mutant with two symmetrical hydrogen bonds (FM197H) a single cooperative rupture of the two bonds was observed corresponding to an about twice stronger bond, rather than a sequential rupture of two individual bonds. Copyright © 2017 Elsevier B.V. All rights reserved.

  4. Robust hydrogen-bonded self-assemblies from biimidazole complexes. Synthesis and structural characterization of [M(biimidazole)2(OH2)2]2+ (M = Co2+, Ni2+) complexes and carboxylate modules.

    PubMed

    Atencio, Reinaldo; Chacón, Mirbel; González, Teresa; Briceño, Alexander; Agrifoglio, Giuseppe; Sierraalta, Anibal

    2004-02-21

    A robust heteromeric hydrogen-bonded synthon [R2(2) (9)-Id] is exploited to drive the modular self-assembly of four coordination complexes [M(H2biim)2(OH2)2]2+ (M = Co2+, Ni2+) and carboxylate counterions. This strategy allowed us to build molecular architectures of 0-, 1-, and 2-dimensions. A hydrogen-bonded 2D-network with cavities has been designed, which maintains its striking integrity after reversible water desorption-resorption processes.

  5. Hydrogen bonding and pi-stacking: how reliable are force fields? A critical evaluation of force field descriptions of nonbonded interactions.

    PubMed

    Paton, Robert S; Goodman, Jonathan M

    2009-04-01

    We have evaluated the performance of a set of widely used force fields by calculating the geometries and stabilization energies for a large collection of intermolecular complexes. These complexes are representative of a range of chemical and biological systems for which hydrogen bonding, electrostatic, and van der Waals interactions play important roles. Benchmark energies are taken from the high-level ab initio values in the JSCH-2005 and S22 data sets. All of the force fields underestimate stabilization resulting from hydrogen bonding, but the energetics of electrostatic and van der Waals interactions are described more accurately. OPLSAA gave a mean unsigned error of 2 kcal mol(-1) for all 165 complexes studied, and outperforms DFT calculations employing very large basis sets for the S22 complexes. The magnitude of hydrogen bonding interactions are severely underestimated by all of the force fields tested, which contributes significantly to the overall mean error; if complexes which are predominantly bound by hydrogen bonding interactions are discounted, the mean unsigned error of OPLSAA is reduced to 1 kcal mol(-1). For added clarity, web-based interactive displays of the results have been developed which allow comparisons of force field and ab initio geometries to be performed and the structures viewed and rotated in three dimensions.

  6. Hydrogen bonding. Part 18. The nature of the OHF hydrogen bond in choline fluoride

    NASA Astrophysics Data System (ADS)

    Harmon, Kenneth M.; Madeira, Susan L.; Jacks, Marshan J.; Avci, Günsel F.; Thiel, Anne C.

    1985-05-01

    The infrared spectrum of the OHF hydrogen bond in choline fluoride is completely different from the spectra of the electrostatic O—H⋯X hydrogen bonds in the other choline halides; however, this spectrum cannot be accounted for in terms of a "very strong" covalent OHF bond such as those found in carboxylic acid—fluoride ion complexes or postulated for betaine hydrofluoride. The spectrum of choline fluoride is interpreted best in terms of an intermediate type of unsymmetrical hydrogen bond ( r° O⋯F = ˜ 256 pm) which shows strong intensity enhancement for the first overtone of the OHF bending vibration.

  7. An ab initio study of some binary complexes containing methyl fluoride and difluoromethane: red-shifting and blue-shifting hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Ramasami, Ponnadurai; Ford, Thomas A.

    2018-07-01

    The properties of a number of hydrogen-bonded complexes of methyl fluoride and difluoromethane with a range of hydrides of the first two rows of the periodic table have been computed using ab initio molecular orbital theory. The aim of this work was to identify possible examples of blue-shifting hydrogen-bonded species analogous to those formed between fluoroform and ammonia, water, phosphine and hydrogen sulphide, reported earlier. The calculations were carried out using the Gaussian-09 program, at the second-order level of Møller-Plesset perturbation theory, and with the aug-cc-pVTZ basis sets of Dunning. The properties studied include the molecular structures, the hydrogen bond energies and the vibrational spectra. The results have been interpreted with the aid of natural bond orbital theory and the quantum theory of atoms in molecules.

  8. Laser desorption single-conformation UV and IR spectroscopy of the sulfonamide drug sulfanilamide, the sulfanilamide-water complex, and the sulfanilamide dimer.

    PubMed

    Uhlemann, Thomas; Seidel, Sebastian; Müller, Christian W

    2017-06-07

    We have studied the conformational preferences of the sulfonamide drug sulfanilamide, its dimer, and its monohydrated complex through laser desorption single-conformation UV and IR spectroscopy in a molecular beam. Based on potential energy curves for the inversion of the anilinic and the sulfonamide NH 2 groups calculated at DFT level, we suggest that the zero-point level wave function of the sulfanilamide monomer is appreciably delocalized over all four conformer wells. The sulfanilamide dimer, and the monohydrated complex each exhibit a single isomer in the molecular beam. The isomeric structures of the sulfanilamide dimer and the monohydrated sulfanilamide complex were assigned based on their conformer-specific IR spectra in the NH and OH stretch region. Quantum Theory of Atoms in Molecules (QTAIM) analysis of the calculated electron density in the water complex suggests that the water molecule is bound side-on in a hydrogen bonding pocket, donating one O-HO[double bond, length as m-dash]S hydrogen bond and accepting two hydrogen bonds, a NHO and a CHO hydrogen bond. QTAIM analysis of the dimer electron density suggests that the C i symmetry dimer structure exhibits two dominating N-HO[double bond, length as m-dash]S hydrogen bonds, and three weaker types of interactions: two CHO bonds, two CHN bonds, and a chalcogen OO interaction. Most interestingly, the molecular beam dimer structure closely resembles the R dimer unit - the dimer unit with the greatest interaction energy - of the α, γ, and δ crystal polymorphs. Interacting Quantum Atoms analysis provides evidence that the total intermolecular interaction in the dimer is dominated by the short-range exchange-correlation contribution.

  9. Self-assembled squares and triangles by simultaneous hydrogen bonding and metal coordination.

    PubMed

    Marshall, Laura J; de Mendoza, Javier

    2013-04-05

    Through the combination of hydrogen bonding and metal-templated self-assembly, molecular squares and molecular triangles are observed in chloroform solution upon the complexation of hydrogen-bonded dimers of para-pyridyl-substituted 2-ureido-4-[1H]-pyrimidinone (UPy) and an appropriate cis-substituted palladium complex. Molecular modeling studies and NMR analysis confirmed the presence of two distinct structures in solution: the tubular structure of the molecular square and propeller-bowl structure of the molecular triangle.

  10. A theoretical study of hydrogen complexes of the XH-pi type between propyne and HF, HCL or HCN.

    PubMed

    Tavares, Alessandra M; da Silva, Washington L V; Lopes, Kelson C; Ventura, Elizete; Araújo, Regiane C M U; do Monte, Silmar A; da Silva, João Bosco P; Ramos, Mozart N

    2006-05-15

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (pi type) complexes formed by propyne and a HX molecule, where X=F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RCtriple bondC and HX bond lengths. As compared to double-zeta (6-31G**), triple-zeta (6-311G**) basis set leads to an increase of RCtriple bondC bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, DeltaE: propynecdots, three dots, centeredHF>propynecdots, three dots, centeredHCl>propynecdots, three dots, centeredHCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on DeltaE. The smaller effect of ZPE is obtained for propynecdots, three dots, centeredHCN at HF/6-311++G** level, while the greatest difference is obtained at MP2/6-31G** level for propynecdots, three dots, centeredHF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for HX stretching frequency, which is shifted downward.

  11. Hydrogen bonding in water clusters and their ionized counterparts.

    PubMed

    Neela, Y Indra; Mahadevi, A Subha; Sastry, G Narahari

    2010-12-30

    Ab initio and DFT computations were carried out on four distinct hydrogen-bonded arrangements of water clusters (H(2)O)(n), n = 2-20, represented as W1D, W2D, W2DH, and W3D. The variation in the strength of hydrogen bond as a function of the chain length is studied. In all the four cases, there is a substantial cooperative interaction, albeit in different degrees. The effect of basis set superposition error (BSSE) on the complexation energy of water clusters has been analyzed. Atoms in molecules (AIM) analysis performed to evaluate the nature of the hydrogen bonding shows a high correlation between hydrogen bond strength and the trends in complexation energy. Solvated water clusters exhibit lower complexation energies compared to corresponding gas-phase geometries on PCM (polarized continuum model) optimization. The feasibility of stripping an electron or addition of an electron increases dramatically as the cluster size increases. Although W3D caged structures are stable for neutral clusters, the helical W2DH arrangement appeared to be an optimal choice for its ionized counterparts.

  12. Interstellar hydrogen bonding

    NASA Astrophysics Data System (ADS)

    Etim, Emmanuel E.; Gorai, Prasanta; Das, Ankan; Chakrabarti, Sandip K.; Arunan, Elangannan

    2018-06-01

    This paper reports the first extensive study of the existence and effects of interstellar hydrogen bonding. The reactions that occur on the surface of the interstellar dust grains are the dominant processes by which interstellar molecules are formed. Water molecules constitute about 70% of the interstellar ice. These water molecules serve as the platform for hydrogen bonding. High level quantum chemical simulations for the hydrogen bond interaction between 20 interstellar molecules (known and possible) and water are carried out using different ab-intio methods. It is evident that if the formation of these species is mainly governed by the ice phase reactions, there is a direct correlation between the binding energies of these complexes and the gas phase abundances of these interstellar molecules. Interstellar hydrogen bonding may cause lower gas abundance of the complex organic molecules (COMs) at the low temperature. From these results, ketenes whose less stable isomers that are more strongly bonded to the surface of the interstellar dust grains have been observed are proposed as suitable candidates for astronomical observations.

  13. Intramolecular competition between n-pair and π-pair hydrogen bonding: Microwave spectrum and internal dynamics of the pyridine–acetylene hydrogen-bonded complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mackenzie, Rebecca B.; Dewberry, Christopher T.; Leopold, Kenneth R., E-mail: A.C.Legon@bristol.ac.uk, E-mail: david.tew@bristol.ac.uk, E-mail: kleopold@umn.edu

    2015-09-14

    a-type rotational spectra of the hydrogen-bonded complex formed from pyridine and acetylene are reported. Rotational and {sup 14}N hyperfine constants indicate that the complex is planar with an acetylenic hydrogen directed toward the nitrogen. However, unlike the complexes of pyridine with HCl and HBr, the acetylene moiety in HCCH—NC{sub 5}H{sub 5} does not lie along the symmetry axis of the nitrogen lone pair, but rather, forms an average angle of 46° with the C{sub 2} axis of the pyridine. The a-type spectra of HCCH—NC{sub 5}H{sub 5} and DCCD—NC{sub 5}H{sub 5} are doubled, suggesting the existence of a low lying pairmore » of tunneling states. This doubling persists in the spectra of HCCD—NC{sub 5}H{sub 5}, DCCH—NC{sub 5}H{sub 5}, indicating that the underlying motion does not involve interchange of the two hydrogens of the acetylene. Single {sup 13}C substitution in either the ortho- or meta-position of the pyridine eliminates the doubling and gives rise to separate sets of spectra that are well predicted by a bent geometry with the {sup 13}C on either the same side (“inner”) or the opposite side (“outer”) as the acetylene. High level ab initio calculations are presented which indicate a binding energy of 1.2 kcal/mol and a potential energy barrier of 44 cm{sup −1} in the C{sub 2v} configuration. Taken together, these results reveal a complex with a bent hydrogen bond and large amplitude rocking of the acetylene moiety. It is likely that the bent equilibrium structure arises from a competition between a weak hydrogen bond to the nitrogen (an n-pair hydrogen bond) and a secondary interaction between the ortho-hydrogens of the pyridine and the π electron density of the acetylene.« less

  14. Observation of paramorphic phenomenon and non-tilted orthogonal smectic phases in hydrogen bonded ferroelectric liquid crystals for photonic applications

    NASA Astrophysics Data System (ADS)

    Subhasri, P.; Venugopal, D.; Jayaprakasam, R.; Chitravel, T.; Vijayakumar, V. N.

    2018-06-01

    A new class of hydrogen bonded ferroelectric liquid crystals (HBFLC) have been designed and synthesized by intermolecular hydrogen bonds between mesogenic 4-decyloxybenzoic acid (10OBA) and non-mesogenic (R)-(+)-Methylsuccinic acid (MSA) which have been confirmed through experimental and theoretical studies. Further, Mulliken population analysis clearly reveals that the existence of hydrogen bonds, strength and dynamic properties. Textural observation and its corresponding enthalpy values are analyzed by polarizing optical microscope (POM) and differential scanning calorimetry (DSC) respectively. Paramorphic changes in Sm C* phase due to the change of refractive index, which clearly reveal that the complex could be used for filtering action in photonic devices. The transition from lone pair to π* with large stabilization energy evidently exposes the chiral phases in the present HBFLC complex. Intermolecular interaction is analyzed by using natural bond orbital (NBO) studies. The highest energy in the HOMO-LUMO shows the stable phase in the HBFLC complex. Molecular structure of the HBFLC complex possesses the monoclinic which has been evinced through x-ray analysis. The randomly oriented bunch of homogeneous molecules in Sm A* phase of the HBFLC complex is reported.

  15. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1990-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the produce gas from coal gasification processes.

  16. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1991-10-15

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the product gas from coal gasification processes. 3 figures.

  17. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, M.A.; Hallen, R.T.

    1990-08-28

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately [pi]-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancillary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H[sub 2] from mixed gas streams such as the producer gas from coal gasification processes. 3 figs.

  18. Bridged transition-metal complexes and uses thereof for hydrogen separation, storage and hydrogenation

    DOEpatents

    Lilga, Michael A.; Hallen, Richard T.

    1991-01-01

    The present invention constitutes a class of organometallic complexes which reversibly react with hydrogen to form dihydrides and processes by which these compounds can be utilized. The class includes bimetallic complexes in which two cyclopentadienyl rings are bridged together and also separately .pi.-bonded to two transition metal atoms. The transition metals are believed to bond with the hydrogen in forming the dihydride. Transition metals such as Fe, Mn or Co may be employed in the complexes although Cr constitutes the preferred metal. A multiple number of ancilliary ligands such as CO are bonded to the metal atoms in the complexes. Alkyl groups and the like may be substituted on the cyclopentadienyl rings. These organometallic compounds may be used in absorption/desorption systems and in facilitated transport membrane systems for storing and separating out H.sub.2 from mixed gas streams such as the product gas from coal gasification processes.

  19. Hydrogen-bonded side chain liquid crystalline block copolymer: Molecular design, synthesis, characterization and applications

    NASA Astrophysics Data System (ADS)

    Chao, Chi-Yang

    Block copolymers can self-assemble into highly regular, microphase-separated morphologies with dimensions at nanometer length scales. Potential applications such as optical wavelength photonic crystals, templates for nanolithographic patterning, or nanochannels for biomacromolecular separation take advantage of the well-ordered, controlled size microdomains of block copolymers. Side-chain liquid crystalline block copolymers (SCLCBCPs) are drawing increasing attention since the incorporation of liquid crystallinity turns their well-organized microstructures into dynamic functional materials. As a special type of block copolymer, hydrogen-bonded SCLCBCPs are unique, compositionally tunable materials with multiple dynamic functionalities that can readily respond to thermal, electrical and mechanical fields. Hydrogen-bonded SCLCBCPs were synthesized and assembled from host poly(styrene- b-acrylic acid) diblock copolymers with narrow molecular weight distributions as proton donors and guest imidazole functionalized mesogenic moieties as proton acceptors. In these studies non-covalent hydrogen bonding is employed to connect mesogenic side groups to a block copolymer backbone, both for its dynamic character as well as for facile materials preparation. The homogeneity and configuration of the hydrogen-bonded complexes were determined by both the molecular architecture of imidazolyl side groups and the process conditions. A one-dimensional photonic crystal composed of high molecular weight hydrogen-bonded SCLCBCP, with temperature dependent optical wavelength stop bands was successfully produced. The microstructures of hydrogen-bonded complexes could be rapidly aligned in an AC electric field at temperatures below the order-disorder transition but above their glass transitions. Remarkable dipolar properties of the mesogenic groups and thermal dissociation of hydrogen bonds are key elements to fast orientation switching. Studies of a wide range of mesogen and polymer combinations were carried out to investigate the interplay between morphology, mesophase behavior and blend composition (molar ratios of proton acceptors to proton donors). A critical composition for mesophase formation was identified and the characteristics of the H-bonded complexes below the critical blend ratios were very different than those above. Hydrogen bonding was also used to direct microphase separation of miscible poly(hydroxystyrene-b-methyl methacrylate) diblock copolymer by adopting imidazolyl additives able to hydrogen bond with poly(hydroxystyrene). The miscibility between PHS and PMMA segments was diminished significantly by introducing small quantities of H-binding additives. The critical blend ratio for microphase separation was determined more by the molecular structure of the additives than the number of hydrogen bonds formed between PHS and additives.

  20. Interaction of N-hydroxyurea with strong proton donors: HCl and HF

    NASA Astrophysics Data System (ADS)

    Sałdyka, Magdalena

    2014-11-01

    An infrared spectroscopic and MP2/6-311++G(2d,2p) study of strong hydrogen bonded complexes of N-hydroxyurea (NH2CONHOH) with hydrogen halides (HCl and HF) trapped in solid argon matrices is reported. 1:1 and 1:2 complexes between N-hydroxyurea and hydrogen chloride, hydrogen fluoride have been identified in the NH2CONHOH/HCl/Ar, NH2CONHOH/HF/Ar matrices, respectively; their structures were determined by comparison of the spectra with the results of calculations. In the 1:1 complexes, identified for both hydrogen halide molecules, the cyclic structure stabilized by the X-H⋯O and N-H⋯X bonds is present; for the NH2CONHOH⋯HF system another isomeric 1:1 complex is also observed. Two 1:2 complexes were identified for the N-hydroxyurea-hydrogen chloride system characterised by the Cl-H⋯O and N-H⋯Cl bonds. The results of the study evidence that N-hydroxyurea is an oxygen base in the gas-phase with the carbonyl group as the strongest proton acceptor centre in the molecule.

  1. Interactions of carbon dioxide with model organic molecules: A comparative theoretical study

    NASA Astrophysics Data System (ADS)

    Trung, Nguyen Tien; Nguyen, Minh Tho

    2013-08-01

    Interaction energies obtained using CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ computations including both ZPE and BSSE corrections range from -2.9 to -14.2 kJ mol-1. While formic acid forms the most stable complex with CO2, formaldehyde yields the least stable complex. Lewis acid-base interaction such as C-N⋯C(CO2), Cdbnd O⋯C(CO2), which overcomes C-H⋯O blue-shifting hydrogen bond, plays a significant role in stabilizing most complexes. However, the strength of (HCOOH, CO2) is mainly determined by O-H⋯O red-shifting hydrogen bond. The C-H⋯O blue-shifting hydrogen bond is revealed upon complexation of CH3OH, HCHO, HCOOH, CH3COCH3 and HCOOCH3 with CO2. Remarkably, existence of weak hydrogen bonded C-H⋯O interaction is not found in the (CH3OCH3, CO2) and (CH3NH2, CO2) pairs.

  2. Crystal structure of cis-tetra-aqua-dichlorido-cobalt(II) sulfolane disolvate.

    PubMed

    Boudraa, Mhamed; Bouacida, Sofiane; Bouchareb, Hasna; Merazig, Hocine; Chtoun, El Hossain

    2015-02-01

    In the title compound, [CoCl2(H2O)4]·2C4H8SO2, the Co(II) cation is located on the twofold rotation axis and is coordinated by four water mol-ecules and two adjacent chloride ligands in a slightly distorted octa-hedral coordination environment. The cisoid angles are in the range 83.27 (5)-99.66 (2)°. The three transoid angles deviate significantly from the ideal linear angle. The crystal packing can be described as a linear arrangement of complex units along c formed by bifurcated O-H⋯Cl hydrogen bonds between two water mol-ecules from one complex unit towards one chloride ligand of the neighbouring complex. Two solvent mol-ecules per complex are attached to this infinite chain via O-H⋯O hydrogen bonds in which water mol-ecules act as the hydrogen-bond donor and sulfolane O atoms as the hydrogen-bond acceptor sites.

  3. Molecular structures of N-ethylpiperidine betaine hydrate and its 1:1 complex with squaric acid

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2013-12-01

    N-ethylpiperidine betaine, (N-carboxymethyl-N-ethylpiperidinium inner salt, EtPB) crystallizes as a hydrate. EtPB and water molecules are bonded by intermolecular OH⋯O hydrogen bonds of 2.817(1) and 2.863(1) Å, into a centrosymmetric dimer, in which only one carboxylate oxygen atom is involved in H-bonds formation. In the complex of EtPB with squaric acid (3,4-dihydroxy-3-cyclobutene-1,2-dione, H2SQ) both carboxylate oxygen atoms are engaged in the hydrogen bonds which links molecules through two short, non-symmetric OH⋯O hydrogen bonds of 2.489(1) and 2.500(1) Å. The preferences of the conformation of the EtPB unit in the hydrogen bond formation have been studied by X-ray diffraction, FTIR and NMR spectroscopy and the results are supported by DFT calculations. EtPB, in hydrate and in the complex, has a chair conformation with the CH3CH2 group in the axial position and the CH2COO substituent in the equatorial position.

  4. Fac and mer isomers of Ru(II) tris(pyrazolyl-pyridine) complexes as models for the vertices of coordination cages: structural characterisation and hydrogen-bonding characteristics.

    PubMed

    Metherell, Alexander J; Cullen, William; Stephenson, Andrew; Hunter, Christopher A; Ward, Michael D

    2014-01-07

    We have prepared a series of mononuclear fac and mer isomers of Ru(II) complexes containing chelating pyrazolyl-pyridine ligands, to examine their differing ability to act as hydrogen-bond donors in MeCN. This was prompted by our earlier observation that octanuclear cube-like coordination cages that contain these types of metal vertex can bind guests such as isoquinoline-N-oxide (K = 2100 M(-1) in MeCN), with a significant contribution to binding being a hydrogen-bonding interaction between the electron-rich atom of the guest and a hydrogen-bond donor site on the internal surface of the cage formed by a convergent set of CH2 protons close to a 2+ metal centre. Starting with [Ru(L(H))3](2+) [L(H) = 3-(2-pyridyl)-1H-pyrazole] the geometric isomers were separated by virtue of the fact that the fac isomer forms a Cu(I) adduct which the mer isomer does not. Alkylation of the pyrazolyl NH group with methyl iodide or benzyl bromide afforded [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+) respectively, each as their fac and mer isomers; all were structurally characterised. In the fac isomers the convergent group of pendant -CH2R or -CH3 protons defines a hydrogen-bond donor pocket; in the mer isomer these protons do not converge and any hydrogen-bonding involving these protons is expected to be weaker. For both [Ru(L(Me))3](2+) and [Ru(L(bz))3](2+), NMR titrations with isoquinoline-N-oxide in MeCN revealed weak 1 : 1 binding (K ≈ 1 M(-1)) between the guest and the fac isomer of the complex that was absent with the mer isomer, confirming a difference in the hydrogen-bond donor capabilities of these complexes associated with their differing geometries. The weak binding compared to the cage however occurs because of competition from the anions, which are free to form ion-pairs with the mononuclear complex cations in a way that does not happen in the cage complexes. We conclude that (i) the presence of fac tris-chelate sites in the cage to act as hydrogen-bond donors, and (ii) exclusion of counter-ions from the central cavity leaving these hydrogen-bonding sites free to interact with guests, are both important design criteria for future coordination cage hosts.

  5. Hydrogen bond strengthening between o-nitroaniline and formaldehyde in electronic excited states: A theoretical study

    NASA Astrophysics Data System (ADS)

    Yang, Juan; Li, An Yong

    2018-06-01

    To study the hydrogen bonds upon photoexcited, the time dependent density function method (TD DFT) was performed to investigate the excited state hydrogen bond properties of between o-nitroaniline (ONA) and formaldehyde (CH2O). The optimized structures of the complex and the monomers both in the ground state and the electronically excited states are calculated using DFT and TD DFT method respectively. Quantum chemical calculations of the electronic and vibrational absorption spectra are also carried out by TD DFT method at the different level. The complex ONA⋯CH2O forms the intramolecular hydrogen bond and intermolecular hydrogen bonds. Since the strength of hydrogen bonds can be measured by studying the vibrational absorption spectra of the characteristic groups on the hydrogen bonding acceptor and donor, it evidently confirms that the hydrogen bonds is strengthened in the S1/S2/T1 excited states upon photoexcitation. As a result, the hydrogen bonds cause that the CH stretch frequency of the proton donor CH2O has a blue shift, and the electron excitations leads to a frequency red shift of Ndbnd O and Nsbnd H stretch modes in the o-nitroaniline(ONA) and a small frequency blue shift of CH stretch mode in the formaldehyde(CH2O) in the S1 and S2 excited states. The excited states S1, S2 and T1 are locally excited states where only the ONA moiety is excited, but the CH2O moiety remains in its ground state.

  6. A theoretical study of hydrogen- and lithium-bonded complexes of F-H∕Li and Cl-H∕Li with NF3, NH3, and NH2(CH3).

    PubMed

    McDowell, Sean A C; St Hill, Janine A S

    2011-10-28

    Hydrogen- and lithium-bonded complexes of A-H∕Li (A = F, Cl) with the amine analogues NF(3), NH(3), and NH(2)(CH(3)) were studied at the MP2∕6-311++G(d,p) level of theory. Bond extensions and redshifts were obtained for the H-bonded complexes, while bond extensions and blueshifts were obtained for the Li-bonded species. The variation of these and other properties with the basicity of the amines was investigated and rationalized by comparing the ab initio results with predictions from a model derived from perturbation theory.

  7. Hydroperoxides as Hydrogen Bond Donors

    NASA Astrophysics Data System (ADS)

    Møller, Kristian H.; Tram, Camilla M.; Hansen, Anne S.; Kjaergaard, Henrik G.

    2016-06-01

    Hydroperoxides are formed in the atmosphere following autooxidation of a wide variety of volatile organics emitted from both natural and anthropogenic sources. This raises the question of whether they can form hydrogen bonds that facilitate aerosol formation and growth. Using a combination of Fourier transform infrared spectroscopy, FT-IR, and ab initio calculations, we have compared the gas phase hydrogen bonding ability of tert-butylhydroperoxide (tBuOOH) to that of tert-butanol (tBuOH) for a series of bimolecular complexes with different acceptors. The hydrogen bond acceptor atoms studied are nitrogen, oxygen, phosphorus and sulphur. Both in terms of calculated redshifts and binding energies (BE), our results suggest that hydroperoxides are better hydrogen bond donors than the corresponding alcohols. In terms of hydrogen bond acceptor ability, we find that nitrogen is a significantly better acceptor than the other three atoms, which are of similar strength. We observe a similar trend in hydrogen bond acceptor ability with other hydrogen bond donors including methanol and dimethylamine.

  8. The role of hydrogen bonding in the fluorescence quenching of 2,6-bis((E)-2-(benzoxazol-2-yl)vinyl)naphthalene (BBVN) in methanol

    NASA Astrophysics Data System (ADS)

    Hammam, Essam; Basahi, Jalal; Ismail, Iqbal; Hassan, Ibrahim; Almeelbi, Talal

    2017-02-01

    The excited state hydrogen bonding dynamics of BBVN in hydrogen donating methanol solvent was explored at the TD-BMK/cc-pVDZ level of theory with accounting for the bulk environment effects at the polarizable continuum model (PCM). The heteroatoms of the BBVN laser dye form hydrogen bonds with four methanol molecules. In the formed BBVN-(MeOH)4 complex, the A-type hydrogen bond (N…HO), of an average strength of 25 kJ mol- 1, is twofold stronger than the B-type (O…HO) one. Upon photon absorption, the total HB binding energy increases from 78.5 kJ mol- 1 in the ground state to 82.6 kJ mol- 1 in the first singlet (S1) excited state. In consequence of the hydrogen bonding interaction, the absorption band maximum of the BBVN-(MeOH)4 complex, which was anticipated at 398 nm (exp. 397), is redshifted by 5 nm relative to that of the free dye in methanol. The spectral shift of the stretching vibrational mode for the hydrogen bonded hydroxyl groups (with a maximum shift of 285 cm- 1) from that of the free methanol indicated the elevated strengthening of hydrogen bonds in the excited state. The vibrational modes associated with hydrogen bonding provide effective accepting modes for the dissipation of the excitation energy, thus, decreasing the fluorescence quantum yield of BBVN in alcohols as compared to that in the polar aprotic solvents. Since there is no sign of photochemistry or phosphorescence, it seems reasonable in view of the outcomes of this study to assign the major decay process of the excited singlet (S1) of BBVN in alcohols to vibronically induced internal conversion (IC) facilitated by hydrogen bonding.

  9. Synthesis, crystal structure, antimicrobial activity and DNA-binding of hydrogen-bonded proton-transfer complex of 2,6-diaminopyridine with picric acid.

    PubMed

    Khan, Ishaat M; Ahmad, Afaq; Ullah, M F

    2011-04-04

    A proton-transfer (charge transfer) complex formed on the reaction between 2,6-diaminopyridine (donor) and picric acid (acceptor) was synthesized and characterized by FTIR, (1)H NMR, thermal and elemental analysis. The crystal structure determined by single-crystal X-ray diffraction indicates that cation and anion are joined together by strong N(+)-H- -O(-) type hydrogen bonds. The hydrogen-bonded charge transfer (HBCT) complex was screened for its pharmacology such as antimicrobial activity against various fungal and bacterial strains and Calf thymus DNA-binding. The results showed that HBCT complex (100μg/ml) exhibited good antibacterial antifungal activity as that of standard antibiotics Tetracycline and Nystatin. A molecular frame work through H-bonding interactions between neighboring moieties is found to be responsible for high melting point of resulting complex. This has been attributed to the formation of 1:1 HBCT complex. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Anion-assisted trans-cis isomerization of palladium(II) phosphine complexes containing acetanilide functionalities through hydrogen bonding interactions.

    PubMed

    Lu, Xiao-Xia; Tang, Hau-San; Ko, Chi-Chiu; Wong, Jenny Ka-Yan; Zhu, Nianyong; Yam, Vivian Wing-Wah

    2005-03-28

    The anion-assisted shift of trans-cis isomerization equilibrium of a palladium(II) complex containing acetanilide functionalities brought about by allosteric hydrogen bonding interactions has been established by UV/Vis, 1H NMR, 31P NMR and ESI-MS studies.

  11. Hydrogen scavengers

    DOEpatents

    Carroll, David W.; Salazar, Kenneth V.; Trkula, Mitchell; Sandoval, Cynthia W.

    2002-01-01

    There has been invented a codeposition process for fabricating hydrogen scavengers. First, a .pi.-bonded allylic organometallic complex is prepared by reacting an allylic transition metal halide with an organic ligand complexed with an alkali metal; and then, in a second step, a vapor of the .pi.-bonded allylic organometallic complex is combined with the vapor of an acetylenic compound, irradiated with UV light, and codeposited on a substrate.

  12. A theoretical study of hydrogen complexes of the X sbnd H-π type between propyne and HF, HCL or HCN

    NASA Astrophysics Data System (ADS)

    Tavares, Alessandra M.; da Silva, Washington L. V.; Lopes, Kelson C.; Ventura, Elizete; Araújo, Regiane C. M. U.; do Monte, Silmar A.; da Silva, João Bosco P.; Ramos, Mozart N.

    2006-05-01

    The present manuscript reports a systematic investigation of the basis set dependence of some properties of hydrogen-bonded (π type) complexes formed by propyne and a HX molecule, where X = F, Cl and CN. The calculations have been performed at Hartree-Fock, MP2 and B3LYP levels. Geometries, H-bond energies and vibrational have been considered. The more pronounced effects on the structural parameters of the isolated molecules, as a result of complexation, are verified on RC tbnd C and HX bond lengths. As compared to double-ζ (6-31G **), triple-ζ (6-311G **) basis set leads to an increase of RC tbnd C bond distance, at all three computational levels. In the case where diffuse functions are added to both hydrogen and 'heavy' atoms, the effect is more pronounced. The propyne-HX structural parameters are quite similar to the corresponding parameters of acetylene-HX complexes, at all levels. The largest difference is obtained for hydrogen bond distance, RH, with a smaller value for propyne-HX complex, indicating a stronger bond. Concerning the electronic properties, the results yield the following ordering for H-bond energies, Δ E: propyne⋯HF > propyne⋯HCl > propyne⋯HCN. It is also important to point out that the inclusion of BSSE and zero-point energies (ZPE) corrections cause significant changes on Δ E. The smaller effect of ZPE is obtained for propyne⋯HCN at HF/6-311++G ** level, while the greatest difference is obtained at MP2/6-31G ** level for propyne⋯HF system. Concerning the IR vibrational it was obtained that larger shift can be associated with stronger hydrogen bonds. The more pronounced effect on the normal modes of the isolated molecule after the complexation is obtained for H sbnd X stretching frequency, which is shifted downward.

  13. N-H···S Interaction Continues To Be an Enigma: Experimental and Computational Investigations of Hydrogen-Bonded Complexes of Benzimidazole with Thioethers.

    PubMed

    Wategaonkar, Sanjay; Bhattacherjee, Aditi

    2018-05-03

    The N-H···S hydrogen bond, even though classified as an unconventional hydrogen bond, is found to bear important structural implications on protein structure and folding. In this article, we report a gas-phase study of the N-H···S hydrogen bond between the model compounds of histidine (benzimidazole, denoted BIM) and methionine (dimethyl sulfide, diethyl sulfide, and tetrahydrothiophene, denoted Me 2 S, Et 2 S, and THT, respectively). A combination of laser spectroscopic methods such as laser-induced fluorescence (LIF), two-color resonant two-photon ionization (2cR2PI), and fluorescence depletion by infrared spectroscopy (FDIR) is used in conjunction with DFT and ab initio calculations to characterize the nature of this prevalent H-bonding interaction in simple bimolecular complexes. A single conformer was found to exist for the BIM-Me 2 S complex, whereas the BIM-Et 2 S and BIM-THT complexes showed the presence of three and two conformers, respectively. These conformers were characterized on the basis of IR spectroscopic results and electronic structure calculations. Quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO), and energy decomposition (NEDA) analyses were performed to investigate the nature of the N-H···S H-bond. Comparison of the results with the N-H···O type of interactions in BIM and indole revealed that the strength of the N-H···S H-bond is similar to N-H···O in these binary gas-phase complexes.

  14. Spectral analysis and DFT computations of the hydrogen bonded complex between 2,6-diaminopyridine with 2,6-dichloro-4-nitrophenol in different solvents

    NASA Astrophysics Data System (ADS)

    Al-Ahmary, Khairia M.; Soliman, Saied M.; Habeeb, Moustafa M.; Al-Obidan, Areej H.

    2017-09-01

    New hydrogen bonded complex between 2,6-dichloro-4-nitrophenol (DCNP), proton donor with the proton acceptor 2,6-diaminopyridine (DAP) has been synthesized and characterized in solution and solid state by different spectroscopic techniques. Electronic spectra were used to identify the novel proton transfer complex through appearance of new absorption bands in acetonitrile (CH3CN), methanol (CH3OH) and mixture composed from 1:1 methanol and acetonitrile (AN-Me). The complex stoichiometry was determined to be 1:1 by job's method and photometric titrations. The formation constant was determined by applying minimum-maximum absorbances method where it reached high values confirming the complex high stability. A spectroscopic method for determining DAP was presented and validated statistically. The solid complex was characterized by elemental analysis, infrared and 1H NMR studies where the hydrogen bonded reaction occurs between the phenolic OH with the pyridine ring nitrogen as well as one amino group of DNP. The density functional theory DFT (B3LYP) method has been used to energy optimization of the reactants and complex in the ground state using two basis sets 6-31G(d) and 6-31 G+(d,p). The first one led to energy optimized structure through bifurcated hydrogen bond between OH of DCNP with the ring nitrogen and one amino group of DAP with optimization energy -1998.7 Hartree. The second one gave an optimized structure thought hydrogen bonding between OH and one amino group with lowered optimization energy -2018.1 Hartree. Hence, the experimental results will be simulated with the most stable one at DFT/B3LYB 6-31G+ (d,p). The most reactive electrophilic and nucleophilic sites of DCNP and DAP were predicted using the molecular electrostatic potential. The theoretical electronic spectra in the gas phase and the investigated solvents were calculated at TD-DFT/B3LYP 6-31G+ (d,p) and compared with measured electronic spectra where a satisfactory results have been obtained. An important aim of this work is analysis of the interaction energies between the filled natural bond orbitals (NBOs) and the empty ones in order to shed the light on the ease of electron delocalization among bonds in the novel hydrogen bonded complex.

  15. Substituent effects in double-helical hydrogen-bonded AAA-DDD complexes.

    PubMed

    Wang, Hong-Bo; Mudraboyina, Bhanu P; Wisner, James A

    2012-01-27

    Two series of DDD and AAA hydrogen-bond arrays were synthesized that form triply-hydrogen-bonded double-helical complexes when combined in CDCl(3) solution. Derivatization of the DDD arrays with electron-withdrawing groups increases the complex association constants by up to a factor of 30 in those arrays examined. Derivatization of the AAA arrays with electron donating substituents reveals a similar magnitude effect on the complex stabilities. The effect of substitution on both types of arrays are modeled quite satisfactorily (R(2) > 0.96 in all cases) as free energy relationships with respect to the sums of their Hammett substituent constants. In all, the complex stabilities can be manipulated over more than three orders of magnitude (>20 kJ mol(-1)) using this type of modification. Copyright © 2012 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Molecular complexes of alprazolam with carboxylic acids, boric acid, boronic acids, and phenols. Evaluation of supramolecular heterosynthons mediated by a triazole ring.

    PubMed

    Varughese, Sunil; Azim, Yasser; Desiraju, Gautam R

    2010-09-01

    A series of molecular complexes, both co-crystals and salts, of a triazole drug-alprazolam-with carboxylic acids, boric acid, boronic acids, and phenols have been analyzed with respect to heterosynthons present in the crystal structures. In all cases, the triazole ring behaves as an efficient hydrogen bond acceptor with the acidic coformers. The hydrogen bond patterns exhibited with aromatic carboxylic acids were found to depend on the nature and position of the substituents. Being a strong acid, 2,6-dihydroxybenzoic acid forms a salt with alprazolam. With aliphatic dicarboxylic acids alprazolam forms hydrates and the water molecules play a central role in synthon formation and crystal packing. The triazole ring makes two distinct heterosynthons in the molecular complex with boric acid. Boronic acids and phenols form consistent hydrogen bond patterns, and these are seemingly independent of the substitutional effects. Boronic acids form noncentrosymmetric cyclic synthons, while phenols form O--H...N hydrogen bonds with the triazole ring.

  17. Cocrystals of Kemp’s triacid. Part III: Structure of hydrogen-bonded complex of Kemp’s triacid with 1,1,3,3-tetramethylguanidine studied by X-ray and FT-IR methods

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Ratajczak-Sitarz, Małgorzata; Katrusiak, Andrzej; Brzezinski, Bogumil

    2008-12-01

    The 2:2 hydrogen-bonded complex between Kemp's triacid (KTA) and 1,1,3,3-tetramethylguanidine (TMG) has been synthesised and studied by X-ray diffraction and by FT-IR spectroscopy. Cocrystals of KTA-TMG belong to the monoclinic system and crystallize in the space group is P21 with a = 10.5017(3) Å, b = 7.9504(3) Å, c = 11.8910(4) Å, β = 104.004(4)° and Z = 2. The ring of the KTA monoanion molecule exhibits a chair conformation with all three carboxylic groups in the axial positions and all three methyl groups in the equatorial positions. In the crystal of the complex, cooperative systems involving inter- and intra-molecular hydrogen bonds are formed. In the solid state two protonated TMG molecules and two deprotonated KTA molecules form a dimer in which three-dimensional hydrogen-bonded networks are found.

  18. Additional hydrogen bonds and base-pair kinetics in the symmetrical AMP-DNA aptamer complex.

    PubMed Central

    Nonin-Lecomte, S; Lin, C H; Patel, D J

    2001-01-01

    The solution structure of an adenosine monophosphate (AMP)-DNA aptamer complex has been determined previously [Lin, C. H., and Patel, D. J. (1997) Chem. Biol. 4:817-832]. On a symmetrical aptamer complex containing the same binding loop, but with better resolved spectra, we have identified two additional hydrogen bond-mediated associations in the binding loop. One of these involves a rapidly exchanging G imino proton. The phosphate group of the AMP ligand was identified as the acceptor by comparison with other aptamer complexes. Imino proton exchange measurements also yielded the dissociation constants of the stem and binding loop base pairs. This study shows that nuclear magnetic resonance-based imino proton exchange is a good probe for detection of weak hydrogen-bond associations. PMID:11721004

  19. Diamond-like nanoparticles influence on flavonoids transport: molecular modelling

    NASA Astrophysics Data System (ADS)

    Plastun, Inna L.; Agandeeva, Ksenia E.; Bokarev, Andrey N.; Zenkin, Nikita S.

    2017-03-01

    Intermolecular interaction of diamond-like nanoparticles and flavonoids is investigated by numerical simulation. Using molecular modelling by the density functional theory method, we analyze hydrogen bonds formation and their influence on IR - spectra and structure of molecular complex which is formed due to interaction between flavonoids and nanodiamonds surrounded with carboxylic groups. Enriched adamantane (1,3,5,7 - adamantanetetracarboxylic acid) is used as an example of diamond-like nanoparticles. Intermolecular forces and structure of hydrogen bonds are investigated. IR - spectra and structure parameters of quercetin - adamantanetetracarboxylic acid molecular complex are obtained by numerical simulation using the Gaussian software complex. Received data coincide well with experimental results. Intermolecular interactions and hydrogen bonding structure in the obtained molecular complex are examined. Possibilities of flavonoids interaction with DNA at the molecular level are also considered.

  20. Theoretical study of optical activity of 1:1 hydrogen bond complexes of water with S-warfarin

    NASA Astrophysics Data System (ADS)

    Dadsetani, Mehrdad; Abdolmaleki, Ahmad; Zabardasti, Abedin

    2016-11-01

    The molecular interaction between S-warfarin (SW) and a single water molecule was investigated using the B3LYP method at 6-311 ++G(d,p) basis set. The vibrational spectra of the optimized complexes have been investigated for stabilization checking. Quantum theories of atoms in molecules, natural bond orbitals, molecular electrostatic potentials and energy decomposition analysis methods have been applied to analyze the intermolecular interactions. The intermolecular charge transfer in the most stable complex is in the opposite direction from those in the other complexes. The optical spectra and the hyperpolarizabilities of SW-water hydrogen bond complexes have been computed.

  1. IR-UV double resonance spectroscopic investigation of phenylacetylene-alcohol complexes. Alkyl group induced hydrogen bond switching.

    PubMed

    Singh, Prashant Chandra; Patwari, G Naresh

    2008-06-12

    The electronic transitions of phenylacetylene complexes with water and trifluoroethanol are shifted to the blue, while the corresponding transitions for methanol and ethanol complexes are shifted to the red relative to the phenylacetylene monomer. Fluorescence dip infrared (FDIR) spectra in the O-H stretching region indicate that, in all the cases, phenylacetylene is acting as a hydrogen bond acceptor to the alcohols. The FDIR spectrum in the acetylenic C-H stretching region shows Fermi resonance bands for the bare phenylacetylene, which act as a sensitive tool to probe the intermolecular structures. The FDIR spectra reveal that water and trifluoroethanol interact with the pi electron density of the acetylene C-C triple bond, while methanol and ethanol interact with the pi electron density of the benzene ring. It can be inferred that the hydrogen bonding acceptor site on phenylacetylene switches from the acetylene pi to the benzene pi with lowering in the partial charge on the hydrogen atom of the OH group. The most significant finding is that the intermolecular structures of water and methanol complexes are notably distinct, which, to the best of our knowledge, this is first such observation in the case of complexes of substituted benzenes.

  2. Interaction between methyl glyoxal and ascorbic acid: experimental and theoretical aspects

    NASA Astrophysics Data System (ADS)

    Banerjee, D.; Koll, A.; Filarowski, A.; Bhattacharyya, S. P.; Mukherjee, S.

    2004-06-01

    The absorption spectral change of methyl glyoxal (MG) due to the interaction with ascorbic acid (AA or Vitamin C) has been investigated using steady-state spectroscopic technique. A plausible explanation for the spectral change has been discussed on the basis of hydrogen bonding interaction between the two interacting species. The equilibrium constant for the complex formation due to hydrogen bonding interaction between MG and AA has been obtained from absorption spectral changes. Ab inito calculations with DFT B3LYP/6/31G (d,p) basis sets have been used to find out the molecular structure of the hydrogen bonded complex. The O⋯H distance found in the OH⋯O hydrogen bond turns out to be quite short (1.974 Å) which is in conformity with the large value of the equilibrium constant determined experimentally.

  3. Electron transfer across multiple hydrogen bonds: the case of ureapyrimidinedione-substituted vinyl ruthenium and osmium complexes.

    PubMed

    Pichlmaier, Markus; Winter, Rainer F; Zabel, Manfred; Zális, Stanislav

    2009-04-08

    Ruthenium and osmium complexes 2a,b and 3a,b featuring the N-4,6-dioxo-5,5-dibutyl- or the N-4,6-dioxo-5,5-di-(2-propenyl)-1,4,5,6-tetrahydropyrimidin-2-yl-N'(4-ethenylphenyl)-urea ligand dimerize by a self-complementary quadruply hydrogen-bonding donor/donor/acceptor/acceptor (DDAA) motif. We provide evidence that the dimeric structures are maintained in nonpolar solvents and in 0.1 M NBu(4)PF(6)/CH(2)Cl(2) supporting electrolyte solution. All complexes are reversibly oxidized in two consecutive two-electron oxidations (DeltaE(1/2) approximately = 500 mV) without any discernible potential splitting for the oxidation of the individual hydrogen-bridged redox active moieties. IR and UV/vis/NIR spectroelectrochemistry show a one-step conversion of the neutral to the dication without any discernible features of an intermediate monooxidized radical cation. Oxidation-induced IR changes of the NH and CO groups that are involved in hydrogen bonding are restricted to the styryl-bonded urea NH function. IR band assignments are aided by quantum chemical calculations. Our experimental findings clearly show that, at least in the present systems, the ureapyrimidinedione (Upy) DDAA hydrogen-bonding motif does not support electron transfer. The apparent reason is that neither of the hydrogen-bonding functionalities contributes to the occupied frontier levels. This results in nearly degenerate pairs of MOs representing the in-phase and out-of-phase combinations of the individual monomeric building blocks.

  4. 2,4-Dinitrophenylhydrazine, redetermined at 120 K: a three-dimensional framework built from N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

    PubMed

    Wardell, James L; Low, John N; Glidewell, Christopher

    2006-06-01

    In the title compound, C6H6N4O4, the bond distances indicate significant bond fixation, consistent with charge-separated polar forms. The molecules are almost planar and there is an intramolecular N-H...O hydrogen bond. The molecules are linked into a complex three-dimensional framework structure by a combination of N-H...O, N-H...(O)2, N-H...pi(arene) and C-H...O hydrogen bonds.

  5. X-ray, spectroscopic and antibacterial activity studies of the 1:1 complex of lasalocid acid with 1,1,3,3-tetramethylguanidine

    NASA Astrophysics Data System (ADS)

    Huczyński, Adam; Janczak, Jan; Stefańska, Joanna; Rutkowski, Jacek; Brzezinski, Bogumil

    2010-08-01

    The crystal structure of the 1:1 complex between lasalocid acid (LAS) and 1,1,3,3-tetramethylguanidine (TMG) with one inclusion acetone molecule is studied by X-ray diffraction, FT-IR spectroscopy, 1H and 13C NMR. The complex is stabilized by three intra- and two inter-molecular hydrogen bonds formed between LAS anion and protonated TMG molecule. The NH2+ protons of the protonated TMG molecule are hydrogen bonded with the etheric oxygen atom O(6) and the hydroxyl oxygen atom O(8) of the LAS anion. The intermolecular NH⋯O hydrogen bonds are relatively long (2.933(4) Å and 2.903(4) Å). One oxygen atom of the carboxylate group is involved in a relatively strong intramolecular quasi-aromatic O(1)-H⋯O(3) hydrogen bond of 2.428(4) Å length, and the second oxygen atom in the bifurcated intramolecular relatively weak O(4)-H⋯O(2) of 2.803(4) Å and O(8)-H⋯O(2) of 2.805(4) Å hydrogen bonds. The O(4)-H⋯O(2) and O(8)-H⋯O(2) hydrogen bonds bind the ends of the LAS anion forming a pseudo-cyclic structure. The FT-IR spectra of the complex in the solid state and in the solution are comparable, thus the structures observed in the both states are also comparable. The in vitro biological tests of LAS-TMG show its good activity towards some strains of Gram-positive bacteria but this activity is lower than that of lasalocid acid.

  6. Infrared signature of micro-hydration in the organophosphate sarin: An ab initio study

    DOE PAGES

    Alam, Todd M.; Pearce, Charles Joseph

    2015-06-28

    The infrared (IR) spectra of micro-hydrated Sarin•(H 2O) n clusters containing between one and four explicit waters have been studied using ab initio density functional theory (DFT) methods. The phosphate group P=O bond vibration region (~1270 to 1290 cm –1) revealed the largest frequency variation with hydration, with a frequency red shift reflecting the direct hydrogen bond formation between the P=O of Sarin and water. Small variations to the P-F stretch (~810 to 815 cm –1) and the C-O-P vibrational modes (~995 to 1004 cm –1) showed that the water interactions with these functional groups were minor, and that themore » structures of Sarin were not extensively perturbed in the hydrated complexes. Increasing the number of explicit hydration waters produced only small vibrational changes in the lowest free energy complexes. These minor changes were consistent with a single water-phosphate hydrogen bond being the dominant structure, though a second water-phosphate hydrogen bond was observed in some complexes and was identified by an additional red shift of the P=O bond vibration. As a result, the H 2O•H 2O vibrational modes (~3450 to 3660 cm –1) increased in complexity with higher hydration levels and reflect the extended hydrogen bonding networks formed between the explicit waters in the hydrated Sarin clusters.« less

  7. The role of hydrogen bonding in the fluorescence quenching of 2,6-bis((E)-2-(benzoxazol-2-yl)vinyl)naphthalene (BBVN) in methanol.

    PubMed

    Hammam, Essam; Basahi, Jalal; Ismail, Iqbal; Hassan, Ibrahim; Almeelbi, Talal

    2017-02-15

    The excited state hydrogen bonding dynamics of BBVN in hydrogen donating methanol solvent was explored at the TD-BMK/cc-pVDZ level of theory with accounting for the bulk environment effects at the polarizable continuum model (PCM). The heteroatoms of the BBVN laser dye form hydrogen bonds with four methanol molecules. In the formed BBVN-(MeOH) 4 complex, the A-type hydrogen bond (N…HO), of an average strength of 25kJmol -1 , is twofold stronger than the B-type (O…HO) one. Upon photon absorption, the total HB binding energy increases from 78.5kJmol -1 in the ground state to 82.6kJmol -1 in the first singlet (S 1 ) excited state. In consequence of the hydrogen bonding interaction, the absorption band maximum of the BBVN-(MeOH) 4 complex, which was anticipated at 398nm (exp. 397), is redshifted by 5nm relative to that of the free dye in methanol. The spectral shift of the stretching vibrational mode for the hydrogen bonded hydroxyl groups (with a maximum shift of 285cm -1 ) from that of the free methanol indicated the elevated strengthening of hydrogen bonds in the excited state. The vibrational modes associated with hydrogen bonding provide effective accepting modes for the dissipation of the excitation energy, thus, decreasing the fluorescence quantum yield of BBVN in alcohols as compared to that in the polar aprotic solvents. Since there is no sign of photochemistry or phosphorescence, it seems reasonable in view of the outcomes of this study to assign the major decay process of the excited singlet (S 1 ) of BBVN in alcohols to vibronically induced internal conversion (IC) facilitated by hydrogen bonding. Copyright © 2016 Elsevier B.V. All rights reserved.

  8. HBonanza: A Computer Algorithm for Molecular-Dynamics-Trajectory Hydrogen-Bond Analysis

    PubMed Central

    Durrant, Jacob D.; McCammon, J. Andrew

    2011-01-01

    In the current work, we present a hydrogen-bond analysis of 2,673 ligand-receptor complexes that suggests the total number of hydrogen bonds formed between a ligand and its protein receptor is a poor predictor of ligand potency; furthermore, even that poor prediction does not suggest a statistically significant correlation between hydrogen-bond formation and potency. While we are not the first to suggest that hydrogen bonds on average do not generally contribute to ligand binding affinities, this additional evidence is nevertheless interesting. The primary role of hydrogen bonds may instead be to ensure specificity, to correctly position the ligand within the active site, and to hold the protein active site in a ligand-friendly conformation. We also present a new computer program called HBonanza (hydrogen-bond analyzer) that aids the analysis and visualization of hydrogen-bond networks. HBonanza, which can be used to analyze single structures or the many structures of a molecular dynamics trajectory, is open source and python implemented, making it easily editable, customizable, and platform independent. Unlike many other freely available hydrogen-bond analysis tools, HBonanza provides not only a text-based table describing the hydrogen-bond network, but also a Tcl script to facilitate visualization in VMD, a popular molecular visualization program. Visualization in other programs is also possible. A copy of HBonanza can be obtained free of charge from http://www.nbcr.net/hbonanza. PMID:21880522

  9. Control of C-H Bond Activation by Mo-Oxo Complexes: pKa or Bond Dissociation Free Energy (BDFE)?

    PubMed

    Nazemi, Azadeh; Cundari, Thomas R

    2017-10-16

    A density functional theory (DFT) study (BMK/6-31+G(d)) was initiated to investigate the activation of benzylic carbon-hydrogen bonds by a molybdenum-oxo complex with a potentially redox noninnocent supporting ligand-a simple mimic of the active species of the enzyme ethylbenzene dehydrogenase (EBDH)-through deprotonation (C-H bond heterolysis) or hydrogen atom abstraction (C-H bond homolysis) routes. Activation free-energy barriers for neutral and anionic Mo-oxo complexes were high, but lower for anionic complexes than neutral complexes. Interesting trends as a function of substituents were observed that indicated significant H δ+ character in the transition states (TS), which was further supported by the preference for [2 + 2] addition over HAA for most complexes. Hence, it was hypothesized that C-H activation by these EBDH mimics is controlled more by the pK a than by the bond dissociation free energy of the C-H bond being activated. Therefore, the results suggest promising pathways for designing more efficient and selective catalysts for hydrocarbon oxidation based on EBDH active-site mimics.

  10. High-pressure modulation of the structure of the bacterial photochemical reaction center at physiological and cryogenic temperatures

    NASA Astrophysics Data System (ADS)

    Timpmann, Kõu; Kangur, Liina; Lõhmus, Ants; Freiberg, Arvi

    2017-07-01

    The optical absorption and fluorescence response to external high pressure of the reaction center membrane chromoprotein complex from the wild-type non-sulfur photosynthetic bacterium Rhodobacter sphaeroides was investigated using the native pigment cofactors as local molecular probes of the reaction center structure at physiological (ambient) and cryogenic (79 K) temperatures. In detergent-purified complexes at ambient temperature, abrupt blue shift and accompanied broadening of the special pair band was observed at about 265 MPa. These reversible in pressure features were assigned to a pressure-induced rupture of a lone hydrogen bond that binds the photo-chemically active L-branch primary electron donor bacteriochlorophyll cofactor to the surrounding protein scaffold. In native membrane-protected complexes the hydrogen bond rupture appeared significantly restricted and occurred close to about 500 MPa. The free energy change associated with the rupture of the special pair hydrogen bond in isolate complexes was estimated to be equal to about 12 kJ mol-1. In frozen samples at cryogenic temperatures the hydrogen bond remained apparently intact up to the maximum utilized pressure of 600 MPa. In this case, however, heterogeneous spectral response of the cofactors from the L-and M-branches was observed due to anisotropic build-up of the protein structure. While in solid phase, the special pair fluorescence as a function of pressure exactly followed the respective absorption spectrum at a constant Stokes shift, at ambient temperature, the two paths began to deviate strongly from one other at the hydrogen bond rupture pressure. This effect was tentatively interpreted by different emission properties of hydrogen-bound and hydrogen-unbound special pair exciton states.

  11. Influence of Hydrogen Bond on Thermal and Phase Transitions of Binary Complex Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V. N.; Rajasekaran, T. R.; Baskar, K.

    2017-12-01

    A novel supramolecular liquid crystal (LC) is synthesized from the binary complex of 4-decyloxy benzoic acid and cholesteryl acetate. Fourier transform infrared (FTIR) spectroscopic study confirms the formation of intermolecular hydrogen bond between the mesogens. Various mesophases and corresponding textural changes in the complex are observed by comparing with its constituents through polarizing optical microscopic (POM) studies. The thermal stability factor of smectic phase for present complex is calculated. An interesting observation of present work is that investigation of extended thermal span of mesomorphic phases, decreased enthalpy, a nematic phase with a high clearing point and a low melting point. This is due to an arrangement of molecular reorientations and the development of new associations by hydrogen bonding. Optical tilt angle for smectic C phase is determined and the same is fitted to a power law.

  12. Correlation of the bond-length change and vibrational frequency shift in model hydrogen-bonded complexes of pyrrole

    NASA Astrophysics Data System (ADS)

    McDowell, Sean A. C.

    2017-04-01

    An MP2 computational study of model hydrogen-bonded pyrrole⋯YZ (YZ = NH3, NCH, BF, CO, N2, OC, FB) complexes was undertaken in order to examine the variation of the Nsbnd H bond length change and its associated vibrational frequency shift. The chemical hardness of Y, as well as the YZ dipole moment, were found to be important parameters in modifying the bond length change/frequency shift. The basis set effect on the computed properties was also assessed. A perturbative model, which accurately reproduced the ab initio Nsbnd H bond length changes and frequency shifts, was useful in rationalizing the observed trends.

  13. Solid-state acid-base interactions in complexes of heterocyclic bases with dicarboxylic acids: crystallography, hydrogen bond analysis, and 15N NMR spectroscopy.

    PubMed

    Li, Z Jane; Abramov, Yuriy; Bordner, Jon; Leonard, Jason; Medek, Ales; Trask, Andrew V

    2006-06-28

    A cancer candidate, compound 1, is a weak base with two heterocyclic basic nitrogens and five hydrogen-bonding functional groups, and is sparingly soluble in water rendering it unsuitable for pharmaceutical development. The crystalline acid-base pairs of 1, collectively termed solid acid-base complexes, provide significant increases in the solubility and bioavailability compared to the free base, 1. Three dicarboxylic acid-base complexes, sesquisuccinate 2, dimalonate 3, and dimaleate 4, show the most favorable physicochemical profiles and are studied in greater detail. The structural analyses of the three complexes using crystal structure and solid-state NMR reveal that the proton-transfer behavior in these organic acid-base complexes vary successively correlating with Delta pKa. As a result, 2 is a neutral complex, 3 is a mixed ionic and zwitterionic complex and 4 is an ionic salt. The addition of the acidic components leads to maximized hydrogen bond interactions forming extended three-dimensional networks. Although structurally similar, the packing arrangements of the three complexes are considerably different due to the presence of multiple functional groups and the flexible backbone of 1. The findings in this study provide insight into the structural characteristics of complexes involving heterocyclic bases and carboxylic acids, and demonstrate that X-ray crystallography and 15N solid-state NMR are truly complementary in elucidating hydrogen bonding interactions and the degree of proton transfer of these complexes.

  14. Ultrafast Multi-Dimentional Infrared Vibrational Echo Spectroscopy of Molecular Dynamics on Surfaces and in Bulk Systems

    DTIC Science & Technology

    2012-02-28

    dimethylsulfoxide ( DMSO ). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO , both types of hydrogen bonded complexes exist. The...transition (negative) in the 2D IR spectrum. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect...conditions as  = 7  1 ps. This is the first direct measurement of hydrogen bond exchange. b. Solute- Solvent Complex Switching Dynamics3 Hydrogen

  15. Ultrafast Multi-Dimensional Infrared Vibrational Echo Spectroscopy of Molecular Dynamics on Surfaces and in Bulk Systems

    DTIC Science & Technology

    2012-02-28

    dimethylsulfoxide ( DMSO ). When chloroform is dissolved in a mixed solvent consisting of acetone and DMSO , both types of hydrogen bonded complexes exist. The...transition (negative) in the 2D IR spectrum. Also, line shape distortions caused by solvent background absorption and finite pulse durations do not affect...conditions as  = 7  1 ps. This is the first direct measurement of hydrogen bond exchange. b. Solute- Solvent Complex Switching Dynamics3 Hydrogen

  16. Modeling evolution of hydrogen bonding and stabilization of transition states in the process of cocaine hydrolysis catalyzed by human butyrylcholinesterase.

    PubMed

    Gao, Daquan; Zhan, Chang-Guo

    2006-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (-)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen-bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (-)-cocaine. 2005 Wiley-Liss, Inc.

  17. Modeling Evolution of Hydrogen Bonding and Stabilization of Transition States in the Process of Cocaine Hydrolysis Catalyzed by Human Butyrylcholinesterase

    PubMed Central

    Gao, Daquan; Zhan, Chang-Guo

    2010-01-01

    Molecular dynamics (MD) simulations and quantum mechanical/molecular mechanical (QM/MM) calculations were performed on the prereactive enzyme-substrate complex, transition states, intermediates, and product involved in the process of human butyrylcholinesterase (BChE)-catalyzed hydrolysis of (−)-cocaine. The computational results consistently reveal a unique role of the oxyanion hole (consisting of G116, G117, and A199) in BChE-catalyzed hydrolysis of cocaine, as compared to acetylcholinesterase (AChE)-catalyzed hydrolysis of acetylcholine. During BChE-catalyzed hydrolysis of cocaine, only G117 has a hydrogen bond with the carbonyl oxygen (O31) of the cocaine benzoyl ester in the prereactive BChE-cocaine complex, and the NH groups of G117 and A199 are hydrogen-bonded with O31 of cocaine in all of the transition states and intermediates. Surprisingly, the NH hydrogen of G116 forms an unexpected hydrogen bond with the carboxyl group of E197 side chain and, therefore, is not available to form a hydrogen bond with O31 of cocaine in the acylation. The NH hydrogen of G116 is only partially available to form a weak hydrogen bond with O31 of cocaine in some structures involved in the deacylation. The change of the estimated hydrogen bonding energy between the oxyanion hole and O31 of cocaine during the reaction process demonstrates how the protein environment can affect the energy barrier for each step of the BChE-catalyzed hydrolysis of cocaine. These insights concerning the effects of the oxyanion hole on the energy barriers provide valuable clues on how to rationally design BChE mutants with a higher catalytic activity for the hydrolysis of (−)-cocaine. PMID:16288482

  18. A theoretical study of the hydrogen bonding between the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride

    NASA Astrophysics Data System (ADS)

    Rusu, Victor H.; da Silva, João Bosco P.; Ramos, Mozart N.

    2009-04-01

    MP2/6-31++G(d,p) and B3LYP/6-31++G(d,p) theoretical calculations have been employed to investigate the hydrogen bonding formation involving the vic-, cis- and trans-C 2H 2F 2 isomers and hydrogen fluoride. Our calculations have revealed for each isomer the preferential existence of two possible hydrogen-bonded complexes: a non-cyclic complex and a cyclic complex. For all the three isomers the binding energies for the non-cyclic and cyclic hydrogen complexes are essentially equal using both the MP2 and B3LYP calculations, being that the cyclic structure is slightly more stable. For instance, the binding energies including BSSE and ZPE corrections for the non-cyclic and cyclic structures of cis-C 2H 2F···HF are 8.7 and 9.0 kJ mol -1, respectively, using B3LYP calculations. The cyclic complex formation reduces the polarity, in contrast to what occurs with the non-cyclic complex. This result is more accentuated in vic-C 2H 2F 2···HF. In this latter, Δ μ(cyclic) is -3.07 D, whereas Δ μ(non-cyclic) is +1.92 D using B3LYP calculations. Their corresponding MP2 values are +0.44 D and -1.89 D, respectively. As expected, the complexation produces an H sbnd F stretching frequency downward shift, whereas its IR intensity is enhanced. On the other hand, the vibrational modes of the vic-, cis- and trans-C 2H 2F 2 isomers are little affected by complexation. The new vibrational modes due to hydrogen bonding formation show several interesting features, in particular the HF bending modes which are pure rotations in the free molecule.

  19. An experimental and theoretical study of a hydrogen-bonded complex: O-phenylenediamine with 2,6-pyridinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Ghasemi, Khaled; Rezvani, Ali Reza; Habibi-Khorassani, Sayyed Mostafa; Shahraki, Mehdi; Shokrollahi, Ardeshir; Moghimi, Abolghasem; Tamandani, Halimeh Kord; Gavahi, Sara

    2015-11-01

    The hydrogen-bonded complex, [(OPDH)+(dipicH)-.H2O], between o-phenylenediamine (OPD) and 2,6-pyridinedicarboxylic acid (dipicH2) has been characterized in water by the 1H, 13C NMR and IR spectroscopies. The crystal structure showed that the edge to face C-H⋯π and C-O⋯π stacking interactions between the dipicH2 and OPD rings play an extra significant role in the formation of the hydrogen-bonded complex and supported the H-bonding interactions. The proton transfer also investigated theoretically in gas phase and thermodynamic parameters such as ΔH‡, ΔG‡, ΔS‡ were calculated for this process. Moreover, intramolecular hydrogen-bonding interaction has been recognized by calculating the electron density ρ(r) and Laplacian ∇2ρ(r) at the bond critical point (BCP) using Atoms-In-Molecule (AIM) method and also the interaction between electron acceptor (σ*) of OH with the lone pair of the nitrogen atom as an electron donor using Natural Bond Orbital (NBO) analysis. In addition, the protonation constants of dipicH2 and OPD and the equilibrium constants for the dipic-OPD (1:1) proton transfer system were obtained by the potentiometric pH titration method using the Hyperquad 2008 program. The stoichiometry of the proton transfer species in the solution confirmed the solid state result.

  20. Molecular dynamics simulations of polyamidoamine dendrimers and their complexes with linear poly(ethylene oxide) at different pH conditions: static properties and hydrogen bonding.

    PubMed

    Tanis, I; Karatasos, K

    2009-11-21

    Models consisting of an amine-terminated poly(amidoamine) (PAMAM) dendrimer with and without the presence of a linear poly(ethylene oxide) (PEO) chain were studied in aqueous solutions by means of fully atomistic molecular dynamics simulations. Dendrimers of two generations, 3rd and 4th and at different pH conditions were examined, in order to address issues associated with characteristics pertinent to the shape of the dendrimers in the presence or absence of PEO as well as to the volume fraction of the penetrating solvent molecules and counterions as compared to recent experimental studies. In addition, hydrogen-bonding characteristics such as the intensity and the longevity of intra- and intermolecular hydrogen-bonded pairs are examined for the first time in these systems. It was found that the volume fraction of the penetrating solvent molecules increased upon decrease of pH, but no dependence on the size of the molecules was observed. The density of the solvent within the dendritic interior did not exceed that of the bulk, while the corresponding number of counterions entering the dendrimer boundaries exhibited a marked increase between the 3rd and the 4th generation of the dendrimers. Intramolecular hydrogen bonding was favored at high pH conditions, while intermolecular hydrogen bonding between PAMAM and the solvent or the PEO was significantly enhanced upon protonation of the dendrimer's amines. The presence of PEO imparted appreciable changes in the dendrimer's shape particularly in the physiological pH conditions. In addition, it incurred a decrease in intramolecular hydrogen bonding and acted antagonistically to the formation of water/dendrimer hydrogen bonds. The higher degree of hydrogen bonding between PAMAM and PEO was observed at low pH levels, indicating that under these conditions the formed complexes are expected to be more stable. The findings of the present study were found to be in good agreement with the relevant experimental findings where available, thus assessing the role of several structural and conformational details in the manifested behavior and providing further insight of the effects of non-covalent complexation of PAMAM dendrimers with linear poly(ethylene oxide).

  1. Crystal structure, vibrational spectra and DFT studies of hydrogen bonded 1,2,4-triazolium hydrogenselenate

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Thirunarayanan, S.; Marchewka, M. K.; Mohan, S.

    2017-10-01

    The new hydrogen bonded molecular complex 1,2,4-triazolium hydrogenselenate (THS) is prepared by the reaction of 1H-1,2,4-triazole and selenic acid. This complex is stabilised by N-H⋯O and C-H⋯O hydrogen bonding and electrostatic attractive forces between 1H and 1,2,4-triazolium cations and hydrogen selenate anions. The XRD studies revealed that intermolecular proton transfer occur from selenic acid to 1H-1,2,4-triazole molecule, results in the formation of 1,2,4-triazolium hydrogenselenate which contains 1,2,4-triazolium cations and hydrogenselenate anions. The molecular structure of THS crystal has also been optimised by using Density Functional Theory (DFT) using B3LYP/cc-pVTZ and B3LYP/6-311++G** methods in order to find the whole characteristics of the molecular complex. The theoretical structural parameters such as bond length, bond angle and dihedral angle determined by DFT methods are well agreed with the XRD parameters. The atomic charges and thermodynamic properties are also calculated and analysed. The energies of frontier molecular orbitals HOMO, LUMO, HOMO-1, LUMO+1 and LUMO-HUMO energy gap are calculated to understand the kinetic stability and chemical reactivity of the molecular complex. The natural bond orbital analysis (NBO) has been performed in order to study the intramolecular bonding interactions and delocalisation of electrons. These intra molecular charge transfer may induce biological activities such as antimicrobials, antiinflammatory, antifungal etc. The complete vibrational assignments of THS have been performed by using FT-IR and FT-Raman spectra.

  2. Competing Intramolecular vs. Intermolecular Hydrogen Bonds in Solution

    PubMed Central

    Nagy, Peter I.

    2014-01-01

    A hydrogen bond for a local-minimum-energy structure can be identified according to the definition of the International Union of Pure and Applied Chemistry (IUPAC recommendation 2011) or by finding a special bond critical point on the density map of the structure in the framework of the atoms-in-molecules theory. Nonetheless, a given structural conformation may be simply favored by electrostatic interactions. The present review surveys the in-solution competition of the conformations with intramolecular vs. intermolecular hydrogen bonds for different types of small organic molecules. In their most stable gas-phase structure, an intramolecular hydrogen bond is possible. In a protic solution, the intramolecular hydrogen bond may disrupt in favor of two solute-solvent intermolecular hydrogen bonds. The balance of the increased internal energy and the stabilizing effect of the solute-solvent interactions regulates the new conformer composition in the liquid phase. The review additionally considers the solvent effects on the stability of simple dimeric systems as revealed from molecular dynamics simulations or on the basis of the calculated potential of mean force curves. Finally, studies of the solvent effects on the type of the intermolecular hydrogen bond (neutral or ionic) in acid-base complexes have been surveyed. PMID:25353178

  3. Theoretical insights into the π-hole interactions in the complexes containing triphosphorus hydride (P3H3) and its derivatives.

    PubMed

    Wang, Yuehong; Li, Xiaoyan; Zeng, Yanli; Meng, Lingpeng; Zhang, Xueying

    2017-04-01

    The π-hole of triphosphorus hydride (P 3 H 3 ) and its derivatives Z 3 X 3 (Z = P, As; X = H, F, Cl, Br) was discovered and analyzed. MP2/aug-cc-pVDZ calculations were performed on the π-hole interactions in the HCN...Z 3 X 3 complexes and the mutual influence between π-hole interactions and the hydrogen bond in the HCN...HCN...Z 3 X 3 and HCN...Z 3 X 3 ...HCN complexes studied. The π-hole interaction belongs to the typical closed-shell noncovalent interaction. The linear relationship was found between the most positive electrostatic potential of the π-hole (V S,max ) and the interaction energy. Moreover, the V S,max of the π-hole was also found to be linearly correlated to the electrostatic energy term, indicating the important contribution of the electrostatic energy term to the π-hole interaction. There is positive cooperativity between the π-hole interaction and the hydrogen bond in the termolecular complexes. The π-hole interaction has a greater influence on the hydrogen bond than vice versa. The mutual enhancing effect between the π-hole interaction and the hydrogen bond in the HCN...HCN...Z 3 X 3 complexes is greater than that in the HCN...Z 3 X 3 ...HCN complexes.

  4. Hydrogen-bonded supramolecular structures of three related 4-(5-nitro-2-furyl)-1,4-dihydropyridines.

    PubMed

    Quesada, Antonio; Argüello, Jacqueline; Squella, Juan A; Wardell, James L; Low, John N; Glidewell, Christopher

    2006-01-01

    In ethyl 5-cyano-2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3-carboxylate, C15H15N3O5, the molecules are linked into chains by a single N-H...O hydrogen bond. The molecules in diethyl 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarboxylate, C17H20N2O7, are linked by a combination of one N-H...O hydrogen bond and two C-H...O hydrogen bonds into sheets built from equal numbers of R(2)(2)(17) and R(4)(4)(18) rings. In 2,6-dimethyl-4-(5-nitro-2-furyl)-1,4-dihydropyridine-3,5-dicarbonitrile, C13H10N4O3, the molecules are linked by a combination of a three-centre N-H...(O)2 hydrogen bond and two independent two-centre C-H...O hydrogen bonds into complex sheets containing four types of ring.

  5. Hydroxyl group as IR probe to detect the structure of ionic liquid-acetonitrile mixtures

    NASA Astrophysics Data System (ADS)

    Xu, Jing; Deng, Geng; Zhou, Yu; Ashraf, Hamad; Yu, Zhi-Wu

    2018-06-01

    Task-specific ionic liquids (ILs) are those with functional groups introduced in the cations or anions of ILs to bring about specific properties for various tasks. In this work, the hydrogen bonding interactions between a hydroxyl functionalized IL 1-(2-hydroxylethyl)-3-methylimidazolium tetrafluoroborate ([C2OHMIM][BF4]) and acetonitrile were investigated in detail by infrared spectroscopy, excess spectroscopy, two-dimensional correlation spectroscopy, combined with hydrogen nuclear magnetic resonance and density functional theory calculations (DFT). The hydroxyl group rather than C2sbnd H is found to be the main interaction site in the cation. And the ν(Osbnd H) is more sensitive than v(C-Hs) to the environment, which has been taken as an intrinsic probe to reflect the structural change of IL. Examining the region of ν(Osbnd H), by combining excess spectroscopy and DFT calculation, a number of species were identified in the mixtures. Other than the hydrogen bond between a cation and an anion, the hydroxyl group allows the formation of a hydrogen bond between two like-charged cations. The Osbnd H⋯O hydrogen bonding interactions in the hydroxyl-mediated cation-cation complexes are cooperative, while Osbnd H⋯F and C2sbnd H⋯F hydrogen bonding interactions in cation-anion complexes are anti-cooperative. These in-depth studies on the properties of the ionic liquid-acetonitrile mixtures may shed light on exploring their applications as mixed solvents and understanding the nature of doubly ionic hydrogen bonds.

  6. The Transition from Hydrogen Bonding to Ionization in (HCI)n(NH3)n and (HCI)n(H2O)n Clusters: Consequences for Anharmonic Vibrational Spectroscopy

    NASA Technical Reports Server (NTRS)

    Chaban, Galina M.; Gerber, R. Benny; Janda, Kenneth C.; Kwak, Dochan (Technical Monitor)

    2001-01-01

    Anharmonic vibrational frequencies and intensities are calculated for 1:1 and 2:2 (HCl)(sub n)(NH3)(sub n) and (HCl)(sub n)(H2O)(sub n) complexes, employing the correlation-corrected vibrational self-consistent field method with ab initio potential surfaces at the MP2/TZP computational level. In this method, the anharmonic coupling between all vibrational modes is included, which is found to be important for the systems studied. For the 4:4 (HCl)(sub n)(H2O)(sub n) complex, the vibrational spectra are calculated at the harmonic level, and anharmonic effects are estimated. Just as the (HCl)(sub n)(NH3)(sub n) structure switches from hydrogen-bonded to ionic for n=2, the (HCl)(sub n)(H2O)(sub n) switches to ionic structure for n=4. For (HCl)2(H2O)2, the lowest energy structure corresponds to the hydrogen-bonded form. However, configurations of the ionic form are separated from this minimum by a barrier of less than an O-H stretching quantum. This suggests the possibility of experiments on ionization dynamics using infrared excitation of the hydrogen-bonded form. The strong cooperative effects on the hydrogen bonding, and concomitant transition to ionic bonding, makes an accurate estimate of the large anharmonicity crucial for understanding the infrared spectra of these systems. The anharmonicity is typically of the order of several hundred wave numbers for the proton stretching motions involved in hydrogen or ionic bonding, and can also be quite large for the intramolecular modes. In addition, the large cooperative effects in the 2:2 and higher order (HCl(sub n)(H2O)(sub n) complexes may have interesting implications for solvation of hydrogen halides at ice surfaces.

  7. Electrostatics determine vibrational frequency shifts in hydrogen bonded complexes.

    PubMed

    Dey, Arghya; Mondal, Sohidul Islam; Sen, Saumik; Ghosh, Debashree; Patwari, G Naresh

    2014-12-14

    The red-shifts in the acetylenic C-H stretching vibration of C-H∙∙∙X (X = O, N) hydrogen-bonded complexes increase with an increase in the basicity of the Lewis base. Analysis of various components of stabilization energy suggests that the observed red-shifts are correlated with the electrostatic component of the stabilization energy, while the dispersion modulates the stabilization energy.

  8. A DFT investigation on interactions between asymmetric derivatives of cisplatin and nucleobase guanine

    NASA Astrophysics Data System (ADS)

    Tai, Truong Ba; Nhat, Pham Vu

    2017-07-01

    The interactions of hydrolysis products of cisplatin and its asymmetric derivatives cis- and trans-[PtCl2(iPram)(Mepz)] with guanine were studied using DFT methods. These interactions are dominated by electrostatic effects, namely hydrogen bond contributions and there exists a charge flow from H-atoms of ligands to the O-atoms of guanine. The replacement of NH3 moieties by larger functional groups accompanies with a moderate reaction between PtII and guanine molecule, diminishing the cytotoxicity of the drug. The asymmetric and symmetric NH2 stretching modes of complexes having strong hydrogen bond interactions are red shifted importantly as compared to complexes without presence of hydrogen bond interactions.

  9. Interaction of water, alkyl hydroperoxide, and allylic alcohol with a single-site homogeneous Ti-Si epoxidation catalyst: A spectroscopic and computational study.

    PubMed

    Urakawa, Atsushi; Bürgi, Thomas; Skrabal, Peter; Bangerter, Felix; Baiker, Alfons

    2005-02-17

    Tetrakis(trimethylsiloxy)titanium (TTMST, Ti(OSiMe3)4) possesses an isolated Ti center and is a highly active homogeneous catalyst in epoxidation of various olefins. The structure of TTMST resembles that of the active sites in some heterogeneous Ti-Si epoxidation catalysts, especially silylated titania-silica mixed oxides. Water cleaves the Ti-O-Si bond and deactivates the catalyst. An alkyl hydroperoxide, TBHP (tert-butyl hydroperoxide), does not cleave the Ti-O-Si bond, but interacts via weak hydrogen-bonding as supported by NMR, DOSY, IR, and computational studies. ATR-IR spectroscopy combined with computational investigations shows that more than one, that is, up to four, TBHP can undergo hydrogen-bonding with TTMST, leading to the activation of the O-O bond of TBHP. The greater the number of TBHP molecules that form hydrogen bonds to TTMST, the more electrophilic the O-O bond becomes, and the more active the complex is for epoxidation. An allylic alcohol, 2-cyclohexen-1-ol, does not interact strongly with TTMST, but the interaction is prominent when it interacts with the TTMST-TBHP complex. On the basis of the experimental and theoretical findings, a hydrogen-bond-assisted epoxidation mechanism of TTMST is suggested.

  10. The 2:2 complex of pyridine betaine with squaric acid studied by X-ray diffraction, FTIR, NMR and DTG methods

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.

    2012-12-01

    The 2:2 ionic crystals of pyridine betaine (PyB) with squaric acid (H2SQ) belong to monoclinic space group C2/c. Supramolecular structure of the crystals investigated is formed by the loss of one proton from every two squaric acid molecules. Pyridine betaines form a homoconjugated cation, [(PyB)2H]+, through a short, symmetric COO⋯H⋯OOC hydrogen bond of 2.463(2) Å. The hydrogen squarate anions are linked into a homoconjugated anion, [(HSQ)2H]-, by a short symmetric, non-linear O⋯H⋯O hydrogen bond of 2.453(1) Å, with the H-atom located on the twofold axis. The bis(hydrogen squarate)hydrogen anions are linked into a centrosymmetric cyclic dimer by two identical asymmetric Osbnd H⋯O hydrogen bonds of 2.536(2) Å. The (PyB)2H cation and cyclic dimer of hydrogen squarate anions are placed around two different systems of inversion centers in the unit cell. The FTIR spectrum is consistent with the X-ray results. The 13C chemical shift of the Cdbnd O atom confirms the presence of the hydrogen squarate anion in the complex studied. The complex decomposed in three thermal stages.

  11. Experimental evidence for blue-shifted hydrogen bonding in the fluoroform-hydrogen chloride complex: a matrix-isolation infrared and ab initio study.

    PubMed

    Gopi, R; Ramanathan, N; Sundararajan, K

    2014-07-24

    The 1:1 hydrogen-bonded complex of fluoroform and hydrogen chloride was studied using matrix-isolation infrared spectroscopy and ab initio computations. Using B3LYP and MP2 levels of theory with 6-311++G(d,p) and aug-cc-pVDZ basis sets, the structures of the complexes and their energies were computed. For the 1:1 CHF3-HCl complexes, ab initio computations showed two minima, one cyclic and the other acyclic. The cyclic complex was found to have C-H · · · Cl and C-F · · · H interactions, where CHF3 and HCl sub-molecules act as proton donor and proton acceptor, respectively. The second minimum corresponded to an acyclic complex stabilized only by the C-F · · · H interaction, in which CHF3 is the proton acceptor. Experimentally, we could trap the 1:1 CHF3-HCl cyclic complex in an argon matrix, where a blue-shift in the C-H stretching mode of the CHF3 sub-molecule was observed. To understand the nature of the interactions, Atoms in Molecules and Natural Bond Orbital analyses were carried out to unravel the reasons for blue-shifting of the C-H stretching frequency in these complexes.

  12. Quantum nature of protons in water probed by scanning tunneling microscopy and spectroscopy

    NASA Astrophysics Data System (ADS)

    Guo, Jing; Lü, Jing-Tao; Feng, Yexin; Chen, Ji; Peng, Jinbo; Lin, Zeren; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, En-Ge; Jiang, Ying; Jing-Tao Lü Team; Xin-Zheng Li Team

    The complexity of hydrogen-bonding interaction largely arises from the quantum nature of light hydrogen nuclei, which has remained elusive for decades. Here we report the direct assessment of nuclear quantum effects on the strength of a single hydrogen bond formed at a water-salt interface, using tip-enhanced inelastic electron tunneling spectroscopy (IETS) based on a low-temperature scanning tunneling microscope (STM). The IETS signals are resonantly enhanced by gating the frontier orbitals of water via a chlorine-terminated STM tip, such that the hydrogen-bonding strength can be determined with unprecedentedly high accuracy from the redshift in the O-H stretching frequency of water. Isotopic substitution experiments combined with quantum simulations reveal that the anharmonic quantum fluctuations of hydrogen nuclei weaken the weak hydrogen bonds and strengthen the relatively strong ones. However, this trend can be completely reversed when the hydrogen bond is strongly coupled to the polar atomic sites of the surface.

  13. Real-space identification of intermolecular bonding with atomic force microscopy.

    PubMed

    Zhang, Jun; Chen, Pengcheng; Yuan, Bingkai; Ji, Wei; Cheng, Zhihai; Qiu, Xiaohui

    2013-11-01

    We report a real-space visualization of the formation of hydrogen bonding in 8-hydroxyquinoline (8-hq) molecular assemblies on a Cu(111) substrate, using noncontact atomic force microscopy (NC-AFM). The atomically resolved molecular structures enable a precise determination of the characteristics of hydrogen bonding networks, including the bonding sites, orientations, and lengths. The observation of bond contrast was interpreted by ab initio density functional calculations, which indicated the electron density contribution from the hybridized electronic state of the hydrogen bond. Intermolecular coordination between the dehydrogenated 8-hq and Cu adatoms was also revealed by the submolecular resolution AFM characterization. The direct identification of local bonding configurations by NC-AFM would facilitate detailed investigations of intermolecular interactions in complex molecules with multiple active sites.

  14. Readily functionalized AAA-DDD triply hydrogen-bonded motifs.

    PubMed

    Tong, Feng; Linares-Mendez, Iamnica J; Han, Yi-Fei; Wisner, James A; Wang, Hong-Bo

    2018-04-25

    Herein we present a new, readily functionalized AAA-DDD hydrogen bond array. A novel AAA monomeric unit (3a-b) was obtained from a two-step synthetic procedure starting with 2-aminonicotinaldehyde via microwave radiation (overall yield of 52-66%). 1H NMR and fluorescence spectroscopy confirmed the complexation event with a calculated association constant of 1.57 × 107 M-1. Likewise, the usefulness of this triple hydrogen bond motif in supramolecular polymerization was demonstrated through viscosity measurements in a crosslinked supramolecular alternating copolymer.

  15. Characterization of the hydrogen-bond network of water around sucrose and trehalose: H-O-H bending analysis

    NASA Astrophysics Data System (ADS)

    Shiraga, Keiichiro; Adachi, Aya; Ogawa, Yuichi

    2017-06-01

    The bioprotective properties of disaccharides have been linked to destructuring effect on the hydrogen-bond structure of the interfacial water around the disaccharide solute, but its detailed mechanisms are yet to be provided. In this study, we characterized the destructuring effect based on the complex dielectric constants of interfacial water around sucrose and trehalose in the H-O-H bending region. Our analysis showed that the destructuring effect around disaccharides involves substantial disordering of the hydrogen-bond structure and formation of strong disaccharide-water hydrogen-bond. Such a destructuring effect caused by disaccharides is totally distinct from what happens with temperature increases of neat water.

  16. Ab initio EPR parameters for dangling-bond defect complexes in silicon: Effect of Jahn-Teller distortion

    NASA Astrophysics Data System (ADS)

    Pfanner, Gernot; Freysoldt, Christoph; Neugebauer, Jörg; Gerstmann, Uwe

    2012-05-01

    A dangling bond (db) is an important point defect in silicon. It is realized in crystalline silicon by defect complexes of the monovacancy V with impurities. In this work, we present spin-polarized density-functional theory calculations of EPR parameters (g and hyperfine tensors) within the GIPAW formalism for two kinds of db defect complexes. The first class characterizes chemically saturated db systems, where three of the four dangling bonds of the isolated vacancy are saturated by hydrogen (VH3) or hydrogen and oxygen (hydrogen-oxygen complex, VOH). The second kind of db consists of systems with a Jahn-Teller distortion, where the vacancy includes either a substitutional phosphorus atom (the E center, VP) or a single hydrogen atom (VH). For all systems we obtain excellent agreement with available experimental data, and we are therefore able to quantify the effect of the Jahn-Teller distortion on the EPR parameters. Furthermore we study the influence of strain to obtain further insights into the structural and electronic characteristics of the considered defects.

  17. Experimental evidence for the blue-shifted hydrogen-bonded complexes of CHF3 with π-electron donors.

    PubMed

    Gopi, R; Ramanathan, N; Sundararajan, K

    2017-06-15

    Blue-shifted hydrogen-bonded complexes of fluoroform (CHF 3 ) with benzene (C 6 H 6 ) and acetylene (C 2 H 2 ) have been investigated using matrix isolation infrared spectroscopy and ab initio computations. For CHF 3 -C 6 H 6 complex, calculations performed at the B3LYP and MP2 levels of theory using 6-311++G (d,p) and aug-cc-pVDZ basis sets discerned two minima corresponding to a 1:1 hydrogen-bonded complex. The global minimum correlated to a structure, where the interaction is between the hydrogen of CHF 3 and the π-electrons of C 6 H 6 and a weak local minimum was stabilized through H…F interaction. For the CHF 3 -C 2 H 2 complex, computation performed at MP2/aug-cc-pVDZ level of theory yielded two minima, corresponding to the cyclic C-H…π complex A (global) and a linear C-H…F (n-σ) complex B (local). Experimentally a blue-shift of 32.3cm -1 and 7.7cm -1 was observed in the ν 1 C-H stretching mode of CHF 3 sub-molecule in Ar matrix for the 1:1 C-H…π complexes of CHF 3 with C 6 H 6 and C 2 H 2 respectively. Natural bond orbital (NBO), Atoms-in-molecule (AIM) and energy decomposition (EDA) analyses were carried out to explain the blue-shifting and the nature of the interaction in these complexes. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Theoretical Study on Effects of Hydrogen-Bonding and Molecule-Cation Interactions on the Sensitivity of HMX.

    PubMed

    Li, Yunlu; Wu, Junpeng; Cao, Duanlin; Wang, Jianlong

    2016-10-04

    To assess the effects of weak interactions on the sensitivity of HMX, eleven complexes of HMX (where six of them are hydrogen-bonding complexes, and the other five are molecular-cation complexes) have been studied via quantum chemical treatment. The geometric and electronic structures were determined using DFT-B3LYP and MP2(full) methods with the 6-311++G(2df, 2p) and aug-cc-pVTZ basis sets. The changes of the bond dissociation energy (BDE) of the trigger bond (N-NO2 in HMX) and nitro group charge have been computed on the detail consideration to access the sensitivity changes of HMX. The results indicate that upon complex forming, the BDE increases and the charge of nitro group turns more negative in complexes, suggesting that the strength of the N-NO2 trigger bond is enhanced then the sensitivity of HMX is reduced. Atom-in-molecules analysis have also been carried to understand the nature of intermolecular interactions and the strength of trigger bonds.

  19. Pseudoracemic amino acid complexes: blind predictions for flexible two-component crystals.

    PubMed

    Görbitz, Carl Henrik; Dalhus, Bjørn; Day, Graeme M

    2010-08-14

    Ab initio prediction of the crystal packing in complexes between two flexible molecules is a particularly challenging computational chemistry problem. In this work we present results of single crystal structure determinations as well as theoretical predictions for three 1 ratio 1 complexes between hydrophobic l- and d-amino acids (pseudoracemates), known from previous crystallographic work to form structures with one of two alternative hydrogen bonding arrangements. These are accurately reproduced in the theoretical predictions together with a series of patterns that have never been observed experimentally. In this bewildering forest of potential polymorphs, hydrogen bonding arrangements and molecular conformations, the theoretical predictions succeeded, for all three complexes, in finding the correct hydrogen bonding pattern. For two of the complexes, the calculations also reproduce the exact space group and side chain orientations in the best ranked predicted structure. This includes one complex for which the observed crystal packing clearly contradicted previous experience based on experimental data for a substantial number of related amino acid complexes. The results highlight the significant recent advances that have been made in computational methods for crystal structure prediction.

  20. A Unified Theory for the Blue- and Red-Shifting Phenomena in Hydrogen and Halogen Bonds.

    PubMed

    Wang, Changwei; Danovich, David; Shaik, Sason; Mo, Yirong

    2017-04-11

    Typical hydrogen and halogen bonds exhibit red-shifts of their vibrational frequencies upon the formation of hydrogen and halogen bonding complexes (denoted as D···Y-A, Y = H and X). The finding of blue-shifts in certain complexes is of significant interest, which has led to numerous studies of the origins of the phenomenon. Because charge transfer mixing (i.e., hyperconjugation in bonding systems) has been regarded as one of the key forces, it would be illuminating to compare the structures and vibrational frequencies in bonding complexes with the charge transfer effect "turned on" and "turned off". Turning off the charge transfer mixing can be achieved by employing the block-localized wave function (BLW) method, which is an ab initio valence bond (VB) method. Further, with the BLW method, the overall stability gained in the formation of a complex can be analyzed in terms of a few physically meaningful terms. Thus, the BLW method provides a unified and physically lucid way to explore the nature of red- and blue-shifting phenomena in both hydrogen and halogen bonding complexes. In this study, a direct correlation between the total stability and the variation of the Y-A bond length is established based on our BLW computations, and the consistent roles of all energy components are clarified. The n(D) → σ*(Y-A) electron transfer stretches the Y-A bond, while the polarization due to the approach of interacting moieties reduces the HOMO-LUMO gap and results in a stronger orbital mixing within the YA monomer. As a consequence, both the charge transfer and polarization stabilize bonding systems with the Y-A bond stretched and red-shift the vibrational frequency of the Y-A bond. Notably, the energy of the frozen wave function is the only energy component which prefers the shrinking of the Y-A bond and thus is responsible for the associated blue-shifting. The total variations of the Y-A bond length and the corresponding stretching vibrational frequency are thus determined by the competition between the frozen-energy term and the sum of polarization and charge transfer energy terms. Because the frozen energy is composed of electrostatic and Pauli exchange interactions and frequency shifting is a long-range phenomenon, we conclude that long-range electrostatic interaction is the driving force behind the frozen energy term.

  1. Proton transfer in a short hydrogen bond caused by solvation shell fluctuations: an ab initio MD and NMR/UV study of an (OHO)(-) bonded system.

    PubMed

    Pylaeva, Svetlana; Allolio, Christoph; Koeppe, Benjamin; Denisov, Gleb S; Limbach, Hans-Heinrich; Sebastiani, Daniel; Tolstoy, Peter M

    2015-02-14

    We present a joint experimental and quantum chemical study on the influence of solvent dynamics on the protonation equilibrium in a strongly hydrogen bonded phenol-acetate complex in CD2Cl2. Particular attention is given to the correlation of the proton position distribution with the internal conformation of the complex itself and with fluctuations of the aprotic solvent. Specifically, we have focused on a complex formed by 4-nitrophenol and tetraalkylammonium-acetate in CD2Cl2. Experimentally we have used combined low-temperature (1)H and (13)C NMR and UV-vis spectroscopy and showed that a very strong OHO hydrogen bond is formed with proton tautomerism (PhOH···(-)OAc and PhO(-)···HOAc forms, both strongly hydrogen bonded). Computationally, we have employed ab initio molecular dynamics (70 and 71 solvent molecules, with and without the presence of a counter-cation, respectively). We demonstrate that the relative motion of the counter-cation and the "free" carbonyl group of the acid plays the major role in the OHO bond geometry and causes proton "jumps", i.e. interconversion of PhOH···(-)OAc and PhO(-)···HOAc tautomers. Weak H-bonds between CH(CD) groups of the solvent and the oxygen atom of carbonyl stabilize the PhOH···(-)OAc type of structures. Breaking of CH···O bonds shifts the equilibrium towards PhO(-)···HOAc form.

  2. Microsolvation effect and hydrogen-bonding pattern of taurine-water TA-(H2O)n (n = 1-3) complexes.

    PubMed

    Dai, Yumei; Wang, Yuhua; Huang, Zhengguo; Wang, Hongke; Yu, Lei

    2012-01-01

    The microsolvation of taurine (TA) with one, two or three water molecules was investigated by a density functional theory (DFT) approach. Quantum theory of atoms in molecules (QTAIM) analyses were employed to elucidate the hydrogen bond (H-bond) interaction characteristics in TA-(H(2)O)(n) (n = 1-3) complexes. The results showed that the intramolecular H-bond formed between the hydroxyl and the N atom of TA are retained in most TA-(H(2)O)(n) (n = 1-3) complexes, and are strengthened via cooperative effects among multiple H-bonds from n = 1-3. A trend of proton transformation exists from the hydroxyl to the N atom, which finally results in the cleavage of the origin intramolecular H-bond and the formation of a new intramolecular H-bond between the amino and the O atom of TA. Therefore, the most stable TA-(H(2)O)(3) complex becomes a zwitterionic complex rather than a neutral type. A many-body interaction analysis showed that the major contributors to the binding energies for complexes are the two-body energies, while three-body energies and relaxation energies make significant contributions to the binding energies for some complexes, whereas the four-body energies are too small to be significant.

  3. Phosphine-substrate recognition through the C-H...O hydrogen bond: application to the asymmetric Pauson-Khand reaction.

    PubMed

    Solà, Jordi; Riera, Antoni; Verdaguer, Xavier; Maestro, Miguel A

    2005-10-05

    A unique methine moiety attached to three heteroatoms (O, P, S) and contained in the PuPHOS and CamPHOS ligands serves as a strong hydrogen-bond donor. Nonclassical hydrogen bonding of this methine with an amido-carbonyl acceptor provides a completely diastereoselective ligand exchange process between an alkyne dicobalthexacarbonyl complex and a phosphine ligand. This weak contact has been studied by means of X-ray analysis, 1H NMR, and quantum mechanical calculations and revealed that the present interaction falls in the range of strong C-H...O=C bonds. The hydrogen-bond bias obtained in the ligand exchange process has been exploited in the asymmetric intermolecular Pauson-Khand reaction to yield the corresponding cyclization adducts in up to 94% ee.

  4. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site.

    PubMed

    Wang, Lu; Fried, Stephen D; Boxer, Steven G; Markland, Thomas E

    2014-12-30

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds.

  5. Quantum delocalization of protons in the hydrogen-bond network of an enzyme active site

    PubMed Central

    Wang, Lu; Fried, Stephen D.; Boxer, Steven G.; Markland, Thomas E.

    2014-01-01

    Enzymes use protein architectures to create highly specialized structural motifs that can greatly enhance the rates of complex chemical transformations. Here, we use experiments, combined with ab initio simulations that exactly include nuclear quantum effects, to show that a triad of strongly hydrogen-bonded tyrosine residues within the active site of the enzyme ketosteroid isomerase (KSI) facilitates quantum proton delocalization. This delocalization dramatically stabilizes the deprotonation of an active-site tyrosine residue, resulting in a very large isotope effect on its acidity. When an intermediate analog is docked, it is incorporated into the hydrogen-bond network, giving rise to extended quantum proton delocalization in the active site. These results shed light on the role of nuclear quantum effects in the hydrogen-bond network that stabilizes the reactive intermediate of KSI, and the behavior of protons in biological systems containing strong hydrogen bonds. PMID:25503367

  6. Hydrogen-bonded structures from adamantane-based catechols

    NASA Astrophysics Data System (ADS)

    Kawahata, Masatoshi; Matsuura, Miku; Tominaga, Masahide; Katagiri, Kosuke; Yamaguchi, Kentaro

    2018-07-01

    Adamantane-based bis- and tris-catechols were synthesized to examine the effect of hydrogen bonds on the arrangement and packing of the components in the crystalline state. Single-crystal X-ray crystallographic analysis revealed that hydrogen bonds formed by the hydroxyl groups of catechol groups play essential roles in the production of various types of unique structures. 1,3-Bis(3,4-dihydroxyphenyl)adamantane (1) provided hydrogen-bonded network structures composed of helical chains in crystal from chloroform/methanol, and layer structures in crystal from ethyl acetate/hexane. The complexation of 1 with 1,3,5-trinitrobenzene or 1,2,4,5-tetracyanobenzene resulted in the formation of co-crystals, respectively. One-dimensional hydrogen-bonded structures were constructed from the adamantane-based molecules, which participated in charge-transfer interactions with guests. 1,3,5-Tris(3,4-dihydroxyphenyl)adamantane also afforded crystal, and the components were assembled into infinite polymers.

  7. Enhanced hydrogenation activity and diastereomeric interactions of methyl pyruvate co-adsorbed with R-1-(1-naphthyl)ethylamine on Pd(111)

    DOE PAGES

    Mahapatra, Mausumi; Burkholder, Luke; Garvey, Michael; ...

    2016-08-04

    Unmodified racemic sites on heterogeneous chiral catalysts reduce their overall enantioselectivity, but this effect is mitigated in the Orito reaction (methyl pyruvate (MP) hydrogenation to methyl lactate) by an increased hydrogenation reactivity. Here, this effect is explored on a R-1-(1-naphthyl)ethylamine (NEA)-modified Pd(111) model catalyst where temperature-programmed desorption experiments reveal that NEA accelerates the rates of both MP hydrogenation and H/D exchange. NEAþMP docking complexes are imaged using scanning tunneling microscopy supplemented by density functional theory calculations to allow the most stable docking complexes to be identified. The results show that diastereomeric interactions between NEA and MP occur predominantly by bindingmore » of the C=C of the enol tautomer of MP to the surface, while simultaneously optimizing C=O...H 2N hydrogen-bonding interactions. In conclusion, the combination of chiral-NEA driven diastereomeric docking with a tautomeric preference enhances the hydrogenation activity since C=C bonds hydrogenate more easily than C=O bonds thus providing a rationale for the catalytic observations.« less

  8. A two-dimensional hydrogen-bonded water layer in the structure of a cobalt(III) cubane complex.

    PubMed

    Qi, Ji; Zhai, Xiang-Sheng; Zhu, Hong-Lin; Lin, Jian-Li

    2014-02-01

    A tetranuclear Co(III) oxide complex with cubane topology, tetrakis(2,2'-bipyridine-κ(2)N,N')di-μ2-carbonato-κ(4)O:O'-tetra-μ3-oxido-tetracobalt(III) pentadecahydrate, [Co4(CO3)2O4(C10H8N2)4]·15H2O, with an unbounded hydrogen-bonded water layer, has been synthesized by reaction of CoCO3 and 2,2'-bipyridine. The solvent water molecules form a hydrogen-bonded net with tetrameric and pentameric water clusters as subunits. The Co4O4 cubane-like cores are sandwiched between the water layers, which are further stacked into a three-dimensional metallo-supramolecular network.

  9. Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy

    NASA Astrophysics Data System (ADS)

    Semenov, M. A.; Blyzniuk, Iu. N.; Bolbukh, T. V.; Shestopalova, A. V.; Evstigneev, M. P.; Maleev, V. Ya.

    2012-09-01

    By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (Cdbnd O and NH2) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment.

  10. Electron detachment of the hydrogen-bonded amino acid side-chain guanine complexes

    NASA Astrophysics Data System (ADS)

    Wang, Jing; Gu, Jiande; Leszczynski, Jerzy

    2007-07-01

    The photoelectron spectra of the hydrogen-bonded amino acid side-chain-guanine complexes has been studied at the partial third order (P3) self-energy approximation of the electron propagator theory. The correlation between the vertical electron detachment energy and the charge distributions on the guanine moiety reveals that the vertical electron detachment energy (VDE) increases as the positive charge distribution on the guanine increases. The low VDE values determined for the negatively charged complexes of the guanine-side-chain-group of Asp/Glu suggest that the influence of the H-bonded anionic groups on the VDE of guanine could be more important than that of the anionic backbone structure. The even lower vertical electron detachment energy for guanine is thus can be expected in the H-bonded protein-DNA systems.

  11. Dye Aggregation and Complex Formation Effects in 7-(Diethylamino)-coumarin-3-carboxylic Acid

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Xiaogang; Cole, Jacqueline M.; Chow, Philip C. Y.

    2014-06-19

    7-(Diethylamino)-coumarin-3-carboxylic acid (1) has been used as a laser dye, fluorescent label, and biomedical inhibitor in many different applications. Although this dye is typically used in the solution phase, it is prone to molecular aggregation, resulting in many inconsistent optoelectronic properties being reported in the literature. In this paper, the UV—vis absorption and fluorescence spectra of 1 are investigated in three representative solvents: cyclohexane [nonpolar and non-hydrogen bonding (NHB)], ethanol (moderately polar and hydrogen-bond accepting/donating), and DMSO (strongly polar and hydrogen-bond accepting). These experimental results, in conjunction with (time-dependent) density functional theory (DFT/TDDFT) based quantum calculations, have led to themore » identification of the J-aggregates of 1, and rationalized its different aggregation characteristic in cyclohexane in contrast to that of another similar compound, coumarin 343. We show here that these aggregates are largely responsible for the anomalous optoelectronic properties of this compound. In addition, DFT calculations and 1H NMR spectroscopy measurements suggest that the intramolecular hydrogen bond in 1 could be "opened up" in hydrogen-bond accepting solvents, affording significant molecular conformational changes and complex formation effects. The comprehensive understanding of the molecular aggregation and complex formation mechanisms of 1 acquired through this work forms a foundation for the knowledge-based molecular design of organic dyes with tailored aggregation tendencies or anti-aggregation characteristics to cater for different opapplications.« less

  12. A Infrared Absorption Study of Dopant-Hydrogen Complexes in Semiconductors

    NASA Astrophysics Data System (ADS)

    Kozuch, David Michael

    1992-01-01

    Hydrogen passivation of shallow electrical dopants in semiconductors has been investigated. In particular, the passivation of the shallow dopants tin, carbon, and silicon in gallium arsenide has been studied via Fourier transform infrared spectroscopy, thermal annealing, Hall effect, secondary ion mass spectroscopy, and uniaxial stress. The bond-stretching and bond-wagging vibrational modes of the rm Sn_{Ga} - H complex in GaAs have been identified at 1327.8 cm^{-1} and 967.7 cm ^{-1}, respectively. The presence of hydrogen in the defect pair is confirmed by the deuterium -shifted bond-stretching signal at 746.6 cm^ {-1}. Infrared and Hall data correlated the passivation of Sn_{rm Ga } donors with the formation of the rm Sn_{Ga} - H complexes. A series of isochronal anneals probed the thermal stability of the complex. Arguments supporting an antibonding configuration for the rm Sn_{Ga} - H complex are presented. Infrared measurements on highly carbon doped epi -layers reveal new absorption signals at 2643, 2651, and 2688 cm^{-1} in addition to the previously identified rm C_ {As} - H stretching vibration at 2636 cm^{-1}. These new signals are related to a family of carbon-hydrogen complexes: rm C_{x} - H. Deuterium -shifted counterparts for all these signals have been observed for the first time. Sources of hydrogen have been traced to the metalorganic precursors and carrier gas used during epi-layer growth. Hydrogen-containing annealing ambients were surprisingly effective for introducing hydrogen into the epi-layers. Several atomic arrangements for the new rm C_{x} - H complexes have been considered with the most likely candidate being a rm C_{As} - H complex perturbed by another C_{rm As} acceptor in a second nearest neighbor position. The first uniaxial stress measurements have been performed on the rm Si_{As} - H complex in GaAs. The stress-induced frequency shifts and the intensity ratios of the stress-split components of the 2094.45 cm^{-1} stretching frequency reveal that the complex has trigonal symmetry. Reorientation of the stress-aligned complexes occurred by thermally activated jumps of the hydrogen atom with an activation energy of E_{rm A} = 0.26 eV. The piezospectroscopic tensor of the rm Si_{As} - H complex has been determined. The similarities between the stress data for the rm Si_{As } - H complex and the well-studied B - H complex in silicon suggest a bond-centered configuration for the rm Si_{As} - H defect pair.

  13. PDBToSDF: Create ligand structure files from PDB file.

    PubMed

    Muppalaneni, Naresh Babu; Rao, Allam Appa

    2011-01-01

    Protein Data Bank (PDB) file contains atomic data for protein and ligand in protein-ligand complexes. Structure data file (SDF) contains data for atoms, bonds, connectivity and coordinates of molecule for ligands. We describe PDBToSDF as a tool to separate the ligand data from pdb file for the calculation of ligand properties like molecular weight, number of hydrogen bond acceptors, hydrogen bond receptors easily.

  14. The Effect of Vicinal Versus Geminal Substitution of Hydrogen by Chlorine: Microwave Spectra and Molecular Structures of the Complexes of 1-CHLORO-1-FLUOROETHYLENE and (E)-1-CHLORO-2-FLUOROETHYLENE with Hydrogen Fluoride

    NASA Astrophysics Data System (ADS)

    Leung, Helen O.; Marshall, Mark D.; Lee, Alex J.; Bozzi, Aaron T.; Cohen, Paul M.; Lam, Mable

    2010-06-01

    Previous work in our laboratory has demonstrated that increasing the degree of fluorine substitution in complexes of fluoroethylenes with protic acids results in a weaker primary hydrogen-bonding interaction. This has been interpreted as arising from a decrease in the nucleophilicity of the hydrogen bond-accepting fluorine atom as a consequence of the inductive, electron-withdrawing nature of the additional fluorine atoms. We have recently extended these studies to investigate the effects of substitution with the less electronegative, but more polarizable chlorine atom. Through analysis of their 6-21 GHz Fourier transform microwave spectra, molecular structures are obtained for the complexes of 1-chloro-1-fluoroethylene and the (E) isomer of 1-chloro-2-fluoroethylene with hydrogen fluoride. The structures are compared with each other and with their difluoroethylene counterparts.

  15. Comparison of Degrees of Potential-Energy-Surface Anharmonicity for Complexes and Clusters with Hydrogen Bonds

    NASA Astrophysics Data System (ADS)

    Kozlovskaya, E. N.; Doroshenko, I. Yu.; Pogorelov, V. E.; Vaskivskyi, Ye. V.; Pitsevich, G. A.

    2018-01-01

    Previously calculated multidimensional potential-energy surfaces of the MeOH monomer and dimer, water dimer, malonaldehyde, formic acid dimer, free pyridine-N-oxide/trichloroacetic acid complex, and protonated water dimer were analyzed. The corresponding harmonic potential-energy surfaces near the global minima were constructed for series of clusters and complexes with hydrogen bonds of different strengths based on the behavior of the calculated multidimensional potential-energy surfaces. This enabled the introduction of an obvious anharmonicity parameter for the calculated potential-energy surfaces. The anharmonicity parameter was analyzed as functions of the size of the analyzed area near the energy minimum, the number of points over which energies were compared, and the dimensionality of the solved vibrational problem. Anharmonicity parameters for potential-energy surfaces in complexes with strong, medium, and weak H-bonds were calculated under identical conditions. The obtained anharmonicity parameters were compared with the corresponding diagonal anharmonicity constants for stretching vibrations of the bridging protons and the lengths of the hydrogen bridges.

  16. A density functional theory study on the hydrogen bonding interactions between luteolin and ethanol.

    PubMed

    Zheng, Yan-Zhen; Xu, Jing; Liang, Qin; Chen, Da-Fu; Guo, Rui; Fu, Zhong-Min

    2017-08-01

    Ethanol is one of the most commonly used solvents to extract flavonoids from propolis. Hydrogen bonding interactions play an important role in the properties of liquid system. The main objective of the work is to study the hydrogen bonding interactions between flavonoid and ethanol. Luteolin is a very common flavonoid that has been found in different geographical and botanical propolis. In this work, it was selected as the representative flavonoid to do detailed research. The study was performed from a theoretical perspective using density functional theory (DFT) method. After careful optimization, there exist nine optimized geometries for the luteolin - CH 3 CH 2 OH complex. The binding distance of X - H···O, and the bond length, vibrational frequency, and electron density changes of X - H all indicate the formation of the hydrogen bond in the optimized geometries. In the optimized geometries, it is found that: (1) except for the H2', H5', and H6', CH 3 CH 2 OH has formed hydrogen bonds with all the hydrogen and oxygen atoms in luteolin. The hydrogen atoms in the hydroxyl groups of luteolin form the strongest hydrogen bonds with CH 3 CH 2 OH; (2) all of the hydrogen bonds are closed-shell interactions; (3) the strongest hydrogen bond is the O3' - H3'···O in structure A, while the weakest one is the C3 - H3···O in structure E; (4) the hydrogen bonds of O3' - H3'···O, O - H···O4, O - H···O3' and O - H···O7 are medium strength and covalent dominant in nature. While the other hydrogen bonds are weak strength and possess a dominant character of the electrostatic interactions in nature.

  17. Structural determinants of enzyme binding affinity: the E1 component of pyruvate dehydrogenase from Escherichia coli in complex with the inhibitor thiamin thiazolone diphosphate.

    PubMed

    Arjunan, Palaniappa; Chandrasekhar, Krishnamoorthy; Sax, Martin; Brunskill, Andrew; Nemeria, Natalia; Jordan, Frank; Furey, William

    2004-03-09

    Thiamin thiazolone diphosphate (ThTDP), a potent inhibitor of the E1 component from the Escherichia coli pyruvate dehydrogenase multienzyme complex (PDHc), binds to the enzyme with greater affinity than does the cofactor thiamin diphosphate (ThDP). To identify what determines this difference, the crystal structure of the apo PDHc E1 component complex with ThTDP and Mg(2+) has been determined at 2.1 A and compared to the known structure of the native holoenzyme, PDHc E1-ThDP-Mg(2+) complex. When ThTDP replaces ThDP, reorganization occurs in the protein structure in the vicinity of the active site involving positional and conformational changes in some amino acid residues, a change in the V coenzyme conformation, addition of new hydration sites, and elimination of others. These changes culminate in an increase in the number of hydrogen bonds to the protein, explaining the greater affinity of the apoenzyme for ThTDP. The observed hydrogen bonding pattern is not an invariant feature of ThDP-dependent enzymes but rather specific to this enzyme since the extra hydrogen bonds are made with nonconserved residues. Accordingly, these sequence-related hydrogen bonding differences likewise explain the wide variation in the affinities of different thiamin-dependent enzymes for ThTDP and ThDP. The sequence of each enzyme determines its ability to form hydrogen bonds to the inhibitor or cofactor. Mechanistic roles are suggested for the aforementioned reorganization and its reversal in PDHc E1 catalysis: to promote substrate binding and product release. This study also provides additional insight into the role of water in enzyme inhibition and catalysis.

  18. Role of halogen and hydrogen bonds for stabilization of antithyroid drugs with hypohalous acids (HOX, X = I, Br, and Cl) adducts

    NASA Astrophysics Data System (ADS)

    El-Sheshtawy, Hamdy S.; El-Mehasseb, Ibrahim

    2017-11-01

    The mechanism for the inhibition of thyroid hormones by the thioamide-like antithyroid drug is a key process in the thyroid gland function. Therefore, in this study theoretical investigation of the molecular interaction between two antithyroid drugs, namely methimazol (MMI) and thiazoline-2-thione (T2T), with the hypohalous acids (HOX, X = I, Br, and Cl), which act as heme-linked halogenated species to tyrosine residue was discussed. The calculations were performed by M06-2X and MP2 using aug-cc-pVDZ level of theory. In addition, wB97xd/6-31G* level of theory was used in order to account for the dispersion forces. The results show the possible formation of three adducts, which is stabilized by halogen bond (I), both halogen and hydrogen bonds (II), two hydrogen bonds (III). The binding energies of the complexes reveals stabilization in the order III > II > I. The binding energies of the complexes was increased with increasing the electron affinity and polarizability of halogen atom, the dipole moment of the complexes (I and II), the electrostatic potential on halogen atom (Vmax:i.e σ-hole), and the charge-transfer process through the halogen bond in I. On the other hand, the binding energies of the complexes decreased with increasing the halogen atom electronegativity and the dipole moment of complex III. Natural bond orbital (NBO) analysis was used to investigate the molecular orbital interactions and the charge transfer process upon complexation.

  19. Structure and stability of complexes of agmatine with some functional receptor residues of proteins

    NASA Astrophysics Data System (ADS)

    Remko, Milan; Broer, Ria; Remková, Anna; Van Duijnen, Piet Th.

    2017-04-01

    The paper reports the results of a theoretical study of the conformational behavior and basicity of biogenic amine agmatine. The complexes modelling of agmatine - protein interaction are also under scrutiny of our investigation using the Becke3LYP and B97D levels of the density functional theory. The relative stabilities (Gibbs energies) of individual complexes are by both DFT methods described equally. Hydration has a dramatic effect on the hydrogen bonded complexes studied. The pairing acidic carboxylate group with different agmatine species resulted in charged hydrogen bond complexes containing negatively charged acetate species acting as proton acceptors.

  20. Carbon-tuned bonding method significantly enhanced the hydrogen storage of BN-Li complexes.

    PubMed

    Deng, Qing-ming; Zhao, Lina; Luo, You-hua; Zhang, Meng; Zhao, Li-xia; Zhao, Yuliang

    2011-11-01

    Through first-principles calculations, we found doping carbon atoms onto BN monolayers (BNC) could significantly strengthen the Li bond on this material. Unlike the weak bond strength between Li atoms and the pristine BN layer, it is observed that Li atoms are strongly hybridized and donate their electrons to the doped substrate, which is responsible for the enhanced binding energy. Li adsorbed on the BNC layer can serve as a high-capacity hydrogen storage medium, without forming clusters, which can be recycled at room temperature. Eight polarized H(2) molecules are attached to two Li atoms with an optimal binding energy of 0.16-0.28 eV/H(2), which results from the electrostatic interaction of the polarized charge of hydrogen molecules with the electric field induced by positive Li atoms. This practical carbon-tuned BN-Li complex can work as a very high-capacity hydrogen storage medium with a gravimetric density of hydrogen of 12.2 wt%, which is much higher than the gravimetric goal of 5.5 wt % hydrogen set by the U.S. Department of Energy for 2015.

  1. Acetonitrile-water hydrogen-bonded interaction: Matrix-isolation infrared and ab initio computation

    NASA Astrophysics Data System (ADS)

    Gopi, R.; Ramanathan, N.; Sundararajan, K.

    2015-08-01

    The 1:1 hydrogen-bonded complex of acetonitrile (CH3CN) and water (H2O) was trapped in Ar and N2 matrices and studied using infrared technique. Ab initio computations showed two types of complexes formed between CH3CN and H2O, a linear complex A with a Ctbnd N⋯H interaction between nitrogen of CH3CN and hydrogen of H2O and a cyclic complex B, in which the interactions are between the hydrogen of CH3CN with oxygen of H2O and hydrogen of H2O with π cloud of sbnd Ctbnd N of CH3CN. Vibrational wavenumber calculations revealed that both the complexes A and B were minima on the potential energy surface. Interaction energies computed at B3LYP/6-311++G(d,p) showed that linear complex A is more stable than cyclic complex B. Computations identified a blue shift of ∼11.5 cm-1 and a red shift of ∼6.5 cm-1 in the CN stretching mode for the complexes A and B, respectively. Experimentally, we observed a blue shift of ∼15.0 and ∼8.3 cm-1 in N2 and Ar matrices, respectively, in the CN stretching mode of CH3CN, which supports the formation of complex A. The Onsager Self Consistent Reaction Field (SCRF) model was used to explain the influence of matrices on the complexes A and B. To understand the nature of the interactions, Atoms in Molecules (AIM) and Natural Bond Orbital (NBO) analyses were carried out for the complexes A and B.

  2. Formation of molecular complexes of salicylic acid, acetylsalicylic acid, and methyl salicylate in a mixture of supercritical carbon dioxide with a polar cosolvent

    NASA Astrophysics Data System (ADS)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.

    2015-08-01

    The solvate structures formed by salicylic acid, acetylsalicylic acid, and methyl salicylate in supercritical (SC) carbon dioxide with a polar cosolvent (methanol, 0.03 mole fractions) at a density of 0.7 g/cm3 and a temperature of 318 K were studied by the molecular dynamics method. Salicylic and acetylsalicylic acids were found to form highly stable hydrogen-bonded complexes with methanol via the hydrogen atom of the carboxyl group. For methyl salicylate in which the carboxyl hydrogen is substituted by a methyl radical, the formation of stable hydrogen bonds with methanol was not revealed. The contribution of other functional groups of the solute to the interactions with the cosolvent was much smaller. An analysis of correlations between the obtained data and the literature data on the cosolvent effect on the solubility of the compounds in SC CO2 showed that the dissolving ability of SC CO2 with respect to a polar organic substance in the presence of a cosolvent increased only when stable hydrogen-bonded complexes are formed between this substance and the cosolvent.

  3. Theoretical study of photoacidity of HCN: the effect of complexation with water.

    PubMed

    Muchová, Eva; Spirko, Vladimir; Hobza, Pavel; Nachtigallová, Dana

    2006-11-14

    The character of the hydrogen bonding and the excited state proton transfer (ESPT) in the model system HCN...H(2)O is investigated. The PES of the two lowest excited states of the H(2)O...HCN complex was calculated using the CASPT2 method. The nonadiabatic coupling of the two states of the (pi-->pi*) and (pi-->sigma*) character is responsible for the excited state proton/hydrogen transfer. Compared to the ground state, the barrier for this process is significantly smaller. An increased number of water molecules in the complex with cyclic hydrogen-bonded network causes a large blue shift of the state of the (pi-->sigma*) character. The question of the dissociation of the complex in its excited state is also addressed.

  4. Intermolecular hydrogen bonds in hetero-complexes of biologically active aromatic molecules probed by the methods of vibrational spectroscopy.

    PubMed

    Semenov, M A; Blyzniuk, Iu N; Bolbukh, T V; Shestopalova, A V; Evstigneev, M P; Maleev, V Ya

    2012-09-01

    By the methods of vibrational spectroscopy (Infrared and Raman) the investigation of the hetero-association of biologically active aromatic compounds: flavin-mononucleotide (FMN), ethidium bromide (EB) and proflavine (PRF) was performed in aqueous solutions. It was shown that between the functional groups (CO and NH(2)) the intermolecular hydrogen bonds are formed in the hetero-complexes FMN-EB and FMN-PRF, additionally stabilizing these structures. An estimation of the enthalpy of Н-bonding obtained from experimental shifts of carbonyl vibrational frequencies has shown that the H-bonds do not dominate in the magnitude of experimentally measured total enthalpy of the hetero-association reactions. The main stabilization is likely due to intermolecular interactions of the molecules in these complexes and their interaction with water environment. Copyright © 2012 Elsevier B.V. All rights reserved.

  5. Nature and potency interactions of the hydrogen bond through the NBO analysis for charge transfer complex between 2-amino-4-hydroxy-6-methylpyrimidine and 2,3-pyrazinedicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Faizan, Mohd; Afroz, Ziya; Alam, Mohammad Jane; Bhat, Sheeraz Ahmad; Ahmad, Shabbir; Ahmad, Afaq

    2018-05-01

    The intermolecular interactions in complex formation between 2-amino-4-hydroxy-6-methylpyrimidine (AHMP) and 2,3-pyrazinedicarboxylicacid (PDCA) have been explored using density functional theory calculations. The isolated 1:1 molecular geometry of proton transfer (PT) complex between AHMP and PDCA has been optimized on a counterpoise corrected potential energy surface (PES) at DFT-B3LYP/6-31G(d,p) level of theory in the gaseous phase. Further, the formation of hydrogen bonded charge transfer (HBCT) complex between PDCA and AHMP has been also discussed. PT energy barrier between two extremes is calculated using potential energy surface (PES) scan by varying bond length. The intermolecular interactions have been analyzed from theoretical perspective of natural bond orbital (NBO) analysis. In addition, the interaction energy between molecular fragments involved in the complex formation has been also computed by counterpoise procedure at same level of theory.

  6. Conformation-Specific Spectroscopy of a Prototypical γ-PEPTIDE-WATER Complex: Ac-γ2-hPhe-NHMe-(H2O)1

    NASA Astrophysics Data System (ADS)

    Buchanan, Evan G.; James, William H., III; Zwier, Timothy S.; Guo, Li; Gellman, Samuel H.

    2010-06-01

    The prototypical γ-peptide, Ac-γ2-hPhe-NHMe, has been previously studied in a supersonic jet expansion, with three different conformers observed. Two of the monomers form nine atom, intramolecular hydrogen bonded rings, which differ by the position of the aromatic chromophore relative to the backbone. The third monomer conformer has no intramolecular H-bonds, but forms instead an intramolecular, amide-amide stacked structure unique to the γ-peptide backbone. This talk focuses attention on the conformation-specific IR spectra of the Ac-γ2-hPhe-NHMe-(H2O)1 complex, which is observed to form six unique conformational isomers, all of which preserve the two distinct monomer structural motifs. Three conformers are assigned to the nine atom intramolecular hydrogen bond family with the water hydrogen bonded to it as donor in different locations. The other three belong to the amide-amide stacking family with the water forming a bridge between the two amide planes. Infrared photodissocation of the water molecule from the complex to form γ-peptide monomer conformations will also be discussed.

  7. Organic salts formed by 2,4,6-triaminopyrimidine and selected carboxylic acids via a variety of hydrogen bonds: Synthons cooperation, and crystal structures

    NASA Astrophysics Data System (ADS)

    Xing, Peiqi; Li, Qingyun; Li, Yingying; Wang, Kunpeng; Zhang, Qi; Wang, Lei

    2017-05-01

    By using solvent evaporation method, 2,4,6-triaminopyrimidine (TAPI) is employed to crystallize with a variety of acids, including 3,5-dihydroxybenzoic acid (HDHBA), 3-nitrophthalic acid (H2NPA), 5-amino-2,4,6-triiodoisophthalic acid (H2ATIPIA), 2,5-dibromoterephthalic acid (H2DBTPA), 1,5-naphthalenedisulfonic acid (H2NDSA), sebacic acid (H2SA), 1,2,4-benzenetricarboxylic acid (H3BTA), and biphenyl-2,2‧,5,5'-tetracarboxylic acid (H4BPTA). In all eight complexes, protons are completely exchanged from O atom of acid to nitrogen of TAPI in 1, 3, 4, and, 5, partly transferred in 2, 6, 7, and 8. The crystal structure of all eight complexes exhibit that classical robust hydrogen bonds X-H⋯X (X = O/N) direct the molecular crystals to bind together in a stacking modes. Classical hydrogen bond Nsbnd H⋯O is participated in forming all eight organic salts, while hydrogen bonding Osbnd H⋯O are found in constructing the diversity structures in salts 1, 2, 3, 4, 6, and 7. The analysis shows that some classical supramolecular synthons, such as I R22(8), V R24(12), and VI S(6), are observed again in the construction of hydrogen-bonding networks. In the formation of layered and reticular structure, strong hydrogen bonds between water molecules and ligands having well-refined hydrogen atoms have been considered. Water molecules play an important role in building supramolecular structures of 1, 2, 3, 4, 7, and 8. Moreover, salts 1-8 are further characterized and analyzed by element analysis, infrared radiation, thermogravimetric analysis, proton nuclear magnetic resonance spectra, and mass spectra.

  8. The structures of the horseradish peroxidase C-ferulic acid complex and the ternary complex with cyanide suggest how peroxidases oxidize small phenolic substrates.

    PubMed

    Henriksen, A; Smith, A T; Gajhede, M

    1999-12-03

    We have solved the x-ray structures of the binary horseradish peroxidase C-ferulic acid complex and the ternary horseradish peroxidase C-cyanide-ferulic acid complex to 2.0 and 1.45 A, respectively. Ferulic acid is a naturally occurring phenolic compound found in the plant cell wall and is an in vivo substrate for plant peroxidases. The x-ray structures demonstrate the flexibility and dynamic character of the aromatic donor binding site in horseradish peroxidase and emphasize the role of the distal arginine (Arg(38)) in both substrate oxidation and ligand binding. Arg(38) hydrogen bonds to bound cyanide, thereby contributing to the stabilization of the horseradish peroxidase-cyanide complex and suggesting that the distal arginine will be able to contribute with a similar interaction during stabilization of a bound peroxy transition state and subsequent O-O bond cleavage. The catalytic arginine is additionally engaged in an extensive hydrogen bonding network, which also includes the catalytic distal histidine, a water molecule and Pro(139), a proline residue conserved within the plant peroxidase superfamily. Based on the observed hydrogen bonding network and previous spectroscopic and kinetic work, a general mechanism of peroxidase substrate oxidation is proposed.

  9. Intermolecular interaction in nucleobases and dimethyl sulfoxide/water molecules: A DFT, NBO, AIM and NCI analysis.

    PubMed

    Venkataramanan, Natarajan Sathiyamoorthy; Suvitha, Ambigapathy; Kawazoe, Yoshiyuki

    2017-11-01

    This study aims to cast light on the physico-chemical nature and energetics of interactions between the nucleobases and water/DMSO molecules which occurs through the non-conventional CH⋯O/N-H bonds using a comprehensive quantum-chemical approach. The computed interaction energies do not show any appreciable change for all the nucleobase-solvent complexes, conforming the experimental findings on the hydration enthalpies. Compared to water, DMSO form complexes with high interaction energies. The quantitative molecular electrostatic potentials display a charge transfer during the complexation. NBO analysis shows the nucleobase-DMSO complexes, have higher stabilization energy values than the nucleobase-water complexes. AIM analysis illustrates that the in the nucleobase-DMSO complexes, SO⋯H-N type interaction have strongest hydrogen bond strength with high E HB values. Furthermore, the Laplacian of electron density and total electron density were negative indicating the partial covalent nature of bonding in these systems, while the other bonds are classified as noncovalent interactions. EDA analysis indicates, the electrostatic interaction is more pronounced in the case of nucleobase-water complexes, while the dispersion contribution is more dominant in nucleobase-DMSO complexes. NCI-RDG analysis proves the existence of strong hydrogen bonding in nucleobase-DMSO complex, which supports the AIM results. Copyright © 2017 Elsevier Inc. All rights reserved.

  10. Multiple Hydrogen Bond Tethers for Grazing Formic Acid in Its Complexes with Phenylacetylene.

    PubMed

    Karir, Ginny; Kumar, Gaurav; Kar, Bishnu Prasad; Viswanathan, K S

    2018-03-01

    Complexes of phenylacetylene (PhAc) and formic acid (FA) present an interesting picture, where the two submolecules are tethered, sometimes multiply, by hydrogen bonds. The multiple tentacles adopted by PhAc-FA complexes stem from the fact that both submolecules can, in the same complex, serve as proton acceptors and/or proton donors. The acetylenic and phenyl π systems of PhAc can serve as proton acceptors, while the ≡C-H or -C-H of the phenyl ring can act as a proton donor. Likewise, FA also is amphiprotic. Hence, more than 10 hydrogen-bonded structures, involving O-H···π, C-H···π, and C-H···O contacts, were indicated by our computations, some with multiple tentacles. Interestingly, despite the multiple contacts in the complexes, the barrier between some of the structures is small, and hence, FA grazes around PhAc, even while being tethered to it, with hydrogen bonds. We used matrix isolation infrared spectroscopy to experimentally study the PhAc-FA complexes, with which we located global and a few local minima, involving primarily an O-H···π interaction. Experiments were corroborated by ab initio computations, which were performed using MP2 and M06-2X methods, with 6-311++G (d,p) and aug-cc-pVDZ basis sets. Single-point energy calculations were also done at MP2/CBS and CCSD(T)/CBS levels. The nature, strength, and origin of these noncovalent interactions were studied using AIM, NBO, and LMO-EDA analysis.

  11. Solid-state supramolecular architectures formed by co-crystallization of melamine and 2-, 3- and 4-fluorophenylacetic acids

    NASA Astrophysics Data System (ADS)

    Perpétuo, Genivaldo Julio; Janczak, Jan

    2018-01-01

    A family of supramolecular complexes of melamine with fluorophenylacetic acid isomers using solvent-assisted and evaporation-based techniques has been prepared. Crystallization of melamine with 2-fluorophenylacetic acid yield hydrated ionic supramolecular complex (1), whereas crystallization of melamine with 3- and 4-fluorophenylacetic acids leads to formation of neutral supramolecular complexes (2, 3), all with base to acid ratio of 1:2. The supramolecular assembly is driven by the noncovalent interactions, most commonly by the hydrogen bonds. The components of the crystal 1 interact via Nsbnd H⋯O and Osbnd H⋯N hydrogen bonds with R22(8) and R32(10) graphs forming ionic supramolecular complex, whereas the components in the crystals 2 and 3 interact with a graph of R22(8) forming neutral supramolecular complexes. The singly protonated melamin-1-ium residues in 1 interact each other via a pair of Nsbnd H⋯N hydrogen bonds forming one dimensional chains along [-110] that interact via Nsbnd H⋯O with deprotonated and neutral 2-fluorophenylacetic acid units and water molecules forming ribbon. In 2 and 3 co-crystals the melamine interacts with 3- and 4-fluorophenylacetic acids via a pair of Nsbnd H⋯O hydrogen bonds forming pseudo one-dimensional supramolecular chains along [010] direction. Hirshfeld surface and analysis of 2D fingerprint plots have been analysed both quantitatively and qualitatively interactions that governing the supramolecular organisation. The IR and Raman vibrational characterization of the supramolecular complexes 1-3 was supported by the spectra of their deuterated analogues.

  12. Toward prediction of alkane/water partition coefficients.

    PubMed

    Toulmin, Anita; Wood, J Matthew; Kenny, Peter W

    2008-07-10

    Partition coefficients were measured for 47 compounds in the hexadecane/water ( P hxd) and 1-octanol/water ( P oct) systems. Some types of hydrogen bond acceptor presented by these compounds to the partitioning systems are not well represented in the literature of alkane/water partitioning. The difference, DeltalogP, between logP oct and logP hxd is a measure of the hydrogen bonding potential of a molecule and is identified as a target for predictive modeling. Minimized molecular electrostatic potential ( V min) was shown to be an effective predictor of the contribution of hydrogen bond acceptors to DeltalogP. Carbonyl oxygen atoms were found to be stronger hydrogen bond acceptors for their electrostatic potential than heteroaromatic nitrogen or oxygen bound to hypervalent sulfur or nitrogen. Values of V min calculated for hydrogen-bonded complexes were used to explore polarization effects. Predicted logP hxd and DeltalogP were shown to be more effective than logP oct for modeling brain penetration for a data set of 18 compounds.

  13. Formation of solvate structures by the ortho-, meta-, and para-isomers of hydroxybenzoic acid in supercritical fluid

    NASA Astrophysics Data System (ADS)

    Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.; Petrenko, V. E.

    2017-04-01

    The solvate structures formed by the ortho-, meta-, and para-isomers of hydroxybenzoic acid ( o-HBA, m-HBA, and p-HBA) with a polar co-solvent (methanol at a concentration of 0.030 and 0.035 mole fractions) in supercritical carbon dioxide at a constant density of 0.7 g/cm3 and temperatures of 318 and 328 K have been studied by the classic molecular dynamics. It has been determined that a stable hydrogen-bonded complex with the co-solvent forms via the hydrogen of the carboxyl group for all isomers. The probability of this complex existence is high at all temperatures and concentrations. In the o-HBA molecule, the other functional groups are engaged in the intramolecular hydrogen bond, but not involved in interactions with methanol. It has been found that m-HBA and p-HBA can be involved in hydrogen bonds with methanol via hydroxyl hydrogen and oxygen atoms; they are characterized by the presence of one more co-solvent molecule (rarely, two molecules) in their solvation shell and intermittent formations/breakages of hydrogen bonds via other functional groups. These bonds are far less stable, and their formation is sensitive to change of temperature and co-solvent concentration. It has been concluded that the degree of selective solvation of m-HBA and p-HBA by co-solvent molecules is approximately the same, but the rate of structural rearrangements in the nearest environment of m-HBA is higher than that of p-HBA.

  14. Photochemistry of formaldoxime−nitrous acid complexes in an argon matrix: identification of formaldoxime nitrite.

    PubMed

    Golec, Barbara; Bil, Andrzej; Mielke, Zofia

    2009-08-27

    We have studied the structure and photochemistry of the formaldoxime−nitrous acid system (CH2NOH−HONO) by help of FTIR matrix isolation spectroscopy and ab initio methods. The MP2/6-311++G(2d,2p) calculations show stability of six isomeric CH2NOH···HONO complexes. The FTIR spectra evidence formation of two hydrogen bonded complexes in an argon matrix whose structures are determined by comparison of the experimental spectra with the calculated ones for the six stable complexes. In the matrix there is present the most stable cyclic complex with two O−H···N bonds; a strong bond is formed between the OH group of HONO and the N atom of CH2NOH and the weaker one between the OH group of CH2NOH and the N atom of HONO. In the other complex present in the matrix the OH group of formaldoxime is attached to the OH group of HONO forming an O−H···O bond. The irradiation of the CH2NOH···HONO complexes with the filtered output of the mercury lamp (λ > 345 nm) leads to the formation of formaldoxime nitrite, CH2NONO, and its two isomeric complexes with water. The main product is the CH2NONO···H2O complex in which water is hydrogen bonded to the N atom of the C═N group. The identity of the photoproducts is confirmed by both FTIR spectroscopy and MP2 or QCISD(full) calculations with the 6-311++G(2d,2p) basis set. The intermediate in this reaction is iminoxyl radical that is formed by abstraction of hydrogen atom from formaldoxime OH group by an OH radical originating from HONO photolysis.

  15. TDDFT study of twisted intramolecular charge transfer and intermolecular double proton transfer in the excited state of 4‧-dimethylaminoflavonol in ethanol solvent

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Shi, Ying; Cong, Lin; Li, Hui

    2015-02-01

    Time-dependent density functional theory method at the def-TZVP/B3LYP level was employed to investigate the intramolecular and intermolecular hydrogen bonding dynamics in the first excited (S1) state of 4‧-dimethylaminoflavonol (DMAF) monomer and in ethanol solution. In the DMAF monomer, we demonstrated that the intramolecular charge transfer (ICT) takes place in the S1 state. This excited state ICT process was followed by intramolecular proton transfer. Our calculated results are in good agreement with the mechanism proposed in experimental work. For the hydrogen-bonded DMAF-EtOH complex, it was demonstrated that the intermolecular hydrogen bonds can induce the formation of the twisted intramolecular charge transfer (TICT) state and the conformational twisting is along the C3-C4 bond. Moreover, the intermolecular hydrogen bonds can also facilitate the intermolecular double proton transfer in the TICT state. A stepwise intermolecular double proton transfer process was revealed. Therefore, the intermolecular hydrogen bonds can alter the mechanism of intramolecular charge transfer and proton transfer in the excited state for the DMAF molecule.

  16. Ruthenium(II) Complexes Containing Lutidine-Derived Pincer CNC Ligands: Synthesis, Structure, and Catalytic Hydrogenation of C-N bonds.

    PubMed

    Hernández-Juárez, Martín; López-Serrano, Joaquín; Lara, Patricia; Morales-Cerón, Judith P; Vaquero, Mónica; Álvarez, Eleuterio; Salazar, Verónica; Suárez, Andrés

    2015-05-11

    A series of Ru complexes containing lutidine-derived pincer CNC ligands have been prepared by transmetalation with the corresponding silver-carbene derivatives. Characterization of these derivatives shows both mer and fac coordination of the CNC ligands depending on the wingtips of the N-heterocyclic carbene fragments. In the presence of tBuOK, the Ru-CNC complexes are active in the hydrogenation of a series of imines. In addition, these complexes catalyze the reversible hydrogenation of phenantridine. Detailed NMR spectroscopic studies have shown the capability of the CNC ligand to be deprotonated and get involved in ligand-assisted activation of dihydrogen. More interestingly, upon deprotonation, the Ru-CNC complex 5 e(BF4 ) is able to add aldimines to the metal-ligand framework to yield an amido complex. Finally, investigation of the mechanism of the hydrogenation of imines has been carried out by means of DFT calculations. The calculated mechanism involves outer-sphere stepwise hydrogen transfer to the C-N bond assisted either by the pincer ligand or a second coordinated H2 molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. How cellulose stretches: synergism between covalent and hydrogen bonding.

    PubMed

    Altaner, Clemens M; Thomas, Lynne H; Fernandes, Anwesha N; Jarvis, Michael C

    2014-03-10

    Cellulose is the most familiar and most abundant strong biopolymer, but the reasons for its outstanding mechanical performance are not well understood. Each glucose unit in a cellulose chain is joined to the next by a covalent C-O-C linkage flanked by two hydrogen bonds. This geometry suggests some form of cooperativity between covalent and hydrogen bonding. Using infrared spectroscopy and X-ray diffraction, we show that mechanical tension straightens out the zigzag conformation of the cellulose chain, with each glucose unit pivoting around a fulcrum at either end. Straightening the chain leads to a small increase in its length and is resisted by one of the flanking hydrogen bonds. This constitutes a simple form of molecular leverage with the covalent structure providing the fulcrum and gives the hydrogen bond an unexpectedly amplified effect on the tensile stiffness of the chain. The principle of molecular leverage can be directly applied to certain other carbohydrate polymers, including the animal polysaccharide chitin. Related but more complex effects are possible in some proteins and nucleic acids. The stiffening of cellulose by this mechanism is, however, in complete contrast to the way in which hydrogen bonding provides toughness combined with extensibility in protein materials like spider silk.

  18. Discrete and polymeric self-assembled dendrimers: Hydrogen bond-mediated assembly with high stability and high fidelity

    PubMed Central

    Corbin, Perry S.; Lawless, Laurence J.; Li, Zhanting; Ma, Yuguo; Witmer, Melissa J.; Zimmerman, Steven C.

    2002-01-01

    Hydrogen bond-mediated self-assembly is a powerful strategy for creating nanoscale structures. However, little is known about the fidelity of assembly processes that must occur when similar and potentially competing hydrogen-bonding motifs are present. Furthermore, there is a continuing need for new modules and strategies that can amplify the relatively weak strength of a hydrogen bond to give more stable assemblies. Herein we report quantitative complexation studies on a ureidodeazapterin-based module revealing an unprecedented stability for dimers of its self-complementary acceptoracceptor-donor-donor (AADD) array. Linking two such units together with a semirigid spacer that carries a first-, second-, or third-generation Fréchet-type dendron affords a ditopic structure programmed to self assemble. The specific structure that is formed depends both on the size of the dendron and the solvent, but all of the assemblies have exceptionally high stability. The largest discrete nanoscale assembly is a hexamer with a molecular mass of about 17.8 kDa. It is stabilized by 30 hydrogen bonds, including six AADD⋅DDAA contacts. The hexamer forms and is indefinitely stable in the presence of a hexamer containing six ADD⋅DAA hydrogen-bonding arrays. PMID:11917113

  19. Chemical activation of molecules by metals: Experimental studies of electron distributions and bonding

    NASA Astrophysics Data System (ADS)

    Lichtenberg, Dennis L.

    During this period some important breakthroughs were accomplished in understanding the relationships between molecular ionization energies and bond energies in transition metal complexes, in understanding the electronic factors of carbon-hydrogen bond activation by transition metals, in characterizing small molecule bonding interactions with transition metals, and in investigating intermolecular interactions in thin films of transition metal complexes. The formal relationship between measured molecular ionization energies and thermodynamic bond dissociation energies was developed into a single equation which unifies the treatment of covalent bonds, ionic bonds, and partially ionic bonds. The relationship was used to clarify the fundamental thermodynamic information relating to metal-hydrogen, metal-alkyl, and metal-metal bond energies. The ionization energies were also used to correlate the rates of carbonyl substitution reactions of (eta(sup 5)-C5H4X)Rh(CO)2 complexes, and to reveal the factors that control the stability of the transition state. The investigations of the fundamental interactions of C-H sigma and sigma* orbitals metals were continued with study of eta(sup 3)-1-methylallyl metal complexes. Direct observation and measurement of the stabilization energy provided by the agostic interaction of the C-H bond with the metal was obtained. The ability to observe the electronic effects of intermolecular interactions by comparing the ionizations of metal complexes in the gas phase with the ionizations of thin solid organometallic films prepared in ultra-high vacuum was established. Most significantly, the scanning tunneling microscope imaging of these thin films was accomplished.

  20. Selective Nitrate Recognition by a Halogen‐Bonding Four‐Station [3]Rotaxane Molecular Shuttle

    PubMed Central

    Barendt, Timothy A.; Docker, Andrew; Marques, Igor; Félix, Vítor

    2016-01-01

    Abstract The synthesis of the first halogen bonding [3]rotaxane host system containing a bis‐iodo triazolium‐bis‐naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo‐triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion–rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the 1H NMR anion binding results. PMID:27436297

  1. Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach

    NASA Astrophysics Data System (ADS)

    Drici, Nedjoua

    2018-03-01

    The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.

  2. Hydrogen bonding strength of diblock copolymers affects the self-assembled structures with octa-functionalized phenol POSS nanoparticles.

    PubMed

    Lu, Yi-Syuan; Yu, Chia-Yu; Lin, Yung-Chih; Kuo, Shiao-Wei

    2016-02-28

    In this study, the influence of the functional groups by the diblock copolymers of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP), poly(styrene-b-2-vinylpyridine) (PS-b-P2VP), and poly(styrene-b-methyl methacrylate) (PS-b-PMMA) on their blends with octa-functionalized phenol polyhedral oligomeric silsesquioxane (OP-POSS) nanoparticles (NPs) was investigated. The relative hydrogen bonding strengths in these blends follow the order PS-b-P4VP/OP-POSS > PS-b-P2VP/OP-POSS > PS-b-PMMA/OP-POSS based on the Kwei equation from differential scanning calorimetry (DSC) and Fourier transform infrared spectroscopic analyses. Small-angle X-ray scattering and transmission electron microscopic analyses show that the morphologies of the self-assembly structures are strongly dependent on the hydrogen bonding strength at relatively higher OP-POSS content. The PS-b-P4VP/OP-POSS hybrid complex system with the strongest hydrogen bonds shows the order-order transition from lamellae to cylinders and finally to body-centered cubic spheres upon increasing OP-POSS content. However, PS-b-P2VP/OP-POSS and PS-b-PMMA/OP-POSS hybrid complex systems, having relatively weaker hydrogen bonds, transformed from lamellae to cylinder structures at lower OP-POSS content (<50 wt%), but formed disordered structures at relatively high OP-POSS contents (>50 wt%).

  3. From flavoenzymes to devices: The role of electronic effects in recognition

    NASA Astrophysics Data System (ADS)

    Deans, Robert

    Acylated aminopyridines provide models for specific flavoenzyme-cofactor interactions, allowing isolation and observation of the effects of hydrogen bonding on flavin NMR. To determine the relative hydrogen bond affinities of O(2) and O(4) of the flavin, a 2-aminopyridine based receptor was investigated. Additionally, this receptor allowed the effects of hydrogen bonding at O(2) and O(4) on the electron distribution in the flavin nucleus to be determined using sp{13}C NMR. A new family of receptors for flavins based on 6-aryl-2,4-(acyldiamino)-s-triazines was synthesized. In these synthetic hosts, systematic variation of the spatially remote substituents on the 6-aryl ring altered the hydrogen bond donating abilities of the amide functionality and the hydrogen bond accepting properties of the triazine N(3). This variation resulted in a strong modulation of the efficiency of flavin binding, with association constants for the receptor flavin complexes ranging over an 8-fold range. In addition, the communication of electronic information over extended distances was also investigated. Polymers can provide relevant media for the modeling of biological processes, including molecular recognition. To explore this possibility, a diaminotriazine-functionalized polymer was synthesized, starting from Merrifield's peptide resin. This polymer selectively bound a flavin derivative through hydrogen bonding, efficiently extracting it from a chloroform solution, as monitored by UV-vis extraction studies. The temperature profile of this polymer-flavin binding was also investigated and compared to the analogous solution-phase triazine-flavin dyad. Hydrogen bonding and aromatic stacking are fundamental interactions in molecular recognition. These interactions are sensitive to the redox states of the components of the host-guest complex. To explore the interplay of recognition and redox processes, a system consisting of two hosts and one guest, where guest binding interactions (hydrogen bonding and aromatic stacking) were modulated via choice of redox state was examined. Proper choice of receptors then provided a device where the competition between the two hosts was controlled by the redox state of the guest. The efficient reversal of host preference in this assembly provided an electrochemically-controlled three-component, two-pole, molecular switch.

  4. Effect of Substituents in Alcohol-Amine Complexes

    NASA Astrophysics Data System (ADS)

    Hansen, Anne Schou; Du, Lin; Kjærgaard, Henrik

    2014-06-01

    A series of alcohol-amine complexes have been investigated to gain physical insight into the effect on the hydrogen bond strength as different substituents are attached. The series of complexes investigated are shown in the figure, where R_1 = CH_3, CH_3CH_2 or CF_3CH_2 and R_2 = H or CH_3. To estimate the hydrogen bond strength, redshifts of the OH-stretching transition frequency upon complexation were measured using gas phase Fourier Transform InfraRed (FTIR) spectroscopy. Equilibrium constants for the formation of the complexes were also determined, exploiting a combination of a calculated oscillator strength and the measured integrated absorbance of the fundamental OH-stretching and second overtone NH-stretching transitions.

  5. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin

    PubMed Central

    Ihara, Makoto; Okajima, Toshihide; Yamashita, Atsuko; Oda, Takuma; Hirata, Koichi; Nishiwaki, Hisashi; Morimoto, Takako; Akamatsu, Miki; Ashikawa, Yuji; Kuroda, Shun’ichi; Mega, Ryosuke; Kuramitsu, Seiki; Sattelle, David B.

    2008-01-01

    Neonicotinoid insecticides, which act on nicotinic acetylcholine receptors (nAChRs) in a variety of ways, have extremely low mammalian toxicity, yet the molecular basis of such actions is poorly understood. To elucidate the molecular basis for nAChR–neonicotinoid interactions, a surrogate protein, acetylcholine binding protein from Lymnaea stagnalis (Ls-AChBP) was crystallized in complex with neonicotinoid insecticides imidacloprid (IMI) or clothianidin (CTD). The crystal structures suggested that the guanidine moiety of IMI and CTD stacks with Tyr185, while the nitro group of IMI but not of CTD makes a hydrogen bond with Gln55. IMI showed higher binding affinity for Ls-AChBP than that of CTD, consistent with weaker CH–π interactions in the Ls-AChBP–CTD complex than in the Ls-AChBP–IMI complex and the lack of the nitro group-Gln55 hydrogen bond in CTD. Yet, the NH at position 1 of CTD makes a hydrogen bond with the backbone carbonyl of Trp143, offering an explanation for the diverse actions of neonicotinoids on nAChRs. PMID:18338186

  6. Investigation of charge-transfer hydrogen bonding interaction of 1-(2-pyridylazo)-2-naphthol (PAN) and 4-(2-Pyridylazo)resorcinol (PAR) with chloranilic acid through experimental and DFT studies

    NASA Astrophysics Data System (ADS)

    Karmakar, Animesh; Singh, Bula

    2018-07-01

    The H-bonding interaction of 1-(2-pyridylazo)-2-naphthol (PAN) and 4-(2-Pyridylazo) resorcinol (PAR) with chloranilic acid (CLA) have been considered spectroscopically in methanol solvent. PAN and PAR were used as a ligand and this two ligands has diverse application in spectrophotometric, chelatometric analysis of different metal ions. However, it is seen as of the literature analysis that no molecular complex of PAN and PAR with CLA was reported. The creation of charge-transfer H-bonded adduct gives a outlook to progress the physico-chemical scenery of the donor. So the complex of PAN and PAR with chloranilic acid was recounted in this work in methanol medium. Both the hydrogen-bonded molecular complexes have been prepared and identified using 1H NMR, FT-IR, and elemental analysis. Spectroscopic data point out that PAN and PAR discretely interact with CLA by a physically potent H-bonding interaction. The thermal constancy of the above molecular complexes has been determined by TGA-DTA analysis. The computational calculation also supported the development of the H-bonded charge-transfer adduct.

  7. Elucidation of metal-ion accumulation induced by hydrogen bonds on protein surfaces by using porous lysozyme crystals containing Rh(III) ions as the model surfaces.

    PubMed

    Ueno, Takafumi; Abe, Satoshi; Koshiyama, Tomomi; Ohki, Takahiro; Hikage, Tatsuo; Watanabe, Yoshihito

    2010-03-01

    Metal-ion accumulation on protein surfaces is a crucial step in the initiation of small-metal clusters and the formation of inorganic materials in nature. This event is expected to control the nucleation, growth, and position of the materials. There remain many unknowns, as to how proteins affect the initial process at the atomic level, although multistep assembly processes of the materials formation by both native and model systems have been clarified at the macroscopic level. Herein the cooperative effects of amino acids and hydrogen bonds promoting metal accumulation reactions are clarified by using porous hen egg white lysozyme (HEWL) crystals containing Rh(III) ions, as model protein surfaces for the reactions. The experimental results reveal noteworthy implications for initiation of metal accumulation, which involve highly cooperative dynamics of amino acids and hydrogen bonds: i) Disruption of hydrogen bonds can induce conformational changes of amino-acid residues to capture Rh(III) ions. ii) Water molecules pre-organized by hydrogen bonds can stabilize Rh(III) coordination as aqua ligands. iii) Water molecules participating in hydrogen bonds with amino-acid residues can be replaced by Rh(III) ions to form polynuclear structures with the residues. iv) Rh(III) aqua complexes are retained on amino-acid residues through stabilizing hydrogen bonds even at low pH (approximately 2). These metal-protein interactions including hydrogen bonds may promote native metal accumulation reactions and also may be useful in the preparation of new inorganic materials that incorporate proteins.

  8. The origins of femtomolar protein-ligand binding: hydrogen-bond cooperativity and desolvation energetics in the biotin-(strept)avidin binding site.

    PubMed

    DeChancie, Jason; Houk, K N

    2007-05-02

    The unusually strong reversible binding of biotin by avidin and streptavidin has been investigated by density functional and MP2 ab initio quantum mechanical methods. The solvation of biotin by water has also been studied through QM/MM/MC calculations. The ureido moiety of biotin in the bound state hydrogen bonds to five residues, three to the carbonyl oxygen and one for each--NH group. These five hydrogen bonds act cooperatively, leading to stabilization that is larger than the sum of individual hydrogen-bonding energies. The charged aspartate is the key residue that provides the driving force for cooperativity in the hydrogen-bonding network for both avidin and streptavidin by greatly polarizing the urea of biotin. If the residue is removed, the network is disrupted, and the attenuation of the energetic contributions from the neighboring residues results in significant reduction of cooperative interactions. Aspartate is directly hydrogen-bonded with biotin in streptavidin and is one residue removed in avidin. The hydrogen-bonding groups in streptavidin are computed to give larger cooperative hydrogen-bonding effects than avidin. However, the net gain in electrostatic binding energy is predicted to favor the avidin-bicyclic urea complex due to the relatively large penalty for desolvation of the streptavidin binding site (specifically expulsion of bound water molecules). QM/MM/MC calculations involving biotin and the ureido moiety in aqueous solution, featuring PDDG/PM3, show that water interactions with the bicyclic urea are much weaker than (strept)avidin interactions due to relatively low polarization of the urea group in water.

  9. Hydrogen bond assisted interaction of glutamine with chromium (III) complex of 8-hydroxyquinoline: Experimental and theoretical studies

    NASA Astrophysics Data System (ADS)

    Narayanan, Jayanthi; Carlos-Alberto, Aguilar H.; Arturo, Lazarini M.; Höpfl, Herbert; Enrique-Fernando, Velazquez C.; Fernando, Rocha A.; Fernando-Toyohiko, Wakida K.; Velazquez-Lopez, José E.; Lesli, Arroyo O.

    2018-03-01

    Chromium (III) complex [Cr (hq)3;C2H5OH] of 8-hydroxyquinoline (hq) was prepared and its structure was resolved by X-ray diffraction analysis at low-temperature, showing that Cr3+ ion presents in distorted octahedral geometry, and it is consistent with the DFT optimized structure. It was observed that solvent ethanol is involved a hydrogen bond with 8-hydroxyquinoline anion. Furthermore, the molecular orbital contributions to spectral bands observed for the complex were determined by TD-DFT. The interaction of [Cr (hq)3;C2H5OH] with glutamine (Gln) or asparagine (Asn) shows that the complex binds effectively with glutamine through hydrogen bonding (H2N+-HṡṡṡOethanol) to form a possible stable adduct [Cr (hq)3;C2H5OH)Gln], yielding its binding constant 10,000 times greater (1.4315 M-1) than that for Asn (5.0 × 10-4 M-1). This is apparently due to the formation of stable secondary coordination sphere through the hydrogen bond between the metal complex with Gln. This observation is good agreement with the total molecular energy as well as with the molecular orbital study, i.e. in the DFT calculation, a lower total molecular energy (-8299,549.441 kcal/mmol) for [Cr (hq)3;C2H5OH) Gln] was obtained than that resulted for [Cr (hq)3;C2H5OH)Asn] (-8194,799.867 kcal/mmol), establishing ethanol effectively stabilizes the interaction between glutamine and the complex. Finally, antibacterial properties of [Cr (hq)3;C2H5OH] against Gram positive Bacillus cereus and Gram negative Escherichia coli was also studied, and compared its bacterial growths for its adducts of glutamine or of asparagine.

  10. Potential mesogens based on pyridine derivatives: The geometric structure, conformational properties and characteristics of intermolecular hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Fedorov, Mikhail S.; Giricheva, Nina I.; Shpilevaya, Kseniya E.; Lapykina, Elena A.; Syrbu, Svetlana A.

    2017-03-01

    Conformational properties of the main part (excluding sbnd OC3H7 radicals) of the p-n-propyloxybenzoic (A1) and p-n-propyloxycinnamic (A2) acids molecules (relating to mesomorphic compounds) as well as p-n-propyloxybenzoic acid pyridine ester (B1) and p-n-propyloxyphenylazopyridine (B2) molecules (relating to non-mesomorphic compounds) were studied by DFT(B3LYP)/cc-pVTZ method. It was shown that the main parts of A1 and A2 acids are rigid. The barrier to internal rotation of pyridine fragment in the B1 and B2 molecules depends on the nature of the bridging group. It was determined that all studied A1⋯B1, A2⋯B1 and A2⋯B2 complexes are characterized by a strong hydrogen bond. The binding energy of complexes (≈14 kcal/mol, with BSSE corrections, DFT(B97D)/6-311++G**) exceeds the energy per hydrogen bond in the corresponding acid dimers (≈10 kcal/mol). The structural non-rigidity of A⋯B complexes is mainly caused by possibility of sbnd OC3H7 radicals internal rotation and A and B molecules rotation about the (H)O⋯N line. The characteristics of intermolecular hydrogen bonds were determined by NBO-analysis. The obtained results indicate that examined complexes correspond to the basic requirements to mesogen molecular forms. The thermodynamic functions of the gas-phase complexation reactions (idealized model of the complexes formation in the condensed state) were calculated. Preliminary studies of mesogen-non-mesogen A1⋯B2 system by differential scanning calorimetry and polarizing optical microscopy, showed that it has mesomorphic properties.

  11. Single-molecule force-conductance spectroscopy of hydrogen-bonded complexes

    NASA Astrophysics Data System (ADS)

    Pirrotta, Alessandro; De Vico, Luca; Solomon, Gemma C.; Franco, Ignacio

    2017-03-01

    The emerging ability to study physical properties at the single-molecule limit highlights the disparity between what is observable in an ensemble of molecules and the heterogeneous contributions of its constituent parts. A particularly convenient platform for single-molecule studies are molecular junctions where forces and voltages can be applied to individual molecules, giving access to a series of electromechanical observables that can form the basis of highly discriminating multidimensional single-molecule spectroscopies. Here, we computationally examine the ability of force and conductance to inform about molecular recognition events at the single-molecule limit. For this, we consider the force-conductance characteristics of a prototypical class of hydrogen bonded bimolecular complexes sandwiched between gold electrodes. The complexes consist of derivatives of a barbituric acid and a Hamilton receptor that can form up to six simultaneous hydrogen bonds. The simulations combine classical molecular dynamics of the mechanical deformation of the junction with non-equilibrium Green's function computations of the electronic transport. As shown, in these complexes hydrogen bonds mediate transport either by directly participating as a possible transport pathway or by stabilizing molecular conformations with enhanced conductance properties. Further, we observe that force-conductance correlations can be very sensitive to small changes in the chemical structure of the complexes and provide detailed information about the behavior of single molecules that cannot be gleaned from either measurement alone. In fact, there are regions during the elongation that are only mechanically active, others that are only conductance active, and regions where both force and conductance changes as the complex is mechanically manipulated. The implication is that force and conductance provide complementary information about the evolution of molecules in junctions that can be used to interrogate basic structure-transport relations at the single-molecule limit.

  12. Synthesis, spectral characterization and structural studies of a novel O, N, O donor semicarbazone and its binuclear copper complex with hydrogen bond stabilized lattice

    NASA Astrophysics Data System (ADS)

    Layana, S. R.; Saritha, S. R.; Anitha, L.; Sithambaresan, M.; Sudarsanakumar, M. R.; Suma, S.

    2018-04-01

    A novel O,N,O donor salicylaldehyde-N4-phenylsemicarbazone, (H2L) has been synthesized and physicochemically characterized. Detailed structural studies of H2L using single crystal X-ray diffraction technique reveals the existence of intra and inter molecular hydrogen bonding interactions, which provide extra stability to the molecule. We have successfully synthesized a binuclear copper(II) complex, [Cu2(HL)2(NO3)(H2O)2]NO3 with phenoxy bridging between the two copper centers. The complex was characterized by elemental analysis, magnetic susceptibility and conductivity measurements, FT-IR, UV-Visible, mass and EPR spectral methods. The grown crystals of the copper complex were employed for the single crystal X-ray diffraction studies. The complex possesses geometrically different metal centers, in which the ligand coordinates through ketoamide oxygen, azomethine nitrogen and deprotonated phenoxy oxygen. The extensive intermolecular hydrogen bonding interactions of the coordinated and the lattice nitrate groups interconnect the complex units to form a 2D supramolecular assembly. The ESI mass spectrum substantiates the existence of 1:1 complex. The g values obtained from the EPR spectrum in frozen DMF suggest dx2 -y2 ground state for the unpaired electron.

  13. Crystal structures of fac-tri-carbonyl-chlorido-(6,6'-dihy-droxy-2,2'-bi-pyridine)-rhenium(I) tetra-hydro-furan monosolvate and fac-bromido-tricarbon-yl(6,6'-dihy-droxy-2,2'-bi-pyridine)-manganese(I) tetra-hydro-furan monosolvate.

    PubMed

    Lense, Sheri; Piro, Nicholas A; Kassel, Scott W; Wildish, Andrew; Jeffery, Brent

    2016-08-01

    The structures of two facially coordinated Group VII metal complexes, fac-[ReCl(C10H8N2O2)(CO)3]·C4H8O (I·THF) and fac-[MnBr(C10H8N2O2)(CO)3]·C4H8O (II·THF), are reported. In both complexes, the metal ion is coordinated by three carbonyl ligands, a halide ligand, and a 6,6'-dihy-droxy-2,2'-bi-pyridine ligand in a distorted octa-hedral geometry. Both complexes co-crystallize with a non-coordinating tetra-hydro-furan (THF) solvent mol-ecule and exhibit inter-molecular but not intra-molecular hydrogen bonding. In both crystal structures, chains of complexes are formed due to inter-molecular hydrogen bonding between a hy-droxy group from the 6,6'-dihy-droxy-2,2'-bi-pyridine ligand and the halide ligand from a neighboring complex. The THF mol-ecule is hydrogen bonded to the remaining hy-droxy group.

  14. 1D and 2D assembly structures by imidazole···chloride hydrogen bonds of iron(II) complexes [Fe(II)(HL(n-Pr))3]Cl·Y (HL(n-Pr) = 2-methylimidazol-4-yl-methylideneamino-n-propyl; Y = AsF6, BF4) and their spin states.

    PubMed

    Fujinami, Takeshi; Nishi, Koshiro; Matsumoto, Naohide; Iijima, Seiichiro; Halcrow, Malcolm A; Sunatsuki, Yukinari; Kojima, Masaaki

    2011-12-07

    Two Fe(II) complexes fac-[Fe(II)(HL(n-Pr))(3)]Cl·Y (Y = AsF(6) (1) and BF(4) (2)) were synthesized, where HL(n-Pr) is 2-methylimidazole-4-yl-methylideneamino-n-propyl. Each complex-cation has the same octahedral N(6) geometry coordinated by three bidentate ligands and assumes facial-isomerism, fac-[Fe(II)(HL(n-Pr))(3)](2+) with Δ- and Λ-enantiomorphs. Three imidazole groups per Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) are hydrogen-bonded to three Cl(-) ions or, from the viewpoint of the Cl(-) ion, one Cl(-) ion is hydrogen-bonded to three neighbouring fac-[Fe(II)(HL(n-Pr))(3)](2+) cations. The 3 : 3 NH···Cl(-) hydrogen bonds between Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) and Cl(-) generate two kinds of assembly structures. The directions of the 3 : 3 NH···Cl(-) hydrogen bonds and hence the resulting assembly structures are determined by the size of the anion Y, though Y is not involved into the network structure and just accommodated in the cavity. Compound 1 has a 1D ladder structure giving a larger cavity, in which the Δ- and Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) enantiomorphs are bridged by two NH···Cl(-) hydrogen bonds. Compound 2 has a 2D network structure with a net unit of a cyclic trimer of {fac-[Fe(II)(HL(n-Pr))(3)](2+)···Cl(-)}(3) giving a smaller cavity, in which Δ- or Λ-fac-[Fe(II)(HL(n-Pr))(3)](2+) species with the same chirality are linked by NH···Cl(-) hydrogen bonds to give a homochiral 2D network structure. Magnetic susceptibility and Mössbauer spectral measurements demonstrated that compound 1 showed an abrupt one-step spin crossover with 4.0 K thermal hysteresis of T(c↓) = 125.5 K and T(c↑) = 129.5 K and compound 2 showed no spin transition and stayed in the high-spin state over the 5-300 K temperature range.

  15. Topological study of diverse hydrogen-bonded patterns found in a system of a nickel(II) complex and the sulfate anion.

    PubMed

    Harvey, Miguel Angel; Suarez, Sebastián; Zolotarev, Pavel N; Proserpio, Davide M; Baggio, Ricardo

    2018-03-01

    A nickel(II) coordination complex, bis[2,6-bis(1H-benzimidazol-2-yl-κN 3 )pyridine-κN]nickel(II) sulfate, [Ni(C 19 H 13 N 5 ) 2 ]SO 4 or [Ni(H 2 L) 2 ]SO 4 , having four peripheral tetrahedrally oriented N-H donor units, combines with sulfate bridges to create hydrogen-bonded structures of varied dimensionality. The three crystal structures reported herein in the space groups P2 1 2 1 2 1 , I-4 and Pccn are defined solely by strong charge-assisted N-H...O hydrogen bonds and contain disordered guests (water and dimethylformamide) that vary in size, shape and degree of hydrophilicity. Two of the compounds are channelled solids with three-dimensional structures, while the third is one-dimensional in nature. In spite of their differences, all three present a striking resemblance to the previously reported anhydrous relative [Guo et al. (2011). Chin. J. Inorg. Chem. 27, 1517-1520], which is considered as the reference framework from which all three title compounds are derived. The hydrogen-bonded frameworks are described and compared using crystallographic and topological approaches.

  16. Positronium formation studies in solid molecular complexes: Triphenylphosphine oxide-triphenylmethanol

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Fulgêncio, F. H.; Magalhães, W. F.; Alcântara, A. F. C.; Windmöller, D.; Machado, J. C.

    2012-06-01

    Positronium formation in triphenylphosphine oxide (TPPO), triphenylmethanol (TPM), and systems [TPPO(1-X)ṡTPMX] has been studied. The low probability of positronium formation in complex [TPPO0.5ṡTPM0.5] was attributed to strong hydrogen bond and sixfold phenyl embrace interactions. These strong interactions in complex reduce the possibility of the n- and π-electrons to interact with positrons on the spur and consequently, the probability of positronium formation is lower. The τ3 parameter and free volume (correlated to τ3) were also sensitive to the formation of hydrogen bonds and sixfold phenyl embrace interactions within the complex. For physical mixture the positron annihilation parameters remained unchanged throughout the composition range.

  17. Microwave structure for the propiolic acid-formic acid complex.

    PubMed

    Kukolich, Stephen G; Mitchell, Erik G; Carey, Spencer J; Sun, Ming; Sargus, Bryan A

    2013-10-03

    New microwave spectra were measured to obtain rotational constants and centrifugal distortion constants for the DCCCOOH···HOOCH and HCCCOOD···DOOCH isotopologues. Rotational transitions were measured in the frequency range of 4.9-15.4 GHz, providing accurate rotational constants, which, combined with previous rotational constants, allowed an improved structural fit for the propiolic acid-formic acid complex. The new structural fit yields reasonably accurate orientations for both the propiolic and formic acid monomers in the complex and more accurate structural parameters describing the hydrogen bonding. The structure is planar, with a positive inertial defect of Δ = 1.33 amu Å(2). The experimental structure exhibits a greater asymmetry for the two hydrogen bond lengths than was obtained from the ab initio mp2 calculations. The best-fit hydrogen bond lengths have an r(O1-H1···O4) of 1.64 Å and an r(O3-H2···O2) of 1.87 Å. The average of the two hydrogen bond lengths is r(av)(exp) = 1.76 Å, in good agreement with r(av)(theory) = 1.72 Å. The center of mass separation of the monomers is R(CM) = 3.864 Å. Other structural parameters from the least-squares fit using the experimental rotational constants are compared with theoretical values. The spectra were obtained using two different pulsed beam Fourier transform microwave spectrometers.

  18. Synthesis and crystal structure of the iridium(I) carbene complex with a pair of hydrogen wing tips

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, H.-Y.; Chen, Z.-M.; Wang, Y.

    The iridium(I) cyclooctadiene complex with two (3-tert-butylimidazol-2-ylidene) ligands [(H-Im{sup t}Bu){sub 2}Ir(COD)]{sup +}PF{sub 6}{sup −} (C{sub 22}H{sub 32}PF{sub 6}IrN{sub 4}) has been prepared, and its crystal structure is determined by X-ray diffraction. Complex exhibits slightly distorted square planar configurations around the metal atom, which is coordinated by two H-Im{sup t}Bu ligands and one cyclooctadiene group. The new iridium carbene complex has a pair of hydrogen wing tips. The Ir−C{sub carbene} bond lengths are 2.066(5) and 2.052(5) Å, and the bond angle C−Ir−C between these bonds is 95.54(19)°. The dihedral angle between two imidazol-2-ylidene rings is 86.42°.

  19. Viscous friction of hydrogen-bonded matter

    NASA Astrophysics Data System (ADS)

    Erbas, Aykut; Horinek, Dominik; Netz, Roland R.

    2012-02-01

    Amontons' law successfully describes friction between macroscopic solid bodies for a wide range of velocities and normal forces. For the diffusion and forced sliding of adhering or entangled macromolecules, proteins and biological complexes, temperature effects are invariably important and a similarly successful friction law at biological length and velocity scales is missing. Hydrogen bonds are key to the specific binding of bio-matter. Here we show that friction between hydrogen-bonded matter obeys in the biologically relevant low-velocity viscous regime a simple equations: the friction force is proportional to the number of hydrogen bonds, the sliding velocity, and a friction coefficient γHB. This law is deduced from atomistic molecular dynamics simulations for short peptide chains that are laterally pulled over hydroxylated substrates in the presence of water and holds for widely different peptides, surface polarities and applied normal forces. The value of γHB is extrapolated from simulations at sliding velocities in the range from v=10-2 m/s to 100 m/s by mapping on a simple stochastic model and turns out to be of the order of γHB˜10-8 kg/s. 3 hydrogen bonds act collectively.

  20. Observed mechanism for the breakup of small bundles of cellulose Iα and Iβ in ionic liquids from molecular dynamics simulations.

    PubMed

    Rabideau, Brooks D; Agarwal, Animesh; Ismail, Ahmed E

    2013-04-04

    Explicit, all-atom molecular dynamics simulations are used to study the breakup of small bundles of cellulose Iα and Iβ in the ionic liquids [BMIM]Cl, [EMIM]Ac, and [DMIM]DMP. In all cases, significant breakup of the bundles is observed with the initial breakup following a common underlying mechanism. Anions bind strongly to the hydroxyl groups of the exterior strands of the bundle, forming negatively charged complexes. Binding also weakens the intrastrand hydrogen bonds present in the cellulose strands, providing greater strand flexibility. Cations then intercalate between the individual strands, likely due to charge imbalances, providing the bulk to push the individual moieties apart and initiating the separation. The peeling of an individual strand from the main bundle is observed in [EMIM]Ac with an analysis of its hydrogen bonds with other strands showing that the chain detaches glucan by glucan from the main bundle in discrete, rapid events. Further analysis shows that the intrastrand hydrogen bonds of each glucan tend to break for a sustained period of time before the interstrand hydrogen bonds break and strand detachment occurs. Examination of similar nonpeeling strands shows that, without this intrastrand hydrogen bond breakage, the structural rigidity of the individual unit can hinder its peeling despite interstrand hydrogen bond breakage.

  1. Structural and electronic properties of extremely long perylene bisimide nanofibers formed through a stoichiometrically mismatched, hydrogen-bonded complexation.

    PubMed

    Yagai, Shiki; Seki, Tomohiro; Murayama, Haruno; Wakikawa, Yusuke; Ikoma, Tadaaki; Kikkawa, Yoshihiro; Karatsu, Takashi; Kitamura, Akihide; Honsho, Yoshihito; Seki, Shu

    2010-12-06

    Extremely long nanofibers, whose lengths reach the millimeter regime, are generated via co-aggregation of a melamine-appended perylene bisimide semiconductor and a substituted cyanurate, both of which are ditopic triple-hydrogen-bonding building blocks; they co-aggregate in an unexpected stoichiometrically mismatched 1:2 ratio. Various microscopic and X-ray diffraction studies suggest that hydrogen-bonded polymeric chains are formed along the long axis of the nanofibers by the 1:2 complexation of the two components, which further stack along the short axis of the nanofibers. The photocarrier generation mechanism in the nanofibers is investigated by time-of-flight (TOF) experiments under electric and magnetic fields, revealing the birth and efficient recombination of singlet geminate electron-hole pairs. Flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements revealed intrinsic 1D electron mobilities up to 0.6 cm(2) V(-1) s(-1) within nanofibers.

  2. Solvation of o-hydroxybenzoic acid in pure and modified supercritical carbon dioxide, according to numerical modeling data

    NASA Astrophysics Data System (ADS)

    Antipova, M. L.; Gurina, D. L.; Odintsova, E. G.; Petrenko, V. E.

    2015-08-01

    The dissolution of an elementary fragment of crystal structure (an o-hydroxybenzoic acid ( o-HBA) dimer) in both pure and modified supercritical (SC) carbon dioxide by adding methanol (molar fraction, 0.035) at T = 318 K, ρ = 0.7 g/cm3 is simulated. Features of the solvation mechanism in each solvent are revealed. The solvation of o-HBA in pure SC CO2 is shown to occur via electron donor-acceptor interactions. o-HBA forms a solvate complex in modified SC CO2 through hydrogen bonds between the carboxyl group and methanol. The hydroxyl group of o-HBA participates in the formation of an intramolecular hydrogen bond, and not in interactions with the solvent. It is concluded that the o-HBA-methanol complex is a stable molecular structure, and its lifetime is one order of magnitude higher than those of other hydrogen bonds in fluids.

  3. Abrupt spin transition with thermal hysteresis of iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine).

    PubMed

    Fujinami, Takeshi; Koike, Masataka; Matsumoto, Naohide; Sunatsuki, Yukinari; Okazawa, Atsushi; Kojima, Norimichi

    2014-02-17

    The solvent-free spin crossover iron(III) complex [Fe(III)(Him)2(hapen)]AsF6 (Him = imidazole, H2hapen = N,N'-bis(2-hydroxyacetophenylidene)ethylenediamine), exhibiting thermal hysteresis, was synthesized and characterized. The Fe(III) ion has an octahedral coordination geometry, with N2O2 donor atoms of the planar tetradentate ligand (hapen) and two nitrogen atoms of two imidazoles at the axial positions. One of two imidazoles is hydrogen-bonded to the phenoxo oxygen atom of hapen of the adjacent unit to give a hydrogen-bonded one-dimensional chain, while the other imidazole group is free from hydrogen bonding. The temperature dependencies of the magnetic susceptibilities and Mössbauer spectra revealed an abrupt spin transition between the high-spin (S = 5/2) and low-spin (S = 1/2) states, with thermal hysteresis.

  4. Synthesis, spectral and thermal studies of the newly hydrogen bonded charge transfer complex of o-phenylenediamine with π acceptor picric acid

    NASA Astrophysics Data System (ADS)

    Khan, Ishaat M.; Ahmad, Afaq

    2010-10-01

    Newly proton or charge transfer complex [(OPDH) +(PA) -] was synthesized by the reaction of the donor, o-phenylenediamine (OPD) with acceptor, 2,4,6-trinitrophenol (PAH). The chemical reaction has occurred via strong hydrogen bonding followed by migration of proton from acceptor to donor. UV-vis, 1H NMR and FTIR spectra, in addition to the thermal and elemental analysis were used to confirm the proposed occurrence of the chemical reaction and to investigate the newly synthesized solid CT complex. The stoichiometry of the CT complex was found to be 1:1. The formation constant and molar extinction coefficient of the CT complex were evaluated by the Benesi-Hildebrand equation.

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boros, Eszter; Srinivas, Raja; Kim, Hee -Kyung

    Aqua ligands can undergo rapid internal rotation about the M-O bond. For magnetic resonance contrast agents, this rotation results in diminished relaxivity. Herein, we show that an intramolecular hydrogen bond to the aqua ligand can reduce this internal rotation and increase relaxivity. Molecular modeling was used to design a series of four Gd complexes capable of forming an intramolecular H-bond to the coordinated water ligand, and these complexes had anomalously high relaxivities compared to similar complexes lacking a H-bond acceptor. Molecular dynamics simulations supported the formation of a stable intramolecular H-bond, while alternative hypotheses that could explain the higher relaxivitymore » were systematically ruled out. Finally, intramolecular H-bonding represents a useful strategy to limit internal water rotational motion and increase relaxivity of Gd complexes.« less

  6. Theoretical study of hydrogen bond interactions of fluvastatin with ι-carrageenan and λ-carrageenan.

    PubMed

    Papadopoulos, Anastasios G; Sigalas, Michael P

    2011-07-01

    The binding of the reductase inhibitor drug fluvastatin, hydroxy-3-methylglutaryl coenzyme A, with the hydrophilic ι- or λ-carrageenan polymers, serving as potential controllers of the drug's release rate, have been studied at the density functional level of theory with the B3LYP exchange correlation functional. Three low energy conformers of fluvastatin have been calculated. The vibrational spectroscopic properties calculated for the most stable conformer were in satisfactory agreement with the experimental data. A series of hydrogen bonded complexes of the most stable conformer of fluvastatin anion with low molecular weight models of the polymers have been fully optimized. In almost all, intermolecular H-bonds are formed between the sulfate groups of ι- or λ-carrageenan and fluvastatin's hydroxyls, resulting in a red shift of the fluvastatin's O - H stretching vibrations. Cooperative intramolecular H-bonds within fluvastatin or ι-, λ-carrageenan are also present. The BSSE and ZPE corrected interaction energies were estimated in the range 281-318 kJ mol⁻¹ for ι-carrageenan - fluvastatin and 145-200 kJ mol⁻¹ for λ-carrageenan - fluvastatin complexes. The electron density (ρ (bcp)) and Laplacian (∇²ρ (bcp)) properties at critical points of the intermolecular hydrogen bonds, estimated by AIM (atoms in molecules) calculations, have a low and positive character (∇²ρ(bcp) > 0), consistent with the electrostatic character of the hydrogen bonds. The structural and energetic data observed, as well as the extent of the red shift of the fluvastatin's O - H stretching vibrations upon complex formation and the properties of electron density show a stronger binding of fluvastatin to ι- than to λ-carrageenan.

  7. Investigations of interhydrogen bond dynamical coupling effects in the polarized IR spectra of acetanilide crystals.

    PubMed

    Flakus, Henryk T; Michta, Anna

    2010-02-04

    This Article presents the investigation results of the polarized IR spectra of the hydrogen bond in acetanilide (ACN) crystals measured in the frequency range of the proton and deuteron stretching vibration bands, nu(N-H) and nu(N-D). The basic spectral properties of the crystals were interpreted quantitatively in terms of the "strong-coupling" theory. The model of the centrosymmetric dimer of hydrogen bonds postulated by us facilitated the explanation of the well-developed, two-branch structure of the nu(N-H) and nu(N-D) bands as well as the isotopic dilution effects in the spectra. On the basis of the linear dichroic and temperature effects in the polarized IR spectra of ACN crystals, the H/D isotopic "self-organization" effects were revealed. A nonrandom distribution of hydrogen isotope atoms (H or D) in the lattice was deduced from the spectra of isotopically diluted ACN crystals. It was also determined that identical hydrogen isotope atoms occupy both hydrogen bonds in the dimeric systems, where each hydrogen bond belongs to a different chain. A more complex fine structure pattern of nu(N-H) and nu(N-D) bands in ACN spectra in comparison with the spectra of other secondary amides (e.g., N-methylacetamide) can be explained in terms of the "relaxation" theory of the IR spectra of hydrogen-bonded systems.

  8. Study of mutual influence of hydrogen bonds in complicated complexes by low-temperature 1H NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Golubev, N. S.; Denisov, G. S.

    1992-07-01

    1H NMR spectra of various acid-base complexes of different stoichiometry at 100-120K in freon mixtures have been obtained. The separate signals of non-equivalent OH-protons, involved in different H-bonds, have allowed us to consider the problem of the mutual influence of these bonds, using a correlation between the δ OH chemical shift and the AΔ H H-bond enthalpy. The mutual strengthening of H-bonds in complexes of the AH⋯AH⋯B type and their weakening in AH⋯B⋯HA complexes have been found, the value of the effect being about 10-30%

  9. Stabilization of Quinapril by Incorporating Hydrogen Bonding Interactions

    PubMed Central

    Roy, B. N.; Singh, G. P.; Godbole, H. M.; Nehate, S. P.

    2009-01-01

    In the present study stability of various known solvates of quinapril hydrochloride has been compared with nitromethane solvate. Nitromethane solvate was found to be more stable compared to other known solvates. Single crystal X-ray diffraction analysis of quinapril nitromethane solvate shows intermolecular hydrogen bonding between quinapril molecule and nitromethane. Stabilization of quinapril by forming strong hydrogen bonding network as in case of co-crystals was further studied by forming co-crystal with tris(hydroxymethyl)amino methane. Quinapril free base forms a stable salt with tris(hydroxymethyl)amino methane not reported earlier. Quinapril tris(hydroxymethyl)amino methane salt found to be stable even at 80° for 72 h i.e. hardly any formation of diketopiperazine and diacid impurity. As expected single crystal X-ray diffraction analysis reveals tris(hydroxymethyl)amino methane salt of quinapril shows complex hydrogen bonding network between the two entities along with ionic bond. The properties of this stable salt - stable in solid as well as solution phase, might lead to an alternate highly stable formulation. PMID:20502545

  10. Crystal structure of tetra­aqua­bis­(pyrimidin-1-ium-4,6-diolato-κO 4)manganese(II)

    PubMed Central

    Shennara, Khaled A.

    2017-01-01

    The MnII ion in the structure of the mononuclear title compound, [Mn(C4H3N2O2)2(H2O)4], is situated on an inversion center and is coordinated by two O atoms from two deprotonated 4,6-di­hydroxy­pyrimidine ligands and by four O atoms from water mol­ecules giving rise to a slightly distorted octa­hedral coordination sphere. The complex includes an intra­molecular hydrogen bond between an aqua ligand and the non-protonated N ring atom. The extended structure is stabilized by inter­molecular hydrogen bonds between aqua ligands, by hydrogen bonds between N and O atoms of the ligands of adjacent mol­ecules, and by hydrogen bonds between aqua ligands and the non-coordinating O atom of an adjacent mol­ecule. PMID:28435734

  11. Positional effects of hydroxy groups on catalytic activity of proton-responsive half-sandwich Cp*Iridium(III) complexes

    DOE PAGES

    Suna, Yuki; Fujita, Etsuko; Ertem, Mehmed Z.; ...

    2014-11-12

    Proton-responsive half-sandwich Cp*Ir(III) complexes possessing a bipyridine ligand with two hydroxy groups at the 3,3'-, 4,4'-, 5,5'- or 6,6'-positions (3DHBP, 4DHBP, 5DHBP, or 6DHBP) were systematically investigated. UV-vis titration data provided average pK a values of the hydroxy groups on the ligands. Both hydroxy groups were found to deprotonate in the pH 4.6–5.6 range for the 4–6DHBP complexes. One of the hydroxy groups of the 3DHBP complex exhibited the low pK a value of < 0.4 because the deprotonation is facilitated by the strong intramolecular hydrogen bond formed between the generated oxyanion and the remaining hydroxy group, which in turnmore » leads to an elevated pK a value of ~13.6 for the second deprotonation step. The crystal structures of the 4– and 6DHBP complexes obtained from basic aqueous solutions revealed their deprotonated forms. The intramolecular hydrogen bond in the 3DHBP complex was also observed in the crystal structures. The catalytic activities of these complexes in aqueous phase reactions, at appropriate pH, for hydrogenation of carbon dioxide (pH 8.5), dehydrogenation of formic acid (pH 1.8), transfer hydrogenation reactions using formic acid/formate as a hydrogen source (pH 7.2 and 2.6) were investigated to compare the positional effects of the hydroxy groups. The 4– and 6DHBP complexes exhibited remarkably enhanced catalytic activities under basic conditions because of the resonance effect of the strong electrondonating oxyanions, whereas the 5DHBP complex exhibited negligible activity despite the presence of electron-donating groups. The 3DHBP complex exhibited relatively high catalytic activity at low pH owing to the one strong electron-donating oxyanion group stabilized by the intramolecular hydrogen bond. DFT calculations were employed to study the mechanism of CO₂ hydrogenation by the 4DHBP and 6DHBP complexes, and comparison of the activation free energies of the H₂ heterolysis and CO₂ insertion steps indicated that H₂ heterolysis is the rate-determining step for both complexes. The presence of a pendent base in the 6DHBP complex was found to facilitate the rate-determining step, and renders 6DHBP a more effective catalyst for formate production.« less

  12. Multiple hydrogen-bonded complexes based on 2-ureido-4[1H]-pyrimidinone: a theoretical study.

    PubMed

    Sun, Hao; Lee, Hui Hui; Blakey, Idriss; Dargaville, Bronwin; Chirila, Traian V; Whittaker, Andrew K; Smith, Sean C

    2011-09-29

    In the present work, the electronic structures and properties of a series of 2-ureido-4[1H]-pyrimidinone(UPy)-based monomers and dimers in various environments (vacuum, chloroform, and water) are studied by density functional theoretical methods. Most dimers prefer to form a DDAA-AADD (D, H-bond donor; A, H-bond acceptor) array in both vacuum and solvents. Topological analysis proved that intramolecular and intermolecular hydrogen bonds coexist in the dimers. Frequency and NBO calculations show that all the hydrogen bonds exhibit an obvious red shift in their stretching vibrational frequencies. Larger substituents at position 6 of the pyrimidinone ring with stronger electron-donating ability favor the total binding energy and free energy of dimerization. Calculations on the solvent effect show that dimerization is discouraged by the stronger polarity of the solvent. Further computations show that Dimer-1 may be formed in chloroform, but water molecules may interact with the donor or acceptor sites and hence disrupt the hydrogen bonds of Dimer-1. © 2011 American Chemical Society

  13. Preparation, spectroscopic and structural studies on charge-transfer complexes of 2,9-dimethyl-1,10-phenanthroline with some electron acceptors

    NASA Astrophysics Data System (ADS)

    Gaballa, Akmal S.; Wagner, Christoph; Teleb, Said M.; Nour, El-Metwally; Elmosallamy, M. A. F.; Kaluđerović, Goran N.; Schmidt, Harry; Steinborn, Dirk

    2008-03-01

    Charge-transfer (CT) complexes formed in the reactions of 2,9-dimethyl-1,10-phenanthroline (Me 2phen) with some acceptors such as chloranil (Chl), picric acid (HPA) and chloranilic acid (H 2CA) have been studied in the defined solvent at room temperature. Based on elemental analysis and infrared spectra of the solid CT-complexes along with the photometric titration curves for the reactions, obtained data indicate the formation of 1:1 charge-transfer complexes [(Me 2phen)(Chl)] ( 1), [(Me 2phenH)(PA)] ( 2) and [(Me 2phenH)(HCA)] ( 3), respectively, was proposed. In the three complexes, infrared and 1H NMR spectroscopic data indicate a charge-transfer interaction and as far as complexes 2 and 3 are concerned this interaction is associated with a hydrogen bonding. The formation constants for the complexes ( KC) were shown to be dependent upon the nature of the electron acceptors used. The X-ray structure of complex 3 indicate the formation of dimeric units [Me 2phenH] 2[(HCA) 2] in which the two anions (HCA) - are connected by two O-H⋯O hydrogen bonds whereas the cations and anions are joined together by strong three-center (bifurcated) N-H⋯O hydrogen bonds. Furthermore, the cations are arranged in a π-π stacking.

  14. Selective Nitrate Recognition by a Halogen-Bonding Four-Station [3]Rotaxane Molecular Shuttle.

    PubMed

    Barendt, Timothy A; Docker, Andrew; Marques, Igor; Félix, Vítor; Beer, Paul D

    2016-09-05

    The synthesis of the first halogen bonding [3]rotaxane host system containing a bis-iodo triazolium-bis-naphthalene diimide four station axle component is reported. Proton NMR anion binding titration experiments revealed the halogen bonding rotaxane is selective for nitrate over the more basic acetate, hydrogen carbonate and dihydrogen phosphate oxoanions and chloride, and exhibits enhanced recognition of anions relative to a hydrogen bonding analogue. This elaborate interlocked anion receptor functions via a novel dynamic pincer mechanism where upon nitrate anion binding, both macrocycles shuttle from the naphthalene diimide stations at the periphery of the axle to the central halogen bonding iodo-triazolium station anion recognition sites to form a unique 1:1 stoichiometric nitrate anion-rotaxane sandwich complex. Molecular dynamics simulations carried out on the nitrate and chloride halogen bonding [3]rotaxane complexes corroborate the (1) H NMR anion binding results. © 2016 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.

  15. [Energetics of complex formation of the DNA hairpin structure d(GCGAAGC) with aromatic ligands].

    PubMed

    Kostiukov, V V

    2011-01-01

    The energy contributions of various physical interactions to the total Gibbs energy of complex formation of the biologically important DNA hairpin d(GCGAAGC) with aromatic antitumor antibiotics daunomycin and novantron and the mutagens ethidium and proflavine have been calculated. It has been shown that the relatively small value of the total energy of binding of the ligands to the hairpin is the sum of components great in absolute value and different in sign. The contributions of van der Waals interactions and both intra- and intermolecular hydrogen bonds and bonds with aqueous environment have been studied. According to the calculations, the hydrophobic and van der Waals components are energetically favorable in complex formation of the ligands with the DNA pairpin d(GCGAAGC), whereas the electrostatic (with consideration of hydrogen bonds) and entropic components are unfavorable.

  16. AAA-DDD triple hydrogen bond complexes.

    PubMed

    Blight, Barry A; Camara-Campos, Amaya; Djurdjevic, Smilja; Kaller, Martin; Leigh, David A; McMillan, Fiona M; McNab, Hamish; Slawin, Alexandra M Z

    2009-10-07

    Experiment and theory both suggest that the AAA-DDD pattern of hydrogen bond acceptors (A) and donors (D) is the arrangement of three contiguous hydrogen bonding centers that results in the strongest association between two species. Murray and Zimmerman prepared the first example of such a system (complex 3*2) and determined the lower limit of its association constant (K(a)) in CDCl(3) to be 10(5) M(-1) by (1)H NMR spectroscopy (Murray, T. J. and Zimmerman, S. C. J. Am. Chem. Soc. 1992, 114, 4010-4011). The first cationic AAA-DDD pair (3*4(+)) was described by Bell and Anslyn (Bell, D. A. and Anslyn, E. A. Tetrahedron 1995, 51, 7161-7172), with a K(a) > 5 x 10(5) M(-1) in CH(2)Cl(2) as determined by UV-vis spectroscopy. We were recently able to quantify the strength of a neutral AAA-DDD arrangement using a more chemically stable AAA-DDD system, 6*2, which has an association constant of 2 x 10(7) M(-1) in CH(2)Cl(2) (Djurdjevic, S., Leigh, D. A., McNab, H., Parsons, S., Teobaldi, G. and Zerbetto, F. J. Am. Chem. Soc. 2007, 129, 476-477). Here we report on further AA(A) and DDD partners, together with the first precise measurement of the association constant of a cationic AAA-DDD species. Complex 6*10(+)[B(3,5-(CF(3))(2)C(6)H(3))(4)(-)] has a K(a) = 3 x 10(10) M(-1) at RT in CH(2)Cl(2), by far the most strongly bound triple hydrogen bonded system measured to date. The X-ray crystal structure of 6*10(+) with a BPh(4)(-) counteranion shows a planar array of three short (NH...N distances 1.95-2.15 A), parallel (but staggered rather than strictly linear; N-H...N angles 165.4-168.8 degrees), primary hydrogen bonds. These are apparently reinforced, as theory predicts, by close electrostatic interactions (NH-*-N distances 2.78-3.29 A) between each proton and the acceptor atoms of the adjacent primary hydrogen bonds.

  17. On the physical origin of blue-shifted hydrogen bonds.

    PubMed

    Li, Xiaosong; Liu, Lei; Schlegel, H Bernhard

    2002-08-14

    For blue-shifted hydrogen-bonded systems, the hydrogen stretching frequency increases rather than decreases on complexation. In computations at various levels of theory, the blue-shift in the archetypical system, F(3)C-H.FH, is reproduced at the Hartree-Fock level, indicating that electron correlation is not the primary cause. Calculations also demonstrate that a blue-shift does not require either a carbon center or the absence of a lone pair on the proton donor, because F(3)Si-H.OH(2), F(2)NH.FH, F(2)PH.NH(3), and F(2)PH.OH(2) have substantial blue-shifts. Orbital interactions are shown to lengthen the X-H bond and lower its vibrational frequency, and thus cannot be the source of the blue-shift. In the F(3)CH.FH system, the charge redistribution in F(3)CH can be reproduced very well by replacing the FH with a simple dipole, which suggests that the interactions are predominantly electrostatic. When modeled with a point charge for the proton acceptor, attractive electrostatic interactions elongate the F(3)C-H, while repulsive interactions shorten it. At the equilibrium geometry of a hydrogen-bonded complex, the electrostatic attraction between the dipole moments of the proton donor and proton acceptor must be balanced by the Pauli repulsion between the two fragments. In the absence of orbital interactions that cause bond elongation, this repulsive interaction leads to compression of the X-H bond and a blue-shift in its vibrational frequency.

  18. Activation of carbon-hydrogen bonds and dihydrogen by 1,2-CH-addition across metal-heteroatom bonds.

    PubMed

    Webb, Joanna R; Burgess, Samantha A; Cundari, Thomas R; Gunnoe, T Brent

    2013-12-28

    The controlled conversion of hydrocarbons to functionalized products requires selective C-H bond cleavage. This perspective provides an overview of 1,2-CH-addition of hydrocarbons across d(0) transition metal imido complexes and compares and contrasts these to examples of analogous reactions that involve later transition metal amide, hydroxide and alkoxide complexes with d(6) and d(8) metals.

  19. Computational study of the process of hydrogen bond breaking: the case of the formamide-formic acid complex.

    PubMed

    Pacios, Luis F

    2006-11-15

    MP2/6-311++G(d,p) and B3LYP/6-311++G(d,p) quantum calculations are used to study the formamide-formic acid complex (FFAC), a system bound by two hydrogen bonds, N--H...O and O--H...O, that forms a bond ring at equilibrium. When the intermolecular separation between monomers R increases, this ring opens at a distance for which the weaker N--H...O bond breaks remaining the stronger O--H...O bond. The computational study characterizes that process addressing changes of interaction energy DeltaE, structure and properties of the electron density rho(r) as well as spatial distributions of rho(r), the electrostatic potential U(r), and the electron localization function eta(r). It is shown that the spatial derivatives of DeltaE, the topology of rho(r), and qualitative changes noticed in U(r) = 0 isocontours allow to identify a precise distance R for which one can say the N--H...O hydrogen bond has broken. Both levels of theory predict essentially the same changes of structure and electron properties associated to the process of breaking and virtually identical distances at which it takes place. (c) 2006 Wiley Periodicals, Inc. J Comput Chem, 2006.

  20. Exploiting NH···Cl Hydrogen Bonding Interactions in Cooperative Metallosupramolecular Polymerization.

    PubMed

    Langenstroer, Anja; Dorca, Yeray; Kartha, Kalathil K; Mayoral, Maria Jose; Stepanenko, Vladimir; Fernández, Gustavo; Sánchez, Luis

    2018-05-10

    The self-assembly features of hydrophobic bispyridyldichlorido Pd(II) complexes, equipped with an extended aromatic surface derived from oligophenyleneethynylene (OPE) and polarizable amide functional groups, are reported. The cooperative supramolecular polymerization of these complexes results in bundles of thin fibers in which the monomer units are arranged in a translationally displaced or slipped fashion. Spectroscopic and microscopy studies reveal that these assemblies are held together by simultaneous π-stacking of the OPE moieties and NH···ClPd hydrogen bonds. These unconventional forces are often observed in crystal engineering but remain largely unexploited in supramolecular polymers. Both steric and electronic effects (the presence of bulky and polarizable metal-bound Cl ligands as well as hydrogen bonding donor NH units) prevent the establishment of short Pd-Pd contacts and strongly condition the aggregation mode of the reported complexes, in close analogy to the previously reported amphiphilic Pd(II) complex 4. The results presented herein shed light on the subtle interplay between different noncovalent interactions and their impact on the self-assembly of metallosupramolecular systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Density functional theory study on the ionization potentials and electron affinities of thymine-formamide complexes

    NASA Astrophysics Data System (ADS)

    Sun, Haitao; Tang, Ke; Li, Yanmin; Su, Chunfang; Zhou, Zhengyu; Wang, Zhizhong

    The effect of hydrogen bond interactions on ionization potentials (IPs) and electron affinities (EAs) of thymine-formamide complexes (T-F) have been investigated employing the density functional theory B3LYP at 6-311++G(d, p) basis set level. All complexes experience a geometrical change on either electron detachment or attachment, and the change might be facilitated or hindered according to the strength of the hydrogen-bonding interaction involved. The strength of hydrogen bonds presents an opposite changing trend on the two processes. A more important role that H-bonding interaction plays in the process of electron attachment than in the process of electron detachment can be seen by a comparison of the IPs and EAs of complexes with that of isolated thymine. Futhermore, the EAs of isolated thymine are in good agreement with the experimental values (AEA is 0.79 eV, VEA is -0.29 eV [Wetmore et al., Chem Phys Lett 2000, 322, 129]). The calculated total NPA charge distributions reveal that nearly all the negative charges locate on thymine monomer in the anions and even in the cationic states, there are a few negative charges on thymine monomer. An analysis of dissociation energies predicts the processes T-F+→ T++ F and T-F- → T- + F to be the most energetically favorable for T-F+ and T-F-, respectively. Content:text/plain; charset="UTF-8"

  2. Isolated glyoxylic acid-water 1:1 complexes in low temperature argon matrices.

    PubMed

    Lundell, Jan; Olbert-Majkut, Adriana

    2015-02-05

    The 1:1 hydrogen bonded complexes between glyoxylic acid (GA) and water are studied in low temperature argon matrices. Four different complex structures were found in deposited matrices. The lowest energy conformer (T1) of GA was found to form complex, where the water molecule was attached to the opposite side of the intramolecular hydrogen bond in the molecule (T1B). Interestingly, this complex was estimated to be+8.0 kJ mol(-1) higher in energy than the most stable structure (T1A), where the water is inserted into the internal hydrogen bond, and also found in solid argon but in smaller abundance. For the second-lowest energy conformer of GA (T2), the two lowest-energy complex structures were identified, with the most stable complex structure (T2A) also being the most abundant in the matrices. The difference between experiment and computational energetic order of the two complex structures of the same GA conformer is explained by contributions of deformation energy upon complexation and the effect of the environment. The computed BSSE-corrected interaction energies are for the two most stable complexes of the two GA conformers for T1A and T2A -42.11 and -45.03 kJ mol(-1), respectively, at the CCSD(T)/aug-cc-pVTZ//B3LYP/aug-cc-pVTZ level of theory. Copyright © 2013 Elsevier B.V. All rights reserved.

  3. p-Dimethylaminobenzamide as an ICT dual fluorescent neutral receptor for anions under proton coupled electron transfer sensing mechanism

    NASA Astrophysics Data System (ADS)

    Wu, Fang-Ying; Jiang, Yun-Bao

    2002-04-01

    The intramolecular charge transfer (ICT) dual fluorescence of p-dimethylaminobenzamide (DMABA) in acetonitrile was found to show highly sensitive response to HSO 4- over several other anions such as H 2PO 4-,AcO - and ClO 4-. In the presence of bisulfate anion the dual fluorescence intensity ratio and the total intensity of DMABA decreased while the dual emission band positions remained unchanged. Absorption titration indicated that a 1:1 hydrogen bonding complex was formed between bisulfate anion and DMABA, which gave a binding constant of 2.02×10 4 mol-1 l that is two orders of magnitude higher than those for other anions. The obvious isotopic effect observed in the fluorescence quenching [ K SV( HSO4-)/K SV( DSO4-)=1.63 ] suggests that the hydrogen atom moving is an important reaction coordinate. It was assumed that the dual fluorescence response was due to proton coupled electron transfer mediated by hydrogen bonds within the 1:1 HSO 4--DMABA hydrogen-bonding complex.

  4. Structure and magnetism of a Mn(III)-Mn(II)-Mn(II)-Mn(III) chain complex.

    PubMed

    Uhrecký, Róbert; Moncoľ, Ján; Koman, Marian; Titiš, Ján; Boča, Roman

    2013-07-14

    A novel tetranuclear manganese(II/III) complex with anions of pyridine-2,6-dicarboxylic acid (dipicolinic acid) has been synthesised and magneto-structurally characterised. The crystal structure of [Mn(II)2Mn(III)2(dipic)6(H2O)4]·2CH3OH·4H2O has been determined by single-crystal X-ray diffraction. The tetranuclear complex molecule [Mn(II)2Mn(III)2(dipic)6(H2O)4] is centrosymmetric and two manganese(II) and two manganese(III) atoms are bridged by four dipicolinate ligands. The complex molecules and uncoordinated water and methanol molecules are connected through hydrogen bonds and they form a 3D supramolecular hydrogen-bonding network.

  5. Synthesis, spectral and thermal studies of the newly hydrogen bonded charge transfer complex of o-phenylenediamine with pi acceptor picric acid.

    PubMed

    Khan, Ishaat M; Ahmad, Afaq

    2010-10-01

    Newly proton or charge transfer complex [(OPDH)(+)(PA)(-)] was synthesized by the reaction of the donor, o-phenylenediamine (OPD) with acceptor, 2,4,6-trinitrophenol (PAH). The chemical reaction has occurred via strong hydrogen bonding followed by migration of proton from acceptor to donor. UV-vis, (1)H NMR and FTIR spectra, in addition to the thermal and elemental analysis were used to confirm the proposed occurrence of the chemical reaction and to investigate the newly synthesized solid CT complex. The stoichiometry of the CT complex was found to be 1:1. The formation constant and molar extinction coefficient of the CT complex were evaluated by the Benesi-Hildebrand equation. Copyright 2010 Elsevier B.V. All rights reserved.

  6. Noncovalent Complexation of Monoamine Neurotransmitters and Related Ammonium Ions by Tetramethoxy Tetraglucosylcalix[4]arene

    NASA Astrophysics Data System (ADS)

    Torvinen, Mika; Kalenius, Elina; Sansone, Francesco; Casnati, Alessandro; Jänis, Janne

    2012-02-01

    The noncovalent complexation of monoamine neurotransmitters and related ammonium and quaternary ammonium ions by a conformationally flexible tetramethoxy glucosylcalix[4]arene was studied by electrospray ionization Fourier transform ion cyclotron resonance (ESI-FTICR) mass spectrometry. The glucosylcalixarene exhibited highest binding affinity towards serotonin, norepinephrine, epinephrine, and dopamine. Structural properties of the guests, such as the number, location, and type of hydrogen bonding groups, length of the alkyl spacer between the ammonium head-group and the aromatic ring structure, and the degree of nitrogen substitution affected the complexation. Competition experiments and guest-exchange reactions indicated that the hydroxyl groups of guests participate in intermolecular hydrogen bonding with the glucocalixarene.

  7. Halogen Bonding versus Hydrogen Bonding: A Molecular Orbital Perspective

    PubMed Central

    Wolters, Lando P; Bickelhaupt, F Matthias

    2012-01-01

    We have carried out extensive computational analyses of the structure and bonding mechanism in trihalides DX⋅⋅⋅A− and the analogous hydrogen-bonded complexes DH⋅⋅⋅A− (D, X, A=F, Cl, Br, I) using relativistic density functional theory (DFT) at zeroth-order regular approximation ZORA-BP86/TZ2P. One purpose was to obtain a set of consistent data from which reliable trends in structure and stability can be inferred over a large range of systems. The main objective was to achieve a detailed understanding of the nature of halogen bonds, how they resemble, and also how they differ from, the better understood hydrogen bonds. Thus, we present an accurate physical model of the halogen bond based on quantitative Kohn–Sham molecular orbital (MO) theory, energy decomposition analyses (EDA) and Voronoi deformation density (VDD) analyses of the charge distribution. It appears that the halogen bond in DX⋅⋅⋅A− arises not only from classical electrostatic attraction but also receives substantial stabilization from HOMO–LUMO interactions between the lone pair of A− and the σ* orbital of D–X. PMID:24551497

  8. A computational study of hydrogen-bonded X3CH⋯YZ (X = Cl, F, NC; YZ = FLi, BF, CO, N2) complexes

    NASA Astrophysics Data System (ADS)

    McDowell, Sean A. C.

    2018-03-01

    An MP2/6-311++G(3df,3pd) computational study of a series of hydrogen-bonded complexes X3CH⋯YZ (X = Cl, F, NC; YZ = FLi, BF, CO, N2) was undertaken to assess the trends in the relative stability and other molecular properties with variation of both the X group and the chemical hardness of the Y atom of YZ. The red- and blue-shifting propensities of the proton donor X3CH were investigated by considering the Csbnd H bond length change and its associated vibrational frequency shift. The proton donor Cl3CH, which has a positive dipole moment derivative with respect to Csbnd H bond extension, tends to form red-shifted complexes, this tendency being modified by the hardness (and dipole moment) associated with the proton acceptor. On the other hand, F3CH has a negative dipole moment derivative and tends to form blue-shifted complexes, suggesting that as X becomes more electron-withdrawing, the proton donor should have a negative dipole moment derivative and form blue-shifted complexes. Surprisingly, the most polar proton donor (NC)3CH was found to have a positive dipole moment derivative and produces red-shifted complexes. A perturbative model was found useful in rationalizing the trends for the Csbnd H bond length change and associated frequency shift.

  9. Nonequilibrium 2-Hydroxyoctadecanoic Acid Monolayers: Effect of Electrolytes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lendrum, Conrad D.; Ingham, Bridget; Lin, Binhua

    2012-02-06

    2-Hydroxyacids display complex monolayer phase behavior due to the additional hydrogen bonding afforded by the presence of the second hydroxy group. The placement of this group at the position {alpha} to the carboxylic acid functionality also introduces the possibility of chelation, a utility important in crystallization including biomineralization. Biomineralization, like many biological processes, is inherently a nonequilibrium process. The nonequilibrium monolayer phase behavior of 2-hydroxyoctadecanoic acid was investigated on each of pure water, calcium chloride, sodium bicarbonate and calcium carbonate crystallizing subphases as a precursor study to a model calcium carbonate biomineralizing system, each at a pH of {approx}6. Themore » role of the bicarbonate co-ion in manipulating the monolayer structure was determined by comparison with monolayer phase behavior on a sodium chloride subphase. Monolayer phase behavior was probed using surface pressure/area isotherms, surface potential, Brewster angle microscopy, and synchrotron-based grazing incidence X-ray diffraction and X-ray reflectivity. Complex phase behavior was observed for all but the sodium chloride subphase with hydrogen bonding, electrostatic and steric effects defining the symmetry of the monolayer. On a pure water subphase hydrogen bonding dominates with three phases coexisting at low pressures. Introduction of calcium ions into the aqueous subphase ensures strong cation binding to the surfactant head groups through chelation. The monolayer becomes very unstable in the presence of bicarbonate ions within the subphase due to short-range hydrogen bonding interactions between the monolayer and bicarbonate ions facilitated by the sodium cation enhancing surfactant solubility. The combined effects of electrostatics and hydrogen bonding are observed on the calcium carbonate crystallizing subphase.« less

  10. New thermochemical parameter for describing solvent effects on IR stretching vibration frequencies. Communication 2. Assessment of cooperativity effects.

    PubMed

    Solomonov, Boris N; Varfolomeev, Mikhail A; Novikov, Vladimir B; Klimovitskii, Alexander E

    2006-05-15

    Solvent effects on O-H stretching vibration frequency of methanol in hydrogen bond complexes with different bases, CH3OH...B, have been investigated by FTIR spectroscopy. Using chloroform as a solvent results in strengthening of CH3OH...B hydrogen bonding due to cooperativity between CH3OH...B and Cl3CH...CH3OH bonds. A method is proposed for quantifying the hydrogen bond cooperativity effect. The determined cooperativity factors take into account all specific interactions of the solute in proton-donor solvents. In addition, a method of estimation of cooperativity factors Ab and AOX in system (CH3OH)2...B is proposed. It is demonstrated that in such systems, the cooperativity factor of the OH...B bond decreases and that of the OH...O bond increases with increasing the acceptor strength of the base B. The obtained results are in a good agreement with the data obtained previously from matrix-isolation FTIR spectroscopy.

  11. Red/blue shifting hydrogen bonds in acetonitrile-dimethyl sulphoxide solutions: FTIR and theoretical studies

    NASA Astrophysics Data System (ADS)

    Kannan, P. P.; Karthick, N. K.; Mahendraprabu, A.; Shanmugam, R.; Elangovan, A.; Arivazhagan, G.

    2017-07-01

    FTIR spectra of neat acetonitrile (AN), dimethyl sulphoxide (DMSO) and their binary solutions at various mole fractions have been recorded at room temperature. Theoretical calculations have also been carried out on acetonitrile (monomer, dimer), dimethyl sulphoxide (monomer, dimer) and AN - DMSO complex molecules. 1:2 (AN:DMSO) and 2:1 complexation through the red shifting (AN) C - H ⋯ O = S(DMSO) and blue shifting (DMSO) C - H ⋯ N ≡ C(AN) hydrogen bonds has been identified. The experimental and theoretical studies favour the presence of both the monomer and dimer in liquid AN, but only closed dimers in DMSO. The dipole-dipole interactions existed in AN and DMSO dimers disappear in the complex molecules. Partial π bond between S and O atoms, and three lone pair of electrons on oxygen atom of DMSO have been noticed theoretically.

  12. Synthesis of palm-based polyurethane-LiClO{sub 4} via prepolymerization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sien, Jason Wong Chee; School of Biosciences, Taylor’s University, Subang Jaya; Badri, Khairiah Haji

    2015-09-25

    Palm-based polyurethane (pPU) with varying lithium salt (LiClO{sub 4}) content was synthesized. Higher loading percentage of LiClO{sub 4} in the pPU led to the inhibition of prepolymerization process from taking place. Hydrogen bonded C=O was detected in the FTIR spectrum indicating the hydrogen bonding between the urethane bonds. Ordered complexed C=O was observed in the FTIR spectrum confirming the complex formation between urethane bond and Li{sup +} ion. DSC thermogram showed the increase in the LiClO{sub 4} content could increase the glass transition temperature. SEM micrographs exhibited that more bubbles were formed when the LiClO{sub 4} increased from 10 tomore » 30wt% indicating the reaction between free isocyanate groups with moisture presence in the salt due to the hygroscopic properties of LiClO{sub 4}.« less

  13. Two-dimensional infrared spectroscopy of intermolecular hydrogen bonds in the condensed phase.

    PubMed

    Elsaesser, Thomas

    2009-09-15

    Hydrogen bonding plays a key role in the structural, physical, and chemical properties of liquids such as water and in macromolecular structures such as proteins. Vibrational spectroscopy is an important tool for understanding hydrogen bonding because it provides a way to observe local molecular geometries and their interaction with the environment. Linear vibrational spectroscopy has mapped characteristic changes of vibrational spectra and the occurrence of new bands that form upon hydrogen bonding. However, linear vibrational spectroscopy gives very limited insight into ultrafast dynamics of the underlying molecular interactions, such as the motions of hydrogen-bonded groups, energy dissipation and delocalization, and the fluctuations within hydrogen-bonded structures that occur in the ultrafast time domain. Nonlinear vibrational spectroscopy with its femtosecond time resolution can discern these dynamic processes in real time and has emerged as an important tool for unraveling molecular dynamics and for quantifying interactions that govern the vibrational and structural dynamics of hydrogen bonds. This Account reviews recent progress originating from third-order nonlinear methods of coherent multidimensional vibrational spectroscopy. Ultrafast dynamics of intermolecular hydrogen bonds are addressed for a number of prototype systems: hydrogen-bonded carboxylic acid dimers in an aprotic liquid environment, the disordered fluctuating hydrogen-bond network of liquid water, and DNA oligomers interacting with water. Cyclic carboxylic acid dimers display a rich scheme of vibrational couplings, resulting in OH stretching absorption bands with highly complex spectral envelopes. Two-dimensional spectroscopy of acetic acid dimers in a nonpolar liquid environment demonstrates that multiple Fermi resonances of the OH stretching mode with overtones and combination tones of fingerprint vibrations dominate both the 2D and linear absorption spectra. The coupling of the OH stretching mode with low-frequency hydrogen-bonding modes leads to additional progressions and coherent low-frequency hydrogen-bond motions in the subpicosecond time domain. In water, the 2D spectra reveal ultrafast spectral diffusion on a sub-100 fs time scale caused by the ultrafast structural fluctuations of the strongly coupled hydrogen-bond network. Librational motions play a key role for the ultrafast loss of structural memory. Spectral diffusion rates are enhanced by resonant transfer of OH stretching quanta between water molecules, typically occurring on a 100 fs time scale. In DNA oligomers, femtosecond nonlinear vibrational spectroscopy resolves NH and OH stretching bands in the highly congested infrared spectra of these molecules, which contain alternating adenine-thymine pairs. Studies at different levels of hydration reveal the spectral signatures of water molecules directly interacting with the phosphate groups of DNA and of a second water species forming a fluctuating environment around the DNA oligomers. We expect that the application of 2D infrared spectroscopy in an extended spectral range will reveal the intrinsic coupling between water and specific functional units of DNA.

  14. Dynamics of water around the complex structures formed between the KH domains of far upstream element binding protein and single-stranded DNA molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Kaushik; Bandyopadhyay, Sanjoy, E-mail: sanjoy@chem.iitkgp.ernet.in

    2015-07-28

    Single-stranded DNA (ss-DNA) binding proteins specifically bind to the single-stranded regions of the DNA and protect it from premature annealing, thereby stabilizing the DNA structure. We have carried out atomistic molecular dynamics simulations of the aqueous solutions of two DNA binding K homology (KH) domains (KH3 and KH4) of the far upstream element binding protein complexed with two short ss-DNA segments. Attempts have been made to explore the influence of the formation of such complex structures on the microscopic dynamics and hydrogen bond properties of the interfacial water molecules. It is found that the water molecules involved in bridging themore » ss-DNA segments and the protein domains form a highly constrained thin layer with extremely retarded mobility. These water molecules play important roles in freezing the conformational oscillations of the ss-DNA oligomers and thereby forming rigid complex structures. Further, it is demonstrated that the effect of complexation on the slow long-time relaxations of hydrogen bonds at the interface is correlated with hindered motions of the surrounding water molecules. Importantly, it is observed that the highly restricted motions of the water molecules bridging the protein and the DNA components in the complexed forms originate from more frequent hydrogen bond reformations.« less

  15. Chirality-selected phase behaviour in ionic polypeptide complexes

    DOE PAGES

    Perry, Sarah L.; Leon, Lorraine; Hoffmann, Kyle Q.; ...

    2015-01-14

    In this study, polyelectrolyte complexes present new opportunities for self-assembled soft matter. Factors determining whether the phase of the complex is solid or liquid remain unclear. Ionic polypeptides enable examination of the effects of stereochemistry on complex formation. Here we demonstrate that chirality determines the state of polyelectrolyte complexes, formed from mixing dilute solutions of oppositely charged polypeptides, via a combination of electrostatic and hydrogen-bonding interactions. Fluid complexes occur when at least one of the polypeptides in the mixture is racemic, which disrupts backbone hydrogen-bonding networks. Pairs of purely chiral polypeptides, of any sense, form compact, fibrillar solids with amore » β-sheet structure. Analogous behaviour occurs in micelles formed from polypeptide block copolymers with polyethylene oxide, where assembly into aggregates with either solid or fluid cores, and eventually into ordered phases at high concentrations, is possible. Chirality is an exploitable tool for manipulating material properties in polyelectrolyte complexation.« less

  16. Bidentate, monoanionic auxiliary-directed functionalization of carbon-hydrogen bonds.

    PubMed

    Daugulis, Olafs; Roane, James; Tran, Ly Dieu

    2015-04-21

    In recent years, carbon-hydrogen bond functionalization has evolved from an organometallic curiosity to a tool used in mainstream applications in the synthesis of complex natural products and drugs. The use of C-H bonds as a transformable functional group is advantageous because these bonds are the most abundant functionality in organic molecules. One-step conversion of these bonds to the desired functionality shortens synthetic pathways, saving reagents, solvents, and labor. Less chemical waste is generated as well, showing that this chemistry is environmentally beneficial. This Account describes the development and use of bidentate, monoanionic auxiliaries for transition-metal-catalyzed C-H bond functionalization reactions. The chemistry was initially developed to overcome the limitations with palladium-catalyzed C-H bond functionalization assisted by monodentate directing groups. By the use of electron-rich bidentate directing groups, functionalization of unactivated sp(3) C-H bonds under palladium catalysis has been developed. Furthermore, a number of abundant base-metal complexes catalyze functionalization of sp(2) C-H bonds. At this point, aminoquinoline, picolinic acid, and related compounds are among the most used and versatile directing moieties in C-H bond functionalization chemistry. These groups facilitate catalytic functionalization of sp(2) and sp(3) C-H bonds by iron, cobalt, nickel, copper, ruthenium, rhodium, and palladium complexes. Exceptionally general reactivity is observed, enabling, among other transformations, direct arylation, alkylation, fluorination, sulfenylation, amination, etherification, carbonylation, and alkenylation of carbon-hydrogen bonds. The versatility of these auxilaries can be attributed to the following factors. First, they are capable of stabilizing high oxidation states of transition metals, thereby facilitating the C-H bond functionalization step. Second, the directing groups can be removed, enabling their use in synthesis and functionalization of natural products and medicinally relevant substances. While the development of these directing groups presents a significant advance, several limitations of this methodology are apparent. The use of expensive second-row transition metal catalysts is still required for efficient sp(3) C-H bond functionalization. Furthermore, the need to install and subsequently remove the relatively expensive directing group is a disadvantage.

  17. Bidentate, Monoanionic Auxiliary-Directed Functionalization of Carbon–Hydrogen Bonds

    PubMed Central

    Daugulis, Olafs; Roane, James; Tran, Ly Dieu

    2015-01-01

    CONSPECTUS In recent years, carbon–hydrogen bond functionalization has evolved from an organometallic curiosity to mainstream applications in the synthesis of complex natural products and drugs. The use of C–H bonds as a transformable functional group is advantageous because these bonds are the most abundant functionality in organic molecules. One-step conversion of these bonds to the desired functionality shortens synthetic pathways, saving reagents, solvents, and labor. Less chemical waste is generated as well, showing that this chemistry is environmentally beneficial. This Account describes the development and use of bidentate, monoanionic auxiliaries for transition-metal-catalyzed C–H bond functionalization reactions. The chemistry was initially developed to overcome the limitations with palladium-catalyzed C–H bond functionalization assisted by monodentate directing groups. By the use of electron-rich bidentate directing groups, functionalization of unactivated sp3 C–H bonds under palladium catalysis has been developed. Furthermore, a number of abundant base-metal complexes catalyze functionalization of sp2 C–H bonds. At this point, aminoquinoline, picolinic acid, and related compounds are among the most used and versatile directing moieties in C–H bond functionalization chemistry. These groups facilitate catalytic functionalization of sp2 and sp3 C–H bonds by iron, cobalt, nickel, copper, ruthenium, rhodium, and palladium complexes. Exceptionally general reactivity is observed, enabling, among other transformations, direct arylation, alkylation, fluorination, sulfenylation, amination, etherification, carbonylation, and alkenylation of carbon–hydrogen bonds. The versatility of these auxilaries can be attributed to the following factors. First, they are capable of stabilizing high oxidation states of transition metals, thereby facilitating the C–H bond functionalization step. Second, the directing groups can be removed, enabling their use in synthesis and functionalization of natural products and medicinally relevant substances. While the development of these directing groups presents a significant advance, several limitations of this methodology are apparent. The use of expensive second-row transition metal catalysts is still required for efficient sp3 C–H bond functionalization. Furthermore, a disadvantage is the need to install and subsequently remove the relatively expensive directing group. PMID:25756616

  18. The tropolone-isobutylamine complex: a hydrogen-bonded troponoid without dominant π-π interactions.

    PubMed

    Vealey, Zachary N; Mercado, Brandon Q; Vaccaro, Patrick H

    2016-10-01

    Tropolone long has served as a model system for unraveling the ubiquitous phenomena of proton transfer and hydrogen bonding. This molecule, which juxtaposes ketonic, hydroxylic, and aromatic functionalities in a framework of minimal complexity, also has provided a versatile platform for investigating the synergism among competing intermolecular forces, including those generated by hydrogen bonding and aryl coupling. Small members of the troponoid family typically produce crystals that are stabilized strongly by pervasive π-π, C-H...π, or ion-π interactions. The organic salt (TrOH·iBA) formed by a facile proton-transfer reaction between tropolone (TrOH) and isobutylamine (iBA), namely isobutylammonium 7-oxocyclohepta-1,3,5-trien-1-olate, C 4 H 12 N + ·C 7 H 5 O 2 - , has been investigated by X-ray crystallography, with complementary quantum-chemical and statistical-database analyses serving to elucidate the nature of attendant intermolecular interactions and their synergistic effects upon lattice-packing phenomena. The crystal structure deduced from low-temperature diffraction measurements displays extensive hydrogen-bonding networks, yet shows little evidence of the aryl forces (viz. π-π, C-H...π, and ion-π interactions) that typically dominate this class of compounds. Density functional calculations performed with and without the imposition of periodic boundary conditions (the latter entailing isolated subunits) documented the specificity and directionality of noncovalent interactions occurring between the proton-donating and proton-accepting sites of TrOH and iBA, as well as the absence of aromatic coupling mediated by the seven-membered ring of TrOH. A statistical comparison of the structural parameters extracted for key hydrogen-bond linkages to those reported for 44 previously known crystals that support similar binding motifs revealed TrOH·iBA to possess the shortest donor-acceptor distances of any troponoid-based complex, combined with unambiguous signatures of enhanced proton-delocalization processes that putatively stabilize the corresponding crystalline lattice and facilitate its surprisingly rapid formation under ambient conditions.

  19. A family of silver(I) complexes built with 2-sulfoterephthalic acid monosodium salt and different aminopyridine ligands: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Tan, Gai-Xiu; Liu, Bao-Lin; Dai, Yu-Bei; Xu, Na; Wen, Wei-Fen; Cao, Chong; Xiao, Hong-Ping

    2017-05-01

    Five Ag(I) coordination complexes, namely, [Ag6(2-stp)2(3-methyl-2-apy)3·H2O]n (1), [Ag3(2-stp)(4-methyl-2-apy)3]n (2), [Na2Ag18(2-stp)4(2-Hstp)4(5-methyl-2-apy)16 (H2O)4·11H2O]n (3), Ag3(2-stp)(6-methy-2-apy)4·H2O (4), and [Ag6(2-stp)2(6-methyl-2-apy)8(H2O)2·H2O]n (5) (2-NaH2stp = 2-sulfoterephthalic acid monosodium salt, 3-methyl-2-apy = 3-methyl-2-aminopyridine, 4-methyl-2-apy = 4-methyl-2-aminopyridine, 5-methyl-2-apy = 5-methyl-2-aminopyridine, 6-methyl-2-apy = 6-methyl-2-aminopyridine), have been synthesized and structurally characterized. Complexes 1 and 2 show two-dimensional network. In complex 3, the adjacent Ag10 units are bridged by 5-methyl-2-apy ligands to form a 2D infinite undulated sheet. Adjacent 2D sheets are linked by coordinative bonds between carboxylic oxygen atoms and Na(I) ions to form a 3D coordination polymer. Complex 4 is a 0-D discrete trinuclear molecule, and the self-complementary the Osbnd H⋯O and Nsbnd H⋯O hydrogen bonds incorporating hydrogen bond motifs extend these molecules into a 2D supramolecular framework. Compound 5 exhibits 1D-chain structure. However, complex 5 shows 3D supramolecular structure results from the linkage of neighboring layers through a rich hydrogen-bonding between uncoordinated sulfonates, amino groups and coordinated carboxylates. The thermogravimetric analyses and photoluminescence of the complexes were also investigated.

  20. Weak Hydrogen Bonds from Aliphatic and Fluorinated Alocohols to Molecular Nitrogen Detected by Supersonic Jet FTIR Spectroscopy

    NASA Astrophysics Data System (ADS)

    Oswald, Soenke; Suhm, Martin A.

    2017-06-01

    Complexes of organic molecules with the main component of earth's atmosphere are of interest, also for a stepwise understanding of the phenomenon of matrix isolation. Via its large quadrupole moment, nitrogen binds strongly to polarized OH groups in hydrogen-bonded dimers. Further complexation leads to a smooth spectral transition from free to embedded molecules which we probe in supersonic jets. Results for 1,1,1,3,3,3-hexafluoro-2-propanol, methanol, t-butyl alcohol, and the conformationally more complex ethanol are presented and assigned with the help of quantum chemical calculations. Kuma, S., Slipchenko, M. N., Kuyanov, K. E., Momose, T., Vilesov, A. F., Infrared Spectra and Intensities of the H_2O and N_2 Complexes in the Range of the ν_1- and ν_3-Bands of Water, J. Phys. Chem. A, 2006, 110, 10046-10052. Coussan, S., Bouteiller, Y., Perchard, J. P., Zheng, W. Q., Rotational Isomerism of Ethanol and Matrix Isolation Infrared Spectroscopy, J. Phys. Chem. A, 1998, 102, 5789-5793. Suhm, M. A., Kollipost, F., Femtisecond single-mole infrared spectroscopy of molecular clusters, Phys. Chem. Chem. Phys., 2013, 15, 10702-10721. Larsen, R. W., Zielke, P., Suhm, M. A., Hydrogen bonded OH stretching modes of methanol clusters: a combined IR and Raman isotopomer study, J. Chem. Phys., 2007, 126, 194307. Zimmermann, D., Häber, T., Schaal, H., Suhm, M. A., Hydrogen bonded rings, chains and lassos: The case of t-butyl alcohol clusters, Mol. Phys., 2001, 99, 413-425. Wassermann, T. N., Suhm, M. A., Ethanol Monomers and Dimers Revisited: A Raman Study of Conformational Preferences and Argon Nanocoating Effects, J. Phys. Chem. A, 2010, 114, 8223-8233.

  1. Conformational polymorphs of a novel TCNQ derivative carrying an acetylene group

    NASA Astrophysics Data System (ADS)

    Iida, Yuki; Kataoka, Makoto; Okuno, Tsunehisa

    2018-01-01

    TCNQ is one of the most important organic acceptors and lots of its derivatives have been prepared. However the reports on their crystal polymorphs are limited to their complexes, and simple polymorphs of TCNQ derivatives are uncommon. We succeeded in preparation of a novel TCNQ derivative, 2,2'-(2-(prop-2-yn-1-yloxy)cyclohexa-2,5-diene-1,4-diylidene)dimalononitrile, having a propynyloxy group on a substituent. This compound was found to have two crystal polymorphs depending on a solvent for recrystallization. In polymorph I, dimeric hydrogen bonds are formed between acetylenic hydrogens and cyano nitrogens with the molecule in an inversion symmetry. While, in polymorph II, the molecules make intermolecular hydrogen bonds between acetylenic hydrogens and cyano nitrogens with the molecule in 21 symmetry, forming a hydrogen bonded molecular helix along the b axis. Besides patterns of the intermolecular hydrogen bonds, difference was recognized in conformation of propynyloxy group. The molecule has an anti conformation in polymorph I and a gauche conformation in polymorph II. DFT calculation indicates that the anti conformer is less stable than the gauche one. But a solvation model suggests the anti conformer is estimated to be more stable in a toluene solution.

  2. Manganese-Oxygen Intermediates in O-O Bond Activation and Hydrogen-Atom Transfer Reactions.

    PubMed

    Rice, Derek B; Massie, Allyssa A; Jackson, Timothy A

    2017-11-21

    Biological systems capitalize on the redox versatility of manganese to perform reactions involving dioxygen and its derivatives superoxide, hydrogen peroxide, and water. The reactions of manganese enzymes influence both human health and the global energy cycle. Important examples include the detoxification of reactive oxygen species by manganese superoxide dismutase, biosynthesis by manganese ribonucleotide reductase and manganese lipoxygenase, and water splitting by the oxygen-evolving complex of photosystem II. Although these enzymes perform very different reactions and employ structurally distinct active sites, manganese intermediates with peroxo, hydroxo, and oxo ligation are commonly proposed in catalytic mechanisms. These intermediates are also postulated in mechanisms of synthetic manganese oxidation catalysts, which are of interest due to the earth abundance of manganese. In this Account, we describe our recent efforts toward understanding O-O bond activation pathways of Mn III -peroxo adducts and hydrogen-atom transfer reactivity of Mn IV -oxo and Mn III -hydroxo complexes. In biological and synthetic catalysts, peroxomanganese intermediates are commonly proposed to decay by either Mn-O or O-O cleavage pathways, although it is often unclear how the local coordination environment influences the decay mechanism. To address this matter, we generated a variety of Mn III -peroxo adducts with varied ligand environments. Using parallel-mode EPR and Mn K-edge X-ray absorption techniques, the decay pathway of one Mn III -peroxo complex bearing a bulky macrocylic ligand was investigated. Unlike many Mn III -peroxo model complexes that decay to oxo-bridged-Mn III Mn IV dimers, decay of this Mn III -peroxo adduct yielded mononuclear Mn III -hydroxo and Mn IV -oxo products, potentially resulting from O-O bond activation of the Mn III -peroxo unit. These results highlight the role of ligand sterics in promoting the formation of mononuclear products and mark an important step in designing Mn III -peroxo complexes that convert cleanly to high-valent Mn-oxo species. Although some synthetic Mn IV -oxo complexes show great potential for oxidizing substrates with strong C-H bonds, most Mn IV -oxo species are sluggish oxidants. Both two-state reactivity and thermodynamic arguments have been put forth to explain these observations. To address these issues, we generated a series of Mn IV -oxo complexes supported by neutral, pentadentate ligands with systematically perturbed equatorial donation. Kinetic investigations of these complexes revealed a correlation between equatorial ligand-field strength and hydrogen-atom and oxygen-atom transfer reactivity. While this trend can be understood on the basis of the two-state reactivity model, the reactivity trend also correlates with variations in Mn III/IV reduction potential caused by changes in the ligand field. This work demonstrates the dramatic influence simple ligand perturbations can have on reactivity but also illustrates the difficulties in understanding the precise basis for a change in reactivity. In the enzyme manganese lipoxygenase, an active-site Mn III -hydroxo adduct initiates substrate oxidation by abstracting a hydrogen atom from a C-H bond. Precedent for this chemistry from synthetic Mn III -hydroxo centers is rare. To better understand hydrogen-atom transfer by Mn III centers, we developed a pair of Mn III -hydroxo complexes, formed in high yield from dioxygen oxidation of Mn II precursors, capable of attacking weak O-H and C-H bonds. Kinetic and computational studies show a delicate interplay between thermodynamic and steric influences in hydrogen-atom transfer reactivity, underscoring the potential of Mn III -hydroxo units as mild oxidants.

  3. Thermodynamic characterization of hydrogen interaction with iridium polyhydride complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zidan, R.A.; Rocheleau, R.E.

    1999-01-01

    Hydrogen interaction with solid iridium complexes IrXH{sub 2}(PPr3{sup i}){sub 2} (X=Cl, I) was investigated. Gaseous hydrogen was found to react reversibly with solid chloro-iridium complex IrClH{sub 2}(PPr3{sup i}){sub 2} forming IrClH{sub 2}(PPr3{sup i}){sub 2}H{sub 2}. The relative partial molal enthalpy and entropy were obtained from equilibrium isotherms at different hydrogen concentrations. The decrease in entropy with increasing hydrogen concentration and the absence of plateaus in the equilibrium isotherms were consistent with a single phase solid solution with two chemical components. Hydrogen release from solid iodo-iridium complex IrIH{sub 2}(PPr3{sup i}){sub 2}H{sub 2} was not observed at temperatures up to 350 K,more » indicating stronger hydrogen bonding. {copyright} {ital 1999 Materials Research Society.}« less

  4. The Basicity of Unsaturated Hydrocarbons as probed by H-Bond Acceptor Ability. Bifurcated N–H+⋯π Hydrogen Bonding

    PubMed Central

    Stoyanov, Evgenii S.; Stoyanova, Irina V.; Reed, Christopher A.

    2009-01-01

    The competitive substitution of the anion in contact ion pairs of the type [Oct3NH+]B(C6F5)4− by unsaturated hydrocarbons L in accordance with the equilibrium Oct3NH+⋯Anion− + nL ↔ [Oct3NH+⋯Ln]Anion− has been studied in CCl4 solution. On the basis of equilibrium constants K and shifts of νNH to low frequency, it is established that complexed Oct3NH+⋯Ln cations with n = 1 and 2 are formed, having unidentate and bifurcated N–H+⋯π hydrogen bonds, respectively. Bifurcated H-bonds to unsaturated hydrocarbons have not been observed previously. The unsaturated hydro-carbons studied include benzene and methylbenzenes, fused-ring aromatics, alkenes, conjugated dienes, and alkynes. From the magnitude of the red shifts in N-H stretching frequencies, ΔνNH, a new scale for ranking the π-basicity of unsaturated hydrocarbons is proposed: fused-ring aromatics ≤ benzene < toluene < xylene < mesitylene < durene < conjugated dienes ∼ 1-alkynes < pentamethylbenzene < hexamethyl-benzene < internal alkynes ∼ cyclo-alkenes < 1-methylcycloalkenes. This scale is relevant to the discussion of π complexes for incipient protonation reactions and to understanding N–H+⋯π hydrogen bonding in proteins and molecular crystals. PMID:18637650

  5. Effect of quantum nuclear motion on hydrogen bonding

    NASA Astrophysics Data System (ADS)

    McKenzie, Ross H.; Bekker, Christiaan; Athokpam, Bijyalaxmi; Ramesh, Sai G.

    2014-05-01

    This work considers how the properties of hydrogen bonded complexes, X-H⋯Y, are modified by the quantum motion of the shared proton. Using a simple two-diabatic state model Hamiltonian, the analysis of the symmetric case, where the donor (X) and acceptor (Y) have the same proton affinity, is carried out. For quantitative comparisons, a parametrization specific to the O-H⋯O complexes is used. The vibrational energy levels of the one-dimensional ground state adiabatic potential of the model are used to make quantitative comparisons with a vast body of condensed phase data, spanning a donor-acceptor separation (R) range of about 2.4 - 3.0 Å, i.e., from strong to weak hydrogen bonds. The position of the proton (which determines the X-H bond length) and its longitudinal vibrational frequency, along with the isotope effects in both are described quantitatively. An analysis of the secondary geometric isotope effect, using a simple extension of the two-state model, yields an improved agreement of the predicted variation with R of frequency isotope effects. The role of bending modes is also considered: their quantum effects compete with those of the stretching mode for weak to moderate H-bond strengths. In spite of the economy in the parametrization of the model used, it offers key insights into the defining features of H-bonds, and semi-quantitatively captures several trends.

  6. A theoretical investigation on Cu/Ag/Au bonding in XH2P⋯MY(X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes

    NASA Astrophysics Data System (ADS)

    Wang, Zhaoxu; Liu, Yi; Zheng, Baishu; Zhou, Fengxiang; Jiao, Yinchun; Liu, Yuan; Ding, XunLei; Lu, Tian

    2018-05-01

    Intermolecular interaction of XH2P...MY (X = H, CH3, F, CN, NO2; M = Cu, Ag, Au; Y = F, Cl, Br, I) complexes was investigated by means of an ab initio method. The molecular interaction energies are in the order Ag < Cu < Au and increased with the decrease of RP...M. Interaction energies are strengthened when electron-donating substituents X connected to XH2P, while electron-withdrawing substituents produce the opposite effect. The strongest P...M bond was found in CH3H2P...AuF with -70.95 kcal/mol, while the weakest one was found in NO2H2P...AgI with -20.45 kcal/mol. The three-center/four-electron (3c/4e) resonance-type of P:-M-:Y hyperbond was recognized by the natural resonance theory and the natural bond orbital analysis. The competition of P:M-Y ↔ P-M:Y resonance structures mainly arises from hyperconjugation interactions; the bond order of bP-M and bM-Y is in line with the conservation of the idealized relationship bP-M + bM-Y ≈ 1. In all MF-containing complexes, P-M:F resonance accounted for a larger proportion which leads to the covalent characters for partial ionicity of MF. The interaction energies of these Cu/Ag/Au complexes are basically above the characteristic values of the halogen-bond complexes and close to the observed strong hydrogen bonds in ionic hydrogen-bonded species.

  7. Effect of chain structure on hydrogen bonding in vinyl acetate - vinyl alcohol copolymers

    NASA Astrophysics Data System (ADS)

    Merekalova, Nadezhda D.; Bondarenko, Galina N.; Denisova, Yuliya I.; Krentsel, Liya B.; Litmanovich, Arkadiy D.; Kudryavtsev, Yaroslav V.

    2017-04-01

    FTIR spectroscopy and semi-empirical AM1 method are used to study hydrogen bonding in multiblock and random equimolar copolymers of vinyl acetate and vinyl alcohol. An energetically beneficial zip-holder complex, built on multiple inter- and intrachain hydroxyl-hydroxyl bonds and an intrachain hydroxyl-acetyloxy bond, can be formed between two vinyl alcohol sequences. As a result, multiblock copolymers reveal stronger degree of association that affects crystallinity, as well as various rheological and relaxation properties discussed in the literature. Macromolecular complexes in random copolymers are weak and tend to be destroyed in the presence of residual DMF solvent and adsorbed water. Nevertheless, a rather stable interchain quaternary complex can be formed that includes vinyl alcohol and vinyl acetate units and DMF and water molecules. For a single chain it is shown that an H-bond between neighboring vinyl alcohol and vinyl acetate monomer units mostly engages a carbonyl oxygen atom of the vinyl acetate, if the vinyl alcohol belongs to a short (<5 units) sequence, and an ether oxygen atom in the other case. On the whole, the quantum chemistry calculations shed much light on the origin of distinctions in the copolymer FTIR spectra, which may seem subtle when considered standalone.

  8. Structural and vibrational spectral investigations of melaminium glutarate monohydrate by FTIR, FT-Raman and DFT methods.

    PubMed

    Arjunan, V; Marchewka, M K; Raj, Arushma; Yang, Haifeng; Mohan, S

    2015-01-25

    Melaminium glutarate monohydrate has been synthesised and FTIR and FT-Raman spectral investigations are carried out. The molecular geometry and vibrational frequencies of melaminium glutarate monohydrate in the ground state have been determined by using B3LYP method with 6-31++G(**), 6-31++G and cc-pVDZ basis sets. The stability of the system, inter molecular hydrogen bonding and the electron donor-acceptor interactions of the complex have been investigated by using natural bonding orbital analysis. It reveals that the N-H⋯O and O-H⋯O intermolecular interactions significantly influence crystal packing of this molecular complex. The glutarate anion forms hydrogen bonds to the melaminium cation as the proton donor of the type N-H⋯O with a distance (N⋯O)=2.51 Å. It is also linked by other hydrogen bonds to the water molecule of the type O-H⋯O with (O⋯O)=2.82 Å and to the amino (NH2) group of melaminium cation of the type N-H⋯O with (N⋯O)=2.82 Å as the proton acceptor. The electrostatic potential of the complex is in the range +1.892e×10(-2) to -1.892e×10(-2). The limits of total electron density of the complex is +6.679e×10(-2) to -6.679e×10(-2). Copyright © 2014 Elsevier B.V. All rights reserved.

  9. Structural and vibrational spectral investigations of melaminium glutarate monohydrate by FTIR, FT-Raman and DFT methods

    NASA Astrophysics Data System (ADS)

    Arjunan, V.; Marchewka, M. K.; Raj, Arushma; Yang, Haifeng; Mohan, S.

    2015-01-01

    Melaminium glutarate monohydrate has been synthesised and FTIR and FT-Raman spectral investigations are carried out. The molecular geometry and vibrational frequencies of melaminium glutarate monohydrate in the ground state have been determined by using B3LYP method with 6-31++G**, 6-31++G and cc-pVDZ basis sets. The stability of the system, inter molecular hydrogen bonding and the electron donor-acceptor interactions of the complex have been investigated by using natural bonding orbital analysis. It reveals that the Nsbnd H⋯O and Osbnd H⋯O intermolecular interactions significantly influence crystal packing of this molecular complex. The glutarate anion forms hydrogen bonds to the melaminium cation as the proton donor of the type Nsbnd H⋯O with a distance (N⋯O) = 2.51 Å. It is also linked by other hydrogen bonds to the water molecule of the type Osbnd H⋯O with (O⋯O) = 2.82 Å and to the amino (sbnd NH2) group of melaminium cation of the type Nsbnd H⋯O with (N⋯O) = 2.82 Å as the proton acceptor. The electrostatic potential of the complex is in the range +1.892e × 10-2 to -1.892e × 10-2. The limits of total electron density of the complex is +6.679e × 10-2 to -6.679e × 10-2.

  10. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes.

    PubMed

    Raschka, Sebastian; Wolf, Alex J; Bemister-Buffington, Joseph; Kuhn, Leslie A

    2018-04-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  11. Protein-ligand interfaces are polarized: discovery of a strong trend for intermolecular hydrogen bonds to favor donors on the protein side with implications for predicting and designing ligand complexes

    NASA Astrophysics Data System (ADS)

    Raschka, Sebastian; Wolf, Alex J.; Bemister-Buffington, Joseph; Kuhn, Leslie A.

    2018-02-01

    Understanding how proteins encode ligand specificity is fascinating and similar in importance to deciphering the genetic code. For protein-ligand recognition, the combination of an almost infinite variety of interfacial shapes and patterns of chemical groups makes the problem especially challenging. Here we analyze data across non-homologous proteins in complex with small biological ligands to address observations made in our inhibitor discovery projects: that proteins favor donating H-bonds to ligands and avoid using groups with both H-bond donor and acceptor capacity. The resulting clear and significant chemical group matching preferences elucidate the code for protein-native ligand binding, similar to the dominant patterns found in nucleic acid base-pairing. On average, 90% of the keto and carboxylate oxygens occurring in the biological ligands formed direct H-bonds to the protein. A two-fold preference was found for protein atoms to act as H-bond donors and ligand atoms to act as acceptors, and 76% of all intermolecular H-bonds involved an amine donor. Together, the tight chemical and geometric constraints associated with satisfying donor groups generate a hydrogen-bonding lock that can be matched only by ligands bearing the right acceptor-rich key. Measuring an index of H-bond preference based on the observed chemical trends proved sufficient to predict other protein-ligand complexes and can be used to guide molecular design. The resulting Hbind and Protein Recognition Index software packages are being made available for rigorously defining intermolecular H-bonds and measuring the extent to which H-bonding patterns in a given complex match the preference key.

  12. Nucleophilicities of Lewis Bases B and Electrophilicities of Lewis Acids A Determined from the Dissociation Energies of Complexes B⋯A Involving Hydrogen Bonds, Tetrel Bonds, Pnictogen Bonds, Chalcogen Bonds and Halogen Bonds.

    PubMed

    Alkorta, Ibon; Legon, Anthony C

    2017-10-23

    It is shown that the dissociation energy D e for the process B⋯A = B + A for 250 complexes B⋯A composed of 11 Lewis bases B (N₂, CO, HC≡CH, CH₂=CH₂, C₃H₆, PH₃, H₂S, HCN, H₂O, H₂CO and NH₃) and 23 Lewis acids (HF, HCl, HBr, HC≡CH, HCN, H₂O, F₂, Cl₂, Br₂, ClF, BrCl, H₃SiF, H₃GeF, F₂CO, CO₂, N₂O, NO₂F, PH₂F, AsH₂F, SO₂, SeO₂, SF₂, and SeF₂) can be represented to good approximation by means of the equation D e = c ' N B E A , in which N B is a numerical nucleophilicity assigned to B, E A is a numerical electrophilicity assigned to A, and c ' is a constant, conveniently chosen to have the value 1.00 kJ mol -1 here. The 250 complexes were chosen to cover a wide range of non-covalent interaction types, namely: (1) the hydrogen bond; (2) the halogen bond; (3) the tetrel bond; (4) the pnictogen bond; and (5) the chalcogen bond. Since there is no evidence that one group of non-covalent interaction was fitted any better than the others, it appears the equation is equally valid for all the interactions considered and that the values of N B and E A so determined define properties of the individual molecules. The values of N B and E A can be used to predict the dissociation energies of a wide range of binary complexes B⋯A with reasonable accuracy.

  13. FTIR study of hydrogen bonding interaction between fluorinated alcohol and unsaturated esters

    NASA Astrophysics Data System (ADS)

    Sheng, Xia; Jiang, Xiaotong; Zhao, Hailiang; Wan, Dongjin; Liu, Yongde; Ngwenya, Cleopatra Ashley; Du, Lin

    2018-06-01

    The 1:1 complexes of two unsaturated esters with 2,2,2-trifluoroethanol (TFE) were investigated experimentally and computationally. The experimental observations of the spectral shifts of the OH-stretching vibrational transitions were obtained at 113 cm-1 for TFE-methyl acrylate (MA) and 92 cm-1 for TFE-vinyl acetate (VA). There are three docking sites in the two unsaturated esters for the incoming TFE. The predicted red shifts of the OH-stretching vibrational transitions were found to be larger for the Osbnd H⋯Odbnd C hydrogen bonded conformer than those for the Osbnd H⋯π and Osbnd H⋯O ones. The binding energies further prove that the Osbnd H⋯Odbnd C hydrogen bonded conformers are the most stable ones. On the basis of the DFT calculations as well as previous works, the carbonyl group is the best docking site for TFE. Furthermore, the thermodynamic equilibrium constants of TFE-MA and TFE-VA were obtained at 0.28 and 0.15 by combining the experimental spectra data and the DFT calculations. Consequently, the Gibbs free energies of formation were determined to be 3.2 and 4.8 kJ mol-1 for TFE-MA and TFE-VA, respectively. The quantum theory of atoms in molecules (AIM) and generalized Kohn-Sham energy decomposition analysis (GKS-EDA) were carried out for further characterization of the hydrogen bonding interactions. GKS-EDA shows an "electrostatic" dominated hydrogen bonding character for the Osbnd H⋯Odbnd C hydrogen bonds.

  14. Elucidation of Hydrogen Bonding Patterns in Ligand-Free, Lactose- and Glycerol-Bound Galectin-3C by Neutron Crystallography to Guide Drug Design.

    PubMed

    Manzoni, Francesco; Wallerstein, Johan; Schrader, Tobias E; Ostermann, Andreas; Coates, Leighton; Akke, Mikael; Blakeley, Matthew P; Oksanen, Esko; Logan, Derek T

    2018-05-24

    The medically important drug target galectin-3 binds galactose-containing moieties on glycoproteins through an intricate pattern of hydrogen bonds to a largely polar surface-exposed binding site. All successful inhibitors of galectin-3 to date have been based on mono- or disaccharide cores closely resembling natural ligands. A detailed understanding of the H-bonding networks in these natural ligands will provide an improved foundation for the design of novel inhibitors. Neutron crystallography is an ideal technique to reveal the geometry of hydrogen bonds because the positions of hydrogen atoms are directly detected rather than being inferred from the positions of heavier atoms as in X-ray crystallography. We present three neutron crystal structures of the C-terminal carbohydrate recognition domain of galectin-3: the ligand-free form and the complexes with the natural substrate lactose and with glycerol, which mimics important interactions made by lactose. The neutron crystal structures reveal unambiguously the exquisite fine-tuning of the hydrogen bonding pattern in the binding site to the natural disaccharide ligand. The ligand-free structure shows that most of these hydrogen bonds are preserved even when the polar groups of the ligand are replaced by water molecules. The protonation states of all histidine residues in the protein are also revealed and correlate well with NMR observations. The structures give a solid starting point for molecular dynamics simulations and computational estimates of ligand binding affinity that will inform future drug design.

  15. An Electron Density Source-Function Study of DNA Base Pairs in Their Neutral and Ionized Ground States†.

    PubMed

    Gatti, Carlo; Macetti, Giovanni; Boyd, Russell J; Matta, Chérif F

    2018-07-05

    The source function (SF) decomposes the electron density at any point into contributions from all other points in the molecule, complex, or crystal. The SF "illuminates" those regions in a molecule that most contribute to the electron density at a point of reference. When this point of reference is the bond critical point (BCP), a commonly used surrogate of chemical bonding, then the SF analysis at an atomic resolution within the framework of Bader's Quantum Theory of Atoms in Molecules returns the contribution of each atom in the system to the electron density at that BCP. The SF is used to locate the important regions that control the hydrogen bonds in both Watson-Crick (WC) DNA dimers (adenine:thymine (AT) and guanine:cytosine (GC)) which are studied in their neutral and their singly ionized (radical cationic and anionic) ground states. The atomic contributions to the electron density at the BCPs of the hydrogen bonds in the two dimers are found to be delocalized to various extents. Surprisingly, gaining or loosing an electron has similar net effects on some hydrogen bonds concealing subtle compensations traced to atomic sources contributions. Coarser levels of resolutions (groups, rings, and/or monomers-in-dimers) reveal that distant groups and rings often have non-negligible effects especially on the weaker hydrogen bonds such as the third weak CH⋅⋅⋅O hydrogen bond in AT. Interestingly, neither the purine nor the pyrimidine in the neutral or ionized forms dominate any given hydrogen bond despite that the former has more atoms that can act as source or sink for the density at its BCP. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.

  16. Theoretical insights of proton transfer and hydrogen bonded charge transfer complex of 1,2-dimethylimidazolium-3,5-dinitrobenzoate crystal

    NASA Astrophysics Data System (ADS)

    Afroz, Ziya; Faizan, Mohd.; Alam, Mohammad Jane; Ahmad, Shabbir; Ahmad, Afaq

    2018-04-01

    Proton transfer (PT) and hydrogen bonded charge transfer (HBCT) 1:1 complex of 1,2-dimethylimidazole (DMI) and 3,5-dinitrobenzoic acid (DNBA) have been theoretically analyzed and compared with reported experimental results. Both the structures in the isolated gaseous state have been optimized at DFT/B3LYP/6-311G(d,p) level of theory and further, the PT energy barrier has been calculated from potential energy surface scan. Along with structural investigations, theoretical vibrational spectra have been inspected and compared with the FTIR spectrum. Moreover, frontier molecular analysis has also been carried out.

  17. Hydrogen bonding in microsolvation: photoelectron imaging and theoretical studies on Au(x)(-)-(H2O)(n) and Au(x)(-)-(CH3OH)(n) (x = 1, 2; n = 1, 2) complexes.

    PubMed

    Wu, Xia; Tan, Kai; Tang, Zichao; Lu, Xin

    2014-03-14

    We have combined photoelectron velocity-map imaging (VMI) spectroscopy and theoretical calculations to elucidate the geometry and energy properties of Aux(-)(Solv)n clusters with x = 1, 2; n = 1, 2; and Solv = H2O and CH3OH. Besides the blue-shifted vertical electron detachment energies (VDEs) of the complexes Au1,2(-)(Solv)n with the increase of the solvation number (n), we independently probed two distinct Au(-)(CH3OH)2 isomers, which combined with MP2/aug-cc-pVTZ(pp) calculations represent a competition between O···H-O hydrogen bonds (HBs) and Au···H-O nonconventional hydrogen bonds (NHBs). Complementary calculations provide the total binding energies of the low-energy isomers. Moreover, the relationship between the total binding energies and total VDEshift is discussed. We found that the Au1,2(-) anions exhibit halide-analogous behavior in microsolvation. These findings also demonstrate that photoelectron velocity map imaging spectroscopy with the aid of the ab initio calculations is an effective tool for investigating weak-interaction complexes.

  18. Pyrrole multimers and pyrrole-acetylene hydrogen bonded complexes studied in N2 and para-H2 matrixes using matrix isolation infrared spectroscopy and ab initio computations

    NASA Astrophysics Data System (ADS)

    Sarkar, Shubhra; Ramanathan, N.; Gopi, R.; Sundararajan, K.

    2017-12-01

    Hydrogen bonded interaction of pyrrole multimer and acetylene-pyrrole complexes were studied in N2 and p-H2 matrixes. DFT computations showed T-shaped geometry for the pyrrole dimer and cyclic complex for the trimer and tetramer were the most stable structures, stabilized by Nsbnd H⋯π interactions. The experimental vibrational wavenumbers observed in N2 and p-H2 matrixes for the pyrrole multimers were correlated with the computed wavenumbers. Computations performed at MP2/aug-cc-pVDZ level of theory showed that C2H2 and C4H5N forms 1:1 hydrogen-bonded complexes stabilized by Csbnd H⋯π interaction (Complex A), Nsbnd H⋯π interaction (Complex B) and π⋯π interaction (Complex C), where the former complex is the global minimum and latter two complexes were the first and second local minima, respectively. Experimentally, 1:1 C2H2sbnd C4H5N complexes A (global minimum) and B (first local minimum) were identified from the shifts in the Nsbnd H stretching, Nsbnd H bending, Csbnd H bending region of pyrrole and Csbnd H asymmetric stretching and bending region of C2H2 in N2 and p-H2 matrixes. Computations were also performed for the higher complexes and found two minima corresponding to the 1:2 C2H2sbnd C4H5N and three minima for the 2:1 C2H2sbnd C4H5N complexes. Experimentally the global minimum 1:2 and 2:1 C2H2sbnd C4H5N complexes were identified in N2 and p-H2 matrixes.

  19. Supramolecularly engineered perylene bisimide assemblies exhibiting thermal transition from columnar to multilamellar structures.

    PubMed

    Yagai, Shiki; Usui, Mari; Seki, Tomohiro; Murayama, Haruno; Kikkawa, Yoshihiro; Uemura, Shinobu; Karatsu, Takashi; Kitamura, Akihide; Asano, Atsushi; Seki, Shu

    2012-05-09

    Perylene 3,4:9,10-tetracarboxylic acid bisimide (PBI) was functionalized with ditopic cyanuric acid to organize it into complex columnar architectures through the formation of hydrogen-bonded supermacrocycles (rosette) by complexing with ditopic melamines possessing solubilizing alkoxyphenyl substituents. The aggregation study in solution using UV-vis and NMR spectroscopies showed the formation of extended aggregates through hydrogen-bonding and π-π stacking interactions. The cylindrical fibrillar nanostructures were visualized by microscopic techniques (AFM, TEM), and the formation of lyotropic mesophase was confirmed by polarized optical microscopy and SEM. X-ray diffraction study revealed that a well-defined hexagonal columnar (Col(h)) structure was formed by solution-casting of fibrillar assemblies. All of these results are consistent with the formation of hydrogen-bonded PBI rosettes that spontaneously organize into the Col(h) structure. Upon heating the Col(h) structure in the bulk state, a structural transition to a highly ordered lamellar (Lam) structure was observed by variable-temperature X-ray diffraction, differential scanning calorimetry, and AFM studies. IR study showed that the rearrangement of the hydrogen-bonding motifs occurs during the structural transition. These results suggest that such a striking structural transition is aided by the reorganization in the lowest level of self-organization, i.e., the rearrangement of hydrogen-bonded motifs from rosette to linear tape. A remarkable increase in the transient photoconductivity was observed by the flash-photolysis time-resolved microwave conductivity (FP-TRMC) measurements upon converting the Col(h) structure to the Lam structure. Transient absorption spectroscopy revealed that electron transfer from electron-donating alkoxyphenyl groups of melamine components to electron-deficient PBI moieties takes place, resulting in a higher probability of charge carrier generation in the Lam structure compared to the Col(h) structure.

  20. Calix

    PubMed

    Frkanec; Visnjevac; Kojic-Prodic; Zinic

    2000-02-04

    Chiral calix[4]arene derivatives with four O-(N-acetyl-PhgOMe), (1), (Phg denotes R-phenylglycine), or O-(N-acetyl-LeuOMe) (2) strands have been synthesised. Both compounds exist in chloroform in stable cone conformations with a noncovalently organised cavity at the lower rim that is formed by circular interstrand amidic hydrogen bonds. Such organisation affects both the selectivity and extraction/transport properties of 1 and 2 toward metal cations. Calix[4]arene derivatives with one OCH2COPhgOMe strand (3), two OCH2COPhgOMe strands (5) and with 1,3-OMe-2,4-(O-CH2COPhgOMe) substituents (4) at the lower rim have also been prepared. For 3, a conformation stabilised by a circular hydrogen-bond arrangement is found in chloroform, while 4 exists as a time-averaged C2 conformation with two intramolecular NH ...OCH3 hydrogen bonds. Compound 5 has a unique hydrogen-bonding motif in solution and in the solid state with two three-centred NH-.. O and two OH...O hydrogen bonds at the lower rim. This motif keeps 5 in the flattened cone conformation in chloroform. The X-ray structure analysis of 1 revealed a molecular structure with C2 symmetry; this structure is organised in infinite chains by intra- and intermolecular H bonds. The solid-state and solution structures of the [1-Na]ClO4 complex are identical, C4 symmetric cone conformations.

  1. Theoretical study of interactions between cysteine and perfluoropropanoic acid in gas and aqueous phase

    NASA Astrophysics Data System (ADS)

    Holmes, Tiffani M.; Doskocz, Jacek; Wright, Terrance; Hill, Glake A.

    The interaction of perfluoropropanoic acid (PFPA) with the amino acid cysteine was investigated using density functional theory. Previous studies suggest that the peroxisome proliferator chemical, perfluorooctanoic acid, is circulated throughout the body by way of sulfur-containing amino acids. We present conformational analysis of the interactions of PFPA, a small model of perfluorooctanoic acid, with the sulfur-containing amino acid which occur by the process of hydrogen bonding, in which the hydrogen of the sulfhydryl group interacts with the carboxyl oxygen, and the amino nitrogen forms a hydrogen bond with the hydrogen of the bond OH group of the fluorinated alkyl. We also show in our structures a recently characterized weak nonbonded interaction between divalent sulfur and a main chain carboxyl oxygen in proteins. B3LYP calculated free energies and interaction energies predict low-energy, high-interaction conformations for complex systems of perfluorinated fatty acid interactions with cysteine.

  2. Structure of hydrated calcium carbonates: A first-principles study

    NASA Astrophysics Data System (ADS)

    Demichelis, Raffaella; Raiteri, Paolo; Gale, Julian D.

    2014-09-01

    The structures of both ikaite (CaCO3 · 6H2 O) and monohydrocalcite (CaCO3 ·H2 O) were computed at the PBE0 level of theory, using all electron Gaussian type basis sets. Correction for the long-range dispersion contribution was included for the oxygen-oxygen interactions by using an additive pairwise term with the atomic coefficients fitted against the calcite vs aragonite enthalpy difference. The potential chirality of monohydrocalcite is discussed, as well as the helical motifs created by the three-fold rototranslational axes parallel to the [001] direction. These elements represent a significant link between monohydrocalcite and vaterite, both appearing as intermediate species during CaCO3 crystallization from amorphous calcium carbonate. The hydrogen bond pattern, never fully discussed for monohydrocalcite, is here described and compared to the available experimental data. Both phases are characterized by the presence of hydrogen bonds of moderate to high strength. Water molecules in monohydrocalcite interact quite strongly with 2 CO32- units through such hydrogen bonds, whereas their interaction with each other is minor. On the contrary, water molecules in ikaite create a complex network of hydrogen bonds, where each water molecule is strongly hydrogen bonded to one CO32- anion and to one or two other water molecules.

  3. Effect of the substituent and hydrogen bond on the geometry and electronic properties of OH and O(-) groups in para-substituted phenol and phenolate derivatives.

    PubMed

    Szatylowicz, Halina; Krygowski, Tadeusz M

    2010-10-14

    Interrelations between intra- and intermolecular interactions were analyzed by using computational modeling of the para-X-substituted derivatives of phenol and phenolate (where X = NO, NO(2), CHO, COMe, COOH, CONH(2), Cl, F, H, Me, OMe, and OH) and their equilibrium H-bonded complexes with HB and B(-) (where HB = HF and HCN and B(-) = F(-) and CN(-)). B3LYP/6-311++G** computation was applied. Both the substituent effect and H-bonding changed the electronic properties of the -O(-) and -OH groups and geometric parameters of phenol and phenolate derivatives and their H-bonded complexes. C-O bond lengths and aromaticity indices of the ring were found to depend linearly on σ(p)(-) of the substituents. In the first case the greatest sensitivity on the substituent effect was for 4-X-C(6)H(4)OH···CN(-) and 4-X-C(6)H(4)O(-)···HF complexes, whereas for 4-X-C(6)H(4)O(-)···HCN systems it was comparable with that for phenol derivatives and a little smaller than that for 4-X-C(6)H(4)O(-) derivatives. This means that the strength of H-bonding may considerably change the sensitivity of the C-O bond length to the substituent effect. The greatest sensitivity of the aromaticity indices, both HOMA and NICS(1)zz, to σ(p)(-) was found for phenolate and then for phenolate H-bonded complexes, followed by phenol complexes, and the lowest sensitivity was observed for phenol derivatives. The interatomic proton-acceptor distance, being a measure of the H-bond strength, was found to depend linearly on σ(p)(-) of the substituents with a positive slope for O···HB (HF or HCN) interactions and a negative slope for OH···B(-) interactions. NBO charges on the oxygen and hydrogen atoms also depend on σ(p)(-) of the substituents. In the latter case for strong H-bonded complexes (energy less than ∼-20 kcal/mol) the substituent effect works oppositely for 4-X-C(6)H(4)OH···B(-) in comparison with the 4-X-C(6)H(4)O(-)···HB systems. Moreover, following the Espinoza et al. [J. Chem. Phys. 2002, 117, 5529] and Grabowski et al. [J. Phys. Chem. B 2006, 110, 6444] classifications, the above and q(H) vs proton-acceptor distance relationships suggest a partially covalent character of the hydrogen bond for these complexes and the degree of its covalent nature depending on the substituent.

  4. Copper(II) adsorption on the kaolinite(001) surface: Insights from first-principles calculations and molecular dynamics simulations

    NASA Astrophysics Data System (ADS)

    Kong, Xiang-Ping; Wang, Juan

    2016-12-01

    The adsorption behavior of Cu(II) on the basal hydroxylated kaolinite(001) surface in aqueous environment was investigated by first-principles calculations and molecular dynamics simulations. Structures of possible monodentate and bidentate inner-sphere adsorption complexes of Cu(II) were examined, and the charge transfer and bonding mechanism were analyzed. Combining the binding energy of complex, the radial distribution function of Cu(II) with oxygen and the extended X-ray absorption fine structure data, monodentate complex on site of surface oxygen with ;upright; hydrogen and bidentate complex on site of two oxygens (one with ;upright; hydrogen and one with ;lying; hydrogen) of single Al center have been found to be the major adsorption species of Cu(II). Both adsorption species are four-coordinated with a square planar geometry. The distribution of surface hydroxyls with ;lying; hydrogen around Cu(II) plays a key role in the structure and stability of adsorption complex. Upon the Mulliken population analysis and partial density of states, charge transfer occurs with Cu(II) accepting some electrons from both surface oxygens and aqua oxygens, and the bonding Cu 3d-O 2p state filling is primarily responsible for the strong covalent interaction of Cu(II) with surface oxygen.

  5. On the nature of carbon-hydrogen bond activation at rhodium and related reactions.

    PubMed

    Jones, William D

    2005-06-27

    Over the past 20 years, substantial progress has been made in the understanding of the activation of C-H and other strong bonds by reactive metal complexes in low oxidation states. This paper will present an overview of the use of pentamethylcyclopentadienyl and trispyrazolylborate rhodium complexes for the activation of arene and alkane C-H bonds. Insights into bond strengths, kinetic and thermodynamic selectivities, and the nature of the intermediates involved will be reviewed. The role of eta-2 arene complexes will be shown to be critical to the C-H activation reactions. Some information about the fleeting alkane sigma-complexes will also be presented. In addition, use of these complexes with thiophenes has shown the ability to cleave C-S bonds. Mechanistic information has been obtained indicating coordination through sulfur prior to cleavage. Relevant examples of nickel-based C-S cleavage will also be given.

  6. Electronic structure and vibrational analysis of AHA⋯HX complexes

    NASA Astrophysics Data System (ADS)

    Joshi, Kaustubh A.; Gejji, Shridhar P.

    2005-10-01

    Electronic structures of the binary complexes of acetohydroxamic acid (AHA) and hydrogen halides, HX (X = F, Cl, Br) have been investigated using the second order perturbation theory. In the lowest energy structure of AHA⋯HF complex, hydrogen fluoride acts as a proton-donor with carbonyl oxygen and simultaneously as a proton-acceptor with the hydroxyl group. For chloro- and bromo-substituted derivatives, however, the lowest minimum possesses hydrogen-bonded interactions with the carbonyl oxygen in addition to those from the methyl proton of AHA. Frequency shifts of NH and CN stretching vibrations enable one to distinguish different conformers of AHA⋯HX complexes.

  7. Azido, triazolyl, and alkynyl complexes of gold(I): syntheses, structures, and ligand effects.

    PubMed

    Robilotto, Thomas J; Deligonul, Nihal; Updegraff, James B; Gray, Thomas G

    2013-08-19

    Gold(I) triazolyl complexes are prepared in [3 + 2] cycloaddition reactions of (tertiary phosphine)gold(I) azides with terminal alkynes. Seven such triazolyl complexes, not previously prepared, are described. Reducible functional groups are accommodated. In addition, two new (N-heterocyclic carbene)gold(I) azides and two new gold(I) alkynyls are described. Eight complexes are crystallographically authenticated; aurophilic interactions appear in one structure only. The packing diagrams of gold(I) triazolyls all show intermolecular hydrogen bonding between N-1 of one molecule and N-3 of a neighbor. This hydrogen bonding permeates the crystal lattice. Density-functional theory calculations of (triphenylphosphine)gold(I) triazolyls and the corresponding alkynyls indicate that the triazolyl is a stronger trans-influencer than is the alkynyl, but the alkynyl is more electron-releasing. These results suggest that trans-influences in two-coordinate gold(I) complexes can be more than a simple matter of ligand donicity.

  8. Structural and spectroscopic investigation of the N-methylformamide-water (NMF···3H2O) complex

    NASA Astrophysics Data System (ADS)

    Hammami, F.; Ghalla, H.; Chebaane, A.; Nasr, S.

    2015-01-01

    In this work, theoretical studies on the structure, molecular properties, hydrogen bonding, and vibrational spectra of the N-methylformamide-water (NMF...3H2O) complex will be presented. The molecular geometry was optimised by using Hartree-Fock (HF), second Møller-Plesset (MP2), and density functional theory methods with different basis sets. The harmonic vibrational frequencies are computed by using the B3LYP method with 6-311++G(d,p) as a basis set and then scaled with a suitable scale factor to yield good coherence with the observed values. The temperature dependence of various thermodynamic functions (heat capacity, entropy, and enthalpy changes) was also studied. A detailed analysis of the nature of the hydrogen bonding, using natural bond orbital (NBO) and topological atoms in molecules theory, has been reported.

  9. Aqua[bis(pyrimidin-2-yl-kappa N)amine](carbonato-kappa 2O,O')copper(II) dihydrate.

    PubMed

    van Albada, Gerard A; Mutikainen, Ilpo; Turpeinen, Urho; Reedijk, Jan

    2002-03-01

    The title mononuclear complex, [Cu(CO(3))(C(8)H(7)N(5))(H(2)O)] x 2H(2)O, was obtained by fixation of CO(2) by a mixture of copper(II) tetrafluoroborate and the ligand bis(pyrimidin-2-yl)amine in ethanol/water. The Cu(II) ion of the complex has a distorted square-pyramidal environment, with a basal plane formed by two N atoms of the ligand and two chelating O atoms of the carbonate group, while the apical position is occupied by the O atom of the coordinating water molecule. In the solid state, hydrogen-bonding interactions are dominant, the most unusual being the Watson-Crick-type coplanar ligand pairing through two N--H...N bonds. Lattice water molecules also participate in hydrogen bonding.

  10. Synthesis, spectroscopic characterization and structural studies of a new proton transfer (H-bonded) complex of o-phenylenediamine with L-tartaric acid

    NASA Astrophysics Data System (ADS)

    Khan, Ishaat M.; Ahmad, Afaq

    2013-10-01

    A proton transfer or H-bonded (CT) complex of o-phenylenediamine (OPD) as donor with L-tartaric acid (TART) as acceptor was synthesized and characterized by spectral techniques such as FTIR, 1H NMR, elemental analysis, TGA-TDA, X-ray crystallography and spectrophotometric studies. The structural investigations exhibit that the cation [OPD+] and anion [TART-] are linked together through strong N+-H⋯O- type hydrogen bonds due to transfer of proton from acceptor to donor. Formed H-bonded complex exhibits well resolved proton transfer bands in the regions where neither donor nor acceptor has any absorption. The stoichiometry of the H-bonded complex (HBC) was found to be 1:1, determined by straight line methods. Spectrophotometric studies have been performed at room temperature and Benesi-Hildebrand equation was used to determine formation constant (KCT), molar extinction coefficient (ɛCT) and also transition energy (ECT) of the H-bonded complex. Spectrophotomeric and crystallographic studies have ascertained the formation of 1:1 H-bonded complex. Thermal analysis (TGA-DTA) was also used to confirm the thermal fragmentation and the stability of the synthesized H-bonded complex.

  11. The role of boron nitride nanotube as a new chemical sensor and potential reservoir for hydrogen halides environmental pollutants

    NASA Astrophysics Data System (ADS)

    Yoosefian, Mehdi; Etminan, Nazanin; Moghani, Maryam Zeraati; Mirzaei, Samaneh; Abbasi, Shima

    2016-10-01

    Density functional theory (DFT) studies on the interaction of hydrogen halides (HX) environmental pollutants and the boron nitride nanotubes (BNNTs) have been reported. To exploit the possibility of BNNTs as gas sensors, the adsorption of hydrogen fluoride (HF), hydrogen chloride (HCl) and hydrogen bromide (HBr) on the side wall of armchair (5,5) boron nitride nanotubes have been investigated. B3LYP/6-31G (d) level were used to analyze the structural and electronic properties of investigate sensor. The adsorption process were interpreted by highest occupied molecular orbital (HOMO)-lowest unoccupied molecular orbital (LUMO), quantum theory of atoms in molecules (QTAIM), natural bond orbital (NBO) and molecular electrostatic potential (MEP) analysis. Topological parameters of bond critical points have been used to calculate as measure of hydrogen bond (HB) strength. Stronger binding energy, larger charge transfer and charge density illustrate that HF gas possesses chemisorbed adsorption process. The obtained results also show the strongest HB in HF/BNNT complex. We expect that results could provide helpful information for the design of new BNNTs based sensing devices.

  12. A spectroscopic study of the hydrogen bonding and pi-pi stacking interactions of harmane with quinoline.

    PubMed

    Balón, M; Guardado, P; Muñoz, M A; Carmona, C

    1998-01-01

    A spectroscopic (UV-vis, Fourier transform IR, steady state, and time-resolved fluorescence) study of the interactions of the ground and excited singlet states of harmane (1-methyl-9H-pyrido/3,4-b/indole) with quinoline has been carried out in cyclohexane, toluene, and buffered pH=8.7 aqueous solutions. To analyze how the number of rings in the substrate influences these interactions, pyridine and phenanthridine have also been included in this study. In cyclohexane and toluene 1:1 stoichiometric hydrogen-bonded complexes are formed in both the ground and the excited singlet states. As the number of rings of the benzopyridines and the solvent polarity increase hydrogen-bonding interactions weaken and pi-pi van der Waals interactions become apparent.

  13. Computational Study of Pincer Iridium Catalytic Systems: C-H, N-H, and C-C Bond Activation and C-C Coupling Reactions

    NASA Astrophysics Data System (ADS)

    Zhou, Tian

    Computational chemistry has achieved vast progress in the last decades in the field, which was considered to be only experimental before. DFT (density functional theory) calculations have been proven to be able to be applied to large systems, while maintaining high accuracy. One of the most important achievements of DFT calculations is in exploring the mechanism of bond activation reactions catalyzed by organometallic complexes. In this dissertation, we discuss DFT studies of several catalytic systems explored in the lab of Professor Alan S. Goldman. Headlines in the work are: (1) (R4PCP)Ir alkane dehydrogenation catalysts are highly selective and different from ( R4POCOP)Ir catalysts, predicting different rate-/selectivity-determining steps; (2) The study of the mechanism for double C-H addition/cyclometalation of phenanthrene or biphenyl by (tBu4PCP)Ir(I) and ( iPr4PCP)Ir illustrates that neutral Ir(III) C-H addition products can undergo a very facile second C-H addition, particularly in the case of sterically less-crowded Ir(I) complexes; (3) (iPr4PCP)Ir pure solid phase catalyst is highly effective in producing high yields of alpha-olefin products, since the activation enthalpy for dehydrogenation is higher than that for isomerization via an allyl pathway; higher temperatures favor the dehydrogenation/isomerization ratio; (4) (PCP)Ir(H)2(N2H4) complex follows a hydrogen transfer mechanism to undergo both dehydrogenation to form N 2 and H2, as well as hydrogen transfer followed by N-N bond cleavage to form NH3, N2, and H2; (5) The key for the catalytic effect of solvent molecule in CO insertion reaction for RMn(CO)5 is hydrogen bond assisted interaction. The basicity of the solvent determines the strength of the hydrogen bond interaction during the catalytic path and determines the catalytic power of the solvent; and (6) Dehydrogenative coupling of unactivated C-H bonds (intermolecular vinyl-vinyl, intramolecular vinyl-benzyl) is catalyzed by precursors of the (iPr4 PCP)Ir fragment. The key step for this mechanism is a Ir(III) vinyl hydride complex undergoing addition of a styrenyl ortho C-H bond to give an Ir(III) metalloindene plus H2.

  14. Performance of Several Density Functional Theory Methods on Describing Hydrogen-Bond Interactions.

    PubMed

    Rao, Li; Ke, Hongwei; Fu, Gang; Xu, Xin; Yan, Yijing

    2009-01-13

    We have investigated eleven density functionals, including LDA, PBE, mPWPW91, TPSS, B3LYP, X3LYP, PBE0, O3LYP, B97-1, MPW1K, and TPSSh, for their performances on describing hydrogen bond (HB) interactions. The emphasis has been laid not only on their abilities to calculate the intermolecular hydrogen bonding energies but also on their performances in predicting the relative energies of intermolecular H-bonded complexes and the conformer stabilities due to intramolecular hydrogen bondings. As compared to the best theoretical values, we found that although PBE and PBE0 gave the best estimation of HB strengths, they might fail to predict the correct order of relative HB energies, which might lead to a wrong prediction of the global minimum for different conformers. TPSS and TPSSh did not always improve over PBE and PBE0. B3LYP was found to underestimate the intermolecular HB strengths but was among the best performers in calculating the relative HB energies. We showed here that X3LYP and B97-1 were able to give good values for both absolute HB strengths and relative HB energies, making these functionals good candidates for HB description.

  15. Polarization response of clathrate hydrates capsulated with guest molecules

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zeng, Qun; Li, Jinshan, E-mail: ljs915@263.net, E-mail: myang@scu.edu.cn; Huang, Hui

    2016-05-28

    Clathrate hydrates are characterized by their water cages encapsulating various guest atoms or molecules. The polarization effect of these guest-cage complexes was studied with combined density functional theory and finite-field calculations. An addition rule was noted for these systems whose total polarizability is approximately equal to the polarizability sum of the guest and the cage. However, their distributional polarizability computed with Hirshfeld partitioning scheme indicates that the guest–cage interaction has considerable influence on their polarization response. The polarization of encapsulated guest is reduced while the polarization of water cage is enhanced. The counteraction of these two opposite effects leads tomore » the almost unchanged total polarizability. Further analysis reveals that the reduced polarizability of encapsulated guest results from the shielding effect of water cage against the external field and the enhanced polarizability of water cage from the enhanced bonding of hydrogen bonds among water molecules. Although the charge transfer through the hydrogen bonds is rather small in the water cage, the polarization response of clathrate hydrates is sensitive to the changes of hydrogen bonding strength. The guest encapsulation strengthens the hydrogen bonding network and leads to enhanced polarizability.« less

  16. Quantum Chemical and Docking Insights into Bioavailability Enhancement of Curcumin by Piperine in Pepper.

    PubMed

    Patil, Vaishali M; Das, Sukanya; Balasubramanian, Krishnan

    2016-05-26

    We combine quantum chemical and molecular docking techniques to provide new insights into how piperine molecule in various forms of pepper enhances bioavailability of a number of drugs including curcumin in turmeric for which it increases its bioavailability by a 20-fold. We have carried out docking studies of quantum chemically optimized piperine structure binding to curcumin, CYP3A4 in cytochrome P450, p-Glycoprotein and UDP-glucuronosyltransferase (UGT), the enzyme responsible for glucuronosylation, which increases the solubility of curcumin. All of these studies establish that piperine binds to multiple sites on the enzymes and also intercalates with curcumin forming a hydrogen bonded complex with curcumin. The conjugated network of double bonds and the presence of multiple charge centers of piperine offer optimal binding sites for piperine to bind to enzymes such as UDP-GDH, UGT, and CYP3A4. Piperine competes for curcumin's intermolecular hydrogen bonding and its stacking propensity by hydrogen bonding with enolic proton of curcumin. This facilitates its metabolic transport, thereby increasing its bioavailability both through intercalation into curcumin layers through intermolecular hydrogen bonding, and by inhibiting enzymes that cause glucuronosylation of curcumin.

  17. Hydrogen-impurity complexes in III V semiconductors

    NASA Astrophysics Data System (ADS)

    Ulrici, W.

    2004-12-01

    This review summarizes the presently available knowledge concerning hydrogen-impurity complexes in III-V compounds. The impurities form shallow acceptors on group III sites (Be, Zn, Cd) and on group V sites (C, Si, Ge) as well as shallow donors on group V sites (S, Se, Te) and on group III sites (Si, Sn). These complexes are mainly revealed by their hydrogen stretching modes. Therefore, nearly all information about their structure and dynamic properties is derived from vibrational spectroscopy. The complexes of shallow impurities with hydrogen have been most extensively investigated in GaAs, GaP and InP. This holds also for Mg-H in GaN. The complexes exhibit a different microscopic structure, which is discussed in detail. The isoelectronic impurity nitrogen, complexed with one hydrogen atom, is investigated in detail in GaAs and GaP. Those complexes can exist in different charge states. The experimental results such as vibrational frequencies, the microscopic structure and the activation energy for reorientation for many of these complexes are in very good agreement with results of ab initio calculations. Different types of oxygen-hydrogen complexes in GaAs and GaP are described, with one hydrogen atom or two hydrogen atoms bonded to oxygen. Three of these complexes in GaAs were found to be electrically active.

  18. Slow positron beam study of hydrogen ion implanted ZnO thin films

    NASA Astrophysics Data System (ADS)

    Hu, Yi; Xue, Xudong; Wu, Yichu

    2014-08-01

    The effects of hydrogen related defect on the microstructure and optical property of ZnO thin films were investigated by slow positron beam, in combination with x-ray diffraction, infrared and photoluminescence spectroscopy. The defects were introduced by 90 keV proton irradiation with doses of 1×1015 and 1×1016 ions cm-2. Zn vacancy and OH bonding (VZn+OH) defect complex were identified in hydrogen implanted ZnO film by positron annihilation and infrared spectroscopy. The formation of these complexes led to lattice disorder in hydrogen implanted ZnO film and suppressed the luminescence process.

  19. Molecular structure, proton affinity and hydrogen bonds of (2-hydroxyethyl)amine-N-oxides: DFT, MP2 and FTIR study

    NASA Astrophysics Data System (ADS)

    Aksamentova, Tamara N.; Chipanina, Nina N.; Oznobikhina, Larisa P.; Adamovich, Sergei N.; Smirnov, Vladimir I.

    2018-01-01

    Tris- 1, bis- 2, and mono- 3 (2-hydroxyethyl)amine-N-oxides isomers, their protonated forms, and H-complexes with acids have been studied in gas phase and DMSO solution by the quantum chemical calculations using DFT and MP2 methods. It is found that the proton affinity of the endo isomers 1a-3a, exo isomers 1b-3b and epi isomer 1c depends on the number of the hydroxyethyl groups, steric factors and strengths of the intramolecular H-bonds OHṡṡṡON in 1a-3a and OHṡṡṡOH in 1b-3b. The peculiarities of formation of the hydrogen bonded and proton transfer complexes of tris(2-hydroxyethyl)amine-N-oxide with trifluoroacetic and 2-methylphenyloxyacetic acids are defined by 1 configuration, acid strength and solvent polarity. The structure of 1 and its complexes upon transition to solution was determined using FTIR spectroscopy.

  20. DFT Study on the Complexation of Bambus[6]uril with the Perchlorate and Tetrafluoroborate Anions.

    PubMed

    Toman, Petr; Makrlík, Emanuel; Vaňura, Petr

    2011-12-01

    By using quantum mechanical DFT calculations, the most probable structures of the bambus[6]uril.ClO4- and bambus[6]uril.BF4- anionic complex species were derived. In these two complexes having C3 symmetry, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion.

  1. Amide-Directed Photoredox Catalyzed C-C Bond Formation at Unactivated sp3 C-H Bonds

    PubMed Central

    Chu, John C. K.; Rovis, Tomislav

    2017-01-01

    Carbon-carbon (C-C) bond formation is paramount in the synthesis of biologically relevant molecules, modern synthetic materials and commodity chemicals such as fuels and lubricants. Traditionally, the presence of a functional group is required at the site of C-C bond formation. Strategies that allow C-C bond formation at inert carbon-hydrogen (C-H) bonds allow scientists to access molecules which would otherwise be inaccessible and to develop more efficient syntheses of complex molecules.1,2 Herein we report a method for the formation of C-C bonds by directed cleavage of traditionally non-reactive C-H bonds and their subsequent coupling with readily available alkenes. Our methodology allows for the selective C-C bond formation at single C-H bonds in molecules that contain a multitude of seemingly indifferentiable such bonds. Selectivity arises through a relayed photoredox catalyzed oxidation of an N-H bond. We anticipate our findings to serve as a starting point for functionalization at inert C-H bonds through a hydrogen atom transfer strategy. PMID:27732580

  2. Spiroacetal formation through telescoped cycloaddition and carbon-hydrogen bond functionalization: total synthesis of bistramide A.

    PubMed

    Han, Xun; Floreancig, Paul E

    2014-10-06

    Spiroacetals can be formed through a one-pot sequence of a hetero-Diels-Alder reaction, an oxidative carbon-hydrogen bond cleavage, and an acid treatment. This convergent approach expedites access to a complex molecular subunit which is present in numerous biologically active structures. The utility of the protocol is demonstrated through its application to a brief synthesis of the actin-binding cytotoxin bistramide A. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  3. Supramolecular Polymers Based on Non-Coplanar AAA-DDD Hydrogen-Bonded Complexes.

    PubMed

    Mendez, Iamnica J Linares; Wang, Hong-Bo; Yuan, Ying-Xue; Wisner, James A

    2018-03-01

    Non-coplanar triple-hydrogen-bond arrays are connected as telechelic groups to alkyl chains and their properties as AA/BB type supramolecular polymers are examined. Viscosity studies at three temperatures are used to study the ring-chain equilibrium and determine the critical concentrations where polymer chains are formed. It is observed that neither the temperature range studied nor the alkyl chain length of one component significantly affect the polymerization properties in this system. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecularly Defined Nanostructures Based on a Novel AAA-DDD Triple Hydrogen-Bonding Motif.

    PubMed

    Papmeyer, Marcus; Vuilleumier, Clément A; Pavan, Giovanni M; Zhurov, Konstantin O; Severin, Kay

    2016-01-26

    A facile and flexible method for the synthesis of a new AAA-DDD triple hydrogen-bonding motif is described. Polytopic supramolecular building blocks with precisely oriented AAA and DDD groups are thus accessible in few steps. These building blocks were used for the assembly of large macrocycles featuring four AAA-DDD interactions and a macrobicyclic complex with a total of six AAA-DDD interactions. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Chiral self-recognition: direct spectroscopic detection of the homochiral and heterochiral dimers of propylene oxide in the gas phase.

    PubMed

    Su, Zheng; Borho, Nicole; Xu, Yunjie

    2006-12-27

    In this report, we describe rotational spectroscopic and high-level ab initio studies of the 1:1 chiral molecular adduct of propylene oxide dimer. The complexes are bound by weak secondary hydrogen bonds, that is, the O(epoxy)...H-C noncovalent interactions. Six homochiral and six heterochiral conformers were predicted to be the most stable configurations where each monomer acts as a proton acceptor and a donor simultaneously, forming two six- or five-membered intermolecular hydrogen-bonded rings. Rotational spectra of six, that is, three homochiral and heterochiral conformer pairs, out of the eight conformers that were predicted to have sufficiently large permanent electric dipole moments were measured and analyzed. The relative conformational stability order and the signs of the chiral recognition energies of the six conformers were determined experimentally and were compared to the ab initio computational results. The experimental observations and the ab initio calculations suggest that the concerted effort of these weak secondary hydrogen bonds can successfully lock the subunits in a particular orientation and that the overall binding strength is comparable to a classic hydrogen bond.

  6. Chirality Transfer and Modulation in LB Films Derived From the Diacetylene/Melamine Hydrogen-Bonded Complex.

    PubMed

    Zhu, Yu; Xu, Yangyang; Zou, Gang; Zhang, Qijin

    2015-08-01

    Introduction of hydrogen-bonding interaction into π-conjugated systems is a promising strategy, since the highly selective and directional hydrogen-bonding can increase the binding strength, provide enhanced stability to the assemblies, and position the π-conjugated molecules in a desired arrangement. The helical packing of the rigid melamine cores seems to play a dominating role in the subsequent formation of the peripheral helical PDA backbone. The polymerized Langmuir-Blodgett (LB) films exhibited reversible colorimetric and chiroptical changes during repeated heating-cooling cycles, which should be ascribed to the strong hydrogen-bonding interaction between the carboxylic acid and the melamine core. Further, the closely helical packing of the melamine cores could be destroyed upon exposure to HCl or NH(3) gas, whereas the peripheral helical polyaniline and polydiacetylene (PDA) backbone exhibited excellent stability. Although similar absorption changes could be observed for the films upon exposure to HCl or NH(3) gas, their distinct circular dichroism (CD) responses enabled us to distinguish the above two stimuli. © 2015 Wiley Periodicals, Inc.

  7. Single and double carbon vacancies in pyrene as first models for graphene defects: A survey of the chemical reactivity toward hydrogen

    NASA Astrophysics Data System (ADS)

    Nieman, Reed; Das, Anita; Aquino, Adélia J. A.; Amorim, Rodrigo G.; Machado, Francisco B. C.; Lischka, Hans

    2017-01-01

    Graphene is regarded as one of the most promising materials for nanoelectronics applications. Defects play an important role in modulating its electronic properties and also enhance its chemical reactivity. In this work the reactivity of single vacancies (SV) and double vacancies (DV) in reaction with a hydrogen atom Hr is studied. Because of the complicated open shell electronic structures of these defects due to dangling bonds, multireference configuration interaction (MRCI) methods are being used in combination with a previously developed defect model based on pyrene. Comparison of the stability of products derived from Csbnd Hr bond formation with different carbon atoms of the different polyaromatic hydrocarbons is made. In the single vacancy case the most stable structure is the one where the incoming hydrogen is bound to the carbon atom carrying the dangling bond. However, stable Csbnd Hr bonded structures are also observed in the five-membered ring of the single vacancy. In the double vacancy, most stable bonding of the reactant Hr atom is found in the five-membered rings. In total, Csbnd Hr bonds, corresponding to local energy minimum structures, are formed with all carbon atoms in the different defect systems and the pyrene itself. Reaction profiles for the four lowest electronic states show in the case of a single vacancy a complex picture of curve crossings and avoided crossings which will give rise to a complex nonadiabatic reaction dynamics involving several electronic states.

  8. Passivating the sulfur vacancy in monolayer MoS2

    NASA Astrophysics Data System (ADS)

    Lu, Haichang; Kummel, Andrew; Robertson, John

    2018-06-01

    Various methods to passivate the sulfur vacancy in 2D MoS2 are modeled using density functional theory (DFT) to understand the passivation mechanism at an atomic scale. First, the organic super acid, bis(trifluoromethane)sulfonimide (TFSI) is a strong protonating agent, and it is experimentally found to greatly increase the photoluminescence efficiency. DFT simulations find that the effectiveness of passivation depends critically on the charge state and number of hydrogens donated by TFSI since this determines the symmetry of the defect complex. A symmetrical complex is formed by three hydrogen atoms bonding to the defect in a -1 charge state, and this gives no bandgap states and a Fermi level in the midgap. However, a charge state of +1 gives a lower symmetry complex with one state in the gap. One or two hydrogens also give complexes with gap states. Second, passivation by O2 can provide partial passivation by forming a bridge bond across the S vacancy, but it leaves a defect state in the lower bandgap. On the other hand, substitutional additions do not shift the vacancy states out of the gap.

  9. Origin of the 900 cm{sup −1} broad double-hump OH vibrational feature of strongly hydrogen-bonded carboxylic acids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoozen, Brian L.; Petersen, Poul B.

    2015-03-14

    Medium and strong hydrogen bonds are common in biological systems. Here, they provide structural support and can act as proton transfer relays to drive electron and/or energy transfer. Infrared spectroscopy is a sensitive probe of molecular structure and hydrogen bond strength but strongly hydrogen-bonded structures often exhibit very broad and complex vibrational bands. As an example, strong hydrogen bonds between carboxylic acids and nitrogen-containing aromatic bases commonly display a 900 cm{sup −1} broad feature with a remarkable double-hump structure. Although previous studies have assigned this feature to the OH, the exact origin of the shape and width of this unusualmore » feature is not well understood. In this study, we present ab initio calculations of the contributions of the OH stretch and bend vibrational modes to the vibrational spectrum of strongly hydrogen-bonded heterodimers of carboxylic acids and nitrogen-containing aromatic bases, taking the 7-azaindole—acetic acid and pyridine—acetic acid dimers as examples. Our calculations take into account coupling between the OH stretch and bend modes as well as how both of these modes are affected by lower frequency dimer stretch modes, which modulate the distance between the monomers. Our calculations reproduce the broadness and the double-hump structure of the OH vibrational feature. Where the spectral broadness is primarily caused by the dimer stretch modes strongly modulating the frequency of the OH stretch mode, the double-hump structure results from a Fermi resonance between the out of the plane OH bend and the OH stretch modes.« less

  10. Sulfur Hydrogen Bonding in Isolated Monohydrates: Furfuryl Mercaptan versus Furfuryl Alcohol.

    PubMed

    Juanes, Marcos; Lesarri, Alberto; Pinacho, Ruth; Charro, Elena; Rubio, José E; Enríquez, Lourdes; Jaraíz, Martín

    2018-05-02

    The hydrogen bonds involving sulfur in the furfuryl mercaptan monohydrate are compared with the interactions originating from the hydroxyl group in furfuryl alcohol. The dimers with water were created in a supersonic jet expansion and characterized using microwave spectroscopy and supporting molecular orbital calculations. In furfuryl alcohol-water, a single isomer is observed, in which the water molecule forms an insertion complex with two simultaneous hydrogen bonds to the alcohol (O-H⋅⋅⋅O w ) and the ring oxygen (O w -H⋅⋅⋅O r ). When the alcohol is replaced by a thiol group in furfuryl mercaptan-water, two isomers are observed, with the thiol group preferentially behaving as proton donor to water. The first isomer is topologically equivalent to the alcohol analog but the stronger hydrogen bond is now established by water and the ring oxygen, assisted by a thiol S-H⋅⋅⋅O w hydrogen bond. In the second isomer the sulfur group accepts a proton from water, forming a O w -H⋅⋅⋅S hydrogen bond. Binding energies for the mercaptan-water dimer are predicted around 12 kJ mol -1 weaker than in the alcohol hydrate (B3LYP-D3(BJ)). The non-covalent interactions in the furfuryl dimers are dominantly electrostatic according to a SAPT(0) energy decomposition, but with increasing dispersion components in the mercaptan dimers, which are larger for the isomer with the weaker O w -H⋅⋅⋅S interaction. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. Structure and tunneling dynamics in a model system of peptide co-solvents: rotational spectroscopy of the 2,2,2-trifluoroethanol⋯water complex.

    PubMed

    Thomas, Javix; Xu, Yunjie

    2014-06-21

    The hydrogen-bonding topology and tunneling dynamics of the binary adduct, 2,2,2-trifluoroethanol (TFE)⋯water, were investigated using chirped pulse and cavity based Fourier transform microwave spectroscopy with the aid of high level ab initio calculations. Rotational spectra of the most stable binary TFE⋯water conformer and five of its deuterium isotopologues were assigned. A strong preference for the insertion binding topology where water is inserted into the existing intramolecular hydrogen-bonded ring of TFE was observed. Tunneling splittings were detected in all of the measured rotational transitions of TFE⋯water. Based on the relative intensity of the two tunneling components and additional isotopic data, the splitting can be unambiguously attributed to the tunneling motion of the water subunit, i.e., the interchange of the bonded and nonbonded hydrogen atoms of water. The absence of any other splitting in the rotational transitions of all isotopologues observed indicates that the tunneling between g+ and g- TFE is quenched in the TFE⋯H2O complex.

  12. Structure of solvates of o-hydroxybenzoic acid in supercritical CO2-cosolvent media, according to molecular dynamics data

    NASA Astrophysics Data System (ADS)

    Petrenko, V. E.; Antipova, M. L.; Gurina, D. L.

    2015-03-01

    Three-component supercritical carbon dioxide-cosolvent (methanol, ethanol, water)- o-hydroxybenzoic acid ( o-HBA) mixtures at a density of 0.7 g/cm3 and temperatures of 318 and 348 K are simulated by means of molecular dynamics. The solvate structures are investigated. It is shown that the solvation mechanism of o-HBA (particularly the o-HBA molecule forming a stable solvate complex with one molecule of a cosolvent via a hydrogen bond through the carboxyl group) does not depend on the temperature or the cosolvent. It is noted that the form of the cosolvent in a supercritical fluid varies: alcohols are distributed in the bulk in the form of monomers and hydrogen-bonded dimers, and water molecules tend to form microclusters along with chained and spatially branched structures by means of hydrogen bonds. It is established that the local molar fraction of cosolvent around the solvate complexes grows. It is concluded that the solvation of o-HBA is determined by the behavior of cosolvent in media of supercritical CO2.

  13. Probing hydrogen bond networks in half-sandwich Ru(II) building blocks by a combined 1H DQ CRAMPS solid-state NMR, XRPD, and DFT approach.

    PubMed

    Chierotti, Michele R; Gobetto, Roberto; Nervi, Carlo; Bacchi, Alessia; Pelagatti, Paolo; Colombo, Valentina; Sironi, Angelo

    2014-01-06

    The hydrogen bond network of three polymorphs (1α, 1β, and 1γ) and one solvate form (1·H2O) arising from the hydration-dehydration process of the Ru(II) complex [(p-cymene)Ru(κN-INA)Cl2] (where INA is isonicotinic acid), has been ascertained by means of one-dimensional (1D) and two-dimensional (2D) double quantum (1)H CRAMPS (Combined Rotation and Multiple Pulses Sequences) and (13)C CPMAS solid-state NMR experiments. The resolution improvement provided by homonuclear decoupling pulse sequences, with respect to fast MAS experiments, has been highlighted. The solid-state structure of 1γ has been fully characterized by combining X-ray powder diffraction (XRPD), solid-state NMR, and periodic plane-wave first-principles calculations. None of the forms show the expected supramolecular cyclic dimerization of the carboxylic functions of INA, because of the presence of Cl atoms as strong hydrogen bond (HB) acceptors. The hydration-dehydration process of the complex has been discussed in terms of structure and HB rearrangements.

  14. Theory after experiment on sensing mechanism of a newly developed sensor molecule: Converging or diverging?

    NASA Astrophysics Data System (ADS)

    Paul, Suvendu; Karar, Monaj; Das, Biswajit; Mallick, Arabinda; Majumdar, Tapas

    2017-12-01

    Fluoride ion sensing mechanism of 3,3‧-bis(indolyl)-4-chlorophenylmethane has been analyzed with density functional and time-dependent density functional theories. Extensive theoretical calculations on molecular geometry & energy, charge distribution, orbital energies & electronic distribution, minima on potential energy surface confirmed strong hydrogen bonded sensor-anion complex with incomplete proton transfer in S0. In S1, strong hydrogen bonding extended towards complete ESDPT. The distinct and single minima on the PES of the sensor-anion complex for both ground and first singlet excited states confirmed the concerted proton transfer mechanism. Present study well reproduced the experimental spectroscopic data and provided ESDPT as probable fluoride sensing mechanism.

  15. Hydrogen-Atom Transfer Oxidation with H2O2 Catalyzed by [FeII(1,2-bis(2,2'-bipyridyl-6-yl)ethane(H2O)2]2+: Likely Involvement of a (μ-Hydroxo)(μ-1,2-peroxo)diiron(III) Intermediate.

    PubMed

    Khenkin, Alexander M; Vedichi, Madhu; Shimon, Linda J W; Cranswick, Matthew A; Klein, Johannes E M N; Que, Lawrence; Neumann, Ronny

    2017-11-01

    The iron(II) triflate complex ( 1 ) of 1,2-bis(2,2'-bipyridyl-6-yl)ethane, with two bipyridine moieties connected by an ethane bridge, was prepared. Addition of aqueous 30% H 2 O 2 to an acetonitrile solution of 1 yielded 2 , a green compound with λ max =710 nm. Moessbauer measurements on 2 showed a doublet with an isomer shift (δ) of 0.35 mm/s and a quadrupole splitting (Δ E Q ) of 0.86 mm/s, indicative of an antiferromagnetically coupled diferric complex. Resonance Raman spectra showed peaks at 883, 556 and 451 cm -1 that downshifted to 832, 540 and 441 cm -1 when 1 was treated with H 2 18 O 2 . All the spectroscopic data support the initial formation of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that oxidizes carbon-hydrogen bonds. At 0°C 2 reacted with cyclohexene to yield allylic oxidation products but not epoxide. Weak benzylic C-H bonds of alkylarenes were also oxidized. A plot of the logarithms of the second order rate constants versus the bond dissociation energies of the cleaved C-H bond showed an excellent linear correlation. Along with the observation that oxidation of the probe substrate 2,2-dimethyl-1-phenylpropan-1-ol yielded the corresponding ketone but no benzaldehyde, and the kinetic isotope effect, k H /k D , of 2.8 found for the oxidation of xanthene, the results support the hypothesis for a metal-based H-atom abstraction mechanism. Complex 2 is a rare example of a (μ-hydroxo)(μ-1,2-peroxo)diiron(III) complex that can elicit the oxidation of carbon-hydrogen bonds.

  16. Interactions of Enolizable Barbiturate Dyes.

    PubMed

    Schade, Alexander; Schreiter, Katja; Rüffer, Tobias; Lang, Heinrich; Spange, Stefan

    2016-04-11

    The specific barbituric acid dyes 1-n-butyl-5-(2,4-dinitro-phenyl) barbituric acid and 1-n-butyl-5-{4-[(1,3-dioxo-1H-inden-(3 H)-ylidene)methyl]phenyl}barbituric acid were used to study complex formation with nucleobase derivatives and related model compounds. The enol form of both compounds shows a strong bathochromic shift of the UV/Vis absorption band compared to the rarely coloured keto form. The keto-enol equilibria of the five studied dyes are strongly dependent on the properties of the environment as shown by solvatochromic studies in ionic liquids and a set of organic solvents. Enol form development of the barbituric acid dyes is also associated with alteration of the hydrogen bonding pattern from the ADA to the DDA type (A=hydrogen bond acceptor site, D=donor site). Receptor-induced altering of ADA towards DDA hydrogen bonding patterns of the chromophores are utilised to study supramolecular complex formation. As complementary receptors 9-ethyladenine, 1-n-butylcytosine, 1-n-butylthymine, 9-ethylguanidine and 2,6-diacetamidopiridine were used. The UV/Vis spectroscopic response of acid-base reaction compared to supramolecular complex formation is evaluated by (1)H NMR titration experiments and X-ray crystal structure analyses. An increased acidity of the barbituric acid derivative promotes genuine salt formation. In contrast, supramolecular complex formation is preferred for the weaker acidic barbituric acid. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  17. Polymer Soft-Landing Isolation of Acetylene on Polystyrene and Poly(vinylpyridine): A Novel Approach to Probing Hydrogen Bonding in Polymers.

    PubMed

    Li, Yike; Samet, Cindy

    2015-09-17

    Hydrogen-bonded complexes of acetylene (Ac) with the polymers polystyrene (PS), poly(4-vinylpyridine) (P4VP), and poly(2-vinylpyridine) (P2VP) have been characterized for the first time at 16 K in a "polymer soft-landing isolation" experiment which is being pioneered in our research laboratory. In particular, changes in vibrational modes of Ac provide ample evidence for hydrogen-bonded complexes between Ac and the phenyl groups of PS or the pyridyl groups of P4VP and P2VP. With PS, the proton on the top Ac molecule of the classic T-shaped Ac dimer interacts with the π cloud of the benzene (Bz) ring to form a C-H---π interaction, while the π cloud of the lower Ac forms a second C-H---π interaction with a proton on the Bz ring. An analogous (ring)1-(Ac)2 double interaction occurs between an Ac dimer and the pyridine (Pyr) rings on both P2VP and P4VP, yielding a C-H---N and C-H---π interaction. With P4VP and P2VP a second bridged (ring)2-(Ac)2 product is formed, with the Ac dimer forming nearly collinear C-H---N hydrogen bonds to adjacent Pyr rings. On P2VP this bridged product is the only one after extensive annealing. These complexes in which Ac acts as both proton donor and acceptor have not previously been observed in conventional matrix isolation experiments. This study is the second from our laboratory employing this method, which represents a slight modification of the traditional matrix isolation technique.

  18. Understanding peptide competitive inhibition of botulinum neurotoxin A binding to SV2 protein via molecular dynamics simulations.

    PubMed

    Chang, Shan; He, Hong-Qiu; Shen, Lin; Wan, Hua

    2015-10-01

    Botulinum neurotoxins (BoNTs) are known as the most toxic natural substances. Synaptic vesicle protein 2 (SV2) has been proposed to be a protein receptor for BoNT/A. Recently, two short peptides (BoNT/A-A2 and SV2C-A3) were designed to inhibit complex formation between the BoNT/A receptor-binding domain (BoNT/A-RBD) and the synaptic vesicle protein 2C luminal domain (SV2C-LD). In this article, the two peptide complex systems are studied by molecular dynamics (MD) simulations. The structural stability analysis indicates that BoNT/A-A2 system is more stable than SV2C-A3 system. The conformational analysis implies that the β-sheet in BoNT/A-A2 system maintains its secondary structure but the two β-strands in SV2C-A3 system have remarkable conformational changes. Based on the calculation of hydrogen bonds, hydrophobic interactions and cation-π interactions, it is found that the internal hydrogen bonds play crucial roles in the structural stability of the peptides. Because of the stable secondary structure, the β-sheet in BoNT/A-A2 system establishes effective interactions at the interface and inhibits BoNT/A-RBD binding to SV2C-LD. In contrast, without other β-strands forming internal hydrogen bonds, the two isolated β-strands in SV2C-A3 system become the random coil. This conformational change breaks important hydrogen bonds and weakens cation-π interaction in the interface, so the complex formation is only partially inhibited by the two β-strands. These results are consistent with experimental studies and may be helpful in understanding the inhibition mechanisms of peptide inhibitors. © 2015 Wiley Periodicals, Inc.

  19. Chromatographic Assessment of Hydrogen-Bond Donating Ability

    DTIC Science & Technology

    1993-04-22

    hydrogen-bond donors used in cocrystallizations . Hydrogen-bond donor solutes are chromatographed on a poly(vinylpyridine-divinylbenzene) column under...provides an a priori measure of the hydrogen- bond acidity of a potential cocrystal component. 20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21 ABSTRACT...general heuristic principle that has guided our cocrystallization studies is "the best hydrogen-bond donor hydrogen bonds to the best hydrogen-bond acceptor

  20. Structural study of Ni- or Mg-based complexes incorporated within UiO-66-NH{sub 2} framework and their impact on hydrogen sorption properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Žunkovič, E.; Mazaj, M.; Mali, G.

    2015-05-15

    Nickel and magnesium acetylacetonate molecular complexes were post-synthetically incorporated into microporous zirconium-based MOF (UiO-66-NH{sub 2}) in order to introduce active open-metal sites for hydrogen sorption. Elemental analysis, nitrogen physisorption and DFT calculations revealed that 5 molecules of Ni(acac){sub 2} or 2 molecules of Mg(acac){sub 2} were incorporated into one unit cell of UiO-66-NH{sub 2}. {sup 1}H–{sup 13}C CPMAS and {sup 1}H MAS NMR spectroscopy showed that, although embedded within the pores, both Ni- and Mg-complexes interacted with the UiO-66-NH{sub 2} framework only through weak van der Waals bonds. Inclusion of metal complexes led to the decrease of hydrogen sorption capacitiesmore » in Ni-modified as well as in Mg-modified samples in comparison with the parent UiO-66-NH{sub 2}. The isosteric hydrogen adsorption enthalpy slightly increased in the case of Ni-modified material, but not in the case of Mg-modified analogue. - Graphical abstract: A post-synthesis impregnation of Mg- and Ni-acetylacetonate complexes performed on zirconium-based MOF UiO-66-NH{sub 2} does influence the hydrogen sorption performance with respect to the parent matrix. The structural study revealed that Mg- and Ni-acetylacetonate molecules interact with zirconium-terephthalate framework only by weak interactions and they are not covalently bonded to aminoterephthalate ligand. Still, they remain confined into the pores even after hydrogen sorption experiments. - Highlights: • Mg- and Ni-acetylacetonate molecules embedded in the pores of UiO-66-NH{sub 2} by PSM. • Molecules of complexes interact with framework only by van der Waals interactions. • Type/structure of deposited metal-complex impact hydrogen enthalpy of adsorption.« less

  1. Ferutinin as a Ca(2+) complexone: lipid bilayers, conductometry, FT-IR, NMR studies and DFT-B3LYP calculations.

    PubMed

    Dubis, A; Zamaraeva, M V; Siergiejczyk, L; Charishnikova, O; Shlyonsky, V

    2015-10-07

    Calcium ionophoretic properties of ferutinin were re-evaluated in solvent-containing bilayer lipid membranes. The slopes of conductance-concentration curves suggest that in the presence of a solvent in the membrane the majority of complexes appear to consist of a single terpenoid molecule bound to one Ca ion. By contrast, the stoichiometry of ferutinin-Ca(2+) complexes in acetone determined using the conductometric method was 2 : 1. While the cation-cation selectivity of ferutinin did not change, the cation-anion selectivity slightly decreased in solvent containing membranes. FT-IR and NMR data together with DFT calculations at the B3LYP/6-31G(d) level of theory indicate that in the absence of Ca ions ferutinin molecules are hydrogen-bonded at the phenol hydroxyl groups. The variations of absorption assigned to -OH and -C-O stretching mode suggest that ferutinin interacts strongly with Ca ions via the hydroxyl group of ferutinol and carboxyl oxygen of the complex ether bond. The coordination through the carbonyl group of ferutinin was demonstrated by theoretical calculations. Taken together, ferutinin molecules form H-bonded dimers, while complexation of Ca(2+) by ferutinin ruptures this hydrogen bond due to spatial re-orientation of the ferutinin molecules from parallel to antiparallel alignment.

  2. Hydrothermal syntheses, characterizations and crystal structures of a new lead(II) carboxylate-phosphonate with a double layer structure and a new nickel(II) carboxylate-phosphonate containing a hydrogen-bonded 2D layer with intercalation of ethylenediamines

    NASA Astrophysics Data System (ADS)

    Song, Jun-Ling; Mao, Jiang-Gao; Sun, Yan-Qiong; Zeng, Hui-Yi; Kremer, Reinhard K.; Clearfield, Abraham

    2004-03-01

    Hydrothermal reactions of N, N-bis(phosphonomethyl)aminoacetic acid (HO 2CCH 2N(CH 2PO 3H 2) 2) with metal(II) salts afforded two new metal carboxylate-phosphonates, namely, Pb 2[O 2CCH 2N(CH 2PO 3)(CH 2PO 3H)]·H 2O ( 1) and {NH 3CH 2CH 2NH 3}{Ni[O 2CCH 2N(CH 2PO 3H) 2](H 2O) 2} 2 ( 2). Among two unique lead(II) ions in the asymmetric unit of complex 1, one is five coordinated by five phosphonate oxygen atoms from 5 ligands, whereas the other one is five-coordinated by a tridentate chelating ligand (1 N and 2 phosphonate O atoms) and two phosphonate oxygen atoms from two other ligands. The carboxylate group of the ligand remains non-coordinated. The bridging of above two types of lead(II) ions through phosphonate groups resulted in a <002> double layer with the carboxylate group of the ligand as a pendant group. These double layers are further interlinked via hydrogen bonds between the carboxylate groups into a 3D network. The nickel(II) ion in complex 2 is octahedrally coordinated by a tetradentate chelating ligand (two phosphonate oxygen atoms, one nitrogen and one carboxylate oxygen atoms) and two aqua ligands. These {Ni[O 2CCH 2N(CH 2PO 3H) 2][H 2O] 2} - anions are further interlinked via hydrogen bonds between non-coordinated phosphonate oxygen atoms to form a <800> hydrogen bonded 2D layer. The 2H-protonated ethylenediamine cations are intercalated between two layers, forming hydrogen bonds with the non-coordinated carboxylate oxygen atoms. Results of magnetic measurements for complex 2 indicate that there is weak Curie-Weiss behavior with θ=-4.4 K indicating predominant antiferromagnetic interaction between the Ni(II) ions. Indication for magnetic low-dimension magnetism could not be detected.

  3. Study on the mechanism of copper-ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal.

    PubMed

    Peng, Cong; Chai, Liyuan; Tang, Chongjian; Min, Xiaobo; Song, Yuxia; Duan, Chengshan; Yu, Cheng

    2017-01-01

    Heavy metals and ammonia are difficult to remove from wastewater, as they easily combine into refractory complexes. The struvite formation method (SFM) was applied for the complex decomposition and simultaneous removal of heavy metal and ammonia. The results indicated that ammonia deprivation by SFM was the key factor leading to the decomposition of the copper-ammonia complex ion. Ammonia was separated from solution as crystalline struvite, and the copper mainly co-precipitated as copper hydroxide together with struvite. Hydrogen bonding and electrostatic attraction were considered to be the main surface interactions between struvite and copper hydroxide. Hydrogen bonding was concluded to be the key factor leading to the co-precipitation. In addition, incorporation of copper ions into the struvite crystal also occurred during the treatment process. Copyright © 2016. Published by Elsevier B.V.

  4. Bambus[6]uril as a novel macrocyclic receptor for the nitrate anion.

    PubMed

    Toman, Petr; Makrlík, Emanuel; Vanura, Petr

    2013-01-01

    By using quantum mechanical DFT calculations, the most probable structure of the bambus[6]uril x NO3(-) anionic complex species was derived. In this complex having C3 symmetry, the nitrate anion NO3(-), included in the macrocyclic cavity, is bound by twelve weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the considered NO3(-) ion.

  5. Hydrogen-bonded complexes between dimethyl sulfoxide and monoprotic acids: molecular properties and IR spectroscopy.

    PubMed

    Belarmino, Márcia K D L; Cruz, Vanessa F; Lima, Nathália B D

    2014-11-01

    MP2/6-31++G(d,p) and DFT B3LYP/6-31++G(d,p) calculations were performed of the structure, binding energies, and vibrational modes of complexes between dimethyl sulfoxide (DMSO) as a proton acceptor and monoprotic linear acids HX (X = F, Cl, CN) as well as monoprotic carboxylic acids HOOCR (R = -H, -CH3, -C6H5) in 1:1 and 1:2 stoichiometric ratios. The results show that two different structures are possible in the 1:2 ratio: in the first, the DMSO molecule interacts with both acid molecules (leading to a "Y" structure); in the second, the DMSO interacts with only one monoprotic acid. The second structure shows a lower stability per hydrogen bond. The spontaneities of the reactions to form the 1:1 and 1:2 complexes are greatly influenced by the X group of the linear acid. With the exception of HCN, all the reactions are spontaneous. In the 1:2 complexes with Y structure, we observed that the hydrogen atoms of the linear acid are coupled in symmetric and asymmetric modes, while this type of coupling is absent from the other 1:2 complexes.

  6. (2E)-3-(6-methoxynaphthalen-2-yl)-1-(pyridin-3-yl)prop-2-en-1-one and its cyclocondensation product with guanidine, (4RS)-2-amino-4-(6-methoxynaphthalen-2-yl)-6-(pyridin-3-yl)-3,4-dihydropyrimidine monohydrate: two types of hydrogen-bonded sheet.

    PubMed

    Nayak, Prakash S; Narayana, Badiadka; Yathirajan, Hemmige S; Hosten, Eric C; Betz, Richard; Glidewell, Christopher

    2014-11-01

    The structures of a chalcone and of its cyclocondensation product with guanidine are reported. In (2E)-3-(6-methoxynaphthalen-2-yl)-1-(pyridin-3-yl)prop-2-en-1-one, C19H15NO2, (I), the planes of the pyridine and naphthalene units make dihedral angles with that of the central spacer unit of 23.61 (13) and 23.57 (15)°, respectively, and a dihedral angle of 47.24 (9)° with each other. The molecules of (I) are linked into sheets by a combination of C-H···O and C-H···π(arene) hydrogen bonds. In the cyclocondensation product (4RS)-2-amino-4-(6-methoxynaphthalen-2-yl)-6-(pyridin-3-yl)-3,4-dihydropyrimidine monohydrate, C20H18N4O·H2O, (II), the dihydropyrimidine ring adopts a conformation best described as a shallow boat. The molecular components are linked by two N-H···O hydrogen bonds, two O-H···N hydrogen bonds and one N-H···N hydrogen bond to form complex sheets, with the methoxynaphthalene interdigitated between inversion-related pairs of sheets.

  7. Effects of hydrogen bonding between pyrrole-2-carboxaldehyde and nearest polar and nonpolar environment

    NASA Astrophysics Data System (ADS)

    Rana, Meenakshi; Chowdhury, Papia

    2017-10-01

    The present paper represents dominant effects of hydrogen bonding on the existence of different molecular aggregates in one of the heterocyclic pyrrole system: pyrrole-2-carboxaldehyde (PCL). Theoretical and experimental Raman spectral evidence verifies the existence of different molecular aggregates like dimeric, monomeric, hydrated complex states in PCL. Atoms in molecules (AIMs) analysis and fluorescence decay profile provide a strong signature of intermolecular hydrogen bonding (IerHB) as the possible reason for the existence of cis form of dimeric (X) molecular aggregates. The high remnant polarization of 3.13 μCcm- 2 and smaller dielectric loss in solid form of PCL arise due to in X by ordering of dipoles as a result of IerHB. A remarkable high ferroelectric response in solid phase makes PCL a desirable candidate to be used as raw material for energy storage devices. For solution phase, in presence of external hydroxylic environment, PCL reacts with external water molecules through weak IerHB and creates different hydrated PCL/(H2O)n complexes by creating water bridge with number of water molecules from 1 to n. An increasing number of water molecules helps to form stronger hydrated complex by separation of charges by lowering the transferring energy barrier.

  8. Syntheses, spectroscopic properties and molecular structure of silver phytate complexes - IR, UV-VIS studies and DFT calculations

    NASA Astrophysics Data System (ADS)

    Zając, A.; Dymińska, L.; Lorenc, J.; Ptak, M.; Hanuza, J.

    2018-03-01

    Silver phytate IP6, IP6Ag, IP6Ag2 and IP6Ag3 complexes in the solid state have been synthesized changing the phosphate to metal mole ratio. The obtained products have been characterized by means of chemical and spectroscopic studies. Attenuated total reflection Fourier transform infrared technique and Raman microscope were used in the measurements. These results were discussed in terms of DFT (Density Functional Theory) quantum chemical calculations using the B3LYP/6-31G(d,p) approach. The molecular structures of these compounds have been proposed on the basis of group theory and geometry optimization taking into account the shape and the number of the observed bands corresponding to the stretching and bending vibrations of the phosphate group and metal-oxygen polyhedron. The role of inter- and intra-hydrogen bonds in stabilization of the structure has been discussed. It was found that three types of hydrogen bonds appear in the studied compounds: terminal, and those engaged in the inter- and intra-molecular interactions. The Fermi resonance as a result of the strong intra-molecular Osbnd H⋯O hydrogen bonds was discovered. Electron absorption spectra have been measured to characterize the electron properties of the studied complexes and their local symmetry.

  9. Manganese complex-catalyzed oxidation and oxidative kinetic resolution of secondary alcohols by hydrogen peroxide.

    PubMed

    Miao, Chengxia; Li, Xiao-Xi; Lee, Yong-Min; Xia, Chungu; Wang, Yong; Nam, Wonwoo; Sun, Wei

    2017-11-01

    The highly efficient catalytic oxidation and oxidative kinetic resolution (OKR) of secondary alcohols has been achieved using a synthetic manganese catalyst with low loading and hydrogen peroxide as an environmentally benign oxidant in the presence of a small amount of sulfuric acid as an additive. The product yields were high (up to 93%) for alcohol oxidation and the enantioselectivity was excellent (>90% ee) for the OKR of secondary alcohols. Mechanistic studies revealed that alcohol oxidation occurs via hydrogen atom (H-atom) abstraction from an α-CH bond of the alcohol substrate and a two-electron process by an electrophilic Mn-oxo species. Density functional theory calculations revealed the difference in reaction energy barriers for H-atom abstraction from the α-CH bonds of R - and S -enantiomers by a chiral high-valent manganese-oxo complex, supporting the experimental result from the OKR of secondary alcohols.

  10. Spectroscopic and structural studies of the first complex formed between salinomycin and organic amine

    NASA Astrophysics Data System (ADS)

    Antoszczak, Michał; Janczak, Jan; Brzezinski, Bogumił; Huczyński, Adam

    2017-02-01

    For the first time, the crystalline complex of salinomycin with benzylamine was obtained and its molecular structure was studied using single crystal X-ray diffraction, FT-IR, 1H NMR, 13C NMR, 2D NMR and ESI MS methods. These studies provided evidence that the proton from the carboxylic group of salinomycin (SAL) is transferred to the amine group of benzylamine (BnA) forming the host-guest complex (SAL-BnA). It was shown that the SAL-BnA complex both in solid state and in chloroform solution is stabilized by the intramolecular O-H⋯O hydrogen bonds and also by the intermolecular hydrogen bonding interactions of the carboxylate, ketone and/or hydroxyl groups of SAL with water molecules present in the investigated system. The solvated acetonitrile molecules are additionally located in the voids between the SAL-BnA complex molecules in the crystal structure, while water molecules involved in the dihydrated crystalline SAL-BnA complex partially move into the solvent upon dissolution in chloroform.

  11. Biasing hydrogen bond donating host systems towards chemical warfare agent recognition.

    PubMed

    Hiscock, Jennifer R; Wells, Neil J; Ede, Jayne A; Gale, Philip A; Sambrook, Mark R

    2016-10-12

    A series of neutral ditopic and negatively charged, monotopic host molecules have been evaluated for their ability to bind chloride and dihydrogen phosphate anions, and neutral organophosphorus species dimethyl methylphosphonate (DMMP), pinacolyl methylphosphonate (PMP) and the chemical warfare agent (CWA) pinacolyl methylphosphonofluoridate (GD, soman) in organic solvent via hydrogen bonding. Urea, thiourea and boronic acid groups are shown to bind anions and neutral guests through the formation of hydrogen bonds, with the urea and thiourea groups typically exhibiting higher affinity interactions. The introduction of a negative charge on the host structure is shown to decrease anion affinity, whilst still allowing for high stability host-GD complex formation. Importantly, the affinity of the host for the neutral CWA GD is greater than for anionic guests, thus demonstrating the potential for selectivity reversal based on charge repulsion.

  12. Multicomponent hydrogen-bonding organic solids constructed from 6-hydroxy-2-naphthoic acid and N-heterocycles: Synthesis, structural characterization and synthon discussion

    NASA Astrophysics Data System (ADS)

    Zong, Yingxia; Shao, Hui; Pang, Yanyan; Wang, Debao; Liu, Kang; Wang, Lei

    2016-07-01

    Seven novel multicomponent crystals involving various substituted organic amine molecules and 6-hydroxy-2-naphthoic acid were prepared and characterized by using single crystal X-ray diffraction, infrared and thermogravimetric analyses (TGA). Crystal structures with 1,4-bis(imidazol) butane (L1) 1, 1,4-bis(imidazol-1-ylmethyl)benzene (L2) 2, 1-phenyl piperazine 3, 2-amino-4-hydroxy-6-methyl pyrimidine 4, 4,4'-bipyridine 5, 5,5'-dimethyl-2,2'-dipyridine 6, 2-amino-4,6-dimethyl pyrimidine 7 were determined. Among the seven molecular complexes, total proton transfer from 6-hydroxy-2-naphthoic acid to coformer has occurred in crystals 1-4, while the remaining were cocrystals. X-ray single-crystal structures of these complexes reveal that strong hydrogen bonding O-H···O/N-H···O/O-H···N and weak C-H···O/C-H···π/π···π intermolecular interactions direct the packing modes of molecular crystals together. The analysis of supramolecular synthons in the present structures shows that some classical supramolecular synthons like pyridine-carboxylic acid heterosynthon R22 (7) and aminopyridine-carboxylic acid heterosynthon R22 (8), are again observed in constructing the hydrogen-bonding networks in this paper. Besides, we noticed that water molecules act as a significant hydrogen-bonding connector in constructing supramolecular architectures of 3, 4, 6, and 7.

  13. Cyclic tetraureas with variable flexibility--synthesis, crystal structures and properties.

    PubMed

    Meshcheryakov, Denys; Arnaud-Neu, Françoise; Böhmer, Volker; Bolte, Michael; Cavaleri, Julien; Hubscher-Bruder, Véronique; Thondorf, Iris; Werner, Sabine

    2008-09-21

    Macrocyclic molecules containing several amide or urea functions may serve as anion receptors. We describe the synthesis of 32-membered macrocycles, in which four rigid xanthene units (X) and/or diphenyl ether units (D) as flexible analogues are linked via urea groups. All six possible combinations of these units (XXXX, XXXD, XXDD, XDXD, XDDD and DDDD) were synthesized and two examples were characterised by single-crystal X-ray analyses (DDDD and two structures for XXXD). Both macrocycles showed distinct differences in their overall conformation and consequently in their hydrogen-bonding pattern. Hydrogen-bonded solvent molecules are found for both compounds and intramolecular hydrogen bonds for the two structures of XXXD, but surprisingly no direct intermolecular hydrogen bonds between the macrocyclic tetraurea molecules. The interaction with various anions was studied by (1)H NMR spectroscopy. Stability constants for all tetramers were determined by UV spectroscopy for complexes with chloride, bromide, acetate and dihydrogenphosphate in acetonitrile-THF (3:1). The strongest binding was found for XXXD and acetate (log beta = 7.4 +/- 0.2), the weakest for XXXX and acetate (log beta = 5.1 +/- 0.5). MD simulations in chloroform and acetonitrile boxes show that all molecules except DDDD adopt very similar conformations characterized by an up-down-up-down arrangement of the spacer groups. Clustered solvation shells of acetonitrile molecules around XXXX and DDDD suggest their preorganization for spherical/planar and tetrahedral/bidentate anions, respectively, which in turn was corroborated by simulation of the corresponding complexes with chloride and dihydrogenphosphate.

  14. A simple and efficient anionic chromogenic chemosensor based on 2,4-dinitrodiphenylamine in dimethyl sulfoxide and in dimethyl sulfoxide-water mixtures

    NASA Astrophysics Data System (ADS)

    Marini, Vanderléia Gava; Zimmermann, Lizandra Maria; Machado, Vanderlei Gageiro

    2010-02-01

    Solutions of 2,4-dinitrodiphenylamine ( 1) in dimethylsulfoxide (DMSO) are colorless but upon deprotonation they become red. Addition of various anionic species (HSO 4-, H 2PO 4-, NO 3-, CN -, CH 3COO -, F -, Cl -, Br -, and I -) to solutions of 1 revealed that only CN -, F -, CH 3COO -, and H 2PO 4- led to the appearance of the red color in solution. The presence of increasing amounts of water in solutions containing 1 made it progressively selective toward CN - and the system with the addition of 4.3% (v/v) of water was highly selective for CN - among all anions studied. The experimental data collected indicated that proton transfer from 1 to the anion occurs, and a model was used to explain the experimental results, which considers two 1:anion stoichiometries, 1:1 and 1:2. For the latter, the data suggest that the anion forms firstly a hydrogen-bonded complex with a second anion equivalent necessary for the abstraction of the proton, with the formation of a [HA 2] - complex. The study performed here demonstrates the important role of the environment of the anion and 1 for the efficiency of the chromogenic chemosensor. Besides the different affinities of each anion for water, the solvation of both the anion and 1 is responsible for reducing the interaction between these species. In small amounts, water or hydrogen-bonded DMSO-water complexes are able to stabilize the conjugated base of 1 through hydrogen bonding, making 1 more acidic, which explains the change from 1:1 and 1:2 toward 1:1 1:anion stoichiometry upon addition of water. In addition, water is able to solvate the anion and also 1, which hinders the formation of 1:1 hydrogen-bonded 1:anion complexes prior to the abstraction of the proton.

  15. A simple and efficient anionic chromogenic chemosensor based on 2,4-dinitrodiphenylamine in dimethyl sulfoxide and in dimethyl sulfoxide-water mixtures.

    PubMed

    Marini, Vanderléia Gava; Zimmermann, Lizandra Maria; Machado, Vanderlei Gageiro

    2010-02-01

    Solutions of 2,4-dinitrodiphenylamine (1) in dimethylsulfoxide (DMSO) are colorless but upon deprotonation they become red. Addition of various anionic species (HSO(4)(-), H(2)PO(4)(-), NO(3)(-), CN(-), CH(3)COO(-), F(-), Cl(-), Br(-), and I(-)) to solutions of 1 revealed that only CN(-), F(-), CH(3)COO(-), and H(2)PO(4)(-) led to the appearance of the red color in solution. The presence of increasing amounts of water in solutions containing 1 made it progressively selective toward CN(-) and the system with the addition of 4.3% (v/v) of water was highly selective for CN(-) among all anions studied. The experimental data collected indicated that proton transfer from 1 to the anion occurs, and a model was used to explain the experimental results, which considers two 1:anion stoichiometries, 1:1 and 1:2. For the latter, the data suggest that the anion forms firstly a hydrogen-bonded complex with a second anion equivalent necessary for the abstraction of the proton, with the formation of a [HA(2)](-) complex. The study performed here demonstrates the important role of the environment of the anion and 1 for the efficiency of the chromogenic chemosensor. Besides the different affinities of each anion for water, the solvation of both the anion and 1 is responsible for reducing the interaction between these species. In small amounts, water or hydrogen-bonded DMSO-water complexes are able to stabilize the conjugated base of 1 through hydrogen bonding, making 1 more acidic, which explains the change from 1:1 and 1:2 toward 1:1 1:anion stoichiometry upon addition of water. In addition, water is able to solvate the anion and also 1, which hinders the formation of 1:1 hydrogen-bonded 1:anion complexes prior to the abstraction of the proton. Copyright (c) 2009 Elsevier B.V. All rights reserved.

  16. Vibrational dephasing and frequency shifts of hydrogen-bonded pyridine-water complexes

    NASA Astrophysics Data System (ADS)

    Kalampounias, A. G.; Tsilomelekis, G.; Boghosian, S.

    2015-01-01

    In this paper we present the picosecond vibrational dynamics and Raman shifts of hydrogen-bonded pyridine-water complexes present in aqueous solutions in a wide concentration range from dense to extreme dilute solutions. We studied the vibrational dephasing and vibrational frequency modulation by calculating time correlation functions of vibrational relaxation by fits in the frequency domain. The concentration induced variations in bandwidths, band frequencies and characteristic dephasing times have been estimated and interpreted as effects due to solute-solvent interactions. The time-correlation functions of vibrational dephasing were obtained for the ring breathing mode of both "free" and hydrogen-bonded pyridine molecules and it was found that sufficiently deviate from the Kubo model. There is a general agreement in the whole concentration range with the modeling proposed by the Rothschild approach, which applies to complex liquids. The results have shown that the reorientation of pyridine aqueous solutions is very slow and hence in both scattering geometries only vibrational dephasing is probed. It is proposed that the spectral changes depend on the perturbations induced by the dynamics of the water molecules in the first hydration cell and water in bulk, while at extreme dilution conditions, the number of bulk water molecules increases and the interchange between molecules belonging to the first hydration cell may not be the predominant modulation mechanism. The evolution of several parameters, such as the characteristic times, the percentage of Gaussian character in the peak shape and the a parameter are indicative of drastic variations at extreme dilution revealing changes in the vibrational relaxation of the pyridine complexes in the aqueous environment. The higher dilution is correlated to diffusion of water molecules into the reference pyridine system in agreement with the jump diffusion model, while at extreme dilutions, almost all pyridine molecules are elaborated in hydrogen bonding. The results are discussed in the framework of the current phenomenological status of the field.

  17. Synthesis and photoluminescence properties of silver(I) complexes based on N-benzoyl-L-glutamic acid and N-donor ligands with different flexibility

    NASA Astrophysics Data System (ADS)

    Yan, Ming-Jie; Feng, Qi; Song, Hui-Hua

    2016-05-01

    By changing the N-donor ancillary ligand, three novel silver (I) complexes {[Ag(HbzgluO) (4,4‧-bipy)]·H2O}n (1), {[Ag2(HbzgluO)2 (bpe)2]·2H2O}n (2) and {[Ag(HbzgluO)(bpp)]·2H2O}n (3) (H2bzgluO = N-benzoyl-L-glutamic acid, 4,4‧-bipy = 4,4ˊ-bipyridine, bpe = 1,2-di(4-pyridyl)ethane, bpp = 1,3-di(4-pyridyl)propane) were synthesized. Their structures have been determined by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). In this study, the N-donor ligands are changed from rigidity (4,4‧-bipy), quasi-flexibility (bpe) to flexibility (bpp), the structures of complexes also change. Complex 1 features a 1D chain structure which is further linked together to construct a 2D supramolecular structure through hydrogen bonds. Complex 2 is a 1D double-chains configuration which eventually forms a 3D supramolecular network via hydrogen bonding interactions. Whereas, complex 3 exhibits a 2D pleated grid structure which is linked by hydrogen bonding interactions into a 3D supramolecular network. The present observations demonstrate that the modulation of coordination polymers with different structures can accomplish by changing the spacer length of N-donor ligands. In addition, the solid-state circular dichroism (CD) spectra indicated that compound 2 exhibited negative cotton effect which originated from the chiral ligands H2bzgluO and the solid-state fluorescence spectra of the three complexes demonstrated the auxiliary ligands have influence on the photoluminescence properties of the complexes.

  18. Blue- and Red-Shifting Hydrogen Bonding: A Gas Phase FTIR and Ab Initio Study of RR'CO···DCCl3 and RR'S···DCCl3 Complexes.

    PubMed

    Behera, B; Das, Puspendu K

    2018-05-10

    Blue-shifting H-bonded (C-D···O) complexes between CDCl 3 and CH 3 HCO, (CH 3 ) 2 CO, and C 2 H 5 (CH 3 )CO, and red-shifting H-bonded (C-D···S) complexes between CDCl 3 with (CH 3 ) 2 S and (C 2 H 5 ) 2 S have been identified by Fourier transform infrared spectroscopy in the gas phase at room temperature. With increasing partial pressure of the components, a new band appears in the C-D stretching region of the vibrational spectra. The intensity of this band decreases with an increase in temperature at constant pressure, which provides the basis for identification of the H-bonded bands in the spectrum. The C-D stretching frequency of CDCl 3 is blue-shifted by +7.1, +4, and +3.2 cm -1 upon complexation with CH 3 HCO, (CH 3 ) 2 CO, and C 2 H 5 (CH 3 )CO, respectively, and red-shifted by -14 and -19.2 cm -1 upon complexation with (CH 3 ) 2 S and (C 2 H 5 ) 2 S, respectively. By using quantum chemical calculations at the MP2/6-311++G** level, we predict the geometry, electronic structural parameters, binding energy, and spectral shift of H-bonded complexes between CDCl 3 and two series of compounds named RCOR' (H 2 CO, CH 3 HCO, (CH 3 ) 2 CO, and C 2 H 5 (CH 3 )CO) and RSR' (H 2 S, CH 3 HS, (CH 3 ) 2 S, and (C 2 H 5 ) 2 S) series. The calculated and observed spectral shifts follow the same trends. With an increase in basicity of the H-bond acceptor, the C-D bond length increases, force constant decreases, and the frequency shifts to the red from the blue. The potential energy scans of the above complexes are done, which show that electrostatic attraction between electropositive D and electron-rich O/S causes bond elongation and red shift, and the electronic and nuclear repulsions lead to bond contraction and blue shifts. The dominance of the two opposing forces at the equilibrium geometry of the complex determines the nature of the shift, which changes both in magnitude and in direction with the basicity of the hydrogen-bond acceptor.

  19. Effect of Watson-Crick and Hoogsteen base pairing on the conformational stability of C8-phenoxyl-2'-deoxyguanosine adducts.

    PubMed

    Millen, Andrea L; Churchill, Cassandra D M; Manderville, Richard A; Wetmore, Stacey D

    2010-10-14

    Bulky DNA addition products (adducts) formed through attack at the C8 site of guanine can adopt the syn orientation about the glycosidic bond due to changes in conformational stability or hydrogen-bonding preferences directly arising from the bulky group. Indeed, the bulky substituent may improve the stability of (non-native) Hoogsteen pairs. Therefore, such adducts often result in mutations upon DNA replication. This work examines the hydrogen-bonded pairs between the Watson-Crick and Hoogsteen faces of the ortho or para C8-phenoxyl-2'-deoxyguanosine adduct and each natural (undamaged) nucleobase with the goal to clarify the conformational preference of this type of damage, as well as provide insight into the likelihood of subsequent mutation events. B3LYP/6-311+G(2df,p)//B3LYP/6-31G(d) hydrogen-bond strengths were determined using both nucleobase and nucleoside models for adduct pairs, as well as the corresponding complexes involving natural 2'-deoxyguanosine. In addition to the magnitude of the binding strengths, the R(C1'···C1') distances and ∠(N9C1'C1') angles, as well as the degree of propeller-twist and buckle distortions, were carefully compared to the values observed in natural DNA strands. Due to structural changes in the adduct monomer upon inclusion of the sugar moiety, the monomer deformation energy significantly affects the relative hydrogen-bond strengths calculated with the nucleobase and nucleoside models. Therefore, we recommend the use of at least a nucleoside model to accurately evaluate hydrogen-bond strengths of base pairs involving flexible, bulky nucleobase adducts. Our results also emphasize the importance of considering both the magnitude of the hydrogen-bond strength and the structure of the base pair when predicting the preferential binding patterns of nucleobases. Using our best models, we conclude that the Watson-Crick face of the ortho phenoxyl adduct forms significantly more stable complexes than the Hoogsteen face, which implies that the anti orientation of the damaged base will be favored by hydrogen bonding in DNA helices. Additionally, regardless of the hydrogen-bonding face involved, cytosine forms the most stable base pair with the ortho adduct, which implies that misincorporation due to this type of damage is unlikely. Similarly, cytosine is the preferred binding partner for the Watson-Crick face of the para adduct. However, Hoogsteen interactions with the para adduct are stronger than those with natural 2'-deoxyguanosine or the ortho adduct, and this form of damage binds with nearly equal stability to both cytosine and guanine in the Hoogsteen orientation. Therefore, the para adduct may adopt multiple orientations in DNA helices and potentially cause mutations by forming pairs with different natural bases. Models of oligonucleotide duplexes must be used in future work to further evaluate other factors (stacking, major groove contacts) that may influence the conformation and binding preference of these adducts in DNA helices.

  20. Photodissociation of Non-Covalent Peptide-Crown Ether Complexes

    PubMed Central

    Wilson, Jeffrey J.; Kirkovits, Gregory J.; Sessler, Jonathan L.; Brodbelt, Jennifer S.

    2008-01-01

    Highly chromogenic 18-crown-6-dipyrrolylquinoxaline coordinates primary amines of peptides, forming non-covalent complexes that can be transferred to the gas phase by electrospray ionization. The appended chromogenic crown ether facilitates efficient energy transfer to the peptide upon ultraviolet irradiation in the gas phase, resulting in diagnostic peptide fragmentation. Collisional activated dissociation (CAD) and infrared multiphoton dissociation (IRMPD) of these non-covalent complexes results only in their disassembly with the charge retained on either the peptide or crown ether, yielding no sequence ions. Upon UV photon absorption the intermolecular energy transfer is facilitated by the fast activation time scale of UVPD (< 10 ns) and by the collectively strong hydrogen bonding between the crown ether and peptide, thus allowing effective transfer of energy to the peptide moiety prior to disruption of the intermolecular hydrogen bonds. PMID:18077179

  1. Cryosolution infrared study of hydrogen bonded halothane acetylene complex

    NASA Astrophysics Data System (ADS)

    Melikova, S. M.; Rutkowski, K. S.; Rospenk, M.

    2018-05-01

    The interactions between halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) and acetylene (C2H2) are studied by FTIR spectroscopy. Results obtained in liquid cryosolutions in Kr suggest weak complex formation stabilized by H - bond. The complexation enthalpy (∼11 kJ/mol) is evaluated in a series of temperature measurements (T ∼ 120-160 K) of integrated intensity of selected bands performed in liquefied Kr. The quantum chemical MP2/6-311++G(2d,2p) calculations predict four different structures of the complex. The most stable and populated (94% at T∼120 K) structure corresponds to the H - bond between H atom of halothane and pi-electron of triple bond between C atoms of acetylene. Wave numbers of vibrational bands of the most stable structure are calculated in anharmonic approximation implemented in Gaussian program.

  2. Proton transfer and hydrogen bonding in the organic solid state: a combined XRD/XPS/ssNMR study of 17 organic acid-base complexes.

    PubMed

    Stevens, Joanna S; Byard, Stephen J; Seaton, Colin C; Sadiq, Ghazala; Davey, Roger J; Schroeder, Sven L M

    2014-01-21

    The properties of nitrogen centres acting either as hydrogen-bond or Brønsted acceptors in solid molecular acid-base complexes have been probed by N 1s X-ray photoelectron spectroscopy (XPS) as well as (15)N solid-state nuclear magnetic resonance (ssNMR) spectroscopy and are interpreted with reference to local crystallographic structure information provided by X-ray diffraction (XRD). We have previously shown that the strong chemical shift of the N 1s binding energy associated with the protonation of nitrogen centres unequivocally distinguishes protonated (salt) from hydrogen-bonded (co-crystal) nitrogen species. This result is further supported by significant ssNMR shifts to low frequency, which occur with proton transfer from the acid to the base component. Generally, only minor chemical shifts occur upon co-crystal formation, unless a strong hydrogen bond is formed. CASTEP density functional theory (DFT) calculations of (15)N ssNMR isotropic chemical shifts correlate well with the experimental data, confirming that computational predictions of H-bond strengths and associated ssNMR chemical shifts allow the identification of salt and co-crystal structures (NMR crystallography). The excellent agreement between the conclusions drawn by XPS and the combined CASTEP/ssNMR investigations opens up a reliable avenue for local structure characterization in molecular systems even in the absence of crystal structure information, for example for non-crystalline or amorphous matter. The range of 17 different systems investigated in this study demonstrates the generic nature of this approach, which will be applicable to many other molecular materials in organic, physical, and materials chemistry.

  3. Evaluating the Energetic Driving Force for Cocrystal Formation

    PubMed Central

    2017-01-01

    We present a periodic density functional theory study of the stability of 350 organic cocrystals relative to their pure single-component structures, the largest study of cocrystals yet performed with high-level computational methods. Our calculations demonstrate that cocrystals are on average 8 kJ mol–1 more stable than their constituent single-component structures and are very rarely (<5% of cases) less stable; cocrystallization is almost always a thermodynamically favorable process. We consider the variation in stability between different categories of systems—hydrogen-bonded, halogen-bonded, and weakly bound cocrystals—finding that, contrary to chemical intuition, the presence of hydrogen or halogen bond interactions is not necessarily a good predictor of stability. Finally, we investigate the correlation of the relative stability with simple chemical descriptors: changes in packing efficiency and hydrogen bond strength. We find some broad qualitative agreement with chemical intuition—more densely packed cocrystals with stronger hydrogen bonding tend to be more stable—but the relationship is weak, suggesting that such simple descriptors do not capture the complex balance of interactions driving cocrystallization. Our conclusions suggest that while cocrystallization is often a thermodynamically favorable process, it remains difficult to formulate general rules to guide synthesis, highlighting the continued importance of high-level computation in predicting and rationalizing such systems. PMID:29445316

  4. Evaluating the Energetic Driving Force for Cocrystal Formation.

    PubMed

    Taylor, Christopher R; Day, Graeme M

    2018-02-07

    We present a periodic density functional theory study of the stability of 350 organic cocrystals relative to their pure single-component structures, the largest study of cocrystals yet performed with high-level computational methods. Our calculations demonstrate that cocrystals are on average 8 kJ mol -1 more stable than their constituent single-component structures and are very rarely (<5% of cases) less stable; cocrystallization is almost always a thermodynamically favorable process. We consider the variation in stability between different categories of systems-hydrogen-bonded, halogen-bonded, and weakly bound cocrystals-finding that, contrary to chemical intuition, the presence of hydrogen or halogen bond interactions is not necessarily a good predictor of stability. Finally, we investigate the correlation of the relative stability with simple chemical descriptors: changes in packing efficiency and hydrogen bond strength. We find some broad qualitative agreement with chemical intuition-more densely packed cocrystals with stronger hydrogen bonding tend to be more stable-but the relationship is weak, suggesting that such simple descriptors do not capture the complex balance of interactions driving cocrystallization. Our conclusions suggest that while cocrystallization is often a thermodynamically favorable process, it remains difficult to formulate general rules to guide synthesis, highlighting the continued importance of high-level computation in predicting and rationalizing such systems.

  5. Blue-shifted and red-shifted hydrogen bonds: Theoretical study of the CH3CHO· · ·HNO complexes

    NASA Astrophysics Data System (ADS)

    Yang, Yong; Zhang, Weijun; Gao, Xiaoming

    The blue-shifted and red-shifted H-bonds have been studied in complexes CH3CHO?HNO. At the MP2/6-31G(d), MP2/6-31+G(d,p) MP2/6-311++G(d,p), B3LYP/6-31G(d), B3LYP/6-31+G(d,p) and B3LYP/6-311++G(d,p) levels, the geometric structures and vibrational frequencies of complexes CH3CHO?HNO are calculated by both standard and CP-corrected methods, respectively. Complex A exhibits simultaneously red-shifted C bond H?O and blue-shifted N bond H?O H-bonds. Complex B possesses simultaneously two blue-shifted H-bonds: C bond H?O and N bond H?O. From NBO analysis, it becomes evident that the red-shifted C bond H?O H-bond can be explained on the basis of the two opposite effects: hyperconjugation and rehybridization. The blue-shifted C bond H?O H-bond is a result of conjunct C bond H bond strengthening effects of the hyperconjugation and the rehybridization due to existence of the significant electron density redistribution effect. For the blue-shifted N bond H?O H-bonds, the hyperconjugation is inhibited due to existence of the electron density redistribution effect. The large blue shift of the N bond H stretching frequency is observed because the rehybridization dominates the hyperconjugation.

  6. Hydrogen bond breaking in aqueous solutions near the critical point

    USGS Publications Warehouse

    Mayanovic, Robert A.; Anderson, Alan J.; Bassett, William A.; Chou, I.-Ming

    2001-01-01

    The nature of water-anion bonding is examined using X-ray absorption fine structure spectroscopy on a 1mZnBr2/6m NaBr aqueous solution, to near critical conditions. Analyses show that upon heating the solution from 25??C to 500??C, a 63% reduction of waters occurs in the solvation shell of ZnBr42-, which is the predominant complex at all pressure-temperature conditions investigated. A similar reduction in the hydration shell of waters in the Br- aqua ion was found. Our results indicate that the water-anion and water-water bond breaking mechanisms occurring at high temperatures are essentially the same. This is consistent with the hydration waters being weakly hydrogen bonded to halide anions in electrolyte solutions. ?? 2001 Elsevier Science B.V.

  7. Theoretical and experimental studies of the molecular orbital bonding coefficients for Cu{sup 2+} ion in cesium hydrogen oxalate single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalfaoğlu, Emel, E-mail: emelkalfaoglu@mynet.com; Karabulut, Bünyamin

    2016-03-25

    Electron paramagnetic resonance (EPR) and optical absorption spectra of Cu{sup 2+} ions in cesium hydrogen oxalate single crystals have been investigated at room temperature. The spin-Hamiltonian parameters (g and A), have been determined. Crystalline field around the Cu{sup 2+} ion is almost axially symmetric. The results show a single paramagnetic site which confirms the triclinic crystal symmetry. Molecular orbital bonding coefficients are studied from the EPR and optical data. Theoretical octahedral field parameter and the tetragonal field parameters have been evaluated from the superposition model. Using these parameters, various bonding parameters are analyzed and the nature of bonding in themore » complex is discussed. The theoretical results are supported by experimental results.« less

  8. Proton Order-Disorder Phenomena in a Hydrogen-Bonded Rhodium-η(5)-Semiquinone Complex: A Possible Dielectric Response Mechanism.

    PubMed

    Mitsumi, Minoru; Ezaki, Kazunari; Komatsu, Yuuki; Toriumi, Koshiro; Miyatou, Tatsuya; Mizuno, Motohiro; Azuma, Nobuaki; Miyazaki, Yuji; Nakano, Motohiro; Kitagawa, Yasutaka; Hanashima, Takayasu; Kiyanagi, Ryoji; Ohhara, Takashi; Nakasuji, Kazuhiro

    2015-06-26

    A newly synthesized one-dimensional (1D) hydrogen-bonded (H-bonded) rhodium(II)-η(5)-semiquinone complex, [Cp*Rh(η(5)-p-HSQ-Me4)]PF6 ([1]PF6; Cp* = 1,2,3,4,5-pentamethylcyclopentadienyl; HSQ = semiquinone) exhibits a paraelectric-antiferroelectric second-order phase transition at 237.1 K. Neutron and X-ray crystal structure analyses reveal that the H-bonded proton is disordered over two sites in the room-temperature (RT) phase. The phase transition would arise from this proton disorder together with rotation or libration of the Cp* ring and PF6(-) ion. The relative permittivity εb' along the H-bonded chains reaches relatively high values (ca., 130) in the RT phase. The temperature dependence of (13)C CP/MAS NMR spectra demonstrates that the proton is dynamically disordered in the RT phase and that the proton exchange has already occurred in the low-temperature (LT) phase. Rate constants for the proton exchange are estimated to be 10(-4)-10(-6) s in the temperature range of 240-270 K. DFT calculations predict that the protonation/deprotonation of [1](+) leads to interesting hapticity changes of the semiquinone ligand accompanied by reduction/oxidation by the π-bonded rhodium fragment, producing the stable η(6)-hydroquinone complex, [Cp*Rh(3+)(η(6)-p-H2Q-Me4)](2+) ([2](2+)), and η(4)-benzoquinone complex, [Cp*Rh(+)(η(4)-p-BQ-Me4)] ([3]), respectively. Possible mechanisms leading to the dielectric response are discussed on the basis of the migration of the protonic solitons comprising of [2](2+) and [3], which would be generated in the H-bonded chain. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. C-H bond activation of hydrocarbons by an imidozirconocene complex.

    PubMed

    Hoyt, Helen M; Michael, Forrest E; Bergman, Robert G

    2004-02-04

    Monomeric imidozirconocene complexes of the type Cp2(L)Zr=NCMe3 (Cp = cyclopentadienyl, L = Lewis base) have been shown to activate the carbon-hydrogen bonds of benzene, but not the C-H bonds of saturated hydrocarbons. To our knowledge, this singularly important class of C-H activation reactions has heretofore not been observed in imidometallocene systems. The M=NR bond formed on heating the racemic ethylenebis(tetrahydro)indenyl methyl tert-butyl amide complex, however, cleanly and quantitatively activates a wide range of n-alkane, alkene, and arene C-H bonds. Mechanistic experiments support the proposal of intramolecular elimination of methane followed by a concerted addition of the hydrocarbon C-H bond. Products formed by activation of sp2 C-H bonds are generally more thermodynamically stable than those formed by activation of sp3 C-H bonds, and those resulting from reaction at primary C-H bonds are preferred over secondary sp3 C-H activation products. There is also evidence that thermodynamic selectivity among C-H bonds is sterically rather than electronically controlled.

  10. The effect of deuteration and doping on the phase transition temperature of grown glycine phosphite single crystals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Perumal, R., E-mail: perumal-cgc@yahoo.co.uk; Chandru, A. Lakshmi; Babu, S. Moorthy

    The Glycinium Phosphite (GPI) compound is a representative of hydrogen-bonded ferroelectric crystals. The ordering of protons could be expected below the room temperature (225 K). Crystals grown from the milipore water as well as deuterated solvents respectively. The corresponding hydrogen bond distance was stretched out due to the effect of isotopic substitution that increase the phase transition temperature. Further to improve the phase transition temperature, GPI crystal was doped with organic complexing agent and various metals and the obtained results are presented.

  11. Molecular mechanics and dynamics studies on the interaction of gallic acid with collagen-like peptides

    NASA Astrophysics Data System (ADS)

    Madhan, B.; Thanikaivelan, P.; Subramanian, V.; Raghava Rao, J.; Unni Nair, Balachandran; Ramasami, T.

    2001-10-01

    Molecular modelling approaches have been used to understand the interaction of collagen-like peptides with gallic acid, which mimic vegetable tanning processes involved in protein stabilization. Several interaction sites have been identified and the binding energies of the complexes have been calculated. The calculated binding energies for various geometries are in the range 6-13 kcal/mol. It is found that some complexes exhibit hydrogen bonding, and electrostatic interaction plays a dominant role in the stabilization of the peptide by gallic acid. The π-OH type of interaction is also observed in the peptide stabilization. Molecular dynamics (MD) simulation for 600 ps revealed the possibility of hydrogen bonding between the collagen-like peptide and gallic acid.

  12. A distal point mutation in the streptavidin-biotin complex preserves structure but diminishes binding affinity: experimental evidence of electronic polarization effects?

    PubMed

    Baugh, Loren; Le Trong, Isolde; Cerutti, David S; Gülich, Susanne; Stayton, Patrick S; Stenkamp, Ronald E; Lybrand, Terry P

    2010-06-08

    We have identified a distal point mutation in streptavidin that causes a 1000-fold reduction in biotin binding affinity without disrupting the equilibrium complex structure. The F130L mutation creates a small cavity occupied by a water molecule; however, all neighboring side chain positions are preserved, and protein-biotin hydrogen bonds are unperturbed. Molecular dynamics simulations reveal a reduced mobility of biotin binding residues but no observable destabilization of protein-ligand interactions. Our combined structural and computational studies suggest that the additional water molecule may affect binding affinity through an electronic polarization effect that impacts the highly cooperative hydrogen bonding network in the biotin binding pocket.

  13. Conformational analysis of flavonoids: crystal and molecular structures of morin hydrate and myricetin (1:2) triphenylphosphine oxide complex

    NASA Astrophysics Data System (ADS)

    Cody, Vivian; Luft, Joseph R.

    1994-01-01

    The crystal and molecular structures of morin (2',3,4',5,7-pentahydroxyflavone) hydrate ( I), and myricetin (3',4',5',3,5,7-hexahydroxyflavone) triphenylphosphine oxide (TPPO) (1:2) co-crystal complex ( II) have been studied by X-ray analysis and AM1 molecular orbital methods. The molecular conformation of the two flavones described by the torsion angle θ[C(3)-C(2)-C(1t')-C(2')] between the benzopyrone and phenyl ring is -43.3° and 51.0° for molecules A and B of morin, respectively, and -37.0° for myricetin. Minimum energy conformations from AM1 molecular orbital calculations have θ values of -38.2° for morin and -27.0° for myricetin. The energy profile for rotation about θ for morin has a 28 kcal mol -1 barrier at 0° due to steric interactions between the 2'-hydroxy and the 3-hydroxy group. There are two local minima near 30 and 140°, in good agreement with structural results. The profile for myricetin has two equivalent minima near 30 and 150° with a barrier of less than 2 kcal mol -1. In the crystal both flavones form extensive networks of intra- and intermolecular hydrogen bonds. In ( I), each morin conformer packs in alternating layers linked by water molecules, while in ( II), TPPO stabilizes the crystal by formation of short hydrogen bonds (2.58-2.65 Å) of the phosphoryl oxygen to the flavone. Myricetin also forms a two dimensional sheet-like packing in which myricetin molecules hydrogen bond to each other, as well as to TPPO. These conformational and hydrogen bonding patterns provide insight into specific types of ligand-receptor interactions and support structure activity data which suggest the importance of electronic and hydrogen bonding properties in the bioactivity of flavones.

  14. Concurrent synergism and inhibition in bimetallic catalysis: catalytic binuclear elimination, solute-solute interactions and a hetero-bimetallic hydrogen-bonded complex in rh-mo hydroformylations.

    PubMed

    Li, Chuanzhao; Cheng, Shuying; Tjahjono, Martin; Schreyer, Martin; Garland, Marc

    2010-04-07

    Hydroformylations of cyclopentene and 3,3-dimethylbut-1-ene were performed using both Rh(4)(CO)(12) and (eta(5)-C(5)H(5))Mo(CO)(3)H as precursors in n-hexane at 298 K. Both stoichiometric and catalytic hydroformylations were conducted as well as isotopic labeling experiments. Six organometallic pure component spectra were recovered from the high-pressure FTIR experiments, namely the known species Rh(4)(CO)(12), (eta(5)-C(5)H(5))Mo(CO)(3)H, RCORh(CO)(4), and the new heterobimetallic complexes RhMo(CO)(7)(eta(5)-C(5)H(5)), a weak hydrogen bonded species (eta(5)-C(5)H(5))Mo(CO)(3)H-C(5)H(9)CORh(CO)(4), and a substituted RhMo(CO)(7-y)(eta(5)-C(5)H(5))L(y), where y = 1 or 2 and L = (pi-C(5)H(8)). The main findings were (1) catalytic binuclear elimination (CBER) occurs between (eta(5)-C(5)H(5))Mo(CO)(3)H and RCORh(CO)(4) resulting in aldehyde and RhMo(CO)(7)(eta(5)-C(5)H(5)), and this mechanism is responsible for ca. 10% of the product formation; (2) molecular hydrogen is readily activated by the new heterobimetallic complex(es); (3) FTIR and DFT spectroscopic evidence suggests that the weak hydrogen bonded species (eta(5)-C(5)H(5))Mo(CO)(3)H-C(5)H(9)CORh(CO)(4) has an interaction of the type eta(5)-C(5)H(4)-H...O=C; and (4) independent physicochemical experiments for volumes of interaction confirm that significant solute-solute interactions are present. With respect to the efficiency of the catalytic cycle, the formation of a weak (eta(5)-C(5)H(5))Mo(CO)(3)H-C(5)H(9)CORh(CO)(4) complex results in a significant decrease in the measured turnover frequency (TOF) and is the primary reason for the inhibition observed in the bimetallic catalytic hydroformylation. Such hydrogen bonding through the eta(5)-C(5)H(5) ring might have relevance to inhibition observed in other catalytic metallocene systems. The present catalytic system is an example of concurrent synergism and inhibition in bimetallic homogeneous catalysis.

  15. Trinuclear organooxotin assemblies from solvothermal synthesis reaction: Crystal structure, hydrogen bonding and π π stacking interaction

    NASA Astrophysics Data System (ADS)

    Ma, Chunlin; Sun, Junshan; Zhang, Rufen

    2007-05-01

    Two new trinuclear mono-organooxotin(IV) complexes with 2,3,4,5-tetrafluorobenzoic acid and sodium perchlorate of the types: [(SnR) 3(OH)(2,3,4,5-F 4C 6HCO 2) 4 · ClO 4] · [O 2CC 6HF 4](R = PhCH 2, 1; o- F-PhCH 2 for 2), have been solvothermally synthesized and structurally characterized by elemental, IR, 1H, 13C and 119Sn NMR and X-ray crystallography diffraction analyses. Complex 2 is also characterized by X-ray crystallography diffraction analyses. In complex 2, four carboxyl groups and a perchlorate bridged three tin atoms in a cyclohexane chair arrangement and form the basic framework. A hydroxyl group comprises the oxygen components of the stannoxane ring system. In these complexes, weak but significant intramolecular hydrogen bonding and π-π stacking interaction are also shown. These contacts lead to aggregation and supramolecular assembly of complexes 1 and 2 into 1D or 2D framework.

  16. Encapsulation of labetalol, pseudoephedrine in β-cyclodextrin cavity: spectral and molecular modeling studies.

    PubMed

    Prabhu, A Antony Muthu; Rajendiran, N

    2012-11-01

    The absorption and fluorescence spectra of labetalol and pseudoephedrine have been studied in different polarities of solvents and β-cyclodextrin (β-CD). The inclusion complexation with β-CD is investigated by UV-visible, steady state and time resolved fluorescence spectra and PM3 method. In protic solvents, the normal emission originates from a locally excited state and the longer wavelength emission is due to intramolecular charge transfer (TICT). Labetalol forms a 1:2 complex and pseudoephedrine forms 1:1 complex with β-CD. Nanosecond time-resolved studies indicated that both molecules show triexponential decay. Thermodynamic parameters (ΔG, ΔH, ΔS) and HOMO, LUMO orbital investigations confirm the stability of the inclusion complex. The geometry of the most stable complex shows that the aromatic ring is deeply self included inside the β-CD cavity and intermolecular hydrogen bonds were established between host and guest molecules. This suggests that hydrophobic effect and hydrogen bond play an important role in the inclusion process.

  17. Microwave Spectrum of Hydrogen Bonded HEXAFLUOROISOPROPANOL•••WATER Complex

    NASA Astrophysics Data System (ADS)

    Shahi, Abhishek; Arunan, Elangannan

    2014-06-01

    Stabilizing α-helical structure of protein and dissolving a hard to dissolve polymer, polythene terphthalete, are some of the unique properties of the organic solvent Hexafluoroisopropanol (HFIP). After determining the complete microwave spectrum of HFIP monomer, we have recorded the spectrum of HFIP***H_2O complex. Ab initio calculations were used to optimize three different possible structures. The global minimum, structure 1, had HFIP as proton donor. Another promising structure, Structure 2, has been obtained from a molecular dynamic study. A total of 46 observed lines have been fitted well for obtaining the rotational and distortion constants within experimental uncertainty. The observed rotational constants are A = 1134.53898(77) MHz, B = 989.67594(44) MHz and C = 705.26602(20) MHz. Interestingly, the rotational constants of structure 1, structure 2 and experiments were very close. Experimentally observed distortion constants were close to structure 1. b-type transitions were stronger than c-type which is also consistent with the calculated dipole moment components of structure 1. Calculations predict a non-zero a-dipole moment but experimentally a-type transitions were absent. Microwave spectra of two of the deuterium isotopologues of this complex i.e. HFIP***D_2O (30 transitions) and HFIP***HOD (33 transitions) have been also observed. Search for other isotopologues are in progress. To characterize the nature of hydrogen bonding, Atoms in Molecules and Natural Bond Orbital theoretical analysis have been done. Experimental structure and these theoretical analyses indicate that the hydrogen bonding in HFIP***H_2O complex is stronger than that in water dimer. A. Shahi and E. Arunan, Talk number RK16, 68th International Symposium on Molecular Spectroscopy 2013, Ohio, USA. Yamaguchi, T.; Imura, S.; Kai, T.; Yoshida, K. Zeitschrift für Naturforsch. A 2013, 68a, 145.

  18. Density functional theory study of the reaction mechanism for competitive carbon-hydrogen and carbon-halogen bond activations catalyzed by transition metal complexes.

    PubMed

    Yang, Xinzheng; Hall, Michael B

    2009-03-12

    Carbon-hydrogen and carbon-halogen bond activations between halobenzenes and metal centers were studied by density functional theory with the nonempirical meta-GGA Tao-Perdew-Staroverov-Scuseria functional and an all-electron correlation-consistent polarized valence double-zeta basis set. Our calculations demonstrate that the hydrogen on the metal center and halogen in halobenzene could exchange directly through a kite-shaped transition state. Transition states with this structure were previously predicted to have high energy barriers (J. Am. Chem. Soc. 2005, 127, 279), and this prediction misled others in proposing a mechanism for their recent experimental study (J. Am. Chem. Soc. 2006, 128, 3303). Furthermore, other halo-carbon activation pathways were found in the detailed mechanism for the competitive reactions between cationic titanium hydride complex [Cp*((t)Bu(3)P=N)TiH](+) and chlorobenzene under different pressure of H(2). These pathways include the ortho-C-H and Ti-H bond activations for the formation and release of H(2) and the indirect C-Cl bond activation via beta-halogen elimination for the movement of the C(6)H(4) ring and the formation of a C-N bond in the observed final product. A new stable isomer of the observed product with a similar total energy and an unexpected bridging between the Cp* ring and the metal center by a phenyl ring is also predicted.

  19. Weak hydrogen bonds in complexes pairing monohalomethanes with neutral formic acid

    NASA Astrophysics Data System (ADS)

    Solimannejad, Mohammad; Scheiner, Steve

    2006-06-01

    Ab initio calculations are used to analyze the interaction between formic acid and CH 3X, for X equal to each of F, Cl, and Br. All minima are cyclic in that they contain more than one H-bond. The most strongly bound contain a OH⋯X bond, along with CH⋯O, and the others contain CH⋯X and CH⋯O interactions. Alterations of the covalent bond lengths within each subunit, and vibrational frequency shifts, coupled with electronic charge shifts, reveal fundamental features of these complexes, and the nature of the interactions. The OH⋯X bond is the strongest of those examined here, followed by CH⋯X and CH⋯O.

  20. Hydrogen bonding. Part 25. The nature of the hydrogen bond in hydroxytropenylium chloride (tropone hydrochloride)

    NASA Astrophysics Data System (ADS)

    Harmon, Kenneth M.; Cross, Joan E.; Toccalino, Patricia L.

    1988-08-01

    Hydroxytropenylium iodide and bromide contain normal electrostatic OH⋯X - hydrogen bonds. Hydroxytropenylium chloride, however, contains a hydrogen bond intermediate between the normal electrostatic type and the very strong covalent type, similar to the hydrogen bonds found in choline fluoride or the Type I C∞v hydrogen dihalide ions. Infrared comparisons with compounds previously studied demonstrate that the hydroxytropenylium ion is a stronger hydrogen bond donor than either choline cation or protonated betaine cation, and suggest that hydroxytropenylium fluoride, if it can be prepared, should contain a three-center covalent hydrogen bond.

  1. Z-H Bond Activation in (Di)hydrogen Bonding as a Way to Proton/Hydride Transfer and H2 Evolution.

    PubMed

    Belkova, Natalia V; Filippov, Oleg A; Shubina, Elena S

    2018-02-01

    The ability of neutral transition-metal hydrides to serve as a source of hydride ion H - or proton H + is well appreciated. The hydride ligands possessing a partly negative charge are proton accepting sites, forming a dihydrogen bond, M-H δ- ⋅⋅⋅ δ+ HX (M=transition metal or metalloid). On the other hand, some metal hydrides are able to serve as a proton source and give hydrogen bond of M-H δ+ ⋅⋅⋅X type (X=organic base). In this paper we analyse recent works on transition-metal and boron hydrides showing i) how formation of an intermolecular complex between the reactants changes the Z-H (M-H and X-H) bond polarity and ii) what is the implication of such activation in the mechanisms of hydrides reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. The interplay of hydrogen bonding and dispersion in phenol dimer and trimer: structures from broadband rotational spectroscopy.

    PubMed

    Seifert, Nathan A; Steber, Amanda L; Neill, Justin L; Pérez, Cristóbal; Zaleski, Daniel P; Pate, Brooks H; Lesarri, Alberto

    2013-07-21

    The structures of the phenol dimer and phenol trimer complexes in the gas phase have been determined using chirped-pulse Fourier transform microwave spectroscopy in the 2-8 GHz band. All fourteen (13)C and (18)O phenol dimer isotopologues were assigned in natural abundance. A full heavy atom experimental substitution structure was determined, and a least-squares fit ground state r0 structure was determined by proper constraint of the M06-2X/6-311++g(d,p) ab initio structure. The structure of phenol dimer features a water dimer-like hydrogen bond, as well as a cooperative contribution from inter-ring dispersion. Comparisons between the experimental structure and previously determined experimental structures, as well as ab initio structures from various levels of theory, are discussed. For phenol trimer, a C3 symmetric barrel-like structure is found, and an experimental substitution structure was determined via measurement of the six unique (13)C isotopologues. The least-squares fit rm((1)) structure reveals a similar interplay between hydrogen bonding and dispersion in the trimer, with water trimer-like hydrogen bonding and C-H···π interactions.

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xia, Shuangluo; Konigsberg, William H.; Wang, Jimin

    Results obtained using 2,4-difluorotoluene nucleobase (dF) as a nonpolar thymine isostere by Kool and colleagues challenged the Watson-Crick dogma that hydrogen bonds between complementary bases are an absolute requirement for accurate DNA replication. Here, we report crystal structure of an RB69 DNA polymerase L561A/S565G/Y567A triple mutant ternary complex with a templating dF opposite dTTP at 1.8 {angstrom}-resolution. In this structure, direct hydrogen bonds were observed between: (i) dF and the incoming dTTP, (ii) dF and residue G568 of the polymerase, and (iii) dF and ordered water molecules surrounding the nascent base pair. Therefore, this structure provides evidence that a templatingmore » dF can form novel hydrogen bonds with the incoming dTTP and with the enzyme that differ from those formed with a templating dT.« less

  4. Pseudosymmetric fac-di-aqua-trichlorido[(di-methyl-phosphor-yl)methanaminium-κO]manganese(II).

    PubMed

    Reiss, Guido J

    2013-05-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the Mn(II) metal center has a distorted o-cta-hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol-ecules and the O-coordinated dpmaH cation [dpmaH = (di-methyl-phosphor-yl)methanaminium] complete the coordination sphere. Each complex mol-ecule is connected to its neighbours by O-H⋯Cl and N-H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)].

  5. Hydrogen-bonding A(LS)2-type low-molecular-mass gelator and its thermotropic mesomorphic behavior.

    PubMed

    Hou, Qiufei; Wang, Shichao; Zang, Libin; Wang, Xiaoliang; Jiang, Shimei

    2009-10-15

    A unique cholesterol-based A(LS)2-type gelator, which is a hydrogen-bonding complex based on an ALS-type non-gelator molecule 3-cholesteryl 4-(trans-2-(4-pyridinyl)vinyl)phenyl succinate and a counterpart 3-cholesteryloxycarbonylpropanoic acid, shows strong gelation ability in alcohol and aromatic solvents. The formed gel has a high Tg at low gelation concentration, and its xerogel shows fibrillar microstructure revealed by scanning electron microscopy (SEM). FTIR confirms the existence of intermolecular hydrogen bond in the gelator, and X-ray diffraction (XRD) analysis reveals that the gelator possesses a folded conformation in gel and self-assembles into the fibrillar structure mainly by van der Waals interaction between cholesteryl moieties of the gelator. Further more, the thermotropic behavior of the xerogel is studied by differential scanning calorimetry (DSC) and polarized optical microscopy (POM), which shows typical optical textures of liquid crystals.

  6. Mannobiose Binding Induces Changes in Hydrogen Bonding and Protonation States of Acidic Residues in Concanavalin A As Revealed by Neutron Crystallography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlits, Oksana O.; Coates, Leighton; Woods, Robert J.

    Plant lectins are carbohydrate-binding proteins with various biomedical applications. Concanavalin A (Con A) holds promise in treating cancerous tumors. To better understand the Con A carbohydrate binding specificity, we obtained a room-temperature neutron structure of this legume lectin in complex with a disaccharide Manα1–2Man, mannobiose. The neutron structure afforded direct visualization of the hydrogen bonding between the protein and ligand, showing that the ligand is able to alter both protonation states and interactions for residues located close to and distant from the binding site. An unprecedented low-barrier hydrogen bond was observed forming between the carboxylic side chains of Asp28 andmore » Glu8, with the D atom positioned equidistant from the oxygen atoms having an O···D···O angle of 101.5°.« less

  7. Optical, thermal and dielectric studies in linear hydrogen bonded liquid crystal homologous series

    NASA Astrophysics Data System (ADS)

    Vijayakumar, V. N.; Madhu Mohan, M. L. N.

    2011-08-01

    A novel series of hydrogen bonded liquid crystals (HBLC) have been isolated with hydrogen bond forming between fluoro benzoic acid and various alkyloxy benzoic acids respectively. Phase diagram is constructed from the transition temperatures obtained by Differential Scanning Calorimetry (DSC) and Polarizing Optical Microscopic (POM) studies. A new Smectic ordering which is referred as Smectic R is characterized which exhibits a ribbon like phase. Declinations are observed on these ribbons manifesting the presence of the helicoidal structure. Another interesting feature is the observation of optical shuttering action in some of the complexes with the application of external stimulus in the entire thermal range of Nematic phase. Further this phenomenon is reversible in the sense that when the applied stimulus is withdrawn original texture of Nematic is restored. Unwinding of the helix coupled with molecular dipolar reorientation with the application of external field is supposed to be the major reasons for the observed phenomenon.

  8. Multipoint molecular recognition within a calix[6]arene funnel complex

    PubMed Central

    Coquière, David; de la Lande, Aurélien; Martí, Sergio; Parisel, Olivier; Prangé, Thierry; Reinaud, Olivia

    2009-01-01

    A multipoint recognition system based on a calix[6]arene is described. The calixarene core is decorated on alternating aromatic subunits by 3 imidazole arms at the small rim and 3 aniline groups at the large rim. This substitution pattern projects the aniline nitrogens toward each other when Zn(II) binds at the Tris-imidazole site or when a proton binds at an aniline. The XRD structure of the monoprotonated complex having an acetonitrile molecule bound to Zn(II) in the cavity revealed a constrained geometry at the metal center reminiscent of an entatic state. Computer modeling suggests that the aniline groups behave as a tritopic monobasic site in which only 1 aniline unit is protonated and interacts with the other 2 through strong hydrogen bonding. The metal complex selectively binds a monoprotonated diamine vs. a monoamine through multipoint recognition: coordination to the metal ion at the small rim, hydrogen bonding to the calix-oxygen core, CH/π interaction within the cavity's aromatic walls, and H-bonding to the anilines at the large rim. PMID:19237564

  9. Selecting the spin crossover profile with controlled crystallization of mononuclear Fe(iii) polymorphs.

    PubMed

    Vicente, Ana I; Ferreira, Liliana P; Carvalho, Maria de Deus; Rodrigues, Vítor H N; Dîrtu, Marinela M; Garcia, Yann; Calhorda, Maria José; Martinho, Paulo N

    2018-05-08

    Two polymorphic species of the [Fe(5-Br-salEen)2]ClO4 compound were obtained, each of them being selectively recovered after evaporation of the solvent at a controlled rate. While polymorph 1a is formed during slow evaporation, fast evaporation favors polymorph 1b. The importance of the evaporation rate was recognized after detailed studies of the reaction temperature, solvent evaporation rate and crystallization temperature effects. The complex in the new polymorphic form 1a showed an abrupt spin crossover at 172 K with a small 1 K hysteresis window and over a narrow 10 K range. 57Fe Mössbauer spectroscopy and differential scanning calorimetry, complemented by X-ray studies for both the high-spin and low-spin forms, were used to further characterize the new polymorphic phase 1a. Both polymorphs are based on the same Fe(iii) complex cation hydrogen bonded to the perchlorate anion. These units are loosely bound in the crystals via weak interactions. In the new polymorph 1a, the hydrogen bonds are stronger, while the weak hydrogen and halogen bonds, as well as π-π stacking, create a cooperative network, not present in 1b, responsible for the spin transition profile.

  10. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds

    PubMed Central

    Stranges, P Benjamin; Kuhlman, Brian

    2013-01-01

    The accurate design of new protein–protein interactions is a longstanding goal of computational protein design. However, most computationally designed interfaces fail to form experimentally. This investigation compares five previously described successful de novo interface designs with 158 failures. Both sets of proteins were designed with the molecular modeling program Rosetta. Designs were considered a success if a high-resolution crystal structure of the complex closely matched the design model and the equilibrium dissociation constant for binding was less than 10 μM. The successes and failures represent a wide variety of interface types and design goals including heterodimers, homodimers, peptide-protein interactions, one-sided designs (i.e., where only one of the proteins was mutated) and two-sided designs. The most striking feature of the successful designs is that they have fewer polar atoms at their interfaces than many of the failed designs. Designs that attempted to create extensive sets of interface-spanning hydrogen bonds resulted in no detectable binding. In contrast, polar atoms make up more than 40% of the interface area of many natural dimers, and native interfaces often contain extensive hydrogen bonding networks. These results suggest that Rosetta may not be accurately balancing hydrogen bonding and electrostatic energies against desolvation penalties and that design processes may not include sufficient sampling to identify side chains in preordered conformations that can fully satisfy the hydrogen bonding potential of the interface. PMID:23139141

  11. A comparison of successful and failed protein interface designs highlights the challenges of designing buried hydrogen bonds.

    PubMed

    Stranges, P Benjamin; Kuhlman, Brian

    2013-01-01

    The accurate design of new protein-protein interactions is a longstanding goal of computational protein design. However, most computationally designed interfaces fail to form experimentally. This investigation compares five previously described successful de novo interface designs with 158 failures. Both sets of proteins were designed with the molecular modeling program Rosetta. Designs were considered a success if a high-resolution crystal structure of the complex closely matched the design model and the equilibrium dissociation constant for binding was less than 10 μM. The successes and failures represent a wide variety of interface types and design goals including heterodimers, homodimers, peptide-protein interactions, one-sided designs (i.e., where only one of the proteins was mutated) and two-sided designs. The most striking feature of the successful designs is that they have fewer polar atoms at their interfaces than many of the failed designs. Designs that attempted to create extensive sets of interface-spanning hydrogen bonds resulted in no detectable binding. In contrast, polar atoms make up more than 40% of the interface area of many natural dimers, and native interfaces often contain extensive hydrogen bonding networks. These results suggest that Rosetta may not be accurately balancing hydrogen bonding and electrostatic energies against desolvation penalties and that design processes may not include sufficient sampling to identify side chains in preordered conformations that can fully satisfy the hydrogen bonding potential of the interface. Copyright © 2012 The Protein Society.

  12. Anion-selective interaction and colorimeter by an optical metalloreceptor based on ruthenium(II) 2,2'-biimidazole: hydrogen bonding and proton transfer.

    PubMed

    Cui, Ying; Mo, Hao-Jun; Chen, Jin-Can; Niu, Yan-Li; Zhong, Yong-Rui; Zheng, Kang-Cheng; Ye, Bao-Hui

    2007-08-06

    A new anion sensor [Ru(bpy)2(H2biim)](PF6)2 (1) (bpy = 2,2'-bipyridine and H2biim = 2,2'-biimidazole) has been developed, in which the Ru(II)-bpy moiety acts as a chromophore and the H2biim ligand as an anion receptor via hydrogen bonding. A systematic investigation shows that 1 is an eligible sensor for various anions. It donates protons for hydrogen bonding to Cl-, Br-, I-, NO3-, HSO4-, H2PO4-, and OAc- anions and further actualizes monoproton transfer to the OAc- anion, changing color from yellow to orange brown. The fluoride ion has a high affinity toward the N-H group of the H2biim ligand for proton transfer, rather than hydrogen bonding, because of the formation of the highly stable HF2- anion, resulting in stepwise deprotonation of the two N-H fragments. These processes are signaled by vivid color changes from yellow to orange brown and then to violet because of second-sphere donor-acceptor interactions between Ru(II)-H2biim and the anions. The significant color changes can be distinguished visually. The processes are not only determined by the basicity of anion but also by the strength of hydrogen bonding and the stability of the anion-receptor complexes. The design strategy and remarkable photophysical properties of sensor 1 help to extend the development of anion sensors.

  13. Quantitative dissection of hydrogen bond-mediated proton transfer in the ketosteroid isomerase active site

    PubMed Central

    Sigala, Paul A.; Fafarman, Aaron T.; Schwans, Jason P.; Fried, Stephen D.; Fenn, Timothy D.; Caaveiro, Jose M. M.; Pybus, Brandon; Ringe, Dagmar; Petsko, Gregory A.; Boxer, Steven G.; Herschlag, Daniel

    2013-01-01

    Hydrogen bond networks are key elements of protein structure and function but have been challenging to study within the complex protein environment. We have carried out in-depth interrogations of the proton transfer equilibrium within a hydrogen bond network formed to bound phenols in the active site of ketosteroid isomerase. We systematically varied the proton affinity of the phenol using differing electron-withdrawing substituents and incorporated site-specific NMR and IR probes to quantitatively map the proton and charge rearrangements within the network that accompany incremental increases in phenol proton affinity. The observed ionization changes were accurately described by a simple equilibrium proton transfer model that strongly suggests the intrinsic proton affinity of one of the Tyr residues in the network, Tyr16, does not remain constant but rather systematically increases due to weakening of the phenol–Tyr16 anion hydrogen bond with increasing phenol proton affinity. Using vibrational Stark spectroscopy, we quantified the electrostatic field changes within the surrounding active site that accompany these rearrangements within the network. We were able to model these changes accurately using continuum electrostatic calculations, suggesting a high degree of conformational restriction within the protein matrix. Our study affords direct insight into the physical and energetic properties of a hydrogen bond network within a protein interior and provides an example of a highly controlled system with minimal conformational rearrangements in which the observed physical changes can be accurately modeled by theoretical calculations. PMID:23798390

  14. Investigation of hydrogen interaction with defects in zirconia

    NASA Astrophysics Data System (ADS)

    Melikhova, O.; Kuriplach, J.; Čížek, J.; Procházka, I.; Brauer, G.; Anwand, W.

    2010-04-01

    Defect studies of a ZrO2 + 9 mol. % Y2O3 single crystal were performed in this work using a high resolution positron lifetime spectroscopy combined with slow positron implantation spectroscopy. In order to elucidate the nature of positron trapping sites observed experimentally, the structural relaxations of several types of vacancy-like defects in zirconia were performed and positron characteristics for them were calculated. Relaxed atomic configurations of studied defects were obtained by means of ab initio pseudopotential method within the supercell approach. Theoretical calculations indicated that neither oxygen vacancies nor their neutral complexes with substitute yttrium atoms are capable of positron trapping. On the other hand, zirconium vacancies are deep positron traps and are most probably responsible for the saturated positron trapping observed in yttria stabilized zirconia single crystals. However, the calculated positron lifetime for zirconium vacancy is apparently longer than the experimental value corresponding to a single-component spectrum measured for the cubic ZrO2 + 9 mol. % Y2O3 single crystal. It was demonstrated that this effect can be explained by hydrogen trapped in zirconium vacancies. On the basis of structure relaxations, we found that zirconium vacancy - hydrogen complexes represent deep positron traps with the calculated lifetime close to the experimental one. In zirconium vacancy - hydrogen complexes the hydrogen atom forms an O-H bond with one of the nearest neighbour oxygen atoms. The calculated bond length is close to 1 Å.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Dong; Odoh, Samuel O.; Borycz, Joshua

    The Zr 6 nodes of the metal–organic frameworks (MOFs) UiO-66 and UiO-67 are metal oxide clusters of atomic precision and can be used as catalyst supports. The bonding sites on these nodes—that is, hydrogen-bonded H 2O/OH groups on UiO-67 and non-hydrogen-bonded terminal OH groups on UiO-66—were regulated by modulation of the MOF syntheses. Ir(C 2H 4) 2(C 5H 7O 2) complexes reacted with these sites to give site-isolated Ir(C 2H 4) 2 complexes, each anchored to the node by two Ir–Onode bonds. The supported iridium complexes on these sites have been characterized by infrared (IR) and extended X-ray absorption finemore » structure (EXAFS) spectroscopies and density functional theory calculations. The ethylene ligands on iridium are readily replaced by CO, and the ν CO frequencies of the resultant complexes and those of comparable complexes reported elsewhere show that the support electron-donor tendencies increase in the order HY zeolite << UiO-66 < UiO-67 (= NU-1000) < ZrO 2 < MgO. The sharpness of the IR ν CO bands shows that the degree of uniformity of the support bonding sites decreases in the order ZrO 2 ≈ UiO-67 ≈ NU-1000 < MgO < UiO-66 << HY zeolite. The reactivity of supported Ir(CO) 2 complexes with C2H4 to form Ir(C 2H 4)(CO) and Ir(C 2H 4) 2(CO) is influenced by the support electron-donor properties, with the reactivity increasing in the order MgO = ZrO 2 = NU-1000 (not reactive) < UiO-66 < UiO-67 << HY zeolite. Density functional theory calculations characterizing the complexes supported on NU-1000, UiO-66/67, and HY zeolite concur with the use of the calculated ν CO bands as indicators of electron-donor properties of the supported metal catalysts. Our calculations also show that the reactivity of the supported Ir(CO) 2 complexes with C 2H 4 is correlated with the electron-donor properties of the iridium center. Lastly, the supported Ir(C 2H 4) 2 samples are precatalysts for ethylene hydrogenation and ethylene dimerization, with the activity for each reaction increasing with increasing electron-withdrawing strength of the support.« less

  16. Low-frequency vibrational modes of DL-homocysteic acid and related compounds.

    PubMed

    Yang, Limin; Zhao, Guozhong; Li, Weihong; Liu, Yufeng; Shi, Xiaoxi; Jia, Xinfeng; Zhao, Kui; Lu, Xiangyang; Xu, Yizhuang; Xie, Datao; Wu, Jinguang; Chen, Jia'er

    2009-09-01

    In this paper several polycrystalline molecules with sulfonate groups and some of their metal complexes, including DL-homocysteic acid (DLH) and its Sr- and Cu-complexes, pyridine-3-sulphonic acid and its Co- and Ni-complexes, sulfanilic acid and L-cysteic acid were investigated using THz time-domain methods at room temperature. The results of THz absorption spectra show that the molecules have characteristic bands in the region of 0.2-2.7 THz (6-90 cm(-1)). THz technique can be used to distinguish different molecules with sulfonate groups and to determine the bonding of metal ions and the changes of hydrogen bond networks. In the THz region DLH has three bands: 1.61, 1.93 and 2.02 THz; and 0.85, 1.23 and 1.73 THz for Sr-DLH complex, 1.94 THz for Cu-DLH complex, respectively. The absorption bands of pyridine-3-sulphonic acid are located at 0.81, 1.66 and 2.34 THz; the bands at 0.96, 1.70 and 2.38 THz for its Co-complex, 0.76, 1.26 and 1.87 THz for its Ni-complex. Sulphanilic acid has three bands: 0.97, 1.46 and 2.05 THz; and the absorption bands of l-cysteic acid are at 0.82, 1.62, 1.87 and 2.07 THz, respectively. The THz absorption spectra after complexation are different from the ligands, which indicate the bonding of metal ions and the changes of hydrogen bond networks. M-O and other vibrations appear in the FIR region for those metal-ligand complexes. The bands in the THz region were assigned to the rocking, torsion, rotation, wagging and other modes of different groups in the molecules. Preliminary assignments of the bands were carried out using Gaussian program calculation.

  17. Matrix isolation infrared spectra of hydrogen halide and halogen complexes with nitrosyl halides

    NASA Technical Reports Server (NTRS)

    Allamandola, Louis J.; Lucas, Donald; Pimentel, George C.

    1982-01-01

    Matrix isolation infrared spectra of nitrosyl halide (XNO) complexes with HX and X2 (X = Cl, Br) are presented. The relative frequency shifts of the HX mode are modest (ClNO H-Cl, delta-nu/nu = -0.045; BrNO H-Br, delta-nu/nu = -0.026), indicating weak hydrogen bonds 1-3 kcal/mol. These shifts are accompanied by significant shifts to higher frequencies in the XN-O stretching mode (CIN-O HCl, delta-nu/nu = +0.016; BrN-O HBr, delta-nu/nu = +0.011). Similar shifts were observed for the XN-O X2 complexes (ClN-O Cl2, delta-nu/nu = +0.009; BrN-O-Br2, delta-nu/nu = +0.013). In all four complexes, the X-NO stretching mode relative shift is opposite in sign and about 1.6 times that of the NO stretching mode. These four complexes are considered to be similar in structure and charge distribution. The XN-O frequency shift suggests that complex formation is accompanied by charge withdrawal from the NO bond ranging from about .04 to .07 electron charges. The HX and X2 molecules act as electron acceptors, drawing electrons out of the antibonding orbital of NO and strengthening the XN-O bond. The implications of the pattern of vibrational shifts concerning the structure of the complexes are discussed.

  18. 14N NQR study of hydrogen bonded complexes of 1,4 diazabicyclo [2,2,2] octane (ted) with phenols and thiourea

    NASA Astrophysics Data System (ADS)

    Murgich, Juan; Magaly, Santana R.; Diaz, Olga E.

    The 14N NQR spectra of H bonded complexes of 1,4 diazabicyclo [2,2,2] octane, also known as triethylenediamine (TED), with phenol (1:2), p-chlorophenol (1:2), p-nitrophenol (1:2), hydroquinone (1:1), resorcinol (1:1) and thiourea (1:2) were observed at 77 K. The 14N frequency shifts produced by the H bonds in the TED complexes were approximately two times larger than those found for similar complexes of Hexamethylenetetramine (HMT). Such change was explained by the effect on the remaining N atoms of the increase in the number of -CH 2- groups and the decrease in N atoms in passing from HMT to TED. From the above results it seems that the inductive effect plays an important role in the formation of H bonds in tertiary amines like HMT and TED.

  19. Crystal and molecular structure of eight organic acid-base adducts from 2-methylquinoline and different acids

    NASA Astrophysics Data System (ADS)

    Zhang, Jing; Jin, Shouwen; Tao, Lin; Liu, Bin; Wang, Daqi

    2014-08-01

    Eight supramolecular complexes with 2-methylquinoline and acidic components as 4-aminobenzoic acid, 2-aminobenzoic acid, salicylic acid, 5-chlorosalicylic acid, 3,5-dinitrosalicylic acid, malic acid, sebacic acid, and 1,5-naphthalenedisulfonic acid were synthesized and characterized by X-ray crystallography, IR, mp, and elemental analysis. All of the complexes are organic salts except compound 2. All supramolecular architectures of 1-8 involve extensive classical hydrogen bonds as well as other noncovalent interactions. The results presented herein indicate that the strength and directionality of the classical hydrogen bonds (ionic or neutral) between acidic components and 2-methylquinoline are sufficient to bring about the formation of binary organic acid-base adducts. The role of weak and strong noncovalent interactions in the crystal packing is ascertained. These weak interactions combined, the complexes 1-8 displayed 2D-3D framework structure.

  20. Hydrogen bond and halogen bond inside the carbon nanotube

    NASA Astrophysics Data System (ADS)

    Wang, Weizhou; Wang, Donglai; Zhang, Yu; Ji, Baoming; Tian, Anmin

    2011-02-01

    The hydrogen bond and halogen bond inside the open-ended single-walled carbon nanotubes have been investigated theoretically employing the newly developed density functional M06 with the suitable basis set and the natural bond orbital analysis. Comparing with the hydrogen or halogen bond in the gas phase, we find that the strength of the hydrogen or halogen bond inside the carbon nanotube will become weaker if there is a larger intramolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom donor to the antibonding orbital of the X-H or X-Hal bond involved in the formation of the hydrogen or halogen bond and will become stronger if there is a larger intermolecular electron-density transfer from the electron-rich region of the hydrogen or halogen atom acceptor to the antibonding orbital of the X-H or X-Hal bond. According to the analysis of the molecular electrostatic potential of the carbon nanotube, the driving force for the electron-density transfer is found to be the negative electric field formed in the carbon nanotube inner phase. Our results also show that the X-H bond involved in the formation of the hydrogen bond and the X-Hal bond involved in the formation of the halogen bond are all elongated when encapsulating the hydrogen bond and halogen bond within the carbon nanotube, so the carbon nanotube confinement may change the blue-shifting hydrogen bond and the blue-shifting halogen bond into the red-shifting hydrogen bond and the red-shifting halogen bond. The possibility to replace the all electron nanotube-confined calculation by the simple polarizable continuum model is also evaluated.

  1. Hydrogen bonding in a mixture of protic ionic liquids: a molecular dynamics simulation study.

    PubMed

    Paschek, Dietmar; Golub, Benjamin; Ludwig, Ralf

    2015-04-07

    We report results of molecular dynamics (MD) simulations characterising the hydrogen bonding in mixtures of two different protic ionic liquids sharing the same cation: triethylammonium-methylsulfonate (TEAMS) and triethylammonium-triflate (TEATF). The triethylammonium-cation acts as a hydrogen-bond donor, being able to donate a single hydrogen-bond. Both, the methylsulfonate- and the triflate-anions can act as hydrogen-bond acceptors, which can accept multiple hydrogen bonds via their respective SO3-groups. In addition, replacing a methyl-group in the methylsulfonate by a trifluoromethyl-group in the triflate significantly weakens the strength of a hydrogen bond from an adjacent triethylammonium cation to the oxygen-site in the SO3-group of the anion. Our MD simulations show that these subtle differences in hydrogen bond strength significantly affect the formation of differently-sized hydrogen-bonded aggregates in these mixtures as a function of the mixture-composition. Moreover, the reported hydrogen-bonded cluster sizes can be predicted and explained by a simple combinatorial lattice model, based on the approximate coordination number of the ions, and using statistical weights that mostly account for the fact that each anion can only accept three hydrogen bonds.

  2. Unusual 2:3:2 complex of DABCO mono-betaine with HCl and H 2O studied by X-ray diffraction, DFT calculations and spectroscopic methods

    NASA Astrophysics Data System (ADS)

    Barczyński, P.; Dega-Szafran, Z.; Katrusiak, A.; Perdoch, W.; Szafran, M.

    2009-12-01

    DABCO mono-betaine (1,4-diazabicyclo[2.2.2]octane-1-acetate) forms a complex with HCl and water in the ratio 2:3:2. The crystals are triclinic, space group P1¯. Two non-equivalent molecules of protonated DABCO mono-betaines form a homoconjugated cation through the short and asymmetric O·H·O hydrogen bond of 2.470(3) Å. Two chloride anions are involved in the N-H···Cl hydrogen bonds of 3.049(2) and 3.023(3) Å. The third chloride anion is solvated by the water molecules. The molecules of bis(1,4-diazoniumbicyclo[2.2.2]octane-1-acetate) trihydrochloride dihydrate are linked into comb-like chains by the hydrogen bond formed between water molecules of the neighboring complexes; the O(W)-H···O(W) distance is 2.920(5) Å. FTIR spectrum shows several broad bands attributed to the νO-H, νN-H and νO·H·O vibrations. The structure of three bis(1,4-diazoniumbicyclo[2.2.2]octane-1-acetate) hydrochlorides are optimized at the B3LYP/6-31G(d,p) level of theory and a theoretical IR spectrum is calculated. The values of p Ka of DABCO, DABCO mono- and di-betaines are determined by the potentiometric titration of their hydrohalides.

  3. Gas phase reaction of nitric acid with hydroxyl radical without and with water. A theoretical investigation.

    PubMed

    Gonzalez, Javier; Anglada, Josep M

    2010-09-02

    The gas phase reaction between nitric acid and hydroxyl radical, without and with a single water molecule, has been investigated theoretically using the DFT-B3LYP, MP2, QCISD, and CCSD(T) theoretical approaches with the 6-311+G(2df,2p) and aug-cc-pVTZ basis sets. The reaction without water begins with the formation of a prereactive hydrogen-bonded complex and has several elementary reactions processes. They include proton coupled electron transfer, hydrogen atom transfer, and proton transfer mechanisms, and our kinetic study shows a quite good agreement of the behavior of the rate constant with respect to the temperature and to the pressure with the experimental results from the literature. The addition of a single water molecule results in a much more complex potential energy surface although the different elementary reactions found have the same electronic features that the naked reaction. Two transition states are stabilized by the effect of a hydrogen bond interaction originated by the water molecule, and in the prereactive hydrogen bond region there is a geometrical rearrangement necessary to prepare the HO and HNO(3) moieties to react to each other. This step contributes the reaction to be slower than the reaction without water and explains the experimental finding, pointing out that there is no dependence for the HNO(3) + HO reaction on water vapor.

  4. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation.

    PubMed

    Chernia, Zelig; Tsori, Yoav

    2018-03-14

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  5. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation

    NASA Astrophysics Data System (ADS)

    Chernia, Zelig; Tsori, Yoav

    2018-03-01

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  6. Ruthenium(II) 2,2'-bibenzimidazole complex as a second-sphere receptor for anions interaction and colorimeter.

    PubMed

    Cui, Ying; Niu, Yan-Li; Cao, Man-Li; Wang, Ke; Mo, Hao-Jun; Zhong, Yong-Rui; Ye, Bao-Hui

    2008-07-07

    A ruthenium(II) complex [Ru(bpy) 2(H 2bbim)](PF 6) 2 ( 1) as anions receptor has been exploited, where Ru(II)-bpy moiety acts as a chromophore and the H 2bbim ligand as an anion binding site. A systematic study suggests that 1 interacts with the Cl (-), Br (-), I (-), NO 3 (-), HSO 4 (-), and H 2PO 4 (-) anions via the formation of hydrogen bonds. Whereas 1 undergoes a stepwise process with the addition of F (-) and OAc (-) anions: formation of the monodeprotonated complex [Ru(bpy) 2(Hbbim)] with a low anion concentration, followed by the double-deprotonated complex [Ru(bpy) 2(bbim)], in the presence of a high anion concentration. These stepwise processes concomitant with the changes of vivid colors from yellow to orange brown and then to violet can be used for probing the F (-) and OAc (-) anions by naked eye. The deprotonation processes are not only determined by the basicity of the anion but also related to the strength of hydrogen bonding, as well as the stability of the formed compounds. Moreover, a double-deprotonated complex [Ru(bpy) 2(bbim)].CH 3OH.H 2O ( 3) has been synthesized, and the structural changes induced by the deprotonation has also been investigated. In addition, complexes [Ru(bpy) 2(Hbbim)] 2(HOAc) 3Cl 2.12H 2O ( 2), [Ru(bpy) 2(Hbbim)](HCCl 3CO 2)(CCl 3CO 2).2H 2O ( 4), and [Ru(bpy) 2(H 2bbim)](CF 3CO 2) 2.4H 2O ( 5) have been synthesized to observe the second sphere coordination between the Ru(II)-H 2bbim moiety and carboxylate groups via hydrogen bonds in the solid state.

  7. Structure-reactivity relationships in the hydrogenation of carbon dioxide with ruthenium complexes bearing pyridinylazolato ligands.

    PubMed

    Muller, Keven; Sun, Yu; Heimermann, Andreas; Menges, Fabian; Niedner-Schatteburg, Gereon; van Wüllen, Christoph; Thiel, Werner R

    2013-06-10

    Pyridinylazolato (N-N') ruthenium(II) complexes of the type [(N-N')RuCl(PMe3)3] have been obtained in high yields by treating the corresponding functionalised azolylpyridines with [RuCl2 (PMe3)4] in the presence of a base. (15)N NMR spectroscopy was used to elucidate the electronic influence of the substituents attached to the azolyl ring. The findings are in agreement with slight differences in the bond lengths of the ruthenium complexes. Furthermore, the electronic nature of the azolate moiety modulates the catalytic activity of the ruthenium complexes in the hydrogenation of carbon dioxide under supercritical conditions and in the transfer hydrogenation of acetophenone. DFT calculations were performed to shed light on the mechanism of the hydrogenation of carbon dioxide and to clarify the impact of the electronic nature of the pyridinylazolate ligands. Copyright © 2013 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. Selective Aliphatic Carbon-Carbon Bond Activation by Rhodium Porphyrin Complexes.

    PubMed

    To, Ching Tat; Chan, Kin Shing

    2017-07-18

    The carbon-carbon bond activation of organic molecules with transition metal complexes is an attractive transformation. These reactions form transition metal-carbon bonded intermediates, which contribute to fundamental understanding in organometallic chemistry. Alternatively, the metal-carbon bond in these intermediates can be further functionalized to construct new carbon-(hetero)atom bonds. This methodology promotes the concept that the carbon-carbon bond acts as a functional group, although carbon-carbon bonds are kinetically inert. In the past few decades, numerous efforts have been made to overcome the chemo-, regio- and, more recently, stereoselectivity obstacles. The synthetic usefulness of the selective carbon-carbon bond activation has been significantly expanded and is becoming increasingly practical: this technique covers a wide range of substrate scopes and transition metals. In the past 16 years, our laboratory has shown that rhodium porphyrin complexes effectively mediate the intermolecular stoichiometric and catalytic activation of both strained and nonstrained aliphatic carbon-carbon bonds. Rhodium(II) porphyrin metalloradicals readily activate the aliphatic carbon(sp 3 )-carbon(sp 3 ) bond in TEMPO ((2,2,6,6-tetramethylpiperidin-1-yl)oxyl) and its derivatives, nitriles, nonenolizable ketones, esters, and amides to produce rhodium(III) porphyrin alkyls. Recently, the cleavage of carbon-carbon σ-bonds in unfunctionalized and noncoordinating hydrocarbons with rhodium(II) porphyrin metalloradicals has been developed. The absence of carbon-hydrogen bond activation in these systems makes the reaction unique. Furthermore, rhodium(III) porphyrin hydroxide complexes can be generated in situ to selectively activate the carbon(α)-carbon(β) bond in ethers and the carbon(CO)-carbon(α) bond in ketones under mild conditions. The addition of PPh 3 promotes the reaction rate and yield of the carbon-carbon bond activation product. Thus, both rhodium(II) porphyrin metalloradical and rhodium(III) porphyrin hydroxide are very reactive to activate the aliphatic carbon-carbon bonds. Recently, we successfully demonstrated the rhodium porphyrin catalyzed reduction or oxidation of aliphatic carbon-carbon bonds using water as the reductant or oxidant, respectively, in the absence of sacrificial reagents and neutral conditions. This Account presents our contribution in this domain. First, we describe the chemistry of equilibria among the reactive rhodium porphyrin complexes in oxidation states from Rh(I) to Rh(III). Then, we present the serendipitous discovery of the carbon-carbon bond activation reaction and subsequent developments in our laboratory. These aliphatic carbon-carbon bond activation reactions can generally be divided into two categories according to the reaction type: (i) homolytic radical substitution of a carbon(sp 3 )-carbon(sp 3 ) bond with a rhodium(II) porphyrin metalloradical and (ii) σ-bond metathesis of a carbon-carbon bond with a rhodium(III) porphyrin hydroxide. Finally, representative examples of catalytic carbon-carbon bond hydrogenation and oxidation through strategic design are covered. The progress in this area broadens the chemistry of rhodium porphyrin complexes, and these transformations are expected to find applications in organic synthesis.

  9. Vacuum Ultraviolet Photoionization of Complex Chemical Systems

    DOE PAGES

    Kostko, Oleg; Bandyopadhyay, Biswajit; Ahmed, Musahid

    2016-02-24

    Tunable vacuum ultraviolet (VUV) radiation coupled to mass spectrometry is applied to the study of complex chemical systems in this paper. The identification of novel reactive intermediates and radicals is revealed in flame, pulsed photolysis, and pyrolysis reactors, leading to the elucidation of spectroscopy, reaction mechanisms, and kinetics. Mass-resolved threshold photoelectron photoion coincidence measurements provide unprecedented access to vibrationally resolved spectra of free radicals present in high-temperature reactors. Photoionization measurements in water clusters, nucleic acid base dimers, and their complexes with water provide signatures of proton transfer in hydrogen-bonded and π-stacked systems. Experimental and theoretical methods to track ion–molecule reactionsmore » and fragmentation pathways in intermolecular and intramolecular hydrogen-bonded systems in sugars and alcohols are described. Photoionization of laser-ablated molecules, clusters, and their reaction products inform thermodynamics and spectroscopy that are relevant to astrochemistry and catalysis. Finally, new directions in coupling VUV radiation to interrogate complex chemical systems are discussed.« less

  10. Ab initio atomic recombination reaction energetics on model heat shield surfaces

    NASA Technical Reports Server (NTRS)

    Senese, Fredrick; Ake, Robert

    1992-01-01

    Ab initio quantum mechanical calculations on small hydration complexes involving the nitrate anion are reported. The self-consistent field method with accurate basis sets has been applied to compute completely optimized equilibrium geometries, vibrational frequencies, thermochemical parameters, and stable site labilities of complexes involving 1, 2, and 3 waters. The most stable geometries in the first hydration shell involve in-plane waters bridging pairs of nitrate oxygens with two equal and bent hydrogen bonds. A second extremely labile local minimum involves out-of-plane waters with a single hydrogen bond and lies about 2 kcal/mol higher. The potential in the region of the second minimum is extremely flat and qualitatively sensitive to changes in the basis set; it does not correspond to a true equilibrium structure.

  11. Existence of both blue-shifting hydrogen bond and Lewis acid-base interaction in the complexes of carbonyls and thiocarbonyls with carbon dioxide.

    PubMed

    Nguyen, Tien Trung; Nguyen, Phi Hung; Tran, Thanh Hue; Minh, Tho Nguyen

    2011-08-21

    In this study, 16 gas phase complexes of the pairs of XCHZ and CO(2) (X = F, Cl, Br; Z = O, S) have been identified. Interaction energies calculated at the CCSD(T)/aug-cc-pVTZ//MP2/aug-cc-pVTZ level including both BSSE and ZPE corrections range from -5.6 to -10.5 kJ mol(-1) for XCHOCO(2) and from -5.7 to -9.1 kJ mol(-1) for XCHS···CO(2). Substitution of one H atom by one halogen in formaldehyde and thioformaldehyde reduces the interaction energy of XCHZ···CO(2), while a CH(3) substitution increases the interaction energy of both CH(3)CHO···CO(2) and CH(3)CHS···CO(2). NBO and AIM analyses also point out that the strength of Lewis acid-base interactions decreases going from >C1=S3···C6 to >C1=O3C6 and to >C1-X4···C6. This result suggests the higher capacity of solubility of thiocarbonyl compounds in scCO(2), providing an enormous potential application for designing CO(2)-philic materials based on the >C=S functional group in competition with >C=O. The Lewis acid-base interaction of the types >C=S···C, >C-Cl···C and >C-Br···C is demonstrated for the first time. The contribution of the hydrogen bonding interaction to the total interaction energy is larger for XCHS···CO(2) than for XCHO···CO(2). Upon complexation, a contraction of the C1-H2 bond length and a blue shift of its stretching frequency have been observed, as compared to the isolated monomer, indicating the existence of a blue-shifting hydrogen bond in all complexes examined. Calculated results also lend further support for the viewpoint that when acting as proton donor, a C-H bond having a weaker polarization will induce a stronger distance contraction and frequency blue shift upon complexation, and vice versa.

  12. Theoretical study of negatively charged Fe(-)-(H2O)(n ≤ 6) clusters.

    PubMed

    Castro, Miguel

    2012-06-14

    Interactions of a singly negatively charged iron atom with water molecules, Fe(-)-(H(2)O)(n≤6), in the gas phase were studied by means of density functional theory. All-electron calculations were performed using the B3LYP functional and the 6-311++G(2d,2p) basis set for the Fe, O, and H atoms. In the lowest total energy states of Fe(-)-(H(2)O)(n), the metal-hydrogen bonding is stronger than the metal-oxygen one, producing low-symmetry structures because the water molecules are directly attached to the metal by basically one of their hydrogen atoms, whereas the other ones are involved in a network of hydrogen bonds, which together with the Fe(δ-)-H(δ+) bonding accounts for the nascent hydration of the Fe(-) anion. For Fe(-)-(H(2)O)(3≤n), three-, four-, five-, and six-membered rings of water molecules are bonded to the metal, which is located at the surface of the cluster in such a way as to reduce the repulsion with the oxygen atoms. Nevertheless, internal isomers appear also, lying less than 3 or 5 kcal/mol for n = 2-3 or n = 4-6. These results are in contrast with those of classical TM(+)-(H(2)O)(n) complexes, where the direct TM(+)-O bonding usually produces high symmetry structures with the metal defining the center of the complex. They show also that the Fe(-) anions, as the TM(+) ions, have great capability for the adsorption of water molecules, forming Fe(-)-(H(2)O)(n) structures stabilized by Fe(δ-)-H(δ+) and H-bond interactions.

  13. Homeotropic alignment of dendritic columnar liquid crystal induced by hydrogen-bonded triphenylene core bearing fluoroalkyl chains.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2014-07-01

    A 1:3 molar complex of the fluoroalkyl side chain-substituted 2,6,10-tris-carboxymethoxy-3,7,11-tris(4,4,5,5,6,6,7,7,7-nonafluoroheptyloxy)triphenylene (TPF4) with the second generation dendron 3,5-bis(3,4-bis-dodecyloxybenzyloxy)-N-pyridin-4-yl-benzamide (DN) assembled through complementary hydrogen bonding to form a supramolecular columnar liquid crystal, which exhibited homeotropic alignment when sandwiched between octadecyltrichlorosilane (OTS)-coated or indium tin oxide (ITO)-coated glass plates due to specific interactions between the fluoroalkyl side chains and the substrates.

  14. Smart supramolecular sensing with cucurbit[n]urils: probing hydrogen bonding with SERS.

    PubMed

    de Nijs, Bart; Kamp, Marlous; Szabó, Istvan; Barrow, Steven J; Benz, Felix; Wu, Guanglu; Carnegie, Cloudy; Chikkaraddy, Rohit; Wang, Wenting; Deacon, William M; Rosta, Edina; Baumberg, Jeremy J; Scherman, Oren A

    2017-12-04

    Rigid gap nano-aggregates of Au nanoparticles formed using cucurbit[n]uril (CB[n]) molecules are used to investigate the competitive binding of ethanol and methanol in an aqueous environment. We show it is possible to detect as little as 0.1% methanol in water and a ten times higher affinity to methanol over ethanol, making this a useful technology for quality control in alcohol production. We demonstrate strong interaction effects in the SERS peaks, which we demonstrate are likely from the hydrogen bonding of water complexes in the vicinity of the CB[n]s.

  15. Two-Dimensional Wetting of a Stepped Copper Surface

    NASA Astrophysics Data System (ADS)

    Lin, C.; Avidor, N.; Corem, G.; Godsi, O.; Alexandrowicz, G.; Darling, G. R.; Hodgson, A.

    2018-02-01

    Highly corrugated, stepped surfaces present regular 1D arrays of binding sites, creating a complex, heterogeneous environment to water. Rather than decorating the hydrophilic step sites to form 1D chains, water on stepped Cu(511) forms an extended 2D network that binds strongly to the steps but bridges across the intervening hydrophobic Cu(100) terraces. The hydrogen-bonded network contains pentamer, hexamer, and octomer water rings that leave a third of the stable Cu step sites unoccupied in order to bind water H down close to the step dipole and complete three hydrogen bonds per molecule.

  16. Structural basis for stabilization of Z-DNA by cobalt hexaammine and magnesium cations

    NASA Technical Reports Server (NTRS)

    Gessner, R. V.; Quigley, G. J.; Wang, A. H.; van der Marel, G. A.; van Boom, J. H.; Rich, A.

    1985-01-01

    In the equilibrium between B-DNA and Z-DNA in poly(dC-dG), the [Co(NH3)6]3+ ion stabilizes the Z form 4 orders of magnitude more effectively than the Mg2+ ion. The structural basis of this difference is revealed in Z-DNA crystal structures of d(CpGpCpGpCpG) stabilized by either Na+/Mg2+ or Na+/Mg2+ plus [Co(NH3)6]3+. The crystals diffract X-rays to high resolution, and the structures were refined at 1.25 A. The [Co(NH3)6]3+ ion forms five hydrogen bonds onto the surface of Z-DNA, bonding to a guanine O6 and N7 as well as to a phosphate group in the ZII conformation. The Mg2+ ion binds through its hydration shell with up to three hydrogen bonds to guanine N7 and O6. Higher charge, specific fitting of more hydrogen bonds, and a more stable complex all contribute to the great effectiveness of [Co(NH3)6]3+ in stabilizing Z-DNA.

  17. Efficient Hydrogenation of Ketones and Aldehydes Catalyzed by Well-Defined Iron(II) PNP Pincer Complexes: Evidence for an Insertion Mechanism

    PubMed Central

    2014-01-01

    We have prepared and structurally characterized a new class of Fe(II) PNP pincer hydride complexes [Fe(PNP-iPr)(H)(CO)(L)]n (L = Br–, CH3CN, pyridine, PMe3, SCN–, CO, BH4–; n = 0, +1) based on the 2,6-diaminopyridine scaffold where the PiPr2 moieties of the PNP ligand are connected to the pyridine ring via NH and/or NMe spacers. Complexes [Fe(PNP-iPr)(H)(CO)(L)]n with labile ligands (L = Br–, CH3CN, BH4–) and NH spacers are efficient catalysts for the hydrogenation of both ketones and aldehydes to alcohols under mild conditions, while those containing inert ligands (L = pyridine, PMe3, SCN–, CO) are catalytically inactive. Interestingly, complex [Fe(PNPMe-iPr)(H)(CO)(Br)], featuring NMe spacers, is an efficient catalyst for the chemoselective hydrogenation of aldehydes. The first type of complexes involves deprotonation of the PNP ligand as well as heterolytic dihydrogen cleavage via metal-alkoxide cooperation, but no reversible aromatization/deprotonation of the PNP ligand. In the case of the N-methylated complex the mechanism remains unclear, but obviously does not allow bifunctional activation of dihydrogen. The experimental results complemented by DFT calculations strongly support an insertion of the C=O bond of the carbonyl compound into the Fe–H bond. PMID:27642211

  18. Supramolecular assemblies of tetrafluoroterephthalic acid and N-heterocycles via various strong hydrogen bonds and weak Csbnd H⋯F interactions: Synthons cooperation, robust motifs and structural diversity

    NASA Astrophysics Data System (ADS)

    Hu, Yanjing; Hu, Hanbin; Li, Yingying; Chen, Ruixin; Yang, Yu; Wang, Lei

    2016-10-01

    A series of organic solid states including three salts, two co-crystals, and three hydrates based on tetrafluoroterephthalic acid (H2tfBDC) and N-bearing ligands (2,4-(1H,3H)-pyrimidine dione (PID), 2,4-dihydroxy-6-methyl pyrimidine (DHMPI), 2-amino-4,6-dimethyl pyrimidine (ADMPI), 2-amino-4,6-dimenthoxy pyrimidine (ADMOPI), 5,6-dimenthyl benzimidazole (DMBI), 2-aminobenzimidazole (ABI), 3,5-dimethyl pyrazole (DMP), and 3-cyanopyridine (3-CNpy)), namely, [(PID)2·(H2tfBDC)] (1), [(DHMPI)2·(H2tfBDC)] (2), [(H-ADMPI+)2·(tfBDC2-)·2(H2O)] (3), [(H-ADMOPI+)2·(tfBDC2-)·(H2O)] (4), [(H-DMBI+)2·(tfBDC2-)·2(H2O)] (5), [(H-ABI+)2·(tfBDC2-)] (6), [(H-DMP+)·(HtfBDC-)] (7), and [(H-3-CNpy+)·(HtfBDC-)] (8), were synthesized by solvent evaporation method. Crystal structures analyses show that the F atom of the H2tfBDC participates in multiple Csbnd H⋯F hydrogen bond formations, producing different supramolecular synthons. The weak hydrogen bonding Csbnd H⋯F and Nsbnd H⋯F play an important part in constructing the diversity structures 2-8, except in crystal 1. In complexes 1-3, they present the same synthon R22(8) with different N-heterocyclic compounds, which may show the strategy in constructing the supramolecular. Meanwhile, the complex 3 exhibits a 2D layer, and the independent molecules of water exist in the adjacent layers. In complexes 4 and 5, the water molecules connect the neighboring layers to form 3D network by strong Osbnd H⋯O hydrogen bonding. These crystals 1-8 were fully characterized by single-crystal X-ray crystallography, elemental analysis, infrared spectroscopy (IR), and thermogravimetric analysis (TGA).

  19. How Do Organic Chemistry Students Understand and Apply Hydrogen Bonding?

    NASA Astrophysics Data System (ADS)

    Henderleiter, J.; Smart, R.; Anderson, J.; Elian, O.

    2001-08-01

    Students completing a year-long organic chemistry sequence were interviewed to assess how they understood, explained, and applied knowledge of hydrogen bonding to the physical behavior of molecules. Students were asked to define hydrogen bonding and explain situations in which hydrogen bonding could occur. They were asked to predict and explain how hydrogen bonding influences boiling point, the solubility of molecules, and NMR and IR spectra. Results suggest that although students may be able to give appropriate definitions of hydrogen bonding and may recognize when this phenomenon can occur, significant numbers cannot apply their knowledge of hydrogen bonding to physical properties of molecules or to the interpretation of spectral data. Some possess misconceptions concerning boiling points and the ability of molecules to induce hydrogen bonding. Instructional strategies must be adjusted to address these issues.

  20. Ethylene glycol revisited: Molecular dynamics simulations and visualization of the liquid and its hydrogen-bond network☆

    PubMed Central

    Kaiser, Alexander; Ismailova, Oksana; Koskela, Antti; Huber, Stefan E.; Ritter, Marcel; Cosenza, Biagio; Benger, Werner; Nazmutdinov, Renat; Probst, Michael

    2014-01-01

    Molecular dynamics simulations of liquid ethylene glycol described by the OPLS-AA force field were performed to gain insight into its hydrogen-bond structure. We use the population correlation function as a statistical measure for the hydrogen-bond lifetime. In an attempt to understand the complicated hydrogen-bonding, we developed new molecular visualization tools within the Vish Visualization shell and used it to visualize the life of each individual hydrogen-bond. With this tool hydrogen-bond formation and breaking as well as clustering and chain formation in hydrogen-bonded liquids can be observed directly. Liquid ethylene glycol at room temperature does not show significant clustering or chain building. The hydrogen-bonds break often due to the rotational and vibrational motions of the molecules leading to an H-bond half-life time of approximately 1.5 ps. However, most of the H-bonds are reformed again so that after 50 ps only 40% of these H-bonds are irreversibly broken due to diffusional motion. This hydrogen-bond half-life time due to diffusional motion is 80.3 ps. The work was preceded by a careful check of various OPLS-based force fields used in the literature. It was found that they lead to quite different angular and H-bond distributions. PMID:24748697

  1. Molecularly Tuning the Radicaloid N-H···O═C Hydrogen Bond.

    PubMed

    Lu, Norman; Chung, Wei-Cheng; Ley, Rebecca M; Lin, Kwan-Yu; Francisco, Joseph S; Negishi, Ei-Ichi

    2016-03-03

    Substituent effects on the open shell N-H···O═C hydrogen-bond has never been reported. This study examines how 12 functional groups composed of electron donating groups (EDG), halogen atoms and electron withdrawing groups (EWG) affect the N-H···O═C hydrogen-bond properties in a six-membered cyclic model system of O═C(Y)-CH═C(X)N-H. It is found that group effects on this open shell H-bonding system are significant and have predictive trends when X = H and Y is varied. When Y is an EDG, the N-H···O═C hydrogen-bond is strengthened; and when Y is an EWG, the bond is weakened; whereas the variation in electronic properties of X group do not exhibit a significant impact upon the hydrogen bond strength. The structural impact of the stronger N-H···O═C hydrogen-bond are (1) shorter H and O distance, r(H···O) and (2) a longer N-H bond length, r(NH). The stronger N-H···O═C hydrogen-bond also acts to pull the H and O in toward one another which has an effect on the bond angles. Our findings show that there is a linear relationship between hydrogen-bond angle and N-H···O═C hydrogen-bond energy in this unusual H-bonding system. In addition, there is a linear correlation of the r(H···O) and the hydrogen bond energy. A short r(H···O) distance corresponds to a large hydrogen bond energy when Y is varied. The observed trends and findings have been validated using three different methods (UB3LYP, M06-2X, and UMP2) with two different basis sets.

  2. Direct local solvent probing by transient infrared spectroscopy reveals the mechanism of hydrogen-bond induced nonradiative deactivation† †Electronic supplementary information (ESI) available: Experimental details, basic photophysics of ADA, transient electronic absorption, additional steady-state and transient IR spectra. See DOI: 10.1039/c7sc00437k Click here for additional data file.

    PubMed Central

    Dereka, Bogdan

    2017-01-01

    The fluorescence quenching of organic dyes via H-bonding interactions is a well-known phenomenon. However, the mechanism of this Hydrogen-Bond Induced Nonradiative Deactivation (HBIND) is not understood. Insight into this process is obtained by probing in the infrared the O–H stretching vibration of the solvent after electronic excitation of a dye with H-bond accepting cyano groups. The fluorescence lifetime of this dye was previously found to decrease from 1.5 ns to 110 ps when going from an aprotic solvent to the strongly protic hexafluoroisopropanol (HFP). Prompt strengthening of the H-bond with the dye was identified by the presence of a broad positive O–H band of HFP, located at lower frequency than the O–H band of the pure solvent. Further strengthening occurs within a few picoseconds before the excited H-bonded complex decays to the ground state in 110 ps. The latter process is accompanied by the dissipation of energy from the dye to the solvent and the rise of a characteristic hot solvent band in the transient spectrum. Polarization-resolved measurements evidence a collinear alignment of the nitrile and hydroxyl groups in the H-bonded complex, which persists during the whole excited-state lifetime. Measurements in other fluorinated alcohols and in chloroform/HFP mixtures reveal that the HBIND efficiency depends not only on the strength of the H-bond interactions between the dye and the solvent but also on the ability of the solvent to form an extended H-bond network. The HBIND process can be viewed as an enhanced internal conversion of an excited complex consisting of the dye molecule connected to a large H-bond network. PMID:28970892

  3. Carbon-hydrogen activation of cycloalkanes by cyclopentadienylcarbonylrhodium--a lifetime enigma.

    PubMed

    Pitts, Amanda L; Wriglesworth, Alisdair; Sun, Xue-Zhong; Calladine, James A; Zarić, Snežana D; George, Michael W; Hall, Michael B

    2014-06-18

    Carbon-hydrogen bond activation reactions of four cycloalkanes (C5H10, C6H12, C7H14, and C8H16) by the Cp'Rh(CO) fragments (Cp' = η(5)-C5H5 (Cp) or η(5)-C5Me5 (Cp*)) were modeled theoretically by combining density functional and coupled cluster theories, and their reaction rates were measured by fast time-resolved infrared spectroscopy. The reaction has two steps, starting with the formation of a σ-complex intermediate, followed by oxidative addition of the C-H bond by the rhodium. A range of σ-complex stabilities among the electronically unique C-H bonds in a cycloalkane were calculated and are related to the individual strengths of the C-H bond's interactions with the Rh fragment and the steric repulsion that is incurred upon forming the specific σ-complex. The unexpectedly large increase in the lifetimes of the σ-complexes from cyclohexane to cycloheptane was predicted to be due to the large range of stabilities of the different σ-complexes found for cycloheptane. The reaction lifetimes were simulated with two mechanisms, with and without migrations among the different σ-complexes, to determine if ring migrations prior to C-H activation were influencing the rate. Both mechanisms predicted similar lifetimes for cyclopentane, cyclohexane, and, to a lesser extent, cycloheptane, suggesting ring migrations do not have a large impact on the rate of C-H activation for these cycloalkanes. For cyclooctane, the inclusion of ring migrations in the reaction mechanism led to a more accurate prediction of the lifetime, indicating that ring migrations did have an effect on the rate of C-H activation for this alkane, and that migration among the σ-complexes is faster than the C-H activation for this larger cycloalkane.

  4. Flexible Acyclic Polyol-Chloride Anion Complexes and Their Characterization by Photoelectron Spectroscopy and Variable Temperature Binding Constant Determinations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shokri, Alireza; Wang, Xue B.; Wang, Yangping

    2016-03-17

    Flexible acyclic alcohols with 1–5 hydroxyl groups were bound to chloride anion and these complexes were interrogated by negative ion photoelectron spectroscopy and companion density functional theory computations. The resulting vertical detachment energies are reproduced on average to 0.10 eV by M06-2X/aug-cc-pVTZ predictions and range from 4.45 – 5.96 eV. These values are 0.84 – 2.35 eV larger than the adiabatic detachment energy of Cl– as a result of the larger hydrogen bond networks in the bigger polyols. Adiabatic detachment energies of the alcohol–Cl– clusters are more difficult to determine both experimentally and computationally. This is due to the largemore » geometry changes that occur upon photodetachment and the large bond dissociation energy of H–Cl which enables the resulting chlorine atom to abstract a hydrogen from any of the methylene (CH2) or methine (CH) positions. Both ionic and non-ionic hydrogen bonds (i.e., OH•••Cl– and OH•••OH•••Cl–) form in the larger polyols complexes, and are found to be energetically comparable. Subtle structural differences, consequently can lead to the formation of different types of hydrogen bonds and maximizing the ionic ones is not always preferred. Solution equilibrium binding constants between the alcohols and tetrrabuylammonium chloride (TBACl) in acetonitrile at -24.2, 22.0, and 53.6 °C were also determined. The free energies of association are nearly identical for all of the substrates (i.e., ΔG° = -2.8 ± 0.7 kcal mol–1). Compensating enthalpy and entropy values reveal, contrary to expectation and the intrinsic gas-phase preferences, that the bigger systems with more hydroxyl groups are entropically favored and enthalpically disfavored relative to the smaller species. This suggests that more solvent molecules are released upon binding TBACl to alcohols with more hydroxyl groups and is consistent with the measured negative heat capacities. These quantities increase with molecular complexity of the substrate, however, contrary to common interpretation of these values.« less

  5. Novel bimetallic thiocyanate-bridged Cu(II)-Hg(II) compounds—synthesis, X-Ray studies and magnetic properties

    NASA Astrophysics Data System (ADS)

    Machura, B.; Świtlicka, A.; Zwoliński, P.; Mroziński, J.; Kalińska, B.; Kruszynski, R.

    2013-01-01

    Seven novel heterobimetallic Cu/Hg polymers based on thiocyanate bridges have been synthesised and characterised by means of IR, EPR, magnetic measurements and single crystal X-Ray. Three of them, [Cu(pzH)4Hg(SCN)4]n (1) [Cu(indH)4Hg(SCN)4]n (2) and [Cu(ampy)2Hg(SCN)4]n (3), have one-dimensional coordination structure. Two compounds [Cu(pzH)2Hg(SCN)4]n (4) and [Cu(abzimH)Hg(SCN)4]n (5) form two-dimensional nets, whereas the complexes [Cu(pyCN)2Hg(SCN)4]n (6) and [Cu(pyCH(OH)(OMe))2Hg(SCN)4]n (7) are three-dimensional coordination polymers. The chains of 1 are connected by the intermolecular N-H•••N hydrogen bonds to the three dimensional net. In 2 the N-H•••S hydrogen bonds link the polymeric chains to the two dimensional layer extending along crystallographic (0 0 1) plane. The polymeric chains of compound 3 are joined by the intermolecular N-H•••N and N-H•••S hydrogen bonds to the three dimensional net. The polymeric layers of 4 are connected by the intermolecular N-H•••N hydrogen bonds to the three dimensional net.

  6. The hydrogen-bond collective dynamics in liquid methanol

    DOE PAGES

    Bellissima, Stefano; Cunsolo, Alessandro; DePanfilis, Simone; ...

    2016-12-20

    The relatively simple molecular structure of hydrogen-bonded (HB) systems is often belied by their exceptionally complex thermodynamic and microscopic behaviour. For this reason, after a thorough experimental, computational and theoretical scrutiny, the dynamics of molecules in HB systems still eludes a comprehensive understanding. Aiming at shedding some insight into this topic, we jointly used neutron Brillouin scattering and molecular dynamics simulations to probe the dynamics of a prototypical hydrogen-bonded alcohol, liquid methanol. The comparison with the most thoroughly investigated HB system, liquid water, pinpoints common behaviours of their THz microscopic dynamics, thereby providing additional information on the role of HBmore » dynamics in these two systems. This study demonstrates that the dynamic behaviour of methanol is much richer than what so far known, and prompts us to establish striking analogies with the features of liquid and supercooled water. In particular, based on the strong differences between the structural properties of the two systems, our results suggest that the assignment of some dynamical properties to the tetrahedral character of water structure should be questioned. We finally highlight the similarities between the characteristic decay times of the time correlation function, as obtained from our data and the mean lifetime of hydrogen bond known in literature.« less

  7. Infrared Spectra of M^+(2-AMINO-1-PHENYL ETHANOL)(H_2O)_{n=0-2}Ar (M=Na, K)

    NASA Astrophysics Data System (ADS)

    Nicely, Amy L.; Lisy, James M.

    2009-06-01

    A balance of competing electrostatic and hydrogen bonding interactions directs the structure of hydrated gas-phase cluster ions. Because of this, a biologically relevant model of cluster structures should include the effects of surrounding water molecules and metal ions such as sodium and potassium, which are found in high concentrations in the bloodstream. The molecule 2-amino-1-phenyl ethanol (APE) serves as a model for the neurotransmitters ephedrine and adrenaline. The neutral APE molecule contains an internal hydrogen bond between the amino and hydroxyl groups. In the M^+(APE) complex, the cation can either interrupt the internal hydrogen bond or position itself above the phenyl group, leaving the internal hydrogen bond intact. The former is preferred based on DFT calculations (B3LYP/6-31+G*) for both K^+ and Na^+ across the entire range from 0-400K, but infrared photodissociation (IRPD) spectra indicate a preference for the latter configuration at low temperatures. The IRPD spectra of M^+(H_2O)_{n=1-2} and M^+(H_2O)_{n=0-2}Ar (M=Na, K) will be presented along with parallel DFT and thermodynamics calculations to assist with the identification of the isomers present in each experiment.

  8. A rare polyglycine type II-like helix motif in naturally occurring proteins.

    PubMed

    Warkentin, Eberhard; Weidenweber, Sina; Schühle, Karola; Demmer, Ulrike; Heider, Johann; Ermler, Ulrich

    2017-11-01

    Common structural elements in proteins such as α-helices or β-sheets are characterized by uniformly repeating, energetically favorable main chain conformations which additionally exhibit a completely saturated hydrogen-bonding network of the main chain NH and CO groups. Although polyproline or polyglycine type II helices (PP II or PG II ) are frequently found in proteins, they are not considered as equivalent secondary structure elements because they do not form a similar self-contained hydrogen-bonding network of the main chain atoms. In this context our finding of an unusual motif of glycine-rich PG II -like helices in the structure of the acetophenone carboxylase core complex is of relevance. These PG II -like helices form hexagonal bundles which appear to fulfill the criterion of a (largely) saturated hydrogen-bonding network of the main-chain groups and therefore may be regarded in this sense as a new secondary structure element. It consists of a central PG II -like helix surrounded by six nearly parallel PG II -like helices in a hexagonal array, plus an additional PG II -like helix extending the array outwards. Very related structural elements have previously been found in synthetic polyglycine fibers. In both cases, all main chain NH and CO groups of the central PG II -helix are saturated by either intra- or intermolecular hydrogen-bonds, resulting in a self-contained hydrogen-bonding network. Similar, but incomplete PG II -helix patterns were also previously identified in a GTP-binding protein and an antifreeze protein. © 2017 Wiley Periodicals, Inc.

  9. Synthesis of CuO by Cu-CPPs with the determination of Cu(II) coordination modes from a novel complex of [Cu(terpyOH){sub 2}]·(HBTC)·2H{sub 2}O

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Yu, E-mail: wangyu1012@hit.edu.cn; Chen, Gang, E-mail: gchen@hit.edu.cn; Han, Li

    2013-10-15

    In this study, we investigated the synthesis of CuO microrods by simple calcination of copper-based coordination polymer particles (Cu-CPPs) at high temperature in air. The photocatalytic activity of the CuO microrods was tested by the decomposition of aqueous solution of RhB, which was completely decomposed by irradiation with light. To analyze the relationship of metal ions and ligands in the Cu-CPPs, the single crystal of [Cu(terpyOH){sub 2}]∙(HBTC)∙2H{sub 2}O (1) (terpyOH=4′-hydroxy-2,2′:6′,2″-terpyridine, BTC=1,3,5-benzene tricarboxylate) was first prepared and characterized by X-ray single crystal structural analysis. A variety of hydrogen bonds constructing the 3D complex structure in [Cu(terpyOH){sub 2}]∙(HBTC)∙2H{sub 2}O (1) were observed.more » - Graphical abstract: Demonstrating a general method to synthesize CuO microrods via simple calcination of Cu-CPPs and Cu(II) coordination modes from a novel complex of [Cu(terpyOH){sub 2}]∙(HBTC)·2H{sub 2}O constructed by hydrogen bonding. Display Omitted - Highlights: • The formation of microrods CuO from thermal treatment of Cu-CPPs through an “escape-by-crafty-scheme” strategy has been studied. • Determination of Cu(II) coordination modes in Cu-CPPs from a novel complex of [Cu(terpyOH){sub 2}]∙(HBTC) 2H{sub 2}O. • Invested the behave of hydrogen bonding to construct the 3D complex structure. • Commendable photodegradation performance was observed.« less

  10. An energetic scale for equilibrium H/D fractionation factors illuminates hydrogen bond free energies in proteins

    PubMed Central

    Cao, Zheng; Bowie, James U

    2014-01-01

    Equilibrium H/D fractionation factors have been extensively employed to qualitatively assess hydrogen bond strengths in protein structure, enzyme active sites, and DNA. It remains unclear how fractionation factors correlate with hydrogen bond free energies, however. Here we develop an empirical relationship between fractionation factors and free energy, allowing for the simple and quantitative measurement of hydrogen bond free energies. Applying our empirical relationship to prior fractionation factor studies in proteins, we find: [1] Within the folded state, backbone hydrogen bonds are only marginally stronger on average in α-helices compared to β-sheets by ∼0.2 kcal/mol. [2] Charge-stabilized hydrogen bonds are stronger than neutral hydrogen bonds by ∼2 kcal/mol on average, and can be as strong as –7 kcal/mol. [3] Changes in a few hydrogen bonds during an enzyme catalytic cycle can stabilize an intermediate state by –4.2 kcal/mol. [4] Backbone hydrogen bonds can make a large overall contribution to the energetics of conformational changes, possibly playing an important role in directing conformational changes. [5] Backbone hydrogen bonding becomes more uniform overall upon ligand binding, which may facilitate participation of the entire protein structure in events at the active site. Our energetic scale provides a simple method for further exploration of hydrogen bond free energies. PMID:24501090

  11. A Vibrational Spectral Maker for Probing the Hydrogen-Bonding Status of Protonated Asp and Glu Residues

    PubMed Central

    Nie, Beining; Stutzman, Jerrod; Xie, Aihua

    2005-01-01

    Hydrogen bonding is a fundamental element in protein structure and function. Breaking a single hydrogen bond may impair the stability of a protein. We report an infrared vibrational spectral marker for probing the hydrogen-bond number for buried, protonated Asp or Glu residues in proteins. Ab initio computational studies were performed on hydrogen-bonding interactions of a COOH group with a variety of side-chain model compounds of polar and charged amino acids in vacuum using density function theory. For hydrogen-bonding interactions with polar side-chain groups, our results show a strong correlation between the C=O stretching frequency and the hydrogen bond number of a COOH group: ∼1759–1776 cm−1 for zero, ∼1733–1749 cm−1 for one, and 1703–1710 cm−1 for two hydrogen bonds. Experimental evidence for this correlation will be discussed. In addition, we show an approximate linear correlation between the C=O stretching frequency and the hydrogen-bond strength. We propose that a two-dimensional infrared spectroscopy, C=O stretching versus O-H stretching, may be employed to identify the specific type of hydrogen-bonding interaction. This vibrational spectral marker for hydrogen-bonding interaction is expected to enhance the power of time-resolved Fourier transform infrared spectroscopy for structural characterization of functionally important intermediates of proteins. PMID:15653739

  12. Positronium formation studies in crystalline molecular complexes: Triphenylphosphine oxide - Acetanilide

    NASA Astrophysics Data System (ADS)

    Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.

    2013-04-01

    Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.

  13. Prediction of binding constants of protein ligands: A fast method for the prioritization of hits obtained from de novo design or 3D database search programs

    NASA Astrophysics Data System (ADS)

    Böhm, Hans-Joachim

    1998-07-01

    A dataset of 82 protein-ligand complexes of known 3D structure and binding constant Ki was analysed to elucidate the important factors that determine the strength of protein-ligand interactions. The following parameters were investigated: the number and geometry of hydrogen bonds and ionic interactions between the protein and the ligand, the size of the lipophilic contact surface, the flexibility of the ligand, the electrostatic potential in the binding site, water molecules in the binding site, cavities along the protein-ligand interface and specific interactions between aromatic rings. Based on these parameters, a new empirical scoring function is presented that estimates the free energy of binding for a protein-ligand complex of known 3D structure. The function distinguishes between buried and solvent accessible hydrogen bonds. It tolerates deviations in the hydrogen bond geometry of up to 0.25 Å in the length and up to 30 °Cs in the hydrogen bond angle without penalizing the score. The new energy function reproduces the binding constants (ranging from 3.7 × 10-2 M to 1 × 10-14 M, corresponding to binding energies between -8 and -80 kJ/mol) of the dataset with a standard deviation of 7.3 kJ/mol corresponding to 1.3 orders of magnitude in binding affinity. The function can be evaluated very fast and is therefore also suitable for the application in a 3D database search or de novo ligand design program such as LUDI. The physical significance of the individual contributions is discussed.

  14. Factors affecting hydrogen-tunneling contribution in hydroxylation reactions promoted by oxoiron(IV) porphyrin π-cation radical complexes.

    PubMed

    Cong, Zhiqi; Kinemuchi, Haruki; Kurahashi, Takuya; Fujii, Hiroshi

    2014-10-06

    Hydrogen atom transfer with a tunneling effect (H-tunneling) has been proposed to be involved in aliphatic hydroxylation reactions catalyzed by cytochrome P450 and synthetic heme complexes as a result of the observation of large hydrogen/deuterium kinetic isotope effects (KIEs). In the present work, we investigate the factors controlling the H-tunneling contribution to the H-transfer process in hydroxylation reaction by examining the kinetics of hydroxylation reactions at the benzylic positions of xanthene and 1,2,3,4-tetrahydronaphthalene by oxoiron(IV) 5,10,15,20-tetramesitylporphyrin π-cation radical complexes ((TMP(+•))Fe(IV)O(L)) under single-turnover conditions. The Arrhenius plots for these hydroxylation reactions of H-isotopomers have upwardly concave profiles. The Arrhenius plots of D-isotopomers, clear isosbestic points, and product analysis rule out the participation of thermally dependent other reaction processes in the concave profiles. These results provide evidence for the involvement of H-tunneling in the rate-limiting H-transfer process. These profiles are simulated using an equation derived from Bell's tunneling model. The temperature dependence of the KIE values (k(H)/k(D)) determined for these reactions indicates that the KIE value increases as the reaction temperature becomes lower, the bond dissociation energy (BDE) of the C-H bond of a substrate becomes higher, and the reactivity of (TMP(+•))Fe(IV)O(L) decreases. In addition, we found correlation of the slope of the ln(k(H)/k(D)) - 1/T plot and the bond strengths of the Fe═O bond of (TMP(+•))Fe(IV)O(L) estimated from resonance Raman spectroscopy. These observations indicate that these factors modulate the extent of the H-tunneling contribution by modulating the ratio of the height and thickness of the reaction barrier.

  15. A new family of metal borohydride guanidinate complexes: Synthesis, structures and hydrogen-storage properties

    NASA Astrophysics Data System (ADS)

    Wu, Hui; Zhou, Xiuquan; Rodriguez, Efrain E.; Zhou, Wei; Udovic, Terrence J.; Yildirim, Taner; Rush, John J.

    2016-10-01

    We report on a new class of complex hydrides: borohydride guanidinate complexes (MBH4·nCN3H5, M=Li, Mg, and Ca). They can be prepared via facile solid-state synthesis routes. Their crystal structures were successfully determined using a combination of X-ray diffraction, first-principles calculations and neutron vibrational spectroscopy. Among these compounds, Mg(BH4)2·6CN3H5 is composed of large complex Mg[CN3H5]62+ cations and surrounding BH4- ions, while Ca(BH4)2·2CN3H5 possesses layers of corner-sharing Ca[BH4]4(CN3H5)2 octahedra. Our dehydrogenation results show that ≈10 wt% hydrogen can be released from MBH4·nCN3H5 (M=Li, Mg, and Ca) at moderate temperatures with minimal ammonia and diborane contamination thanks to the synergistic effect of C-N bonds from guanidine and hydridic H from borohydrides leading to a weakening of the N-H bonds, thus impeding ammonia gas liberation. Further tuning the dehydrogenation with different cation species indicates that Mg(BH4)2·nCN3H5 can exhibit the optimum properties with nearly thermally neutral dehydrogenation and very high purity hydrogen release.

  16. Chirality of weakly bound complexes: The potential energy surfaces for the hydrogen-peroxide−noble-gas interactions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roncaratti, L. F., E-mail: lz@fis.unb.br; Leal, L. A.; Silva, G. M. de

    2014-10-07

    We consider the analytical representation of the potential energy surfaces of relevance for the intermolecular dynamics of weakly bound complexes of chiral molecules. In this paper we study the H{sub 2}O{sub 2}−Ng (Ng=He, Ne, Ar, Kr, and Xe) systems providing the radial and the angular dependence of the potential energy surface on the relative position of the Ng atom. We accomplish this by introducing an analytical representation which is able to fit the ab initio energies of these complexes in a wide range of geometries. Our analysis sheds light on the role that the enantiomeric forms and the symmetry ofmore » the H{sub 2}O{sub 2} molecule play on the resulting barriers and equilibrium geometries. The proposed theoretical framework is useful to study the dynamics of the H{sub 2}O{sub 2} molecule, or other systems involving O–O and S–S bonds, interacting by non-covalent forces with atoms or molecules and to understand how the relative orientation of the O–H bonds changes along collisional events that may lead to a hydrogen bond formation or even to selectivity in chemical reactions.« less

  17. Study of variation in thermal width of nematic and induced smectic ordering phase of citric acid (CA) and 4-heptyloxybenzoic acid (7OBA) hydrogen bonded liquid crystal complexes

    NASA Astrophysics Data System (ADS)

    Sundaram, S.; Jayaprakasam, R.; Praveena, R.; Rajasekaran, T. R.; Senthil, T. S.; Vijayakumar, V. N.

    2018-01-01

    Hydrogen-bonded liquid crystals (HBLCs) have been derived from nonmesogenic citric acid (CA) and mesogenic 4-heptyloxybenzoic acid (7OBA) yielding a highly ordered smectic C (Sm C) phase along with the new smectic X (Sm X) phase which has been identified as fingerprint-type texture. Optical (polarizing optical microscopy), thermal (differential scanning calorimetry) and structural (Fourier transform infrared spectroscopy and nuclear magnetic resonance spectroscopy) properties are studied. A noteworthy observation is that the intermolecular H-bond (between CA and 7OBA) influences on its melting point and clearing temperature of the HBLCs which exhibits lower value than those of the individual compounds. A typical extended mesophase region has been observed in the present complex while varying the mixture ratio (1:1 to 1:3) than those of individual compounds. The change in the ratio of the mesogenic compound in the mixture alters thermal properties such as enthalpy value and thermal span width in nematic (N) region of HBLC complex. Optical tilt angle measurement of CA+7OBA in Sm C phase has been discussed to identify the molecular position in the mesophase.

  18. Sunitinib: from charge-density studies to interaction with proteins.

    PubMed

    Malińska, Maura; Jarzembska, Katarzyna N; Goral, Anna M; Kutner, Andrzej; Woźniak, Krzysztof; Dominiak, Paulina M

    2014-05-01

    Protein kinases are targets for the treatment of a number of diseases. Sunitinib malate is a type I inhibitor of tyrosine kinases and was approved as a drug in 2006. This contribution constitutes the first comprehensive analysis of the crystal structures of sunitinib malate and of complexes of sunitinib with a series of protein kinases. The high-resolution single-crystal X-ray measurement and aspherical atom databank approach served as a basis for reconstruction of the charge-density distribution of sunitinib and its protein complexes. Hirshfeld surface and topological analyses revealed a similar interaction pattern in the sunitinib malate crystal structure to that in the protein binding pockets. Sunitinib forms nine preserved bond paths corresponding to hydrogen bonds and also to the C-H···O and C-H···π contacts common to the VEGRF2, CDK2, G2, KIT and IT kinases. In general, sunitinib interacts with the studied proteins with a similar electrostatic interaction energy and can adjust its conformation to fit the binding pocket in such a way as to enhance the electrostatic interactions, e.g. hydrogen bonds in ligand-kinase complexes. Such behaviour may be responsible for the broad spectrum of action of sunitinib as a kinase inhibitor.

  19. Dynamic study of excited state hydrogen-bonded complexes of harmane in cyclohexane-toluene mixtures.

    PubMed

    Carmona, Carmen; Balón, Manuel; Galán, Manuel; Guardado, Pilar; Muñoz, María A

    2002-09-01

    Photoinduced proton transfer reactions of harmane or 1-methyl-9H-pyrido[3,4-b]indole (HN) in the presence of the proton donor hexafluoroisopropanol (HFIP) in cyclohexane-toluene mixtures (CY-TL; 10% vol/vol of TL) have been studied. Three excited state species have been identified: a 1:2 hydrogen-bonded proton transfer complex (PTC), between the pyridinic nitrogen of the substrate and the proton donor, a hydrogen-bonded cation-like exciplex (CL*) with a stoichiometry of at least 1:3 and a zwitterionic exciplex (Z*). Time-resolved fluorescence measurements evidence that upon excitation of ground state PTC, an excited state equilibrium is established between PTC* and the cationlike exciplex, CL*, lambdaem approximately/= 390 nm. This excited state reaction is assisted by another proton donor molecule. Further reaction of CL* with an additional HFIP molecule produces the zwitterionic species, Z*, lambda(em) approximately/= 500 nm. From the analysis of the multiexponential decays, measured at different emission wavelengths and as a function of HFIP concentration, the mechanism of these excited state reactions has been established. Thus, three rate constants and three reciprocal lifetimes have been determined. The simultaneous study of 1,9-dimethyl-9H-pyrido[3,4-b]indole (MHN) under the same experimental conditions has helped to understand the excited state kinetics of these processes.

  20. Structure and thermotropic phase behavior of sodium and potassium carboxylate ionomers

    NASA Astrophysics Data System (ADS)

    Mantsch, H. H.; Weng, S. F.; Yang, P. W.; Eysel, H. H.

    1994-07-01

    A molecular complex is formed between long-chain carboxylic acids and their alkali salts in a 1 : 1 mixture. These so-called "acid soaps" or carboxylate ionomers have multilamellar bilayer-type structures in solid state, which are retained in the presence of excess water, resembling the dispersions (gels) formed by typical two-chain amphiphiles, e.g. lipids. The special arrangement of hydrogen-bonded pairs of carboxylic acid and carboxylate groups into a unique "head-group" is supported by frequency shifts and partial or total disappearance of the characteristic vibrations of carboxylic acid dimers and of carboxylate groups. The existence of well-ordered hydrocarbon chains is demonstrated by the existence and polarization properties of the methylene rocking and wagging propagation modes. The gel to liquid-crystal phase transition of the hydrated acid soaps shows practically no cation dependence, unlike the corresponding phase transition in neutral soaps which varies considerably with the nature of the counterion. There is spectroscopic evidence to suggest a cooperative process that involves "melting" of the alkyl chains and disintegration of the hydrogen-bonded carboxylate—carboxylic acid complex, followed by a cation-dependent equilibrium that favors the formation of acid dimers at elevated temperatures and some form of hydrogen-bonded ion pair aggregates at intermediate temperatures.

  1. Design of ferrocene-dipeptide bioorganometallic conjugates to induce chirality-organized structures.

    PubMed

    Moriuchi, Toshiyuki; Hirao, Toshikazu

    2010-07-20

    The highly ordered molecular assemblies in proteins can have a variety of functions, as observed in enzymes, receptors, and the like. Synthetic scientists are constructing bioinspired systems by harnessing the self-assembling properties of short peptides. Secondary structures such as alpha-helices, beta-sheets, and beta-turns are important in protein folding, which is mostly directed and stabilized by hydrogen bonding and the hydrophobic interactions of side chains. The design of secondary structure mimics that are composed of short peptides has attracted much attention, both for gaining fundamental insight into the factors affecting protein folding and for developing pharmacologically useful compounds, artificial receptors, asymmetric catalysts, and new materials. Ferrocenes are an organometallic scaffold with a central reverse-turn unit based on the inter-ring spacing of about 3.3 A, which is a suitable distance for hydrogen bonding between attached peptide strands. The conjugation of organometallic compounds with biomolecules such as amino acids, peptides, and DNA should provide novel systems that reflect properties of both the ferrocene and the biologically derived moieties. In this Account, we focus on recent advances in the design of ferrocene-peptide bioconjugates, which help illustrate the peptidomimetic basis for protein folding and the means of constructing highly ordered molecular assemblies. Ferrocene-peptide bioconjugates are constructed to form chirality-organized structures in both solid and solution states. The ferrocene serves as a reliable organometallic scaffold for the construction of protein secondary structures via intramolecular hydrogen bonding: the attached dipeptide strands are constrained within the appropriate dimensions. The introduction of the chiral dipeptide chains into the ferrocene scaffold induces the conformational enantiomerization of the ferrocenyl moiety; the chirality-organized structure results from intramolecular hydrogen bonding. The configuration and sequence of the amino acids are instrumental in the process. Regulation of the directionality and specificity of hydrogen bonding is a key component in the design of various molecular assemblies. Ferrocene-peptide bioconjugates also have a strong tendency to self-assemble through the contributions of available hydrogen-bonding donors in the solid state. Some ferrocene-peptide bioconjugates bearing only one dipeptide chain exhibit a helically ordered molecular assembly through a network of intermolecular (rather than intramolecular) hydrogen bonds. The propensity to form the chiral helicity appears to be controlled by the chirality of the dipeptide chains. Organization of host molecules is a useful strategy for forming artificial receptors. The conformationally regulated ferrocene-peptide bioconjugate provides the chirality-organized binding site for size-selective and chiral recognition of dicarboxylic acids through multipoint hydrogen bonds. Metal ions serve a variety of purposes in proteins, including structural stabilization for biological function. The complexation of ferrocene-peptide bioconjugates with palladium(II) compounds not only stabilizes the chirality conformational regulation but also induces conformational regulation of the dipeptide chain through complexation and intramolecular chirality organization. Construction of the chirality-organized ferrocene-peptide bioconjugates is also achieved by metal-directed assembly. These varied examples amply demonstrate the value of ferrocene-peptide bioconjugates in asserting architectural control over highly ordered molecular assemblies.

  2. C-PCM based calculation of energy profiles for proton transfer in phosphorus-containing acid- N, N-dimethylformamide complexes

    NASA Astrophysics Data System (ADS)

    Fedorova, I. V.; Khatuntseva, E. A.; Krest'yaninov, M. A.; Safonova, L. P.

    2016-02-01

    Proton transfer along the hydrogen bond in complexes of DMF with H3PO4, H3PO3, CH3H2PO3, and their dimers has been investigated by the B3LYP/6-31++G** method in combination with the C-PCM model. When the Oacid···ODMF distance ( R) in the scanning procedure is not fixed, the energy profile in all cases has a single well. When this distance is fixed, there can be a proton transfer in all of the complexes in the gas phase at R > 2.6 Å; if solvation is taken into account, proton transfer can take place at R > 2.4 Å ( R > 2.5 Å for DMF complexes with CH3H2PO3 and its dimer). The height of the energy barrier to proton transfer increases with increasing R. Proton transfer is energetically most favorable in the DMF-phosphoric acid complexes. The structural and energetic characteristics of the hydrogen-bonded complexes calculated on the basis of the solvation model are compared with the same parameters for the complexes in the gas phase.

  3. Tetraalkylammonium Salts as Hydrogen-Bonding Catalysts.

    PubMed

    Shirakawa, Seiji; Liu, Shiyao; Kaneko, Shiho; Kumatabara, Yusuke; Fukuda, Airi; Omagari, Yumi; Maruoka, Keiji

    2015-12-21

    Although the hydrogen-bonding ability of the α hydrogen atoms on tetraalkylammonium salts is often discussed with respect to phase-transfer catalysts, catalysis that utilizes the hydrogen-bond-donor properties of tetraalkylammonium salts remains unknown. Herein, we demonstrate hydrogen-bonding catalysis with newly designed tetraalkylammonium salt catalysts in Mannich-type reactions. The structure and the hydrogen-bonding ability of the new ammonium salts were investigated by X-ray diffraction analysis and NMR titration studies. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Fundamental studies on the feasibility of deep eutectic solvents for the selective partition of glaucarubinone present in the roots of Simarouba glauca.

    PubMed

    Kholiya, Faisal; Bhatt, Nidhi; Rathod, Meena R; Meena, Ramavatar; Prasad, Kamalesh

    2015-07-14

    Several deep eutectic solvents prepared by the complexation of choline chloride as the hydrogen bond acceptor and hydrogen bond donors such as urea, thiourea, ethylene glycol, and glycerol were employed to partition glaucarubinone, an antimalarial compound present in roots of the plant, Simarouba glauca. Among all the solvents, the deep eutectic solvent consisting of the mixture of choline chloride and urea the most suitable to partition the antimalarial compound from the extract selectively. Analytical tools such as high-performance liquid chromatography and electrospray ionization mass spectrometry were used for characterizations, and glaucarubinone extracted from the roots of the plant by conventional solvent extraction method was used as a reference for comparison. The hydrogen and noncovalent bonds formed between glaucarubinone and the deep eutectic solvents could be responsible for the selective partition of the drug molecule. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  5. Pseudosymmetric fac-di­aqua­trichlorido[(di­methyl­phosphor­yl)methanaminium-κO]manganese(II)

    PubMed Central

    Reiss, Guido J.

    2013-01-01

    In the title compound, [Mn(C3H11NOP)Cl3(H2O)2], the MnII metal center has a distorted o­cta­hedral geometry, coordinated by the three chloride ligands showing a facial arrangement. Two water mol­ecules and the O-coordinated dpmaH cation [dpmaH = (di­methyl­phosphor­yl)methanaminium] complete the coordination sphere. Each complex mol­ecule is connected to its neighbours by O—H⋯Cl and N—H⋯Cl hydrogen bonds. Two of the chloride ligands and the two water ligands form a hydrogen-bonded polymeric sheet in the ab plane. Furthermore, these planes are connected to adjacent planes by hydrogen bonds from the aminium function of cationic dpmaH ligand. A pseudo-mirror plane perpendicular to the b axis in the chiral space group P21 is observed together with inversion twinning [ratio = 0.864 (5):0.136 (5)]. PMID:23723764

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Callear, Samantha K.; Imberti, Silvia; Johnston, Andrew

    The aqueous solution of dopamine hydrochloride has been investigated using neutron and X-ray total scattering data together with Monte-Carlo based modelling using Empirical Potential Structure Refinement. The conformation of the protonated dopamine molecule is presented and the results compared to the conformations found in crystal structures, dopamine-complexed protein crystal structures and predicted from theoretical calculations and pharmacophoric models. It is found that protonated dopamine adopts a range of conformations in solution, highlighting the low rotational energy barrier between different conformations, with the preferred conformation being trans-perpendicular. The interactions between each of the species present (protonated dopamine molecules, water molecules, andmore » chloride anions) have been determined and are discussed with reference to interactions observed in similar systems both in the liquid and crystalline state, and predicted from theoretical calculations. The expected strong hydrogen bonds between the strong hydrogen bond donors and acceptors are observed, together with evidence of weaker CH hydrogen bonds and π interactions also playing a significant role in determining the arrangement of adjacent molecules.« less

  7. Leveraging Electron Transfer Dissociation for Site Selective Radical Generation: Applications for Peptide Epimer Analysis

    NASA Astrophysics Data System (ADS)

    Lyon, Yana A.; Beran, Gregory; Julian, Ryan R.

    2017-07-01

    Traditional electron-transfer dissociation (ETD) experiments operate through a complex combination of hydrogen abundant and hydrogen deficient fragmentation pathways, yielding c and z ions, side-chain losses, and disulfide bond scission. Herein, a novel dissociation pathway is reported, yielding homolytic cleavage of carbon-iodine bonds via electronic excitation. This observation is very similar to photodissociation experiments where homolytic cleavage of carbon-iodine bonds has been utilized previously, but ETD activation can be performed without addition of a laser to the mass spectrometer. Both loss of iodine and loss of hydrogen iodide are observed, with the abundance of the latter product being greatly enhanced for some peptides after additional collisional activation. These observations suggest a novel ETD fragmentation pathway involving temporary storage of the electron in a charge-reduced arginine side chain. Subsequent collisional activation of the peptide radical produced by loss of HI yields spectra dominated by radical-directed dissociation, which can be usefully employed for identification of peptide isomers, including epimers.

  8. Interrogating heterobimetallic co-catalytic responses for the electrocatalytic reduction of CO2 using supramolecular assembly.

    PubMed

    Machan, Charles W; Kubiak, Clifford P

    2016-10-12

    The use of hydrogen-bonding interactions to direct the non-covalent assembly of a heterobimetallic supramolecular system with Re and Mn bipyridine-based electrocatalysts is reported. Under catalytic conditions, the formation of hydrogen bonds generates a catalyst system which passes ∼10% more current than the individual current responses of the respective Re and Mn complexes for the reduction of CO 2 to CO and H 2 O. Infrared spectroelectrochemical studies indicate that the Re and Mn metal centers interact during the reduction mechanism, even forming heterobimetallic bonds under reducing conditions in the absence of substrate. These findings demonstrate that non-covalent assembly is a powerful method for generating new co-catalyst systems with greater reactivity and efficiency for transformations of interest.

  9. A study of N-methylacetamide in water clusters: based on atom-bond electronegativity equalization method fused into molecular mechanics.

    PubMed

    Yang, Zhong-Zhi; Qian, Ping

    2006-08-14

    N-methylacetamide (NMA) is a very interesting compound and often serves as a model of the peptide bond. The interaction between NMA and water provides a convenient prototype for the solvation of the peptides in aqueous solutions. Here we present NMA-water potential model based on atom-bond electronegativity equalization method fused into molecular mechanics (ABEEM/MM) that is to take ABEEM charges of all atoms, bonds, and lone-pair electrons of NMA and water molecules into the electrostatic interaction term in molecular mechanics. The model has the following characters: (1)it allows the charges in system to fluctuate responding to the ambient environment; (2) for two major types of intermolecular hydrogen bonds, which are the hydrogen bond forming between the lone-pair electron on amide oxygen and the water hydrogen, and the one forming between the lone-pair electron on water oxygen and the amide hydrogen, we take special treatments in describing the electrostatic interaction by the use of the parameters k(lpO=, H) and k(lpO(-), HN(-)), respectively. The newly constructed potential model based on ABEEM/MM is first applied to amide-water clusters and reproduces gas-phase state properties of NMA(H(2)O)(n) (n=1-3) including optimal structures, dipole moments, ABEEM charge distributions, energy difference of the isolated trans- and cis-NMA, interaction energies, hydrogen bonding cooperative effects, and so on, whose results show the good agreement with those measured by available experiments and calculated by ab initio methods. In order to further test the reasonableness of this model and the correctness and transferability of the parameters, many static properties of the larger NMA-water complexes NMA(H(2)O)(n) (n=4-6) are also studied including optimal structures and interaction energies. The results also show fair consistency with those of our quantum chemistry calculations.

  10. Fabrication and characterization of magnesium and calcium trimesate complexes via ion-exchange and one-pot self-assembly reaction

    NASA Astrophysics Data System (ADS)

    Ozer, Demet; Oztas, Nursen Altuntas; Köse, Dursun A.; Şahin, Onur

    2018-03-01

    Using two different synthesis methods, two diversified magnesium and calcium complexes were successfully prepared. When the ion exchange method was used, C9H14MgO11.H2O and C18H30Ca3O24 complexes were obtained. When the one-pot self-assembly reaction was used, C18H34Mg3O26.4H2O and C9H12CaO10 complexes were produced. The structural characterizations were performed by using X-ray diffraction, FT-IR and elemental analyses. Thermal behavior of complexes were also determined via TGA method. The both complexes of magnesium and calcium trimesate have micro and mesoporosity with low porosity because of hydrogen bonds. Then hydrogen storage capacities of complexes were also determined. The differences in synthesis method result in the differences on complexes structure, morphology (shape, particle size and specific surface area) and hydrogen storage capacities.

  11. Structure of complex of N-methylpiperidine betaine with p-hydroxybenzoic acid studied by X-ray, FT-IR and DFT methods

    NASA Astrophysics Data System (ADS)

    Dega-Szafran, Z.; Dutkiewicz, G.; Kosturkiewicz, Z.; Szafran, M.

    2008-03-01

    Crystal structure of the complex of N-methylpiperidine betaine ( N-carboxymethyl- N-methylpiperidinium inner salt, MPB) with p-hydroxybenzoic acid (HBA) has been determined by X-ray diffraction. The crystals are triclinic, space group Pī, with a = 6.1156(5), b = 10.6869(10), c = 12.0320(10) Å, α = 109.55(1)°, β = 95.25(1)°, γ = 99.22(1)°, Z = 2, R = 0.034. Two molecules of p-hydroxybenzoic acid and two molecules of N-methylpiperidine betaine are linked together forming a centrosymmetric dimer, (MPB·HBA) 2, by four O-H···O hydrogen bonds of lengths 2.622(1) and 2.617(1) Å, between the carboxylic and hydroxy groups of HBA and both oxygen atoms of the carboxylate group of MPB, respectively. The piperidine ring has a chair conformation with the CH 2COO - substituent in the axial position and the CH 3 group in the equatorial one. Two parallel aromatic rings in (MPB·HBA) 2 are distanced by 3.457 Å. In the crystals the complexes form "islands" related to the neighboring complexes by the inversion centers, weak C-H···O bonds and van der Waals forces. A broad band in the 3100-2400 cm -1 region and two bands attributed to the νC dbnd O (1689 cm -1) and νasCOO (1607 cm -1) vibrations in the FT-IR spectrum confirm the structure of the title complex. The two structures of MPB·HBA, denoted as A and B, have been optimized by the B3LYP/6-31G(d,p) method. In A, MPB forms a O-H···O hydrogen bond (2.562 Å) with the carboxylic group of HBA shorter than in the crystals, while in B it interacts with the phenolic group of HBA by a longer O-H···O hydrogen bond (2.661 Å) than in the crystals. Complex A is slightly more stable than B (0.15 kcal/mol).

  12. Ammonia-hydrogen bromide and ammonia-hydrogen iodide complexes: anion photoelectron and ab initio studies.

    PubMed

    Eustis, S N; Whiteside, A; Wang, D; Gutowski, M; Bowen, K H

    2010-01-28

    The ammonia-hydrogen bromide and ammonia-hydrogen iodide, anionic heterodimers were studied by anion photoelectron spectroscopy. In complementary studies, these anions and their neutral counterparts were also investigated via ab initio theory at the coupled cluster level. In both systems, neutral NH(3)...HX dimers were predicted to be linear, hydrogen-bonded complexes, whereas their anionic dimers were found to be proton-transferred species of the form, (NH(4)(+)X(-))(-). Both experimentally measured and theoretically predicted vertical detachment energies (VDE) are in excellent agreement for both systems, with values for (NH(4)(+)Br(-))(-) being 0.65 and 0.67 eV, respectively, and values for (NH(4)(+)I(-))(-) being 0.77 and 0.81 eV, respectively. These systems are discussed in terms of our previous study of (NH(4)(+)Cl(-))(-).

  13. Transition-state charge transfer reveals electrophilic, ambiphilic, and nucleophilic carbon-hydrogen bond activation.

    PubMed

    Ess, Daniel H; Nielsen, Robert J; Goddard, William A; Periana, Roy A

    2009-08-26

    Absolutely localized molecular orbital energy decomposition analysis of C-H activation transition states (TSs), including Pt, Au, Ir, Ru, W, Sc, and Re metal centers, shows an electrophilic, ambiphilic, and nucleophilic charge transfer (CT) continuum irrespective of the bonding paradigm (oxidative addition, sigma-bond metathesis, oxidative hydrogen migration, 1,2-substitution). Pt(II) insertion and Au(III) substitution TSs are highly electrophilic and dominated by C-H bond to metal/ligand orbital stabilization, while Ir-X and Ru-X (X = R, NH(2), OR, or BOR(2)) substitution TSs are ambiphilic in nature. In this ambiphilic activation regime, an increase in one direction of CT typically leads to a decrease in the reverse direction. Comparison of Tp(CO)Ru-OH and Tp(CO)Ru-NH(2) complexes showed no evidence for the classic d(pi)-p(pi) repulsion model. Complexes such as and Cp(CO)(2)W-B(OR)(2), (PNP)Ir(I), Cp(2)ScMe, and (acac-kappaO,kappaO)(2)Re(III)-OH were found to mediate nucleophilic C-H activation, where the CT is dominated by the metal/ligand orbital to C-H antibonding orbital interaction. This CT continuum ultimately affects the metal-alkyl intermediate polarization and possible functionalization reactions. This analysis will impact the design of new activation reactions and stimulate the discovery of more nucleophilic activation complexes.

  14. Molecular insight on the non-covalent interactions between carbapenems and uc(l,d)-transpeptidase 2 from Mycobacterium tuberculosis: ONIOM study

    NASA Astrophysics Data System (ADS)

    Ntombela, Thandokuhle; Fakhar, Zeynab; Ibeji, Collins U.; Govender, Thavendran; Maguire, Glenn E. M.; Lamichhane, Gyanu; Kruger, Hendrik G.; Honarparvar, Bahareh

    2018-05-01

    Tuberculosis remains a dreadful disease that has claimed many human lives worldwide and elimination of the causative agent Mycobacterium tuberculosis also remains elusive. Multidrug-resistant TB is rapidly increasing worldwide; therefore, there is an urgent need for improving the current antibiotics and novel drug targets to successfully curb the TB burden. uc(l,d)-Transpeptidase 2 is an essential protein in Mtb that is responsible for virulence and growth during the chronic stage of the disease. Both uc(d,d)- and uc(l,d)-transpeptidases are inhibited concurrently to eradicate the bacterium. It was recently discovered that classic penicillins only inhibit uc(d,d)-transpeptidases, while uc(l,d)-transpeptidases are blocked by carbapenems. This has contributed to drug resistance and persistence of tuberculosis. Herein, a hybrid two-layered ONIOM (B3LYP/6-31G+(d): AMBER) model was used to extensively investigate the binding interactions of LdtMt2 complexed with four carbapenems (biapenem, imipenem, meropenem, and tebipenem) to ascertain molecular insight of the drug-enzyme complexation event. In the studied complexes, the carbapenems together with catalytic triad active site residues of LdtMt2 (His187, Ser188 and Cys205) were treated at with QM [B3LYP/6-31+G(d)], while the remaining part of the complexes were treated at MM level (AMBER force field). The resulting Gibbs free energy (ΔG), enthalpy (ΔH) and entropy (ΔS) for all complexes showed that the carbapenems exhibit reasonable binding interactions towards LdtMt2. Increasing the number of amino acid residues that form hydrogen bond interactions in the QM layer showed significant impact in binding interaction energy differences and the stabilities of the carbapenems inside the active pocket of LdtMt2. The theoretical binding free energies obtained in this study reflect the same trend of the experimental observations. The electrostatic, hydrogen bonding and Van der Waals interactions between the carbapenems and LdtMt2 were also assessed. To further examine the nature of intermolecular interactions for carbapenem-LdtMt2 complexes, AIM and NBO analysis were performed for the QM region (carbapenems and the active residues of LdtMt2) of the complexes. These analyses revealed that the hydrogen bond interactions and charge transfer from the bonding to anti-bonding orbitals between catalytic residues of the enzyme and selected ligands enhances the binding and stability of carbapenem-LdtMt2 complexes.

  15. Fundamental relation between molecular geometry and real-space topology. Combined AIM, ELI-D, and ASF analysis of hapticities and intramolecular hydrogen-hydrogen bonds in zincocene-related compounds.

    PubMed

    Mebs, Stefan; Chilleck, Maren Annika; Meindl, Kathrin; Hübschle, Christian Bertram

    2014-06-19

    Despite numerous advanced and widely distributed bonding theories such as MO, VB, NBO, AIM, and ELF/ELI-D, complex modes of bonding such as M-Cp*((R)) interactions (hapticities) in asymmetrical metallocenes or weak intramolecular interactions (e.g., hydrogen-hydrogen (H···H) bonds) still remain a challenge for these theories in terms of defining whether or not an atom-atom interaction line (a "chemical bond") should be drawn. In this work the intramolecular Zn-C(Cp*(R)) (R = Me, -(CH2)2NMe2, and -(CH2)3NMe2) and H···H connectivity of a systematic set of 12 zincocene-related compounds is analyzed in terms of AIM and ELI-D topology combined with the recently introduced aspherical stockholder fragment (ASF) surfaces. This computational analysis unravels a distinct dependency of the AIM and ELI-D topology against the molecular geometry for both types of interactions, which confirms and extends earlier findings on smaller sets of compounds. According to these results the complete real-space topology including strong, medium, and weak interactions of very large compounds such as proteins may be reliably predicted by sole inspection of accurately determined molecular geometries, which would on the one hand afford new applications (e.g., accurate estimation of numbers, types, and strengths of intra- and intermolecular interactions) and on the other hand have deep implications on the significance of the method.

  16. On the ultrafast charge migration and subsequent charge directed reactivity in Cl⋯N halogen-bonded clusters following vertical ionization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chandra, Sankhabrata; Bhattacharya, Atanu, E-mail: atanub@ipc.iisc.ernet.in; Periyasamy, Ganga

    2015-06-28

    In this article, we have presented ultrafast charge transfer dynamics through halogen bonds following vertical ionization of representative halogen bonded clusters. Subsequent hole directed reactivity of the radical cations of halogen bonded clusters is also discussed. Furthermore, we have examined effect of the halogen bond strength on the electron-electron correlation- and relaxation-driven charge migration in halogen bonded complexes. For this study, we have selected A-Cl (A represents F, OH, CN, NH{sub 2}, CF{sub 3}, and COOH substituents) molecules paired with NH{sub 3} (referred as ACl:NH{sub 3} complex): these complexes exhibit halogen bonds. To the best of our knowledge, this ismore » the first report on purely electron correlation- and relaxation-driven ultrafast (attosecond) charge migration dynamics through halogen bonds. Both density functional theory and complete active space self-consistent field theory with 6-31 + G(d, p) basis set are employed for this work. Upon vertical ionization of NCCl⋯NH{sub 3} complex, the hole is predicted to migrate from the NH{sub 3}-end to the ClCN-end of the NCCl⋯NH{sub 3} complex in approximately 0.5 fs on the D{sub 0} cationic surface. This hole migration leads to structural rearrangement of the halogen bonded complex, yielding hydrogen bonding interaction stronger than the halogen bonding interaction on the same cationic surface. Other halogen bonded complexes, such as H{sub 2}NCl:NH{sub 3}, F{sub 3}CCl:NH{sub 3}, and HOOCCl:NH{sub 3}, exhibit similar charge migration following vertical ionization. On the contrary, FCl:NH{sub 3} and HOCl:NH{sub 3} complexes do not exhibit any charge migration following vertical ionization to the D{sub 0} cation state, pointing to interesting halogen bond strength-dependent charge migration.« less

  17. The influence of hydrogen bonding on partition coefficients

    NASA Astrophysics Data System (ADS)

    Borges, Nádia Melo; Kenny, Peter W.; Montanari, Carlos A.; Prokopczyk, Igor M.; Ribeiro, Jean F. R.; Rocha, Josmar R.; Sartori, Geraldo Rodrigues

    2017-02-01

    This Perspective explores how consideration of hydrogen bonding can be used to both predict and better understand partition coefficients. It is shown how polarity of both compounds and substructures can be estimated from measured alkane/water partition coefficients. When polarity is defined in this manner, hydrogen bond donors are typically less polar than hydrogen bond acceptors. Analysis of alkane/water partition coefficients in conjunction with molecular electrostatic potential calculations suggests that aromatic chloro substituents may be less lipophilic than is generally believed and that some of the effect of chloro-substitution stems from making the aromatic π-cloud less available to hydrogen bond donors. Relationships between polarity and calculated hydrogen bond basicity are derived for aromatic nitrogen and carbonyl oxygen. Aligned hydrogen bond acceptors appear to present special challenges for prediction of alkane/water partition coefficients and this may reflect `frustration' of solvation resulting from overlapping hydration spheres. It is also shown how calculated hydrogen bond basicity can be used to model the effect of aromatic aza-substitution on octanol/water partition coefficients.

  18. Density functional theory study of hydrogen atom abstraction from a series of para-substituted phenols: why is the Hammett σ(p)+ constant able to represent radical reaction rates?

    PubMed

    Yoshida, Tatsusada; Hirozumi, Koji; Harada, Masataka; Hitaoka, Seiji; Chuman, Hiroshi

    2011-06-03

    The rate of hydrogen atom abstraction from phenolic compounds by a radical is known to be often linear with the Hammett substitution constant σ(+), defined using the S(N)1 solvolysis rates of substituted cumyl chlorides. Nevertheless, a physicochemical reason for the above "empirical fact" has not been fully revealed. The transition states of complexes between the 2,2-diphenyl-1-picrylhydrazyl radical (dpph·) and a series of para-substituted phenols were determined by DFT (Density Functional Theory) calculations, and then the activation energy as well as the homolytic bond dissociation energy of the O-H bond and charge distribution in the transition state were calculated. The heterolytic bond dissociation energy of the C-Cl bond and charge distribution in the corresponding para-substituted cumyl chlorides were calculated in parallel. Excellent correlations among σ(+), charge distribution, and activation and bond dissociation energies revealed quantitatively that there is a strong similarity between the two reactions, showing that the electron-deficiency of the π-electron system conjugated with a substituent plays a crucial role in determining rates of the two reactions. The results provide a new insight into and physicochemical understanding of σ(+) in the hydrogen abstraction from substituted phenols by a radical.

  19. Hydration dynamics of a lipid membrane: Hydrogen bond networks and lipid-lipid associations

    NASA Astrophysics Data System (ADS)

    Srivastava, Abhinav; Debnath, Ananya

    2018-03-01

    Dynamics of hydration layers of a dimyristoylphosphatidylcholine (DMPC) bilayer are investigated using an all atom molecular dynamics simulation. Based upon the geometric criteria, continuously residing interface water molecules which form hydrogen bonds solely among themselves and then concertedly hydrogen bonded to carbonyl, phosphate, and glycerol head groups of DMPC are identified. The interface water hydrogen bonded to lipids shows slower relaxation rates for translational and rotational dynamics compared to that of the bulk water and is found to follow sub-diffusive and non-diffusive behaviors, respectively. The mean square displacements and the reorientational auto-correlation functions are slowest for the interfacial waters hydrogen bonded to the carbonyl oxygen since these are buried deep in the hydrophobic core among all interfacial water studied. The intermittent hydrogen bond auto-correlation functions are calculated, which allows breaking and reformations of the hydrogen bonds. The auto-correlation functions for interfacial hydrogen bonded networks develop humps during a transition from cage-like motion to eventual power law behavior of t-3/2. The asymptotic t-3/2 behavior indicates translational diffusion dictated dynamics during hydrogen bond breaking and formation irrespective of the nature of the chemical confinement. Employing reactive flux correlation analysis, the forward rate constant of hydrogen bond breaking and formation is calculated which is used to obtain Gibbs energy of activation of the hydrogen bond breaking. The relaxation rates of the networks buried in the hydrophobic core are slower than the networks near the lipid-water interface which is again slower than bulk due to the higher Gibbs energy of activation. Since hydrogen bond breakage follows a translational diffusion dictated mechanism, chemically confined hydrogen bond networks need an activation energy to diffuse through water depleted hydrophobic environments. Our calculations reveal that the slow relaxation rates of interfacial waters in the vicinity of lipids are originated from the chemical confinement of concerted hydrogen bond networks. The analysis suggests that the networks in the hydration layer of membranes dynamically facilitate the water mediated lipid-lipid associations which can provide insights on the thermodynamic stability of soft interfaces relevant to biological systems in the future.

  20. Hydrogen bonds of sodium alginate/Antarctic krill protein composite material.

    PubMed

    Yang, Lijun; Guo, Jing; Yu, Yue; An, Qingda; Wang, Liyan; Li, Shenglin; Huang, Xuelin; Mu, Siyang; Qi, Shanwei

    2016-05-20

    Sodium alginate/Antarctic krill protein composite material (SA/AKP) was successfully obtained by blending method. The hydrogen bonds of SA/AKP composite material were analyzed by Fourier transform infrared spectroscopy (FT-IR) and Nuclear magnetic resonance hydrogen spectrum (HNMR). Experiment manifested the existence of intermolecular and intramolecular hydrogen bonds in SA/AKP system; strength of intermolecular hydrogen bond enhanced with the increase of AKP in the composite material and the interaction strength of hydrogen bonding followed the order: OH…Ether O>OH…π>OH…N. The percentage of intermolecular hydrogen bond decreased with increase of pH. At the same time, the effect of hydrogen bonds on properties of the composite material was discussed. The increase of intermolecular hydrogen bonding led to the decrease of crystallinity, increase of apparent viscosity and surface tension, as well as obvious decrease of heat resistance of SA/AKP composite material. SA/AKP fiber SEM images and energy spectrum showed that crystallized salt was separated from the fiber, which possibly led to the fibrillation of the composite fibers. Copyright © 2016 Elsevier Ltd. All rights reserved.

  1. An artificial guanine that binds cytidine through the cooperative interaction of metal coordination and hydrogen bonding.

    PubMed

    Mancin, Fabrizio; Chin, Jik

    2002-09-18

    Cd(II) complex of L binds selectively to cytidine in DMSO with an equilibrium constant of 117 M-1 (where LH is 2-aminomethyl-8-hydroxyquinoline). In contrast, the Zn(II) complex of L does not bind appreciably to any of the four nucleobases under the same condition used for the Cd(II) complex.

  2. Molecular Level Design Principle behind Optimal Sizes of Photosynthetic LH2 Complex: Taming Disorder through Cooperation of Hydrogen Bonding and Quantum Delocalization.

    PubMed

    Jang, Seogjoo; Rivera, Eva; Montemayor, Daniel

    2015-03-19

    The light harvesting 2 (LH2) antenna complex from purple photosynthetic bacteria is an efficient natural excitation energy carrier with well-known symmetric structure, but the molecular level design principle governing its structure-function relationship is unknown. Our all-atomistic simulations of nonnatural analogues of LH2 as well as those of a natural LH2 suggest that nonnatural sizes of LH2-like complexes could be built. However, stable and consistent hydrogen bonding (HB) between bacteriochlorophyll and the protein is shown to be possible only near naturally occurring sizes, leading to significantly smaller disorder than for nonnatural ones. Extensive quantum calculations of intercomplex exciton transfer dynamics, sampled for a large set of disorder, reveal that taming the negative effect of disorder through a reliable HB as well as quantum delocalization of the exciton is a critical mechanism that makes LH2 highly functional, which also explains why the natural sizes of LH2 are indeed optimal.

  3. Synthesis, structure, spectral characterization and thermal analysis of the tetraaquabis (isothiocyanato-κN) cobalt (II)-bis(caffeine)-tetrahydrate complex

    NASA Astrophysics Data System (ADS)

    EL Hamdani, H.; EL Amane, M.; Duhayon, C.

    2018-04-01

    The complex 2(C8H10N4O2).[Co(H2O)4(NCS)2].4H2O was prepared in the water-ethanol solution at room temperature and characterized by the single crystal X-ray diffraction analysis, 1H, 13C NMR, TGA/DTA and IR spectroscopy. This complex was crystallized in the monoclinic system (P 21/c). The unit cell parameters are a = 10.65854 (19) A°, b = 8.16642 (14) A°, c = 18.0595 (3) A° with β = 96.4701° (15). The cobalt (II) cation is coordinated by four oxygen atoms of the water molecules and two nitrogen in isothiocyanato a trans octahedral geometry, stabilized by hydrogen bonds with caffeine molecule and free water molecule, The intermolecular hydrogen bonds: Osbnd H⋯N, Osbnd H⋯O, Csbnd H⋯S, π···π interactions are together playing a vital role in the stabilization of the crystal packing.

  4. Infrared and Raman studies of hydrogen bonded complexes involving acetone, acetophenone and benzophenone—I. Thermodynamic constants and frequency shifts of the ν OH and ν CO stretching vibrations

    NASA Astrophysics Data System (ADS)

    Thijs, R.; Zeegers-Huyskens, Th.

    The hydrogen bonded complexes between phenol derivatives and acetone ( I), acetophenone ( II) and benzophenone ( III) have been studied in carbon tetrachloride solution by i.r. spectroscopy. The formation constants, the enthalpies of complex formation, the Δν OH and Δν CO values have been determined. For a given phenol derivative, the thermodynamic constants and Δν OH are ordered according to I > II > III and the influence of a substituent implanted on the phenolic ring can be expressed by the Hammett relationship. The ϱ coefficients of the Hammett equation are related to the complexation enthalpies. The Badger—Bauer relation is valid for the three bases. The comparison with complexes involving other carbonyl bases allows to precise the influence of the substituent implanted on the carbonyl group. The Δν OH values obey the dual substituent parameter equation using σ I and σ +R; the ϱ I/ϱ R ratio is higher than one. The Δν CO values are shown to depend on the complexation enthalpy and on the delocalization effect of the substituents.

  5. Intermolecular hydrogen bond complexes by in situ charge transfer complexation of o-tolidine with picric and chloranilic acids

    NASA Astrophysics Data System (ADS)

    Refat, Moamen S.; Saad, Hosam A.; Adam, Abdel Majid A.

    2011-08-01

    A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA) 2] and [(o-TOL)(CA) 2] have been prepared. The 13C NMR, 1H NMR, 1H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH 2 groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic.

  6. Intermolecular hydrogen bond complexes by in situ charge transfer complexation of o-tolidine with picric and chloranilic acids.

    PubMed

    Refat, Moamen S; Saad, Hosam A; Adam, Abdel Majid A

    2011-08-01

    A two new charge transfer complexes formed from the interactions between o-tolidine (o-TOL) and picric (PA) or chloranilic (CA) acids, with the compositions, [(o-TOL)(PA)(2)] and [(o-TOL)(CA)(2)] have been prepared. The (13)C NMR, (1)H NMR, (1)H-Cosy, and IR show that the charge-transfer chelation occurs via the formation of chain structures O-H⋯N intermolecular hydrogen bond between 2NH(2) groups of o-TOL molecule and OH group in each PA or CA units. Photometric titration measurements concerning the two reactions in methanol were performed and the measurements show that the donor-acceptor molar ratio was found to be 1:2 using the modified Benesi-Hildebrand equation. The spectroscopic data were discussed in terms of formation constant, molar extinction coefficient, oscillator strength, dipole moment, standard free energy, and ionization potential. Thermal behavior of both charge transfer complexes showed that the complexes were more stable than their parents. The thermodynamic parameters were estimated from the differential thermogravimetric curves. The results indicated that the formation of molecular charge transfer complexes is spontaneous and endothermic. Copyright © 2011 Elsevier B.V. All rights reserved.

  7. Nanostructure, hydrogen bonding and rheology in choline chloride deep eutectic solvents as a function of the hydrogen bond donor.

    PubMed

    Stefanovic, Ryan; Ludwig, Michael; Webber, Grant B; Atkin, Rob; Page, Alister J

    2017-01-25

    Deep eutectic solvents (DESs) are a mixture of a salt and a molecular hydrogen bond donor, which form a eutectic liquid with a depressed melting point. Quantum mechanical molecular dynamics (QM/MD) simulations have been used to probe the 1 : 2 choline chloride-urea (ChCl : U), choline chloride-ethylene glycol (ChCl : EG) and choline chloride-glycerol (ChCl : Gly) DESs. DES nanostructure and interactions between the ions is used to rationalise differences in DES eutectic point temperatures and viscosity. Simulations show that the structure of the bulk hydrogen bond donor is largely preserved for hydroxyl based hydrogen bond donors (ChCl:Gly and ChCl:EG), resulting in a smaller melting point depression. By contrast, ChCl:U exhibits a well-established hydrogen bond network between the salt and hydrogen bond donor, leading to a larger melting point depression. This extensive hydrogen bond network in ChCl:U also leads to substantially higher viscosity, compared to ChCl:EG and ChCl:Gly. Of the two hydroxyl based DESs, ChCl:Gly also exhibits a higher viscosity than ChCl:EG. This is attributed to the over-saturation of hydrogen bond donor groups in the ChCl:Gly bulk, which leads to more extensive hydrogen bond donor self-interaction and hence higher cohesive forces within the bulk liquid.

  8. Enormous Hydrogen Bond Strength Enhancement through π-Conjugation Gain: Implications for Enzyme Catalysis.

    PubMed

    Wu, Chia-Hua; Ito, Keigo; Buytendyk, Allyson M; Bowen, K H; Wu, Judy I

    2017-08-22

    Surprisingly large resonance-assistance effects may explain how some enzymes form extremely short, strong hydrogen bonds to stabilize reactive oxyanion intermediates and facilitate catalysis. Computational models for several enzymic residue-substrate interactions reveal that when a π-conjugated, hydrogen bond donor (XH) forms a hydrogen bond to a charged substrate (Y - ), XH can become significantly more π-electron delocalized, and this "extra" stabilization may boost the [XH···Y - ] hydrogen bond strength by ≥15 kcal/mol. This reciprocal relationship departs from the widespread pK a concept (i.e., the idea that short, strong hydrogen bonds form when the interacting moieties have matching pK a values), which has been the rationale for enzymic acid-base reactions. The findings presented here provide new insight into how short, strong hydrogen bonds could form in enzymes.

  9. A novel amido-pyrophosphate Mn(II) chelate complex with the synthetic ligand O{P(O)[NHC(CH3)3]2}2 (L): [Mn(L)2{OC(H)N(CH3)2}2]Cl2·2H2O.

    PubMed

    Tarahhomi, Atekeh; Pourayoubi, Mehrdad; Fejfarová, Karla; Dušek, Michal

    2013-03-01

    The title complex, trans-bis(dimethylformamide-κO)bis{N,N'-N'',N'''-tetra-tert-butyl[oxybis(phosphonic diamide-κO)]}manganese(II) dichloride dihydrate, [Mn(C16H40N4O3P2)2(C3H7NO)2]Cl2·2H2O, is the first example of a bis-chelate amido-pyrophosphate (pyrophosphoramide) complex containing an O[P(O)(NH)2]2 fragment. Its asymmetric unit contains half of the complex dication, one chloride anion and one water molecule. The Mn(II) atom, located on an inversion centre, is octahedrally coordinated, with a slight elongation towards the monodentate dimethylformamide ligand. Structural features of the title complex, such as the P=O bond lengths and the planarity of the chelate ring, are compared with those of previously reported complexes with six-membered chelates involving the fragments C(O)NHP(O), (X)NP(O) [X = C(O), C(S), S(O)2 and P(O)] and O[P(O)(N)2]2. This analysis shows that the six-membered chelate rings are less puckered in pyrophosphoramide complexes containing a P(O)OP(O) skeleton, such as the title compound. The extended structure of the title complex involves a linear aggregate mediated by N-H...O and N-H...Cl hydrogen bonds, in which the chloride anion is an acceptor in two additional O-H...Cl hydrogen bonds.

  10. Facile Synthesis and Superior Catalytic Activity of Nano-TiN@N-C for Hydrogen Storage in NaAlH4.

    PubMed

    Zhang, Xin; Ren, Zhuanghe; Lu, Yunhao; Yao, Jianhua; Gao, Mingxia; Liu, Yongfeng; Pan, Hongge

    2018-05-09

    Herein, we synthesize successfully ultrafine TiN nanoparticles (<3 nm in size) embedded in N-doped carbon nanorods (nano-TiN@N-C) by a facile one-step calcination process. The prepared nano-TiN@N-C exhibits superior catalytic activity for hydrogen storage in NaAlH 4 . Adding 7 wt % nano-TiN@N-C induces more than 100 °C reduction in the onset dehydrogenation temperature of NaAlH 4 . Approximately 4.9 wt % H 2 is rapidly released from the 7 wt % nano-TiN@N-C-containing NaAlH 4 at 140 °C within 60 min, and the dehydrogenation product is completely hydrogenated at 100 °C within 15 min under 100 bar of hydrogen, exhibiting significantly improved desorption/absorption kinetics. No capacity loss is observed for the nano-TiN@N-C-containing sample within 25 de-/hydrogenation cycles because nano-TiN functions as an active catalyst instead of a precursor. A severe structural distortion with extended bond lengths and reduced bond strengths for Al-H bonding when the [AlH 4 ] - group adsorbs on the TiN cluster is demonstrated for the first time by density functional theory calculations, which well-explains the reduced de-/hydrogenation temperatures of the nano-TiN@N-C-containing NaAlH 4 . These findings provide new insights into designing and synthesizing high-performance catalysts for hydrogen storage in complex hydrides.

  11. Tetrahedral silsesquioxane-C2H2Ti complex for hydrogen storage

    NASA Astrophysics Data System (ADS)

    Konda, Ravinder; Tavhare, Priyanka; Ingale, Nilesh; Chaudhari, Ajay

    2018-04-01

    The interaction of molecular hydrogen with tetrahedral silsesquioxane (T4)-C2H2Ti complex has been studied using Density Functional Theory with M06-2X functional and MP2 method with 6-311++G** basis set. T4-C2H2Ti complex can absorb maximum five hydrogen molecules with the gravimetric hydrogen storage capacity of 3.4 wt %. Adsorption energy calculations show that H2 adsorption on T4-C2H2Ti complex is favorable at room temperature by both the methods. We have studied the effect of temperature and pressure on Gibbs free energy corrected adsorption energies. Molecular dynamics simulations for H2 adsorbed T4-C2H2Ti complex have also been performed at 300K and show that loosely bonded H2 molecule flies away within 1fs. Various interaction energies within the complex are studied. Stability of a complex is predicted by means of a gap between Highest Occupied Molecular Orbital (HUMO) and Lowest Unoccupied Molecular Orbital (LUMO). The H2 desorption temperature for T4-C2H2Ti complex is calculated with Van't Hoff equation and it is found to be 229K.

  12. Early events in 2,4,6-trinitrotoluene (TNT) degradation by porphyrins: binding of TNT to porphyrin by hydrophobic and hydrogen bonds.

    PubMed

    Hikal, Walid M; Harmon, H James

    2008-06-15

    The interaction of meso-tri(4-sulfonatophenyl)mono(4-carboxyphenyl) porphyrin (C1TPP) with 2,4,6-trinitrotoluene (TNT) has been explored by UV-vis and fluorescence spectroscopy. The influence of temperature on the interaction has also been studied. C1TPP binds to TNT at pH 7.0 at room temperature via 1.94 kcal/mole hydrogen bonds with absorbance loss at 412-413 nm and the appearance of a new peak at 422-424 nm. The hydrogen binding of TNT to C1TPP was confirmed by the dissolution of the complex upon the addition of urea. Increasing the temperature results in the appearance of a new absorbance peak at 540 nm and absorbance loss at 515 nm with activation energy of 29.7 kcal/mole in the range of the hydrophobic bond energy. This suggests the hydrophobic bonding of TNT with the pyrrole nitrogens in the porphyrin. Increasing the concentration of the TNT in the solution quenches the fluorescence of the porphyrin following the Stern-Volmer equation. The association constants calculated from absorbance and fluorescence are expectedly similar.

  13. Polyimide Precursor Solid Residuum

    NASA Technical Reports Server (NTRS)

    Weiser, Erik S. (Inventor); St.Clair, Terry L. (Inventor); Echigo, Yoshiaki (Inventor); Kaneshiro, Hisayasu (Inventor)

    2001-01-01

    A polyimide precursor solid residuum is an admixture of an aromatic dianhydride or derivative thereof and an aromatic diamine or derivative thereof plus a complexing agent, which is complexed with the admixture by hydrogen bonding. The polyimide precursor solid residuum is effectively employed in the preparation of polyimide foam and the fabrication of polyimide foam structures.

  14. Thermodynamic aspects of dicarboxylate recognition by simple artificial receptors.

    PubMed

    Linton, B R; Goodman, M S; Fan, E; van Arman, S A; Hamilton, A D

    2001-11-02

    Recognition of dicarboxylates by bis-functional hydrogen-bonding receptors displays divergent thermodynamics in different solvent systems. NMR titration and isothermal titration calorimetry indicated that neutral bis-urea and bis-thiourea receptors form exothermic complexes with dicarboxylates in DMSO, with a near zero entropic contribution to binding. The increased binding strength of bis-guanidinium receptors precluded quantitative measurement of binding constants in DMSO, but titration calorimetry offered a qualitative picture of the association. Formation of these 1:1 complexes was also exothermic, but additional endothermic events occurred at both lower and higher host-guest ratios. These events indicated multiple binding equilibria but did not always occur at a discrete 2:1 or 1:2 host-guest molar ratio, suggesting higher aggregates. With increasing amounts of methanol as solvent, bis-guanidinium receptors form more endothermic complexes with dicarboxylates, with a favorable entropy of association. This switch from association driven by enthalpy to one driven by entropy may reflect a change from complexation involving the formation of hydrogen bonds to that promoted by solvent liberation from binding sites.

  15. Molecular recognition in the gas phase: benzocaine-phenol as a model of anaesthetic-receptor interaction.

    PubMed

    Aguado, Edurne; León, Iker; Cocinero, Emilio J; Lesarri, Alberto; Fernández, José A; Castaño, Fernando

    2009-12-28

    The benzocaine-phenol complex is proposed as a model system of the interaction between the local anaesthetic benzocaine and the tyrosine residue. The complex has been generated by supersonic expansion of benzocaine and phenol in helium and probed by 1- and 2-color mass-resolved laser spectroscopies. The electronic excitation spectrum of the 1 : 1 complex spans some approximately 700 cm(-1) and includes well resolved bands from at least two isomers, as demonstrated using UV-UV hole burning spectroscopy. The combination of ion dip infrared spectroscopy (IDIRS) and ab initio calculations shows that both isomers are stabilized by an OH...N hydrogen bond between the phenol hydroxyl group and the benzocaine amino moiety, differing only in the conformation adopted by the benzocaine monomer (trans and gauche). The application of the fragmentation threshold method to benzocaine-phenol suggests the existence of chemical reactions in the electronic excited state of the complex and/or in the ion. Such hypothesis is also supported by the calculated potential energy curves along the hydrogen bond coordinate.

  16. The (CH2)2O-H2O hydrogen bonded complex. Ab Initio calculations and Fourier transform infrared spectroscopy from neon matrix and a new supersonic jet experiment coupled to the infrared AILES beamline of synchrotron SOLEIL.

    PubMed

    Cirtog, M; Asselin, P; Soulard, P; Tremblay, B; Madebène, B; Alikhani, M E; Georges, R; Moudens, A; Goubet, M; Huet, T R; Pirali, O; Roy, P

    2011-03-31

    A series of hydrogen bonded complexes involving oxirane and water molecules have been studied. In this paper we report on the vibrational study of the oxirane-water complex (CH(2))(2)O-H(2)O. Neon matrix experiments and ab initio anharmonic vibrational calculations have been performed, providing a consistent set of vibrational frequencies and anharmonic coupling constants. The implementation of a new large flow supersonic jet coupled to the Bruker IFS 125 HR spectrometer at the infrared AILES beamline of the French synchrotron SOLEIL (Jet-AILES) enabled us to record first jet-cooled Fourier transform infrared spectra of oxirane-water complexes at different resolutions down to 0.2 cm(-1). Rovibrational parameters and a lower bound of the predissociation lifetime of 25 ps for the v(OH)(b) = 1 state have been derived from the rovibrational analysis of the ν(OH)(b) band contour recorded at respective rotational temperatures of 12 K (Jet-AILES) and 35 K (LADIR jet).

  17. Imino proton exchange and base-pair kinetics in the AMP-RNA aptamer complex.

    PubMed

    Nonin, S; Jiang, F; Patel, D J

    1997-05-02

    We report on the dynamics of base-pair opening in the ATP-binding asymmetric internal loop and flanking base-pairs of the AMP-RNA aptamer complex by monitoring the exchange characteristics of the extremely well resolved imino protons in the NMR spectrum of the complex. The kinetics of imino proton exchange as a function of basic pH or added ammonia catalyst are used to measure the apparent base-pair dissociation constants and lifetimes of Watson-Crick and mismatched base-pairs, as well as the solvent accessibility of the unpaired imino protons in the complex. The exchange characteristics of the imino protons identify the existence of four additional hydrogen bonds stabilizing the conformation of the asymmetric ATP-binding internal loop that were not detected by NOEs and coupling constants alone, but are readily accommodated in the previously reported solution structure of the AMP-RNA aptamer complex published from our laboratory. The hydrogen exchange kinetics of the non-Watson-Crick pairs in the asymmetric internal loop of the AMP-RNA aptamer complex have been characterized and yield apparent dissociation constants (alphaKd) that range from 10(-2) to 10(-7). Surprisingly, three of these alphaKd values are amongst the lowest measured for all base-pairs in the AMP-RNA aptamer complex. Comparative studies of hydrogen exchange of the imino protons in the free RNA aptamer and the AMP-RNA aptamer complex establish that complexation stabilizes not only the bases within the ATP-binding asymmetric internal loop, but also the flanking stem base-pairs (two pairs on either side) of the binding site. We also outline some preliminary results related to the exchange properties of a sugar 2'-hydroxyl proton of a guanosine residue involved in a novel hydrogen bond that has been shown to contribute to the immobilization of the bound AMP by the RNA aptamer, and whose resonance is narrow and downfield shifted in the spectrum.

  18. Red-Shifting versus Blue-Shifting Hydrogen Bonds: Perspective from Ab Initio Valence Bond Theory.

    PubMed

    Chang, Xin; Zhang, Yang; Weng, Xinzhen; Su, Peifeng; Wu, Wei; Mo, Yirong

    2016-05-05

    Both proper, red-shifting and improper, blue-shifting hydrogen bonds have been well-recognized with enormous experimental and computational studies. The current consensus is that there is no difference in nature between these two kinds of hydrogen bonds, where the electrostatic interaction dominates. Since most if not all the computational studies are based on molecular orbital theory, it would be interesting to gain insight into the hydrogen bonds with modern valence bond (VB) theory. In this work, we performed ab initio VBSCF computations on a series of hydrogen-bonding systems, where the sole hydrogen bond donor CF3H interacts with ten hydrogen bond acceptors Y (═NH2CH3, NH3, NH2Cl, OH(-), H2O, CH3OH, (CH3)2O, F(-), HF, or CH3F). This series includes four red-shifting and six blue-shifting hydrogen bonds. Consistent with existing findings in literature, VB-based energy decomposition analyses show that electrostatic interaction plays the dominating role and polarization plays the secondary role in all these hydrogen-bonding systems, and the charge transfer interaction, which denotes the hyperconjugation effect, contributes only slightly to the total interaction energy. As VB theory describes any real chemical bond in terms of pure covalent and ionic structures, our fragment interaction analysis reveals that with the approaching of a hydrogen bond acceptor Y, the covalent state of the F3C-H bond tends to blue-shift, due to the strong repulsion between the hydrogen atom and Y. In contrast, the ionic state F3C(-) H(+) leads to the red-shifting of the C-H vibrational frequency, owing to the attraction between the proton and Y. Thus, the relative weights of the covalent and ionic structures essentially determine the direction of frequency change. Indeed, we find the correlation between the structural weights and vibrational frequency changes.

  19. Role of hydrogen bonds in the reaction mechanism of chalcone isomerase.

    PubMed

    Jez, Joseph M; Bowman, Marianne E; Noel, Joseph P

    2002-04-23

    In flavonoid, isoflavonoid, and anthocyanin biosynthesis, chalcone isomerase (CHI) catalyzes the intramolecular cyclization of chalcones into (S)-flavanones with a second-order rate constant that approaches the diffusion-controlled limit. The three-dimensional structures of alfalfa CHI complexed with different flavanones indicate that two sets of hydrogen bonds may possess critical roles in catalysis. The first set of interactions includes two conserved amino acids (Thr48 and Tyr106) that mediate a hydrogen bond network with two active site water molecules. The second set of hydrogen bonds occurs between the flavanone 7-hydroxyl group and two active site residues (Asn113 and Thr190). Comparison of the steady-state kinetic parameters of wild-type and mutant CHIs demonstrates that efficient cyclization of various chalcones into their respective flavanones requires both sets of contacts. For example, the T48A, T48S, Y106F, N113A, and T190A mutants exhibit 1550-, 3-, 30-, 7-, and 6-fold reductions in k(cat) and 2-3-fold changes in K(m) with 4,2',4'-trihydroxychalcone as a substrate. Kinetic comparisons of the pH-dependence of the reactions catalyzed by wild-type and mutant enzymes indicate that the active site hydrogen bonds contributed by these four residues do not significantly alter the pK(a) of the intramolecular cyclization reaction. Determinations of solvent kinetic isotope and solvent viscosity effects for wild-type and mutant enzymes reveal a change from a diffusion-controlled reaction to one limited by chemistry in the T48A and Y106F mutants. The X-ray crystal structures of the T48A and Y106F mutants support the assertion that the observed kinetic effects result from the loss of key hydrogen bonds at the CHI active site. Our results are consistent with a reaction mechanism for CHI in which Thr48 polarizes the ketone of the substrate and Tyr106 stabilizes a key catalytic water molecule. Hydrogen bonds contributed by Asn113 and Thr190 provide additional stabilization in the transition state. Conservation of these residues in CHIs from other plant species implies a common reaction mechanism for enzyme-catalyzed flavanone formation in all plants.

  20. Rotational Spectra of Hydrogen Bonded Networks of Amino Alcohols

    NASA Astrophysics Data System (ADS)

    Zhang, Di; Zwier, Timothy S.

    2014-06-01

    The rotational spectra of several different amino alcohols including D/L-allo-threoninol, 2-amino-1,3-propanediol and 1,3-diamino-2-propanol over the 6.5-18.5 GHz range have been investigated under jet-cooled conditions using chirped-pulsed Fourier transform microwave spectroscopy. Despite the small size of these molecules, a great variety of conformations have been observed in the molecular expansion. While the NH2 group is typically thought of as a H-bond acceptor, it often acts both as acceptor and donor in forming H-bonded networks. With three adjacent H-bonding substituents (a combination of OH and NH2 groups), many different hydrogen bonding patterns are possible, including H-bonded chains and H-bonded cycles. Since many of these structures differ primarily by the relative orientation of the H-atoms, the analysis of these rotational spectra are challenging. Only through an exhaustive conformational search and the comparison with the experimental rotational constants, nuclear quadrupolar splittings, and line strengths are we able to understand the complex nature of these interactions. The ways in which the presence and number of NH2 groups affects the relative energies, and distorts the structures will be explored.

  1. On the nature of hydrogen bonding between the phosphatidylcholine head group and water and dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Dabkowska, Aleksandra P.; Lawrence, M. Jayne; McLain, Sylvia E.; Lorenz, Christian D.

    2013-01-01

    Molecular dynamics simulations are used to provide a detailed investigation of the hydrogen bond networks around the phosphatidylcholine (PC) head group in 1,2-dipropionyl-sn-glycero-3-phosphocholine in pure water, 10 mol.% and 30 mol.% dimethylsulfoxide (DMSO)-water solutions. Specifically, it is observed that DMSO replaces those water molecules that are within the first solvation shell of the choline, phosphate and ester groups of the PC head group, but are not hydrogen-bonded to the group. The effect of the presence of DMSO on the hydrogen bond network around the PC head groups of the lipid changes with the concentration of DMSO. In comparison to the hydrogen bond network observed in the pure water system, the number of hydrogen-bonded chains of solvent molecules increases slightly for the 10 mol.% DMSO system, while, in the 30 mol.% DMSO system, the number of hydrogen-bonded chains of solvent molecules decreases.

  2. Collective dynamic dipole moment and orientation fluctuations, cooperative hydrogen bond relaxations, and their connections to dielectric relaxation in ionic acetamide deep eutectics: Microscopic insight from simulations

    NASA Astrophysics Data System (ADS)

    Das, Suman; Biswas, Ranjit; Mukherjee, Biswaroop

    2016-08-01

    The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO3), lithium bromide (LiBr), and lithium perchlorate (LiClO4). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The present study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li+ complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.

  3. Two different carbon-hydrogen complexes in silicon with closely spaced energy levels

    NASA Astrophysics Data System (ADS)

    Stübner, R.; Kolkovsky, Vl.; Weber, J.

    2015-08-01

    An acceptor and a single donor state of carbon-hydrogen defects (CHA and CHB) are observed by Laplace deep level transient spectroscopy at 90 K. CHA appears directly after hydrogenation by wet chemical etching or hydrogen plasma treatment, whereas CHB can be observed only after a successive annealing under reverse bias at about 320 K. The activation enthalpies of these states are 0.16 eV for CHA and 0.14 eV for CHB. Our results reconcile previous controversial experimental results. We attribute CHA to the configuration where substitutional carbon binds a hydrogen atom on a bond centered position between carbon and the neighboring silicon and CHB to another carbon-hydrogen defect.

  4. CH stretching vibration of N-methylformamide as a sensitive probe of its complexation: infrared matrix isolation and computational study.

    PubMed

    Sałdyka, M; Mielke, Z; Mierzwicki, K; Coussan, S; Roubin, P

    2011-08-21

    The complexes between trans-N-methylformamide (t-NMF) and Ar, N(2), CO, H(2)O have been studied by infrared matrix isolation spectroscopy and/or ab initio calculations. The infrared spectra of NMF/Ne, NMF/Ar and NMF/N(2)(CO,H(2)O)/Ar matrices have been measured and the effect of the complexation on the perturbation of t-NMF frequencies was analyzed. The geometries of the complexes formed between t-NMF and Ar, N(2), CO and H(2)O were optimized in two steps at the MP2/6-311++G(2d,2p) level of theory. The four structures, found for every system at this level, were reoptimized on the CP-corrected potential energy surface; both normal and CP corrected harmonic frequencies and intensities were calculated. For every optimized structure the interaction energy was partitioned according to the SAPT scheme and the topological distribution of the charge density (AIM theory) was performed. The analysis of the experimental and theoretical results indicates that the t-NMF-N(2) and CO complexes present in the matrices are stabilized by very weak N-H···N and N-H···C hydrogen bonds in which the N-H group of t-NMF serves as a proton donor. In turn, the t-NMF-H(2)O complex present in the matrix is stabilized by O-H···O(C) hydrogen bonding in which the carbonyl group of t-NMF acts as a proton acceptor. Both, the theoretical and experimental results indicate that involvement of the NH group of t-NMF in formation of very weak hydrogen bonds with the N(2) or CO molecules leads to a clearly noticeable red shift of the CH stretching wavenumber whereas engagement of the CO group as a proton acceptor triggers a blue shift of this wavenumber.

  5. H-Bonding Assisted Self-Assembly of Anionic and Neutral Ligand on Metal: A Comprehensive Strategy To Mimic Ditopic Ligands in Olefin Polymerization.

    PubMed

    Mote, Nilesh R; Patel, Ketan; Shinde, Dinesh R; Gaikwad, Shahaji R; Koshti, Vijay S; Gonnade, Rajesh G; Chikkali, Samir H

    2017-10-16

    Self-assembly of two neutral ligands on a metal to mimic bidentate ligand coordination has been frequently encountered in the recent past, but self-assembly of an anionic ligand on a metal template alongside a neutral ligand remains an elusive target. Such a self-assembly is hampered by additional complexity, wherein a highly negatively charged anion can form intermolecular hydrogen bonding with the supramolecular motif, leaving no scope for self-assembly with neutral ligand. Presented here is the self-association of anionic ligand 3-ureidobenzoic acid (2a) and neutral ligand 1-(3-(diphenylphosphanyl)phenyl)urea (1a) on a metal template to yield metal complex [{COOC 6 H 4 NH(CO)NH 2 }{Ph 2 PC 6 H 4 NH(CO)NH 2 }PdMeDMSO] (4a). The identity of 4a was established by NMR and mass spectroscopy. Along the same lines, 3-(3-phenylureido)benzoic acid (2b) and 1-(3-(diphenylphosphanyl)phenyl)-3-phenylurea (1b) self-assemble on a metal template to produce palladium complex [{COOC 6 H 4 NH(CO)NHPh}{Ph 2 PC 6 H 4 NH(CO)NHPh}PdMePy] (5c). The existence of 5c was confirmed by Job plot, 1-2D NMR spectroscopy, deuterium labeling, IR spectroscopy, UV-vis spectroscopy, model complex synthesis, and DFT calculations. These solution and gas phase investigations authenticated the presence of intramolecular hydrogen bonding between hydrogen's of 1b and carbonyl oxygen of 2b. The generality of the supramolecular approach has been validated by preparing six complexes from four monodentate ligands, and their synthetic utility was demonstrated in ethylene polymerization. Complex 4a was found to be the most active, leading to the production of highly branched polyethylene with a molecular weight of 55700 g/mol and melting temperature of 112 °C.

  6. Hydrogen bond dynamics in bulk alcohols.

    PubMed

    Shinokita, Keisuke; Cunha, Ana V; Jansen, Thomas L C; Pshenichnikov, Maxim S

    2015-06-07

    Hydrogen-bonded liquids play a significant role in numerous chemical and biological phenomena. In the past decade, impressive developments in multidimensional vibrational spectroscopy and combined molecular dynamics-quantum mechanical simulation have established many intriguing features of hydrogen bond dynamics in one of the fundamental solvents in nature, water. The next class of a hydrogen-bonded liquid--alcohols--has attracted much less attention. This is surprising given such important differences between water and alcohols as the imbalance between the number of hydrogen bonds, each molecule can accept (two) and donate (one) and the very presence of the hydrophobic group in alcohols. Here, we use polarization-resolved pump-probe and 2D infrared spectroscopy supported by extensive theoretical modeling to investigate hydrogen bond dynamics in methanol, ethanol, and isopropanol employing the OH stretching mode as a reporter. The sub-ps dynamics in alcohols are similar to those in water as they are determined by similar librational and hydrogen-bond stretch motions. However, lower density of hydrogen bond acceptors and donors in alcohols leads to the appearance of slow diffusion-controlled hydrogen bond exchange dynamics, which are essentially absent in water. We anticipate that the findings herein would have a potential impact on fundamental chemistry and biology as many processes in nature involve the interplay of hydrophobic and hydrophilic groups.

  7. Pt-Mechanistic Study of the β-Hydrogen Elimination from Organoplatinum(II) Enolate Complexes

    PubMed Central

    Alexanian, Erik J.; Hartwig, John F.

    2010-01-01

    A detailed mechanistic investigation of the thermal reactions of a series of bisphosphine alkylplatinum(II) enolate complexes is reported. The reactions of methylplatinum enolate complexes in the presence of added phosphine form methane and either free or coordinated enone, depending on the steric properties of the enone. Kinetic studies were conducted to determine the relationship between the rates and mechanism of β-hydrogen elimination from enolate complexes and the rates and mechanism of β-hydrogen elimination from alkyl complexes. The rates of reactions of the enolates were inversely dependent on the concentration of added phosphine, indicating that β-hydrogen elimination from the enolate complexes occurs after reversible dissociation of a phosphine. A normal, primary kinetic isotope effect was measured, and this effect was consistent with rate-limiting β-hydrogen elimination or C-H bond-forming reductive elimination to form methane. Reactions of substituted enolate complexes were also studied to determine the effect of the steric and electronic properties of the enolate complexes on the rates of β-hydrogen elimination. These studies showed that reactions of the alkylplatinum enolate complexes were retarded by electron-withdrawing substituents on the enolate and that reactions of enolate complexes possessing alkyl substituents at the β-position occurred at rates that were similar to those of complexes lacking alkyl substituents at this position. Despite the trend in electronic effects on the rates of reactions of enolate complexes and the substantial electronic differences between an enolate and an alkyl ligand, the rates of decomposition of the enolate complexes were similar to those of the analogous alkyl complexes. To the extent that the rates of reaction of the two types of complex are different, those involving β-hydrogen elimination from the enolate ligand were faster. A difference between the identity of the rate-determining step for decomposition of the two classes of complexes and an effect of stereochemistry on the selectivity for β-hydrogen elimination are possible origins of the observed phenomena. PMID:18954048

  8. Aqua­{6,6′-dimeth­oxy-2,2′-[ethane-1,2-diylbis(nitrilo­methyl­idyne)]diphenolato}nickel(II)

    PubMed Central

    Guo, Zhenghua; Li, Lianzhi; Xu, Tao; Li, Jinghong; Wang, Daqi

    2009-01-01

    The title complex, [Ni(C18H18N2O4)(H2O)], lies on a mirror plane with the NiII ion coordinated by two N and two O atoms of a tetra­dentate Schiff base ligand and one water O atom in a distorted square-pyramidal enviroment. The –CH2–CH2– group of the ligand is disordered equally over two sites about the mirror plane. The dihedral angle between the mean planes of the two symmetry-related chelate rings is 37.16 (6)°. In the crystal structure, inter­molecular O—H⋯O hydrogen bonds link complex mol­ecules into one-dimensional chains along [100] and these chains are linked, in turn, by very weak inter­molecular C—H⋯O hydrogen bonds into a two-dimensional network. PMID:21577698

  9. Acenaphthenequinone thiosemicarbazone and its transition metal complexes: synthesis, structure, and biological activity.

    PubMed

    Rodriguez-Argüelles, M C; Belicchi Ferrari, M; Gasparri Fava, G; Pelizzi, C; Pelosi, G; Albertini, R; Bonati, A; Dall'Aglio, P P; Lunghi, P; Pinelli, S

    1997-04-01

    The reaction of iron, nickel, copper, and zinc chlorides or acetates with acenaphthenequinone thiosemicarbazone, Haqtsc leads to the formation of novel complexes that have been characterized by spectroscopic studies (NMR, IR) and biological properties. The crystal structures of the free ligand Haqtsc 1 and of the compound [Ni(aqtsc)2].DMF 2, have also been determined by X-ray methods from diffractometer data. In 1, the conformation of the two nonequivalent molecules is governed by intramolecular hydrogen bonds, while an intermolecular hydrogen bond is responsible for dimer-like groups formation. In 2, the coordination geometry about nickel is distorted octahedral, and the two ligand molecules are terdentate monodeprotonated. Biological studies have shown that, for the first time at least up the used doses, a free ligand is active both in the inhibition of cell proliferation and in the induced differentiation on Friend erythroleukemia cells (FLC).

  10. Hydrogen release at metal-oxide interfaces: A first principle study of hydrogenated Al/SiO2 interfaces

    NASA Astrophysics Data System (ADS)

    Huang, Jianqiu; Tea, Eric; Li, Guanchen; Hin, Celine

    2017-06-01

    The Anode Hydrogen Release (AHR) mechanism at interfaces is responsible for the generation of defects, that traps charge carriers and can induce dielectric breakdown in Metal-Oxide-Semiconductor Field Effect Transistors. The AHR has been extensively studied at Si/SiO2 interfaces but its characteristics at metal-silica interfaces remain unclear. In this study, we performed Density Functional Theory (DFT) calculations to study the hydrogen release mechanism at the typical Al/SiO2 metal-oxide interface. We found that interstitial hydrogen atoms can break interfacial Alsbnd Si bonds, passivating a Si sp3 orbital. Interstitial hydrogen atoms can also break interfacial Alsbnd O bonds, or be adsorbed at the interface on aluminum, forming stable Alsbnd Hsbnd Al bridges. We showed that hydrogenated Osbnd H, Sisbnd H and Alsbnd H bonds at the Al/SiO2 interfaces are polarized. The resulting bond dipole weakens the Osbnd H and Sisbnd H bonds, but strengthens the Alsbnd H bond under the application of a positive bias at the metal gate. Our calculations indicate that Alsbnd H bonds and Osbnd H bonds are more important than Sisbnd H bonds for the hydrogen release process.

  11. Boundary conditions for the Swain-Schaad relationship as a criterion for hydrogen tunneling.

    PubMed

    Kohen, Amnon; Jensen, Jan H

    2002-04-17

    Hydrogen quantum mechanical tunneling has been suggested to play a role in a wide variety of hydrogen-transfer reactions in chemistry and enzymology. An important experimental criterion for tunneling is based on the breakdown of the semiclassical prediction for the relationship among the rates of the three isotopes of hydrogen (hydrogen -H, deuterium -D, and tritium -T). This is denoted the Swain-Schaad relationship. This study examines the breakdown of the Swain-Schaad relationship as criterion for tunneling. The semiclassical (no tunneling) limit used hereto (e.g., 3.34, for H/T to D/T kinetic isotope effects), was based on simple theoretical considerations of a diatomic cleavage of a stable covalent bond, for example, a C-H bond. Yet, most experimental evidence for a tunneling contribution has come from breakdown of those relationship for a secondary hydrogen, that is, not the hydrogen whose bond is being cleaved but its geminal neighbor. Furthermore, many of the reported experiments have been mixed-labeling experiments, in which a secondary H/T kinetic isotope effect was measured for C-H cleavage, while the D/T secondary effect accompanied C-D cleavage. In experiments of this type, the breakdown of the Swain-Schaad relationship indicates both tunneling and the degree of coupled motion between the primary and secondary hydrogens. We found a new semiclassical limit (e.g., 4.8 for H/T to D/T kinetic isotope effects), whose breakdown can serve as a more reliable experimental evidence for tunneling in this common mixed-labeling experiment. We study the tunneling contribution to C-H bond activation, for which many relevant experimental and theoretical data are available. However, these studies can be applied to any hydrogen-transfer reaction. First, an extension of the original approach was applied, and then vibrational analysis studies were carried out for a model system (the enzyme alcohol dehydrogenase). Finally, the effect of complex kinetics on the observed Swain-Schaad relationship was examined. All three methods yield a new semiclassical limit (4.8), above which tunneling must be considered. Yet, it was found that for many cases the original, localized limit (3.34), holds fairly well. For experimental results that are between the original and new limits (within statistical errors), several methods are suggested that can support or exclude tunneling. These new and clearer criteria provide a basis for future applications of the Swain-Schaad relationship to demonstrate tunneling in complex systems.

  12. Reactivity, characterization, equilibrium thermodynamics and hetero-bimetallic studies of tridentate and tetradentate complexes relevant to syngas catalysis

    NASA Astrophysics Data System (ADS)

    Imler, Gregory H.

    The unifying objective of this work is the study of model systems that will assist in the development of new metal catalysts capable of converting carbon monoxide and hydrogen (syngas) into organic oxygenates at mild temperature and pressure. The selective catalytic transformation of carbon monoxide and hydrogen to liquid fuels and chemical feedstocks represents a major "Grand Challenge" of catalysis science. A core objective is the study of a macrocycle that is related to a porphyrin ligand in order to circumvent some of the disadvantages of utilizing porphyrins in catalysis. The rhodium complex of the macrocycle dibenzotetramethylaza[14]annulene ([(tmtaa)Rh]2]) was reacted with a series of small molecules relevant to CO reduction and hydrogenation. Several complexes were formed that demonstrated the ability to partially reduce and hydrogenate carbon monoxide, including the dirhodium ketone (Rh-C(O)-Rh) and an example of a thermodynamically favorable metal formyl complex ((tmtaa)Rh-C(O)H). An important feature of this work is the measurement of thermodynamic data to provide experimental benchmarks for obtaining key species in CO reduction and hydrogenation. A thorough study of the (tmtaa)Rh system will help in identifying structural features that assist or hinder CO hydrogenation. All reactions are monitored by 1H NMR which permits determination of solution thermodynamics from equilibrium constants obtained by NMR peak integrations. DFT calculations have supplemented experimental results by providing estimates to compare with the experimentally determined thermodynamic data. These computations also provide insight into the structures and thermodynamics of species that cannot be observed directly such as short lived intermediates and thermodynamically unfavorable products. Heterobimetallic complexes of (tmtaa)Rh• with a second metal radical have been utilized to attempt to convert CO to organic products. Reactivity with CO and H2 has been accomplished, with most of these metal systems providing (tmtaa)Rh-C(O)H and M-H as final products. These systems are now ideally set up for catalysis in which M-H can deliver hydrogen to reduce and hydrogenate the rhodium formyl unit. Performing these reactions at high pressures of CO/H2 or with a more sterically hindered analog of tmtaa may provide the conditions necessary for catalysis. Reactivity, thermodynamic and computational studies have been used to analyze and compare bond energies in this current work with previous studies accomplished in the Wayland group. These comparisons permit further understanding into the factors that control bond strength, guiding future studies and allowing tuning of bond strengths based on choice of conditions for a catalytic process. This research has resulted in a more complete understanding of the factors that control the favorability of various intermediates in CO reduction and hydrogenation and the application of these results can be used to guide the next generation of metal ligand systems that will yield organic oxygenates at mild conditions.

  13. Synergizing Noncovalent Bonding Interactions in the Self-Assembly of Organic Charge-Transfer Ferroelectrics and Metal-Organic Frameworks

    NASA Astrophysics Data System (ADS)

    Cao, Dennis

    Contemporary supramolecular chemistry---chemistry beyond the molecule---seeks to leverage noncovalent bonding interactions to generate emergent properties and complexity. These aims extend beyond the solution phase and into the solid state, where crystalline organic materials have attracted much attention for their ability to imitate the physical properties of inorganic crystals. This Thesis outlines my efforts to understand the properties of the solid-state materials that are self-assembled with noncovalent bonding motifs which I have helped to realize. In the first five Chapters, I chronicle the development of the lock-arm supramolecular ordering (LASO) paradigm, which is a general molecular design strategy for amplifying the crystallization of charge transfer complexes that revolves around the synergistic action of hydrogen bonding and charge transfer interactions. In an effort to expand upon the LASO paradigm, I identify a two-point halogen-bonding motif which appears to operate orthogonally from the hydrogen bonding and charge transfer interactions. Since some of these single crystalline materials are ferroelectric at room temperature, I discuss the implications of these experimental observations and reconcile them with the centrosymmetric space groups assigned after X-ray crystallographic refinements. I conclude in the final two Chapters by recording my endeavors to control the assembly of metal-organic frameworks (MOFs) with noncovalent bonding interactions between [2]catenane-bearing struts. First of all, I describe the formation of syndiotactic pi-stacked 2D MOF layers before highlighting a two-component MOF that assembles with a magic number ratio of components that is independent of the molar proportions present in the crystallization medium.

  14. Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.

    Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less

  15. Silica-Supported, Single-Site Sc and Y Alkyls for Catalytic Hydrogenation of Propylene

    DOE PAGES

    Getsoian, Andrew G. Bean; Hu, Bo; Miller, Jeffrey T.; ...

    2017-09-27

    Single site Sc and Y on silica catalysts have been prepared by aqueous and organometallic grafting methods. The former yields Y(III) ions with 5 bonds at an average bond distance of 2.31 Å by X-ray absorption spectroscopy. Although the aqueous synthesis gave single site Y with low coordination number, these were not catalytic for alkane dehydrogenation or olefin hydrogenation. Single site Sc(III) and Y(III) species were also prepared by grafting Sc(CH 2Si(CH 3) 3) 3(THF) 2 and Y(CH 2Si(CH 3) 3) 3(THF) 2, respectively and these are catalysts for olefin hydrogenation at temperatures from about 60 to 100°C; however, theymore » were thermally unstable at higher temperatures necessary for alkane dehydrogenation. The structure of the grafted Y complex was determined by X-ray absorption spectroscopy, IR, and NMR. Grafting lead to protonolysis of 2 of the 3 CH 2Si(CH 3) 3 ligands. Additionally, there was loss of one THF ligand. The EXAFS indicated that there were 4 Y-ligand bonds in the surface species, 2 at 2.16 Å and 2 at 2.39 Å. The metal-alkyl ligand was thought to be necessary for catalytic activity and likely proceeds through a sigma bond metathesis mechanism. In the single site centers without alkyl bonds, Sc and Y ions cannot generate metal-alkyl, or metal-hydride, moieties in situ. We conclude that this is likely due to the very high M-O-Si bond strengths, which must be broken through heterolytic dissociation of C-H bonds during alkane activation for either alkane dehydrogenation or olefin hydrogenation reactions. Lastly, this study demonstrates the importance of pre-catalyst choice versus in situ formation of reactive intermediates to produce active catalysts for alkane bond activation.« less

  16. Hydrogen bonding interactions in PN...HX complexes: DFT and ab initio studies of structure, properties and topology.

    PubMed

    Varadwaj, Pradeep Risikrishna

    2010-05-01

    Spin-restricted DFT (X3LYP and B3LYP) and ab initio (MP2(fc) and CCSD(fc)) calculations in conjunction with the Aug-CC-pVDZ and Aug-CC-pVTZ basis sets were performed on a series of hydrogen bonded complexes PN...HX (X = F, Cl, Br) to examine the variations of their equilibrium gas phase structures, energetic stabilities, electronic properties, and vibrational characteristics in their electronic ground states. In all cases the complexes were predicted to be stable with respect to the constituent monomers. The interaction energy (Delta E) calculated using a super-molecular model is found to be in this order: PN...HF > PN...HCl > PN...HBr in the series examined. Analysis of various physically meaningful contributions arising from the Kitaura-Morokuma (KM) and reduced variational space self-consistent-field (RVS-SCF) energy decomposition procedures shows that the electrostatic energy has significant contribution to the over-all interaction energy. Dipole moment enhancement (Delta mu) was observed in these complexes expected of predominant dipole-dipole electrostatic interaction and was found to follow the trend PN...HF > PN...HCl > PN...HBr at the CCSD level. However, the DFT (X3LYP and B3LYP) and MP2 levels less accurately determined these values (in this order HF < HCl < HBr). Examination of the harmonic vibrational modes reveals that the PN and HX bands exhibit characteristic blue- and red shifts with concomitant bond contraction and elongation, respectively, on hydrogen bond formation. The topological or critical point (CP) analysis using the static quantum theory of atoms in molecules (QTAIM) of Bader was considered to classify and to gain further insight into the nature of interaction existing in the monomers PN and HX, and between them on H-bond formation. It is found from the analysis of the electron density rho ( c ), the Laplacian of electron charge density nabla(2)rho(c), and the total energy density (H ( c )) at the critical points between the interatomic regions that the interaction N...H is indeed electrostatic in origin (rho(c) > 0, nabla(2)rho(c) > 0 and H(c) > 0 at the BCP) whilst the bonds in PN (rho(c) > 0, nabla(2)rho(c) > 0 and H(c) < 0) and HX ((rho(c) > 0, nabla(2)rho(c) < 0 and H(c) < 0)) are predominantly covalent. A natural bond orbital (NBO) analysis of the second order perturbation energy lowering, E((2)), caused by charge transfer mechanism shows that the interaction N...H is n(N) --> BD*(HX) delocalization.

  17. Behavior of anionic molybdenum(IV, VI) and tungsten(IV, VI) complexes containing bulky hydrophobic dithiolate ligands and intramolecular NH···S hydrogen bonds in nonpolar solvents.

    PubMed

    Hasenaka, Yuki; Okamura, Taka-aki; Tatsumi, Miki; Inazumi, Naoya; Onitsuka, Kiyotaka

    2014-11-07

    Molybdenum(IV, VI) and tungsten(IV, VI) complexes, (Et4N)2[M(IV)O{1,2-S2-3,6-(RCONH)2C6H2}2] and (Et4N)2[M(VI)O2{1,2-S2-3,6-(RCONH)2C6H2}2] (M = Mo, W; R = (4-(t)BuC6H4)3C), with bulky hydrophobic dithiolate ligands containing NH···S hydrogen bonds were synthesized. These complexes are soluble in nonpolar solvents like toluene, which allows the detection of unsymmetrical coordination structures and elusive intermolecular interactions in solution. The (1)H NMR spectra of the complexes in toluene-d8 revealed an unsymmetrical coordination structure, and proximity of the counterions to the anion moiety was suggested at low temperatures. The oxygen-atom-transfer reaction between the molybdenum(IV) complex and Me3NO in toluene was considerably accelerated in nonpolar solvents, and this increase was attributed to the favorable access of the substrate to the active center in the hydrophobic environment.

  18. A carbohydrate-anion recognition system in aprotic solvents.

    PubMed

    Ren, Bo; Dong, Hai; Ramström, Olof

    2014-05-01

    A carbohydrate-anion recognition system in nonpolar solvents is reported, in which complexes form at the B-faces of β-D-pyranosides with H1-, H3-, and H5-cis patterns similar to carbohydrate-π interactions. The complexation effect was evaluated for a range of carbohydrate structures; it resulted in either 1:1 carbohydrate-anion complexes, or 1:2 complex formation depending on the protection pattern of the carbohydrate. The interaction was also evaluated with different anions and solvents. In both cases it resulted in significant binding differences. The results indicate that complexation originates from van der Waals interactions or weak CH⋅⋅⋅A(-) hydrogen bonds between the binding partners and is related to electron-withdrawing groups of the carbohydrates as well as increased hydrogen-bond-accepting capability of the anions. © 2014 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA. This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modifications or adaptations are made.

  19. Determining the Energetics of the Hydrogen Bond through FTIR: A Hands-On Physical Chemistry Lab Experiment

    ERIC Educational Resources Information Center

    Guerin, Abby C.; Riley, Kristi; Rupnik, Kresimir; Kuroda, Daniel G.

    2016-01-01

    Hydrogen bonds are very important chemical structures that are responsible for many unique and important properties of solvents, such as the solvation power of water. These distinctive features are directly related to the stabilization energy conferred by hydrogen bonds to the solvent. Thus, the characterization of hydrogen bond energetics has…

  20. Silylation of C-H bonds in aromatic heterocycles by an Earth-abundant metal catalyst

    NASA Astrophysics Data System (ADS)

    Toutov, Anton A.; Liu, Wen-Bo; Betz, Kerry N.; Fedorov, Alexey; Stoltz, Brian M.; Grubbs, Robert H.

    2015-02-01

    Heteroaromatic compounds containing carbon-silicon (C-Si) bonds are of great interest in the fields of organic electronics and photonics, drug discovery, nuclear medicine and complex molecule synthesis, because these compounds have very useful physicochemical properties. Many of the methods now used to construct heteroaromatic C-Si bonds involve stoichiometric reactions between heteroaryl organometallic species and silicon electrophiles or direct, transition-metal-catalysed intermolecular carbon-hydrogen (C-H) silylation using rhodium or iridium complexes in the presence of excess hydrogen acceptors. Both approaches are useful, but their limitations include functional group incompatibility, narrow scope of application, high cost and low availability of the catalysts, and unproven scalability. For this reason, a new and general catalytic approach to heteroaromatic C-Si bond construction that avoids such limitations is highly desirable. Here we report an example of cross-dehydrogenative heteroaromatic C-H functionalization catalysed by an Earth-abundant alkali metal species. We found that readily available and inexpensive potassium tert-butoxide catalyses the direct silylation of aromatic heterocycles with hydrosilanes, furnishing heteroarylsilanes in a single step. The silylation proceeds under mild conditions, in the absence of hydrogen acceptors, ligands or additives, and is scalable to greater than 100 grams under optionally solvent-free conditions. Substrate classes that are difficult to activate with precious metal catalysts are silylated in good yield and with excellent regioselectivity. The derived heteroarylsilane products readily engage in versatile transformations enabling new synthetic strategies for heteroaromatic elaboration, and are useful in their own right in pharmaceutical and materials science applications.

  1. The Born-Oppenheimer molecular simulations of infrared spectra of crystalline poly-(R)-3-hydroxybutyrate with analysis of weak Csbnd H⋯Odbnd C hydrogen bonds

    NASA Astrophysics Data System (ADS)

    Brela, Mateusz Z.; Boczar, Marek; Wójcik, Marek J.; Sato, Harumi; Nakajima, Takahito; Ozaki, Yukihiro

    2017-06-01

    In this letter we present results of study of weak Csbnd H⋯Odbnd C hydrogen bonds of crystalline poly-(R)-3-hydroxybutyrate (PHB) by using Born-Oppenheimer molecular dynamics. The polymeric structure and IR spectra of PHB result from the presence of the weak hydrogen bonds. We applied the post-molecular dynamics analysis to consider a Cdbnd O motion as indirectly involved in the hydrogen bonds. Quantization of the nuclear motion of the oxygens was done to perform detailed analysis of the strength and properties of the Cdbnd O bands involved in the weak hydrogen bonds. We have also shown the dynamic character of the weak hydrogen bond interactions.

  2. Platinum(II) 1,10-phenanthroline complexes of acetylides containing redox-active groups.

    PubMed

    Siemeling, Ulrich; Bausch, Kirstin; Fink, Heinrich; Bruhn, Clemens; Baldus, Marc; Angerstein, Brigitta; Plessow, Regina; Brockhinke, Andreas

    2005-07-21

    The new diimine ligand 3,8-di-n-pentyl-4,7-di(phenylethynyl)-1,10-phenanthroline (1) was used for the synthesis of a range of Pt(II) complexes, viz.[Pt(1)Cl2], [Pt(1)(C triple bond C-Ph)2], [Pt(1)(C triple bond C-Fc)2] and [Pt(1)(C triple bond C-p-C6H4-C triple bond C-Fc)2](Fc = ferrocenyl). Crystal structure analyses were performed for [Pt(1)Cl2] and [Pt(1)(C triple bond C-Ph)2] and revealed that the di(acetylide)pi-tweezer of the latter binds a molecule of chloroform through C-H...pi hydrogen bonds. The redox and optical properties of 1 and its complexes were investigated by (spectro-)electrochemistry, UV-Vis and luminescence spectroscopy, and an energy level diagram was derived for [Pt(1)(C triple bond C-Fc)2] and related compounds on the basis of the data collected. The ferrocenyl-substituted Pt(II) complexes are donor-sensitiser assemblies. Intramolecular quenching of the photoexcited Pt(II) diimine unit leads to very short luminescence lifetimes for [Pt(1)(C triple bond C-p-C(6)H(4)-C triple bond C-Fc)2](2 ns) and [Pt(1)(C triple bond C-Fc)2](0.3 ns), as opposed to [Pt(1)(C triple bond C-Ph)2](0.7 micros). Excimer formation has been observed for [Pt(1)(C triple bond C-Ph)(2)] at room temperature in dichloromethane and at low temperatures in frozen glassy dichloromethane and 2-methyltetrahydrofuran solution, but not in the solid state.

  3. Isomorphous rare-earth tris[bis(2,6-diisopropylphenyl) phosphate] complexes and their catalytic properties in 1,3-diene polymerization and in the inhibited oxidation of polydimethylsiloxane.

    PubMed

    Minyaev, Mikhail E; Tavtorkin, Alexander N; Korchagina, Sof'ya A; Bondarenko, Galina N; Churakov, Andrei V; Nifant'ev, Ilya E

    2018-05-01

    Crystals of mononuclear tris[bis(2,6-diisopropylphenyl) phosphato-κO]pentakis(methanol-κO)lanthanide methanol monosolvates of lanthanum, [La(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (1), cerium, [Ce(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (2), and neodymium, [Nd(C 24 H 34 O 4 P) 3 (CH 3 OH) 5 ]·CH 3 OH, (3), have been obtained by reactions between LnCl 3 (H 2 O) n (n = 6 or 7) and lithium bis(2,6-diisopropylphenyl) phosphate in a 1:3 molar ratio in methanol media. Compounds (1)-(3) crystallize in the monoclinic P2 1 /c space group and have isomorphous crystal structures. All three bis(2,6-diisopropylphenyl) phosphate ligands display a κO-monodentate coordination mode. The coordination number of the metal atom is 8. Each [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ] molecular unit exhibits four intramolecular O-H...O hydrogen bonds, forming six-membered rings. The unit forms two intermolecular O-H...O hydrogen bonds with one noncoordinating methanol molecule. All six hydroxy H atoms are involved in hydrogen bonding within the [Ln{O 2 P(O-2,6- i Pr 2 C 6 H 3 ) 2 } 3 (CH 3 OH) 5 ]·CH 3 OH unit. This, along with the high steric hindrance induced by the three bulky diaryl phosphate ligands, prevents the formation of a hydrogen-bond network. Complexes (1)-(3) exhibit disorder of two of the isopropyl groups of the phosphate ligands. The cerium compound (2) demonstrates an essential catalytic inhibition in the thermal decomposition of polydimethylsiloxane in air at 573 K. Catalytic systems based on the neodymium complex tris[bis(2,6-diisopropylphenyl) phosphato-κO]neodymium, (3'), which was obtained as a dry powder of (3) upon removal of methanol, display a high catalytic activity in isoprene and butadiene polymerization.

  4. Direct observation and control of hydrogen-bond dynamics using low-temperature scanning tunneling microscopy

    NASA Astrophysics Data System (ADS)

    Kumagai, Takashi

    2015-08-01

    Hydrogen(H)-bond dynamics are involved in many elementary processes in chemistry and biology. Because of its fundamental importance, a variety of experimental and theoretical approaches have been employed to study the dynamics in gas, liquid, solid phases, and their interfaces. This review describes the recent progress of direct observation and control of H-bond dynamics in several model systems on a metal surface by using low-temperature scanning tunneling microscopy (STM). General aspects of H-bond dynamics and the experimental methods are briefly described in chapter 1 and 2. In the subsequent four chapters, I present direct observation of an H-bond exchange reaction within a single water dimer (chapter 3), a symmetric H bond (chapter 4) and H-atom relay reactions (chapter 5) within water-hydroxyl complexes, and an intramolecular H-atom transfer reaction (tautomerization) within a single porphycene molecule (chapter 6). These results provide novel microscopic insights into H-bond dynamics at the single-molecule level, and highlight significant impact on the process from quantum effects, namely tunneling and zero-point vibration, resulting from the small mass of H atom. Additionally, local environmental effect on H-bond dynamics is also examined by using atom/molecule manipulation with the STM.

  5. Fabrication of sophisticated two-dimensional organic nanoarchitectures thought hydrogen bond mediated molecular self assembly

    NASA Astrophysics Data System (ADS)

    Silly, Fabien

    2012-02-01

    Complex supramolecular two-dimensional (2D) networks are attracting considerable interest as highly ordered functional materials for applications in nanotechnology. The challenge consists in tailoring the ordering of one or more molecular species into specific architectures over an extended length scale with molecular precision. Highly organized supramolecular arrays can be obtained through self-assembly of complementary molecules which can interlock via intermolecular interactions. Molecules forming hydrogen bonds (H-bonds) are especially interesting building blocks for creating sophisticated organic architectures due to high selectivity and directionality of these bindings. We used scanning tunnelling microscopy to investigate at the atomic scale the formation of H-bonded 2D organic nanoarchitectures on surfaces. We mixed perylene derivatives having rectangular shape with melamine and DNA base having triangular and non symmetric shape respectively. We observe that molecule substituents play a key role in formation of the multicomponent H-bonded architectures. We show that the 2D self-assembly of these molecules can be tailored by adjusting the temperature and molecular ratio. We used these stimuli to successfully create numerous close-packed and porous 2D multicomponent structures.

  6. Correlating Nitrile IR Frequencies to Local Electrostatics Quantifies Noncovalent Interactions of Peptides and Proteins.

    PubMed

    Deb, Pranab; Haldar, Tapas; Kashid, Somnath M; Banerjee, Subhrashis; Chakrabarty, Suman; Bagchi, Sayan

    2016-05-05

    Noncovalent interactions, in particular the hydrogen bonds and nonspecific long-range electrostatic interactions are fundamental to biomolecular functions. A molecular understanding of the local electrostatic environment, consistently for both specific (hydrogen-bonding) and nonspecific electrostatic (local polarity) interactions, is essential for a detailed understanding of these processes. Vibrational Stark Effect (VSE) has proven to be an extremely useful method to measure the local electric field using infrared spectroscopy of carbonyl and nitrile based probes. The nitrile chemical group would be an ideal choice because of its absorption in an infrared spectral window transparent to biomolecules, ease of site-specific incorporation into proteins, and common occurrence as a substituent in various drug molecules. However, the inability of VSE to describe the dependence of IR frequency on electric field for hydrogen-bonded nitriles to date has severely limited nitrile's utility to probe the noncovalent interactions. In this work, using infrared spectroscopy and atomistic molecular dynamics simulations, we have reported for the first time a linear correlation between nitrile frequencies and electric fields in a wide range of hydrogen-bonding environments that may bridge the existing gap between VSE and H-bonding interactions. We have demonstrated the robustness of this field-frequency correlation for both aromatic nitriles and sulfur-based nitriles in a wide range of molecules of varying size and compactness, including small molecules in complex solvation environments, an amino acid, disordered peptides, and structured proteins. This correlation, when coupled to VSE, can be used to quantify noncovalent interactions, specific or nonspecific, in a consistent manner.

  7. Functions of key residues in the ligand-binding pocket of vitamin D receptor: Fragment molecular orbital interfragment interaction energy analysis

    NASA Astrophysics Data System (ADS)

    Yamagishi, Kenji; Yamamoto, Keiko; Yamada, Sachiko; Tokiwa, Hiroaki

    2006-03-01

    Fragment molecular orbital-interfragment interaction energy calculations of the vitamin D receptor (VDR)/1α,25-dihydroxyvitamin D 3 complex were utilized to assign functions of key residues of the VDR. Only one residue forms a significant interaction with the corresponding hydroxy group of the ligand, although two residues are located around each hydroxy group. The degradation of binding affinity for derivatives upon removal of a hydroxy group is closely related to the trend in the strength of the hydrogen bonds. Type II hereditary rickets due to an Arg274 point mutation is caused by the lack of the strongest hydrogen bond.

  8. Experimental evidence for the participation of deep eutectic solvents in silver chloride crystal formation at low temperature

    NASA Astrophysics Data System (ADS)

    Bhatt, Jitkumar; Mondal, Dibyendu; Prasad, Kamalesh

    2016-05-01

    Deep eutectic solvents (DESs) obtained by the complexation of choline chloride (ChoCl) as hydrogen bond acceptor and hydrogen bond donors such as ethylene glycol (ChoCl-EG 1:2) and glycerol (ChoCl-Gly 1:2) were used as media for the formation of AgCl crystals. Although formation of AgCl crystals was observed in both the solvents but the rate of formation of crystals was faster in ChoCl-EG 1:2 at low temperature (4-5 °C). In the crystals, cholinium cations were found to be present with chloride ions bridged with Ag ions resulting generation of 1D network of AgCl2 anions.

  9. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, D.; Waller, F.J.

    1998-06-16

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  10. Heterogeneous catalyst for the production of ethylidene diacetate from acetic anhydride

    DOEpatents

    Ramprasad, Dorai; Waller, Francis Joseph

    1998-01-01

    This invention relates to a process for producing ethylidene diacetate by the reaction of acetic anhydride, acetic acid, hydrogen and carbon monoxide at elevated temperatures and pressures in the presence of an alkyl halide and a heterogeneous, bifunctional catalyst that is stable to hydrogenation and comprises an insoluble polymer having pendant quaternized heteroatoms, some of which heteroatoms are ionically bonded to anionic Group VIII metal complexes, the remainder of the heteroatoms being bonded to iodide. In contrast to prior art processes, no accelerator (promoter) is necessary to achieve the catalytic reaction and the products are easily separated from the catalyst by filtration. The catalyst can be recycled without loss in activity.

  11. All-atomic Molecular Dynamic Studies of Human CDK8: Insight into the A-loop, Point Mutations and Binding with Its Partner CycC

    PubMed Central

    Xu, Wu; Amire-Brahimi, Benjamin; Xie, Xiao-Jun; Huang, Liying; Ji, Jun-Yuan

    2014-01-01

    The Mediator, a conserved multisubunit protein complex in eukaryotic organisms, regulates gene expression by bridging sequence-specific DNA-binding transcription factors to the general RNA polymerase II machinery. In yeast, Mediator complex is organized in three core modules (head, middle and tail) and a separable ‘CDK8 submodule’ consisting of four subunits including Cyclin-dependent kinase CDK8 (CDK8), Cyclin C (CycC), MED12, and MED13. The 3-D structure of human CDK8-CycC complex has been recently experimentally determined. To take advantage of this structure and the improved theoretical calculation methods, we have performed molecular dynamic simulations to study dynamics of CDK8 and two CDK8 point mutations (D173A and D189N), which have been identified in human cancers, with and without full length of the A-loop as well as the binding between CDK8 and CycC. We found that CDK8 structure gradually loses two helical structures during the 50-ns molecular dynamic simulation, likely due to the presence of the full-length A-loop. In addition, our studies showed the hydrogen bond occupation of the CDK8 A-loop increases during the first 20-ns MD simulation and stays stable during the later 30-ns MD simulation. Four residues in the A-loop of CDK8 have high hydrogen bond occupation, while the rest residues have low or no hydrogen bond occupation. The hydrogen bond dynamic study of the A-loop residues exhibits three types of changes: increasing, decreasing, and stable. Furthermore, the 3-D structures of CDK8 point mutations D173A, D189N, T196A and T196D have been built by molecular modeling and further investigated by 50-ns molecular dynamic simulations. D173A has the highest average potential energy, while T196D has the lowest average potential energy, indicating that T196D is the most stable structure. Finally, we calculated theoretical binding energy of CDK8 and CycC by MM/PBSA and MM/GBSA methods, and the negative values obtained from both methods demonstrate stability of CDK8-CycC complex. Taken together, these analyses will improve our understanding of the exact functions of CDK8 and the interaction with its partner CycC. PMID:24754906

  12. Complexes of DNA bases and Watson-Crick base pairs with small neutral gold clusters.

    PubMed

    Kryachko, E S; Remacle, F

    2005-12-08

    The nature of the DNA-gold interaction determines and differentiates the affinity of the nucleobases (adenine, thymine, guanine, and cytosine) to gold. Our preliminary computational study [Kryachko, E. S.; Remacle, F. Nano Lett. 2005, 5, 735] demonstrates that two major bonding factors govern this interaction: the anchoring, either of the Au-N or Au-O type, and the nonconventional N-H...Au hydrogen bonding. In this paper, we offer insight into the nature of nucleobase-gold interactions and provide a detailed characterization of their different facets, i.e., geometrical, energetic, and spectroscopic aspects; the gold cluster size and gold coordination effects; proton affinity; and deprotonation energy. We then investigate how the Watson-Crick DNA pairing patterns are modulated by the nucleobase-gold interaction. We do so in terms of the proton affinities and deprotonation energies of those proton acceptors and proton donors which are involved in the interbase hydrogen bondings. A variety of properties of the most stable Watson-Crick [A x T]-Au3 and [G x C]-Au3 hybridized complexes are described and compared with the isolated Watson-Crick A x T and G x C ones. It is shown that enlarging the gold cluster size to Au6 results in a rather short gold-gold bond in the Watson-Crick interbase region of the [G x C]-Au6 complex that bridges the G x C pair and thus leads to a significant strengthening of G x C pairing.

  13. A tensegrity model for hydrogen bond networks in proteins.

    PubMed

    Bywater, Robert P

    2017-05-01

    Hydrogen-bonding networks in proteins considered as structural tensile elements are in balance separately from any other stabilising interactions that may be in operation. The hydrogen bond arrangement in the network is reminiscent of tensegrity structures in architecture and sculpture. Tensegrity has been discussed before in cells and tissues and in proteins. In contrast to previous work only hydrogen bonds are studied here. The other interactions within proteins are either much stronger - covalent bonds connecting the atoms in the molecular skeleton or weaker forces like the so-called hydrophobic interactions. It has been demonstrated that the latter operate independently from hydrogen bonds. Each category of interaction must, if the protein is to have a stable structure, balance out. The hypothesis here is that the entire hydrogen bond network is in balance without any compensating contributions from other types of interaction. For sidechain-sidechain, sidechain-backbone and backbone-backbone hydrogen bonds in proteins, tensegrity balance ("closure") is required over the entire length of the polypeptide chain that defines individually folding units in globular proteins ("domains") as well as within the repeating elements in fibrous proteins that consist of extended chain structures. There is no closure to be found in extended structures that do not have repeating elements. This suggests an explanation as to why globular domains, as well as the repeat units in fibrous proteins, have to have a defined number of residues. Apart from networks of sidechain-sidechain hydrogen bonds there are certain key points at which this closure is achieved in the sidechain-backbone hydrogen bonds and these are associated with demarcation points at the start or end of stretches of secondary structure. Together, these three categories of hydrogen bond achieve the closure that is necessary for the stability of globular protein domains as well as repeating elements in fibrous proteins.

  14. New insights into the folding of a β-sheet miniprotein in a reduced space of collective hydrogen bond variables: application to a hydrodynamic analysis of the folding flow.

    PubMed

    Kalgin, Igor V; Caflisch, Amedeo; Chekmarev, Sergei F; Karplus, Martin

    2013-05-23

    A new analysis of the 20 μs equilibrium folding/unfolding molecular dynamics simulations of the three-stranded antiparallel β-sheet miniprotein (beta3s) in implicit solvent is presented. The conformation space is reduced in dimensionality by introduction of linear combinations of hydrogen bond distances as the collective variables making use of a specially adapted principal component analysis (PCA); i.e., to make structured conformations more pronounced, only the formed bonds are included in determining the principal components. It is shown that a three-dimensional (3D) subspace gives a meaningful representation of the folding behavior. The first component, to which eight native hydrogen bonds make the major contribution (four in each beta hairpin), is found to play the role of the reaction coordinate for the overall folding process, while the second and third components distinguish the structured conformations. The representative points of the trajectory in the 3D space are grouped into conformational clusters that correspond to locally stable conformations of beta3s identified in earlier work. A simplified kinetic network based on the three components is constructed, and it is complemented by a hydrodynamic analysis. The latter, making use of "passive tracers" in 3D space, indicates that the folding flow is much more complex than suggested by the kinetic network. A 2D representation of streamlines shows there are vortices which correspond to repeated local rearrangement, not only around minima of the free energy surface but also in flat regions between minima. The vortices revealed by the hydrodynamic analysis are apparently not evident in folding pathways generated by transition-path sampling. Making use of the fact that the values of the collective hydrogen bond variables are linearly related to the Cartesian coordinate space, the RMSD between clusters is determined. Interestingly, the transition rates show an approximate exponential correlation with distance in the hydrogen bond subspace. Comparison with the many published studies shows good agreement with the present analysis for the parts that can be compared, supporting the robust character of our understanding of this "hydrogen atom" of protein folding.

  15. Potassium bis(carbonato-O,O')(ethylenediamine-N,N')cobaltate(III) monohydrate at 173 K.

    PubMed

    Belai, N; Dickman, M H; Pope, M T

    2001-07-01

    The title salt, K[Co(C2H8N2)(CO3)2].H2O, consists of a distorted octahedral cobalt complex anion and a seven-coordinate potassium cation. Both metal atoms have crystallographic twofold symmetry, one C2 axis passing through the Co atom and C--C bond, and another along a short K--O (water) bond of 2.600 A (corrected for libration). The carbonate is bidentate to both cobalt and potassium and the water forms a hydrogen bond to a carbonate O atom.

  16. Diaqua­bis[1-hydroxy-2-(imidazol-3-ium-1-yl)-1,1′-ethyl­idenediphophonato-κ2 O,O′]zinc(II)

    PubMed Central

    Freire, Eleonora; Vega, Daniel R.

    2009-01-01

    In the title complex, [Zn(C5H9NO7P2)2(H2O)2], the zinc atom is coordinated by two bidentate zoledronate [zoledronate = (2-(1-imidazole)-1-hydr­oxy-1,1′-ethyl­idenediphophonate)] ligands and two water mol­ecules. The coordination number is 6. There is one half-mol­ecule in the asymmetric unit with the zinc atom located on a crystallographic inversion centre. The anion exists as a zwitterion with an overall charge of −1; the protonated nitro­gen in the ring has a positive charge and the two phospho­nates groups each have a single negative charge. There are two intra­molecular O—H⋯O hydrogen bonds. The mol­ecules are linked into a chain by inter­molecular O—H⋯O hydrogen bonds. Adjacent chains are further linked by O—H⋯O hydrogen bonds involving the aqua ligands. An N—H⋯O inter­action is also observed. PMID:21578164

  17. Sensitivity of hydrogen bonds of DNA and RNA to hydration, as gauged by 1JNH measurements in ethanol-water mixtures.

    PubMed

    Manalo, Marlon N; Kong, Xiangming; LiWang, Andy

    2007-04-01

    Hydrogen-bond lengths of nucleic acids are (1) longer in DNA than in RNA, and (2) sequence dependent. The physicochemical basis for these variations in hydrogen-bond lengths is unknown, however. Here, the notion that hydration plays a significant role in nucleic acid hydrogen-bond lengths is tested. Watson-Crick N1...N3 hydrogen-bond lengths of several DNA and RNA duplexes are gauged using imino 1J(NH) measurements, and ethanol is used as a cosolvent to lower water activity. We find that 1J(NH) values of DNA and RNA become less negative with added ethanol, which suggests that mild dehydration reduces hydrogen-bond lengths even as the overall thermal stabilities of these duplexes decrease. The 1J(NH) of DNA are increased in 8 mol% ethanol to those of RNA in water, which suggests that the greater hydration of DNA plays a significant role in its longer hydrogen bonds. The data also suggest that ethanol-induced dehydration is greater for the more hydrated G:C base pairs and thereby results in greater hydrogen-bond shortening than for the less hydrated A:T/U base pairs of DNA and RNA.

  18. A theoretical perspective of the nature of hydrogen-bond types - the atoms in molecules approach

    NASA Astrophysics Data System (ADS)

    Vijaya Pandiyan, B.; Kolandaivel, P.; Deepa, P.

    2014-06-01

    Hydrogen bonds and their strength were analysed based on their X-H proton-donor bond properties and the parameters of the H-Y distance (Y proton acceptor). Strong, moderate and weak interactions in hydrogen-bond types were verified through the proton affinities of bases (PA), deprotanation enthalpies of acids (DPE) and the chemical shift (σ). The aromaticity and anti-aromaticity were analysed by means of the NICS (0) (nucleus-independent chemical shift), NICS (1) and ΔNICS (0), ΔNICS (1) of hydrogen-bonded molecules. The strength of a hydrogen bond depends on the capacity of hydrogen atom engrossing into the electronegative acceptor atom. The correlation between the above parameters and their relations were discussed through curve fitting. Bader's theory of atoms in molecules has been applied to estimate the occurrence of hydrogen bonds through eight criteria reported by Popelier et al. The lengths and potential energy shifts have been found to have a strong negative linear correlation, whereas the lengths and Laplacian shifts have a strong positive linear correlation. This study illustrates the common factors responsible for strong, moderate and weak interactions in hydrogen-bond types.

  19. Evidences for Cooperative Resonance-Assisted Hydrogen Bonds in Protein Secondary Structure Analogs

    NASA Astrophysics Data System (ADS)

    Zhou, Yu; Deng, Geng; Zheng, Yan-Zhen; Xu, Jing; Ashraf, Hamad; Yu, Zhi-Wu

    2016-11-01

    Cooperative behaviors of the hydrogen bonding networks in proteins have been discovered for a long time. The structural origin of this cooperativity, however, is still under debate. Here we report a new investigation combining excess infrared spectroscopy and density functional theory calculation on peptide analogs, represented by N-methylformamide (NMF) and N-methylacetamide (NMA). Interestingly, addition of the strong hydrogen bond acceptor, dimethyl sulfoxide, to the pure analogs caused opposite effects, namely red- and blue-shift of the N-H stretching infrared absorption in NMF and NMA, respectively. The contradiction can be reconciled by the marked lowering of the energy levels of the self-associates between NMA molecules due to a cooperative effect of the hydrogen bonds. On the contrary, NMF molecules cannot form long-chain cooperative hydrogen bonds because they tend to form dimers. Even more interestingly, we found excellent linear relationships between changes on bond orders of N-H/N-C/C = O and the hydrogen bond energy gains upon the formation of hydrogen bonding multimers in NMA, suggesting strongly that the cooperativity originates from resonance-assisted hydrogen bonds. Our findings provide insights on the structures of proteins and may also shed lights on the rational design of novel molecular recognition systems.

  20. Chemoselective Hydrogenation of Aldehydes under Mild, Base-Free Conditions: Manganese Outperforms Rhenium

    PubMed Central

    2018-01-01

    Several hydride Mn(I) and Re(I) PNP pincer complexes were applied as catalysts for the homogeneous chemoselective hydrogenation of aldehydes. Among these, [Mn(PNP-iPr)(CO)2(H)] was found to be one of the most efficient base metal catalysts for this process and represents a rare example which permits the selective hydrogenation of aldehydes in the presence of ketones and other reducible functionalities, such as C=C double bonds, esters, or nitriles. The reaction proceeds at room temperature under base-free conditions with catalyst loadings between 0.1 and 0.05 mol% and a hydrogen pressure of 50 bar (reaching TONs of up to 2000). A mechanism which involves an outer-sphere hydride transfer and reversible PNP ligand deprotonation/protonation is proposed. Analogous isoelectronic and isostructural Re(I) complexes were only poorly active. PMID:29755828

  1. Insights into the Hydrogen-Atom Transfer of the Blue Aroxyl.

    PubMed

    Bächle, Josua; Marković, Marijana; Kelterer, Anne-Marie; Grampp, Günter

    2017-10-19

    An experimental and theoretical study on hydrogen-atom transfer dynamics in the hydrogen-bonded substituted phenol/phenoxyl complex of the blue aroxyl (2,4,6-tri-tert-butylphenoxyl) is presented. The experimental exchange dynamics is determined in different organic solvents from the temperature-dependent alternating line-width effect in the continuous-wave ESR spectrum. From bent Arrhenius plots, effective tunnelling contributions with parallel heavy-atom motion are concluded. To clarify the transfer mechanism, reaction paths for different conformers of the substituted phenol/phenoxyl complex are modelled theoretically. Various DFT and post-Hartree-Fock methods including multireference methods are applied. From the comparison of experimental and theoretical data it is concluded that the system favours concerted hydrogen-atom transfer along a parabolic reaction path caused by heavy-atom motion. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  2. Quantum mechanical electronic structure calculation reveals orientation dependence of hydrogen bond energy in proteins.

    PubMed

    Mondal, Abhisek; Datta, Saumen

    2017-06-01

    Hydrogen bond plays a unique role in governing macromolecular interactions with exquisite specificity. These interactions govern the fundamental biological processes like protein folding, enzymatic catalysis, molecular recognition. Despite extensive research work, till date there is no proper report available about the hydrogen bond's energy surface with respect to its geometric parameters, directly derived from proteins. Herein, we have deciphered the potential energy landscape of hydrogen bond directly from the macromolecular coordinates obtained from Protein Data Bank using quantum mechanical electronic structure calculations. The findings unravel the hydrogen bonding energies of proteins in parametric space. These data can be used to understand the energies of such directional interactions involved in biological molecules. Quantitative characterization has also been performed using Shannon entropic calculations for atoms participating in hydrogen bond. Collectively, our results constitute an improved way of understanding hydrogen bond energies in case of proteins and complement the knowledge-based potential. Proteins 2017; 85:1046-1055. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.

  3. Hydrogen bonds and heat diffusion in α-helices: a computational study.

    PubMed

    Miño, German; Barriga, Raul; Gutierrez, Gonzalo

    2014-08-28

    Recent evidence has shown a correlation between the heat diffusion pathways and the known allosteric communication pathways in proteins. Allosteric communication in proteins is a central, yet unsolved, problem in biochemistry, and the study and characterization of the structural determinants that mediate energy transfer among different parts of proteins is of major importance. In this work, we characterized the role of hydrogen bonds in diffusivity of thermal energy for two sets of α-helices with different abilities to form hydrogen bonds. These hydrogen bonds can be a constitutive part of the α-helices or can arise from the lateral chains. In our in vacuo simulations, it was observed that α-helices with a higher possibility of forming hydrogen bonds also had higher rates of thermalization. Our simulations also revealed that heat readily flowed through atoms involved in hydrogen bonds. As a general conclusion, according to our simulations, hydrogen bonds fulfilled an important role in heat diffusion in structural patters of proteins.

  4. Tunneling readout of hydrogen-bonding based recognition

    PubMed Central

    Chang, Shuai; He, Jin; Kibel, Ashley; Lee, Myeong; Sankey, Otto; Zhang, Peiming; Lindsay, Stuart

    2009-01-01

    Hydrogen bonding has a ubiquitous role in electron transport1,2 and in molecular recognition, with DNA base-pairing being the best known example.3 Scanning tunneling microscope (STM) images4 and measurements of the decay of tunnel-current as a molecular junction is pulled apart by the STM tip, 5 are sensitive to hydrogen-bonded interactions. Here we show that these tunnel-decay signals can be used to measure the strength of hydrogen bonding in DNA basepairs. Junctions that are held together by three hydrogen bonds per basepair (e.g., guanine-cytosine interactions) are stiffer than junctions held together by two hydrogen bonds per basepair (e.g., adenine-thymine interactions). Similar, but less-pronounced, effects are observed on the approach of the tunneling probe, implying that hydrogen-bond dependent attractive forces also have a role in determining the rise of current. These effects provide new mechanisms for making sensors that transduce a molecular recognition event into an electronic signal. PMID:19421214

  5. Crystal structure of fac-tri-chlorido-[tris-(pyridin-2-yl-N)amine]-chromium(III).

    PubMed

    Yamaguchi-Terasaki, Yukiko; Fujihara, Takashi; Nagasawa, Akira; Kaizaki, Sumio

    2015-01-01

    In the neutral complex mol-ecule of the title compound, fac-[CrCl3(tpa)] [tpa is tris-(pyridin-2-yl)amine; C15H12N4], the Cr(III) ion is bonded to three N atoms that are constrained to a facial arrangement by the tpa ligand and by three chloride ligands, leading to a distorted octa-hedral coordination sphere. The average Cr-N and Cr-Cl bond lengths are 2.086 (5) and 2.296 (4) Å, respectively. The complex mol-ecule is located on a mirror plane. In the crystal, a combination of C-H⋯N and C-H⋯Cl hydrogen-bonding inter-actions connect the mol-ecules into a three-dimensional network.

  6. Role of Hydrogen Bonding in Photoinduced Electron-Proton Transfer from Phenols to a Polypyridine Ru Complex with a Proton-Accepting Ligand

    DOE PAGES

    Lymar, Sergei V.; Ertem, Mehmed Z.; Lewandowska-Andralojc, Anna; ...

    2017-08-09

    Electron-proton transfer, EPT, from phenols to a triplet MLCT-excited Ru polypyridine complex containing an uncoordinated nitrogen site, 1(T), can be described by a kinetic model that accounts for the H-bonding of 1(T) to phenol, 1(T) to solvent, and phenol to solvent. The latter plays a major role in the kinetic solvent effect and commonly precludes simultaneous determination of the EPT rate constant and 1(T)-phenol H-bonding constant. A number of these quantities previously reported for similar systems are shown to be in error due to an inconsistent data analysis. In conclusion, control experiments replacing either 1(T) by its structural isomer withmore » a sterically screened nitrogen site or phenol by its H-bonding surrogate, trifluoroethanol, and the observation of negative activation enthalpies for the overall reactions between 1(T) and phenols lend support to the proposed model and provide evidence for the formation of a precursor H-bonded complex between the reactants, which is a prerequisite for EPT.« less

  7. Role of Hydrogen Bonding in Photoinduced Electron-Proton Transfer from Phenols to a Polypyridine Ru Complex with a Proton-Accepting Ligand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lymar, Sergei V.; Ertem, Mehmed Z.; Lewandowska-Andralojc, Anna

    Electron-proton transfer, EPT, from phenols to a triplet MLCT-excited Ru polypyridine complex containing an uncoordinated nitrogen site, 1(T), can be described by a kinetic model that accounts for the H-bonding of 1(T) to phenol, 1(T) to solvent, and phenol to solvent. The latter plays a major role in the kinetic solvent effect and commonly precludes simultaneous determination of the EPT rate constant and 1(T)-phenol H-bonding constant. A number of these quantities previously reported for similar systems are shown to be in error due to an inconsistent data analysis. In conclusion, control experiments replacing either 1(T) by its structural isomer withmore » a sterically screened nitrogen site or phenol by its H-bonding surrogate, trifluoroethanol, and the observation of negative activation enthalpies for the overall reactions between 1(T) and phenols lend support to the proposed model and provide evidence for the formation of a precursor H-bonded complex between the reactants, which is a prerequisite for EPT.« less

  8. Theoretical study on complexation of the perchlorate, permanganate, pertechnate and perrhenate anions with dodecabenzylbambus[6]uril

    NASA Astrophysics Data System (ADS)

    Böhm, Stanislav; Makrlík, Emanuel; Vaňura, Petr

    2017-07-01

    By using quantum chemical calculations, the most probable structures of the anionic complex species dodecabenzylbambus[6]uril-ClO4-, dodecabenzylbambus[6]uril-MnO4-, dodecabenzylbambus[6]uril-TcO4- and dodecabenzylbambus[6]uril-ReO4- were derived. In these four complexes, each of the considered anions, included in the macrocyclic cavity, is bound by 12 weak hydrogen bonds between methine hydrogen atoms on the convex face of glycoluril units and the respective anion. Further, the corresponding interaction energies of the investigated four anionic complexes were calculated; the absolute values of these calculated energies increase in the series of ReO4- < TcO4- < MnO4- < ClO4-.

  9. Effect of Methyl Substitution on the N-H···O Interaction in Complexes of Pyrrole with Water, Methanol, and Dimethyl Ether: Matrix Isolation Infrared Spectroscopy and ab Initio Computational Studies.

    PubMed

    Sarkar, Shubhra; Ramanathan, N; Sundararajan, K

    2018-03-08

    Hydrogen-bonded interactions of pyrrole with water and methanol have been studied using matrix isolation infrared spectroscopy and compared with the calculation performed on dimethyl ether. Computations carried out at MP2/aug-cc-pVDZ level of theory yielded two minima for the pyrrole-water and pyrrole-methanol complexes. The global and local minima correspond to the N-H···O and O-H···π complexes, respectively, where the N-H group of pyrrole interacts with oxygen of water/methanol and O-H of water and methanol interacts with the π cloud of pyrrole. Computations performed on the pyrrole-dimethyl ether gave only N-H···O type complex. From the experimental vibrational wavenumber shifts in the N-H stretching and N-H bending modes of pyrrole, as well as in the O-H stretching modes of water and methanol, the 1:1 N-H···O complexes were discerned. The strength of the N-H···O hydrogen bond and the corresponding shift in the N-H stretching vibrational wavenumbers increases in the order pyrrole-water < pyrrole-methanol < pyrrole-dimethyl ether, where a proton is successively replaced by a methyl group. Apart from the 1:1 complexes, higher clusters of 2:1 and 1:2 pyrrole-water and pyrrole-methanol complexes were also generated in N 2 matrix. Atoms in molecules and natural bond orbital analyses were carried out at the MP2/aug-cc-pVDZ level to understand the nature of interaction in the 1:1 pyrrole-water, pyrrole-methanol and pyrrole-dimethyl ether complexes.

  10. Hydrogen-bond coordination in organic crystal structures: statistics, predictions and applications.

    PubMed

    Galek, Peter T A; Chisholm, James A; Pidcock, Elna; Wood, Peter A

    2014-02-01

    Statistical models to predict the number of hydrogen bonds that might be formed by any donor or acceptor atom in a crystal structure have been derived using organic structures in the Cambridge Structural Database. This hydrogen-bond coordination behaviour has been uniquely defined for more than 70 unique atom types, and has led to the development of a methodology to construct hypothetical hydrogen-bond arrangements. Comparing the constructed hydrogen-bond arrangements with known crystal structures shows promise in the assessment of structural stability, and some initial examples of industrially relevant polymorphs, co-crystals and hydrates are described.

  11. Origin of the X-Hal (Hal = Cl, Br) bond-length change in the halogen-bonded complexes.

    PubMed

    Wang, Weizhou; Hobza, Pavel

    2008-05-01

    The origin of the X-Hal bond-length change in the halogen bond of the X-Hal...Y type has been investigated at the MP2(full)/6-311++G(d,p) level of theory using a natural bond orbital analysis, atoms in molecules procedure, and electrostatic potential fitting methods. Our results have clearly shown that various theories explaining the nature of the hydrogen bond cannot be applied to explain the origin of the X-Hal bond-length change in the halogen bond. We provide a new explanation for this change. The elongation of the X-Hal bond length is caused by the electron-density transfer to the X-Hal sigma* antibonding orbital. For the blue-shifting halogen bond, the electron-density transfer to the X-Hal sigma* antibonding orbital is only of minor importance; it is the electrostatic attractive interaction that causes the X-Hal bond contraction.

  12. Computational Design of Cobalt Catalysts for Hydrogenation of Carbon Dioxide and Dehydrogenation of Formic Acid.

    PubMed

    Ge, Hongyu; Jing, Yuanyuan; Yang, Xinzheng

    2016-12-05

    A series of cobalt complexes with acylmethylpyridinol and aliphatic PNP pincer ligands are proposed based on the active site structure of [Fe]-hydrogenase. Density functional theory calculations indicate that the total free energy barriers of the hydrogenation of CO 2 and dehydrogenation of formic acid catalyzed by these Co complexes are as low as 23.1 kcal/mol in water. The acylmethylpyridinol ligand plays a significant role in the cleavage of H 2 by forming a strong Co-H δ- ···H δ+ -O dihydrogen bond in a fashion of frustrated Lewis pairs.

  13. A new family of metal borohydride guanidinate complexes: Synthesis, structures and hydrogen-storage properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Hui, E-mail: huiwu@nist.gov; Zhou, Xiuquan; Rodriguez, Efrain E.

    We report on a new class of complex hydrides: borohydride guanidinate complexes (MBH{sub 4}·nCN{sub 3}H{sub 5}, M=Li, Mg, and Ca). They can be prepared via facile solid-state synthesis routes. Their crystal structures were successfully determined using a combination of X-ray diffraction, first-principles calculations and neutron vibrational spectroscopy. Among these compounds, Mg(BH{sub 4}){sub 2}·6CN{sub 3}H{sub 5} is composed of large complex Mg[CN{sub 3}H{sub 5}]{sub 6}{sup 2+} cations and surrounding BH{sub 4}{sup -} ions, while Ca(BH{sub 4}){sub 2}·2CN{sub 3}H{sub 5} possesses layers of corner-sharing Ca[BH{sub 4}]{sub 4}(CN{sub 3}H{sub 5}){sub 2} octahedra. Our dehydrogenation results show that ≈10 wt% hydrogen can be releasedmore » from MBH{sub 4}·nCN{sub 3}H{sub 5} (M=Li, Mg, and Ca) at moderate temperatures with minimal ammonia and diborane contamination thanks to the synergistic effect of C-N bonds from guanidine and hydridic H from borohydrides leading to a weakening of the N-H bonds, thus impeding ammonia gas liberation. Further tuning the dehydrogenation with different cation species indicates that Mg(BH{sub 4}){sub 2}·nCN{sub 3}H{sub 5} can exhibit the optimum properties with nearly thermally neutral dehydrogenation and very high purity hydrogen release. - Graphical abstract: A new family of complex hydrides: borohydride guanidinates, was developed with diverse crystal structures and remarkable hydrogen storage properties. - Highlights: • A new family of complex hydrides, borohydride guanidinate complexes, are synthesized. • Their diverse crystal structures are determined using combined characterizations. • These compounds can release ~10 wt% pure H{sub 2} at moderate temperatures. • Dehydrogenation thermodynamics and H{sub 2} purity can be tuned by varying cation species.« less

  14. Steric and Electronic Effects of Bidentate Phosphine Ligands on Ruthenium(II)-Catalyzed Hydrogenation of Carbon Dioxide.

    PubMed

    Zhang, Pan; Ni, Shao-Fei; Dang, Li

    2016-09-20

    The reactivity difference between the hydrogenation of CO2 catalyzed by various ruthenium bidentate phosphine complexes was explored by DFT. In addition to the ligand dmpe (Me2 PCH2 CH2 PMe2 ), which was studied experimentally previously, a more bulky diphosphine ligand, dmpp (Me2 PCH2 CH2 CH2 PMe2 ), together with a more electron-withdrawing diphosphine ligand, PN(Me) P (Me2 PCH2 N(Me) CH2 PMe2 ), have been studied theoretically to analyze the steric and electronic effects on these catalyzed reactions. Results show that all of the most favorable pathways for the hydrogenation of CO2 catalyzed by bidentate phosphine ruthenium dihydride complexes undergo three major steps: cis-trans isomerization of ruthenium dihydride complex, CO2 insertion into the Ru-H bond, and H2 insertion into the ruthenium formate ion. Of these steps, CO2 insertion into the Ru-H bond has the lowest barrier compared with the other two steps in each preferred pathway. For the hydrogenation of CO2 catalyzed by ruthenium complexes of dmpe and dmpp, cis-trans isomerization of ruthenium dihydride complex has a similar barrier to that of H2 insertion into the ruthenium formate ion. However, in the reaction catalyzed by the PN(Me) PRu complex, cis-trans isomerization of the ruthenium dihydride complex has a lower barrier than H2 insertion into the ruthenium formate ion. These results suggest that the steric effect caused by the change of the outer sphere of the diphosphine ligand on the reaction is not clear, although the electronic effect is significant to cis-trans isomerization and H2 insertion. This finding refreshes understanding of the mechanism and provides necessary insights for ligand design in transition-metal-catalyzed CO2 transformation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  15. Polymer films

    DOEpatents

    Granick, Steve; Sukhishvili, Svetlana A.

    2004-05-25

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  16. Polymer films

    DOEpatents

    Granick, Steve [Champaign, IL; Sukhishvili, Svetlana A [Maplewood, NJ

    2008-12-30

    A film contains a first polymer having a plurality of hydrogen bond donating moieties, and a second polymer having a plurality of hydrogen bond accepting moieties. The second polymer is hydrogen bonded to the first polymer.

  17. Chemical origin of blue- and redshifted hydrogen bonds: intramolecular hyperconjugation and its coupling with intermolecular hyperconjugation.

    PubMed

    Li, An Yong

    2007-04-21

    Upon formation of a H bond Y...H-XZ, intramolecular hyperconjugation n(Z)-->sigma*(X-H) of the proton donor plays a key role in red- and blueshift characters of H bonds and must be introduced in the concepts of hyperconjugation and rehybridization. Intermolecular hyperconjugation transfers electron density from Y to sigma*(X-H) and causes elongation and stretch frequency redshift of the X-H bond; intramolecular hyperconjugation couples with intermolecular hyperconjugation and can adjust electron density in sigma*(X-H); rehybridization causes contraction and stretch frequency blueshift of the X-H bond on complexation. The three factors--intra- and intermolecular hyperconjugations and rehybridization--determine commonly red- or blueshift of the formed H bond. A proton donor that has strong intramolecular hyperconjugation often forms blueshifted H bonds.

  18. Carbon–hydrogen (C–H) bond activation at PdIV: a Frontier in C–H functionalization catalysis

    PubMed Central

    Topczewski, Joseph J.

    2015-01-01

    The direct functionalization of carbon–hydrogen (C–H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C–H bond activation, catalytic processes that utilize a PdII/PdIV redox cycle are increasingly common. The C–H activation step in most of these catalytic cycles is thought to occur at a PdII centre. However, a number of recent reports have suggested the feasibility of C–H cleavage occurring at PdIV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at PdII. This mini review highlights proposed examples of C–H activation at PdIV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed. PMID:25544882

  19. Carbon-Hydrogen (C-H) Bond Activation at PdIV: A Frontier in C-H Functionalization Catalysis.

    PubMed

    Topczewski, Joseph J; Sanford, Melanie S

    2015-01-01

    The direct functionalization of carbon-hydrogen (C-H) bonds has emerged as a versatile strategy for the synthesis and derivatization of organic molecules. Among the methods for C-H bond activation, catalytic processes that utilize a Pd II /Pd IV redox cycle are increasingly common. The C-H activation step in most of these catalytic cycles is thought to occur at a Pd II centre. However, a number of recent reports have suggested the feasibility of C-H cleavage occurring at Pd IV complexes. Importantly, these latter processes often result in complementary reactivity and selectivity relative to analogous transformations at Pd II . This Mini Review highlights proposed examples of C-H activation at Pd IV centres. Applications of this transformation in catalysis as well as mechanistic details obtained from stoichiometric model studies are discussed. Furthermore, challenges and future perspectives for the field are reviewed.

  20. Noncovalent Organocatalysis Based on Hydrogen Bonding: Elucidation of Reaction Paths by Computational Methods

    NASA Astrophysics Data System (ADS)

    Etzenbach-Effers, Kerstin; Berkessel, Albrecht

    In this article, the functions of hydrogen bonds in organocatalytic reactions are discussed on atomic level by presenting DFT studies of selected examples. Theoretical investigation provides a detailed insight in the mechanism of substrate activation and orientation, and the stabilization of transition states and intermediates by hydrogen bonding (e.g. oxyanion hole). The examples selected comprise stereoselective catalysis by bifunctional thioureas, solvent catalysis by fluorinated alcohols in epoxidation by hydrogen peroxide, and intramolecular cooperative hydrogen bonding in TADDOL-type catalysts.

  1. Quantum chemical density functional theory studies on the molecular structure and vibrational spectra of Gallic acid imprinted polymers

    NASA Astrophysics Data System (ADS)

    Pardeshi, Sushma; Dhodapkar, Rita; Kumar, Anupama

    2013-12-01

    Gallic acid (GA) is known by its antioxidant, anticarcinogenic properties and scavenger activity against several types of harmful free radicals. Molecularly imprinted polymers (MIPs) are used in separation of a pure compound from complex matrices. A stable template-monomer complex generates the MIPs with the highest affinity and selectivity for the template. The quantum chemical computations based on density functional theory (DFT) was used on the template Gallic acid (GA), monomer acrylic acid (AA) and GA-AA complex to study the nature of interactions involved in the GA-AA complex. B3LYP/6-31+G(2d,2p) model chemistry was used to optimize their structures and frequency calculations. The effect of porogen acetonitrile (ACN) on complex formation was included by using polarizable continuum model (PCM). The results demonstrated the formation of a stable GA-AA complex through the intermolecular hydrogen bonding between carboxylic acid groups of GA and AA. The Mulliken atomic charge analysis and simulated vibrational spectra also supported the stable hydrogen bonding interaction between the carboxylic acid groups of GA and AA with minimal interference of porogen ACN. Further, simulations on GA-AA mole ratio revealed that 1:4 GA-AA was optimum for synthesis of MIP for GA.

  2. The study of interaction between PFOA/PFOS and uracil by topology quality and spectroscopic analysis

    NASA Astrophysics Data System (ADS)

    Xu, Hui-Ying; Zhu, Jian-Qing; Wang, Wei; Xu, Xiao-Lu; Lu, Yin

    2014-02-01

    It has been established that perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS) can be considered as emerging persistent organic pollutants. In recent years, there was increasing distribution of PFOA/PFOS in environmental systems, and accumulation and toxic effects of PFOA/PFOS in human body. In this paper, quantum chemistry methods were employed to study the interaction between perfluorinated organic pollutants and base (uracil). The results showed that there were four stable binding modes between the two perfluorinated compounds with uracil, especially the second mode which caused the most detrimental physiological functional response. NBO analysis showed that reactive hydrogen in the two perfluorinated compounds had the greatest effect on the hydrogen bond. The nature of the hydrogen bond formed between the two perfluorinated compounds and base was investigated using the AIM theory. The changes of spectroscopic properties in complexes were analyzed by IR and NMR spectra.

  3. Palladium-Catalyzed Carbon-Fluorine and Carbon-Hydrogen Bond Alumination of Fluoroarenes and Heteroarenes.

    PubMed

    Chen, Wenyi; Hooper, Thomas N; Ng, Jamues; White, Andrew J P; Crimmin, Mark R

    2017-10-02

    Through serendipitous discovery, a palladium bis(phosphine) complex was identified as a catalyst for the selective transformation of sp 2 C-F and sp 2 C-H bonds of fluoroarenes and heteroarenes to sp 2 C-Al bonds (19 examples, 1 mol % Pd loading). The carbon-fluorine bond functionalization reaction is highly selective for the formation of organoaluminium products in preference to hydrodefluorination products (selectivity=4.4:1 to 27:1). Evidence is presented for a tandem catalytic process in which hydrodefluorination is followed by sp 2 C-H alumination. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. Molecular mechanism of gelation upon the addition of water to a solution of poly(acrylonitrile) in dimethylsulfoxide

    NASA Astrophysics Data System (ADS)

    Vettegren, V. I.; Kulik, V. B.; Savitskii, A. V.; Fetisov, O. I.; Usov, V. V.

    2010-05-01

    The solidification of a solution of poly(acrylonitrile) (PAN) in dimethylsulfoxide (DMSO) upon introduction of water into the solution is studied by Raman spectroscopy. In the absence of water, DMSO molecules are found to produce dipole-dipole bonds with PAN molecules. Upon the introduction of water, DMSO molecules produce hydrogen bonds with it and bands at 1005 and 1015 cm-1 appear in the Raman spectrum, which are assigned to the valence vibrations of S=O bonds involved in the hydrogen bonds. Simultaneously, water molecules produce hydrogen bonds with PAN molecules: R-C≡N...H-O-H...N≡C-R, where R is the carbon skeleton of a PAN molecule. Accordingly, a band at 2250 cm-1 arises in the Raman spectrum, which is assigned to the valence vibrations of C≡N bonds producing hydrogen bonds with a water molecule. When the water content is low and the DMSO concentration is high, the length of the hydrogen bonds varies in wide limits and the band at 2250 cm-1 is wide. As the water content rises, DMSO molecules come out of PAN, the variation of the hydrogen bond length in it decreases (the band at 2250 cm-1 narrows), and a high-viscosity system (gel) arises that consists of PAN molecules bonded to water molecules via “equally strong” hydrogen bonds.

  5. The dynamics of solvation dictates the conformation of polyethylene oxide in aqueous, isobutyric acid and binary solutions.

    PubMed

    Dahal, Udaya R; Dormidontova, Elena E

    2017-04-12

    Polymers hydrogen-bonding with solvent represent an important broad class of polymers, properties of which depend on solvation. Using atomistic molecular dynamics simulations with the OPLS/AA force field we investigate the effect of hydrogen bonding on PEO conformation and chain mobility by comparing its behavior in isobutyric acid and aqueous solutions. In agreement with experimental data, we found that in isobutyric acid PEO forms a rather rigid extended helical structure, while in water it assumes a highly flexible coil conformation. We show that the difference in PEO conformation and flexibility is the result of the hydrogen bond stability and overall solvent dynamics near PEO. Isobutyric acid forms up to one hydrogen bond per repeat unit of PEO and interacts with PEO for a prolonged period of time, thereby stabilizing the helical structure of the polymer and reducing its segmental mobility. In contrast, water forms on average 1.2 hydrogen bonds per repeat unit of PEO (with 60% of water forming a single hydrogen bond and 40% of water forming two hydrogen bonds) and resides near PEO for a noticeably shorter time than isobutyric acid, leading to the well-documented high segmental mobility of PEO in water. We also analyze PEO conformation, hydrogen bonding and segmental mobility in binary water/isobutyric acid solutions and find that in the phase separated region PEO resides in the isobutyric-rich phase forming about 25% of its hydrogen bonds with isobutyric acid and 75% with water. We show that the dynamics of solvation affects the equilibrium properties of macromolecules, such as conformation, and by mixing of hydrogen bond-donating solvents one can significantly alter both polymer conformation and its local dynamics.

  6. [Spectroscopic Study of Salbutamol Molecularly Imprinted Polymers].

    PubMed

    Ren, Hui-peng; Guan, Yu-yu; Dai, Rong-hua; Liu, Guo-yan; Chai, Chun-yan

    2016-02-01

    In order to solve the problem of on-site rapid detection of salbutamol residues in feed and animal products, and develop a new method of fast detection of salbutamol on the basis of the molecular imprinting technology, this article uses the salbutamol (SAL) working as template molecule, methacrylic acid (MAA) working as functional monomer. On this basis, a new type of core-shell type salbutamol molecularly imprinted polymers were prepared with colloidal gold particles as triggering core. Superficial characteristics of the MIPs and the related compounds were investigated by ultraviolet (UV) spectra and infrared (IR) spectra, Raman spectra, Scanning electron microscopy (SEM) respectively. The results indicated that a stable hydrogen bonding complex has been formed between the carboxyl groups of SAL and MA with a matching ratio of 1:1. The complex can be easily eluted by the reagent containing hydrogen bonding. The chemical binding constant K reaches -0.245 x 10⁶ L² · mol⁻². The possible binding sites of the hydrogen bonding was formed between the hydrogen atoms of -COOH in MA and the oxygen atoms of C==O in SAL. IR and Raman spectrum showed that, compared with MA, a significant red shift of -OH absorption peak was manifested in MIPs, which proved that SAL as template molecule occurred a specific bond between MA. Red shift of stretching vibration absorption peak of C==O was also detected in the un-eluted MIPs and obvious energy loss happened, which demonstrated a possible binding sites is SAL intramolecular of C==O atom of oxygen. If the hydrogen atoms of -COOH in MA wanted to generate hydrogen bond. However, the shapes of absorption peak of other functional groups including C==C, C==O, and -OH were very similar both in MIPs and NIPs. Specific cavities were formed after the template molecules in MIPs were removed. It was proved by the adsorption experiment that the specific sites in these cavities highly match with the chemical and space structure of SAL. Besides, colloidal gold type core-shell molecularly imprinted polymers have looser surface, more cavities in the surface compared with ordinary molecularly imprinted polymers, which increased the effective area of adsorption to target molecules. So it have better performance in adsorption. Based on the principle that these cavities can specificly recognize and combine with target molecule in the test sample, and the excellent ability of colloidal gold core-shell molecularly imprinted polymers, the development of novel methods for fast determination of SAL based on the molecular imprinting technology can be expected in the near future.

  7. Predictions of glass transition temperature for hydrogen bonding biomaterials.

    PubMed

    van der Sman, R G M

    2013-12-19

    We show that the glass transition of a multitude of mixtures containing hydrogen bonding materials correlates strongly with the effective number of hydroxyl groups per molecule, which are available for intermolecular hydrogen bonding. This correlation is in compliance with the topological constraint theory, wherein the intermolecular hydrogen bonds constrain the mobility of the hydrogen bonded network. The finding that the glass transition relates to hydrogen bonding rather than free volume agrees with our recent finding that there is little difference in free volume among carbohydrates and polysaccharides. For binary and ternary mixtures of sugars, polyols, or biopolymers with water, our correlation states that the glass transition temperature is linear with the inverse of the number of effective hydroxyl groups per molecule. Only for dry biopolymer/sugar or sugar/polyol mixtures do we find deviations due to nonideal mixing, imposed by microheterogeneity.

  8. Frequent side chain methyl carbon-oxygen hydrogen bonding in proteins revealed by computational and stereochemical analysis of neutron structures.

    PubMed

    Yesselman, Joseph D; Horowitz, Scott; Brooks, Charles L; Trievel, Raymond C

    2015-03-01

    The propensity of backbone Cα atoms to engage in carbon-oxygen (CH · · · O) hydrogen bonding is well-appreciated in protein structure, but side chain CH · · · O hydrogen bonding remains largely uncharacterized. The extent to which side chain methyl groups in proteins participate in CH · · · O hydrogen bonding is examined through a survey of neutron crystal structures, quantum chemistry calculations, and molecular dynamics simulations. Using these approaches, methyl groups were observed to form stabilizing CH · · · O hydrogen bonds within protein structure that are maintained through protein dynamics and participate in correlated motion. Collectively, these findings illustrate that side chain methyl CH · · · O hydrogen bonding contributes to the energetics of protein structure and folding. © 2014 Wiley Periodicals, Inc.

  9. Binding of oxytocin and 8-arginine-vasopressin to neurophysin studied by /sup 15/N NMR using magnetization transfer and indirect detection via protons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Live, D.H.; Cowburn, D.

    1987-10-06

    NMR was used to monitor the binding to neurophysin of oxytocin and 8-arginine-vasopressin, /sup 15/N labeling being used to identify specific backbone /sup 15/N and /sup 1/H signals. The most significant effects of binding were large downfield shifts in the amino nitrogen resonance of Phe-3 of vasopressin and in its associated proton, providing evidence that the peptide bond between residues 2 and 3 of the hormones is hydrogen-bonded to the protein within hormone-neurophysin complexes. Suggestive evidence for hydrogen bonding of the amino nitrogen of Tyr-2 was also obtained in the form of decreased proton exchange rates on binding; however, themore » chemical shift changes of this nitrogen and its associated proton indicated that such hydrogen bonding, if present, is probably weak. Shifts in the amino nitrogen of Asn-5 and in the -NH protons of both Asn-5 and Cys-6 demonstrated that these residues are significantly perturbed by binding, suggesting conformational changes of the ring on binding and/or the presence of binding sites on the hormone outside the 1-3 region. No support was obtained for the thesis that there is a significant second binding site for vasopressin on each neutrophysin chain. The behavior of both oxytocin and vasopressin on binding was consistent with formation of 1:1 complexes in slow exchange with the free state under most pH conditions. At low pH there was evidence of an increased exchange rate. Additionally, broadening of /sup 15/N resonances in the bound state at low pH occurred without a corresponding change in the resonances of equilibrating free hormone. The results suggest significant conformational alteration in neurophysin-hormone complexes at low pH possibly associated with protonation of the carboxyl group of the hormone-protein salt bridge.« less

  10. Potential State-selective Hydrogen Bond Formation Can Modulate Activation and Desensitization of the α7 Nicotinic Acetylcholine Receptor*

    PubMed Central

    Wang, Jingyi; Papke, Roger L.; Stokes, Clare; Horenstein, Nicole A.

    2012-01-01

    A series of arylidene anabaseines were synthesized to probe the functional impact of hydrogen bonding on human α7 nicotinic acetylcholine receptor (nAChR) activation and desensitization. The aryl groups were either hydrogen bond acceptors (furans), donors (pyrroles), or neither (thiophenes). These compounds were tested against a series of point mutants of the ligand-binding domain residue Gln-57, a residue hypothesized to be proximate to the aryl group of the bound agonist and a putative hydrogen bonding partner. Q57K, Q57D, Q57E, and Q57L were chosen to remove the dual hydrogen bonding donor/acceptor ability of Gln-57 and replace it with hydrogen bond donating, hydrogen bond accepting, or nonhydrogen bonding ability. Activation of the receptor was compromised with hydrogen bonding mismatches, for example, pairing a pyrrole with Q57K or Q57L, or a furan anabaseine with Q57D or Q57E. Ligand co-applications with the positive allosteric modulator PNU-120596 produced significantly enhanced currents whose degree of enhancement was greater for 2-furans or -pyrroles than for their 3-substituted isomers, whereas the nonhydrogen bonding thiophenes failed to show this correlation. Interestingly, the PNU-120596 agonist co-application data revealed that for wild-type α7 nAChR, the 3-furan desensitized state was relatively stabilized compared with that of 2-furan, a reversal of the relationship observed with respect to the barrier for entry into the desensitized state. These data highlight the importance of hydrogen bonding on the receptor-ligand state, and suggest that it may be possible to fine-tune features of agonists that mediate state selection in the nAChR. PMID:22556416

  11. NMR experiments for the rapid identification of P=O···H-X type hydrogen bonds in nucleic acids.

    PubMed

    Duchardt-Ferner, Elke; Wöhnert, Jens

    2017-10-01

    Hydrogen bonds involving the backbone phosphate groups occur with high frequency in functional RNA molecules. They are often found in well-characterized tertiary structural motifs presenting powerful probes for the rapid identification of these motifs for structure elucidation purposes. We have shown recently that stable hydrogen bonds to the phosphate backbone can in principle be detected by relatively simple NMR-experiments, providing the identity of both the donor hydrogen and the acceptor phosphorous within the same experiment (Duchardt-Ferner et al., Angew Chem Int Ed Engl 50:7927-7930, 2011). However, for imino and hydroxyl hydrogen bond donor groups rapidly exchanging with the solvent as well as amino groups broadened by conformational exchange experimental sensitivity is severely hampered by extensive line broadening. Here, we present improved methods for the rapid identification of hydrogen bonds to phosphate groups in nucleic acids by NMR. The introduction of the SOFAST technique into 1 H, 31 P-correlation experiments as well as a BEST-HNP experiment exploiting 3h J N,P rather than 2h J H,P coupling constants enables the rapid and sensitive identification of these hydrogen bonds in RNA. The experiments are applicable for larger RNAs (up to ~ 100-nt), for donor groups influenced by conformational exchange processes such as amino groups and for hydrogen bonds with rather labile hydrogens such as 2'-OH groups as well as for moderate sample concentrations. Interestingly, the size of the through-hydrogen bond scalar coupling constants depends not only on the type of the donor group but also on the structural context. The largest coupling constants were measured for hydrogen bonds involving the imino groups of protonated cytosine nucleotides as donors.

  12. Infrared study of matrix-isolated ethyl cyanide: simulation of the photochemistry in the atmosphere of Titan.

    PubMed

    Toumi, A; Piétri, N; Couturier-Tamburelli, I

    2015-11-11

    Low-temperature Ar matrix isolation has been carried out to investigate the infrared spectrum of ethyl cyanide (CH3CH2CN), a molecule present in the atmosphere of Titan. The λ > 120 nm and λ > 230 nm photolysis reactions of ethyl cyanide in an Ar matrix were also performed in order to compare the behaviour of this compound when it is submitted to high and low energetic radiations. These different wavelengths have been used with the aim to reproduce the radiation reaching the various parts of the atmosphere. Several photoproducts have been identified during photolysis such as vinyl cyanide (CH2[double bond, length as m-dash]CHCN), cyanoacetylene (HC3N), and ethylene/hydrogen cyanide (C2H4/HCN), ethylene/hydrogen isocyanide (C2H4/HNC), acetylene/hydrogen cyanide (C2H2/HCN), acetylene/hydrogen isocyanide (C2H2/HNC), and acetylene:methylenimine (C2H2:HNCH2) complexes. Ethyl isocyanide (CH3CH2NC) and a ketenimine form (CH3CH[double bond, length as m-dash]C[double bond, length as m-dash]NH) have been identified as well. Photoproduct identification and spectral assignments were done using previous studies and density functional theory (DFT) calculations with the B3LYP/cc-pVTZ basis set.

  13. Structural insights into the interactions of phorbol ester and bryostatin complexed with protein kinase C: a comparative molecular dynamics simulation study.

    PubMed

    Thangsunan, Patcharapong; Tateing, Suriya; Hannongbua, Supa; Suree, Nuttee

    2016-07-01

    Protein kinase C (PKC) isozymes are important regulatory enzymes that have been implicated in many diseases, including cancer, Alzheimer's disease, and in the eradication of HIV/AIDS. Given their potential clinical ramifications, PKC modulators, e.g. phorbol esters and bryostatin, are also of great interest in the drug development. However, structural details on the binding between PKC and its modulators, especially bryostatin - the highly potent and non-tumor promoting activator for PKCs, are still lacking. Here, we report the first comparative molecular dynamics study aimed at gaining structural insight into the mechanisms by which the PKC delta cys2 activator domain is used in its binding to phorbol ester and bryostatin-1. As anticipated in the phorbol ester binding, hydrogen bonds are formed through the backbone atoms of Thr242, Leu251, and Gly253 of PKC. However, the opposition of H-bond formation between Thr242 and Gly253 may cause the phorbol ester complex to become less stable when compared with the bryostatin binding. For the PKC delta-bryostatin complex, hydrogen bonds are formed between the Gly253 backbone carbonyl and the C30 carbomethoxy substituent of the ligand. Additionally, the indole Nε1 of the highly homologous Trp252 also forms an H-bond to the C20 ester group on bryostatin. Backbone fluctuations also suggest that this latter H-bond formation may abrogate the transient interaction between Trp252 and His269, thus dampening the fluctuations observed on the nearby Zn(2+)-coordinating residues. This new dynamic fluctuation dampening model can potentially benefit future design of new PKC modulators.

  14. Collective dynamic dipole moment and orientation fluctuations, cooperative hydrogen bond relaxations, and their connections to dielectric relaxation in ionic acetamide deep eutectics: Microscopic insight from simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Das, Suman; Biswas, Ranjit, E-mail: ranjit@bose.res.in, E-mail: biswaroop.mukherjee@gmail.com; Thematic Unit for Excellence – Computational Materials Science, S. N. Bose National Centre for Basic Sciences, Block-JD, Sector-III, Salt Lake, Kolkata 700098

    The paper reports a detailed simulation study on collective reorientational relaxation, cooperative hydrogen bond (H-bond) fluctuations, and their connections to dielectric relaxation (DR) in deep eutectic solvents made of acetamide and three uni-univalent electrolytes, lithium nitrate (LiNO{sub 3}), lithium bromide (LiBr), and lithium perchlorate (LiClO{sub 4}). Because cooperative H-bond fluctuations and ion migration complicate the straightforward interpretation of measured DR timescales in terms of molecular dipolar rotations for these conducting media which support extensive intra- and inter-species H-bonding, one needs to separate out the individual components from the overall relaxation for examining the microscopic origin of various timescales. The presentmore » study does so and finds that reorientation of ion-complexed acetamide molecules generates relaxation timescales that are in sub-nanosecond to nanosecond range. This explains in molecular terms the nanosecond timescales reported by recent giga-Hertz DR measurements. Interestingly, the simulated survival timescale for the acetamide-Li{sup +} complex has been found to be a few tens of nanosecond, suggesting such a cation-complexed species may be responsible for a similar timescale reported by mega-Hertz DR measurements of acetamide/potassium thiocyanate deep eutectics near room temperature. The issue of collective versus single particle relaxation is discussed, and jump waiting time distributions are determined. Dependence on anion-identity in each of the cases has been examined. In short, the present study demonstrates that assumption of nano-sized domain formation is not required for explaining the DR detected nanosecond and longer timescales in these media.« less

  15. Activation of carbon-hydrogen bonds via 1,2-addition across M-X (X = OH or NH(2)) bonds of d(6) transition metals as a potential key step in hydrocarbon functionalization: a computational study.

    PubMed

    Cundari, Thomas R; Grimes, Thomas V; Gunnoe, T Brent

    2007-10-31

    Recent reports of 1,2-addition of C-H bonds across Ru-X (X = amido, hydroxo) bonds of TpRu(PMe3)X fragments {Tp = hydridotris(pyrazolyl)borate} suggest opportunities for the development of new catalytic cycles for hydrocarbon functionalization. In order to enhance understanding of these transformations, computational examinations of the efficacy of model d6 transition metal complexes of the form [(Tab)M(PH3)2X]q (Tab = tris-azo-borate; X = OH, NH2; q = -1 to +2; M = TcI, Re(I), Ru(II), Co(III), Ir(III), Ni(IV), Pt(IV)) for the activation of benzene C-H bonds, as well as the potential for their incorporation into catalytic functionalization cycles, are presented. For the benzene C-H activation reaction steps, kite-shaped transition states were located and found to have relatively little metal-hydrogen interaction. The C-H activation process is best described as a metal-mediated proton transfer in which the metal center and ligand X function as an activating electrophile and intramolecular base, respectively. While the metal plays a primary role in controlling the kinetics and thermodynamics of the reaction coordinate for C-H activation/functionalization, the ligand X also influences the energetics. On the basis of three thermodynamic criteria characterizing salient energetic aspects of the proposed catalytic cycle and the detailed computational studies reported herein, late transition metal complexes (e.g., Pt, Co, etc.) in the d6 electron configuration {especially the TabCo(PH3)2(OH)+ complex and related Co(III) systems} are predicted to be the most promising for further catalyst investigation.

  16. Modeling interactions between a β-O-4 type lignin model compound and 1-allyl-3-methylimidazolium chloride ionic liquid.

    PubMed

    Zhu, Youtao; Yan, Jing; Liu, Chengbu; Zhang, Dongju

    2017-08-01

    Aiming at understanding the molecular mechanism of the lignin dissolution in imidazolium-based ionic liquids (ILs), this work presents a combined quantum chemistry (QC) calculation and molecular dynamics (MD) simulation study on the interaction of the lignin model compound, veratrylglycerol-β-guaiacyl ether (VG) with 1-allyl-3-methylimidazolium chloride ([Amim]Cl). The monomer of VG is shown to feature a strong intramolecular hydrogen bond, and its dimer is indicated to present important π-π stacking and intermolecular hydrogen bonding interactions. The interactions of both the cation and anion of [Amim]Cl with VG are shown to be stronger than that between the two monomers, indicating that [Amim]Cl is capable of dissolving lignin. While Cl - anion forms a hydrogen-bonded complex with VG, the imidazolium cation interacts with VG via both the π-π stacking and intermolecular hydrogen bonding. The calculated interaction energies between VG and the IL or its components (the cation, anion, and ion pair) indicate the anion plays a more important role than the cation for the dissolution of lignin in the IL. Theoretical results provide help for understanding the molecular mechanism of lignin dissolution in imidazolium-based IL. The theoretical calculations on the interaction between the lignin model compound and [Amim]Cl ionic liquid indicate that the anion of [Amim]Cl plays a more important role for lignin dissolution although the cation also makes a substantial contribution. © 2017 Wiley Periodicals, Inc.

  17. On the correlation between hydrogen bonding and melting points in the inositols

    PubMed Central

    Bekö, Sándor L.; Alig, Edith; Schmidt, Martin U.; van de Streek, Jacco

    2014-01-01

    Inositol, 1,2,3,4,5,6-hexahydroxycyclohexane, exists in nine stereoisomers with different crystal structures and melting points. In a previous paper on the relationship between the melting points of the inositols and the hydrogen-bonding patterns in their crystal structures [Simperler et al. (2006 ▶). CrystEngComm 8, 589], it was noted that although all inositol crystal structures known at that time contained 12 hydrogen bonds per molecule, their melting points span a large range of about 170 °C. Our preliminary investigations suggested that the highest melting point must be corrected for the effect of molecular symmetry, and that the three lowest melting points may need to be revised. This prompted a full investigation, with additional experiments on six of the nine inositols. Thirteen new phases were discovered; for all of these their crystal structures were examined. The crystal structures of eight ordered phases could be determined, of which seven were obtained from laboratory X-ray powder diffraction data. Five additional phases turned out to be rotator phases and only their unit cells could be determined. Two previously unknown melting points were measured, as well as most enthalpies of melting. Several previously reported melting points were shown to be solid-to-solid phase transitions or decomposition points. Our experiments have revealed a complex picture of phases, rotator phases and phase transitions, in which a simple correlation between melting points and hydrogen-bonding patterns is not feasible. PMID:25075320

  18. Modeling the Histidine-Phenylalanine Interaction: The NH···π Hydrogen Bond of Imidazole·Benzene.

    PubMed

    Trachsel, Maria A; Ottiger, Philipp; Frey, Hans-Martin; Pfaffen, Chantal; Bihlmeier, Angela; Klopper, Wim; Leutwyler, Samuel

    2015-06-25

    NH···π hydrogen bonds occur frequently between the amino acid side groups in proteins and peptides. Data-mining studies of protein crystals find that ∼80% of the T-shaped histidine···aromatic contacts are CH···π, and only ∼20% are NH···π interactions. We investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet-cooled imidazole·benzene (Im·Bz) complex as a model for the NH···π interaction between histidine and phenylalanine. Ground- and excited-state dispersion-corrected density functional calculations and correlated methods (SCS-MP2 and SCS-CC2) predict that Im·Bz has a Cs-symmetric T-shaped minimum-energy structure with an NH···π hydrogen bond to the Bz ring; the NH bond is tilted 12° away from the Bz C6 axis. IR depletion spectra support the T-shaped geometry: The NH stretch vibrational fundamental is red shifted by -73 cm(-1) relative to that of bare imidazole at 3518 cm(-1), indicating a moderately strong NH···π interaction. While the S0(A1g) → S1(B2u) origin of benzene at 38 086 cm(–1) is forbidden in the gas phase, Im·Bz exhibits a moderately intense S0 → S1 origin, which appears via the D(6h) → Cs symmetry lowering of Bz by its interaction with imidazole. The NH···π ground-state hydrogen bond is strong, De=22.7 kJ/mol (1899 cm–1). The combination of gas-phase UV and IR spectra confirms the theoretical predictions that the optimum Im·Bz geometry is T shaped and NH···π hydrogen bonded. We find no experimental evidence for a CH···π hydrogen-bonded ground-state isomer of Im·Bz. The optimum NH···π geometry of the Im·Bz complex is very different from the majority of the histidine·aromatic contact geometries found in protein database analyses, implying that the CH···π contacts observed in these searches do not arise from favorable binding interactions but merely from protein side-chain folding and crystal-packing constraints. The UV and IR spectra of the imidazole·(benzene)2 cluster are observed via fragmentation into the Im·Bz+ mass channel. The spectra of Im·Bz and Im·Bz2 are cleanly separable by IR hole burning. The UV spectrum of Im·Bz2 exhibits two 000 bands corresponding to the S0 → S1 excitations of the two inequivalent benzenes, which are symmetrically shifted by -86/+88 cm(-1) relative to the 000 band of benzene

  19. Tuning Solvatochromism of Azo Dyes with Intramolecular Hydrogen Bonding in Solution and on Titanium Dioxide Nanoparticles

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Lei; Cole, Jacqueline M.; Liu, Xiaogang

    2013-11-25

    “Smart tuning” of optical properties in three azo dyes containing intramolecular hydrogen bonding is realized by the judicious control of solvents, when the dyes are in solution or adsorbed onto titanium dioxide nanoparticles. In solution, certain solvents destabilizing intramolecular hydrogen bonding induce a distinctive ≈70 nm “blue-shifted” absorption peak, compared with other solvents. In parallel, the optical properties of azo dye/TiO2 nanocomposites can be tuned using solvents with different hydrogen-bond accepting/donating abilities, giving insights into smart materials and dye-sensitized solar cell device design. It is proposed that intramolecular hydrogen bonding alone plays the leading role in such phenomena, which ismore » fundamentally different to other mechanisms, such as tautomerism and cis–trans isomerization, that explain the optical control of azo dyes. Hybrid density functional theory (DFT) is employed in order to trace the origin of this optical control, and these calculations support the mechanism involving intramolecular hydrogen bonding. Two complementary studies are also reported: 1H NMR spectroscopy is conducted in order to further understand the solvent effects on intramolecular hydrogen bonding; crystal structure analysis from associated research indicates the importance of intramolecular hydrogen bonding on intramolecular charge transfer.« less

  20. The nature of hydrogen-bonding interactions in nonsteroidal anti-inflammatory drugs revealed by polarized IR spectroscopy

    NASA Astrophysics Data System (ADS)

    Hachuła, Barbara

    2018-01-01

    The influence of hydrogen-bonding interactions in the solid phase on the IR spectroscopic pattern of the νOsbnd H band of nonsteroidal anti-inflammatory drugs (NSAIDs) was studied experimentally by IR spectroscopy with the use of polarized light at two temperatures (293 K and 77 K) and in isotopic dilution. The neat and deuterated crystals of (S)-naproxen ((S)-NPX), (R)-flurbiprofen ((R)-FBP), (RS)-flurbiprofen ((RS)-FBP) and (RS)-ketoprofen ((RS)-KTP) were obtained by melt crystallization between the two squeezed CaF2 plates. The vibrational spectra of selected α-aryl propionic acid derivatives (2APAs) reflected the characteristics of their hydrogen-bond networks, i.e., 2APAs were characterized by the chain ((S)-NPX, (R)-FBP) and by dimeric ((RS)-FBP, (RS)-KTP) arrangement of hydrogen bonds in the crystal lattice. Spectroscopic results showed that the interchain (through-space) exciton coupling, between two laterally-spaced hydrogen bonds, dominates in the crystals of four NSAIDs. The same exciton coupled hydrogen bonds were also responsible for the H/D isotopic recognition mechanism in the crystalline spectra of deuterated 2APAs. The presented spectral results may help to predict the hydrogen bond motifs in the crystalline NSAIDs, which structures are not yet known, based on their IR spectra of hydrogen bond in the crystals.

Top