A Novel Hyperbolization Procedure for The Two-Phase Six-Equation Flow Model
DOE Office of Scientific and Technical Information (OSTI.GOV)
Samet Y. Kadioglu; Robert Nourgaliev; Nam Dinh
2011-10-01
We introduce a novel approach for the hyperbolization of the well-known two-phase six equation flow model. The six-equation model has been frequently used in many two-phase flow applications such as bubbly fluid flows in nuclear reactors. One major drawback of this model is that it can be arbitrarily non-hyperbolic resulting in difficulties such as numerical instability issues. Non-hyperbolic behavior can be associated with complex eigenvalues that correspond to characteristic matrix of the system. Complex eigenvalues are often due to certain flow parameter choices such as the definition of inter-facial pressure terms. In our method, we prevent the characteristic matrix receivingmore » complex eigenvalues by fine tuning the inter-facial pressure terms with an iterative procedure. In this way, the characteristic matrix possesses all real eigenvalues meaning that the characteristic wave speeds are all real therefore the overall two-phase flowmodel becomes hyperbolic. The main advantage of this is that one can apply less diffusive highly accurate high resolution numerical schemes that often rely on explicit calculations of real eigenvalues. We note that existing non-hyperbolic models are discretized mainly based on low order highly dissipative numerical techniques in order to avoid stability issues.« less
Curvature and temperature of complex networks.
Krioukov, Dmitri; Papadopoulos, Fragkiskos; Vahdat, Amin; Boguñá, Marián
2009-09-01
We show that heterogeneous degree distributions in observed scale-free topologies of complex networks can emerge as a consequence of the exponential expansion of hidden hyperbolic space. Fermi-Dirac statistics provides a physical interpretation of hyperbolic distances as energies of links. The hidden space curvature affects the heterogeneity of the degree distribution, while clustering is a function of temperature. We embed the internet into the hyperbolic plane and find a remarkable congruency between the embedding and our hyperbolic model. Besides proving our model realistic, this embedding may be used for routing with only local information, which holds significant promise for improving the performance of internet routing.
Representation of the contextual statistical model by hyperbolic amplitudes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khrennikov, Andrei
We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. Wemore » also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy.« less
Representation of the contextual statistical model by hyperbolic amplitudes
NASA Astrophysics Data System (ADS)
Khrennikov, Andrei
2005-06-01
We continue the development of a so-called contextual statistical model (here context has the meaning of a complex of physical conditions). It is shown that, besides contexts producing the conventional trigonometric cos-interference, there exist contexts producing the hyperbolic cos-interference. Starting with the corresponding interference formula of total probability we represent such contexts by hyperbolic probabilistic amplitudes or in the abstract formalism by normalized vectors of a hyperbolic analogue of the Hilbert space. There is obtained a hyperbolic Born's rule. Incompatible observables are represented by noncommutative operators. This paper can be considered as the first step towards hyperbolic quantum probability. We also discuss possibilities of experimental verification of hyperbolic quantum mechanics: in physics of elementary particles, string theory as well as in experiments with nonphysical systems, e.g., in psychology, cognitive sciences, and economy.
Efficient embedding of complex networks to hyperbolic space via their Laplacian
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-01-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction. PMID:27445157
Efficient embedding of complex networks to hyperbolic space via their Laplacian
NASA Astrophysics Data System (ADS)
Alanis-Lobato, Gregorio; Mier, Pablo; Andrade-Navarro, Miguel A.
2016-07-01
The different factors involved in the growth process of complex networks imprint valuable information in their observable topologies. How to exploit this information to accurately predict structural network changes is the subject of active research. A recent model of network growth sustains that the emergence of properties common to most complex systems is the result of certain trade-offs between node birth-time and similarity. This model has a geometric interpretation in hyperbolic space, where distances between nodes abstract this optimisation process. Current methods for network hyperbolic embedding search for node coordinates that maximise the likelihood that the network was produced by the afore-mentioned model. Here, a different strategy is followed in the form of the Laplacian-based Network Embedding, a simple yet accurate, efficient and data driven manifold learning approach, which allows for the quick geometric analysis of big networks. Comparisons against existing embedding and prediction techniques highlight its applicability to network evolution and link prediction.
NASA Astrophysics Data System (ADS)
Muscoloni, Alessandro; Vittorio Cannistraci, Carlo
2018-05-01
The investigation of the hidden metric space behind complex network topologies is a fervid topic in current network science and the hyperbolic space is one of the most studied, because it seems associated to the structural organization of many real complex systems. The popularity-similarity-optimization (PSO) model simulates how random geometric graphs grow in the hyperbolic space, generating realistic networks with clustering, small-worldness, scale-freeness and rich-clubness. However, it misses to reproduce an important feature of real complex networks, which is the community organization. The geometrical-preferential-attachment (GPA) model was recently developed in order to confer to the PSO also a soft community structure, which is obtained by forcing different angular regions of the hyperbolic disk to have a variable level of attractiveness. However, the number and size of the communities cannot be explicitly controlled in the GPA, which is a clear limitation for real applications. Here, we introduce the nonuniform PSO (nPSO) model. Differently from GPA, the nPSO generates synthetic networks in the hyperbolic space where heterogeneous angular node attractiveness is forced by sampling the angular coordinates from a tailored nonuniform probability distribution (for instance a mixture of Gaussians). The nPSO differs from GPA in other three aspects: it allows one to explicitly fix the number and size of communities; it allows one to tune their mixing property by means of the network temperature; it is efficient to generate networks with high clustering. Several tests on the detectability of the community structure in nPSO synthetic networks and wide investigations on their structural properties confirm that the nPSO is a valid and efficient model to generate realistic complex networks with communities.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; D'Costa, Joseph F.
1991-01-01
This paper describes the evaluation of mixed implicit-explicit finite element formulations for hyperbolic heat conduction problems involving non-Fourier effects. In particular, mixed implicit-explicit formulations employing the alpha method proposed by Hughes et al. (1987, 1990) are described for the numerical simulation of hyperbolic heat conduction models, which involves time-dependent relaxation effects. Existing analytical approaches for modeling/analysis of such models involve complex mathematical formulations for obtaining closed-form solutions, while in certain numerical formulations the difficulties include severe oscillatory solution behavior (which often disguises the true response) in the vicinity of the thermal disturbances, which propagate with finite velocities. In view of these factors, the alpha method is evaluated to assess the control of the amount of numerical dissipation for predicting the transient propagating thermal disturbances. Numerical test models are presented, and pertinent conclusions are drawn for the mixed-time integration simulation of hyperbolic heat conduction models involving non-Fourier effects.
NASA Astrophysics Data System (ADS)
Kummer, E. E.; Siegel, Edward Carl-Ludwig
2011-03-01
Clock-model Archimedes [http://linkage.rockeller.edu/ wli/moved.8.04/ 1fnoise/ index. ru.html] HYPERBOLICITY inevitability throughout physics/pure-maths: Newton-law F=ma, Heisenberg and classical uncertainty-principle=Parseval/Plancherel-theorems causes FUZZYICS definition: (so miscalled) "complexity" = UTTER-SIMPLICITY!!! Watkins[www.secamlocal.ex.ac.uk/people/staff/mrwatkin/]-Hubbard[World According to Wavelets (96)-p.14!]-Franklin[1795]-Fourier[1795;1822]-Brillouin[1922] dual/inverse-space(k,w) analysis key to Fourier-unification in Archimedes hyperbolicity inevitability progress up Siegel cognition hierarchy-of-thinking (HoT): data-info.-know.-understand.-meaning-...-unity-simplicity = FUZZYICS!!! Frohlich-Mossbauer-Goldanskii-del Guidice [Nucl.Phys.B:251,375(85);275,185 (86)]-Young [arXiv-0705.4678y2, (5/31/07] theory of health/life=aqueous-electret/ ferroelectric protoplasm BEC = Archimedes-Siegel [Schrodinger Cent.Symp.(87); Symp.Fractals, MRS Fall Mtg.(89)-5-pprs] 1/w-"noise" Zipf-law power-spectrum hyperbolicity INEVITABILITY= Chi; Dirac delta-function limit w=0 concentration= BEC = Chi-Quong.
Links between quantum physics and thought.
Robson, Barry
2009-01-01
Quantum mechanics (QM) provides a variety of ideas that can assist in developing Artificial Intelligence for healthcare, and opens the possibility of developing a unified system of Best Practice for inference that will embrace both QM and classical inference. Of particular interest is inference in the hyperbolic-complex plane, the counterpart of the normal i-complex plane of basic QM. There are two reasons. First, QM appears to rotate from i-complex Hilbert space to hyperbolic-complex descriptions when observations are made on wave functions as particles, yielding classical results, and classical laws of probability manipulation (e.g. the law of composition of probabilities) then hold, whereas in the i-complex plane they do not. Second, i-complex Hilbert space is not the whole story in physics. Hyperbolic complex planes arise in extension from the Dirac-Clifford calculus to particle physics, in relativistic correction thereby, and in regard to spinors and twisters. Generalization of these forms resemble grammatical constructions and promote the idea that probability-weighted algebraic elements can be used to hold dimensions of syntactic and semantic meaning. It is also starting to look as though when a solution is reached by an inference system in the hyperbolic-complex, the hyperbolic-imaginary values disappear, while conversely hyperbolic-imaginary values are associated with the un-queried state of a system and goal seeking behavior.
NASA Astrophysics Data System (ADS)
Malykh, A. A.; Nutku, Y.; Sheftel, M. B.
2007-08-01
We demonstrate that partner symmetries provide a lift of noninvariant solutions of the three-dimensional Boyer-Finley equation to noninvariant solutions of the four-dimensional hyperbolic complex Monge-Ampère equation. The lift is applied to noninvariant solutions of the Boyer-Finley equation, obtained earlier by the method of group foliation, to yield noninvariant solutions of the hyperbolic complex Monge-Ampère equation. Using these solutions we construct new Ricci-flat ultra-hyperbolic metrics with non-zero curvature tensor that have no Killing vectors.
Markov, A V; Korotaev, A V
2008-01-01
Among diverse models that are used to describe and interpret the changes in global biodiversity through the Phanerozoic, the exponential and logistic models (traditionally used in population biology) are the most popular. As we have recently demonstrated (Markov, Korotayev, 2007), the growth of the Phanerozoic marine biodiversity at genus level correlates better with the hyperbolic model (widely used in demography and macrosociology). Here we show that the hyperbolic model is also applicable to the Phanerozoic continental biota at genus and family levels, and to the marine biota at species, genus, and family levels. There are many common features in the evolutionary dynamics of the marine and continental biotas that imply similarity and common nature of the factors and mechanisms underlying the hyperbolic growth. Both marine and continental biotas are characterized by continuous growth of the mean longevity of taxa, by decreasing extinction and origination rates, by similar pattern of replacement of dominant groups, by stepwise accumulation of evolutionary stable, adaptable and "physiologically buffered" taxa with effective mechanisms of parental care, protection of early developmental stages, etc. At the beginning of the development of continental biota, the observed taxonomic diversity was substantially lower than that predicted by the hyperbolic model. We suggest that this is due, firstly, to the fact that, during the earliest stages of the continental biota evolution, the groups that are not preserved in the fossil record (such as soil bacteria, unicellular algae, lichens, etc.) played a fundamental role, and secondly, to the fact that the continental biota initially formed as a marginal portion of the marine biota, rather than a separate system. The hyperbolic dynamics is most prominent when both marine and continental biotas are considered together. This fact can be interpreted as a proof of the integrated nature of the biosphere. In the macrosociological models, the hyperbolic pattern of the world population growth arises from a non-linear second-order positive feedback between the demographic growth and technological development (more people - more potential inventors - faster technological growth - the carrying capacity of the Earth grows faster - faster population growth - more people - more potential inventors, and so on). Based on the analogy with macrosociological models and diverse paleontological data, we suggest that the hyperbolic character of biodiversity growth can be similarly accounted for by a non-linear second-order positive feedback between the diversity growth and community structure complexity. The feedback can work via two parallel mechanisms: 1) decreasing extinction rate (more taxa- higher alpha diversity, or mean number of taxa in a community - communities become more complex and stable - extinction rate decreases - more taxa, and so on) and 2) increasing origination rate (new taxa facilitate niche construction; newly formed niches can be occupied by the next "generation" of taxa). The latter possibility makes the mechanisms underlying the hyperbolic growth of biodiversity and human population even more similar, because the total ecospace of the biota is analogous to the "carrying capacity of the Earth" in demography. As far as new species can increase ecospace and facilitate opportunities for additional species entering the community, they are analogous to the "inventors" of the demographic models whose inventions increase the carrying capacity of the Earth. The hyperbolic growth of the Phanerozoic biodiverstiy suggests that "cooperative" interactions between taxa can play an important role in evolution, along with generally accepted competitive interactions. Due to this "cooperation", the evolution of biodiversity acquires some features of a self-accelerating process. Macroevolutionary "cooperation" reveals itself in: 1) increasing stability of communities that arises from alpha diversity growth; 2) ability of species to facilitate opportunities for additional species entering the community.
Takemura, Kazuhisa; Murakami, Hajime
2016-01-01
A probability weighting function (w(p)) is considered to be a nonlinear function of probability (p) in behavioral decision theory. This study proposes a psychophysical model of probability weighting functions derived from a hyperbolic time discounting model and a geometric distribution. The aim of the study is to show probability weighting functions from the point of view of waiting time for a decision maker. Since the expected value of a geometrically distributed random variable X is 1/p, we formulized the probability weighting function of the expected value model for hyperbolic time discounting as w(p) = (1 - k log p)(-1). Moreover, the probability weighting function is derived from Loewenstein and Prelec's (1992) generalized hyperbolic time discounting model. The latter model is proved to be equivalent to the hyperbolic-logarithmic weighting function considered by Prelec (1998) and Luce (2001). In this study, we derive a model from the generalized hyperbolic time discounting model assuming Fechner's (1860) psychophysical law of time and a geometric distribution of trials. In addition, we develop median models of hyperbolic time discounting and generalized hyperbolic time discounting. To illustrate the fitness of each model, a psychological experiment was conducted to assess the probability weighting and value functions at the level of the individual participant. The participants were 50 university students. The results of individual analysis indicated that the expected value model of generalized hyperbolic discounting fitted better than previous probability weighting decision-making models. The theoretical implications of this finding are discussed.
NASA Astrophysics Data System (ADS)
Seadawy, Aly R.; Kumar, Dipankar; Chakrabarty, Anuz Kumar
2018-05-01
The (2+1)-dimensional hyperbolic and cubic-quintic nonlinear Schrödinger equations describe the propagation of ultra-short pulses in optical fibers of nonlinear media. By using an extended sinh-Gordon equation expansion method, some new complex hyperbolic and trigonometric functions prototype solutions for two nonlinear Schrödinger equations were derived. The acquired new complex hyperbolic and trigonometric solutions are expressed by dark, bright, combined dark-bright, singular and combined singular solitons. The obtained results are more compatible than those of other applied methods. The extended sinh-Gordon equation expansion method is a more powerful and robust mathematical tool for generating new optical solitary wave solutions for many other nonlinear evolution equations arising in the propagation of optical pulses.
A zonally symmetric model for the monsoon-Hadley circulation with stochastic convective forcing
NASA Astrophysics Data System (ADS)
De La Chevrotière, Michèle; Khouider, Boualem
2017-02-01
Idealized models of reduced complexity are important tools to understand key processes underlying a complex system. In climate science in particular, they are important for helping the community improve our ability to predict the effect of climate change on the earth system. Climate models are large computer codes based on the discretization of the fluid dynamics equations on grids of horizontal resolution in the order of 100 km, whereas unresolved processes are handled by subgrid models. For instance, simple models are routinely used to help understand the interactions between small-scale processes due to atmospheric moist convection and large-scale circulation patterns. Here, a zonally symmetric model for the monsoon circulation is presented and solved numerically. The model is based on the Galerkin projection of the primitive equations of atmospheric synoptic dynamics onto the first modes of vertical structure to represent free tropospheric circulation and is coupled to a bulk atmospheric boundary layer (ABL) model. The model carries bulk equations for water vapor in both the free troposphere and the ABL, while the processes of convection and precipitation are represented through a stochastic model for clouds. The model equations are coupled through advective nonlinearities, and the resulting system is not conservative and not necessarily hyperbolic. This makes the design of a numerical method for the solution of this system particularly difficult. Here, we develop a numerical scheme based on the operator time-splitting strategy, which decomposes the system into three pieces: a conservative part and two purely advective parts, each of which is solved iteratively using an appropriate method. The conservative system is solved via a central scheme, which does not require hyperbolicity since it avoids the Riemann problem by design. One of the advective parts is a hyperbolic diagonal matrix, which is easily handled by classical methods for hyperbolic equations, while the other advective part is a nilpotent matrix, which is solved via the method of lines. Validation tests using a synthetic exact solution are presented, and formal second-order convergence under grid refinement is demonstrated. Moreover, the model is tested under realistic monsoon conditions, and the ability of the model to simulate key features of the monsoon circulation is illustrated in two distinct parameter regimes.
Point coordinates extraction from localized hyperbolic reflections in GPR data
NASA Astrophysics Data System (ADS)
Ristić, Aleksandar; Bugarinović, Željko; Vrtunski, Milan; Govedarica, Miro
2017-09-01
In this paper, we propose an automated detection algorithm for the localization of apexes and points on the prongs of hyperbolic reflection incurred as a result of GPR scanning technology. The objects of interest encompass cylindrical underground utilities that have a distinctive form of hyperbolic reflection in radargram. Algorithm involves application of trained neural network to analyze radargram in the form of raster image, resulting with extracted segments of interest that contain hyperbolic reflections. This significantly reduces the amount of data for further analysis. Extracted segments represent the zone for localization of apices. This is followed by extraction of points on prongs of hyperbolic reflections which is carried out until stopping criterion is satisfied, regardless the borders of segment of interest. In final step a classification of false hyperbolic reflections caused by the constructive interference and their removal is done. The algorithm is implemented in MATLAB environment. There are several advantages of the proposed algorithm. It can successfully recognize true hyperbolic reflections in radargram images and extracts coordinates, with very low rate of false detections and without prior knowledge about the number of hyperbolic reflections or buried utilities. It can be applied to radargrams containing single and multiple hyperbolic reflections, intersected, distorted, as well as incomplete (asymmetric) hyperbolic reflections, all in the presence of higher level of noise. Special feature of algorithm is developed procedure for analysis and removal of false hyperbolic reflections generated by the constructive interference from reflectors associated with the utilities. Algorithm was tested on a number of synthetic and radargram acquired in the field survey. To illustrate the performances of the proposed algorithm, we present the characteristics of the algorithm through five representative radargrams obtained in real conditions. In these examples we present different acquisition scenarios by varying the number of buried objects, their disposition, size, and level of noise. Example with highest complexity was tested also as a synthetic radargram generated by gprMax. Processing time in examples with one or two hyperbolic reflections is from 0.1 to 0.3 s, while for the most complex examples it is from 2.2 to 4.9 s. In general, the obtained experimental results show that the proposed algorithm exhibits promising performances both in terms of utility detection and processing speed of the algorithm.
Monitoring and modeling of long-term settlements of an experimental landfill in Brazil.
Simões, Gustavo Ferreira; Catapreta, Cícero Antônio Antunes
2013-02-01
Settlement evaluation in sanitary landfills is a complex process, due to the waste heterogeneity, time-varying properties and influencing factors and mechanisms, such as mechanical compression due to load application and creep, and physical-chemical and biological processes caused by the wastes decomposition. Many empirical models for the analysis of long-term settlement in landfills are reported in the literature. This paper presents the results of a settlement monitoring program carried out during 6 years in Belo Horizonte experimental landfill. Different sets of field data were used to calibrate three long-term settlement prediction models (rheological, hyperbolic and composite). The parameters obtained in the calibration were used to predict the settlements and to compare with actual field data. During the monitoring period of 6 years, significant vertical strains were observed (of up to 31%) in relation to the initial height of the experimental landfill. The results for the long-term settlement prediction obtained by the hyperbolic and rheological models significantly underestimate the settlements, regardless the period of data used in the calibration. The best fits were obtained with the composite model, except when 1 year field data were used in the calibration. The results of the composite model indicate settlements stabilization at larger times and with larger final settlements when compared to the hyperbolic and rheological models. Copyright © 2012 Elsevier Ltd. All rights reserved.
Novel features of the nonlinear model arising in nano-ionic currents throughout microtubules
NASA Astrophysics Data System (ADS)
Celik, E.; Bulut, H.; Baskonus, H. M.
2018-05-01
In this manuscript, the modified exp (- Ω (ξ )) -expansion function method is implemented to find the new solutions to the nonlinear differential equation being the transmission line model. We obtain some new solutions to this model such as complex, exponential, trigonometric and hyperbolic functions. We plot the two- and three-dimensional surfaces of each solutions obtained in this manuscript.
Discounting of reward sequences: a test of competing formal models of hyperbolic discounting
Zarr, Noah; Alexander, William H.; Brown, Joshua W.
2014-01-01
Humans are known to discount future rewards hyperbolically in time. Nevertheless, a formal recursive model of hyperbolic discounting has been elusive until recently, with the introduction of the hyperbolically discounted temporal difference (HDTD) model. Prior to that, models of learning (especially reinforcement learning) have relied on exponential discounting, which generally provides poorer fits to behavioral data. Recently, it has been shown that hyperbolic discounting can also be approximated by a summed distribution of exponentially discounted values, instantiated in the μAgents model. The HDTD model and the μAgents model differ in one key respect, namely how they treat sequences of rewards. The μAgents model is a particular implementation of a Parallel discounting model, which values sequences based on the summed value of the individual rewards whereas the HDTD model contains a non-linear interaction. To discriminate among these models, we observed how subjects discounted a sequence of three rewards, and then we tested how well each candidate model fit the subject data. The results show that the Parallel model generally provides a better fit to the human data. PMID:24639662
Grammatical complexity for two-dimensional maps
NASA Astrophysics Data System (ADS)
Hagiwara, Ryouichi; Shudo, Akira
2004-11-01
We calculate the grammatical complexity of the symbol sequences generated from the Hénon map and the Lozi map using the recently developed methods to construct the pruning front. When the map is hyperbolic, the language of symbol sequences is regular in the sense of the Chomsky hierarchy and the corresponding grammatical complexity takes finite values. It is found that the complexity exhibits a self-similar structure as a function of the system parameter, and the similarity of the pruning fronts is discussed as an origin of such self-similarity. For non-hyperbolic cases, it is observed that the complexity monotonically increases as we increase the resolution of the pruning front.
Modified hyperbolic sine model for titanium dioxide-based memristive thin films
NASA Astrophysics Data System (ADS)
Abu Bakar, Raudah; Syahirah Kamarozaman, Nur; Fazlida Hanim Abdullah, Wan; Herman, Sukreen Hana
2018-03-01
Since the emergence of memristor as the newest fundamental circuit elements, studies on memristor modeling have been evolved. To date, the developed models were based on the linear model, linear ionic drift model using different window functions, tunnelling barrier model and hyperbolic-sine function based model. Although using hyperbolic-sine function model could predict the memristor electrical properties, the model was not well fitted to the experimental data. In order to improve the performance of the hyperbolic-sine function model, the state variable equation was modified. On the one hand, the addition of window function cannot provide an improved fitting. By multiplying the Yakopcic’s state variable model to Chang’s model on the other hand resulted in the closer agreement with the TiO2 thin film experimental data. The percentage error was approximately 2.15%.
On the hyperbolicity and stability of 3+1 formulations of metric f( R) gravity
NASA Astrophysics Data System (ADS)
Mongwane, Bishop
2016-11-01
3+1 formulations of the Einstein field equations have become an invaluable tool in Numerical relativity, having been used successfully in modeling spacetimes of black hole collisions, stellar collapse and other complex systems. It is plausible that similar considerations could prove fruitful for modified gravity theories. In this article, we pursue from a numerical relativistic viewpoint the 3+1 formulation of metric f( R) gravity as it arises from the fourth order equations of motion, without invoking the dynamical equivalence with Brans-Dicke theories. We present the resulting system of evolution and constraint equations for a generic function f( R), subject to the usual viability conditions. We confirm that the time propagation of the f( R) Hamiltonian and Momentum constraints take the same Mathematical form as in general relativity, irrespective of the f( R) model. We further recast the 3+1 system in a form akin to the BSSNOK formulation of numerical relativity. Without assuming any specific model, we show that the ADM version of f( R) is weakly hyperbolic and is plagued by similar zero speed modes as in the general relativity case. On the other hand the BSSNOK version is strongly hyperbolic and hence a promising formulation for numerical simulations in metric f( R) theories.
Operational models of pharmacological agonism.
Black, J W; Leff, P
1983-12-22
The traditional receptor-stimulus model of agonism began with a description of drug action based on the law of mass action and has developed by a series of modifications, each accounting for new experimental evidence. By contrast, in this paper an approach to modelling agonism is taken that begins with the observation that experimental agonist-concentration effect, E/[A], curves are commonly hyperbolic and develops using the deduction that the relation between occupancy and effect must be hyperbolic if the law of mass action applies at the agonist-receptor level. The result is a general model that explicitly describes agonism by three parameters: an agonist-receptor dissociation constant, KA; the total receptor concentration, [R0]; and a parameter, KE, defining the transduction of agonist-receptor complex, AR, into pharmacological effect. The ratio, [R0]/KE, described here as the 'transducer ratio', tau, is a logical definition for the efficacy of an agonist in a system. The model may be extended to account for non-hyperbolic E/[A] curves with no loss of meaning. Analysis shows that an explicit formulation of the traditional receptor-stimulus model is one particular form of the general model but that it is not the simplest. An alternative model is proposed, representing the cognitive and transducer functions of a receptor, that describes agonist action with one fewer parameter than the traditional model. In addition, this model provides a chemical definition of intrinsic efficacy making this parameter experimentally accessible in principle. The alternative models are compared and contrasted with regard to their practical and conceptual utilities in experimental pharmacology.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
Tunnelling with a negative cosmological constant
NASA Astrophysics Data System (ADS)
Gibbons, G. W.
1996-02-01
The point of this paper is to see what light new results in hyperbolic geometry may throw on gravitational entropy and whether gravitational entropy is relevant for the quantum origin of the universe. We introduce some new gravitational instantons which mediate the birth from nothing of closed universes containing wormholes and suggest that they may contribute to the density matrix of the universe. We also discuss the connection between their gravitational action and the topological and volumetric entropies introduced in hyperbolic geometry. These coincide for hyperbolic 4-manifolds, and increase with increasing topological complexity of the 4-manifold. We raise the question of whether the action also increases with the topological complexity of the initial 3-geometry, measured either by its 3-volume or its Matveev complexity. We point out, in distinction to the non-supergravity case, that universes with domains of negative cosmological constant separated by supergravity domain walls cannot be born from nothing. Finally we point out that our wormholes provide examples of the type of Perpetual Motion machines envisaged by Frolov and Novikov.
Food-web complexity emerging from ecological dynamics on adaptive networks.
Garcia-Domingo, Josep L; Saldaña, Joan
2007-08-21
Food webs are complex networks describing trophic interactions in ecological communities. Since Robert May's seminal work on random structured food webs, the complexity-stability debate is a central issue in ecology: does network complexity increase or decrease food-web persistence? A multi-species predator-prey model incorporating adaptive predation shows that the action of ecological dynamics on the topology of a food web (whose initial configuration is generated either by the cascade model or by the niche model) render, when a significant fraction of adaptive predators is present, similar hyperbolic complexity-persistence relationships as those observed in empirical food webs. It is also shown that the apparent positive relation between complexity and persistence in food webs generated under the cascade model, which has been pointed out in previous papers, disappears when the final connection is used instead of the initial one to explain species persistence.
A Runge-Kutta discontinuous Galerkin approach to solve reactive flows: The hyperbolic operator
DOE Office of Scientific and Technical Information (OSTI.GOV)
Billet, G., E-mail: billet@onera.f; Ryan, J., E-mail: ryan@onera.f
2011-02-20
A Runge-Kutta discontinuous Galerkin method to solve the hyperbolic part of reactive Navier-Stokes equations written in conservation form is presented. Complex thermodynamics laws are taken into account. Particular care has been taken to solve the stiff gaseous interfaces correctly with no restrictive hypothesis. 1D and 2D test cases are presented.
Multi-time-scale heat transfer modeling of turbid tissues exposed to short-pulsed irradiations.
Kim, Kyunghan; Guo, Zhixiong
2007-05-01
A combined hyperbolic radiation and conduction heat transfer model is developed to simulate multi-time-scale heat transfer in turbid tissues exposed to short-pulsed irradiations. An initial temperature response of a tissue to an ultrashort pulse irradiation is analyzed by the volume-average method in combination with the transient discrete ordinates method for modeling the ultrafast radiation heat transfer. This response is found to reach pseudo steady state within 1 ns for the considered tissues. The single pulse result is then utilized to obtain the temperature response to pulse train irradiation at the microsecond/millisecond time scales. After that, the temperature field is predicted by the hyperbolic heat conduction model which is solved by the MacCormack's scheme with error terms correction. Finally, the hyperbolic conduction is compared with the traditional parabolic heat diffusion model. It is found that the maximum local temperatures are larger in the hyperbolic prediction than the parabolic prediction. In the modeled dermis tissue, a 7% non-dimensional temperature increase is found. After about 10 thermal relaxation times, thermal waves fade away and the predictions between the hyperbolic and parabolic models are consistent.
Modeling Global Spatial-Temporal Evolution of Society: Hyperbolic Growth and Historical Cycles
NASA Astrophysics Data System (ADS)
Kurkina, E. S.
2011-09-01
The global historical processes are under consideration; and laws of global evolution of the world community are studied. The world community is considered as a united complex self-developing and self-organizing system. It supposed that the main driving force of social-economical evolution was the positive feedback between the population size and the level of technological development, which was a cause of growth in blow-up regime both of population and of global economic indexes. The study is supported by the results of mathematical modeling founded on a nonlinear heat equation with a source. Every social-economical epoch characterizes by own specific spatial distributed structures. So the global dynamics of world community during the whole history is investigated throughout the prism of the developing of spatial-temporal structures. The model parameters have been chosen so that 1) total population follows stable hyperbolic growth, consistently with the demographic data; 2) the evolution of the World-System goes through 11 stages corresponding to the main historical epochs.
Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement
Gustman, Alan L.; Steinmeier, Thomas L.
2012-01-01
This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest. Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used. PMID:22711946
Policy Effects in Hyperbolic vs. Exponential Models of Consumption and Retirement.
Gustman, Alan L; Steinmeier, Thomas L
2012-06-01
This paper constructs a structural retirement model with hyperbolic preferences and uses it to estimate the effect of several potential Social Security policy changes. Estimated effects of policies are compared using two models, one with hyperbolic preferences and one with standard exponential preferences. Sophisticated hyperbolic discounters may accumulate substantial amounts of wealth for retirement. We find it is frequently difficult to distinguish empirically between models with the two types of preferences on the basis of asset accumulation paths or consumption paths around the period of retirement. Simulations suggest that, despite the much higher initial time preference rate, individuals with hyperbolic preferences may actually value a real annuity more than individuals with exponential preferences who have accumulated roughly equal amounts of assets. This appears to be especially true for individuals with relatively high time preference rates or who have low assets for whatever reason. This affects the tradeoff between current benefits and future benefits on which many of the retirement incentives of the Social Security system rest.Simulations involving increasing the early entitlement age and increasing the delayed retirement credit do not show a great deal of difference whether exponential or hyperbolic preferences are used, but simulations for eliminating the earnings test show a non-trivially greater effect when exponential preferences are used.
Hyperbolic and semi-hyperbolic surface codes for quantum storage
NASA Astrophysics Data System (ADS)
Breuckmann, Nikolas P.; Vuillot, Christophe; Campbell, Earl; Krishna, Anirudh; Terhal, Barbara M.
2017-09-01
We show how a hyperbolic surface code could be used for overhead-efficient quantum storage. We give numerical evidence for a noise threshold of 1.3 % for the \\{4,5\\}-hyperbolic surface code in a phenomenological noise model (as compared with 2.9 % for the toric code). In this code family, parity checks are of weight 4 and 5, while each qubit participates in four different parity checks. We introduce a family of semi-hyperbolic codes that interpolate between the toric code and the \\{4,5\\}-hyperbolic surface code in terms of encoding rate and threshold. We show how these hyperbolic codes outperform the toric code in terms of qubit overhead for a target logical error probability. We show how Dehn twists and lattice code surgery can be used to read and write individual qubits to this quantum storage medium.
Focal surfaces of hyperbolic cylinders
NASA Astrophysics Data System (ADS)
Georgiev, Georgi Hristov; Pavlov, Milen Dimov
2017-12-01
Cylindrical surfaces have many applications in geometric modeling, architecture and other branches of engineering. In this paper, we describe two cylindrical surfaces associated to a given hyperbolic cylinder. The first one is a focal surface which is determined by reciprocal principle curvature of the hyperbolic cylinder. The second one is a generalized focal surface obtained by reciprocal mean curvature of the same hyperbolic cylinder. In particular, we show that each of these surfaces admits three different parametric representations. As consequence, it is proved that the focal and generalized focal surfaces of the hyperbolic cylinder are rational surfaces. An illustrative example is included.
Hyperbolic Rendezvous at Mars: Risk Assessments and Mitigation Strategies
NASA Technical Reports Server (NTRS)
Jedrey, Ricky; Landau, Damon; Whitley, Ryan
2015-01-01
Given the current interest in the use of flyby trajectories for human Mars exploration, a key requirement is the capability to execute hyperbolic rendezvous. Hyperbolic rendezvous is used to transport crew from a Mars centered orbit, to a transiting Earth bound habitat that does a flyby. Representative cases are taken from future potential missions of this type, and a thorough sensitivity analysis of the hyperbolic rendezvous phase is performed. This includes early engine cutoff, missed burn times, and burn misalignment. A finite burn engine model is applied that assumes the hyperbolic rendezvous phase is done with at least two burns.
SToRM: A Model for Unsteady Surface Hydraulics Over Complex Terrain
Simoes, Francisco J.
2014-01-01
A two-dimensional (depth-averaged) finite volume Godunov-type shallow water model developed for flow over complex topography is presented. The model is based on an unstructured cellcentered finite volume formulation and a nonlinear strong stability preserving Runge-Kutta time stepping scheme. The numerical discretization is founded on the classical and well established shallow water equations in hyperbolic conservative form, but the convective fluxes are calculated using auto-switching Riemann and diffusive numerical fluxes. The model’s implementation within a graphical user interface is discussed. Field application of the model is illustrated by utilizing it to estimate peak flow discharges in a flooding event of historic significance in Colorado, U.S.A., in 2013.
Ergodicity-breaking bifurcations and tunneling in hyperbolic transport models
NASA Astrophysics Data System (ADS)
Giona, M.; Brasiello, A.; Crescitelli, S.
2015-11-01
One of the main differences between parabolic transport, associated with Langevin equations driven by Wiener processes, and hyperbolic models related to generalized Kac equations driven by Poisson processes, is the occurrence in the latter of multiple stable invariant densities (Frobenius multiplicity) in certain regions of the parameter space. This phenomenon is associated with the occurrence in linear hyperbolic balance equations of a typical bifurcation, referred to as the ergodicity-breaking bifurcation, the properties of which are thoroughly analyzed.
The curious case of large-N expansions on a (pseudo)sphere
DOE Office of Scientific and Technical Information (OSTI.GOV)
Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James
We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.
The curious case of large-N expansions on a (pseudo)sphere
Polyakov, Alexander M.; Saleem, Zain H.; Stokes, James
2015-02-03
We elucidate the large-N dynamics of one-dimensional sigma models with spherical and hyperbolic target spaces and find a duality between the Lagrange multiplier and the angular momentum. In the hyperbolic model we propose a new class of operators based on the irreducible representations of hyperbolic space. We also uncover unexpected zero modes which lead to the double scaling of the 1/N expansion and explore these modes using Gelfand-Dikiy equations.
Traveling wave to a reaction-hyperbolic system for axonal transport
NASA Astrophysics Data System (ADS)
Huang, Feimin; Li, Xing; Zhang, Yinglong
2017-07-01
In this paper, we study a class of nonlinear reaction-hyperbolic systems modeling the neuronal signal transfer in neuroscience. This reaction-hyperbolic system can be regarded as n × n (n ≥ 2) hyperbolic system with relaxation. We first prove the existence of traveling wave by Gershgorin circle theorem and mathematically describe the neuronal signal transport. Then for a special case n = 2, we show the traveling wave is nonlinearly stable, and obtain the convergence rate simultaneously by a weighted estimate.
NASA Astrophysics Data System (ADS)
Gheitaghy, A. M.; Takabi, B.; Alizadeh, M.
2014-03-01
Hyperbolic and parabolic heat equations are formulated to study a nonperfused homogeneous transparent cornea irradiated by high power and ultrashort pulsed laser in the Laser Thermo Keratoplasty (LTK) surgery. Energy absorption inside the cornea is modeled using the Beer-Lambert law that is incorporated as an exponentially decaying heat source. The hyperbolic and parabolic bioheat models of the tissue were solved by exploiting the mathematical analogy between thermal and electrical systems, by using robust circuit simulation program called Hspice to get the solutions of simultaneous RLC and RC transmission line networks. This method can be used to rapidly calculate the temperature in laser-irradiated tissue at time and space domain. It is found that internal energy gained from the irradiated field results in a rapid rise of temperature in the cornea surface during the early heating period, while the hyperbolic wave model predicts a higher temperature rise than the classical heat diffusion model. In addition, this paper investigates and examines the effect of some critical parameters such as relaxation time, convection coefficient, radiation, tear evaporation and variable thermal conductivity of cornea. Accordingly, it is found that a better accordance between hyperbolic and parabolic models will be achieved by time.
Reduced Basis and Stochastic Modeling of Liquid Propellant Rocket Engine as a Complex System
2015-07-02
additions, the approach will be extended to a real- gas system so that it can be used to investigate model multi-element liquid rocket combustors in a...Sirignano (2010). In the following discussion, we examine the various conservation principles for the gas and liquid phases. The hyperbolic nature of the...conservation equations for the gas and liquid phases. Mass conservation of individual chemical species or of individual classes of liquid droplets will
Cotton-type and joint invariants for linear elliptic systems.
Aslam, A; Mahomed, F M
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results.
Cotton-Type and Joint Invariants for Linear Elliptic Systems
Aslam, A.; Mahomed, F. M.
2013-01-01
Cotton-type invariants for a subclass of a system of two linear elliptic equations, obtainable from a complex base linear elliptic equation, are derived both by spliting of the corresponding complex Cotton invariants of the base complex equation and from the Laplace-type invariants of the system of linear hyperbolic equations equivalent to the system of linear elliptic equations via linear complex transformations of the independent variables. It is shown that Cotton-type invariants derived from these two approaches are identical. Furthermore, Cotton-type and joint invariants for a general system of two linear elliptic equations are also obtained from the Laplace-type and joint invariants for a system of two linear hyperbolic equations equivalent to the system of linear elliptic equations by complex changes of the independent variables. Examples are presented to illustrate the results. PMID:24453871
On the hyperbolicity of a two-fluid model for debris flows
NASA Astrophysics Data System (ADS)
Mineo, C.; Torrisi, M.
2010-05-01
We consider the system of partial differential equations associated with the mathematical model for debris flows proposed by E.B. Pitman and L. Le (Phil. Trans. R. Soc. A, 363, 1573-1601, 2005) and analyze the problem of the hyperbolicity of the model.
Namboodiri, Vijay Mohan K; Levy, Joshua M; Mihalas, Stefan; Sims, David W; Hussain Shuler, Marshall G
2016-08-02
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that "Lévy random walks"-which can produce power law path length distributions-are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent's goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers.
Numerical Simulations of Free Surface Magnetohydrodynamic Flows
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Glimm, James; Oh, Wonho; Prykarpatskyy, Yarema
2003-11-01
We have developed a numerical algorithm and performed simulations of magnetohydrodynamic (MHD) free surface flows. The corresponding system of MHD equations is a system of strongly coupled hyperbolic and parabolic/elliptic equations in moving and geometrically complex domains. The hyperbolic system is solved using the front tracking technique for the free fluid interface. Parallel algorithms for solving elliptic and parabolic equations are based on a finite element discretization on moving grids dynamically conforming to fluid interfaces. The method has been implemented as an MHD extension of the FronTier code. The code has been applied for modeling the behavior of lithium and mercury jets in magnetic fields, laser ablation plumes, and the Richtmyer-Meshkov instability of a liquid mercury jet interacting with a high energy proton pulse in a strong magnetic field. Such an instability occurs in the target for the Muon Collider.
Novel Plasmonic and Hyberbolic Optical Materials for Control of Quantum Nanoemitters
2016-12-08
properties, metal ion implantation techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. 15. SUBJECT TERMS nanotechnology 16...techniques, and multi- physics modeling to produce hyperbolic quantum nanoemitters. During the course of this project we studied plasmonic
Nonlinear sigma models with compact hyperbolic target spaces
NASA Astrophysics Data System (ADS)
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; Stoica, Bogdan; Stokes, James
2016-06-01
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in the O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. The diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.
Nonlinear sigma models with compact hyperbolic target spaces
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less
Nonlinear sigma models with compact hyperbolic target spaces
Gubser, Steven; Saleem, Zain H.; Schoenholz, Samuel S.; ...
2016-06-23
We explore the phase structure of nonlinear sigma models with target spaces corresponding to compact quotients of hyperbolic space, focusing on the case of a hyperbolic genus-2 Riemann surface. The continuum theory of these models can be approximated by a lattice spin system which we simulate using Monte Carlo methods. The target space possesses interesting geometric and topological properties which are reflected in novel features of the sigma model. In particular, we observe a topological phase transition at a critical temperature, above which vortices proliferate, reminiscent of the Kosterlitz-Thouless phase transition in the O(2) model [1, 2]. Unlike in themore » O(2) case, there are many different types of vortices, suggesting a possible analogy to the Hagedorn treatment of statistical mechanics of a proliferating number of hadron species. Below the critical temperature the spins cluster around six special points in the target space known as Weierstrass points. In conclusion, the diversity of compact hyperbolic manifolds suggests that our model is only the simplest example of a broad class of statistical mechanical models whose main features can be understood essentially in geometric terms.« less
13-Moment System with Global Hyperbolicity for Quantum Gas
NASA Astrophysics Data System (ADS)
Di, Yana; Fan, Yuwei; Li, Ruo
2017-06-01
We point out that the quantum Grad's 13-moment system (Yano in Physica A 416:231-241, 2014) is lack of global hyperbolicity, and even worse, the thermodynamic equilibrium is not an interior point of the hyperbolicity region of the system. To remedy this problem, by fully considering Grad's expansion, we split the expansion into the equilibrium part and the non-equilibrium part, and propose a regularization for the system with the help of the new hyperbolic regularization theory developed in Cai et al. (SIAM J Appl Math 75(5):2001-2023, 2015) and Fan et al. (J Stat Phys 162(2):457-486, 2016). This provides us a new model which is hyperbolic for all admissible thermodynamic states, and meanwhile preserves the approximate accuracy of the original system. It should be noted that this procedure is not a trivial application of the hyperbolic regularization theory.
Incorporating inductances in tissue-scale models of cardiac electrophysiology
NASA Astrophysics Data System (ADS)
Rossi, Simone; Griffith, Boyce E.
2017-09-01
In standard models of cardiac electrophysiology, including the bidomain and monodomain models, local perturbations can propagate at infinite speed. We address this unrealistic property by developing a hyperbolic bidomain model that is based on a generalization of Ohm's law with a Cattaneo-type model for the fluxes. Further, we obtain a hyperbolic monodomain model in the case that the intracellular and extracellular conductivity tensors have the same anisotropy ratio. In one spatial dimension, the hyperbolic monodomain model is equivalent to a cable model that includes axial inductances, and the relaxation times of the Cattaneo fluxes are strictly related to these inductances. A purely linear analysis shows that the inductances are negligible, but models of cardiac electrophysiology are highly nonlinear, and linear predictions may not capture the fully nonlinear dynamics. In fact, contrary to the linear analysis, we show that for simple nonlinear ionic models, an increase in conduction velocity is obtained for small and moderate values of the relaxation time. A similar behavior is also demonstrated with biophysically detailed ionic models. Using the Fenton-Karma model along with a low-order finite element spatial discretization, we numerically analyze differences between the standard monodomain model and the hyperbolic monodomain model. In a simple benchmark test, we show that the propagation of the action potential is strongly influenced by the alignment of the fibers with respect to the mesh in both the parabolic and hyperbolic models when using relatively coarse spatial discretizations. Accurate predictions of the conduction velocity require computational mesh spacings on the order of a single cardiac cell. We also compare the two formulations in the case of spiral break up and atrial fibrillation in an anatomically detailed model of the left atrium, and we examine the effect of intracellular and extracellular inductances on the virtual electrode phenomenon.
Namboodiri, Vijay Mohan K.; Levy, Joshua M.; Mihalas, Stefan; Sims, David W.; Hussain Shuler, Marshall G.
2016-01-01
Understanding the exploration patterns of foragers in the wild provides fundamental insight into animal behavior. Recent experimental evidence has demonstrated that path lengths (distances between consecutive turns) taken by foragers are well fitted by a power law distribution. Numerous theoretical contributions have posited that “Lévy random walks”—which can produce power law path length distributions—are optimal for memoryless agents searching a sparse reward landscape. It is unclear, however, whether such a strategy is efficient for cognitively complex agents, from wild animals to humans. Here, we developed a model to explain the emergence of apparent power law path length distributions in animals that can learn about their environments. In our model, the agent’s goal during search is to build an internal model of the distribution of rewards in space that takes into account the cost of time to reach distant locations (i.e., temporally discounting rewards). For an agent with such a goal, we find that an optimal model of exploration in fact produces hyperbolic path lengths, which are well approximated by power laws. We then provide support for our model by showing that humans in a laboratory spatial exploration task search space systematically and modify their search patterns under a cost of time. In addition, we find that path length distributions in a large dataset obtained from free-ranging marine vertebrates are well described by our hyperbolic model. Thus, we provide a general theoretical framework for understanding spatial exploration patterns of cognitively complex foragers. PMID:27385831
Modelling the growth of porous alumina matrix for creating hyperbolic media
NASA Astrophysics Data System (ADS)
Aryslanova, E. M.; Alfimov, A. V.; Chivilikhin, S. A.
2016-08-01
Porous aluminum oxide is a regular self-assembled structure. During anodization it is possible to control nano-parameters of the structure using macroscopic parameters of anodization. Porous alumina films can be used as a template for the creation of hyperbolic media. In this work we consider the anodization process, our model takes into account the influence of layers of aluminum and electrolyte on the rate of growth of aluminum oxide, as well as the effect of surface diffusion. As a result of our model we obtain the minimum distance between centers of alumina pores in the beginning of anodizing process. We also present the results obtained by numerical modelling of hyperbolic media based on porous alumina film.
Positivity of the universal pairing in 3 dimensions
NASA Astrophysics Data System (ADS)
Calegari, Danny; Freedman, Michael H.; Walker, Kevin
2010-01-01
Associated to a closed, oriented surface S is the complex vector space with basis the set of all compact, oriented 3 -manifolds which it bounds. Gluing along S defines a Hermitian pairing on this space with values in the complex vector space with basis all closed, oriented 3 -manifolds. The main result in this paper is that this pairing is positive, i.e. that the result of pairing a nonzero vector with itself is nonzero. This has bearing on the question of what kinds of topological information can be extracted in principle from unitary (2+1) -dimensional TQFTs. The proof involves the construction of a suitable complexity function c on all closed 3 -manifolds, satisfying a gluing axiom which we call the topological Cauchy-Schwarz inequality, namely that c(AB) le max(c(AA),c(BB)) for all A,B which bound S , with equality if and only if A=B . The complexity function c involves input from many aspects of 3 -manifold topology, and in the process of establishing its key properties we obtain a number of results of independent interest. For example, we show that when two finite-volume hyperbolic 3 -manifolds are glued along an incompressible acylindrical surface, the resulting hyperbolic 3 -manifold has minimal volume only when the gluing can be done along a totally geodesic surface; this generalizes a similar theorem for closed hyperbolic 3 -manifolds due to Agol-Storm-Thurston.
Infrared metamaterial by RF magnetron sputtered ZnO/Al:ZnO multilayers
NASA Astrophysics Data System (ADS)
Santiago, Kevin C.; Mundle, Rajeh; White, Curtis; Bahoura, Messaoud; Pradhan, Aswini K.
2018-03-01
Hyperbolic metamaterials create artificial anisotropy using metallic wires suspended in dielectric media or alternating layers of a metal and dielectric (Type I or Type II). In this study we fabricated ZnO/Al:ZnO (AZO) multilayers by the RF magnetron sputtering deposition technique. Our fabricated multilayers satisfy the requirements for a type II hyperbolic metamaterial. The optical response of individual AZO and ZnO films, as well as the multilayered film were investigated via UV-vis-IR transmittance and spectroscopic ellipsometry. The optical response of the multilayered system is calculated using the nonlocal-corrected Effective Medium Approximation (EMA). The spectroscopic ellipsometry data of the multilayered system was modeled using a uniaxial material model and EMA model. Both theoretical and experimental studies validate the fabricated multilayers undergo a hyperbolic transition at a wavelength of 2.2 μm. To our knowledge this is the first AZO/ZnO type II hyperbolic metamaterial system fabricated by magnetron sputtering deposition method.
NASA Astrophysics Data System (ADS)
Young, F.; Siegel, Edward Carl-Ludwig
2011-03-01
(so MIScalled) "complexity" with INHERENT BOTH SCALE-Invariance Symmetry-RESTORING, AND 1 / w (1.000..) "pink" Zipf-law Archimedes-HYPERBOLICITY INEVITABILITY power-spectrum power-law decay algebraicity. Their CONNECTION is via simple-calculus SCALE-Invariance Symmetry-RESTORING logarithm-function derivative: (d/ d ω) ln(ω) = 1 / ω , i.e. (d/ d ω) [SCALE-Invariance Symmetry-RESTORING](ω) = 1/ ω . Via Noether-theorem continuous-symmetries relation to conservation-laws: (d/ d ω) [inter-scale 4-current 4-div-ergence} = 0](ω) = 1 / ω . Hence (so MIScalled) "complexity" is information inter-scale conservation, in agreement with Anderson-Mandell [Fractals of Brain/Mind, G. Stamov ed.(1994)] experimental-psychology!!!], i.e. (so MIScalled) "complexity" is UTTER-SIMPLICITY!!! Versus COMPLICATEDNESS either PLUS (Additive) VS. TIMES (Multiplicative) COMPLICATIONS of various system-specifics. COMPLICATEDNESS-MEASURE DEVIATIONS FROM complexity's UTTER-SIMPLICITY!!!: EITHER [SCALE-Invariance Symmetry-BREAKING] MINUS [SCALE-Invariance Symmetry-RESTORING] via power-spectrum power-law algebraicity decays DIFFERENCES: ["red"-Pareto] MINUS ["pink"-Zipf Archimedes-HYPERBOLICITY INEVITABILITY]!!!
Origin of hyperbolicity in brain-to-brain coordination networks
NASA Astrophysics Data System (ADS)
Tadić, Bosiljka; Andjelković, Miroslav; Šuvakov, Milovan
2018-02-01
Hyperbolicity or negative curvature of complex networks is the intrinsic geometric proximity of nodes in the graph metric space, which implies an improved network function. Here, we investigate hidden combinatorial geometries in brain-to-brain coordination networks arising through social communications. The networks originate from correlations among EEG signals previously recorded during spoken communications comprising of 14 individuals with 24 speaker-listener pairs. We find that the corresponding networks are delta-hyperbolic with delta_max=1 and the graph diameter D=3 in each brain. While the emergent hyperbolicity in the two-brain networks satisfies delta_max/D/2 < 1 and can be attributed to the topology of the subgraph formed around the cross-brains linking channels. We identify these subgraphs in each studied two-brain network and decompose their structure into simple geometric descriptors (triangles, tetrahedra and cliques of higher orders) that contribute to hyperbolicity. Considering topologies that exceed two separate brain networks as a measure of coordination synergy between the brains, we identify different neuronal correlation patterns ranging from weak coordination to super-brain structure. These topology features are in qualitative agreement with the listener’s self-reported ratings of own experience and quality of the speaker, suggesting that studies of the cross-brain connector networks can reveal new insight into the neural mechanisms underlying human social behavior.
NASA Astrophysics Data System (ADS)
Shariati, M.; Talon, L.; Martin, J.; Rakotomalala, N.; Salin, D.; Yortsos, Y. C.
2004-11-01
We consider miscible displacement between parallel plates in the absence of diffusion, with a concentration-dependent viscosity. By selecting a piecewise viscosity function, this can also be considered as ‘three-fluid’ flow in the same geometry. Assuming symmetry across the gap and based on the lubrication (‘equilibrium’) approximation, a description in terms of two quasi-linear hyperbolic equations is obtained. We find that the system is hyperbolic and can be solved analytically, when the mobility profile is monotonic, or when the mobility of the middle phase is smaller than its neighbours. When the mobility of the middle phase is larger, a change of type is displayed, an elliptic region developing in the composition space. Numerical solutions of Riemann problems of the hyperbolic system spanning the elliptic region, with small diffusion added, show good agreement with the analytical outside, but an unstable behaviour inside the elliptic region. In these problems, the elliptic region arises precisely at the displacement front. Crossing the elliptic region requires the solution of essentially an eigenvalue problem of the full higher-dimensional model, obtained here using lattice BGK simulations. The hyperbolic-to-elliptic change-of-type reflects the failing of the lubrication approximation, underlying the quasi-linear hyperbolic formalism, to describe the problem uniformly. The obtained solution is analogous to non-classical shocks recently suggested in problems with change of type.
Attractors in complex networks
NASA Astrophysics Data System (ADS)
Rodrigues, Alexandre A. P.
2017-10-01
In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).
Attractors in complex networks.
Rodrigues, Alexandre A P
2017-10-01
In the framework of the generalized Lotka-Volterra model, solutions representing multispecies sequential competition can be predictable with high probability. In this paper, we show that it occurs because the corresponding "heteroclinic channel" forms part of an attractor. We prove that, generically, in an attracting heteroclinic network involving a finite number of hyperbolic and non-resonant saddle-equilibria whose linearization has only real eigenvalues, the connections corresponding to the most positive expanding eigenvalues form part of an attractor (observable in numerical simulations).
Hyperbolic and semi-parametric models in finance
NASA Astrophysics Data System (ADS)
Bingham, N. H.; Kiesel, Rüdiger
2001-02-01
The benchmark Black-Scholes-Merton model of mathematical finance is parametric, based on the normal/Gaussian distribution. Its principal parametric competitor, the hyperbolic model of Barndorff-Nielsen, Eberlein and others, is briefly discussed. Our main theme is the use of semi-parametric models, incorporating the mean vector and covariance matrix as in the Markowitz approach, plus a non-parametric part, a scalar function incorporating features such as tail-decay. Implementation is also briefly discussed.
Geometry in a dynamical system without space: Hyperbolic Geometry in Kuramoto Oscillator Systems
NASA Astrophysics Data System (ADS)
Engelbrecht, Jan; Chen, Bolun; Mirollo, Renato
Kuramoto oscillator networks have the special property that their time evolution is constrained to lie on 3D orbits of the Möbius group acting on the N-fold torus TN which explains the N - 3 constants of motion discovered by Watanabe and Strogatz. The dynamics for phase models can be further reduced to 2D invariant sets in T N - 1 which have a natural geometry equivalent to the unit disk Δ with hyperbolic metric. We show that the classic Kuramoto model with order parameter Z1 (the first moment of the oscillator configuration) is a gradient flow in this metric with a unique fixed point on each generic 2D invariant set, corresponding to the hyperbolic barycenter of an oscillator configuration. This gradient property makes the dynamics especially easy to analyze. We exhibit several new families of Kuramoto oscillator models which reduce to gradient flows in this metric; some of these have a richer fixed point structure including non-hyperbolic fixed points associated with fixed point bifurcations. Work Supported by NSF DMS 1413020.
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2017-11-01
In this paper, we propose a new unified first order hyperbolic model of Newtonian continuum mechanics coupled with electro-dynamics. The model is able to describe the behavior of moving elasto-plastic dielectric solids as well as viscous and inviscid fluids in the presence of electro-magnetic fields. It is actually a very peculiar feature of the proposed PDE system that viscous fluids are treated just as a special case of elasto-plastic solids. This is achieved by introducing a strain relaxation mechanism in the evolution equations of the distortion matrix A, which in the case of purely elastic solids maps the current configuration to the reference configuration. The model also contains a hyperbolic formulation of heat conduction as well as a dissipative source term in the evolution equations for the electric field given by Ohm's law. Via formal asymptotic analysis we show that in the stiff limit, the governing first order hyperbolic PDE system with relaxation source terms tends asymptotically to the well-known viscous and resistive magnetohydrodynamics (MHD) equations. Furthermore, a rigorous derivation of the model from variational principles is presented, together with the transformation of the Euler-Lagrange differential equations associated with the underlying variational problem from Lagrangian coordinates to Eulerian coordinates in a fixed laboratory frame. The present paper hence extends the unified first order hyperbolic model of Newtonian continuum mechanics recently proposed in [110,42] to the more general case where the continuum is coupled with electro-magnetic fields. The governing PDE system is symmetric hyperbolic and satisfies the first and second principle of thermodynamics, hence it belongs to the so-called class of symmetric hyperbolic thermodynamically compatible systems (SHTC), which have been studied for the first time by Godunov in 1961 [61] and later in a series of papers by Godunov and Romenski [67,69,119]. An important feature of the proposed model is that the propagation speeds of all physical processes, including dissipative processes, are finite. The model is discretized using high order accurate ADER discontinuous Galerkin (DG) finite element schemes with a posteriori subcell finite volume limiter and using high order ADER-WENO finite volume schemes. We show numerical test problems that explore a rather large parameter space of the model ranging from ideal MHD, viscous and resistive MHD over pure electro-dynamics to moving dielectric elastic solids in a magnetic field.
Generalized heat-transport equations: parabolic and hyperbolic models
NASA Astrophysics Data System (ADS)
Rogolino, Patrizia; Kovács, Robert; Ván, Peter; Cimmelli, Vito Antonio
2018-03-01
We derive two different generalized heat-transport equations: the most general one, of the first order in time and second order in space, encompasses some well-known heat equations and describes the hyperbolic regime in the absence of nonlocal effects. Another, less general, of the second order in time and fourth order in space, is able to describe hyperbolic heat conduction also in the presence of nonlocal effects. We investigate the thermodynamic compatibility of both models by applying some generalizations of the classical Liu and Coleman-Noll procedures. In both cases, constitutive equations for the entropy and for the entropy flux are obtained. For the second model, we consider a heat-transport equation which includes nonlocal terms and study the resulting set of balance laws, proving that the corresponding thermal perturbations propagate with finite speed.
Trading spaces: building three-dimensional nets from two-dimensional tilings
Castle, Toen; Evans, Myfanwy E.; Hyde, Stephen T.; Ramsden, Stuart; Robins, Vanessa
2012-01-01
We construct some examples of finite and infinite crystalline three-dimensional nets derived from symmetric reticulations of homogeneous two-dimensional spaces: elliptic (S2), Euclidean (E2) and hyperbolic (H2) space. Those reticulations are edges and vertices of simple spherical, planar and hyperbolic tilings. We show that various projections of the simplest symmetric tilings of those spaces into three-dimensional Euclidean space lead to topologically and geometrically complex patterns, including multiple interwoven nets and tangled nets that are otherwise difficult to generate ab initio in three dimensions. PMID:24098839
Can rodents conceive hyperbolic spaces?
Urdapilleta, Eugenio; Troiani, Francesca; Stella, Federico; Treves, Alessandro
2015-01-01
The grid cells discovered in the rodent medial entorhinal cortex have been proposed to provide a metric for Euclidean space, possibly even hardwired in the embryo. Yet, one class of models describing the formation of grid unit selectivity is entirely based on developmental self-organization, and as such it predicts that the metric it expresses should reflect the environment to which the animal has adapted. We show that, according to self-organizing models, if raised in a non-Euclidean hyperbolic cage rats should be able to form hyperbolic grids. For a given range of grid spacing relative to the radius of negative curvature of the hyperbolic surface, such grids are predicted to appear as multi-peaked firing maps, in which each peak has seven neighbours instead of the Euclidean six, a prediction that can be tested in experiments. We thus demonstrate that a useful universal neuronal metric, in the sense of a multi-scale ruler and compass that remain unaltered when changing environments, can be extended to other than the standard Euclidean plane. PMID:25948611
A novel grid multiwing chaotic system with only non-hyperbolic equilibria
NASA Astrophysics Data System (ADS)
Zhang, Sen; Zeng, Yicheng; Li, Zhijun; Wang, Mengjiao; Xiong, Le
2018-05-01
The structure of the chaotic attractor of a system is mainly determined by the nonlinear functions in system equations. By using a new saw-tooth wave function and a new stair function, a novel complex grid multiwing chaotic system which belongs to non-Shil'nikov chaotic system with non-hyperbolic equilibrium points is proposed in this paper. It is particularly interesting that the complex grid multiwing attractors are generated by increasing the number of non-hyperbolic equilibrium points, which are different from the traditional methods of realising multiwing attractors by adding the index-2 saddle-focus equilibrium points in double-wing chaotic systems. The basic dynamical properties of the new system, such as dissipativity, phase portraits, the stability of the equilibria, the time-domain waveform, power spectrum, bifurcation diagram, Lyapunov exponents, and so on, are investigated by theoretical analysis and numerical simulations. Furthermore, the corresponding electronic circuit is designed and simulated on the Multisim platform. The Multisim simulation results and the hardware experimental results are in good agreement with the numerical simulations of the same system on Matlab platform, which verify the feasibility of this new grid multiwing chaotic system.
Ruijsenaars-Schneider three-body models with N = 2 supersymmetry
NASA Astrophysics Data System (ADS)
Galajinsky, Anton
2018-04-01
The Ruijsenaars-Schneider models are conventionally regarded as relativistic generalizations of the Calogero integrable systems. Surprisingly enough, their supersymmetric generalizations escaped attention. In this work, N = 2 supersymmetric extensions of the rational and hyperbolic Ruijsenaars-Schneider three-body models are constructed within the framework of the Hamiltonian formalism. It is also known that the rational model can be described by the geodesic equations associated with a metric connection. We demonstrate that the hyperbolic systems are linked to non-metric connections.
Model Predictive Optimal Control of a Time-Delay Distributed-Parameter Systems
NASA Technical Reports Server (NTRS)
Nguyen, Nhan
2006-01-01
This paper presents an optimal control method for a class of distributed-parameter systems governed by first order, quasilinear hyperbolic partial differential equations that arise in many physical systems. Such systems are characterized by time delays since information is transported from one state to another by wave propagation. A general closed-loop hyperbolic transport model is controlled by a boundary control embedded in a periodic boundary condition. The boundary control is subject to a nonlinear differential equation constraint that models actuator dynamics of the system. The hyperbolic equation is thus coupled with the ordinary differential equation via the boundary condition. Optimality of this coupled system is investigated using variational principles to seek an adjoint formulation of the optimal control problem. The results are then applied to implement a model predictive control design for a wind tunnel to eliminate a transport delay effect that causes a poor Mach number regulation.
Hyperbolic chaos in the klystron-type microwave vacuum tube oscillator
NASA Astrophysics Data System (ADS)
Emel'yanov, V. V.; Kuznetsov, S. P.; Ryskin, N. M.
2010-12-01
The ring-loop oscillator consisting of two coupled klystrons which is capable of generating hyperbolic chaotic signal in the microwave band is considered. The system of delayed-differential equations describing the dynamics of the oscillator is derived. This system is further reduced to the two-dimensional return map under the assumption of the instantaneous build-up of oscillations in the cavities. The results of detailed numerical simulation for both models are presented showing that there exists large enough range of control parameters where the sustained regime corresponds to the structurally stable hyperbolic chaos.
Elliptical, parabolic, and hyperbolic exchanges of energy in drag reducing plane Couette flows
NASA Astrophysics Data System (ADS)
Pereira, Anselmo S.; Mompean, Gilmar; Thompson, Roney L.; Soares, Edson J.
2017-11-01
In the present paper, we investigate the polymer-turbulence interaction by discriminating between the mechanical responses of this system to three different subdomains: elliptical, parabolic, and hyperbolic, corresponding to regions where the magnitude of vorticity is greater than, equal to, or less than the magnitude of the rate of strain, respectively, in accordance with the Q-criterion. Recently, it was recognized that hyperbolic structures play a crucial role in the drag reduction phenomenon of viscoelastic turbulent flows, thanks to the observation that hyperbolic structures, as well as vortical ones, are weakened by the action of polymers in turbulent flows in a process that can be referred to as flow parabolization. We employ direct numerical simulations of a viscoelastic finite extensible nonlinear elastic model with the Peterlin approximation to examine the transient evolution and statistically steady regimes of a plane Couette flow that has been perturbed from a laminar flow at an initial time and developed a turbulent regime as a result of this perturbation. We have found that even more activity is located within the confines of the hyperbolic structures than in the elliptical ones, which highlights the importance of considering the role of hyperbolic structures in the drag reduction mechanism.
Hyperbolic polaritons in nanoparticles
NASA Astrophysics Data System (ADS)
Sun, Zhiyuan; Rubio, Angel; Guinea, Francisco; Basov, Dimitri; Fogler, Michael
2015-03-01
Hyperbolic optical materials (HM) are characterized by permittivity tensor that has both positive and negative principal values. Collective electromagnetic modes (polaritons) of HM have novel properties promising for various applications including subdiffractional imaging and on-chip optical communication. Hyperbolic response is actively investigated in the context of metamaterials, anisotropic polar insulators, and layered superconductors. We study polaritons in spheroidal HM nanoparticles using Hamiltonian optics. The field equations are mapped to classical dynamics of fictitious particles (wave packets) of an indefinite Hamiltonian. This dynamics is quantized using the Einstein-Brillouin-Keller quantization rule. The eigenmodes are classified as either bulk or surface according to whether their transverse momenta are real or imaginary. To model how such hyperbolic polaritons can be probed by near-field experiments, we compute the field distribution induced inside and outside the spheroid by an external point dipole. At certain magic frequencies the field shows striking geometric patterns whose origin is traced to the classical periodic orbits. The theory is applied to natural hyperbolic materials hexagonal boron nitride and superconducting LaSrCuO.
Clawpack: Building an open source ecosystem for solving hyperbolic PDEs
Iverson, Richard M.; Mandli, K.T.; Ahmadia, Aron J.; Berger, M.J.; Calhoun, Donna; George, David L.; Hadjimichael, Y.; Ketcheson, David I.; Lemoine, Grady L.; LeVeque, Randall J.
2016-01-01
Clawpack is a software package designed to solve nonlinear hyperbolic partial differential equations using high-resolution finite volume methods based on Riemann solvers and limiters. The package includes a number of variants aimed at different applications and user communities. Clawpack has been actively developed as an open source project for over 20 years. The latest major release, Clawpack 5, introduces a number of new features and changes to the code base and a new development model based on GitHub and Git submodules. This article provides a summary of the most significant changes, the rationale behind some of these changes, and a description of our current development model. Clawpack: building an open source ecosystem for solving hyperbolic PDEs.
A Well-Balanced Path-Integral f-Wave Method for Hyperbolic Problems with Source Terms
2014-01-01
Systems of hyperbolic partial differential equations with source terms (balance laws) arise in many applications where it is important to compute accurate time-dependent solutions modeling small perturbations of equilibrium solutions in which the source terms balance the hyperbolic part. The f-wave version of the wave-propagation algorithm is one approach, but requires the use of a particular averaged value of the source terms at each cell interface in order to be “well balanced” and exactly maintain steady states. A general approach to choosing this average is developed using the theory of path conservative methods. A scalar advection equation with a decay or growth term is introduced as a model problem for numerical experiments. PMID:24563581
Localization of marine mammals near Hawaii using an acoustic propagation model
NASA Astrophysics Data System (ADS)
Tiemann, Christopher O.; Porter, Michael B.; Frazer, L. Neil
2004-06-01
Humpback whale songs were recorded on six widely spaced receivers of the Pacific Missile Range Facility (PMRF) hydrophone network near Hawaii during March of 2001. These recordings were used to test a new approach to localizing the whales that exploits the time-difference of arrival (time lag) of their calls as measured between receiver pairs in the PMRF network. The usual technique for estimating source position uses the intersection of hyperbolic curves of constant time lag, but a drawback of this approach is its assumption of a constant wave speed and straight-line propagation to associate acoustic travel time with range. In contrast to hyperbolic fixing, the algorithm described here uses an acoustic propagation model to account for waveguide and multipath effects when estimating travel time from hypothesized source positions. A comparison between predicted and measured time lags forms an ambiguity surface, or visual representation of the most probable whale position in a horizontal plane around the array. This is an important benefit because it allows for automated peak extraction to provide a location estimate. Examples of whale localizations using real and simulated data in algorithms of increasing complexity are provided.
Psychophysics of time perception and intertemporal choice models
NASA Astrophysics Data System (ADS)
Takahashi, Taiki; Oono, Hidemi; Radford, Mark H. B.
2008-03-01
Intertemporal choice and psychophysics of time perception have been attracting attention in econophysics and neuroeconomics. Several models have been proposed for intertemporal choice: exponential discounting, general hyperbolic discounting (exponential discounting with logarithmic time perception of the Weber-Fechner law, a q-exponential discount model based on Tsallis's statistics), simple hyperbolic discounting, and Stevens' power law-exponential discounting (exponential discounting with Stevens' power time perception). In order to examine the fitness of the models for behavioral data, we estimated the parameters and AICc (Akaike Information Criterion with small sample correction) of the intertemporal choice models by assessing the points of subjective equality (indifference points) at seven delays. Our results have shown that the orders of the goodness-of-fit for both group and individual data were [Weber-Fechner discounting (general hyperbola) > Stevens' power law discounting > Simple hyperbolic discounting > Exponential discounting], indicating that human time perception in intertemporal choice may follow the Weber-Fechner law. Indications of the results for neuropsychopharmacological treatments of addiction and biophysical processing underlying temporal discounting and time perception are discussed.
Computational methods for estimation of parameters in hyperbolic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Ito, K.; Murphy, K. A.
1983-01-01
Approximation techniques for estimating spatially varying coefficients and unknown boundary parameters in second order hyperbolic systems are discussed. Methods for state approximation (cubic splines, tau-Legendre) and approximation of function space parameters (interpolatory splines) are outlined and numerical findings for use of the resulting schemes in model "one dimensional seismic inversion' problems are summarized.
The hyperbolic step potential: Anti-bound states, SUSY partners and Wigner time delays
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gadella, M.; Kuru, Ş.; Negro, J., E-mail: jnegro@fta.uva.es
We study the scattering produced by a one dimensional hyperbolic step potential, which is exactly solvable and shows an unusual interest because of its asymmetric character. The analytic continuation of the scattering matrix in the momentum representation has a branch cut and an infinite number of simple poles on the negative imaginary axis which are related with the so called anti-bound states. This model does not show resonances. Using the wave functions of the anti-bound states, we obtain supersymmetric (SUSY) partners which are the series of Rosen–Morse II potentials. We have computed the Wigner reflection and transmission time delays formore » the hyperbolic step and such SUSY partners. Our results show that the more bound states a partner Hamiltonian has the smaller is the time delay. We also have evaluated time delays for the hyperbolic step potential in the classical case and have obtained striking similitudes with the quantum case. - Highlights: • The scattering matrix of hyperbolic step potential is studied. • The scattering matrix has a branch cut and an infinite number of poles. • The poles are associated to anti-bound states. • Susy partners using antibound states are computed. • Wigner time delays for the hyperbolic step and partner potentials are compared.« less
A simple hyperbolic model for communication in parallel processing environments
NASA Technical Reports Server (NTRS)
Stoica, Ion; Sultan, Florin; Keyes, David
1994-01-01
We introduce a model for communication costs in parallel processing environments called the 'hyperbolic model,' which generalizes two-parameter dedicated-link models in an analytically simple way. Dedicated interprocessor links parameterized by a latency and a transfer rate that are independent of load are assumed by many existing communication models; such models are unrealistic for workstation networks. The communication system is modeled as a directed communication graph in which terminal nodes represent the application processes that initiate the sending and receiving of the information and in which internal nodes, called communication blocks (CBs), reflect the layered structure of the underlying communication architecture. The direction of graph edges specifies the flow of the information carried through messages. Each CB is characterized by a two-parameter hyperbolic function of the message size that represents the service time needed for processing the message. The parameters are evaluated in the limits of very large and very small messages. Rules are given for reducing a communication graph consisting of many to an equivalent two-parameter form, while maintaining an approximation for the service time that is exact in both large and small limits. The model is validated on a dedicated Ethernet network of workstations by experiments with communication subprograms arising in scientific applications, for which a tight fit of the model predictions with actual measurements of the communication and synchronization time between end processes is demonstrated. The model is then used to evaluate the performance of two simple parallel scientific applications from partial differential equations: domain decomposition and time-parallel multigrid. In an appropriate limit, we also show the compatibility of the hyperbolic model with the recently proposed LogP model.
z -classes of isometries of the hyperbolic space
NASA Astrophysics Data System (ADS)
Gongopadhyay, Krishnendu; Kulkarni, Ravi S.
Let G be a group. Two elements x, y are said to be z -equivalent if their centralizers are conjugate in G . The class equation of G is the partition of G into conjugacy classes. Further decomposition of conjugacy classes into z -classes provides important information about the internal structure of the group; cf. J. Ramanujan Math. Soc. 22 (2007), 35-56, for the elaboration of this theme. Let I(H^n) denote the group of isometries of the hyperbolic n -space, and let I_o(H^n) be the identity component of I(H^n) . We show that the number of z -classes in I(H^n) is finite. We actually compute their number; cf. theorem 1.3. We interpret the finiteness of z -classes as accounting for the finiteness of ``dynamical types'' in I(H^n) . Along the way we also parametrize conjugacy classes. We mainly use the linear model of the hyperbolic space for this purpose. This description of parametrizing conjugacy classes appears to be new; cf. Academic Press, New York, 1974, 49-87 and Conformal geometry (Bonn, 1985/1986), 41-64, Aspects Math., E12, Vieweg, Braunschweig, 1988, for previous attempts. Ahlfors (Differential Geometry and Complex Analysis (Springer, 1985), 65-73) suggested the use of Clifford algebras to deal with higher dimensional hyperbolic geometry; cf. Ann. Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15-27, Quasiconformal Mappings and Analysis (Springer, 1998), 109-139, Complex Variables Theory Appl. 15 (1990), 125-133, and Adv. Math. 101 (1993), 87-113. These works may be compared to the approach suggested in this paper. In dimensions 2 and 3 , by remarkable Lie-theoretic isomorphisms, I_o(H2) and I_o(H3) can be lifted to GL_o(2, R) , and GL(2, C) respectively. For orientation-reversing isometries there are some modifications of these liftings. Using these liftings, in the appendix A, we have introduced a single numerical invariant c(A) , to classify the elements of I(H2) and I(H3) , and explained the classical terminology. Using the ``Iwasawa decomposition'' of I_o(H^n) , it is possible to equip H^n with a group structure. In the appendix B, we visualize the stratification of the group H^n into its conjugacy and z -classes.
Dynamic hyperbolic geometry: building intuition and understanding mediated by a Euclidean model
NASA Astrophysics Data System (ADS)
Moreno-Armella, Luis; Brady, Corey; Elizondo-Ramirez, Rubén
2018-05-01
This paper explores a deep transformation in mathematical epistemology and its consequences for teaching and learning. With the advent of non-Euclidean geometries, direct, iconic correspondences between physical space and the deductive structures of mathematical inquiry were broken. For non-Euclidean ideas even to become thinkable the mathematical community needed to accumulate over twenty centuries of reflection and effort: a precious instance of distributed intelligence at the cultural level. In geometry education after this crisis, relations between intuitions and geometrical reasoning must be established philosophically, rather than taken for granted. One approach seeks intuitive supports only for Euclidean explorations, viewing non-Euclidean inquiry as fundamentally non-intuitive in nature. We argue for moving beyond such an impoverished approach, using dynamic geometry environments to develop new intuitions even in the extremely challenging setting of hyperbolic geometry. Our efforts reverse the typical direction, using formal structures as a source for a new family of intuitions that emerge from exploring a digital model of hyperbolic geometry. This digital model is elaborated within a Euclidean dynamic geometry environment, enabling a conceptual dance that re-configures Euclidean knowledge as a support for building intuitions in hyperbolic space-intuitions based not directly on physical experience but on analogies extending Euclidean concepts.
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Peshkov, Ilya; Romenski, Evgeniy; Zanotti, Olindo
2016-06-01
This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. In that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell-Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic-parabolic Navier-Stokes-Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER-WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier-Stokes equations. Numerical convergence results are also provided. To show the universality of the HPR model, the paper is rounded-off with an application to wave propagation in elastic solids, for which one only needs to switch off the strain relaxation source term in the governing PDE system. We provide various examples showing that for the purpose of flow visualization, the distortion tensor A seems to be particularly useful.
Luminescent hyperbolic metasurfaces
NASA Astrophysics Data System (ADS)
Smalley, J. S. T.; Vallini, F.; Montoya, S. A.; Ferrari, L.; Shahin, S.; Riley, C. T.; Kanté, B.; Fullerton, E. E.; Liu, Z.; Fainman, Y.
2017-01-01
When engineered on scales much smaller than the operating wavelength, metal-semiconductor nanostructures exhibit properties unobtainable in nature. Namely, a uniaxial optical metamaterial described by a hyperbolic dispersion relation can simultaneously behave as a reflective metal and an absorptive or emissive semiconductor for electromagnetic waves with orthogonal linear polarization states. Using an unconventional multilayer architecture, we demonstrate luminescent hyperbolic metasurfaces, wherein distributed semiconducting quantum wells display extreme absorption and emission polarization anisotropy. Through normally incident micro-photoluminescence measurements, we observe absorption anisotropies greater than a factor of 10 and degree-of-linear polarization of emission >0.9. We observe the modification of emission spectra and, by incorporating wavelength-scale gratings, show a controlled reduction of polarization anisotropy. We verify hyperbolic dispersion with numerical simulations that model the metasurface as a composite nanoscale structure and according to the effective medium approximation. Finally, we experimentally demonstrate >350% emission intensity enhancement relative to the bare semiconducting quantum wells.
Hyperbolic metamaterial lens with hydrodynamic nonlocal response.
Yan, Wei; Mortensen, N Asger; Wubs, Martijn
2013-06-17
We investigate the effects of hydrodynamic nonlocal response in hyperbolic metamaterials (HMMs), focusing on the experimentally realizable parameter regime where unit cells are much smaller than an optical wavelength but much larger than the wavelengths of the longitudinal pressure waves of the free-electron plasma in the metal constituents. We derive the nonlocal corrections to the effective material parameters analytically, and illustrate the noticeable nonlocal effects on the dispersion curves numerically. As an application, we find that the focusing characteristics of a HMM lens in the local-response approximation and in the hydrodynamic Drude model can differ considerably. In particular, the optimal frequency for imaging in the nonlocal theory is blueshifted with respect to that in the local theory. Thus, to detect whether nonlocal response is at work in a hyperbolic metamaterial, we propose to measure the near-field distribution of a hyperbolic metamaterial lens.
NASA Astrophysics Data System (ADS)
De La Rosa Gomez, Alejandro; MacKay, Niall; Regelskis, Vidas
2017-04-01
We present a general method of folding an integrable spin chain, defined on a line, to obtain an integrable open spin chain, defined on a half-line. We illustrate our method through two fundamental models with sl2 Lie algebra symmetry: the Heisenberg XXX and the Inozemtsev hyperbolic spin chains. We obtain new long-range boundary Hamiltonians and demonstrate that they exhibit Yangian symmetries, thus ensuring integrability of the models we obtain. The method presented provides a ;bottom-up; approach for constructing integrable boundaries and can be applied to any spin chain model.
Long-range propagation of plasmon and phonon polaritons in hyperbolic-metamaterial waveguides
NASA Astrophysics Data System (ADS)
Babicheva, Viktoriia E.
2017-12-01
We study photonic multilayer waveguides that include layers of materials and metamaterials with a hyperbolic dispersion (HMM). We consider the long-range propagation of plasmon and phonon polaritons at the dielectric-HMM interface in different waveguide geometries (single boundary or different layers of symmetric cladding). In contrast to the traditional analysis of geometrical parameters, we make an emphasis on the optical properties of constituent materials: solving dispersion equations, we analyze how dielectric and HMM permittivities affect propagation length and mode size of waveguide eigenmodes. We derive figures of merit that should be used for each waveguide in a broad range of permittivity values as well as compare them with plasmonic waveguides. We show that the conventional plasmonic quality factor, which is the ratio of real to imaginary parts of permittivity, is not applicable to the case of waveguides with complex structure. Both telecommunication wavelengths and mid-infrared spectral ranges are of interest considering recent advances in van der Waals materials, such as hexagonal boron nitride. We evaluate the performance of the waveguides with hexagonal boron nitride in the range where it possesses hyperbolic dispersion (wavelength 6.3-7.3 μm), and we show that these waveguides with natural hyperbolic properties have higher propagation lengths than metal-based HMM waveguides.
Onto the stability analysis of hyperbolic secant-shaped Bose-Einstein condensate
NASA Astrophysics Data System (ADS)
Sabari, S.; Murali, R.
2018-05-01
We analyze the stability of the hyperbolic secant-shaped attractive Bose-Einstein condensate in the absence of external trapping potential. The appropriate theoretical model for the system is described by the nonlinear mean-field Gross-Pitaevskii equation with time varying two-body interaction effects. Using the variational method, the stability of the system is analyzed under the influence of time varying two-body interactions. Further we confirm that the stability of the attractive condensate increases by considering the hyperbolic secant-shape profile instead of Gaussian shape. The analytical results are compared with the numerical simulation by employing the split-step Crank-Nicholson method.
Hyperbolic reformulation of a 1D viscoelastic blood flow model and ADER finite volume schemes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Montecinos, Gino I.; Müller, Lucas O.; Toro, Eleuterio F.
2014-06-01
The applicability of ADER finite volume methods to solve hyperbolic balance laws with stiff source terms in the context of well-balanced and non-conservative schemes is extended to solve a one-dimensional blood flow model for viscoelastic vessels, reformulated as a hyperbolic system, via a relaxation time. A criterion for selecting relaxation times is found and an empirical convergence rate assessment is carried out to support this result. The proposed methodology is validated by applying it to a network of viscoelastic vessels for which experimental and numerical results are available. The agreement between the results obtained in the present paper and thosemore » available in the literature is satisfactory. Key features of the present formulation and numerical methodologies, such as accuracy, efficiency and robustness, are fully discussed in the paper.« less
Reactive transport in a partially molten system with binary solid solution
NASA Astrophysics Data System (ADS)
Jordan, J.; Hesse, M. A.
2017-12-01
Melt extraction from the Earth's mantle through high-porosity channels is required to explain the composition of the oceanic crust. Feedbacks from reactive melt transport are thought to localize melt into a network of high-porosity channels. Recent studies invoke lithological heterogeneities in the Earth's mantle to seed the localization of partial melts. Therefore, it is necessary to understand the reaction fronts that form as melt flows across the lithological interface of a heterogeneity and the background mantle. Simplified melting models of such systems aide in the interpretation and formulation of larger scale mantle models. Motivated by the aforementioned facts, we present a chromatographic analysis of reactive melt transport across lithological boundaries, using theory for hyperbolic conservation laws. This is an extension of well-known linear trace element chromatography to the coupling of major elements and energy transport. Our analysis allows the prediction of the feedbacks that arise in reactive melt transport due to melting, freezing, dissolution and precipitation for frontal reactions. This study considers the simplified case of a rigid, partially molten porous medium with binary solid solution. As melt traverses a lithological contact-modeled as a Riemann problem-a rich set of features arise, including a reacted zone between an advancing reaction front and partial chemical preservation of the initial contact. Reactive instabilities observed in this study originate at the lithological interface rather than along a chemical gradient as in most studies of mantle dynamics. We present a regime diagram that predicts where reaction fronts become unstable, thereby allowing melt localization into high-porosity channels through reactive instabilities. After constructing the regime diagram, we test the one-dimensional hyperbolic theory against two-dimensional numerical experiments. The one-dimensional hyperbolic theory is sufficient for predicting the qualitative behavior of reactive melt transport simulations conducted in two-dimensions. The theoretical framework presented can be extended to more complex and realistic phase behavior, and is therefore a useful tool for understanding nonlinear feedbacks in reactive melt transport problems relevant to mantle dynamics.
Emotional Hypochondriasis, Hyperbole, and the Borderline Patient
ZANARINI, MARY C.; FRANKENBURG, FRANCES R.
1994-01-01
The authors define a new defense mechanism, emotional hypochondriasis, that is hypothesized to be central to borderline psychopathology. The behavioral manifestation of this defense—the hyperbolic stance of the borderline patient—is also defined and related to the complex phenomenology of borderline personality disorder. Borderline patients are seen as making an active attempt to maintain a tolerable, if tenuous, adaptation in the face of tremendous subjective emotional pain that has been shaped in large measure by traumatic childhood events that have never been validated. Twelve treatment implications and three expectable, if overlapping, stages of treatment stemming from the use of this defense and its behavioral sequelae are detailed. PMID:22700171
A numerical algorithm for MHD of free surface flows at low magnetic Reynolds numbers
NASA Astrophysics Data System (ADS)
Samulyak, Roman; Du, Jian; Glimm, James; Xu, Zhiliang
2007-10-01
We have developed a numerical algorithm and computational software for the study of magnetohydrodynamics (MHD) of free surface flows at low magnetic Reynolds numbers. The governing system of equations is a coupled hyperbolic-elliptic system in moving and geometrically complex domains. The numerical algorithm employs the method of front tracking and the Riemann problem for material interfaces, second order Godunov-type hyperbolic solvers, and the embedded boundary method for the elliptic problem in complex domains. The numerical algorithm has been implemented as an MHD extension of FronTier, a hydrodynamic code with free interface support. The code is applicable for numerical simulations of free surface flows of conductive liquids or weakly ionized plasmas. The code has been validated through the comparison of numerical simulations of a liquid metal jet in a non-uniform magnetic field with experiments and theory. Simulations of the Muon Collider/Neutrino Factory target have also been discussed.
NASA Astrophysics Data System (ADS)
Quesne, C.
2016-02-01
The classical and quantum solutions of a nonlinear model describing harmonic oscillators on the sphere and the hyperbolic plane, derived in polar coordinates in a recent paper (Quesne, 2015) [1], are extended by the inclusion of an isotonic term.
Boundary-field-driven control of discontinuous phase transitions on hyperbolic lattices
NASA Astrophysics Data System (ADS)
Lee, Yoju; Verstraete, Frank; Gendiar, Andrej
2016-08-01
The multistate Potts models on two-dimensional hyperbolic lattices are studied with respect to various boundary effects. The free energy is numerically calculated using the corner transfer matrix renormalization group method. We analyze phase transitions of the Potts models in the thermodynamic limit with respect to contracted boundary layers. A false phase transition is present even if a couple of the boundary layers are contracted. Its significance weakens, as the number of the contracted boundary layers increases, until the correct phase transition (deep inside the bulk) prevails over the false one. For this purpose, we derive a thermodynamic quantity, the so-called bulk excess free energy, which depends on the contracted boundary layers and memorizes additional boundary effects. In particular, the magnetic field is imposed on the outermost boundary layer. While the boundary magnetic field does not affect the second-order phase transition in the bulk if suppressing all the boundary effects on the hyperbolic lattices, the first-order (discontinuous) phase transition is significantly sensitive to the boundary magnetic field. Contrary to the phase transition on the Euclidean lattices, the discontinuous phase transition on the hyperbolic lattices can be continuously controlled (within a certain temperature coexistence region) by varying the boundary magnetic field.
Use of selection indices to model the functional response of predators
Joly, D.O.; Patterson, B.R.
2003-01-01
The functional response of a predator to changing prey density is an important determinant of stability of predatora??prey systems. We show how Manly's selection indices can be used to distinguish between hyperbolic and sigmoidal models of a predator functional response to primary prey density in the presence of alternative prey. Specifically, an inverse relationship between prey density and preference for that prey results in a hyperbolic functional response while a positive relationship can yield either a hyperbolic or sigmoidal functional response, depending on the form and relative magnitudes of the density-dependent preference model, attack rate, and handling time. As an example, we examine wolf (Canis lupus) functional response to moose (Alces alces) density in the presence of caribou (Rangifer tarandus). The use of selection indices to evaluate the form of the functional response has significant advantages over previous attempts to fit Holling's functional response curves to killing-rate data directly, including increased sensitivity, use of relatively easily collected data, and consideration of other explanatory factors (e.g., weather, seasons, productivity).
Haeufle, D F B; Günther, M; Blickhan, R; Schmitt, S
2011-01-01
Recently, the hyperbolic Hill-type force-velocity relation was derived from basic physical components. It was shown that a contractile element CE consisting of a mechanical energy source (active element AE), a parallel damper element (PDE), and a serial element (SE) exhibits operating points with hyperbolic force-velocity dependency. In this paper, the contraction dynamics of this CE concept were analyzed in a numerical simulation of quick release experiments against different loads. A hyperbolic force-velocity relation was found. The results correspond to measurements of the contraction dynamics of a technical prototype. Deviations from the theoretical prediction could partly be explained by the low stiffness of the SE, which was modeled analog to the metal spring in the hardware prototype. The numerical model and hardware prototype together, are a proof of this CE concept and can be seen as a well-founded starting point for the development of Hill-type artificial muscles. This opens up new vistas for the technical realization of natural movements with rehabilitation devices. © 2011 IEEE
Automatic Control via Thermostats of a Hyperbolic Stefan Problem with Memory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Colli, P.; Grasselli, M.; Sprekels, J.
1999-03-15
A hyperbolic Stefan problem based on the linearized Gurtin-Pipkin heat conduction law is considered. The temperature and free boundary are controlled by a thermostat acting on the boundary. This feedback control is based on temperature measurements performed by real thermal sensors located within the domain containing the two-phase system and/or at its boundary. Three different types of thermostats are analyzed: simple switch, relay switch, and a Preisach hysteresis operator. The resulting models lead to integrodifferential hyperbolic Stefan problems with nonlinear and nonlocal boundary conditions. Existence results are proved in all the cases. Uniqueness is also shown, except in the situationmore » corresponding to the ideal switch.« less
NASA Technical Reports Server (NTRS)
Chan, William M.
1993-01-01
An enhanced grid system for the Space Shuttle Orbiter was built by integrating CAD definitions from several sources and then generating the surface and volume grids. The new grid system contains geometric components not modeled previously plus significant enhancements on geometry that has been modeled in the old grid system. The new orbiter grids were then integrated with new grids for the rest of the launch vehicle. Enhancements were made to the hyperbolic grid generator HYPGEN and new tools for grid projection, manipulation, and modification, Cartesian box grid and far field grid generation and post-processing of flow solver data were developed.
NASA Astrophysics Data System (ADS)
Akram, Ghazala; Batool, Fiza
2017-10-01
The (G'/G)-expansion method is utilized for a reliable treatment of space-time fractional biological population model. The method has been applied in the sense of the Jumarie's modified Riemann-Liouville derivative. Three classes of exact traveling wave solutions, hyperbolic, trigonometric and rational solutions of the associated equation are characterized with some free parameters. A generalized fractional complex transform is applied to convert the fractional equations to ordinary differential equations which subsequently resulted in number of exact solutions. It should be mentioned that the (G'/G)-expansion method is very effective and convenient for solving nonlinear partial differential equations of fractional order whose balancing number is a negative integer.
Sayago, Ana; Asuero, Agustin G
2006-09-14
A bilogarithmic hyperbolic cosine method for the spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data has been devised and applied to literature data. A weighting scheme, however, is necessary in order to take into account the transformation for linearization. The method may be considered a useful alternative to methods in which one variable is involved on both sides of the basic equation (i.e. Heller and Schwarzenbach, Likussar and Adsul and Ramanathan). Classical least squares lead in those instances to biased and approximate stability constants and limiting absorbance values. The advantages of the proposed method are: the method gives a clear indication of the existence of only one complex in solution, it is flexible enough to allow for weighting of measurements and the computation procedure yield the best value of logbeta11 and its limit of error. The agreement between the values obtained by applying the weighted hyperbolic cosine method and the non-linear regression (NLR) method is good, being in both cases the mean quadratic error at a minimum.
NASA Astrophysics Data System (ADS)
Petrochenko, Andrew V.; Konyakhin, Igor A.
2015-06-01
Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1,2,3,4]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.
Theory of hyperbolic stratified nanostructures for surface-enhanced Raman scattering
NASA Astrophysics Data System (ADS)
Wong, Herman M. K.; Dezfouli, Mohsen Kamandar; Axelrod, Simon; Hughes, Stephen; Helmy, Amr S.
2017-11-01
We theoretically investigate the enhancement of surface enhanced Raman spectroscopy (SERS) using hyperbolic stratified nanostructures and compare to metal nanoresonators. The photon Green function of each nanostructure within its environment is first obtained from a semianalytical modal theory, which is used in a quantum optics formalism of the molecule-nanostructure interaction to model the SERS spectrum. An intuitive methodology is presented for calculating the single-molecule enhancement factor (SMEF), which is also able to predict known experimental SERS enhancement factors of a gold nanodimer. We elucidate the important figures-of-merit of the enhancement and explore these for different designs. We find that the use of hyperbolic stratified materials can enhance the photonic local density of states (LDOS) by close to two times in comparison to pure metal nanostructures, when both designed to work at the same operating wavelengths. However, the increased LDOS is accompanied by higher electric field concentration within the lossy hyperbolic material, which leads to increased quenching that serves to reduce the overall detected SERS enhancement in the far field. For nanoresonators with resonant localized surface plasmon wavelengths in the near-infrared, the SMEF for the hyperbolic stratified nanostructure is approximately one order of magnitude lower than the pure metal counterpart. Conversely, we show that by detecting the Raman signal using a near-field probe, hyperbolic materials can provide an improvement in SERS enhancement compared to using pure metal nanostructures when the probe is sufficiently close (<50 nm ) to the Raman active molecule at the plasmonic hotspot.
NASA Astrophysics Data System (ADS)
Canadell, Marta; Haro, Àlex
2017-12-01
We present several algorithms for computing normally hyperbolic invariant tori carrying quasi-periodic motion of a fixed frequency in families of dynamical systems. The algorithms are based on a KAM scheme presented in Canadell and Haro (J Nonlinear Sci, 2016. doi: 10.1007/s00332-017-9389-y), to find the parameterization of the torus with prescribed dynamics by detuning parameters of the model. The algorithms use different hyperbolicity and reducibility properties and, in particular, compute also the invariant bundles and Floquet transformations. We implement these methods in several 2-parameter families of dynamical systems, to compute quasi-periodic arcs, that is, the parameters for which 1D normally hyperbolic invariant tori with a given fixed frequency do exist. The implementation lets us to perform the continuations up to the tip of the quasi-periodic arcs, for which the invariant curves break down. Three different mechanisms of breakdown are analyzed, using several observables, leading to several conjectures.
The Geometry of the Universe: Part 2
ERIC Educational Resources Information Center
Francis, Stephanie
2009-01-01
Hyperbolic geometry occurs on hyperbolic planes--the most commonly cited one being a saddle shape. In this article, the author explores negative hyperbolic curvature, and provides a detailed description of how she constructed two hyperbolic paraboloids. Hyperbolic geometry occurs on surfaces that have negative curvature. (Contains 11 figures and 4…
NASA Astrophysics Data System (ADS)
Akram, Ghazala; Mahak, Nadia
2018-06-01
The nonlinear Schrödinger equation (NLSE) with the aid of three order dispersion terms is investigated to find the exact solutions via the extended (G'/G2)-expansion method and the first integral method. Many exact traveling wave solutions, such as trigonometric, hyperbolic, rational, soliton and complex function solutions, are characterized with some free parameters of the problem studied. It is corroborated that the proposed techniques are manageable, straightforward and powerful tools to find the exact solutions of nonlinear partial differential equations (PDEs). Some figures are plotted to describe the propagation of traveling wave solutions expressed by the hyperbolic functions, trigonometric functions and rational functions.
An HP Adaptive Discontinuous Galerkin Method for Hyperbolic Conservation Laws. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Bey, Kim S.
1994-01-01
This dissertation addresses various issues for model classes of hyperbolic conservation laws. The basic approach developed in this work employs a new family of adaptive, hp-version, finite element methods based on a special discontinuous Galerkin formulation for hyperbolic problems. The discontinuous Galerkin formulation admits high-order local approximations on domains of quite general geometry, while providing a natural framework for finite element approximations and for theoretical developments. The use of hp-versions of the finite element method makes possible exponentially convergent schemes with very high accuracies in certain cases; the use of adaptive hp-schemes allows h-refinement in regions of low regularity and p-enrichment to deliver high accuracy, while keeping problem sizes manageable and dramatically smaller than many conventional approaches. The use of discontinuous Galerkin methods is uncommon in applications, but the methods rest on a reasonable mathematical basis for low-order cases and has local approximation features that can be exploited to produce very efficient schemes, especially in a parallel, multiprocessor environment. The place of this work is to first and primarily focus on a model class of linear hyperbolic conservation laws for which concrete mathematical results, methodologies, error estimates, convergence criteria, and parallel adaptive strategies can be developed, and to then briefly explore some extensions to more general cases. Next, we provide preliminaries to the study and a review of some aspects of the theory of hyperbolic conservation laws. We also provide a review of relevant literature on this subject and on the numerical analysis of these types of problems.
Lenski, Richard E.; Wiser, Michael J.; Ribeck, Noah; Blount, Zachary D.; Nahum, Joshua R.; Morris, J. Jeffrey; Zaman, Luis; Turner, Caroline B.; Wade, Brian D.; Maddamsetti, Rohan; Burmeister, Alita R.; Baird, Elizabeth J.; Bundy, Jay; Grant, Nkrumah A.; Card, Kyle J.; Rowles, Maia; Weatherspoon, Kiyana; Papoulis, Spiridon E.; Sullivan, Rachel; Clark, Colleen; Mulka, Joseph S.; Hajela, Neerja
2015-01-01
Many populations live in environments subject to frequent biotic and abiotic changes. Nonetheless, it is interesting to ask whether an evolving population's mean fitness can increase indefinitely, and potentially without any limit, even in a constant environment. A recent study showed that fitness trajectories of Escherichia coli populations over 50 000 generations were better described by a power-law model than by a hyperbolic model. According to the power-law model, the rate of fitness gain declines over time but fitness has no upper limit, whereas the hyperbolic model implies a hard limit. Here, we examine whether the previously estimated power-law model predicts the fitness trajectory for an additional 10 000 generations. To that end, we conducted more than 1100 new competitive fitness assays. Consistent with the previous study, the power-law model fits the new data better than the hyperbolic model. We also analysed the variability in fitness among populations, finding subtle, but significant, heterogeneity in mean fitness. Some, but not all, of this variation reflects differences in mutation rate that evolved over time. Taken together, our results imply that both adaptation and divergence can continue indefinitely—or at least for a long time—even in a constant environment. PMID:26674951
Time discounting and smoking behavior: evidence from a panel survey(*).
Kang, Myong-Il; Ikeda, Shinsuke
2014-12-01
By using a panel survey of Japanese adults, we show that smoking behavior is associated with personal time discounting and its biases, such as hyperbolic discounting and the sign effect, in the way that theory predicts: smoking depends positively on the discount rate and the degree of hyperbolic discounting and negatively on the presence of the sign effect. Positive effects of hyperbolic discounting on smoking are salient for naïve people, who are not aware of their self-control problem. By estimating smoking participation and smokers' cigarette consumption in Cragg's two-part model, we find that the two smoking decisions depend on different sets of time-discounting variables. Particularly, smoking participation is affected by being a naïve hyperbolic discounter, whereas the discount rate, the presence of the sign effect, and a hyperbolic discounting proxy constructed from procrastination behavior vis-à-vis doing homework assignments affect both types of decision making. The panel data enable us to analyze the over-time instability of elicited discount rates. The instability is shown to come from measurement errors, rather than preference shocks on time preference. Several evidences indicate that the detected associations between time preferences and smoking behavior are interpersonal one, rather than within-personal one. Copyright © 2013 John Wiley & Sons, Ltd.
NASA Astrophysics Data System (ADS)
Kulikova, N. V.; Chepurova, V. M.
2009-10-01
So far we investigated the nonperturbation dynamics of meteoroid complexes. The numerical integration of the differential equations of motion in the N-body problem by the Everhart algorithm (N=2-6) and introduction of the intermediate hyperbolic orbits build on the base of the generalized problem of two fixed centers permit to take into account some gravitational perturbations.
Ion beam figuring of Φ520mm convex hyperbolic secondary mirror
NASA Astrophysics Data System (ADS)
Meng, Xiaohui; Wang, Yonggang; Li, Ang; Li, Wenqing
2016-10-01
The convex hyperbolic secondary mirror is a Φ520-mm Zerodur lightweight hyperbolic convex mirror. Typically conventional methods like CCOS, stressed-lap polishing are used to manufacture this secondary mirror. Nevertheless, the required surface accuracy cannot be achieved through the use of conventional polishing methods because of the unpredictable behavior of the polishing tools, which leads to an unstable removal rate. Ion beam figuring is an optical fabrication method that provides highly controlled error of previously polished surfaces using a directed, inert and neutralized ion beam to physically sputter material from the optic surface. Several iterations with different ion beam size are selected and optimized to fit different stages of surface figure error and spatial frequency components. Before ion beam figuring, surface figure error of the secondary mirror is 2.5λ p-v, 0.23λ rms, and is improved to 0.12λ p-v, 0.014λ rms in several process iterations. The demonstration clearly shows that ion beam figuring can not only be used to the final correction of aspheric, but also be suitable for polishing the coarse surface of large, complex mirror.
A Novel Higher Order Artificial Neural Networks
NASA Astrophysics Data System (ADS)
Xu, Shuxiang
2010-05-01
In this paper a new Higher Order Neural Network (HONN) model is introduced and applied in several data mining tasks. Data Mining extracts hidden patterns and valuable information from large databases. A hyperbolic tangent function is used as the neuron activation function for the new HONN model. Experiments are conducted to demonstrate the advantages and disadvantages of the new HONN model, when compared with several conventional Artificial Neural Network (ANN) models: Feedforward ANN with the sigmoid activation function; Feedforward ANN with the hyperbolic tangent activation function; and Radial Basis Function (RBF) ANN with the Gaussian activation function. The experimental results seem to suggest that the new HONN holds higher generalization capability as well as abilities in handling missing data.
Explicit blow-up solutions to the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2}
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ding Qing
2009-10-15
In this article, we prove that the equation of the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2} is SU(1,1)-gauge equivalent to the following 1+2 dimensional nonlinear Schroedinger-type system of three unknown complex functions p, q, r, and a real function u: iq{sub t}+q{sub zz}-2uq+2(pq){sub z}-2pq{sub z}-4|p|{sup 2}q=0, ir{sub t}-r{sub zz}+2ur+2(pr){sub z}-2pr{sub z}+4|p|{sup 2}r=0, ip{sub t}+(qr){sub z}-u{sub z}=0, p{sub z}+p{sub z}=-|q|{sup 2}+|r|{sup 2}, -r{sub z}+q{sub z}=-2(pr+pq), where z is a complex coordinate of the plane R{sup 2} and z is the complex conjugate of z. Although this nonlinear Schroedinger-type system looks complicated, it admits a class ofmore » explicit blow-up smooth solutions: p=0, q=(e{sup i(bzz/2(a+bt))}/a+bt){alpha}z, r=e{sup -i(bzz/2(a+bt))}/(a+bt){alpha}z, u=2{alpha}{sup 2}zz/(a+bt){sup 2}, where a and b are real numbers with ab<0 and {alpha} satisfies {alpha}{sup 2}=b{sup 2}/16. From these facts, we explicitly construct smooth solutions to the Schroedinger maps from R{sup 2} to the hyperbolic 2-space H{sup 2} by using the gauge transformations such that the absolute values of their gradients blow up in finite time. This reveals some blow-up phenomenon of Schroedinger maps.« less
NASA Astrophysics Data System (ADS)
Singh, Kirmender; Bhattacharyya, A. B.
2017-03-01
Gummel Symmetry Test (GST) has been a benchmark industry standard for MOSFET models and is considered as one of important tests by the modeling community. BSIM4 MOSFET model fails to pass GST as the drain current equation is not symmetrical because drain and source potentials are not referenced to bulk. BSIM6 MOSFET model overcomes this limitation by taking all terminal biases with reference to bulk and using proper velocity saturation (v -E) model. The drain current equation in BSIM6 is charge based and continuous in all regions of operation. It, however, adopts a complicated method to compute source and drain charges. In this work we propose to use conventional charge based method formulated by Enz for obtaining simpler analytical drain current expression that passes GST. For this purpose we adopt two steps: (i) In the first step we use a modified first-order hyperbolic v -E model with adjustable coefficients which is integrable, simple and accurate, and (ii) In the second we use a multiplying factor in the modified first-order hyperbolic v -E expression to obtain correct monotonic asymptotic behavior around the origin of lateral electric field. This factor is of empirical form, which is a function of drain voltage (vd) and source voltage (vs) . After considering both the above steps we obtain drain current expression whose accuracy is similar to that obtained from second-order hyperbolic v -E model. In modified first-order hyperbolic v -E expression if vd and vs is replaced by smoothing functions for the effective drain voltage (vdeff) and effective source voltage (vseff), it will as well take care of discontinuity between linear to saturation regions of operation. The condition of symmetry is shown to be satisfied by drain current and its higher order derivatives, as both of them are odd functions and their even order derivatives smoothly pass through the origin. In strong inversion region and technology node of 22 nm the GST is shown to pass till sixth-order derivative and for weak inversion it is shown till fifth-order derivative. In the expression of drain current major short channel phenomena like vertical field mobility reduction, velocity saturation and velocity overshoot have been taken into consideration.
The hidden hyperbolic geometry of international trade: World Trade Atlas 1870-2013.
García-Pérez, Guillermo; Boguñá, Marián; Allard, Antoine; Serrano, M Ángeles
2016-09-16
Here, we present the World Trade Atlas 1870-2013, a collection of annual world trade maps in which distance combines economic size and the different dimensions that affect international trade beyond mere geography. Trade distances, based on a gravity model predicting the existence of significant trade channels, are such that the closer countries are in trade space, the greater their chance of becoming connected. The atlas provides us with information regarding the long-term evolution of the international trade system and demonstrates that, in terms of trade, the world is not flat but hyperbolic, as a reflection of its complex architecture. The departure from flatness has been increasing since World War I, meaning that differences in trade distances are growing and trade networks are becoming more hierarchical. Smaller-scale economies are moving away from other countries except for the largest economies; meanwhile those large economies are increasing their chances of becoming connected worldwide. At the same time, Preferential Trade Agreements do not fit in perfectly with natural communities within the trade space and have not necessarily reduced internal trade barriers. We discuss an interpretation in terms of globalization, hierarchization, and localization; three simultaneous forces that shape the international trade system.
The hidden hyperbolic geometry of international trade: World Trade Atlas 1870-2013
NASA Astrophysics Data System (ADS)
García-Pérez, Guillermo; Boguñá, Marián; Allard, Antoine; Serrano, M. Ángeles
2016-09-01
Here, we present the World Trade Atlas 1870-2013, a collection of annual world trade maps in which distance combines economic size and the different dimensions that affect international trade beyond mere geography. Trade distances, based on a gravity model predicting the existence of significant trade channels, are such that the closer countries are in trade space, the greater their chance of becoming connected. The atlas provides us with information regarding the long-term evolution of the international trade system and demonstrates that, in terms of trade, the world is not flat but hyperbolic, as a reflection of its complex architecture. The departure from flatness has been increasing since World War I, meaning that differences in trade distances are growing and trade networks are becoming more hierarchical. Smaller-scale economies are moving away from other countries except for the largest economies; meanwhile those large economies are increasing their chances of becoming connected worldwide. At the same time, Preferential Trade Agreements do not fit in perfectly with natural communities within the trade space and have not necessarily reduced internal trade barriers. We discuss an interpretation in terms of globalization, hierarchization, and localization; three simultaneous forces that shape the international trade system.
NASA Astrophysics Data System (ADS)
Cohen, Timothy; Craig, Nathaniel; Giudice, Gian F.; McCullough, Matthew
2018-05-01
We introduce the Hyperbolic Higgs, a novel solution to the little hierarchy problem that features Standard Model neutral scalar top partners. At one-loop order, the protection from ultraviolet sensitivity is due to an accidental non-compact symmetry of the Higgs potential that emerges in the infrared. Once the general features of the effective description are detailed, a completion that relies on a five dimensional supersymmetric framework is provided. Novel phenomenology is compared and contrasted with the Twin Higgs scenario.
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics is presented. This approach integrates stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics is used (1) to remove non-hyperbolicity which an obstruction to applying stable inversion techniques and (2) to reduce large pre-actuation time needed to apply stable inversion for near non-hyperbolic cases. The method is applied to an example helicopter hover control problem with near non-hyperbolic internal dynamic for illustrating the trade-off between exact tracking and reduction of pre-actuation time.
NASA Astrophysics Data System (ADS)
Giomi, Luca
2012-09-01
Fluid interfaces, such as soap films, liquid droplets, or lipid membranes, are known to give rise to several special geometries, whose complexity and beauty continue to fascinate us, as observers of the natural world, and challenge us as scientists. Here I show that a special class of surfaces of constant negative Gaussian curvature can be obtained in fluid interfaces equipped with an orientational ordered phase. These arise in various soft and biological materials, such as nematic liquid crystals, cytoskeletal assemblies, or hexatic colloidal suspensions. The purely hyperbolic morphology originates from the competition between surface tension, that reduces the area of the interface at the expense of increasing its Gaussian curvature, and the orientational elasticity of the ordered phase, that in turn suffers for the distortion induced by the underlying curvature.
Multi-wavelength Observations and Modeling of Solar Flares: Magnetic Structures
NASA Astrophysics Data System (ADS)
Su, Y.
2017-12-01
We present a review of our recent investigations on multi-wavelength observations and magnetic field modeling of solar flares. High-resolution observations taken by NVST and BBSO/NST reveal unprecedented fine structures of the flaring regions. Observations by SDO, IRIS, and GOES provide the complementary information. The magnetic field models are constructed using either non-linear force free field extrapolations or flux rope insertion method. Our studies have shown that the flaring regions often consist of double or multiple flux ropes, which often exist at different heights. The fine flare ribbon structures may be due to the magnetic reconnection in the complex quasi separatrix layers. The magnetic field modeling of several large flares suggests that the so called hot-channel structure is corresponding to the erupting flux rope above the X-point in a magnetic configuration with Hyperbolic Flux Tube.
Isometric immersions and self-similar buckling in elastic sheets.
NASA Astrophysics Data System (ADS)
Gemmer, John
The edges of torn elastic sheets and growing leaves often display hierarchical self-similar like buckling patterns. On the one hand, such complex, self similar patterns are usually associated with a competition between two distinct energy scales, e.g. elastic sheets with boundary conditions that preclude the possibility of relieving in plane strains, or at alloy-alloy interfaces between distinct crystal structures. On the other hand, within the non-Euclidean plate theory this complex morphology can be understood as low bending energy isometric immersions of hyperbolic Riemannian metrics. In particular, many growth patterns generate residual in-plane strains which can be entirely relieved by the sheet forming part of a surface of revolution or a helix. In this talk we will show that this complex morphology (i) arises from isometric immersions (ii) is driven by a competition between the two principal curvatures, rather than between bending and stretching. We identify the key role of branch-point (or monkey-saddle) singularities, in complex wrinkling patterns within the class of finite bending energy isometric immersions. Using these defects we will give an explicit construction of strain-free embeddings of hyperbolic surfaces that are fractal like and have lower elastic energy than their smooth counterparts US-Israel BSF Grant 2008432. NSF Grant DMS-0807501. NSF-RTG Grant DMS-1148284.
Marcus, Leanne; Plumeri, Julia; Baker, Gary M; Miller, Jon S
2013-06-01
A previously published classroom teaching method for helping students visualize and understand Michaelis-Menten kinetics (19) was used as an anticipatory set with high school and middle school science teachers in an Illinois Math and Science Partnership Program. As part of the activity, the teachers were asked to collect data by replicating the method and to analyze and report the data. All concluded that the rate data they had collected were hyperbolic. As part of a guided inquiry plan, teachers were then prompted to reexamine the method and evaluate its efficacy as a teaching strategy for developing specific kinetic concepts. After further data collection and analysis, the teachers discovered that their data trends were not, in fact, hyperbolic, which led to several teacher-developed revisions aimed at obtaining a true hyperbolic outcome. This article outlines the inquiry process that led to these revisions and illustrates their alignment with several key concepts, such as rapid equilibrium kinetics. Instructional decisions were necessary at several key points, and these are discussed.
A model and numerical method for compressible flows with capillary effects
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schmidmayer, Kevin, E-mail: kevin.schmidmayer@univ-amu.fr; Petitpas, Fabien, E-mail: fabien.petitpas@univ-amu.fr; Daniel, Eric, E-mail: eric.daniel@univ-amu.fr
2017-04-01
A new model for interface problems with capillary effects in compressible fluids is presented together with a specific numerical method to treat capillary flows and pressure waves propagation. This new multiphase model is in agreement with physical principles of conservation and respects the second law of thermodynamics. A new numerical method is also proposed where the global system of equations is split into several submodels. Each submodel is hyperbolic or weakly hyperbolic and can be solved with an adequate numerical method. This method is tested and validated thanks to comparisons with analytical solutions (Laplace law) and with experimental results onmore » droplet breakup induced by a shock wave.« less
NASA Technical Reports Server (NTRS)
Chan, William M.
1992-01-01
The following papers are presented: (1) numerical methods for the simulation of complex multi-body flows with applications for the Integrated Space Shuttle vehicle; (2) a generalized scheme for 3-D hyperbolic grid generation; (3) collar grids for intersecting geometric components within the Chimera overlapped grid scheme; and (4) application of the Chimera overlapped grid scheme to simulation of Space Shuttle ascent flows.
Impact of hyperbolicity on chimera states in ensembles of nonlocally coupled chaotic oscillators
DOE Office of Scientific and Technical Information (OSTI.GOV)
Semenova, N.; Anishchenko, V.; Zakharova, A.
2016-06-08
In this work we analyse nonlocally coupled networks of identical chaotic oscillators. We study both time-discrete and time-continuous systems (Henon map, Lozi map, Lorenz system). We hypothesize that chimera states, in which spatial domains of coherent (synchronous) and incoherent (desynchronized) dynamics coexist, can be obtained only in networks of chaotic non-hyperbolic systems and cannot be found in networks of hyperbolic systems. This hypothesis is supported by numerical simulations for hyperbolic and non-hyperbolic cases.
2014-01-01
The single parameter hyperbolic model has been frequently used to describe value discounting as a function of time and to differentiate substance abusers and non-clinical participants with the model's parameter k. However, k says little about the mechanisms underlying the observed differences. The present study evaluates several alternative models with the purpose of identifying whether group differences stem from differences in subjective valuation, and/or time perceptions. Using three two-parameter models, plus secondary data analyses of 14 studies with 471 indifference point curves, results demonstrated that adding a valuation, or a time perception function led to better model fits. However, the gain in fit due to the flexibility granted by a second parameter did not always lead to a better understanding of the data patterns and corresponding psychological processes. The k parameter consistently indexed group and context (magnitude) differences; it is thus a mixed measure of person and task level effects. This was similar for a parameter meant to index payoff devaluation. A time perception parameter, on the other hand, fluctuated with contexts in a non-predicted fashion and the interpretation of its values was inconsistent with prior findings that supported enlarged perceived delays for substance abusers compared to controls. Overall, the results provide mixed support for hyperbolic models of intertemporal choice in terms of the psychological meaning afforded by their parameters. PMID:25390941
NASA Technical Reports Server (NTRS)
Bey, Kim S.; Oden, J. Tinsley
1993-01-01
A priori error estimates are derived for hp-versions of the finite element method for discontinuous Galerkin approximations of a model class of linear, scalar, first-order hyperbolic conservation laws. These estimates are derived in a mesh dependent norm in which the coefficients depend upon both the local mesh size h(sub K) and a number p(sub k) which can be identified with the spectral order of the local approximations over each element.
NASA Astrophysics Data System (ADS)
Oniga, E.; Chirilă, C.; Stătescu, F.
2017-02-01
Nowadays, Unmanned Aerial Systems (UASs) are a wide used technique for acquisition in order to create buildings 3D models, providing the acquisition of a high number of images at very high resolution or video sequences, in a very short time. Since low-cost UASs are preferred, the accuracy of a building 3D model created using this platforms must be evaluated. To achieve results, the dean's office building from the Faculty of "Hydrotechnical Engineering, Geodesy and Environmental Engineering" of Iasi, Romania, has been chosen, which is a complex shape building with the roof formed of two hyperbolic paraboloids. Seven points were placed on the ground around the building, three of them being used as GCPs, while the remaining four as Check points (CPs) for accuracy assessment. Additionally, the coordinates of 10 natural CPs representing the building characteristic points were measured with a Leica TCR 405 total station. The building 3D model was created as a point cloud which was automatically generated based on digital images acquired with the low-cost UASs, using the image matching algorithm and different software like 3DF Zephyr, Visual SfM, PhotoModeler Scanner and Drone2Map for ArcGIS. Except for the PhotoModeler Scanner software, the interior and exterior orientation parameters were determined simultaneously by solving a self-calibrating bundle adjustment. Based on the UAS point clouds, automatically generated by using the above mentioned software and GNSS data respectively, the parameters of the east side hyperbolic paraboloid were calculated using the least squares method and a statistical blunder detection. Then, in order to assess the accuracy of the building 3D model, several comparisons were made for the facades and the roof with reference data, considered with minimum errors: TLS mesh for the facades and GNSS mesh for the roof. Finally, the front facade of the building was created in 3D based on its characteristic points using the PhotoModeler Scanner software, resulting a CAD (Computer Aided Design) model. The results showed the high potential of using low-cost UASs for building 3D model creation and if the building 3D model is created based on its characteristic points the accuracy is significantly improved.
Doubly stratified MHD tangent hyperbolic nanofluid flow due to permeable stretched cylinder
NASA Astrophysics Data System (ADS)
Nagendramma, V.; Leelarathnam, A.; Raju, C. S. K.; Shehzad, S. A.; Hussain, T.
2018-06-01
An investigation is exhibited to analyze the presence of heat source and sink in doubly stratified MHD incompressible tangent hyperbolic fluid due to stretching of cylinder embedded in porous space under nanoparticles. To develop the mathematical model of tangent hyperbolic nanofluid, movement of Brownian and thermophoretic are accounted. The established equations of continuity, momentum, thermal and solutal boundary layers are reassembled into sets of non-linear expressions. These assembled expressions are executed with the help of Runge-Kutta scheme with MATLAB. The impacts of sundry parameters are illustrated graphically and the engineering interest physical quantities like skin friction, Nusselt and Sherwood number are examined by computing numerical values. It is clear that the power-law index parameter and curvature parameter shows favorable effect on momentum boundary layer thickness whereas Weissennberg number reveals inimical influence.
Exponential Boundary Observers for Pressurized Water Pipe
NASA Astrophysics Data System (ADS)
Hermine Som, Idellette Judith; Cocquempot, Vincent; Aitouche, Abdel
2015-11-01
This paper deals with state estimation on a pressurized water pipe modeled by nonlinear coupled distributed hyperbolic equations for non-conservative laws with three known boundary measures. Our objective is to estimate the fourth boundary variable, which will be useful for leakage detection. Two approaches are studied. Firstly, the distributed hyperbolic equations are discretized through a finite-difference scheme. By using the Lipschitz property of the nonlinear term and a Lyapunov function, the exponential stability of the estimation error is proven by solving Linear Matrix Inequalities (LMIs). Secondly, the distributed hyperbolic system is preserved for state estimation. After state transformations, a Luenberger-like PDE boundary observer based on backstepping mathematical tools is proposed. An exponential Lyapunov function is used to prove the stability of the resulted estimation error. The performance of the two observers are shown on a water pipe prototype simulated example.
Kelly, Priscilla; Liu, Mingzhao; Kuznetsova, Lyuba
2016-04-07
In this study, nano-layered Al:ZnO/ZnO hyperbolic dispersion metamaterial with a large number of layers was fabricated using the atomic layer deposition (ALD) technique. Experimental dielectric functions for Al:ZnO/ZnO structures are obtained by an ellipsometry technique in the visible and near-infrared spectral ranges. The theoretical modeling of the Al:ZnO/ZnO dielectric permittivity is done using effective medium approximation. A method for analysis of spectroscopic ellipsometry data is demonstrated to extract the optical permittivity for this highly anisotropic nano-layered metamaterial. The results of the ellipsometry analysis show that Al:ZnO/ZnO structures with a 1:9 ALD cycle ratio exhibit hyperbolic dispersion transition change near 1.8more » μm wavelength.« less
Well-posedness of the Cauchy problem for models of large amplitude internal waves
NASA Astrophysics Data System (ADS)
Guyenne, Philippe; Lannes, David; Saut, Jean-Claude
2010-02-01
We consider in this paper the 'shallow-water/shallow-water' asymptotic model obtained in Choi and Camassa (1999 J. Fluid Mech. 396 1-36), Craig et al (2005 Commun. Pure. Appl. Math. 58 1587-641) (one-dimensional interface) and Bona et al (2008 J. Math. Pures Appl. 89 538-66) (two-dimensional interface) from the two-layer system with rigid lid, for the description of large amplitude internal waves at the interface of two layers of immiscible fluids of different densities. For one-dimensional interfaces, this system is of hyperbolic type and its local well-posedness does not raise serious difficulties, although other issues (blow-up, loss of hyperbolicity, etc) turn out to be delicate. For two-dimensional interfaces, the system is nonlocal. Nevertheless, we prove that it conserves some properties of 'hyperbolic type' and show that the associated Cauchy problem is locally well posed in suitable Sobolev classes provided some natural restrictions are imposed on the data. These results are illustrated by numerical simulations with emphasis on the formation of shock waves.
Contracting singular horseshoe
NASA Astrophysics Data System (ADS)
Morales, C. A.; San Martín, B.
2017-11-01
We suggest a notion of hyperbolicity adapted to the geometric Rovella attractor (Robinson 2012 An Introduction to Dynamical Systems—Continuous and Discrete (Pure and Applied Undergraduate Texts vol 19) 2nd edn (Providence, RI: American Mathematical Society)) . More precisely, we call a partially hyperbolic set asymptotically sectional-hyperbolic if its singularities are hyperbolic and if its central subbundle is asymptotically sectional expanding outside the stable manifolds of the singularities. We prove that there are highly chaotic flows with Rovella-like singularities exhibiting this kind of hyperbolicity. We shall call them contracting singular horseshoes.
NASA Astrophysics Data System (ADS)
Patel, Ravi; Kong, Bo; Capecelatro, Jesse; Fox, Rodney; Desjardins, Olivier
2017-11-01
Particle-laden turbulent flows are important features of many environmental and industrial processes. Euler-Euler (EE) simulations of these flows are more computationally efficient than Euler-Lagrange (EL) simulations. However, traditional EE methods, such as the two-fluid model, cannot faithfully capture dilute regions of flow with finite Stokes number particles. For this purpose, the multi-valued nature of the particle velocity field must be treated with a polykinetic description. Various quadrature-based moment methods (QBMM) can be used to approximate the full kinetic description by solving for a set of moments of the particle velocity distribution function (VDF) and providing closures for the higher-order moments. Early QBMM fail to maintain the strict hyperbolicity of the kinetic equations, producing unphysical delta shocks (i.e., mass accumulation at a point). In previous work, a 2-D conditional hyperbolic quadrature method of moments (CHyQMOM) was proposed as a fourth-order QBMM closure that maintains strict hyperbolicity. Here, we present the 3-D extension of CHyQMOM. We compare results from CHyQMOM to other QBMM and EL in the context of particle trajectory crossing, cluster-induced turbulence, and particle-laden channel flow. NSF CBET-1437903.
The hidden hyperbolic geometry of international trade: World Trade Atlas 1870–2013
García-Pérez, Guillermo; Boguñá, Marián; Allard, Antoine; Serrano, M. Ángeles
2016-01-01
Here, we present the World Trade Atlas 1870–2013, a collection of annual world trade maps in which distance combines economic size and the different dimensions that affect international trade beyond mere geography. Trade distances, based on a gravity model predicting the existence of significant trade channels, are such that the closer countries are in trade space, the greater their chance of becoming connected. The atlas provides us with information regarding the long-term evolution of the international trade system and demonstrates that, in terms of trade, the world is not flat but hyperbolic, as a reflection of its complex architecture. The departure from flatness has been increasing since World War I, meaning that differences in trade distances are growing and trade networks are becoming more hierarchical. Smaller-scale economies are moving away from other countries except for the largest economies; meanwhile those large economies are increasing their chances of becoming connected worldwide. At the same time, Preferential Trade Agreements do not fit in perfectly with natural communities within the trade space and have not necessarily reduced internal trade barriers. We discuss an interpretation in terms of globalization, hierarchization, and localization; three simultaneous forces that shape the international trade system. PMID:27633649
The art and science of hyperbolic tessellations.
Van Dusen, B; Taylor, R P
2013-04-01
The visual impact of hyperbolic tessellations has captured artists' imaginations ever since M.C. Escher generated his Circle Limit series in the 1950s. The scaling properties generated by hyperbolic geometry are different to the fractal scaling properties found in nature's scenery. Consequently, prevalent interpretations of Escher's art emphasize the lack of connection with nature's patterns. However, a recent collaboration between the two authors proposed that Escher's motivation for using hyperbolic geometry was as a method to deliberately distort nature's rules. Inspired by this hypothesis, this year's cover artist, Ben Van Dusen, embeds natural fractals such as trees, clouds and lightning into a hyperbolic scaling grid. The resulting interplay of visual structure at multiple size scales suggests that hybridizations of fractal and hyperbolic geometries provide a rich compositional tool for artists.
Linear guided waves in a hyperbolic planar waveguide. Dispersion relations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lyashko, E I; Maimistov, A I
2015-11-30
We have theoretically investigated waveguide modes propagating in a planar waveguide formed by a layer of an isotropic dielectric surrounded by hyperbolic media. The case, when the optical axis of hyperbolic media is perpendicular to the interface, is considered. Dispersion relations are derived for the cases of TE and TM waves. The differences in the characteristics of a hyperbolic and a conventional dielectric waveguide are found. In particular, it is shown that in hyperbolic waveguides for each TM mode there are two cut-off frequencies and the number of propagating modes is always limited. (metamaterials)
Hyperbolic-symmetry vector fields.
Gao, Xu-Zhen; Pan, Yue; Cai, Meng-Qiang; Li, Yongnan; Tu, Chenghou; Wang, Hui-Tian
2015-12-14
We present and construct a new kind of orthogonal coordinate system, hyperbolic coordinate system. We present and design a new kind of local linearly polarized vector fields, which is defined as the hyperbolic-symmetry vector fields because the points with the same polarization form a series of hyperbolae. We experimentally demonstrate the generation of such a kind of hyperbolic-symmetry vector optical fields. In particular, we also study the modified hyperbolic-symmetry vector optical fields with the twofold and fourfold symmetric states of polarization when introducing the mirror symmetry. The tight focusing behaviors of these vector fields are also investigated. In addition, we also fabricate micro-structures on the K9 glass surfaces by several tightly focused (modified) hyperbolic-symmetry vector fields patterns, which demonstrate that the simulated tightly focused fields are in good agreement with the fabricated micro-structures.
Leão, William L.; Chen, Ming-Hui
2017-01-01
A stochastic volatility-in-mean model with correlated errors using the generalized hyperbolic skew Student-t (GHST) distribution provides a robust alternative to the parameter estimation for daily stock returns in the absence of normality. An efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed for parameter estimation. The deviance information, the Bayesian predictive information and the log-predictive score criterion are used to assess the fit of the proposed model. The proposed method is applied to an analysis of the daily stock return data from the Standard & Poor’s 500 index (S&P 500). The empirical results reveal that the stochastic volatility-in-mean model with correlated errors and GH-ST distribution leads to a significant improvement in the goodness-of-fit for the S&P 500 index returns dataset over the usual normal model. PMID:29333210
Leão, William L; Abanto-Valle, Carlos A; Chen, Ming-Hui
2017-01-01
A stochastic volatility-in-mean model with correlated errors using the generalized hyperbolic skew Student-t (GHST) distribution provides a robust alternative to the parameter estimation for daily stock returns in the absence of normality. An efficient Markov chain Monte Carlo (MCMC) sampling algorithm is developed for parameter estimation. The deviance information, the Bayesian predictive information and the log-predictive score criterion are used to assess the fit of the proposed model. The proposed method is applied to an analysis of the daily stock return data from the Standard & Poor's 500 index (S&P 500). The empirical results reveal that the stochastic volatility-in-mean model with correlated errors and GH-ST distribution leads to a significant improvement in the goodness-of-fit for the S&P 500 index returns dataset over the usual normal model.
On the local well-posedness of Lovelock and Horndeski theories
NASA Astrophysics Data System (ADS)
Papallo, Giuseppe; Reall, Harvey S.
2017-08-01
We investigate local well-posedness of the initial value problem for Lovelock and Horndeski theories of gravity. A necessary condition for local well-posedness is strong hyperbolicity of the equations of motion. Even weak hyperbolicity can fail for strong fields so we restrict to weak fields. The Einstein equation is known to be strongly hyperbolic in harmonic gauge so we study Lovelock theories in harmonic gauge. We show that the equation of motion is always weakly hyperbolic for weak fields but, in a generic weak-field background, it is not strongly hyperbolic. For Horndeski theories, we prove that, for weak fields, the equation of motion is always weakly hyperbolic in any generalized harmonic gauge. For some Horndeski theories there exists a generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a weak-field background. This includes "k-essence" like theories. However, for more general Horndeski theories, there is no generalized harmonic gauge for which the equation of motion is strongly hyperbolic in a generic weak-field background. Our results show that the standard method used to establish local well-posedness of the Einstein equation does not extend to Lovelock or general Horndeski theories. This raises the possibility that these theories may not admit a well-posed initial value problem even for weak fields.
SToRM: A Model for 2D environmental hydraulics
Simões, Francisco J. M.
2017-01-01
A two-dimensional (depth-averaged) finite volume Godunov-type shallow water model developed for flow over complex topography is presented. The model, SToRM, is based on an unstructured cell-centered finite volume formulation and on nonlinear strong stability preserving Runge-Kutta time stepping schemes. The numerical discretization is founded on the classical and well established shallow water equations in hyperbolic conservative form, but the convective fluxes are calculated using auto-switching Riemann and diffusive numerical fluxes. Computational efficiency is achieved through a parallel implementation based on the OpenMP standard and the Fortran programming language. SToRM’s implementation within a graphical user interface is discussed. Field application of SToRM is illustrated by utilizing it to estimate peak flow discharges in a flooding event of the St. Vrain Creek in Colorado, U.S.A., in 2013, which reached 850 m3/s (~30,000 f3 /s) at the location of this study.
Fundamental Theorems of Algebra for the Perplexes
ERIC Educational Resources Information Center
Poodiak, Robert; LeClair, Kevin
2009-01-01
The fundamental theorem of algebra for the complex numbers states that a polynomial of degree n has n roots, counting multiplicity. This paper explores the "perplex number system" (also called the "hyperbolic number system" and the "spacetime number system") In this system (which has extra roots of +1 besides the usual [plus or minus]1 of the…
Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendices; Index.
Student Solution Manual for Foundation Mathematics for the Physical Sciences
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2011-03-01
1. Arithmetic and geometry; 2. Preliminary algebra; 3. Differential calculus; 4. Integral calculus; 5. Complex numbers and hyperbolic functions; 6. Series and limits; 7. Partial differentiation; 8. Multiple integrals; 9. Vector algebra; 10. Matrices and vector spaces; 11. Vector calculus; 12. Line, surface and volume integrals; 13. Laplace transforms; 14. Ordinary differential equations; 15. Elementary probability; Appendix.
Hyperbolic metamaterials: Novel physics and applications
NASA Astrophysics Data System (ADS)
Smolyaninov, Igor I.; Smolyaninova, Vera N.
2017-10-01
Hyperbolic metamaterials were originally introduced to overcome the diffraction limit of optical imaging. Soon thereafter it was realized that hyperbolic metamaterials demonstrate a number of novel phenomena resulting from the broadband singular behavior of their density of photonic states. These novel phenomena and applications include super resolution imaging, new stealth technologies, enhanced quantum-electrodynamic effects, thermal hyperconductivity, superconductivity, and interesting gravitation theory analogues. Here we briefly review typical material systems, which exhibit hyperbolic behavior and outline important novel applications of hyperbolic metamaterials. In particular, we will describe recent imaging experiments with plasmonic metamaterials and novel VCSEL geometries, in which the Bragg mirrors may be engineered in such a way that they exhibit hyperbolic metamaterial properties in the long wavelength infrared range, so that they may be used to efficiently remove excess heat from the laser cavity. We will also discuss potential applications of three-dimensional self-assembled photonic hypercrystals, which are based on cobalt ferrofluids in external magnetic field. This system bypasses 3D nanofabrication issues, which typically limit metamaterial applications. Photonic hypercrystals combine the most interesting features of hyperbolic metamaterials and photonic crystals.
NASA Technical Reports Server (NTRS)
Goodrich, John W.
1995-01-01
Two methods for developing high order single step explicit algorithms on symmetric stencils with data on only one time level are presented. Examples are given for the convection and linearized Euler equations with up to the eighth order accuracy in both space and time in one space dimension, and up to the sixth in two space dimensions. The method of characteristics is generalized to nondiagonalizable hyperbolic systems by using exact local polynominal solutions of the system, and the resulting exact propagator methods automatically incorporate the correct multidimensional wave propagation dynamics. Multivariate Taylor or Cauchy-Kowaleskaya expansions are also used to develop algorithms. Both of these methods can be applied to obtain algorithms of arbitrarily high order for hyperbolic systems in multiple space dimensions. Cross derivatives are included in the local approximations used to develop the algorithms in this paper in order to obtain high order accuracy, and improved isotropy and stability. Efficiency in meeting global error bounds is an important criterion for evaluating algorithms, and the higher order algorithms are shown to be up to several orders of magnitude more efficient even though they are more complex. Stable high order boundary conditions for the linearized Euler equations are developed in one space dimension, and demonstrated in two space dimensions.
Micro-scale extensional rheometry using hyperbolic converging/diverging channels and jet breakup
Keshavarz, Bavand
2016-01-01
Understanding the elongational rheology of dilute polymer solutions plays an important role in many biological and industrial applications ranging from microfluidic lab-on-a-chip diagnostics to phenomena such as fuel atomization and combustion. Making quantitative measurements of the extensional viscosity for dilute viscoelastic fluids is a long-standing challenge and it motivates developments in microfluidic fabrication techniques and high speed/strobe imaging of millifluidic capillary phenomena in order to develop new classes of instruments. In this paper, we study the elongational rheology of a family of dilute polymeric solutions in two devices: first, steady pressure-driven flow through a hyperbolic microfluidic contraction/expansion and, second, the capillary driven breakup of a thin filament formed from a small diameter jet (Dj∼O(100 μm)). The small length scale of the device allows very large deformation rates to be achieved. Our results show that in certain limits of low viscosity and elasticity, jet breakup studies offer significant advantages over the hyperbolic channel measurements despite the more complex implementation. Using our results, together with scaling estimates of the competing viscous, elastic, inertial and capillary timescales that control the dynamics, we construct a dimensionless map or nomogram summarizing the operating space for each instrument. PMID:27375824
Magnetic hyperbolic optical metamaterials
Kruk, Sergey S.; Wong, Zi Jing; Pshenay-Severin, Ekaterina; ...
2016-04-13
Strongly anisotropic media where the principal components of electric permittivity or magnetic permeability tensors have opposite signs are termed as hyperbolic media. Such media support propagating electromagnetic waves with extremely large wave vectors exhibiting unique optical properties. However, in all artificial and natural optical materials studied to date, the hyperbolic dispersion originates solely from the electric response. This then restricts material functionality to one polarization of light and inhibits free-space impedance matching. Such restrictions can be overcome in media having components of opposite signs for both electric and magnetic tensors. Here we present the experimental demonstration of the magnetic hyperbolicmore » dispersion in three-dimensional metamaterials. We also measure metamaterial isofrequency contours and reveal the topological phase transition between the elliptic and hyperbolic dispersion. In the hyperbolic regime, we demonstrate the strong enhancement of thermal emission, which becomes directional, coherent and polarized. These findings show the possibilities for realizing efficient impedance-matched hyperbolic media for unpolarized light.« less
Levine, M W
1991-01-01
Simulated neural impulse trains were generated by a digital realization of the integrate-and-fire model. The variability in these impulse trains had as its origin a random noise of specified distribution. Three different distributions were used: the normal (Gaussian) distribution (no skew, normokurtic), a first-order gamma distribution (positive skew, leptokurtic), and a uniform distribution (no skew, platykurtic). Despite these differences in the distribution of the variability, the distributions of the intervals between impulses were nearly indistinguishable. These inter-impulse distributions were better fit with a hyperbolic gamma distribution than a hyperbolic normal distribution, although one might expect a better approximation for normally distributed inverse intervals. Consideration of why the inter-impulse distribution is independent of the distribution of the causative noise suggests two putative interval distributions that do not depend on the assumed noise distribution: the log normal distribution, which is predicated on the assumption that long intervals occur with the joint probability of small input values, and the random walk equation, which is the diffusion equation applied to a random walk model of the impulse generating process. Either of these equations provides a more satisfactory fit to the simulated impulse trains than the hyperbolic normal or hyperbolic gamma distributions. These equations also provide better fits to impulse trains derived from the maintained discharges of ganglion cells in the retinae of cats or goldfish. It is noted that both equations are free from the constraint that the coefficient of variation (CV) have a maximum of unity.(ABSTRACT TRUNCATED AT 250 WORDS)
Towards a General Model of Temporal Discounting
ERIC Educational Resources Information Center
van den Bos, Wouter; McClure, Samuel M.
2013-01-01
Psychological models of temporal discounting have now successfully displaced classical economic theory due to the simple fact that many common behavior patterns, such as impulsivity, were unexplainable with classic models. However, the now dominant hyperbolic model of discounting is itself becoming increasingly strained. Numerous factors have…
Perspective Space as a Model for Distance and Size Perception.
Erkelens, Casper J
2017-01-01
In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception.
Perspective Space as a Model for Distance and Size Perception
2017-01-01
In the literature, perspective space has been introduced as a model of visual space. Perspective space is grounded on the perspective nature of visual space during both binocular and monocular vision. A single parameter, that is, the distance of the vanishing point, transforms the geometry of physical space into that of perspective space. The perspective-space model predicts perceived angles, distances, and sizes. The model is compared with other models for distance and size perception. Perspective space predicts that perceived distance and size as a function of physical distance are described by hyperbolic functions. Alternatively, power functions have been widely used to describe perceived distance and size. Comparison of power and hyperbolic functions shows that both functions are equivalent within the range of distances that have been judged in experiments. Two models describing perceived distance on the ground plane appear to be equivalent with the perspective-space model too. The conclusion is that perspective space unifies a number of models of distance and size perception. PMID:29225765
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauguière, Frédéric A. L., E-mail: frederic.mauguiere@bristol.ac.uk; Collins, Peter, E-mail: peter.collins@bristol.ac.uk; Wiggins, Stephen, E-mail: stephen.wiggins@mac.com
We examine the phase space structures that govern reaction dynamics in the absence of critical points on the potential energy surface. We show that in the vicinity of hyperbolic invariant tori, it is possible to define phase space dividing surfaces that are analogous to the dividing surfaces governing transition from reactants to products near a critical point of the potential energy surface. We investigate the problem of capture of an atom by a diatomic molecule and show that a normally hyperbolic invariant manifold exists at large atom-diatom distances, away from any critical points on the potential. This normally hyperbolic invariantmore » manifold is the anchor for the construction of a dividing surface in phase space, which defines the outer or loose transition state governing capture dynamics. We present an algorithm for sampling an approximate capture dividing surface, and apply our methods to the recombination of the ozone molecule. We treat both 2 and 3 degrees of freedom models with zero total angular momentum. We have located the normally hyperbolic invariant manifold from which the orbiting (outer) transition state is constructed. This forms the basis for our analysis of trajectories for ozone in general, but with particular emphasis on the roaming trajectories.« less
Abdel-Malak, Rania; Ahearn, Gregory A
2014-03-01
Effects of luminal Ca(2+) and Mn(2+) on transmural mucosal to serosal (MS) transport of (3) H-L-leucine were characterized in the isolated and perfused intestine of the American lobster, Homarus americanus. (3) H-L-leucine MS transport in the presence of 20 µM Mn(2+) was a sigmoidal function of luminal amino acid concentration, following the Hill equation for multisite cooperative, carrier-mediated, transport. Luminal Ca(2+) was a non-competitive inhibitor of Mn(2+) -stimulated (3) H-L-leucine MS flux. Amino acid transport was hyperbolically stimulated by luminal Ca(2+) or Mn(2+). During 20 µM Mn(2+) -stimulation of (3) H-L-leucine MS flux, addition of 25 mM Ca(2+) strongly reduced amino acid transport Jmax , without affecting amino acid binding properties. Hyperbolic luminal Mn(2+) stimulation of 20 µM (3) H-L-leucine MS flux was also strongly inhibited by 25 mM luminal Ca(2+) , significantly reducing 20 µM (3) H-L-leucine Jmax . Increasing the luminal concentration of verapamil, a calcium channel blocker, significantly increased MS transport of 20 µM (3) H-L-leucine in the presence of 100 nM Mn(2+) by reducing diffusional Ca(2+) uptake into intestinal epithelial cells through verapamil-sensitive channels. A model is proposed supporting the concept of molecular mimicry, whereby (3) H-L-leucine enters lobster intestinal epithelial cells by one or more amino acid-specific transporters and by a dipeptide-like transporter that is capable of binding and transporting peptide molecular mimics (bis-complexes) between Ca(2+) or Mn(2+) and (3) H-L-leucine using the membrane potential as a major driving force for the transport event. According to the model, Ca(2+) entry through apical Ca(2+) channels regulates the magnitude of the membrane potential and therefore the size of the driving force for bis-complex uptake. © 2013 Wiley Periodicals, Inc.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dumbser, Michael, E-mail: michael.dumbser@unitn.it; Peshkov, Ilya, E-mail: peshkov@math.nsc.ru; Romenski, Evgeniy, E-mail: evrom@math.nsc.ru
Highlights: • High order schemes for a unified first order hyperbolic formulation of continuum mechanics. • The mathematical model applies simultaneously to fluid mechanics and solid mechanics. • Viscous fluids are treated in the frame of hyper-elasticity as generalized visco-plastic solids. • Formal asymptotic analysis reveals the connection with the Navier–Stokes equations. • The distortion tensor A in the model appears to be well-suited for flow visualization. - Abstract: This paper is concerned with the numerical solution of the unified first order hyperbolic formulation of continuum mechanics recently proposed by Peshkov and Romenski [110], further denoted as HPR model. Inmore » that framework, the viscous stresses are computed from the so-called distortion tensor A, which is one of the primary state variables in the proposed first order system. A very important key feature of the HPR model is its ability to describe at the same time the behavior of inviscid and viscous compressible Newtonian and non-Newtonian fluids with heat conduction, as well as the behavior of elastic and visco-plastic solids. Actually, the model treats viscous and inviscid fluids as generalized visco-plastic solids. This is achieved via a stiff source term that accounts for strain relaxation in the evolution equations of A. Also heat conduction is included via a first order hyperbolic system for the thermal impulse, from which the heat flux is computed. The governing PDE system is hyperbolic and fully consistent with the first and the second principle of thermodynamics. It is also fundamentally different from first order Maxwell–Cattaneo-type relaxation models based on extended irreversible thermodynamics. The HPR model represents therefore a novel and unified description of continuum mechanics, which applies at the same time to fluid mechanics and solid mechanics. In this paper, the direct connection between the HPR model and the classical hyperbolic–parabolic Navier–Stokes–Fourier theory is established for the first time via a formal asymptotic analysis in the stiff relaxation limit. From a numerical point of view, the governing partial differential equations are very challenging, since they form a large nonlinear hyperbolic PDE system that includes stiff source terms and non-conservative products. We apply the successful family of one-step ADER–WENO finite volume (FV) and ADER discontinuous Galerkin (DG) finite element schemes to the HPR model in the stiff relaxation limit, and compare the numerical results with exact or numerical reference solutions obtained for the Euler and Navier–Stokes equations. Numerical convergence results are also provided. To show the universality of the HPR model, the paper is rounded-off with an application to wave propagation in elastic solids, for which one only needs to switch off the strain relaxation source term in the governing PDE system. We provide various examples showing that for the purpose of flow visualization, the distortion tensor A seems to be particularly useful.« less
A Nonlinear Super-Exponential Rational Model of Speculative Financial Bubbles
NASA Astrophysics Data System (ADS)
Sornette, D.; Andersen, J. V.
Keeping a basic tenet of economic theory, rational expectations, we model the nonlinear positive feedback between agents in the stock market as an interplay between nonlinearity and multiplicative noise. The derived hyperbolic stochastic finite-time singularity formula transforms a Gaussian white noise into a rich time series possessing all the stylized facts of empirical prices, as well as accelerated speculative bubbles preceding crashes. We use the formula to invert the two years of price history prior to the recent crash on the Nasdaq (April 2000) and prior to the crash in the Hong Kong market associated with the Asian crisis in early 1994. These complex price dynamics are captured using only one exponent controlling the explosion, the variance and mean of the underlying random walk. This offers a new and powerful detection tool of speculative bubbles and herding behavior.
The Hype over Hyperbolic Browsers.
ERIC Educational Resources Information Center
Allen, Maryellen Mott
2002-01-01
Considers complaints about the usability in the human-computer interaction aspect of information retrieval and discusses information visualization, the Online Library of Information Visualization Environments, hyperbolic information structure, subject searching, real-world applications, relational databases and hyperbolic trees, and the future of…
Covariant symplectic structure of the complex Monge-Ampère equation
NASA Astrophysics Data System (ADS)
Nutku, Y.
2000-04-01
The complex Monge-Ampère equation is invariant under arbitrary holomorphic changes of the independent variables with unit Jacobian. We present its variational formulation where the action remains invariant under this infinite group. The new Lagrangian enables us to obtain the first symplectic 2-form for the complex Monge-Ampère equation in the framework of the covariant Witten-Zuckerman approach to symplectic structure. We base our considerations on a reformulation of the Witten-Zuckerman theory in terms of holomorphic differential forms. The first closed and conserved Witten-Zuckerman symplectic 2-form for the complex Monge-Ampère equation is obtained in arbitrary dimension and for all cases elliptic, hyperbolic and homogeneous. The connection of the complex Monge-Ampère equation with Ricci-flat Kähler geometry suggests the use of the Hilbert action principle as an alternative variational formulation. However, we point out that Hilbert's Lagrangian is a divergence for Kähler metrics and serves as a topological invariant rather than yielding the Euclideanized Einstein field equations. Nevertheless, since the Witten-Zuckerman theory employs only the boundary terms in the first variation of the action, Hilbert's Lagrangian can be used to obtain the second Witten-Zuckerman symplectic 2-form. This symplectic 2-form vanishes on shell, thus defining a Lagrangian submanifold. In its derivation the connection of the second symplectic 2-form with the complex Monge-Ampère equation is indirect but we show that it satisfies all the properties required of a symplectic 2-form for the complex elliptic, or hyperbolic Monge-Ampère equation when the dimension of the complex manifold is 3 or higher. The complex Monge-Ampère equation admits covariant bisymplectic structure for complex dimension 3, or higher. However, in the physically interesting case of n=2 we have only one symplectic 2-form. The extension of these results to the case of complex Monge-Ampère-Liouville equation is also presented.
Trivial dynamics in discrete-time systems: carrying simplex and translation arcs
NASA Astrophysics Data System (ADS)
Niu, Lei; Ruiz-Herrera, Alfonso
2018-06-01
In this paper we show that the dynamical behavior in (first octant) of the classical Kolmogorov systems of competitive type admitting a carrying simplex can be sometimes determined completely by the number of fixed points on the boundary and the local behavior around them. Roughly speaking, T has trivial dynamics (i.e. the omega limit set of any orbit is a connected set contained in the set of fixed points) provided T has exactly four hyperbolic nontrivial fixed points in with local attractors on the carrying simplex and local repellers on the carrying simplex; and there exists a unique hyperbolic fixed point in Int. Our results are applied to some classical models including the Leslie–Gower models, Atkinson-Allen systems and Ricker maps.
Wavelets and Affine Distributions: A Time-Frequency Perspective
2005-01-07
Ville Distribution ( WVD ) • Prominent member of the AC: the WVD • Properties of the WVD : – Covariant to TF scaling and time shift (of course) – Covariant...QTFRs • Wigner - Ville distribution and affine smoothing • Doppler tolerance and hyperbolic impulses • Hyperbolic TF localization and Bertrand P0...satisfy hyperbolic TF localization property: • Not satisfied by WVD ! 25 – 49 –WAMA-04 Cargèse, France The Bertrand P0 distribution • The hyperbolic
Thermal emitter comprising near-zero permittivity materials
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luk, Ting S.; Campione, Salvatore; Sinclair, Michael B.
A novel thermal source comprising a semiconductor hyperbolic metamaterial provides control of the emission spectrum and the angular emission pattern. These properties arise because of epsilon-near-zero conditions in the semiconductor hyperbolic metamaterial. In particular, the thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the semiconductor hyperbolic metamaterial. Furthermore, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy of hyperbolic metamaterials.
NASA Astrophysics Data System (ADS)
Rybalova, Elena; Semenova, Nadezhda; Strelkova, Galina; Anishchenko, Vadim
2017-06-01
We study the transition from coherence (complete synchronization) to incoherence (spatio-temporal chaos) in ensembles of nonlocally coupled chaotic maps with nonhyperbolic and hyperbolic attractors. As basic models of a partial element we use the Henon map and the Lozi map. We show that the transition to incoherence in a ring of coupled Henon maps occurs through the appearance of phase and amplitude chimera states. An ensemble of coupled Lozi maps demonstrates the coherence-incoherence transition via solitary states and no chimera states are observed in this case.
Flows of Newtonian and Power-Law Fluids in Symmetrically Corrugated Cappilary Fissures and Tubes
NASA Astrophysics Data System (ADS)
Walicka, A.
2018-02-01
In this paper, an analytical method for deriving the relationships between the pressure drop and the volumetric flow rate in laminar flow regimes of Newtonian and power-law fluids through symmetrically corrugated capillary fissures and tubes is presented. This method, which is general with regard to fluid and capillary shape, can also be used as a foundation for different fluids, fissures and tubes. It can also be a good base for numerical integration when analytical expressions are hard to obtain due to mathematical complexities. Five converging-diverging or diverging-converging geometrics, viz. wedge and cone, parabolic, hyperbolic, hyperbolic cosine and cosine curve, are used as examples to illustrate the application of this method. For the wedge and cone geometry the present results for the power-law fluid were compared with the results obtained by another method; this comparison indicates a good compatibility between both the results.
NASA Technical Reports Server (NTRS)
Steger, J. L.; Rizk, Y. M.
1985-01-01
An efficient numerical mesh generation scheme capable of creating orthogonal or nearly orthogonal grids about moderately complex three dimensional configurations is described. The mesh is obtained by marching outward from a user specified grid on the body surface. Using spherical grid topology, grids have been generated about full span rectangular wings and a simplified space shuttle orbiter.
Infrared hyperbolic metasurface based on nanostructured van der Waals materials
NASA Astrophysics Data System (ADS)
Li, Peining; Dolado, Irene; Alfaro-Mozaz, Francisco Javier; Casanova, Fèlix; Hueso, Luis E.; Liu, Song; Edgar, James H.; Nikitin, Alexey Y.; Vélez, Saül; Hillenbrand, Rainer
2018-02-01
Metasurfaces with strongly anisotropic optical properties can support deep subwavelength-scale confined electromagnetic waves (polaritons), which promise opportunities for controlling light in photonic and optoelectronic applications. We developed a mid-infrared hyperbolic metasurface by nanostructuring a thin layer of hexagonal boron nitride that supports deep subwavelength-scale phonon polaritons that propagate with in-plane hyperbolic dispersion. By applying an infrared nanoimaging technique, we visualize the concave (anomalous) wavefronts of a diverging polariton beam, which represent a landmark feature of hyperbolic polaritons. The results illustrate how near-field microscopy can be applied to reveal the exotic wavefronts of polaritons in anisotropic materials and demonstrate that nanostructured van der Waals materials can form a highly variable and compact platform for hyperbolic infrared metasurface devices and circuits.
On the Behavior of Eisenstein Series Through Elliptic Degeneration
NASA Astrophysics Data System (ADS)
Garbin, D.; Pippich, A.-M. V.
2009-12-01
Let Γ be a Fuchsian group of the first kind acting on the hyperbolic upper half plane {mathbb{H}}, and let {M = Γbackslash mathbb{H}} be the associated finite volume hyperbolic Riemann surface. If γ is a primitive parabolic, hyperbolic, resp. elliptic element of Γ, there is an associated parabolic, hyperbolic, resp. elliptic Eisenstein series. In this article, we study the limiting behavior of these Eisenstein series on an elliptically degenerating family of finite volume hyperbolic Riemann surfaces. In particular, we prove the following result. The elliptic Eisenstein series associated to a degenerating elliptic element converges up to a factor to the parabolic Eisenstein series associated to the parabolic element which fixes the newly developed cusp on the limit surface.
Hyperbolic metamaterials: new physics behind a classical problem.
Drachev, Vladimir P; Podolskiy, Viktor A; Kildishev, Alexander V
2013-06-17
Hyperbolic materials enable numerous surprising applications that include far-field subwavelength imaging, nanolithography, and emission engineering. The wavevector of a plane wave in these media follows the surface of a hyperboloid in contrast to an ellipsoid for conventional anisotropic dielectric. The consequences of hyperbolic dispersion were first studied in the 50's pertaining to the problems of electromagnetic wave propagation in the Earth's ionosphere and in the stratified artificial materials of transmission lines. Recent years have brought explosive growth in optics and photonics of hyperbolic media based on metamaterials across the optical spectrum. Here we summarize earlier theories in the Clemmow's prescription for transformation of the electromagnetic field in hyperbolic media and provide a review of recent developments in this active research area.
NASA Astrophysics Data System (ADS)
Gammie, Charles F.; Guan, Xiaoyue
2012-10-01
HAM solves non-relativistic hyperbolic partial differential equations in conservative form using high-resolution shock-capturing techniques. This version of HAM has been configured to solve the magnetohydrodynamic equations of motion in axisymmetry to evolve a shearing box model.
A Hyperbolic Ontology Visualization Tool for Model Application Programming Interface Documentation
NASA Technical Reports Server (NTRS)
Hyman, Cody
2011-01-01
Spacecraft modeling, a critically important portion in validating planned spacecraft activities, is currently carried out using a time consuming method of mission to mission model implementations and integration. A current project in early development, Integrated Spacecraft Analysis (ISCA), aims to remedy this hindrance by providing reusable architectures and reducing time spent integrating models with planning and sequencing tools. The principle objective of this internship was to develop a user interface for an experimental ontology-based structure visualization of navigation and attitude control system modeling software. To satisfy this, a number of tree and graph visualization tools were researched and a Java based hyperbolic graph viewer was selected for experimental adaptation. Early results show promise in the ability to organize and display large amounts of spacecraft model documentation efficiently and effectively through a web browser. This viewer serves as a conceptual implementation for future development but trials with both ISCA developers and end users should be performed to truly evaluate the effectiveness of continued development of such visualizations.
NASA Astrophysics Data System (ADS)
Shariati, Maryam; Yortsos, Yannis; Talon, Laurent; Martin, Jerome; Rakotomalala, Nicole; Salin, Dominique
2003-11-01
We consider miscible displacement between parallel plates, where the viscosity is a function of the concentration. By selecting a piece-wise representation, the problem can be considered as ``three-phase'' flow. Assuming a lubrication-type approximation, the mathematical description is in terms of two quasi-linear hyperbolic equations. When the mobility of the middle phase is smaller than its neighbors, the system is genuinely hyperbolic and can be solved analytically. However, when it is larger, an elliptic region develops. This change-of-type behavior is for the first time proved here based on sound physical principles. Numerical solutions with a small diffusion are presented. Good agreement is obtained outside the elliptic region, but not inside, where the numerical results show unstable behavior. We conjecture that for the solution of the real problem in the mixed-type case, the full higher-dimensionality problem must be considered inside the elliptic region, in which the lubrication (parallel-flow) approximation is no longer appropriate. This is discussed in a companion presentation.
Deadline rush: a time management phenomenon and its mathematical description.
König, Cornelius J; Kleinmann, Martin
2005-01-01
A typical time management phenomenon is the rush before a deadline. Behavioral decision making research can be used to predict how behavior changes before a deadline. People are likely not to work on a project with a deadline in the far future because they generally discount future outcomes. Only when the deadline is close are people likely to work. On the basis of recent intertemporal choice experiments, the authors argue that a hyperbolic function should provide a more accurate description of the deadline rush than an exponential function predicted by an economic model of discounted utility. To show this, the fit of the hyperbolic and the exponential function were compared with data sets that describe when students study for exams. As predicted, the hyperbolic function fit the data significantly better than the exponential function. The implication for time management decisions is that they are most likely to be inconsistent over time (i.e., people make a plan how to use their time but do not follow it).
Atlas, Glen; Li, John K-J; Amin, Shawn; Hahn, Robert G
2017-01-01
A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler's formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly "adaptable" and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time.
Atlas, Glen; Li, John K-J; Amin, Shawn; Hahn, Robert G
2017-01-01
A closed-form integro-differential equation (IDE) model of plasma dilution (PD) has been derived which represents both the intravenous (IV) infusion of crystalloid and the postinfusion period. Specifically, PD is mathematically represented using a combination of constant ratio, differential, and integral components. Furthermore, this model has successfully been applied to preexisting data, from a prior human study, in which crystalloid was infused for a period of 30 minutes at the beginning of thyroid surgery. Using Euler’s formula and a Laplace transform solution to the IDE, patients could be divided into two distinct groups based on their response to PD during the infusion period. Explicitly, Group 1 patients had an infusion-based PD response which was modeled using an exponentially decaying hyperbolic sine function, whereas Group 2 patients had an infusion-based PD response which was modeled using an exponentially decaying trigonometric sine function. Both Group 1 and Group 2 patients had postinfusion PD responses which were modeled using the same combination of hyperbolic sine and hyperbolic cosine functions. Statistically significant differences, between Groups 1 and 2, were noted with respect to the area under their PD curves during both the infusion and postinfusion periods. Specifically, Group 2 patients exhibited a response to PD which was most likely consistent with a preoperative hypovolemia. Overall, this IDE model of PD appears to be highly “adaptable” and successfully fits clinically-obtained human data on a patient-specific basis, during both the infusion and postinfusion periods. In addition, patient-specific IDE modeling of PD may be a useful adjunct in perioperative fluid management and in assessing clinical volume kinetics, of crystalloid solutions, in real time. PMID:29123436
Polyhedra and packings from hyperbolic honeycombs.
Pedersen, Martin Cramer; Hyde, Stephen T
2018-06-20
We derive more than 80 embeddings of 2D hyperbolic honeycombs in Euclidean 3 space, forming 3-periodic infinite polyhedra with cubic symmetry. All embeddings are "minimally frustrated," formed by removing just enough isometries of the (regular, but unphysical) 2D hyperbolic honeycombs [Formula: see text], [Formula: see text], [Formula: see text], [Formula: see text], and [Formula: see text] to allow embeddings in Euclidean 3 space. Nearly all of these triangulated "simplicial polyhedra" have symmetrically identical vertices, and most are chiral. The most symmetric examples include 10 infinite "deltahedra," with equilateral triangular faces, 6 of which were previously unknown and some of which can be described as packings of Platonic deltahedra. We describe also related cubic crystalline packings of equal hyperbolic discs in 3 space that are frustrated analogues of optimally dense hyperbolic disc packings. The 10-coordinated packings are the least "loosened" Euclidean embeddings, although frustration swells all of the hyperbolic disc packings to give less dense arrays than the flat penny-packing even though their unfrustrated analogues in [Formula: see text] are denser.
Boundary causality versus hyperbolicity for spherical black holes in Gauss-Bonnet gravity
NASA Astrophysics Data System (ADS)
Andrade, Tomás; Cáceres, Elena; Keeler, Cynthia
2017-07-01
We explore the constraints boundary causality places on the allowable Gauss-Bonnet gravitational couplings in asymptotically AdS spaces, specifically considering spherical black hole solutions. We additionally consider the hyperbolicity properties of these solutions, positing that hyperbolicity-violating solutions are sick solutions whose causality properties provide no information about the theory they reside in. For both signs of the Gauss-Bonnet coupling, spherical black holes violate boundary causality at smaller absolute values of the coupling than planar black holes do. For negative coupling, as we tune the Gauss-Bonnet coupling away from zero, both spherical and planar black holes violate hyperbolicity before they violate boundary causality. For positive coupling, the only hyperbolicity-respecting spherical black holes which violate boundary causality do not do so appreciably far from the planar bound. Consequently, eliminating hyperbolicity-violating solutions means the bound on Gauss-Bonnet couplings from the boundary causality of spherical black holes is no tighter than that from planar black holes.
Nanoimaging of resonating hyperbolic polaritons in linear boron nitride antennas
Alfaro-Mozaz, F. J.; Alonso-González, P.; Vélez, S.; Dolado, I.; Autore, M.; Mastel, S.; Casanova, F.; Hueso, L. E.; Li, P.; Nikitin, A. Y.; Hillenbrand, R.
2017-01-01
Polaritons in layered materials—including van der Waals materials—exhibit hyperbolic dispersion and strong field confinement, which makes them highly attractive for applications including optical nanofocusing, sensing and control of spontaneous emission. Here we report a near-field study of polaritonic Fabry–Perot resonances in linear antennas made of a hyperbolic material. Specifically, we study hyperbolic phonon–polaritons in rectangular waveguide antennas made of hexagonal boron nitride (h-BN, a prototypical van der Waals crystal). Infrared nanospectroscopy and nanoimaging experiments reveal sharp resonances with large quality factors around 100, exhibiting atypical modal near-field patterns that have no analogue in conventional linear antennas. By performing a detailed mode analysis, we can assign the antenna resonances to a single waveguide mode originating from the hybridization of hyperbolic surface phonon–polaritons (Dyakonov polaritons) that propagate along the edges of the h-BN waveguide. Our work establishes the basis for the understanding and design of linear waveguides, resonators, sensors and metasurface elements based on hyperbolic materials and metamaterials. PMID:28589941
Cascades of Particles Moving at Finite Velocity in Hyperbolic Spaces
NASA Astrophysics Data System (ADS)
Cammarota, V.; Orsingher, E.
2008-12-01
A branching process of particles moving at finite velocity over the geodesic lines of the hyperbolic space (Poincaré half-plane and Poincaré disk) is examined. Each particle can split into two particles only once at Poisson spaced times and deviates orthogonally when splitted. At time t, after N( t) Poisson events, there are N( t)+1 particles moving along different geodesic lines. We are able to obtain the exact expression of the mean hyperbolic distance of the center of mass of the cloud of particles. We derive such mean hyperbolic distance from two different and independent ways and we study the behavior of the relevant expression as t increases and for different values of the parameters c (hyperbolic velocity of motion) and λ (rate of reproduction). The mean hyperbolic distance of each moving particle is also examined and a useful representation, as the distance of a randomly stopped particle moving over the main geodesic line, is presented.
Super-Coulombic atom–atom interactions in hyperbolic media
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole–dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole–dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom–atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon–polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media. PMID:28120826
Super-Coulombic atom-atom interactions in hyperbolic media
NASA Astrophysics Data System (ADS)
Cortes, Cristian L.; Jacob, Zubin
2017-01-01
Dipole-dipole interactions, which govern phenomena such as cooperative Lamb shifts, superradiant decay rates, Van der Waals forces and resonance energy transfer rates, are conventionally limited to the Coulombic near-field. Here we reveal a class of real-photon and virtual-photon long-range quantum electrodynamic interactions that have a singularity in media with hyperbolic dispersion. The singularity in the dipole-dipole coupling, referred to as a super-Coulombic interaction, is a result of an effective interaction distance that goes to zero in the ideal limit irrespective of the physical distance. We investigate the entire landscape of atom-atom interactions in hyperbolic media confirming the giant long-range enhancement. We also propose multiple experimental platforms to verify our predicted effect with phonon-polaritonic hexagonal boron nitride, plasmonic super-lattices and hyperbolic meta-surfaces as well. Our work paves the way for the control of cold atoms above hyperbolic meta-surfaces and the study of many-body physics with hyperbolic media.
Selected computations of transonic cavity flows
NASA Technical Reports Server (NTRS)
Atwood, Christopher A.
1993-01-01
An efficient diagonal scheme implemented in an overset mesh framework has permitted the analysis of geometrically complex cavity flows via the Reynolds averaged Navier-Stokes equations. Use of rapid hyperbolic and algebraic grid methods has allowed simple specification of critical turbulent regions with an algebraic turbulence model. Comparisons between numerical and experimental results are made in two dimensions for the following problems: a backward-facing step; a resonating cavity; and two quieted cavity configurations. In three-dimensions the flow about three early concepts of the stratospheric Observatory For Infrared Astronomy (SOFIA) are compared to wind-tunnel data. Shedding frequencies of resolved shear layer structures are compared against experiment for the quieted cavities. The results demonstrate the progress of computational assessment of configuration safety and performance.
NASA Astrophysics Data System (ADS)
Al-Islam, Najja Shakir
In this Dissertation, the existence of pseudo almost periodic solutions to some systems of nonlinear hyperbolic second-order partial differential equations is established. For that, (Al-Islam [4]) is first studied and then obtained under some suitable assumptions. That is, the existence of pseudo almost periodic solutions to a hyperbolic second-order partial differential equation with delay. The second-order partial differential equation (1) represents a mathematical model for the dynamics of gas absorption, given by uxt+a x,tux=Cx,t,u x,t , u0,t=4 t, 1 where a : [0, L] x RR , C : [0, L] x R x RR , and ϕ : RR are (jointly) continuous functions ( t being the greatest integer function) and L > 0. The results in this Dissertation generalize those of Poorkarimi and Wiener [22]. Secondly, a generalization of the above-mentioned system consisting of the non-linear hyperbolic second-order partial differential equation uxt+a x,tux+bx,t ut+cx,tu=f x,t,u, x∈ 0,L,t∈ R, 2 equipped with the boundary conditions ux,0 =40x, u0,t=u 0t, uxx,0=y 0x, x∈0,L, t∈R, 3 where a, b, c : [0, L ] x RR and f : [0, L] x R x RR are (jointly) continuous functions is studied. Under some suitable assumptions, the existence and uniqueness of pseudo almost periodic solutions to particular cases, as well as the general case of the second-order hyperbolic partial differential equation (2) are studied. The results of all studies contained within this text extend those obtained by Aziz and Meyers [6] in the periodic setting.
Synchronization of relativistic particles in the hyperbolic Kuramoto model
NASA Astrophysics Data System (ADS)
Ritchie, Louis M.; Lohe, M. A.; Williams, Anthony G.
2018-05-01
We formulate a noncompact version of the Kuramoto model by replacing the invariance group SO(2) of the plane rotations by the noncompact group SO(1, 1). The N equations of the system are expressed in terms of hyperbolic angles αi and are similar to those of the Kuramoto model, except that the trigonometric functions are replaced by hyperbolic functions. Trajectories are generally unbounded, nevertheless synchronization occurs for any positive couplings κi, arbitrary positive multiplicative parameters λi and arbitrary exponents ωi. There are no critical values for the coupling constants. We measure the onset of synchronization by means of several order and disorder parameters. We show numerically and by means of exact solutions for N = 2 that solutions can develop singularities if the coupling constants are negative, or if the initial values are not suitably restricted. We describe a physical interpretation of the system as a cluster of interacting relativistic particles in 1 + 1 dimensions, subject to linear repulsive forces with space-time trajectories parametrized by the rapidity αi. The trajectories synchronize provided that the particle separations remain predominantly time-like, and the synchronized cluster can be viewed as a bound state of N relativistic particle constituents. We extend the defining equations of the system to higher dimensions by means of vector equations which are covariant with respect to SO(p, q).
On the Liouville 2D dilaton gravity models with sinh-Gordon matter
NASA Astrophysics Data System (ADS)
Frolov, Valeri P.; Zelnikov, Andrei
2018-02-01
We study 1 + 1 dimensional dilaton gravity models which take into account backreaction of the sinh-Gordon matter field. We found a wide class of exact solutions which generalizes black hole solutions of the Jackiw-Teitelboim gravity model and its hyperbolic deformation.
Quantum damped oscillator II: Bateman’s Hamiltonian vs. 2D parabolic potential barrier
NASA Astrophysics Data System (ADS)
Chruściński, Dariusz
2006-04-01
We show that quantum Bateman’s system which arises in the quantization of a damped harmonic oscillator is equivalent to a quantum problem with 2D parabolic potential barrier known also as 2D inverted isotropic oscillator. It turns out that this system displays the family of complex eigenvalues corresponding to the poles of analytical continuation of the resolvent operator to the complex energy plane. It is shown that this representation is more suitable than the hyperbolic one used recently by Blasone and Jizba.
On the lagrangian 1-form structure of the hyperbolic calogero-moser system
NASA Astrophysics Data System (ADS)
Jairuk, Umpon; Tanasittikosol, Monsit; Yoo-Kong, Sikarin
2017-06-01
In this work, we present the Lagrangian 1-form structure of the hyperbolic Calogero-Moser system in both discrete-time level and continuous-time level. The discrete-time hyperbolic Calogero-Moser system is obtained by considering pole reduction of the semi-discrete Kadomtsev-Petviashvili (KP) equation. Furthermore, it is shown that the hyperbolic Calogero-Moser system possesses the key relation, known as the discrete-time closure relation. This relation is a consequence of the compatibility property of the temporal Lax matrices. The continuous-time hierarchy of the hyperbolic Calogero-Moser system is obtained by taking two successive continuum limits, namely, the skewed limit and full limit. With these successive limits, the continuous-time closure relation is also obtained and is shown to hold at the continuous level.
Hyperbolic phonon polaritons in hexagonal boron nitride (Conference Presentation)
NASA Astrophysics Data System (ADS)
Dai, Siyuan; Ma, Qiong; Fei, Zhe; Liu, Mengkun; Goldflam, Michael D.; Andersen, Trond; Garnett, William; Regan, Will; Wagner, Martin; McLeod, Alexander S.; Rodin, Alexandr; Zhu, Shou-En; Watanabe, Kenji; Taniguchi, T.; Dominguez, Gerado; Thiemens, Mark; Castro Neto, Antonio H.; Janssen, Guido C. A. M.; Zettl, Alex; Keilmann, Fritz; Jarillo-Herrero, Pablo; Fogler, Michael M.; Basov, Dmitri N.
2016-09-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. While hyperbolic responses are normally achieved with metamaterials, hexagonal boron nitride (hBN) naturally possesses this property due to the anisotropic phonons in the mid-infrared. Using scattering-type scanning near-field optical microscopy, we studied polaritonic phenomena in hBN. We performed infrared nano-imaging of highly confined and low-loss hyperbolic phonon polaritons in hBN. The polariton wavelength was shown to be governed by the hBN thickness according to a linear law persisting down to few atomic layers [1]. Additionally, we carried out the modification of hyperbolic response in meta-structures comprised of a mononlayer graphene deposited on hBN [2]. Electrostatic gating of the top graphene layer allows for the modification of wavelength and intensity of hyperbolic phonon polaritons in bulk hBN. The physics of the modification originates from the plasmon-phonon coupling in the hyperbolic medium. Furthermore, we demonstrated the "hyperlens" for subdiffractional focusing and imaging using a slab of hBN [3]. References [1] S. Dai et al., Science, 343, 1125 (2014). [2] S. Dai et al., Nature Nanotechnology, 10, 682 (2015). [3] S. Dai et al., Nature Communications, 6, 6963 (2015).
Parabolic discounting of monetary rewards by physical effort.
Hartmann, Matthias N; Hager, Oliver M; Tobler, Philippe N; Kaiser, Stefan
2013-11-01
When humans and other animals make decisions in their natural environments prospective rewards have to be weighed against costs. It is well established that increasing costs lead to devaluation or discounting of reward. While our knowledge about discount functions for time and probability costs is quite advanced, little is known about how physical effort discounts reward. In the present study we compared three different models in a binary choice task in which human participants had to squeeze a handgrip to earn monetary rewards: a linear, a hyperbolic, and a parabolic model. On the group as well as the individual level, the concave parabolic model explained most variance of the choice data, thus contrasting with the typical hyperbolic discounting of reward value by delay. Research on effort discounting is not only important to basic science but also holds the potential to quantify aberrant motivational states in neuropsychiatric disorders. Copyright © 2013 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Castro, Manuel J.; Gallardo, José M.; Marquina, Antonio
2017-10-01
We present recent advances in PVM (Polynomial Viscosity Matrix) methods based on internal approximations to the absolute value function, and compare them with Chebyshev-based PVM solvers. These solvers only require a bound on the maximum wave speed, so no spectral decomposition is needed. Another important feature of the proposed methods is that they are suitable to be written in Jacobian-free form, in which only evaluations of the physical flux are used. This is particularly interesting when considering systems for which the Jacobians involve complex expressions, e.g., the relativistic magnetohydrodynamics (RMHD) equations. On the other hand, the proposed Jacobian-free solvers have also been extended to the case of approximate DOT (Dumbser-Osher-Toro) methods, which can be regarded as simple and efficient approximations to the classical Osher-Solomon method, sharing most of it interesting features and being applicable to general hyperbolic systems. To test the properties of our schemes a number of numerical experiments involving the RMHD equations are presented, both in one and two dimensions. The obtained results are in good agreement with those found in the literature and show that our schemes are robust and accurate, running stable under a satisfactory time step restriction. It is worth emphasizing that, although this work focuses on RMHD, the proposed schemes are suitable to be applied to general hyperbolic systems.
Discrete Conformal Approximation of Complex Earthquake Maps
2005-08-01
Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503. 1. AGENCY USE ONLY...ing when my dreams were not yours. Thank you for teaching me that books are my friends (though I may have taken that a little too much to heart), and...61 4.2 Hyperbolic Projections ....... ...................... 63 4.3 Discrete Shearing Maps ............................. 64
Parallel Element Agglomeration Algebraic Multigrid and Upscaling Library
DOE Office of Scientific and Technical Information (OSTI.GOV)
Barker, Andrew T.; Benson, Thomas R.; Lee, Chak Shing
ParELAG is a parallel C++ library for numerical upscaling of finite element discretizations and element-based algebraic multigrid solvers. It provides optimal complexity algorithms to build multilevel hierarchies and solvers that can be used for solving a wide class of partial differential equations (elliptic, hyperbolic, saddle point problems) on general unstructured meshes. Additionally, a novel multilevel solver for saddle point problems with divergence constraint is implemented.
"That's Really Clever!" Ironic Hyperbole Understanding in Children
ERIC Educational Resources Information Center
Aguert, Marc; Le Vallois, Coralie; Martel, Karine; Laval, Virginie
2018-01-01
Hyperbole supports irony comprehension in adults by heightening the contrast between what is said and the actual situation. Because young children do not perceive the communication situation as a whole, but rather give precedence to either the utterance or the context, we predicted that hyperbole would reduce irony comprehension in six-year-olds…
Some special solutions to the Hyperbolic NLS equation
NASA Astrophysics Data System (ADS)
Vuillon, Laurent; Dutykh, Denys; Fedele, Francesco
2018-04-01
The Hyperbolic Nonlinear SCHRöDINGER equation (HypNLS) arises as a model for the dynamics of three-dimensional narrow-band deep water gravity waves. In this study, the symmetries and conservation laws of this equation are computed. The PETVIASHVILI method is then exploited to numerically compute bi-periodic time-harmonic solutions of the HypNLS equation. In physical space they represent non-localized standing waves. Non-trivial spatial patterns are revealed and an attempt is made to describe them using symbolic dynamics and the language of substitutions. Finally, the dynamics of a slightly perturbed standing wave is numerically investigated by means a highly accurate FOURIER solver.
Hyperbolicity measures democracy in real-world networks
NASA Astrophysics Data System (ADS)
Borassi, Michele; Chessa, Alessandro; Caldarelli, Guido
2015-09-01
In this work, we analyze the hyperbolicity of real-world networks, a geometric quantity that measures if a space is negatively curved. We provide two improvements in our understanding of this quantity: first of all, in our interpretation, a hyperbolic network is "aristocratic", since few elements "connect" the system, while a non-hyperbolic network has a more "democratic" structure with a larger number of crucial elements. The second contribution is the introduction of the average hyperbolicity of the neighbors of a given node. Through this definition, we outline an "influence area" for the vertices in the graph. We show that in real networks the influence area of the highest degree vertex is small in what we define "local" networks (i.e., social or peer-to-peer networks), and large in "global" networks (i.e., power grid, metabolic networks, or autonomous system networks).
Preliminary estimates of Gulf Stream characteristics from TOPEX data and a precise gravimetric geoid
NASA Technical Reports Server (NTRS)
Rapp, Richard H.; Smith, Dru A.
1994-01-01
TOPEX sea surface height data has been used, with a gravimetric geoid, to calculate sea surface topography across the Gulf Stream. This topography was initially computed for nine tracks on cycles 21 to 29. Due to inaccurate geoid undulations on one track, results for eight tracks are reported. The sea surface topography estimates were used to calculate parameters that describe Gulf Stream characteristics from two models of the Gulf Stream. One model was based on a Gaussian representation of the velocity while the other was a hyperbolic representation of velocity or the sea surface topography. The parameters of the Gaussian velocity model fit were a width parameter, a maximum velocity value, and the location of the maximum velocity. The parameters of the hyperbolic sea surface topography model were the width, the height jump, position, and sea surface topography at the center of the stream. Both models were used for the eight tracks and nine cycles studied. Comparisons were made between the width parameters, the maximum velocities, and the height jumps. Some of the parameter estimates were found to be highly (0.9) correlated when the hyperbolic sea surface topography fit was carried out, but such correlations were reduced for either the Gaussian velocity fits or the hyperbolic velocity model fit. A comparison of the parameters derived from 1-year TOPEX data showed good agreement with values derived by Kelly (1991) using 2.5 years of Geosat data near 38 deg N, 66 deg W longitude. Accuracy of the geoid undulations used in the calculations was of order of +/- 16 cm with the accuracy of a geoid undulation difference equal to +/- 15 cm over a 100-km line in areas with good terrestrial data coverage. This paper demonstrates that our knowledge or geoid undulations and undulation differences, in a portion of the Gulf Stream region, is sufficiently accurate to determine characteristics of the jet when used with TOPEX altimeter data. The method used here has not been shown to be more accurate than methods that average altimeter data to form a reference surface used in analysis to obtain the Gulf Stream characteristics. However, the results show the geoid approach may be used in areas where lack of current meandering reduces the accuracy of the average surface procedure.
A computational model of selection by consequences.
McDowell, J J
2004-05-01
Darwinian selection by consequences was instantiated in a computational model that consisted of a repertoire of behaviors undergoing selection, reproduction, and mutation over many generations. The model in effect created a digital organism that emitted behavior continuously. The behavior of this digital organism was studied in three series of computational experiments that arranged reinforcement according to random-interval (RI) schedules. The quantitative features of the model were varied over wide ranges in these experiments, and many of the qualitative features of the model also were varied. The digital organism consistently showed a hyperbolic relation between response and reinforcement rates, and this hyperbolic description of the data was consistently better than the description provided by other, similar, function forms. In addition, the parameters of the hyperbola varied systematically with the quantitative, and some of the qualitative, properties of the model in ways that were consistent with findings from biological organisms. These results suggest that the material events responsible for an organism's responding on RI schedules are computationally equivalent to Darwinian selection by consequences. They also suggest that the computational model developed here is worth pursuing further as a possible dynamic account of behavior.
Classification of Tidal Disruption Events Based on Stellar Orbital Properties
NASA Astrophysics Data System (ADS)
Hayasaki, Kimitake; Zhong, Shiyan; Li, Shuo; Berczik, Peter; Spurzem, Rainer
2018-03-01
We study the rates of tidal disruption of stars on bound to unbound orbits by intermediate-mass to supermassive black holes using high-accuracy direct N-body experiments. Stars from the star cluster approaching the black hole can have three types of orbit: eccentric, parabolic, and hyperbolic. Since the mass fallback rate shows different variabilities depending on the orbital type, we can classify tidal disruption events (TDEs) into three main categories: eccentric, parabolic, and hyperbolic. The respective TDEs are characterized by two critical values of the orbital eccentricity: the lower critical eccentricity is the one below which stars on eccentric orbits cause finite, intense accretion, and the upper critical eccentricity is the one above which stars on hyperbolic orbits cause no accretion. Moreover, we find that parabolic TDEs can be divided into three subclasses: precisely parabolic, marginally eccentric, and marginally hyperbolic. We analytically derive that the mass fallback rate of marginally eccentric TDEs can be flatter and slightly higher than the standard fallback rate proportional to t ‑5/3, whereas it can be flatter and lower for marginally hyperbolic TDEs. We confirm using N-body experiments that only a few eccentric, precisely parabolic, and hyperbolic TDEs can occur in a spherical stellar system with a single intermediate-mass to supermassive black hole. A substantial fraction of the stars approaching the black hole would cause marginally eccentric or marginally hyperbolic TDEs.
FINITE DIFFERENCE THEORY, * LINEAR ALGEBRA , APPLIED MATHEMATICS, APPROXIMATION(MATHEMATICS), BOUNDARY VALUE PROBLEMS, COMPUTATIONS, HYPERBOLAS, MATHEMATICAL MODELS, NUMERICAL ANALYSIS, PARTIAL DIFFERENTIAL EQUATIONS, STABILITY.
Delay, Probability, and Social Discounting in a Public Goods Game
ERIC Educational Resources Information Center
Jones, Bryan A.; Rachlin, Howard
2009-01-01
A human social discount function measures the value to a person of a reward to another person at a given social distance. Just as delay discounting is a hyperbolic function of delay, and probability discounting is a hyperbolic function of odds-against, social discounting is a hyperbolic function of social distance. Experiment 1 obtained individual…
Hyperbolic spoof plasmonic metasurfaces
Yang, Yihao; Jing, Liqiao; Shen, Lian; ...
2017-08-25
Hyperbolic metasurfaces have recently emerged as a new research frontier because of the unprecedented capabilities to manipulate surface plasmon polaritons (SPPs) and many potential applications. But, thus far, the existence of hyperbolic metasurfaces has neither been observed nor predicted at low frequencies because noble metals cannot support SPPs at longer wavelengths. Here, we propose and experimentally demonstrate spoof plasmonic metasurfaces with a hyperbolic dispersion, where the spoof SPPs propagate on complementary H-shaped, perfectly conducting surfaces at low frequencies. Therefore, non-divergent diffractions, negative refraction and dispersion-dependent spin-momentum locking are observed as the spoof SPPs travel over the hyperbolic spoof plasmonic metasurfacesmore » (HSPMs). The HSPMs provide fundamental new platforms to explore the propagation and spin of spoof SPPs. They show great capabilities for designing advanced surface wave devices such as spatial multiplexers, focusing and imaging devices, planar hyperlenses, and dispersion-dependent directional couplers, at both microwave and terahertz frequencies.« less
Lamb Shift in the Near Field of Hyperbolic Metamaterial Half Space
NASA Astrophysics Data System (ADS)
Deng, Nai Jing; Yu, Kin Wah
2013-03-01
Hyperbolic metamaterials give a large magnification of the density of states in a specific frequency ranges, and has motivated various applications in emission lifetime reduction, strong absorption, and extraordinary black body radiation, etc. The boost of vacuum energy, which is proportional to the density of states, is expected in hyperbolic metamaterial. We have studied the Lamb shift in vacuum-hyperbolic-metamterial half spaces and shown the non-trivial role of vacuum energy. In our calculation, the easy-fabricated multilayer structure is employed to generate a hyperbolic dispersion relation. The spectrum of hydrogen atoms is calculated with a perturbation method after quantizing the half spaces with a complete mode expansion. It appears that the shift of spectrum is mainly contributed by the terahertz response of materials, which has been well described and predicted in both theories and experiments. Work supported by the General Research Fund of the Hong Kong SAR Government
High-Order Residual-Distribution Schemes for Discontinuous Problems on Irregular Triangular Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2016-01-01
In this paper, we develop second- and third-order non-oscillatory shock-capturing hyperbolic residual distribution schemes for irregular triangular grids, extending our second- and third-order schemes to discontinuous problems. We present extended first-order N- and Rusanov-scheme formulations for hyperbolic advection-diffusion system, and demonstrate that the hyperbolic diffusion term does not affect the solution of inviscid problems for vanishingly small viscous coefficient. We then propose second- and third-order blended hyperbolic residual-distribution schemes with the extended first-order Rusanov-scheme. We show that these proposed schemes are extremely accurate in predicting non-oscillatory solutions for discontinuous problems. We also propose a characteristics-based nonlinear wave sensor for accurately detecting shocks, compression, and expansion regions. Using this proposed sensor, we demonstrate that the developed hyperbolic blended schemes do not produce entropy-violating solutions (unphysical stocks). We then verify the design order of accuracy of these blended schemes on irregular triangular grids.
Second- and third-order upwind difference schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Yang, J. Y.
1984-01-01
Second- and third-order two time-level five-point explicit upwind-difference schemes are described for the numerical solution of hyperbolic systems of conservation laws and applied to the Euler equations of inviscid gas dynamics. Nonliner smoothing techniques are used to make the schemes total variation diminishing. In the method both hyperbolicity and conservation properties of the hyperbolic conservation laws are combined in a very natural way by introducing a normalized Jacobian matrix of the hyperbolic system. Entropy satisfying shock transition operators which are consistent with the upwind differencing are locally introduced when transonic shock transition is detected. Schemes thus constructed are suitable for shockcapturing calculations. The stability and the global order of accuracy of the proposed schemes are examined. Numerical experiments for the inviscid Burgers equation and the compressible Euler equations in one and two space dimensions involving various situations of aerodynamic interest are included and compared.
Aoi, Shinya; Tsuchiya, Kazuo; Kokubu, Hiroshi
2016-01-01
Passive dynamic walking is a useful model for investigating the mechanical functions of the body that produce energy-efficient walking. The basin of attraction is very small and thin, and it has a fractal-like shape; this explains the difficulty in producing stable passive dynamic walking. The underlying mechanism that produces these geometric characteristics was not known. In this paper, we consider this from the viewpoint of dynamical systems theory, and we use the simplest walking model to clarify the mechanism that forms the basin of attraction for passive dynamic walking. We show that the intrinsic saddle-type hyperbolicity of the upright equilibrium point in the governing dynamics plays an important role in the geometrical characteristics of the basin of attraction; this contributes to our understanding of the stability mechanism of bipedal walking. PMID:27436971
Story, Giles W.; Vlaev, Ivo; Seymour, Ben; Darzi, Ara; Dolan, Raymond J.
2014-01-01
The tendency to make unhealthy choices is hypothesized to be related to an individual's temporal discount rate, the theoretical rate at which they devalue delayed rewards. Furthermore, a particular form of temporal discounting, hyperbolic discounting, has been proposed to explain why unhealthy behavior can occur despite healthy intentions. We examine these two hypotheses in turn. We first systematically review studies which investigate whether discount rates can predict unhealthy behavior. These studies reveal that high discount rates for money (and in some instances food or drug rewards) are associated with several unhealthy behaviors and markers of health status, establishing discounting as a promising predictive measure. We secondly examine whether intention-incongruent unhealthy actions are consistent with hyperbolic discounting. We conclude that intention-incongruent actions are often triggered by environmental cues or changes in motivational state, whose effects are not parameterized by hyperbolic discounting. We propose a framework for understanding these state-based effects in terms of the interplay of two distinct reinforcement learning mechanisms: a “model-based” (or goal-directed) system and a “model-free” (or habitual) system. Under this framework, while discounting of delayed health may contribute to the initiation of unhealthy behavior, with repetition, many unhealthy behaviors become habitual; if health goals then change, habitual behavior can still arise in response to environmental cues. We propose that the burgeoning development of computational models of these processes will permit further identification of health decision-making phenotypes. PMID:24659960
Story, Giles W; Vlaev, Ivo; Seymour, Ben; Darzi, Ara; Dolan, Raymond J
2014-01-01
The tendency to make unhealthy choices is hypothesized to be related to an individual's temporal discount rate, the theoretical rate at which they devalue delayed rewards. Furthermore, a particular form of temporal discounting, hyperbolic discounting, has been proposed to explain why unhealthy behavior can occur despite healthy intentions. We examine these two hypotheses in turn. We first systematically review studies which investigate whether discount rates can predict unhealthy behavior. These studies reveal that high discount rates for money (and in some instances food or drug rewards) are associated with several unhealthy behaviors and markers of health status, establishing discounting as a promising predictive measure. We secondly examine whether intention-incongruent unhealthy actions are consistent with hyperbolic discounting. We conclude that intention-incongruent actions are often triggered by environmental cues or changes in motivational state, whose effects are not parameterized by hyperbolic discounting. We propose a framework for understanding these state-based effects in terms of the interplay of two distinct reinforcement learning mechanisms: a "model-based" (or goal-directed) system and a "model-free" (or habitual) system. Under this framework, while discounting of delayed health may contribute to the initiation of unhealthy behavior, with repetition, many unhealthy behaviors become habitual; if health goals then change, habitual behavior can still arise in response to environmental cues. We propose that the burgeoning development of computational models of these processes will permit further identification of health decision-making phenotypes.
Code Samples Used for Complexity and Control
NASA Astrophysics Data System (ADS)
Ivancevic, Vladimir G.; Reid, Darryn J.
2015-11-01
The following sections are included: * MathematicaⓇ Code * Generic Chaotic Simulator * Vector Differential Operators * NLS Explorer * 2C++ Code * C++ Lambda Functions for Real Calculus * Accelerometer Data Processor * Simple Predictor-Corrector Integrator * Solving the BVP with the Shooting Method * Linear Hyperbolic PDE Solver * Linear Elliptic PDE Solver * Method of Lines for a Set of the NLS Equations * C# Code * Iterative Equation Solver * Simulated Annealing: A Function Minimum * Simple Nonlinear Dynamics * Nonlinear Pendulum Simulator * Lagrangian Dynamics Simulator * Complex-Valued Crowd Attractor Dynamics * Freeform Fortran Code * Lorenz Attractor Simulator * Complex Lorenz Attractor * Simple SGE Soliton * Complex Signal Presentation * Gaussian Wave Packet * Hermitian Matrices * Euclidean L2-Norm * Vector/Matrix Operations * Plain C-Code: Levenberg-Marquardt Optimizer * Free Basic Code: 2D Crowd Dynamics with 3000 Agents
ERIC Educational Resources Information Center
Roberts, James S.; Laughlin, James E.
1996-01-01
A parametric item response theory model for unfolding binary or graded responses is developed. The graded unfolding model (GUM) is a generalization of the hyperbolic cosine model for binary data of D. Andrich and G. Luo (1993). Applicability of the GUM to attitude testing is illustrated with real data. (SLD)
Yang-Baxter algebras, integrable theories and Bethe Ansatz
DOE Office of Scientific and Technical Information (OSTI.GOV)
De Vega, H.J.
1990-03-10
This paper presents the Yang-Baxter algebras (YBA) in a general framework stressing their power to exactly solve the lattice models associated to them. The algebraic Behe Ansatz is developed as an eigenvector construction based on the YBA. The six-vertex model solution is given explicitly. The generalization of YB algebras to face language is considered. The algebraic BA for the SOS model of Andrews, Baxter and Forrester is described using these face YB algebras. It is explained how these lattice models yield both solvable massive QFT and conformal models in appropriated scaling (continuous) limits within the lattice light-cone approach. This approachmore » permit to define and solve rigorously massive QFT as an appropriate continuum limit of gapless vertex models. The deep links between the YBA and Lie algebras are analyzed including the quantum groups that underlay the trigonometric/hyperbolic YBA. Braid and quantum groups are derived from trigonometric/hyperbolic YBA in the limit of infinite spectral parameter. To conclude, some recent developments in the domain of integrable theories are summarized.« less
NASA Astrophysics Data System (ADS)
Young, F.; Siegel, E.
2010-03-01
(so MIScalled) ``complexity''(sMc) associated BOTH SCALE- INVARIANCE Symmetry-RESTORING(S-I S-R) [vs. S-I S-B!!!], AND X (w) P(w ) 1/w^(1.000...) ``pink''/Zipf/Archimedes-HYPERBOLICITY INEVITABILITY CONNECTION is by simple-calculus SISR's logarithm- function derivative: (d/dw)ln(w)=1/w=1/w^(1.000...), hence: (d/dw) [SISR](w)=1/w=1/w^(1.000...)=(via Noether-theorem relating continuous-(SISR)-symmetries to conservation-laws)=(d/dw)[4-DIV (J(INTER-SCALE)=0](w)=1/w =1/w^(1.000...). Hence sMc is information inter-scale conservation [as Anderson-Mandell, Fractals of Brain; Fractals of Mind(1994)-experimental- psychology!!!], i.e. sMciUS!!!, VERSUS ``COMPLICATEDNESS", is sMcciUS!!!: EITHER: PLUS (Additive: Murphy's-law absence) OR TIMES (Multiplicative: Murphy's-law dominance) various disparate system-specificity ``COMPLICATIONS". ``COMPLICATEDNESS" MEASURES: DEVIATIONS FROM sMciUS!!!: EITHER [S-I S-B] MINUS [S- I S-R] AND/OR [``red"/Pareto X(w) P(w) 1/w^(#=/=1.000...)] MINUS [X(w) P(w) 1/w^(1.000...) ``pink"/Zipf/Archimedes-HYPERBOLICITY INEVITABILITY] = [1/w^(#=/=1.000...)] MINUS [1/w^(1.000...)]; almost but not exactly a fractals Hurst-exponent-like [# - 1.000...]!!!
A class of high resolution explicit and implicit shock-capturing methods
NASA Technical Reports Server (NTRS)
Yee, H. C.
1989-01-01
An attempt is made to give a unified and generalized formulation of a class of high resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock wave computations. Included is a systematic review of the basic design principle of the various related numerical methods. Special emphasis is on the construction of the basis nonlinear, spatially second and third order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and the flux vector splitting approaches. Generalization of these methods to efficiently include equilibrium real gases and large systems of nonequilibrium flows are discussed. Some issues concerning the applicability of these methods that were designed for homogeneous hyperbolic conservation laws to problems containing stiff source terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for 1-, 2- and 3-dimensional gas dynamics problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Khmelnytskaya, Kira V., E-mail: khmel@uaq.edu.mx; Kravchenko, Vladislav V., E-mail: vkravchenko@math.cinvestav.edu.mx; Torba, Sergii M., E-mail: storba@math.cinvestav.edu.mx
2016-05-15
The time-dependent Maxwell system describing electromagnetic wave propagation in inhomogeneous isotropic media in the one-dimensional case reduces to a Vekua-type equation for bicomplex-valued functions of a hyperbolic variable, see Kravchenko and Ramirez [Adv. Appl. Cliord Algebr. 21(3), 547–559 (2011)]. Using this relation, we solve the problem of the transmission through an inhomogeneous layer of a normally incident electromagnetic time-dependent plane wave. The solution is written in terms of a pair of Darboux-associated transmutation operators [Kravchenko, V. V. and Torba, S. M., J. Phys. A: Math. Theor. 45, 075201 (2012)], and combined with the recent results on their construction [Kravchenko, V.more » V. and Torba, S. M., Complex Anal. Oper. Theory 9, 379-429 (2015); Kravchenko, V. V. and Torba, S. M., J. Comput. Appl. Math. 275, 1–26 (2015)] can be used for efficient computation of the transmitted modulated signals. We develop the corresponding numerical method and illustrate its performance with examples.« less
Application of a Phase-resolving, Directional Nonlinear Spectral Wave Model
NASA Astrophysics Data System (ADS)
Davis, J. R.; Sheremet, A.; Tian, M.; Hanson, J. L.
2014-12-01
We describe several applications of a phase-resolving, directional nonlinear spectral wave model. The model describes a 2D surface gravity wave field approaching a mildly sloping beach with parallel depth contours at an arbitrary angle accounting for nonlinear, quadratic triad interactions. The model is hyperbolic, with the initial wave spectrum specified in deep water. Complex amplitudes are generated based on the random phase approximation. The numerical implementation includes unidirectional propagation as a special case. In directional mode, it solves the system of equations in the frequency-alongshore wave number space. Recent enhancements of the model include the incorporation of dissipation caused by breaking and propagation over a viscous mud layer and the calculation of wave induced setup. Applications presented include: a JONSWAP spectrum with a cos2s directional distribution, for shore-perpendicular and oblique propagation, a study of the evolution of a single directional triad, and several preliminary comparisons to wave spectra collected at the USACE-FRF in Duck, NC which show encouraging results although further validation with a wider range of beach slopes and wave conditions is needed.
Current from a nano-gap hyperbolic diode using shape-factors: Theory
NASA Astrophysics Data System (ADS)
Jensen, Kevin L.; Shiffler, Donald A.; Peckerar, Martin; Harris, John R.; Petillo, John J.
2017-08-01
Quantum tunneling by field emission from nanoscale features or sharp field emission structures for which the anode-cathode gap is nanometers in scale ("nano diodes") experience strong deviations from the planar image charge lowered tunneling barrier used in the Murphy and Good formulation of the Fowler-Nordheim equation. These deviations alter the prediction of total current from a curved surface. Modifications to the emission barrier are modeled using a hyperbolic (prolate spheroidal) geometry to determine the trajectories along which the Gamow factor in a WKB-like treatment is undertaken; a quadratic equivalent potential is determined, and a method of shape factors is used to evaluate the corrected total current from a protrusion or wedge geometry.
A new method of imposing boundary conditions for hyperbolic equations
NASA Technical Reports Server (NTRS)
Funaro, D.; ative.
1987-01-01
A new method to impose boundary conditions for pseudospectral approximations to hyperbolic equations is suggested. This method involves the collocation of the equation at the boundary nodes as well as satisfying boundary conditions. Stability and convergence results are proven for the Chebyshev approximation of linear scalar hyperbolic equations. The eigenvalues of this method applied to parabolic equations are shown to be real and negative.
Euler and Navier-Stokes equations on the hyperbolic plane.
Khesin, Boris; Misiolek, Gerard
2012-11-06
We show that nonuniqueness of the Leray-Hopf solutions of the Navier-Stokes equation on the hyperbolic plane (2) observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on (n) whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting.
The Arabic Hyperbolic Pattern "Fa??al" in Two Recent Translations of the Qur'an
ERIC Educational Resources Information Center
El-Zawawy, Amr M.
2014-01-01
The present study addresses the problem of rendering the ?? ?? 'fa??al' hyperbolic pattern into English in two recent translations of the Qur'an. Due to the variety of Qur'an translations and the large amount of hyperbolic forms of Arabic verbs recorded in the Qur'an, only two translations of the Qur'an are consulted and analyzed: these two…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Starodumov, Ilya; Kropotin, Nikolai
2016-08-10
We investigate the three-dimensional mathematical model of crystal growth called PFC (Phase Field Crystal) in a hyperbolic modification. This model is also called the modified model PFC (originally PFC model is formulated in parabolic form) and allows to describe both slow and rapid crystallization processes on atomic length scales and on diffusive time scales. Modified PFC model is described by the differential equation in partial derivatives of the sixth order in space and second order in time. The solution of this equation is possible only by numerical methods. Previously, authors created the software package for the solution of the Phasemore » Field Crystal problem, based on the method of isogeometric analysis (IGA) and PetIGA program library. During further investigation it was found that the quality of the solution can strongly depends on the discretization parameters of a numerical method. In this report, we show the features that should be taken into account during constructing the computational grid for the numerical simulation.« less
Some remarks on the topology of hyperbolic actions of Rn on n-manifolds
NASA Astrophysics Data System (ADS)
Bouloc, Damien
2017-11-01
This paper contains some results on the topology of a nondegenerate action of Rn on a compact connected n-manifold M when the action is totally hyperbolic (i.e. its toric degree is zero). We study the R-action generated by a fixed vector of Rn, that provides some results on the number of hyperbolic domains and the number of fixed points of the action. We study with more details the case of the 2-sphere, in particular we investigate some combinatorial properties of the associated 4-valent graph embedded in S2. We also construct hyperbolic actions in dimension 3, on the sphere S3 and on the projective space RP3.
Design of fast earth-return trajectories from a lunar base
NASA Astrophysics Data System (ADS)
Anhorn, Walter
1991-09-01
The Apollo Lunar Program utilized efficient transearth trajectories which employed parking orbits in order to minimize energy requirements. This thesis concentrates on a different type of transearth trajectory. These are direct-ascent, hyperbolic trajectories which omit the parking orbits in order to achieve short flight times to and from a future lunar base. The object of the thesis is the development of a three-dimensional transearth trajectory model and associated computer program for exploring trade-offs between flight-time and energy, given various mission constraints. The program also targets the Moon with a hyperbolic trajectory, which can be used for targeting Earth impact points. The first-order model is based on an Earth-centered conic and a massless spherical Moon, using MathCAD version 3.0. This model is intended as the basis for future patched-conic formulations for the design of fast Earth-return trajectories. Applications include placing nuclear deterrent arsenals on the Moon, various space support related activities, and finally protection against Earth-threatening asteroids and comets using lunar bases.
Outer boundary as arrested history in general relativity
NASA Astrophysics Data System (ADS)
Lau, Stephen R.
2002-06-01
We present explicit outer boundary conditions for the canonical variables of general relativity. The conditions are associated with the causal evolution of a finite Cauchy domain, a so-called quasilocal boost, and they suggest a consistent scheme for modelling such an evolution numerically. The scheme involves a continuous boost in the spacetime orthogonal complement ⊥Tp(B) of the tangent space Tp(B) belonging to each point p on the system boundary B. We show how the boost rate may be computed numerically via equations similar to those appearing in canonical investigations of black-hole thermodynamics (although here holding at an outer two-surface rather than the bifurcate two-surface of a Killing horizon). We demonstrate the numerical scheme on a model example, the quasilocal boost of a spherical three-ball in Minkowski spacetime. Developing our general formalism with recent hyperbolic formulations of the Einstein equations in mind, we use Anderson and York's 'Einstein-Christoffel' hyperbolic system as the evolution equations for our numerical simulation of the model.
Positive mass and Penrose type inequalities for asymptotically hyperbolic hypersurfaces
NASA Astrophysics Data System (ADS)
de Lima, Levi Lopes; Girão, Frederico
2015-03-01
We establish versions of the positive mass and Penrose inequalities for a class of asymptotically hyperbolic hypersurfaces. In particular, under the usual dominant energy condition, we prove in all dimensions an optimal Penrose inequality for certain graphs in hyperbolic space whose boundary has constant mean curvature . This settles, for this class of manifolds, an inequality first conjectured by Wang (J Differ Geom 57(2):273-299, 2001).
Euler and Navier–Stokes equations on the hyperbolic plane
Khesin, Boris; Misiołek, Gerard
2012-01-01
We show that nonuniqueness of the Leray–Hopf solutions of the Navier–Stokes equation on the hyperbolic plane ℍ2 observed by Chan and Czubak is a consequence of the Hodge decomposition. We show that this phenomenon does not occur on ℍn whenever n ≥ 3. We also describe the corresponding general Hamiltonian framework of hydrodynamics on complete Riemannian manifolds, which includes the hyperbolic setting. PMID:23091015
NASA Astrophysics Data System (ADS)
de la Fuente Marcos, Carlos; de la Fuente Marcos, Raúl; Aarseth, Sverre J.
2018-05-01
Observed hyperbolic minor bodies might have an interstellar origin, but they can be natives of the Solar system as well. Fly-bys with the known planets or the Sun may result in the hyperbolic ejection of an originally bound minor body; in addition, members of the Oort cloud could be forced to follow inbound hyperbolic paths as a result of secular perturbations induced by the Galactic disc or, less frequently, due to impulsive interactions with passing stars. These four processes must leave distinctive signatures in the distribution of radiants of observed hyperbolic objects, both in terms of coordinates and velocity. Here, we perform a systematic numerical exploration of the past orbital evolution of known hyperbolic minor bodies using a full N-body approach and statistical analyses to study their radiants. Our results confirm the theoretical expectations that strong anisotropies are present in the data. We also identify a statistically significant overdensity of high-speed radiants towards the constellation of Gemini that could be due to the closest and most recent known fly-by of a star to the Solar system, that of the so-called Scholz's star. In addition to and besides 1I/2017 U1 (`Oumuamua), we single out eight candidate interstellar comets based on their radiants' velocities.
NASA Astrophysics Data System (ADS)
Yudin, M. S.
2017-11-01
In the present paper, stratification effects on surface pressure in the propagation of an atmospheric gravity current (cold front) over flat terrain are estimated with a non-hydrostatic finite-difference model of atmospheric dynamics. Artificial compressibility is introduced into the model in order to make its equations hyperbolic. For comparison with available simulation data, the physical processes under study are assumed to be adiabatic. The influence of orography is also eliminated. The front surface is explicitly described by a special equation. A time filter is used to suppress the non-physical oscillations. The results of simulations of surface pressure under neutral and stable stratification are presented. Under stable stratification the front moves faster and shows an abrupt pressure jump at the point of observation. This fact is in accordance with observations and the present-day theory of atmospheric fronts.
String Theory: exact solutions, marginal deformations and hyperbolic spaces
NASA Astrophysics Data System (ADS)
Orlando, Domenico
2006-10-01
This thesis is almost entirely devoted to studying string theory backgrounds characterized by simple geometrical and integrability properties. The archetype of this type of system is given by Wess-Zumino-Witten models, describing string propagation in a group manifold or, equivalently, a class of conformal field theories with current algebras. We study the moduli space of such models by using truly marginal deformations. Particular emphasis is placed on asymmetric deformations that, together with the CFT description, enjoy a very nice spacetime interpretation in terms of the underlying Lie algebra. Then we take a slight detour so to deal with off-shell systems. Using a renormalization-group approach we describe the relaxation towards the symmetrical equilibrium situation. In he final chapter we consider backgrounds with Ramond-Ramond field and in particular we analyze direct products of constant-curvature spaces and find solutions with hyperbolic spaces.
Effective mass of elementary excitations in Galilean-invariant integrable models
Matveev, K. A.; Pustilnik, M.
2016-09-27
Here, we study low-energy excitations of one-dimensional Galilean-invariant models integrable by Bethe ansatz and characterized by nonsingular two-particle scattering phase shifts. We also prove that the curvature of the excitation spectra is described by the recently proposed phenomenological expression for the effective mass. These results apply to such models as the repulsive Lieb-Liniger model and the hyperbolic Calogero-Sutherland model.
NASA Astrophysics Data System (ADS)
Guliyev, Ayyub; Nabiyev, Shaig
2017-07-01
This paper presents the results of a statistical analysis of the dynamic parameters of 300 comets that have osculating hyperbolic orbits. It is shown that such comets differ from other comets by their large perihelion distances and by a predominance of retrograde motion. It is shown that the values of i, the inclination of the hyperbolic comets, are in comparative excess over the interval 90-120°. The dominance by q, the perihelion distance, renders it difficult to suggest that the excess hyperbolic velocity of these comets can be the result of physical processes that take place in their nuclei. Aspects of the following working hypothesis, that the hyperbolic excess of parameter e might be formed after comets pass through meteoroid streams, are also studied. To evaluate this hypothesis, the distribution of the orbits of hyperbolic comets relative to the plane of motion of 112 established meteoroid streams are analyzed. The number (N) of orbit nodes for hyperbolic comets with respect to the plane of each stream at various distances is calculated. To determine the degree of redundancy of N, a special computing algorithm was applied that provided the expected value nav as well as the standard deviation σ for the number of cometary nodes at the plane of each stream. A comparative analysis of the N and nav values that take σ into account suggests an excess in 40 stream cases. This implies that the passage of comets through meteoroid streams can lead to an acceleration of the comets' heliocentric velocity.
2011-07-19
multidomain methods, Discontinuous Galerkin methods, interfacial treatment ∗ Jorge A. Escobar-Vargas, School of Civil and Environmental Engineering, Cornell...Click here to view linked References 1. Introduction Geophysical flows exhibit a complex structure and dynamics over a broad range of scales that...hyperbolic problems, where the interfacial patching was implemented with an upwind scheme based on a modified method of characteristics. This approach
A computational model of selection by consequences.
McDowell, J J
2004-01-01
Darwinian selection by consequences was instantiated in a computational model that consisted of a repertoire of behaviors undergoing selection, reproduction, and mutation over many generations. The model in effect created a digital organism that emitted behavior continuously. The behavior of this digital organism was studied in three series of computational experiments that arranged reinforcement according to random-interval (RI) schedules. The quantitative features of the model were varied over wide ranges in these experiments, and many of the qualitative features of the model also were varied. The digital organism consistently showed a hyperbolic relation between response and reinforcement rates, and this hyperbolic description of the data was consistently better than the description provided by other, similar, function forms. In addition, the parameters of the hyperbola varied systematically with the quantitative, and some of the qualitative, properties of the model in ways that were consistent with findings from biological organisms. These results suggest that the material events responsible for an organism's responding on RI schedules are computationally equivalent to Darwinian selection by consequences. They also suggest that the computational model developed here is worth pursuing further as a possible dynamic account of behavior. PMID:15357512
Modeling a SI epidemic with stochastic transmission: hyperbolic incidence rate.
Christen, Alejandra; Maulén-Yañez, M Angélica; González-Olivares, Eduardo; Curé, Michel
2018-03-01
In this paper a stochastic susceptible-infectious (SI) epidemic model is analysed, which is based on the model proposed by Roberts and Saha (Appl Math Lett 12: 37-41, 1999), considering a hyperbolic type nonlinear incidence rate. Assuming the proportion of infected population varies with time, our new model is described by an ordinary differential equation, which is analogous to the equation that describes the double Allee effect. The limit of the solution of this equation (deterministic model) is found when time tends to infinity. Then, the asymptotic behaviour of a stochastic fluctuation due to the environmental variation in the coefficient of disease transmission is studied. Thus a stochastic differential equation (SDE) is obtained and the existence of a unique solution is proved. Moreover, the SDE is analysed through the associated Fokker-Planck equation to obtain the invariant measure when the proportion of the infected population reaches steady state. An explicit expression for invariant measure is found and we study some of its properties. The long time behaviour of deterministic and stochastic models are compared by simulations. According to our knowledge this incidence rate has not been previously used for this type of epidemic models.
Causal implications of viscous damping in compressible fluid flows
Jordan; Meyer; Puri
2000-12-01
Classically, a compressible, isothermal, viscous fluid is regarded as a mathematical continuum and its motion is governed by the linearized continuity, Navier-Stokes, and state equations. Unfortunately, solutions of this system are of a diffusive nature and hence do not satisfy causality. However, in the case of a half-space of fluid set to motion by a harmonically vibrating plate the classical equation of motion can, under suitable conditions, be approximated by the damped wave equation. Since this equation is hyperbolic, the resulting solutions satisfy causal requirements. In this work the Laplace transform and other analytical and numerical tools are used to investigate this apparent contradiction. To this end the exact solutions, as well as their special and limiting cases, are found and compared for the two models. The effects of the physical parameters on the solutions and associated quantities are also studied. It is shown that propagating wave fronts are only possible under the hyperbolic model and that the concept of phase speed has different meanings in the two formulations. In addition, discontinuities and shock waves are noted and a physical system is modeled under both formulations. Overall, it is shown that the hyperbolic form gives a more realistic description of the physical problem than does the classical theory. Lastly, a simple mechanical analog is given and connections to viscoelastic fluids are noted. In particular, the research presented here supports the notion that linear compressible, isothermal, viscous fluids can, at least in terms of causality, be better characterized as a type of viscoelastic fluid.
Tunable VO2/Au Hyperbolic Metamaterial
2016-02-12
phenomenon having a potential of advancing the control of light-matter interaction . Metamaterials are engineered composite materials containing sub...ellipsoids15 – the phenomenon known as hyperbolic dispersion. Hyperbolic metamaterials can propagate light waves with very large wave vectors and have a...incidence angles equal to 15°, 45° and 65°. The spectra measured at 45o are depicted in Fig. 6(a). The wavy pattern in the spectra is due to the parasitic
First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems
2014-03-01
accuracy, with rapid convergence over each physical time step, typically less than five Newton iter - ations. 1 Contents 1 Introduction 3 2 Hyperbolic...however, we employ the Gauss - Seidel (GS) relaxation, which is also an O(N) method for the discretization arising from hyperbolic advection-diffusion system...advection-diffusion scheme. The linear dependency of the iterations on Table 1: Boundary layer problem ( Convergence criteria: Residuals < 10−8.) log10Re
Concave utility, transaction costs, and risk in measuring discounting of delayed rewards.
Kirby, Kris N; Santiesteban, Mariana
2003-01-01
Research has consistently found that the decline in the present values of delayed rewards as delay increases is better fit by hyperbolic than by exponential delay-discounting functions. However, concave utility, transaction costs, and risk each could produce hyperbolic-looking data, even when the underlying discounting function is exponential. In Experiments 1 (N = 45) and 2 (N = 103), participants placed bids indicating their present values of real future monetary rewards in computer-based 2nd-price auctions. Both experiments suggest that utility is not sufficiently concave to account for the superior fit of hyperbolic functions. Experiment 2 provided no evidence that the effects of transaction costs and risk are large enough to account for the superior fit of hyperbolic functions.
Toward a Definition of Complexity for Quantum Field Theory States.
Chapman, Shira; Heller, Michal P; Marrochio, Hugo; Pastawski, Fernando
2018-03-23
We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form su(1,1) algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals.
Toward a Definition of Complexity for Quantum Field Theory States
NASA Astrophysics Data System (ADS)
Chapman, Shira; Heller, Michal P.; Marrochio, Hugo; Pastawski, Fernando
2018-03-01
We investigate notions of complexity of states in continuous many-body quantum systems. We focus on Gaussian states which include ground states of free quantum field theories and their approximations encountered in the context of the continuous version of the multiscale entanglement renormalization ansatz. Our proposal for quantifying state complexity is based on the Fubini-Study metric. It leads to counting the number of applications of each gate (infinitesimal generator) in the transformation, subject to a state-dependent metric. We minimize the defined complexity with respect to momentum-preserving quadratic generators which form s u (1 ,1 ) algebras. On the manifold of Gaussian states generated by these operations, the Fubini-Study metric factorizes into hyperbolic planes with minimal complexity circuits reducing to known geodesics. Despite working with quantum field theories far outside the regime where Einstein gravity duals exist, we find striking similarities between our results and those of holographic complexity proposals.
Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport
NASA Astrophysics Data System (ADS)
Annewandter, Robert
2014-05-01
The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced gas transport and subsequent soil gas sampling during On-Site inspections. Generally, gas transport has been widely studied with different numerical codes. However, gas transport of radioxenons and radioiodines in the post-detonation regime and their possible fractionation is still neglected in the open peer-reviewed literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the multiple isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radionuclides, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different mass diffusivities due to mass differences between the radionuclides. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures or highly conductive faults which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a so-called ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which is recognized by the oil industry as leading in Discrete Fracture-Matrix (DFM) simulations. It has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations, fracture propagation in fractured, porous media, and Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately by operator-splitting. The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing, Germany. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. This study examines barometric pumping-driven subsurface transport of Xe-135, Xe-133m, Xe-133, Xe-131m including I-131, I-133 and I-135 on arrival times and isotopic activity ratios. This work was funded by the CTBTO Research Award for Young Scientist and Engineers (2013).
Particle size segregation in granular avalanches: A brief review of recent progress
NASA Astrophysics Data System (ADS)
Gray, J. M. N. T.
2010-05-01
Hazardous natural flows such as snow avalanches, debris-flows, lahars and pyroclastic flows are part of a much wider class of granular avalanches, that frequently occur in industrial processes and in our kitchens! Granular avalanches are very efficient at sorting particles by size, with the smaller ones percolating down towards the base and squeezing the larger grains up towards the free-surface, to create inversely-graded layers. This paper provides a short introduction and review of recent theoretical advances in describing segregation and remixing with relatively simple hyperbolic and parabolic models. The derivation from two phase mixture theory is briefly summarized and links are drawn to earlier models of Savage & Lun and Dolgunin & Ukolov. The more complex parabolic version of the theory has a diffusive force that competes against segregation and yields S-shaped steady-state concentration profiles through the avalanche depth, that are able to reproduce results obtained from particle dynamics simulations. Time-dependent exact solutions can be constructed by using the Cole-Hopf transformation to linearize the segregation-remixing equation and the nonlinear surface and basal boundary conditions. In the limit of no diffusion, the theory is hyperbolic and the grains tend to separate out into completely segregated inversely graded layers. A series of elementary problems are used to demonstrate how concentration shocks, expansion fans, breaking waves and the large and small particles paths can be computed exactly using the model. The theory is able to capture the key features of the size distribution observed in stratification experiments, and explains how a large particle rich front is connected to an inversely graded avalanche in the interior. The theory is simple enough to couple it to the bulk flow field to investigate segregation-mobility feedback effects that spontaneously generate self-channelizing leveed avalanches, which can significantly enhance the total run-out distance of geophysical mass flows.
Kinematic Cosmology & a new ``Steady State'' Model of Continued Creation
NASA Astrophysics Data System (ADS)
Wegener, Mogens
2006-03-01
Only a new "steady state" model justifies the observations of fully mature galaxies at ever increasing distances. The basic idea behind the world model presented here, which is a synthesis of the cosmologies of Parmenides and Herakleitos, is that the invariant structure of the infinite contents of a universe in flux may be depicted as a finite hyperbolic pseudo-sphere.
Mathematical Methods for Physics and Engineering Third Edition Paperback Set
NASA Astrophysics Data System (ADS)
Riley, Ken F.; Hobson, Mike P.; Bence, Stephen J.
2006-06-01
Prefaces; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics; Index.
Guidance of Nonlinear Nonminimum-Phase Dynamic Systems
NASA Technical Reports Server (NTRS)
Devasia, Santosh
1996-01-01
The research work has advanced the inversion-based guidance theory for: systems with non-hyperbolic internal dynamics; systems with parameter jumps; and systems where a redesign of the output trajectory is desired. A technique to achieve output tracking for nonminimum phase linear systems with non-hyperbolic and near non-hyperbolic internal dynamics was developed. This approach integrated stable inversion techniques, that achieve exact-tracking, with approximation techniques, that modify the internal dynamics to achieve desirable performance. Such modification of the internal dynamics was used (a) to remove non-hyperbolicity which is an obstruction to applying stable inversion techniques and (b) to reduce large preactuation times needed to apply stable inversion for near non-hyperbolic cases. The method was applied to an example helicopter hover control problem with near non-hyperbolic internal dynamics for illustrating the trade-off between exact tracking and reduction of preactuation time. Future work will extend these results to guidance of nonlinear non-hyperbolic systems. The exact output tracking problem for systems with parameter jumps was considered. Necessary and sufficient conditions were derived for the elimination of switching-introduced output transient. While previous works had studied this problem by developing a regulator that maintains exact tracking through parameter jumps (switches), such techniques are, however, only applicable to minimum-phase systems. In contrast, our approach is also applicable to nonminimum-phase systems and leads to bounded but possibly non-causal solutions. In addition, for the case when the reference trajectories are generated by an exosystem, we developed an exact-tracking controller which could be written in a feedback form. As in standard regulator theory, we also obtained a linear map from the states of the exosystem to the desired system state, which was defined via a matrix differential equation.
2016-03-02
Nyquist tiles and sampling groups in Euclidean geometry, and discussed the extension of these concepts to hyperbolic and spherical geometry and...hyperbolic or spherical spaces. We look to develop a structure for the tiling of frequency spaces in both Euclidean and non-Euclidean domains. In particular...we establish Nyquist tiles and sampling groups in Euclidean geometry, and discuss the extension of these concepts to hyperbolic and spherical geometry
NASA Technical Reports Server (NTRS)
Brislawn, Kristi D.; Brown, David L.; Chesshire, Geoffrey S.; Saltzman, Jeffrey S.
1995-01-01
Adaptive mesh refinement (AMR) in conjunction with higher-order upwind finite-difference methods have been used effectively on a variety of problems in two and three dimensions. In this paper we introduce an approach for resolving problems that involve complex geometries in which resolution of boundary geometry is important. The complex geometry is represented by using the method of overlapping grids, while local resolution is obtained by refining each component grid with the AMR algorithm, appropriately generalized for this situation. The CMPGRD algorithm introduced by Chesshire and Henshaw is used to automatically generate the overlapping grid structure for the underlying mesh.
A Theoretical Framework for Lagrangian Descriptors
NASA Astrophysics Data System (ADS)
Lopesino, C.; Balibrea-Iniesta, F.; García-Garrido, V. J.; Wiggins, S.; Mancho, A. M.
This paper provides a theoretical background for Lagrangian Descriptors (LDs). The goal of achieving rigorous proofs that justify the ability of LDs to detect invariant manifolds is simplified by introducing an alternative definition for LDs. The definition is stated for n-dimensional systems with general time dependence, however we rigorously prove that this method reveals the stable and unstable manifolds of hyperbolic points in four particular 2D cases: a hyperbolic saddle point for linear autonomous systems, a hyperbolic saddle point for nonlinear autonomous systems, a hyperbolic saddle point for linear nonautonomous systems and a hyperbolic saddle point for nonlinear nonautonomous systems. We also discuss further rigorous results which show the ability of LDs to highlight additional invariants sets, such as n-tori. These results are just a simple extension of the ergodic partition theory which we illustrate by applying this methodology to well-known examples, such as the planar field of the harmonic oscillator and the 3D ABC flow. Finally, we provide a thorough discussion on the requirement of the objectivity (frame-invariance) property for tools designed to reveal phase space structures and their implications for Lagrangian descriptors.
Effect of heat release on the spatial stability of a supersonic reacting mixing layer
NASA Technical Reports Server (NTRS)
Jackson, T. L.; Grosch, C. E.
1988-01-01
A numerical study of the stability of compressible mixing layers in which a diffusion flame is embedded is described. The mean velocity profile has been approximated by a hyperbolic tangent profile and the limit of infinite activation energy taken, which reduces the diffusion flame to a flame sheet. The addition of combustion in the form of a flame sheet was found to have important, and complex, effects on the flow stability.
Symmetry reduction and exact solutions of two higher-dimensional nonlinear evolution equations.
Gu, Yongyi; Qi, Jianming
2017-01-01
In this paper, symmetries and symmetry reduction of two higher-dimensional nonlinear evolution equations (NLEEs) are obtained by Lie group method. These NLEEs play an important role in nonlinear sciences. We derive exact solutions to these NLEEs via the [Formula: see text]-expansion method and complex method. Five types of explicit function solutions are constructed, which are rational, exponential, trigonometric, hyperbolic and elliptic function solutions of the variables in the considered equations.
NASA Technical Reports Server (NTRS)
Chan, William M.; Akien, Edwin (Technical Monitor)
2002-01-01
For many years, generation of overset grids for complex configurations has required the use of a number of different independently developed software utilities. Results created by each step were then visualized using a separate visualization tool before moving on to the next. A new software tool called OVERGRID was developed which allows the user to perform all the grid generation steps and visualization under one environment. OVERGRID provides grid diagnostic functions such as surface tangent and normal checks as well as grid manipulation functions such as extraction, extrapolation, concatenation, redistribution, smoothing, and projection. Moreover, it also contains hyperbolic surface and volume grid generation modules that are specifically suited for overset grid generation. It is the first time that such a unified interface existed for the creation of overset grids for complex geometries. New concepts on automatic overset surface grid generation around surface discontinuities will also be briefly presented. Special control curves on the surface such as intersection curves, sharp edges, open boundaries, are called seam curves. The seam curves are first automatically extracted from a multiple panel network description of the surface. Points where three or more seam curves meet are automatically identified and are called seam corners. Seam corner surface grids are automatically generated using a singular axis topology. Hyperbolic surface grids are then grown from the seam curves that are automatically trimmed away from the seam corners.
A three-dimensional model of corotating streams in the solar wind. 1: Theoretical foundations
NASA Technical Reports Server (NTRS)
Pizzo, V. J.
1978-01-01
The theoretical and mathematical background pertinent to the study of steady, corotating solar wind structure in all three spatial dimensions (3-D) is discussed. The dynamical evolution of the plasma in interplanetary space (defined as the region beyond roughly 35 solar radii where the flow is supersonic) is approximately described by the nonlinear, single fluid, polytropic (magneto-) hydrodynamic equations. Efficient numerical techniques for solving this complex system of coupled, hyperbolic partial differential equations are outlined. The formulation is inviscid and nonmagnetic, but methods allow for the potential inclusion of both features with only modest modifications. One simple, highly idealized, hydrodynamic model stream is examined to illustrate the fundamental processes involved in the 3-D dynamics of stream evolution. Spatial variations in the rotational stream interaction mechanism were found to produce small nonradial flows on a global scale that lead to the transport of mass, energy, and momentum away from regions of relative compression and into regions of relative rarefaction.
NASA Astrophysics Data System (ADS)
Foroutan, Mohammadreza; Zamanpour, Isa; Manafian, Jalil
2017-10-01
This paper presents a number of new solutions obtained for solving a complex nonlinear equation describing dynamics of nonlinear chains of atoms via the improved Bernoulli sub-ODE method (IBSOM) and the extended trial equation method (ETEM). The proposed solutions are kink solitons, anti-kink solitons, soliton solutions, hyperbolic solutions, trigonometric solutions, and bellshaped soliton solutions. Then our new results are compared with the well-known results. The methods used here are very simple and succinct and can be also applied to other nonlinear models. The balance number of these methods is not constant contrary to other methods. The proposed methods also allow us to establish many new types of exact solutions. By utilizing the Maple software package, we show that all obtained solutions satisfy the conditions of the studied model. More importantly, the solutions found in this work can have significant applications in Hamilton's equations and generalized momentum where solitons are used for long-range interactions.
NASA Astrophysics Data System (ADS)
Popov, Nikolay S.
2017-11-01
Solvability of some initial-boundary value problems for linear hyperbolic equations of the fourth order is studied. A condition on the lateral boundary in these problems relates the values of a solution or the conormal derivative of a solution to the values of some integral operator applied to a solution. Nonlocal boundary-value problems for one-dimensional hyperbolic second-order equations with integral conditions on the lateral boundary were considered in the articles by A.I. Kozhanov. Higher-dimensional hyperbolic equations of higher order with integral conditions on the lateral boundary were not studied earlier. The existence and uniqueness theorems of regular solutions are proven. The method of regularization and the method of continuation in a parameter are employed to establish solvability.
Hyperbolic Prismatic Grid Generation and Solution of Euler Equations on Prismatic Grids
NASA Technical Reports Server (NTRS)
Pandya, S. A.; Chattot, JJ; Hafez, M. M.; Kutler, Paul (Technical Monitor)
1994-01-01
A hyperbolic grid generation method is used to generate prismatic grids and an approach using prismatic grids to solve the Euler equations is presented. The theory of the stability and feasibility of the hyperbolic grid generation method is presented. The hyperbolic grid generation method of Steger et al for structured grids is applied to a three dimensional triangularized surface definition to generate a grid that is unstructured on each successive layer. The grid, however, retains structure in the body-normal direction and has a computational cell shaped like a triangular prism. In order to take advantage of the structure in the normal direction, a finite-volume scheme that treats the unknowns along the normal direction implicitly is introduced and the flow over a sphere is simulated.
Waves in hyperbolic and double negative metamaterials including rogues and solitons
NASA Astrophysics Data System (ADS)
Boardman, A. D.; Alberucci, A.; Assanto, G.; Grimalsky, V. V.; Kibler, B.; McNiff, J.; Nefedov, I. S.; Rapoport, Yu G.; Valagiannopoulos, C. A.
2017-11-01
The topics here deal with some current progress in electromagnetic wave propagation in a family of substances known as metamaterials. To begin with, it is discussed how a pulse can develop a leading edge that steepens and it is emphasised that such self-steepening is an important inclusion within a metamaterial environment together with Raman scattering and third-order dispersion whenever very short pulses are being investigated. It is emphasised that the self-steepening parameter is highly metamaterial-driven compared to Raman scattering, which is associated with a coefficient of the same form whether a normal positive phase, or a metamaterial waveguide is the vehicle for any soliton propagation. It is also shown that the influence of magnetooptics provides a beautiful and important control mechanism for metamaterial devices and that, in the future, this feature will have a significant impact upon the design of data control systems for optical computing. A major objective is fulfiled by the investigations of the fascinating properties of hyperbolic media that exhibit asymmetry of supported modes due to the tilt of optical axes. This is a topic that really merits elaboration because structural and optical asymmetry in optical components that end up manipulating electromagnetic waves is now the foundation of how to operate some of the most successful devices in photonics and electronics. It is pointed out, in this context, that graphene is one of the most famous plasmonic media with very low losses. It is a two-dimensional material that makes the implementation of an effective-medium approximation more feasible. Nonlinear non-stationary diffraction in active planar anisotropic hyperbolic metamaterials is discussed in detail and two approaches are compared. One of them is based on the averaging over a unit cell, while the other one does not include sort of averaging. The formation and propagation of optical spatial solitons in hyperbolic metamaterials is also considered with a model of the response of hyperbolic metamaterials in terms of the homogenisation (‘effective medium’) approach. The model has a macroscopic dielectric tensor encompassing at least one negative eigenvalue. It is shown that light propagating in the presence of hyperbolic dispersion undergoes negative (anomalous) diffraction. The theory is ten broadened out to include the influence of the orientation of the optical axis with respect to the propagation wave vector. Optical rogue waves are discussed in terms of how they are influenced, but not suppressed, by a metamaterial background. It is strongly discussed that metamaterials and optical rogue waves have both been making headlines in recent years and that they are, separately, large areas of research to study. A brief background of the inevitable linkage of them is considered and important new possibilities are discussed. After this background is revealed some new rogue wave configurations combining the two areas are presented alongside a discussion of the way forward for the future.
The Importance of Protons in Reactive Transport Modeling
NASA Astrophysics Data System (ADS)
McNeece, C. J.; Hesse, M. A.
2014-12-01
The importance of pH in aqueous chemistry is evident; yet, its role in reactive transport is complex. Consider a column flow experiment through silica glass beads. Take the column to be saturated and flowing with solution of a distinct pH. An instantaneous change in the influent solution pH can yield a breakthrough curve with both a rarefaction and shock component (composite wave). This behavior is unique among aqueous ions in transport and is more complex than intuition would tell. Analysis of the hyperbolic limit of this physical system can explain these first order transport phenomenon. This analysis shows that transport behavior is heavily dependent on the shape of the adsorption isotherm. Hence it is clear that accurate surface chemistry models are important in reactive transport. The proton adsorption isotherm has nonconstant concavity due to the proton's ability to partition into hydroxide. An eigenvalue analysis shows that an inflection point in the adsorption isotherm allows the development of composite waves. We use electrostatic surface complexation models to calculate realistic proton adsorption isotherms. Surface characteristics such as specific surface area, and surface site density were determined experimentally. We validate the model by comparison against silica glass bead flow through experiments. When coupled to surface complexation models, the transport equation captures the timing and behavior of breakthrough curves markedly better than with commonly used Langmuir assumptions. Furthermore, we use the adsorption isotherm to predict, a priori, the transport behavior of protons across pH composition space. Expansion of the model to multicomponent systems shows that proton adsorption can force composite waves to develop in the breakthrough curves of ions that would not otherwise exhibit such behavior. Given the abundance of reactive surfaces in nature and the nonlinearity of chemical systems, we conclude that building a greater understanding of proton adsorption is of utmost importance to reactive transport modeling.
Transformations of asymptotically AdS hyperbolic initial data and associated geometric inequalities
NASA Astrophysics Data System (ADS)
Cha, Ye Sle; Khuri, Marcus
2018-01-01
We construct transformations which take asymptotically AdS hyperbolic initial data into asymptotically flat initial data, and which preserve relevant physical quantities. This is used to derive geometric inequalities in the asymptotically AdS hyperbolic setting from counterparts in the asymptotically flat realm, whenever a geometrically motivated system of elliptic equations admits a solution. The inequalities treated here relate mass, angular momentum, charge, and horizon area. Furthermore, new mass-angular momentum inequalities in this setting are conjectured and discussed.
NASA Technical Reports Server (NTRS)
Funaro, Daniele; Gottlieb, David
1989-01-01
A new method of imposing boundary conditions in the pseudospectral approximation of hyperbolic systems of equations is proposed. It is suggested to collocate the equations, not only at the inner grid points, but also at the boundary points and use the boundary conditions as penalty terms. In the pseudo-spectral Legrendre method with the new boundary treatment, a stability analysis for the case of a constant coefficient hyperbolic system is presented and error estimates are derived.
NASA Technical Reports Server (NTRS)
Tamma, Kumar K.; Namburu, Raju R.
1989-01-01
Numerical simulations are presented for hyperbolic heat-conduction problems that involve non-Fourier effects, using explicit, Lax-Wendroff/Taylor-Galerkin FEM formulations as the principal computational tool. Also employed are smoothing techniques which stabilize the numerical noise and accurately predict the propagating thermal disturbances. The accurate capture of propagating thermal disturbances at characteristic time-step values is achieved; numerical test cases are presented which validate the proposed hyperbolic heat-conduction problem concepts.
NASA Technical Reports Server (NTRS)
Thompkins, W. T., Jr.
1985-01-01
A streamline Euler solver which combines high accuracy and good convergence rates with capabilities for inverse or direct mode solution modes and an analysis technique for finite difference models of hyperbolic partial difference equations were developed.
Scenarios for the dynamics of comet 67P/Churyumov-Gerasimenko over the past 500 kyr
NASA Astrophysics Data System (ADS)
Guzzo, Massimiliano; Lega, Elena
2017-07-01
The complex dynamics of 67P has the typical uncertainties of the Jupiter-family comets. The Rosetta mission provided a unique opportunity to dissipate them with fresh experimental data. We aim to constrain the residence time of the comet in a dynamics dominated by Jupiter and Saturn by comparing statistics of large sets of numerical integrations with assumptions on the erosion experienced by the comet. We integrated backward for 150 kyr 2000 clones of 67P selected from preliminary integrations of 500 000 clones. We find that the clones that did not arrive from hyperbolic/parabolic orbits have been mostly in the region dominated by Jupiter and Saturn in the last 150 kyr; they transit easily between dynamics dominated by Jupiter, dynamics also dominated by Saturn and, with smaller probability, by Saturn alone. Many clones were injected in the Jupiter family from hyperbolic orbits and orbits of large periods P > 500 yr, but none of the clones was injected from a Uranus-dominated dynamics through sequences of planetary scatterings, while 5 per cent of the clones were injected on this route in 500 kyr. 60 per cent of the clones had already been in an orbit with q < 1.5 au before 1959. Compatible with the uncertainties on the long-term model of non-gravitational forces, we conclude that 67P was injected from a cometary reservoir into a dynamics dominated by Jupiter and Saturn at an epoch that we estimate as being in between 30 and 150 kyr ago; this interval should be extended by considering periods of dormancies.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kengne, Jacques; Kenmogne, Fabien
2014-12-15
The nonlinear dynamics of fourth-order Silva-Young type chaotic oscillators with flat power spectrum recently introduced by Tamaseviciute and collaborators is considered. In this type of oscillators, a pair of semiconductor diodes in an anti-parallel connection acts as the nonlinear component necessary for generating chaotic oscillations. Based on the Shockley diode equation and an appropriate selection of the state variables, a smooth mathematical model (involving hyperbolic sine and cosine functions) is derived for a better description of both the regular and chaotic dynamics of the system. The complex behavior of the oscillator is characterized in terms of its parameters by usingmore » time series, bifurcation diagrams, Lyapunov exponents' plots, Poincaré sections, and frequency spectra. It is shown that the onset of chaos is achieved via the classical period-doubling and symmetry restoring crisis scenarios. Some PSPICE simulations of the nonlinear dynamics of the oscillator are presented in order to confirm the ability of the proposed mathematical model to accurately describe/predict both the regular and chaotic behaviors of the oscillator.« less
NASA Astrophysics Data System (ADS)
Kumar, Vivek; Raghurama Rao, S. V.
2008-04-01
Non-standard finite difference methods (NSFDM) introduced by Mickens [ Non-standard Finite Difference Models of Differential Equations, World Scientific, Singapore, 1994] are interesting alternatives to the traditional finite difference and finite volume methods. When applied to linear hyperbolic conservation laws, these methods reproduce exact solutions. In this paper, the NSFDM is first extended to hyperbolic systems of conservation laws, by a novel utilization of the decoupled equations using characteristic variables. In the second part of this paper, the NSFDM is studied for its efficacy in application to nonlinear scalar hyperbolic conservation laws. The original NSFDMs introduced by Mickens (1994) were not in conservation form, which is an important feature in capturing discontinuities at the right locations. Mickens [Construction and analysis of a non-standard finite difference scheme for the Burgers-Fisher equations, Journal of Sound and Vibration 257 (4) (2002) 791-797] recently introduced a NSFDM in conservative form. This method captures the shock waves exactly, without any numerical dissipation. In this paper, this algorithm is tested for the case of expansion waves with sonic points and is found to generate unphysical expansion shocks. As a remedy to this defect, we use the strategy of composite schemes [R. Liska, B. Wendroff, Composite schemes for conservation laws, SIAM Journal of Numerical Analysis 35 (6) (1998) 2250-2271] in which the accurate NSFDM is used as the basic scheme and localized relaxation NSFDM is used as the supporting scheme which acts like a filter. Relaxation schemes introduced by Jin and Xin [The relaxation schemes for systems of conservation laws in arbitrary space dimensions, Communications in Pure and Applied Mathematics 48 (1995) 235-276] are based on relaxation systems which replace the nonlinear hyperbolic conservation laws by a semi-linear system with a stiff relaxation term. The relaxation parameter ( λ) is chosen locally on the three point stencil of grid which makes the proposed method more efficient. This composite scheme overcomes the problem of unphysical expansion shocks and captures the shock waves with an accuracy better than the upwind relaxation scheme, as demonstrated by the test cases, together with comparisons with popular numerical methods like Roe scheme and ENO schemes.
Subdiffractional focusing and guiding of polaritonic rays in a natural hyperbolic material
Dai, S.; Ma, Q.; Andersen, T.; Mcleod, A. S.; Fei, Z.; Liu, M. K.; Wagner, M.; Watanabe, K.; Taniguchi, T.; Thiemens, M.; Keilmann, F.; Jarillo-Herrero, P.; Fogler, M. M.; Basov, D. N.
2015-01-01
Uniaxial materials whose axial and tangential permittivities have opposite signs are referred to as indefinite or hyperbolic media. In such materials, light propagation is unusual leading to novel and often non-intuitive optical phenomena. Here we report infrared nano-imaging experiments demonstrating that crystals of hexagonal boron nitride, a natural mid-infrared hyperbolic material, can act as a ‘hyper-focusing lens' and as a multi-mode waveguide. The lensing is manifested by subdiffractional focusing of phonon–polaritons launched by metallic disks underneath the hexagonal boron nitride crystal. The waveguiding is revealed through the modal analysis of the periodic patterns observed around such launchers and near the sample edges. Our work opens new opportunities for anisotropic layered insulators in infrared nanophotonics complementing and potentially surpassing concurrent artificial hyperbolic materials with lower losses and higher optical localization. PMID:25902364
"That's really clever!" Ironic hyperbole understanding in children.
Aguert, Marc; LE Vallois, Coralie; Martel, Karine; Laval, Virginie
2018-01-01
Hyperbole supports irony comprehension in adults by heightening the contrast between what is said and the actual situation. Because young children do not perceive the communication situation as a whole, but rather give precedence to either the utterance or the context, we predicted that hyperbole would reduce irony comprehension in six-year-olds (n = 40) by overemphasizing what was said. By contrast, ten-year-olds (n = 40) would benefit from hyperbole in the way that adults do, as they would perceive the utterance and context as a whole, highlighted by the speaker's ironic intent. Short animated cartoons featuring ironic criticisms were shown to participants. We assessed comprehension of the speaker's belief and speaker's intent. Results supported our predictions. The development of mentalization during school years and its impact on the development of irony comprehension is discussed.
First-Order Hyperbolic System Method for Time-Dependent Advection-Diffusion Problems
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2014-01-01
A time-dependent extension of the first-order hyperbolic system method for advection-diffusion problems is introduced. Diffusive/viscous terms are written and discretized as a hyperbolic system, which recovers the original equation in the steady state. The resulting scheme offers advantages over traditional schemes: a dramatic simplification in the discretization, high-order accuracy in the solution gradients, and orders-of-magnitude convergence acceleration. The hyperbolic advection-diffusion system is discretized by the second-order upwind residual-distribution scheme in a unified manner, and the system of implicit-residual-equations is solved by Newton's method over every physical time step. The numerical results are presented for linear and nonlinear advection-diffusion problems, demonstrating solutions and gradients produced to the same order of accuracy, with rapid convergence over each physical time step, typically less than five Newton iterations.
Ainslie, George
2005-10-01
Behavioral science has long been puzzled by the experience of temptation, the resulting impulsiveness, and the variably successful control of this impulsiveness. In conventional theories, a governing faculty like the ego evaluates future choices consistently over time, discounting their value for delay exponentially, that is, by a constant rate; impulses arise when this ego is confronted by a conditioned appetite. Breakdown of Will (Ainslie 2001) presents evidence that contradicts this model. Both people and nonhuman animals spontaneously discount the value of expected events in a curve where value is divided approximately by expected delay, a hyperbolic form that is more bowed than the rational, exponential curve. With hyperbolic discounting, options that pay off quickly will be temporarily preferred to richer but slower-paying alternatives, a phenomenon that, over periods from minutes to days, can account for impulsive behaviors, and over periods of fractional seconds can account for involuntary behaviors. Contradictory reward-getting processes can in effect bargain with each other, and stable preferences can be established by the perception of recurrent choices as test cases (precedents) in recurrent intertemporal prisoner's dilemmas. The resulting motivational pattern resembles traditional descriptions of the will, as well as of compulsive phenomena that can now be seen as side-effects of will: over-concern with precedent, intractable but circumscribed failures of self-control, a motivated ("dynamic") unconscious, and an inability to exploit emotional rewards. Hyperbolic curves also suggest a means of reducing classical conditioning to motivated choice, the last necessary step for modeling many involuntary processes like emotion and appetite as reward-seeking behaviors; such modeling, in turn, provides a rationale for empathic reward and the "construction" of reality.
Cosmology in the laboratory: An analogy between hyperbolic metamaterials and the Milne universe
NASA Astrophysics Data System (ADS)
Figueiredo, David; Moraes, Fernando; Fumeron, Sébastien; Berche, Bertrand
2017-11-01
This article shows that the compactified Milne universe geometry, a toy model for the big crunch/big bang transition, can be realized in hyperbolic metamaterials, a new class of nanoengineered systems which have recently found its way as an experimental playground for cosmological ideas. On one side, Klein-Gordon particles, as well as tachyons, are used as probes of the Milne geometry. On the other side, the propagation of light in two versions of a liquid crystal-based metamaterial provides the analogy. It is shown that ray and wave optics in the metamaterial mimic, respectively, the classical trajectories and wave function propagation, of the Milne probes, leading to the exciting perspective of realizing experimental tests of particle tunneling through the cosmic singularity, for instance.
An Eigenvalue Analysis of finite-difference approximations for hyperbolic IBVPs
NASA Technical Reports Server (NTRS)
Warming, Robert F.; Beam, Richard M.
1989-01-01
The eigenvalue spectrum associated with a linear finite-difference approximation plays a crucial role in the stability analysis and in the actual computational performance of the discrete approximation. The eigenvalue spectrum associated with the Lax-Wendroff scheme applied to a model hyperbolic equation was investigated. For an initial-boundary-value problem (IBVP) on a finite domain, the eigenvalue or normal mode analysis is analytically intractable. A study of auxiliary problems (Dirichlet and quarter-plane) leads to asymptotic estimates of the eigenvalue spectrum and to an identification of individual modes as either benign or unstable. The asymptotic analysis establishes an intuitive as well as quantitative connection between the algebraic tests in the theory of Gustafsson, Kreiss, and Sundstrom and Lax-Richtmyer L(sub 2) stability on a finite domain.
CONSTITUTIVE BEHAVIOR OF AS-QUENCHED Al-Cu-Mn ALLOY
NASA Astrophysics Data System (ADS)
Yang, Xia-Wei; Zhu, Jing-Chuan; Nong, Zhi-Sheng; Ye, Mao; Lai, Zhong-Hong; Liu, Yong
2013-07-01
The hot flow stress of as-quenched Al-Cu-Mn alloy was modeled using the constitutive equations. The as-quenched Al-Cu-Mn alloy were treated with isothermal hot compression tests in the temperature range of 350-500°C, the strain rate range of 0.001-1 s-1. The hyperbolic sine equation was found to be appropriate for flow stress modeling and prediction. Based on the hyperbolic sine equation, a constitutive equation is a relation between 0.2 pct yield stress and deformation conditions (strain rate and deformation temperature) was established. The corresponding hot deformation activation energy (Q) for as-quenched Al-Cu-Mn alloy was determined to be 251.314 kJ/mol. Parameters of constitutive equation of as-quenched Al-Cu-Mn alloy were calculated at different small strains (≤ 0.01). The calculated flow stresses from the constitutive equation are in good agreement with the experimental results. Therefore, this constitutive equation can be used as an accurate temperature-stress model to solve the problems of quench distortion of Al-Cu-Mn alloy parts.
ERIC Educational Resources Information Center
American Journal of Physics, 1977
1977-01-01
Presents eight short articles on the following topics: demonstration of possible excitations in liquids; Mohr's circle and the determination of moments of inertia; braking distance versus mass for automobiles; a constant gravity model of the earth's interior; diffraction pattern of a hair; hyperbolic mirrors; sulfation plates; and principles of…
On oscillatory convection with the Cattaneo–Christov hyperbolic heat-flow model
Bissell, J. J.
2015-01-01
Adoption of the hyperbolic Cattaneo–Christov heat-flow model in place of the more usual parabolic Fourier law is shown to raise the possibility of oscillatory convection in the classic Bénard problem of a Boussinesq fluid heated from below. By comparing the critical Rayleigh numbers for stationary and oscillatory convection, Rc and RS respectively, oscillatory convection is found to represent the preferred form of instability whenever the Cattaneo number C exceeds a threshold value CT≥8/27π2≈0.03. In the case of free boundaries, analytical approaches permit direct treatment of the role played by the Prandtl number P1, which—in contrast to the classical stationary scenario—can impact on oscillatory modes significantly owing to the non-zero frequency of convection. Numerical investigation indicates that the behaviour found analytically for free boundaries applies in a qualitatively similar fashion for fixed boundaries, while the threshold Cattaneo number CT is computed as a function of P1∈[10−2,10+2] for both boundary regimes. PMID:25792960
NASA Technical Reports Server (NTRS)
Shu, Chi-Wang
1992-01-01
The present treatment of elliptic regions via hyperbolic flux-splitting and high order methods proposes a flux splitting in which the corresponding Jacobians have real and positive/negative eigenvalues. While resembling the flux splitting used in hyperbolic systems, the present generalization of such splitting to elliptic regions allows the handling of mixed-type systems in a unified and heuristically stable fashion. The van der Waals fluid-dynamics equation is used. Convergence with good resolution to weak solutions for various Riemann problems are observed.
Motion Among Random Obstacles on a Hyperbolic Space
NASA Astrophysics Data System (ADS)
Orsingher, Enzo; Ricciuti, Costantino; Sisti, Francesco
2016-02-01
We consider the motion of a particle along the geodesic lines of the Poincaré half-plane. The particle is specularly reflected when it hits randomly-distributed obstacles that are assumed to be motionless. This is the hyperbolic version of the well-known Lorentz Process studied in the Euclidean context. We analyse the limit in which the density of the obstacles increases to infinity and the size of each obstacle vanishes: under a suitable scaling, we prove that our process converges to a Markovian process, namely a random flight on the hyperbolic manifold.
Exotica and the status of the strong cosmic censor conjecture in four dimensions
NASA Astrophysics Data System (ADS)
Etesi, Gábor
2017-12-01
An immense class of physical counterexamples to the four dimensional strong cosmic censor conjecture—in its usual broad formulation—is exhibited. More precisely, out of any closed and simply connected 4-manifold an open Ricci-flat Lorentzian 4-manifold is constructed which is not globally hyperbolic, and no perturbation of which, in any sense, can be globally hyperbolic. This very stable non-global-hyperbolicity is the consequence of our open spaces having a ‘creased end’—i.e. an end diffeomorphic to an exotic \
Student Solution Manual for Mathematical Methods for Physics and Engineering Third Edition
NASA Astrophysics Data System (ADS)
Riley, K. F.; Hobson, M. P.
2006-03-01
Preface; 1. Preliminary algebra; 2. Preliminary calculus; 3. Complex numbers and hyperbolic functions; 4. Series and limits; 5. Partial differentiation; 6. Multiple integrals; 7. Vector algebra; 8. Matrices and vector spaces; 9. Normal modes; 10. Vector calculus; 11. Line, surface and volume integrals; 12. Fourier series; 13. Integral transforms; 14. First-order ordinary differential equations; 15. Higher-order ordinary differential equations; 16. Series solutions of ordinary differential equations; 17. Eigenfunction methods for differential equations; 18. Special functions; 19. Quantum operators; 20. Partial differential equations: general and particular; 21. Partial differential equations: separation of variables; 22. Calculus of variations; 23. Integral equations; 24. Complex variables; 25. Application of complex variables; 26. Tensors; 27. Numerical methods; 28. Group theory; 29. Representation theory; 30. Probability; 31. Statistics.
NASA Technical Reports Server (NTRS)
Kitchen, J. C.
1977-01-01
Various methods of presenting and mathematically describing particle size distribution are explained and evaluated. The hyperbolic distribution is found to be the most practical but the more complex characteristic vector analysis is the most sensitive to changes in the shape of the particle size distributions. A method for determining onshore-offshore flow patterns from the distribution of particulates was presented. A numerical model of the vertical structure of two size classes of particles was developed. The results show a close similarity to the observed distributions but overestimate the particle concentration by forty percent. This was attributed to ignoring grazing by zooplankton. Sensivity analyses showed the size preference was most responsive to the maximum specific growth rates and nutrient half saturation constants. The verical structure was highly dependent on the eddy diffusivity followed closely by the growth terms.
NASA Astrophysics Data System (ADS)
Christiansen, Christian; Hartmann, Daniel
This paper documents a package of menu-driven POLYPASCAL87 computer programs for handling grouped observations data from both sieving (increment data) and settling tube procedures (cumulative data). The package is designed deliberately for use on IBM-compatible personal computers. Two of the programs solve the numerical problem of determining the estimates of the four (main) parameters of the log-hyperbolic distribution and their derivatives. The package also contains a program for determining the mean, sorting, skewness. and kurtosis according to the standard moments. Moreover, the package contains procedures for smoothing and grouping of settling tube data. A graphic part of the package plots the data in a log-log plot together with the estimated log-hyperbolic curve. Along with the plot follows all estimated parameters. Another graphic option is a plot of the log-hyperbolic shape triangle with the (χ,ζ) position of the sample.
Kapitanova, Polina V; Ginzburg, Pavel; Rodríguez-Fortuño, Francisco J; Filonov, Dmitry S; Voroshilov, Pavel M; Belov, Pavel A; Poddubny, Alexander N; Kivshar, Yuri S; Wurtz, Gregory A; Zayats, Anatoly V
2014-01-01
The routing of light in a deep subwavelength regime enables a variety of important applications in photonics, quantum information technologies, imaging and biosensing. Here we describe and experimentally demonstrate the selective excitation of spatially confined, subwavelength electromagnetic modes in anisotropic metamaterials with hyperbolic dispersion. A localized, circularly polarized emitter placed at the boundary of a hyperbolic metamaterial is shown to excite extraordinary waves propagating in a prescribed direction controlled by the polarization handedness. Thus, a metamaterial slab acts as an extremely broadband, nearly ideal polarization beam splitter for circularly polarized light. We perform a proof of concept experiment with a uniaxial hyperbolic metamaterial at radio-frequencies revealing the directional routing effect and strong subwavelength λ/300 confinement. The proposed concept of metamaterial-based subwavelength interconnection and polarization-controlled signal routing is based on the photonic spin Hall effect and may serve as an ultimate platform for either conventional or quantum electromagnetic signal processing.
Campione, Salvatore; Liu, Sheng; Luk, Ting S.; ...
2015-08-05
We employ both the effective medium approximation (EMA) and Bloch theory to compare the dispersion properties of semiconductor hyperbolic metamaterials (SHMs) at mid-infrared frequencies and metallic hyperbolic metamaterials (MHMs) at visible frequencies. This analysis reveals the conditions under which the EMA can be safely applied for both MHMs and SHMs. We find that the combination of precise nanoscale layering and the longer infrared operating wavelengths puts the SHMs well within the effective medium limit and, in contrast to MHMs, allows for the attainment of very high photon momentum states. Additionally, SHMs allow for new phenomena such as ultrafast creation ofmore » the hyperbolic manifold through optical pumping. Furthermore, we examine the possibility of achieving ultrafast topological transitions through optical pumping which can photo-dope appropriately designed quantum wells on the femtosecond time scale.« less
Chimeras and clusters in networks of hyperbolic chaotic oscillators
NASA Astrophysics Data System (ADS)
Cano, A. V.; Cosenza, M. G.
2017-03-01
We show that chimera states, where differentiated subsets of synchronized and desynchronized dynamical elements coexist, can emerge in networks of hyperbolic chaotic oscillators subject to global interactions. As local dynamics we employ Lozi maps, which possess hyperbolic chaotic attractors. We consider a globally coupled system of these maps and use two statistical quantities to describe its collective behavior: the average fraction of elements belonging to clusters and the average standard deviation of state variables. Chimera states, clusters, complete synchronization, and incoherence are thus characterized on the space of parameters of the system. We find that chimera states are related to the formation of clusters in the system. In addition, we show that chimera states arise for a sufficiently long range of interactions in nonlocally coupled networks of these maps. Our results reveal that, under some circumstances, hyperbolicity does not impede the formation of chimera states in networks of coupled chaotic systems, as it had been previously hypothesized.
Path integration on the hyperbolic plane with a magnetic field
NASA Astrophysics Data System (ADS)
Grosche, Christian
1990-08-01
In this paper I discuss the path integrals on three formulations of hyperbolic geometry, where a constant magnetic field B is included. These are: the pseudosphere Λ2, the Poincaré disc D, and the hyperbolic strip S. The corresponding path integrals can be reformulated in terms of the path integral for the modified Pöschl-Teller potential. The wave-functions and the energy spectrum for the discrete and continuous part of the spectrum are explicitly calculated in each case. First the results are compared for the limit B → 0 with previous calculations and second with the path integration on the Poincaré upper half-plane U. This work is a continuation of the path integral calculations for the free motion on the various formulations on the hyperbolic plane and for the case of constant magnetic field on the Poincaré upper half-plane U.
An improved numerical method for the kernel density functional estimation of disperse flow
NASA Astrophysics Data System (ADS)
Smith, Timothy; Ranjan, Reetesh; Pantano, Carlos
2014-11-01
We present an improved numerical method to solve the transport equation for the one-point particle density function (pdf), which can be used to model disperse flows. The transport equation, a hyperbolic partial differential equation (PDE) with a source term, is derived from the Lagrangian equations for a dilute particle system by treating position and velocity as state-space variables. The method approximates the pdf by a discrete mixture of kernel density functions (KDFs) with space and time varying parameters and performs a global Rayleigh-Ritz like least-square minimization on the state-space of velocity. Such an approximation leads to a hyperbolic system of PDEs for the KDF parameters that cannot be written completely in conservation form. This system is solved using a numerical method that is path-consistent, according to the theory of non-conservative hyperbolic equations. The resulting formulation is a Roe-like update that utilizes the local eigensystem information of the linearized system of PDEs. We will present the formulation of the base method, its higher-order extension and further regularization to demonstrate that the method can predict statistics of disperse flows in an accurate, consistent and efficient manner. This project was funded by NSF Project NSF-DMS 1318161.
Diffusive instabilities in a hyperbolic activator-inhibitor system with superdiffusion
NASA Astrophysics Data System (ADS)
Mvogo, Alain; Macías-Díaz, Jorge E.; Kofané, Timoléon Crépin
2018-03-01
We investigate analytically and numerically the conditions for wave instabilities in a hyperbolic activator-inhibitor system with species undergoing anomalous superdiffusion. In the present work, anomalous superdiffusion is modeled using the two-dimensional Weyl fractional operator, with derivative orders α ∈
Numerical Leak Detection in a Pipeline Network of Complex Structure with Unsteady Flow
NASA Astrophysics Data System (ADS)
Aida-zade, K. R.; Ashrafova, E. R.
2017-12-01
An inverse problem for a pipeline network of complex loopback structure is solved numerically. The problem is to determine the locations and amounts of leaks from unsteady flow characteristics measured at some pipeline points. The features of the problem include impulse functions involved in a system of hyperbolic differential equations, the absence of classical initial conditions, and boundary conditions specified as nonseparated relations between the states at the endpoints of adjacent pipeline segments. The problem is reduced to a parametric optimal control problem without initial conditions, but with nonseparated boundary conditions. The latter problem is solved by applying first-order optimization methods. Results of numerical experiments are presented.
Near-field heat transfer between graphene/hBN multilayers
NASA Astrophysics Data System (ADS)
Zhao, Bo; Guizal, Brahim; Zhang, Zhuomin M.; Fan, Shanhui; Antezza, Mauro
2017-06-01
We study the radiative heat transfer between multilayer structures made by a periodic repetition of a graphene sheet and a hexagonal boron nitride (hBN) slab. Surface plasmons in a monolayer graphene can couple with hyperbolic phonon polaritons in a single hBN film to form hybrid polaritons that can assist photon tunneling. For periodic multilayer graphene/hBN structures, the stacked metallic/dielectric array can give rise to a further effective hyperbolic behavior, in addition to the intrinsic natural hyperbolic behavior of hBN. The effective hyperbolicity can enable more hyperbolic polaritons that enhance the photon tunneling and hence the near-field heat transfer. However, the hybrid polaritons on the surface, i.e., surface plasmon-phonon polaritons, dominate the near-field heat transfer between multilayer structures when the topmost layer is graphene. The effective hyperbolic regions can be well predicted by the effective medium theory (EMT), thought EMT fails to capture the hybrid surface polaritons and results in a heat transfer rate much lower compared to the exact calculation. The chemical potential of the graphene sheets can be tuned through electrical gating and results in an additional modulation of the heat transfer. We found that the near-field heat transfer between multilayer structures does not increase monotonously with the number of layers in the stack, which provides a way to control the heat transfer rate by the number of graphene layers in the multilayer structure. The results may benefit the applications of near-field energy harvesting and radiative cooling based on hybrid polaritons in two-dimensional materials.
Classification of almost toric singularities of Lagrangian foliations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Izosimov, Anton M
2011-07-31
The topological classification is given of almost toric singularities of integrable Hamiltonian systems with a large number of degrees of freedom, that is, of nondegenerate singularities without hyperbolic components. A descriptive geometric model is constructed, which makes it possible to perform effective calculations. Bibliography: 10 titles.
Inverse-Square Orbits: A Geometric Approach.
ERIC Educational Resources Information Center
Rainwater, James C.; Weinstock, Robert
1979-01-01
Presents a derivation of Kepler's first law of planetary motion from Newtonian principles. Analogus derivations of the hyperbolic and parabolic orbits of nonreturning comets and the hyperbolic orbit for a particle in a repulsive inverse-square field are also presented. (HM)
Use of hyperbolic partial differential equations to generate body fitted coordinates
NASA Technical Reports Server (NTRS)
Steger, J. L.; Sorenson, R. L.
1980-01-01
The hyperbolic scheme is used to efficiently generate smoothly varying grids with good step size control near the body. Although only two dimensional applications are presented, the basic concepts are shown to extend to three dimensions.
Accuracy limitations of hyperbolic multilateration systems
DOT National Transportation Integrated Search
1973-03-22
The report is an analysis of the accuracy limitations of hyperbolic multilateration systems. A central result is a demonstration that the inverse of the covariance matrix for positional errors corresponds to the moment of inertia matrix of a simple m...
Stability of Blowup for a 1D Model of Axisymmetric 3D Euler Equation
NASA Astrophysics Data System (ADS)
Do, Tam; Kiselev, Alexander; Xu, Xiaoqian
2016-10-01
The question of the global regularity versus finite- time blowup in solutions of the 3D incompressible Euler equation is a major open problem of modern applied analysis. In this paper, we study a class of one-dimensional models of the axisymmetric hyperbolic boundary blow-up scenario for the 3D Euler equation proposed by Hou and Luo (Multiscale Model Simul 12:1722-1776, 2014) based on extensive numerical simulations. These models generalize the 1D Hou-Luo model suggested in Hou and Luo Luo and Hou (2014), for which finite-time blowup has been established in Choi et al. (arXiv preprint. arXiv:1407.4776, 2014). The main new aspects of this work are twofold. First, we establish finite-time blowup for a model that is a closer approximation of the three-dimensional case than the original Hou-Luo model, in the sense that it contains relevant lower-order terms in the Biot-Savart law that have been discarded in Hou and Luo Choi et al. (2014). Secondly, we show that the blow-up mechanism is quite robust, by considering a broader family of models with the same main term as in the Hou-Luo model. Such blow-up stability result may be useful in further work on understanding the 3D hyperbolic blow-up scenario.
Eulerian adaptive finite-difference method for high-velocity impact and penetration problems
NASA Astrophysics Data System (ADS)
Barton, P. T.; Deiterding, R.; Meiron, D.; Pullin, D.
2013-05-01
Owing to the complex processes involved, faithful prediction of high-velocity impact events demands a simulation method delivering efficient calculations based on comprehensively formulated constitutive models. Such an approach is presented herein, employing a weighted essentially non-oscillatory (WENO) method within an adaptive mesh refinement (AMR) framework for the numerical solution of hyperbolic partial differential equations. Applied widely in computational fluid dynamics, these methods are well suited to the involved locally non-smooth finite deformations, circumventing any requirement for artificial viscosity functions for shock capturing. Application of the methods is facilitated through using a model of solid dynamics based upon hyper-elastic theory comprising kinematic evolution equations for the elastic distortion tensor. The model for finite inelastic deformations is phenomenologically equivalent to Maxwell's model of tangential stress relaxation. Closure relations tailored to the expected high-pressure states are proposed and calibrated for the materials of interest. Sharp interface resolution is achieved by employing level-set functions to track boundary motion, along with a ghost material method to capture the necessary internal boundary conditions for material interactions and stress-free surfaces. The approach is demonstrated for the simulation of high velocity impacts of steel projectiles on aluminium target plates in two and three dimensions.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications.
Karyotis, Vasileios; Tsitseklis, Konstantinos; Sotiropoulos, Konstantinos; Papavassiliou, Symeon
2018-04-15
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan-Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing.
NASA Astrophysics Data System (ADS)
Berrut, Sylvie; Pouillard, Violette; Richmond, Peter; Roehner, Bertrand M.
2016-12-01
This paper is about infant mortality. In line with reliability theory, "infant" refers to the time interval following birth during which the mortality (or failure) rate decreases. This definition provides a systems science perspective in which birth constitutes a sudden transition falling within the field of application of the Transient Shock (TS) conjecture put forward in Richmond and Roehner (2016c). This conjecture provides predictions about the timing and shape of the death rate peak. It says that there will be a death rate spike whenever external conditions change abruptly and drastically and also predicts that after a steep rise there will be a much longer hyperbolic relaxation process. These predictions can be tested by considering living organisms for which the transient shock occurs several days after birth. Thus, for fish there are three stages: egg, yolk-sac and young adult phases. The TS conjecture predicts a mortality spike at the end of the yolk-sac phase and this timing is indeed confirmed by observation. Secondly, the hyperbolic nature of the relaxation process can be tested using very accurate Swiss statistics for postnatal death rates spanning the period from one hour immediately after birth through to age 10 years. It turns out that since the 19th century despite a significant and large reduction in infant mortality, the shape of the age-specific death rate has remained basically unchanged. Moreover the hyperbolic pattern observed for humans is also found for small primates as recorded in the archives of zoological gardens. Our overall objective is to identify a series of cases which start from simple systems and move step by step to more complex organisms. The cases discussed here we believe represent initial landmarks in this quest.
Big Data Clustering via Community Detection and Hyperbolic Network Embedding in IoT Applications
Sotiropoulos, Konstantinos
2018-01-01
In this paper, we present a novel data clustering framework for big sensory data produced by IoT applications. Based on a network representation of the relations among multi-dimensional data, data clustering is mapped to node clustering over the produced data graphs. To address the potential very large scale of such datasets/graphs that test the limits of state-of-the-art approaches, we map the problem of data clustering to a community detection one over the corresponding data graphs. Specifically, we propose a novel computational approach for enhancing the traditional Girvan–Newman (GN) community detection algorithm via hyperbolic network embedding. The data dependency graph is embedded in the hyperbolic space via Rigel embedding, allowing more efficient computation of edge-betweenness centrality needed in the GN algorithm. This allows for more efficient clustering of the nodes of the data graph in terms of modularity, without sacrificing considerable accuracy. In order to study the operation of our approach with respect to enhancing GN community detection, we employ various representative types of artificial complex networks, such as scale-free, small-world and random geometric topologies, and frequently-employed benchmark datasets for demonstrating its efficacy in terms of data clustering via community detection. Furthermore, we provide a proof-of-concept evaluation by applying the proposed framework over multi-dimensional datasets obtained from an operational smart-city/building IoT infrastructure provided by the Federated Interoperable Semantic IoT/cloud Testbeds and Applications (FIESTA-IoT) testbed federation. It is shown that the proposed framework can be indeed used for community detection/data clustering and exploited in various other IoT applications, such as performing more energy-efficient smart-city/building sensing. PMID:29662043
NASA Astrophysics Data System (ADS)
Ham, Ji-Young; Lee, Joongul
2017-03-01
We calculate the Chern-Simons invariants of the hyperbolic orbifolds of the knot with Conway's notation C(2n, 3) using the Schläfli formula for the generalized Chern-Simons function on the family of C(2n, 3) cone-manifold structures. We present the concrete and explicit formula of them. We apply the general instructions of Hilden, Lozano, and Montesinos-Amilibia and extend the Ham and Lee's methods. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic C(2n, 3) orbifolds.
Congruence Approximations for Entrophy Endowed Hyperbolic Systems
NASA Technical Reports Server (NTRS)
Barth, Timothy J.; Saini, Subhash (Technical Monitor)
1998-01-01
Building upon the standard symmetrization theory for hyperbolic systems of conservation laws, congruence properties of the symmetrized system are explored. These congruence properties suggest variants of several stabilized numerical discretization procedures for hyperbolic equations (upwind finite-volume, Galerkin least-squares, discontinuous Galerkin) that benefit computationally from congruence approximation. Specifically, it becomes straightforward to construct the spatial discretization and Jacobian linearization for these schemes (given a small amount of derivative information) for possible use in Newton's method, discrete optimization, homotopy algorithms, etc. Some examples will be given for the compressible Euler equations and the nonrelativistic MHD equations using linear and quadratic spatial approximation.
NASA Astrophysics Data System (ADS)
Zhukovsky, K. V.
2018-01-01
A particular solution of the hyperbolic heat-conduction equation was constructed using the method of operators. The evolution of a harmonic solution is studied, which simulates the propagation of electric signals in long wire transmission lines. The structures of the solutions of the telegraph equation and of the Guyer-Krumhansl equation are compared. The influence of the phonon heat-transfer mechanism in the environment is considered from the point of view of heat conductivity. The fulfillment of the maximum principle for the obtained solutions is considered. The frequency dependences of heat conductivity in the telegraph equation and in an equation of the Guyer-Krumhansl type are studied and compared with each other. The influence of the Knudsen number on heat conductivity in the model of thin films is studied.
Hip, Hype, Hope: Social Studies Reform for the 1990's.
ERIC Educational Resources Information Center
Nelson, Murry R.
1993-01-01
Maintains that current efforts to reform education and social studies are cycles of media hyperbole and political hope. Contends that issues underlying various programs are really about power and control. Argues that social studies has a role in making schools and students models of democratic thought and action. (CFR)
Dynamic Hyperbolic Geometry: Building Intuition and Understanding Mediated by a Euclidean Model
ERIC Educational Resources Information Center
Moreno-Armella, Luis; Brady, Corey; Elizondo-Ramirez, Rubén
2018-01-01
This paper explores a deep transformation in mathematical epistemology and its consequences for teaching and learning. With the advent of non-Euclidean geometries, direct, iconic correspondences between physical space and the deductive structures of mathematical inquiry were broken. For non-Euclidean ideas even to become "thinkable" the…
Weighted least squares techniques for improved received signal strength based localization.
Tarrío, Paula; Bernardos, Ana M; Casar, José R
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling.
Weighted Least Squares Techniques for Improved Received Signal Strength Based Localization
Tarrío, Paula; Bernardos, Ana M.; Casar, José R.
2011-01-01
The practical deployment of wireless positioning systems requires minimizing the calibration procedures while improving the location estimation accuracy. Received Signal Strength localization techniques using propagation channel models are the simplest alternative, but they are usually designed under the assumption that the radio propagation model is to be perfectly characterized a priori. In practice, this assumption does not hold and the localization results are affected by the inaccuracies of the theoretical, roughly calibrated or just imperfect channel models used to compute location. In this paper, we propose the use of weighted multilateration techniques to gain robustness with respect to these inaccuracies, reducing the dependency of having an optimal channel model. In particular, we propose two weighted least squares techniques based on the standard hyperbolic and circular positioning algorithms that specifically consider the accuracies of the different measurements to obtain a better estimation of the position. These techniques are compared to the standard hyperbolic and circular positioning techniques through both numerical simulations and an exhaustive set of real experiments on different types of wireless networks (a wireless sensor network, a WiFi network and a Bluetooth network). The algorithms not only produce better localization results with a very limited overhead in terms of computational cost but also achieve a greater robustness to inaccuracies in channel modeling. PMID:22164092
Correlation Functions of σ Fields with Values in a Hyperbolic Space
NASA Astrophysics Data System (ADS)
Haba, Z.
It is shown that the functional integral for a σ field with values in the Poincare upper half-plane (and some other hyperbolic spaces) can be performed explicitly resulting in a conformal invariant noncanonical field theory in two dimensions.
NASA Technical Reports Server (NTRS)
Kolomiyets, S. V.
2011-01-01
Some results of the International Heliophysical Year (IHY) Coordinated Investigation Program (CIP) number 65 Meteors in the Earth Atmosphere and Meteoroids in the Solar System are presented. The problem of hyperbolic and near-parabolic orbits is discussed. Some possibilities for the solution of this problem can be obtained from the radar observation of faint meteors. The limiting magnitude of the Kharkov, Ukraine, radar observation program in the 1970 s was +12, resulting in a very large number of meteors being detected. 250,000 orbits down to even fainter limiting magnitude were determined in the 1972-78 period in Kharkov (out of them 7,000 are hyperbolic). The hypothesis of hyperbolic meteors was confirmed. In some radar meteor observations 1 10% of meteors are hyperbolic meteors. Though the Advanced Meteor Orbit Radar (AMOR, New Zealand) and Canadian Meteor Orbit Radar (CMOR, Canada) have accumulated millions of meteor orbits, there are difficulties in comparing the radar observational data obtained from these three sites (New Zealand, Canada, Kharkov). A new global program International Space Weather Initiative (ISWI) has begun in 2010 (http://www.iswi-secretariat.org). Today it is necessary to create the unified radar catalogue of nearparabolic and hyperbolic meteor orbits in the framework of the ISWI, or any other different way, in collaboration of Ukraine, Canada, New Zealand, the USA and, possibly, Japan. Involvement of the Virtual Meteor Observatory (Netherlands) and Meteor Data Centre (Slovakia) is desirable too. International unified radar catalogue of near-parabolic and hyperbolic meteor orbits will aid to a major advance in our understanding of the ecology of meteoroids within the Solar System and beyond.
Investigation of statistical iterative reconstruction for dedicated breast CT
Makeev, Andrey; Glick, Stephen J.
2013-01-01
Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images were compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue. Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters. Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose. Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose. PMID:23927318
NASA Astrophysics Data System (ADS)
Mokhov, O. I.; Nutku, Y.
1994-10-01
By casting the Born-Infeld equation and the real hyperbolic Monge-Ampère equation into the form of equations of hydrodynamic type, we find that there exists an explicit transformation between them. This is Bianchi transformation.
Lucarini, Valerio; Fraedrich, Klaus
2009-08-01
Starting from the classical Saltzman two-dimensional convection equations, we derive via a severe spectral truncation a minimal 10 ODE system which includes the thermal effect of viscous dissipation. Neglecting this process leads to a dynamical system which includes a decoupled generalized Lorenz system. The consideration of this process breaks an important symmetry and couples the dynamics of fast and slow variables, with the ensuing modifications to the structural properties of the attractor and of the spectral features. When the relevant nondimensional number (Eckert number Ec) is different from zero, an additional time scale of O(Ec(-1)) is introduced in the system, as shown with standard multiscale analysis and made clear by several numerical evidences. Moreover, the system is ergodic and hyperbolic, the slow variables feature long-term memory with 1/f(3/2) power spectra, and the fast variables feature amplitude modulation. Increasing the strength of the thermal-viscous feedback has a stabilizing effect, as both the metric entropy and the Kaplan-Yorke attractor dimension decrease monotonically with Ec. The analyzed system features very rich dynamics: it overcomes some of the limitations of the Lorenz system and might have prototypical value in relevant processes in complex systems dynamics, such as the interaction between slow and fast variables, the presence of long-term memory, and the associated extreme value statistics. This analysis shows how neglecting the coupling of slow and fast variables only on the basis of scale analysis can be catastrophic. In fact, this leads to spurious invariances that affect essential dynamical properties (ergodicity, hyperbolicity) and that cause the model losing ability in describing intrinsically multiscale processes.
Out-of-plane heat transfer in van der Waals stacks through electron-hyperbolic phonon coupling
NASA Astrophysics Data System (ADS)
Tielrooij, Klaas-Jan; Hesp, Niels C. H.; Principi, Alessandro; Lundeberg, Mark B.; Pogna, Eva A. A.; Banszerus, Luca; Mics, Zoltán; Massicotte, Mathieu; Schmidt, Peter; Davydovskaya, Diana; Purdie, David G.; Goykhman, Ilya; Soavi, Giancarlo; Lombardo, Antonio; Watanabe, Kenji; Taniguchi, Takashi; Bonn, Mischa; Turchinovich, Dmitry; Stampfer, Christoph; Ferrari, Andrea C.; Cerullo, Giulio; Polini, Marco; Koppens, Frank H. L.
2018-01-01
Van der Waals heterostructures have emerged as promising building blocks that offer access to new physics, novel device functionalities and superior electrical and optoelectronic properties1-7. Applications such as thermal management, photodetection, light emission, data communication, high-speed electronics and light harvesting8-16 require a thorough understanding of (nanoscale) heat flow. Here, using time-resolved photocurrent measurements, we identify an efficient out-of-plane energy transfer channel, where charge carriers in graphene couple to hyperbolic phonon polaritons17-19 in the encapsulating layered material. This hyperbolic cooling is particularly efficient, giving picosecond cooling times for hexagonal BN, where the high-momentum hyperbolic phonon polaritons enable efficient near-field energy transfer. We study this heat transfer mechanism using distinct control knobs to vary carrier density and lattice temperature, and find excellent agreement with theory without any adjustable parameters. These insights may lead to the ability to control heat flow in van der Waals heterostructures.
Terahertz radiation in graphene hyperbolic medium excited by an electric dipole.
Feng, Xiaodong; Gong, Sen; Zhong, Renbin; Zhao, Tao; Hu, Min; Zhang, Chao; Liu, Shenggang
2018-03-01
In this Letter, the enhanced and directional radiation in a wide terahertz (THz) frequency range in a graphene hyperbolic medium excited by an electric dipole is presented. The numerical simulations and theoretical analyses indicate that the enhanced radiation comes from the strong surface plasmon couplings in the graphene hyperbolic medium, consisting of alternative graphene and dielectric substrate layers. The simulation results also show that the peak power flow of the enhanced THz radiation in the graphene hyperbolic medium is dramatically enhanced by more than 1 order of magnitude over that in a general medium within a certain distance from the dipole, and the electromagnetic fields are strongly concentrated in a narrow angle. Also, the radiation fields can be manipulated, and the fields' angular distributions can be tuned by adjusting the dielectric permittivity and thickness of the substrates, and the chemical potential of graphene. Accordingly, it provides a good opportunity for developing miniature, integratable, high-power-density, and tunable radiation sources in the THz band at room temperature.
A mixed fluid-kinetic solver for the Vlasov-Poisson equations
NASA Astrophysics Data System (ADS)
Cheng, Yongtao
Plasmas are ionized gases that appear in a wide range of applications including astrophysics and space physics, as well as in laboratory settings such as in magnetically confined fusion. There are two prevailing types of modeling strategies to describe a plasma system: kinetic models and fluid models. Kinetic models evolve particle probability density distributions (PDFs) in phase space, which are accurate but computationally expensive. Fluid models evolve a small number of moments of the distribution function and reduce the dimension of the solution. However, some approximation is necessary to close the system, and finding an accurate moment closure that correctly captures the dynamics away from thermodynamic equilibrium is a difficult and still open problem. The main contributions of the present work can be divided into two main parts: (1) a new class of moment closures, based on a modification of existing quadrature-based moment-closure methods, is developed using bi-B-spline and bi-bubble representations; and (2) a novel mixed solver that combines a fluid and a kinetic solver is proposed, which uses the new class of moment-closure methods described in the first part. For the newly developed quadrature-based moment-closure based on bi-B-spline and bi-bubble representation, the explicit form of flux terms and the moment-realizability conditions are given. It is shown that while the bi-delta system is weakly hyperbolic, the newly proposed fluid models are strongly hyperbolic. Using a high-order Runge-Kutta discontinuous Galerkin method together with Strang operator splitting, the resulting models are applied to the Vlasov-Poisson-Fokker-Planck system in the high field limit. In the second part of this work, results from kinetic solver are used to provide a corrected closure to the fluid model. This correction keeps the fluid model hyperbolic and gives fluid results that match the moments as computed from the kinetic solution. Furthermore, a prolongation operation based on the bi-bubble moment-closure is used to make the first few moments of the kinetic and fluid solvers match. This results in a kinetic solver that exactly conserves mass and total energy. This mixed fluid-kinetic solver is applied to standard test problems for the Vlasov-Poisson system, including two-stream-instability problem and Landau damping.
NASA Astrophysics Data System (ADS)
Konks, V. Ia.
1981-05-01
Barrar's (1961) method for the analysis of the motion of a satellite of an oblate planet is extended to the case of hyperbolic motion. An analysis is presented of the motion of a material point in the gravitational field of a fixed center, combined with a gravitational dipole located at the point of inertia of a dynamically symmetric planet. Formulas are obtained for the hyperbolic motion of a spacecraft in the gravitational field of a spheroidal planet with an accuracy up to the second zonal harmonic of the expansion of its potential into a Legendre polynomial series in spherical coordinates.
Partner symmetries and non-invariant solutions of four-dimensional heavenly equations
NASA Astrophysics Data System (ADS)
Malykh, A. A.; Nutku, Y.; Sheftel, M. B.
2004-07-01
We extend our method of partner symmetries to the hyperbolic complex Monge-Ampère equation and the second heavenly equation of Plebañski. We show the existence of partner symmetries and derive the relations between them. For certain simple choices of partner symmetries the resulting differential constraints together with the original heavenly equations are transformed to systems of linear equations by an appropriate Legendre transformation. The solutions of these linear equations are generically non-invariant. As a consequence we obtain explicitly new classes of heavenly metrics without Killing vectors.
Remote optoelectronic sensors for monitoring of nonlinear surfaces
NASA Astrophysics Data System (ADS)
Petrochenko, Andrew V.; Konyakhin, Igor A.
2015-05-01
Actually during construction of the high building actively are used objects of various nonlinear surface, for example, sinuous (parabolic or hyperbolic) roofs of the sport complexes that require automatic deformation control [1]. This type of deformation has character of deflection that is impossible to monitor objectively with just one optoelectronic sensor (which is fixed on this surface). In this article is described structure of remote optoelectronic sensor, which is part of the optoelectronic monitoring system of nonlinear surface, and mathematical transformation of exterior orientation sensor elements in the coordinates of control points.
Lai, Chintu
1977-01-01
Two-dimensional unsteady flows of homogeneous density in estuaries and embayments can be described by hyperbolic, quasi-linear partial differential equations involving three dependent and three independent variables. A linear combination of these equations leads to a parametric equation of characteristic form, which consists of two parts: total differentiation along the bicharacteristics and partial differentiation in space. For its numerical solution, the specified-time-interval scheme has been used. The unknown, partial space-derivative terms can be eliminated first by suitable combinations of difference equations, converted from the corresponding differential forms and written along four selected bicharacteristics and a streamline. Other unknowns are thus made solvable from the known variables on the current time plane. The computation is carried to the second-order accuracy by using trapezoidal rule of integration. Means to handle complex boundary conditions are developed for practical application. Computer programs have been written and a mathematical model has been constructed for flow simulation. The favorable computer outputs suggest further exploration and development of model worthwhile. (Woodard-USGS)
Euclidean, Spherical, and Hyperbolic Shadows
ERIC Educational Resources Information Center
Hoban, Ryan
2013-01-01
Many classical problems in elementary calculus use Euclidean geometry. This article takes such a problem and solves it in hyperbolic and in spherical geometry instead. The solution requires only the ability to compute distances and intersections of points in these geometries. The dramatically different results we obtain illustrate the effect…
On the coupling of hyperbolic and parabolic systems: Analytical and numerical approach
NASA Technical Reports Server (NTRS)
Gastaldi, Fabio; Quarteroni, Alfio
1988-01-01
The coupling of hyperbolic and parabolic systems is discussed in a domain Omega divided into two distinct subdomains omega(+) and omega(-). The main concern is to find the proper interface conditions to be fulfilled at the surface separating the two domains. Next, they are used in the numerical approximation of the problem. The justification of the interface conditions is based on a singular perturbation analysis, i.e., the hyperbolic system is rendered parabolic by adding a small artifical viscosity. As this goes to zero, the coupled parabolic-parabolic problem degenerates into the original one, yielding some conditions at the interface. These are taken as interface conditions for the hyperbolic-parabolic problem. Actually, two alternative sets of interface conditions are discussed according to whether the regularization procedure is variational or nonvariational. It is shown how these conditions can be used in the frame of a numerical approximation to the given problem. Furthermore, a method of resolution is discussed which alternates the resolution of the hyperbolic problem within omega(-) and of the parabolic one within omega(+). The spectral collocation method is proposed, as an example of space discretization (different methods could be used as well); both explicit and implicit time-advancing schemes are considered. The present study is a preliminary step toward the analysis of the coupling between Euler and Navier-Stokes equations for compressible flows.
NASA Astrophysics Data System (ADS)
Lee, Euntaek; Ahn, Hyung Taek; Luo, Hong
2018-02-01
We apply a hyperbolic cell-centered finite volume method to solve a steady diffusion equation on unstructured meshes. This method, originally proposed by Nishikawa using a node-centered finite volume method, reformulates the elliptic nature of viscous fluxes into a set of augmented equations that makes the entire system hyperbolic. We introduce an efficient and accurate solution strategy for the cell-centered finite volume method. To obtain high-order accuracy for both solution and gradient variables, we use a successive order solution reconstruction: constant, linear, and quadratic (k-exact) reconstruction with an efficient reconstruction stencil, a so-called wrapping stencil. By the virtue of the cell-centered scheme, the source term evaluation was greatly simplified regardless of the solution order. For uniform schemes, we obtain the same order of accuracy, i.e., first, second, and third orders, for both the solution and its gradient variables. For hybrid schemes, recycling the gradient variable information for solution variable reconstruction makes one order of additional accuracy, i.e., second, third, and fourth orders, possible for the solution variable with less computational work than needed for uniform schemes. In general, the hyperbolic method can be an effective solution technique for diffusion problems, but instability is also observed for the discontinuous diffusion coefficient cases, which brings necessity for further investigation about the monotonicity preserving hyperbolic diffusion method.
NASA Technical Reports Server (NTRS)
Gershman, D.J.; Block, B.P.; Rubin, M.; Benna, M.; Mahaffy, P. R.; Zurbuchen, T. H.
2012-01-01
This work applies higher order auxiliary excitation techniques to two types of quadrupole mass spectrometers (QMSs): commercial systems and spaceborne instruments. The operational settings of a circular rod geometry commercial system and an engineering test-bed for a hyperbolic rod geometry spaceborne instrument were matched, with the relative performance of each sensor characterized with and without applied excitation using isotopic measurements of Kr+. Each instrument was operated at the limit of the test electronics to determine the effect of auxiliary excitation on extending instrument capabilities. For the circular rod sensor, with applied excitation, a doubling of the mass resolution at 1% of peak transmission resulted from the elimination of the low-mass side peak tail typical of such rod geometries. The mass peak stability and ion rejection efficiency were also increased by factors of 2 and 10, respectively, with voltage scan lines passing through the center of stability islands formed from auxiliary excitation. Auxiliary excitation also resulted in factors of 6 and 2 in peak stability and ion rejection efficiency, respectively, for the hyperbolic rod sensor. These results not only have significant implications for the use of circular rod quadrupoles with applied excitation as a suitable replacement for traditional hyperbolic rod sensors, but also for extending the capabilities of existing hyperbolic rod QMSs for the next generation of spaceborne instruments and low-mass commercial systems.
NASA Astrophysics Data System (ADS)
Luo, Tong; Xu, Ming; Colombo, Camilla
2018-04-01
This paper studies the dynamics and control of a spacecraft, whose area-to-mass ratio is increased by deploying a reflective orientable surface such as a solar sail or a solar panel. The dynamical system describing the motion of a non-zero attitude angle high area-to-mass ratio spacecraft under the effects of the Earth's oblateness and solar radiation pressure admits the existence of equilibrium points, whose number and the eccentricity values depend on the semi-major axis, the area-to-mass ratio and the attitude angle of the spacecraft together. When two out of three parameters are fixed, five different dynamical topologies successively occur through varying the third parameter. Two of these five topologies are critical cases characterized by the appearance of the bifurcation phenomena. A conventional Hamiltonian structure-preserving (HSP) controller and an improved HSP controller are both constructed to stabilize the hyperbolic equilibrium point. Through the use of a conventional HSP controller, a bounded trajectory around the hyperbolic equilibrium point is obtained, while an improved HSP controller allows the spacecraft to easily transfer to the hyperbolic equilibrium point and to follow varying equilibrium points. A bifurcation control using topologies and changes of behavior areas can also stabilize a spacecraft near a hyperbolic equilibrium point. Natural trajectories around stable equilibrium point and these stabilized trajectories around hyperbolic equilibrium point can all be applied to geomagnetic exploration.
Flow Visualization and Pattern Formation in Vertically Falling Liquid Films
NASA Astrophysics Data System (ADS)
Balakotaiah, Vemuri; Malamataris, Nikolaos
2008-11-01
Analytical results of a low-dimensional two equation h-q model and results of a direct numerical simulation of the transient two-dimensional Navier Stokes equations are presented for vertically falling liquid films along a solid wall. The numerical study aims at the elucidation of the hydrodynamics of the falling film. The analytical study aims at the calculation of the parameter space where pattern formation occurs for this flow. It has been found that when the wave amplitude exceeds a certain magnitude, flow reversal occurs in the film underneath the minimum of the waves [1]. The instantaneous vortical structures possess two hyperbolic points on the vertical wall and an elliptic point in the film. As the wave amplitude increases further, the elliptic point reaches the free surface of the film and two more hyperbolic points are formed in the free surface that replace the elliptic point. Between the two hyperbolic points on the free surface, the streamwise component of velocity is negative and the film is divided into asymmetric patterns of up and down flows. Depending on the value of the Kapitza number, these patterns are either stationary or oscillatory. Physical reasons for the influence of the Kapitza number on pattern formation are given. Movies are shown where the pattern formation is demonstrated. [1] N.A.Malamataris and V.Balakotaiah (2008), AIChE J., 54(7), p. 1725-1740
Numerical solution of chemically reactive non-Newtonian fluid flow: Dual stratification
NASA Astrophysics Data System (ADS)
Rehman, Khalil Ur; Malik, M. Y.; Khan, Abid Ali; Zehra, Iffat; Zahri, Mostafa; Tahir, M.
2017-12-01
We have found that only a few attempts are available in the literature relatively to the tangent hyperbolic fluid flow induced by stretching cylindrical surfaces. In particular, temperature and concentration stratification effects have not been investigated until now with respect to the tangent hyperbolic fluid model. Therefore, we have considered the tangent hyperbolic fluid flow induced by an acutely inclined cylindrical surface in the presence of both temperature and concentration stratification effects. To be more specific, the fluid flow is attained with the no slip condition, which implies that the bulk motion of the fluid particles is the same as the stretching velocity of a cylindrical surface. Additionally, the flow field situation is manifested with heat generation, mixed convection and chemical reaction effects. The flow partial differential equations give a complete description of the present problem. Therefore, to trace out the solution, a set of suitable transformations is introduced to convert these equations into ordinary differential equations. In addition, a self-coded computational algorithm is executed to inspect the numerical solution of these reduced equations. The effect logs of the involved parameters are provided graphically. Furthermore, the variations of the physical quantities are examined and given with the aid of tables. It is observed that the fluid temperature is a decreasing function of the thermal stratification parameter and a similar trend is noticed for the concentration via the solutal stratification parameter.
ERIC Educational Resources Information Center
Kalman, Yoram M.
2016-01-01
In an era when novel educational technologies are constantly introduced to the marketplace, often accompanied by hyperbolic claims that these ground-breaking innovations will transform the educational landscape, decision makers in educational institutions need a methodological approach for examining the innovative potential of new educational…
A Study of Multigrid Preconditioners Using Eigensystem Analysis
NASA Technical Reports Server (NTRS)
Roberts, Thomas W.; Swanson, R. C.
2005-01-01
The convergence properties of numerical schemes for partial differential equations are studied by examining the eigensystem of the discrete operator. This method of analysis is very general, and allows the effects of boundary conditions and grid nonuniformities to be examined directly. Algorithms for the Laplace equation and a two equation model hyperbolic system are examined.
Delay Discounting: I'm a "K", You're a "K"
ERIC Educational Resources Information Center
Odum, Amy L.
2011-01-01
Delay discounting is the decline in the present value of a reward with delay to its receipt. Across a variety of species, populations, and reward types, value declines hyperbolically with delay. Value declines steeply with shorter delays, but more shallowly with longer delays. Quantitative modeling provides precise measures to characterize the…
Buy It Now and Pay for It Later: An Experimental Study of Student Credit Card Use
ERIC Educational Resources Information Center
Fagerstrom, Asle; Hantula, Donald A.
2013-01-01
Credit card debt is of increasing concern among college students, but reasons for it are not well understood. In a simulated shopping experiment based on a hyperbolic discounted utility model, 21 participants could either save money for a new model of their favorite mobile phone brand and get it in the future or buy the product on credit and get…
Multiscale Models of Melting Arctic Sea Ice
2014-09-30
from weakly to highly correlated, or Poissonian toward Wigner -Dyson, as a function of system connectedness. This provides a mechanism for explaining...eluded us. Court Strong found such a method. It creates an optimal fit of a hyperbolic tangent model for the fractal dimension as a function of log A...actual melt pond images, and have made significant advances in the underlying functional and numerical analysis needed for these computations
Extreme current fluctuations in lattice gases: Beyond nonequilibrium steady states
NASA Astrophysics Data System (ADS)
Meerson, Baruch; Sasorov, Pavel V.
2014-01-01
We use the macroscopic fluctuation theory (MFT) to study large current fluctuations in nonstationary diffusive lattice gases. We identify two universality classes of these fluctuations, which we call elliptic and hyperbolic. They emerge in the limit when the deterministic mass flux is small compared to the mass flux due to the shot noise. The two classes are determined by the sign of compressibility of effective fluid, obtained by mapping the MFT into an inviscid hydrodynamics. An example of the elliptic class is the symmetric simple exclusion process, where, for some initial conditions, we can solve the effective hydrodynamics exactly. This leads to a super-Gaussian extreme current statistics conjectured by Derrida and Gerschenfeld [J. Stat. Phys. 137, 978 (2009), 10.1007/s10955-009-9830-1] and yields the optimal path of the system. For models of the hyperbolic class, the deterministic mass flux cannot be neglected, leading to a different extreme current statistics.
Curvature bound from gravitational catalysis
NASA Astrophysics Data System (ADS)
Gies, Holger; Martini, Riccardo
2018-04-01
We determine bounds on the curvature of local patches of spacetime from the requirement of intact long-range chiral symmetry. The bounds arise from a scale-dependent analysis of gravitational catalysis and its influence on the effective potential for the chiral order parameter, as induced by fermionic fluctuations on a curved spacetime with local hyperbolic properties. The bound is expressed in terms of the local curvature scalar measured in units of a gauge-invariant coarse-graining scale. We argue that any effective field theory of quantum gravity obeying this curvature bound is safe from chiral symmetry breaking through gravitational catalysis and thus compatible with the simultaneous existence of chiral fermions in the low-energy spectrum. With increasing number of dimensions, the curvature bound in terms of the hyperbolic scale parameter becomes stronger. Applying the curvature bound to the asymptotic safety scenario for quantum gravity in four spacetime dimensions translates into bounds on the matter content of particle physics models.
Conservation laws with coinciding smooth solutions but different conserved variables
NASA Astrophysics Data System (ADS)
Colombo, Rinaldo M.; Guerra, Graziano
2018-04-01
Consider two hyperbolic systems of conservation laws in one space dimension with the same eigenvalues and (right) eigenvectors. We prove that solutions to Cauchy problems with the same initial data differ at third order in the total variation of the initial datum. As a first application, relying on the classical Glimm-Lax result (Glimm and Lax in Decay of solutions of systems of nonlinear hyperbolic conservation laws. Memoirs of the American Mathematical Society, No. 101. American Mathematical Society, Providence, 1970), we obtain estimates improving those in Saint-Raymond (Arch Ration Mech Anal 155(3):171-199, 2000) on the distance between solutions to the isentropic and non-isentropic inviscid compressible Euler equations, under general equations of state. Further applications are to the general scalar case, where rather precise estimates are obtained, to an approximation by Di Perna of the p-system and to a traffic model.
NASA Astrophysics Data System (ADS)
Semenova, Nadezhda I.; Rybalova, Elena V.; Strelkova, Galina I.; Anishchenko, Vadim S.
2017-03-01
We consider in detail similarities and differences of the "coherence-incoherence" transition in ensembles of nonlocally coupled chaotic discrete-time systems with nonhyperbolic and hyperbolic attractors. As basic models we employ the Hénon map and the Lozi map. We show that phase and amplitude chimera states appear in a ring of coupled Hénon maps, while no chimeras are observed in an ensemble of coupled Lozi maps. In the latter, the transition to spatio-temporal chaos occurs via solitary states. We present numerical results for the coupling function which describes the impact of neighboring oscillators on each partial element of an ensemble with nonlocal coupling. Varying the coupling strength we analyze the evolution of the coupling function and discuss in detail its role in the "coherence-incoherence" transition in the ensembles of Hénon and Lozi maps.
NASA Technical Reports Server (NTRS)
Udwadia, F. E.; Garba, J. A.
1983-01-01
This paper deals with the identification of spatially varying parameters in systems of finite spatial extent which can be described by second order hyperbolic differential equations. Two questions have been addressed. The first deals with 'partial identification' and inquires into the possibility of retrieving all the eigenvalues of the system from response data obtained at one location x-asterisk epsilon (0, 1). The second deals with the identification of the distributed coefficients rho(x), a(x) and b(x). Sufficient conditions for unique identification of all the eigenvalues of the system are obtained, and conditions under which the coefficients can be uniquely identified using suitable response data obtained at one point in the spatial domain are determined. Application of the results and their usefulness is demonstrated in the identification of the properties of tall building structural systems subjected to dynamic load environments.
Dipierro, Serena; Valdinoci, Enrico
2018-07-01
Recently, several experiments have demonstrated the existence of fractional diffusion in the neuronal transmission occurring in the Purkinje cells, whose malfunctioning is known to be related to the lack of voluntary coordination and the appearance of tremors. Also, a classical mathematical feature is that (fractional) parabolic equations possess smoothing effects, in contrast with the case of hyperbolic equations, which typically exhibit shocks and discontinuities. In this paper, we show how a simple toy-model of a highly ramified structure, somehow inspired by that of the Purkinje cells, may produce a fractional diffusion via the superposition of travelling waves that solve a hyperbolic equation. This could suggest that the high ramification of the Purkinje cells might have provided an evolutionary advantage of "smoothing" the transmission of signals and avoiding shock propagations (at the price of slowing a bit such transmission). Although an experimental confirmation of the possibility of such evolutionary advantage goes well beyond the goals of this paper, we think that it is intriguing, as a mathematical counterpart, to consider the time fractional diffusion as arising from the superposition of delayed travelling waves in highly ramified transmission media. The case of a travelling concave parabola with sufficiently small curvature is explicitly computed. The new link that we propose between time fractional diffusion and hyperbolic equation also provides a novelty with respect to the usual paradigm relating time fractional diffusion with parabolic equations in the limit. This paper is written in such a way as to be of interest to both biologists and mathematician alike. In order to accomplish this aim, both complete explanations of the objects considered and detailed lists of references are provided.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Nkonga, Boniface
2017-10-01
Just as the quality of a one-dimensional approximate Riemann solver is improved by the inclusion of internal sub-structure, the quality of a multidimensional Riemann solver is also similarly improved. Such multidimensional Riemann problems arise when multiple states come together at the vertex of a mesh. The interaction of the resulting one-dimensional Riemann problems gives rise to a strongly-interacting state. We wish to endow this strongly-interacting state with physically-motivated sub-structure. The fastest way of endowing such sub-structure consists of making a multidimensional extension of the HLLI Riemann solver for hyperbolic conservation laws. Presenting such a multidimensional analogue of the HLLI Riemann solver with linear sub-structure for use on structured meshes is the goal of this work. The multidimensional MuSIC Riemann solver documented here is universal in the sense that it can be applied to any hyperbolic conservation law. The multidimensional Riemann solver is made to be consistent with constraints that emerge naturally from the Galerkin projection of the self-similar states within the wave model. When the full eigenstructure in both directions is used in the present Riemann solver, it becomes a complete Riemann solver in a multidimensional sense. I.e., all the intermediate waves are represented in the multidimensional wave model. The work also presents, for the very first time, an important analysis of the dissipation characteristics of multidimensional Riemann solvers. The present Riemann solver results in the most efficient implementation of a multidimensional Riemann solver with sub-structure. Because it preserves stationary linearly degenerate waves, it might also help with well-balancing. Implementation-related details are presented in pointwise fashion for the one-dimensional HLLI Riemann solver as well as the multidimensional MuSIC Riemann solver.
Constitutive models for a poly(e-caprolactone) scaffold.
Quinn, T P; Oreskovic, T L; McCowan, C N; Washburn, N R
2004-01-01
We investigate material models for a porous, polymeric scaffold used for bone. The material was made by co-extruding poly(e-caprolactone) (PCL), a biodegradable polyester, and poly(ethylene oxide) (PEO). The water soluble PEO was removed resulting in a porous scaffold. The stress-strain curve in compression was fit with a phenomenological model in hyperbolic form. This material model will be useful for designers for quasi-static analysis as it provides a simple form that can easily be used in finite element models. The ASTM D-1621 standard recommends using a secant modulus based on 10% strain. The resulting modulus has a smaller scatter in its value compared to the coefficients of the hyperbolic model, and it is therefore easier to compare material processing differences and ensure quality of the scaffold. A third material model was constructed from images of the microstructure. Each pixel of the micrographs was represented with a brick finite element and assigned the Young's modulus of bulk PCL or a value of 0 for a pore. A compressive strain was imposed on the model and the resulting stresses were calculated. The elastic constants of the scaffold were then computed using Hooke's law for a linear-elastic isotropic material. The model was able to predict the small strain Young's modulus measured in the experiments to within one standard deviation. Thus, by knowing the microstructure of the scaffold, its bulk properties can be predicted from the material properties of the constituents.
On the streaming model for redshift-space distortions
NASA Astrophysics Data System (ADS)
Kuruvilla, Joseph; Porciani, Cristiano
2018-06-01
The streaming model describes the mapping between real and redshift space for 2-point clustering statistics. Its key element is the probability density function (PDF) of line-of-sight pairwise peculiar velocities. Following a kinetic-theory approach, we derive the fundamental equations of the streaming model for ordered and unordered pairs. In the first case, we recover the classic equation while we demonstrate that modifications are necessary for unordered pairs. We then discuss several statistical properties of the pairwise velocities for DM particles and haloes by using a suite of high-resolution N-body simulations. We test the often used Gaussian ansatz for the PDF of pairwise velocities and discuss its limitations. Finally, we introduce a mixture of Gaussians which is known in statistics as the generalised hyperbolic distribution and show that it provides an accurate fit to the PDF. Once inserted in the streaming equation, the fit yields an excellent description of redshift-space correlations at all scales that vastly outperforms the Gaussian and exponential approximations. Using a principal-component analysis, we reduce the complexity of our model for large redshift-space separations. Our results increase the robustness of studies of anisotropic galaxy clustering and are useful for extending them towards smaller scales in order to test theories of gravity and interacting dark-energy models.
Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul; ...
2016-10-05
The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campione, Salvatore; Marquier, Francois; Hugonin, Jean -Paul
The development of novel thermal sources that control the emission spectrum and the angular emission pattern is of fundamental importance. In this paper, we investigate the thermal emission properties of semiconductor hyperbolic metamaterials (SHMs). Our structure does not require the use of any periodic corrugation to provide monochromatic and directional emission properties. We show that these properties arise because of epsilon-near-zero conditions in SHMs. The thermal emission is dominated by the epsilon-near-zero effect in the doped quantum wells composing the SHM. In conclusion, different properties are observed for s and p polarizations, following the characteristics of the strong anisotropy ofmore » hyperbolic metamaterials.« less
NASA Astrophysics Data System (ADS)
Yu, Jie; Liu, Yikan; Yamamoto, Masahiro
2018-04-01
In this article, we investigate the determination of the spatial component in the time-dependent second order coefficient of a hyperbolic equation from both theoretical and numerical aspects. By the Carleman estimates for general hyperbolic operators and an auxiliary Carleman estimate, we establish local Hölder stability with either partial boundary or interior measurements under certain geometrical conditions. For numerical reconstruction, we minimize a Tikhonov functional which penalizes the gradient of the unknown function. Based on the resulting variational equation, we design an iteration method which is updated by solving a Poisson equation at each step. One-dimensional prototype examples illustrate the numerical performance of the proposed iteration.
Single qubit operations using microwave hyperbolic secant pulses
NASA Astrophysics Data System (ADS)
Ku, H. S.; Long, J. L.; Wu, X.; Bal, M.; Lake, R. E.; Barnes, Edwin; Economou, Sophia E.; Pappas, D. P.
2017-10-01
It has been known since the early days of quantum mechanics that hyperbolic secant pulses possess the unique property that they can perform full-cycle Rabi oscillations on two-level quantum systems independently of the pulse detuning. More recently, it was realized that they induce detuning-controlled phases without changing state populations. Here, we experimentally demonstrate the properties of hyperbolic secant pulses on superconducting transmon qubits and contrast them with the more commonly used Gaussian and square waves. We further show that these properties can be exploited to implement phase gates, nominally without exiting the computational subspace. This enables us to demonstrate a microwave-driven Z rotation with a single control parameter, the detuning.
Near-field radiative heat transfer between graphene-covered hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Hong, Xiao-Juan; Li, Jian-Wen; Wang, Tong-Biao; Zhang, De-Jian; Liu, Wen-Xing; Liao, Qing-Hua; Yu, Tian-Bao; Liu, Nian-Hua
2018-04-01
We propose the use of graphene-covered silicon carbide (SiC) nanowire arrays (NWAs) for theoretical studies of near-field radiative heat transfer. The SiC NWAs exhibit a hyperbolic characteristic at an appropriately selected filling-volume fraction. The surface plasmon supported by graphene and the hyperbolic modes supported by SiC NWAs significantly affect radiative heat transfer. The heat-transfer coefficient (HTC) between the proposed structures is larger than that between SiC NWAs. We also find that the chemical potential of graphene plays an important role in modulating the HTC. The tunability of chemical potential through gate voltage enables flexible control of heat transfer using the graphene-covered SiC NWAs.
Ostaszewski, Paweł
2017-01-01
The effort required to obtain a rewarding outcome is an important factor in decision-making. Describing the reward devaluation by increasing effort intensity is substantial to understanding human preferences, because every action and choice that we make is in itself effortful. To investigate how reward valuation is affected by physical and cognitive effort, we compared mathematical discounting functions derived from research on discounting. Seven discounting models were tested across three different reward magnitudes. To test the models, data were collected from a total of 114 participants recruited from the general population. For one-parameter models (hyperbolic, exponential, and parabolic), the data were explained best by the exponential model as given by a percentage of explained variance. However, after introducing an additional parameter, data obtained in the cognitive and physical effort conditions were best described by the power function model. Further analysis, using the second order Akaike and Bayesian Information Criteria, which account for model complexity, allowed us to identify the best model among all tested. We found that the power function best described the data, which corresponds to conventional analyses based on the R2 measure. This supports the conclusion that the function best describing reward devaluation by physical and cognitive effort is a concave one and is different from those that describe delay or probability discounting. In addition, consistent magnitude effects were observed that correspond to those in delay discounting research. PMID:28759631
Modeling the Collisional-Plastic Stress Transition for Bin Discharge of Granular Material
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pannala, Sreekanth; Daw, C Stuart; FINNEY, Charles E A
2009-01-01
We propose a heuristic model for the transition between collisional and frictional/plastic stresses in the flow of granular material. Our approach is based on a physically motivated, nonlinear blending function that produces a weighted average of the limiting stresses, depending on the local void fraction in the flow field. Previously published stress models are utilized to describe the behavior in the collisional (Lun et al., 1984) and quasi-static limits (Schaeffer, 1987 and Syamlal et al., 1993). Sigmoidal and hyperbolic tangent functions are used to mimic the observed smooth yet rapid transition between the collisional and plastic stress zones. We implementmore » our stress transition model in an opensource multiphase flow solver, MFIX (Multiphase Flow with Interphase eXchanges, www.mfix.org) and demonstrate its application to a standard bin discharge problem. The model s effectiveness is illustrated by comparing computational predictions to the experimentally derived Beverloo correlation. With the correct choice of function parameters, the model predicts bin discharge rates within the error margins of the Beverloo correlation and is more accurate than one of the alternative granular stress models proposed in the literature. Although a second granular stress model in the literature is also reasonably consistent with the Beverloo correlation, we propose that our alternative blending function is likely to be more adaptable to situations with more complex solids properties (e.g., sticky solids).« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fernandez, F.G.A.; Camacho, F.G.; Perez, J.A.S.
1997-09-05
A mathematical model to estimate the solar irradiance profile and average light intensity inside a tubular photobioreactor under outdoor conditions is proposed, requiring only geographic, geometric, and solar position parameters. First, the length of the path into the culture traveled by any direct or disperse ray of light was calculated as the function of three variables: day of year, solar hour, and geographic latitude. Then, the phenomenon of light attenuation by biomass was studied considering Lambert-Beer`s law (only considering absorption) and the monodimensional model of Cornet et al. (1900) (considering absorption and scattering phenomena). Due to the existence of differentialmore » wavelength absorption, none of the literature models are useful for explaining light attenuation by the biomass. Therefore, an empirical hyperbolic expression is proposed. The equations to calculate light path length were substituted in the proposed hyperbolic expression, reproducing light intensity data obtained in the center of the loop tubes. The proposed model was also likely to estimate the irradiance accurately at any point inside the culture. Calculation of the local intensity was thus extended to the full culture volume in order to obtain the average irradiance, showing how the higher biomass productivities in a Phaeodactylum tricornutum UTEX 640 outdoor chemostat culture could be maintained by delaying light limitation.« less
A global multiscale mathematical model for the human circulation with emphasis on the venous system.
Müller, Lucas O; Toro, Eleuterio F
2014-07-01
We present a global, closed-loop, multiscale mathematical model for the human circulation including the arterial system, the venous system, the heart, the pulmonary circulation and the microcirculation. A distinctive feature of our model is the detailed description of the venous system, particularly for intracranial and extracranial veins. Medium to large vessels are described by one-dimensional hyperbolic systems while the rest of the components are described by zero-dimensional models represented by differential-algebraic equations. Robust, high-order accurate numerical methodology is implemented for solving the hyperbolic equations, which are adopted from a recent reformulation that includes variable material properties. Because of the large intersubject variability of the venous system, we perform a patient-specific characterization of major veins of the head and neck using MRI data. Computational results are carefully validated using published data for the arterial system and most regions of the venous system. For head and neck veins, validation is carried out through a detailed comparison of simulation results against patient-specific phase-contrast MRI flow quantification data. A merit of our model is its global, closed-loop character; the imposition of highly artificial boundary conditions is avoided. Applications in mind include a vast range of medical conditions. Of particular interest is the study of some neurodegenerative diseases, whose venous haemodynamic connection has recently been identified by medical researchers. Copyright © 2014 John Wiley & Sons, Ltd.
A three-point backward finite-difference method has been derived for a system of mixed hyperbolic¯¯parabolic (convection¯¯diffusion) partial differential equations (mixed PDEs). The method resorts to the three-point backward differenci...
The Hyperbolic Sine Cardinal and the Catenary
ERIC Educational Resources Information Center
Sanchez-Reyes, Javier
2012-01-01
The hyperbolic function sinh(x)/x receives scant attention in the literature. We show that it admits a clear geometric interpretation as the ratio between length and chord of a symmetric catenary segment. The inverse, together with the use of dimensionless parameters, furnishes a compact, explicit construction of a general catenary segment of…
On hyperbolicity and Gevrey well-posedness. Part two: Scalar or degenerate transitions
NASA Astrophysics Data System (ADS)
Morisse, Baptiste
2018-04-01
For first-order quasi-linear systems of partial differential equations, we formulate an assumption of a transition from initial hyperbolicity to ellipticity. This assumption bears on the principal symbol of the first-order operator. Under such an assumption, we prove a strong Hadamard instability for the associated Cauchy problem, namely an instantaneous defect of Hölder continuity of the flow from Gσ to L2, with 0 < σ <σ0, the limiting Gevrey index σ0 depending on the nature of the transition. We restrict here to scalar transitions, and non-scalar transitions in which the boundary of the hyperbolic zone satisfies a flatness condition. As in our previous work for initially elliptic Cauchy problems [B. Morisse, On hyperbolicity and Gevrey well-posedness. Part one: the elliptic case, arxiv:arXiv:1611.07225], the instability follows from a long-time Cauchy-Kovalevskaya construction for highly oscillating solutions. This extends recent work of N. Lerner, T. Nguyen, and B. Texier [The onset of instability in first-order systems, to appear in J. Eur. Math. Soc.].
NASA Astrophysics Data System (ADS)
Lafitte, Pauline; Melis, Ward; Samaey, Giovanni
2017-07-01
We present a general, high-order, fully explicit relaxation scheme which can be applied to any system of nonlinear hyperbolic conservation laws in multiple dimensions. The scheme consists of two steps. In a first (relaxation) step, the nonlinear hyperbolic conservation law is approximated by a kinetic equation with stiff BGK source term. Then, this kinetic equation is integrated in time using a projective integration method. After taking a few small (inner) steps with a simple, explicit method (such as direct forward Euler) to damp out the stiff components of the solution, the time derivative is estimated and used in an (outer) Runge-Kutta method of arbitrary order. We show that, with an appropriate choice of inner step size, the time step restriction on the outer time step is similar to the CFL condition for the hyperbolic conservation law. Moreover, the number of inner time steps is also independent of the stiffness of the BGK source term. We discuss stability and consistency, and illustrate with numerical results (linear advection, Burgers' equation and the shallow water and Euler equations) in one and two spatial dimensions.
Numerical analysis of laser ablation using the axisymmetric two-temperature model
NASA Astrophysics Data System (ADS)
Dziatkiewicz, Jolanta; Majchrzak, Ewa
2018-01-01
Laser ablation of the axisymmetric micro-domain is analyzed. To describe the thermal processes occurring in the micro-domain the two-temperature hyperbolic model supplemented by the boundary and initial conditions is used. This model takes into account the phase changes of material (solid-liquid and liquid-vapour) and the ablation process. At the stage of numerical computations the finite difference method with staggered grid is used. In the final part the results of computations are shown.
Advanced Stochastic Collocation Methods for Polynomial Chaos in RAVEN
NASA Astrophysics Data System (ADS)
Talbot, Paul W.
As experiment complexity in fields such as nuclear engineering continually increases, so does the demand for robust computational methods to simulate them. In many simulations, input design parameters and intrinsic experiment properties are sources of uncertainty. Often small perturbations in uncertain parameters have significant impact on the experiment outcome. For instance, in nuclear fuel performance, small changes in fuel thermal conductivity can greatly affect maximum stress on the surrounding cladding. The difficulty quantifying input uncertainty impact in such systems has grown with the complexity of numerical models. Traditionally, uncertainty quantification has been approached using random sampling methods like Monte Carlo. For some models, the input parametric space and corresponding response output space is sufficiently explored with few low-cost calculations. For other models, it is computationally costly to obtain good understanding of the output space. To combat the expense of random sampling, this research explores the possibilities of using advanced methods in Stochastic Collocation for generalized Polynomial Chaos (SCgPC) as an alternative to traditional uncertainty quantification techniques such as Monte Carlo (MC) and Latin Hypercube Sampling (LHS) methods for applications in nuclear engineering. We consider traditional SCgPC construction strategies as well as truncated polynomial spaces using Total Degree and Hyperbolic Cross constructions. We also consider applying anisotropy (unequal treatment of different dimensions) to the polynomial space, and offer methods whereby optimal levels of anisotropy can be approximated. We contribute development to existing adaptive polynomial construction strategies. Finally, we consider High-Dimensional Model Reduction (HDMR) expansions, using SCgPC representations for the subspace terms, and contribute new adaptive methods to construct them. We apply these methods on a series of models of increasing complexity. We use analytic models of various levels of complexity, then demonstrate performance on two engineering-scale problems: a single-physics nuclear reactor neutronics problem, and a multiphysics fuel cell problem coupling fuels performance and neutronics. Lastly, we demonstrate sensitivity analysis for a time-dependent fuels performance problem. We demonstrate the application of all the algorithms in RAVEN, a production-level uncertainty quantification framework.
Traveling-wave solutions in continuous chains of unidirectionally coupled oscillators
NASA Astrophysics Data System (ADS)
Glyzin, S. D.; Kolesov, A. Yu; Rozov, N. Kh
2017-12-01
Proposed is a mathematical model of a continuous annular chain of unidirectionally coupled generators given by certain nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. It is shown that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.
In a Class with Klein: Generating a Model of the Hyperbolic Plane
ERIC Educational Resources Information Center
Otten, Samuel; Zin, Christopher
2012-01-01
The emergence of non-Euclidean geometries in the 19th century rocked the foundations of mathematical knowledge and certainty. The tremors can still be felt in undergraduate mathematics today where encounters with non-Euclidean geometry are novel and often shocking to students. Because of its divergence from ordinary and comfortable notions of…
Relations between nonlinear Riccati equations and other equations in fundamental physics
NASA Astrophysics Data System (ADS)
Schuch, Dieter
2014-10-01
Many phenomena in the observable macroscopic world obey nonlinear evolution equations while the microscopic world is governed by quantum mechanics, a fundamental theory that is supposedly linear. In order to combine these two worlds in a common formalism, at least one of them must sacrifice one of its dogmas. Linearizing nonlinear dynamics would destroy the fundamental property of this theory, however, it can be shown that quantum mechanics can be reformulated in terms of nonlinear Riccati equations. In a first step, it will be shown that the information about the dynamics of quantum systems with analytical solutions can not only be obtainable from the time-dependent Schrödinger equation but equally-well from a complex Riccati equation. Comparison with supersymmetric quantum mechanics shows that even additional information can be obtained from the nonlinear formulation. Furthermore, the time-independent Schrödinger equation can also be rewritten as a complex Riccati equation for any potential. Extension of the Riccati formulation to include irreversible dissipative effects is straightforward. Via (real and complex) Riccati equations, other fields of physics can also be treated within the same formalism, e.g., statistical thermodynamics, nonlinear dynamical systems like those obeying a logistic equation as well as wave equations in classical optics, Bose- Einstein condensates and cosmological models. Finally, the link to abstract "quantizations" such as the Pythagorean triples and Riccati equations connected with trigonometric and hyperbolic functions will be shown.
Amplitudes in the N=4 supersymmetric Yang-Mills theory from quantum geometry of momentum space
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gorsky, A.
We discuss multiloop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory in terms of effective gravity in the momentum space with IR regulator branes as degrees of freedom. Kinematical invariants of external particles yield the moduli spaces of complex or Kahler structures which are the playgrounds for the Kodaira-Spencer or Kahler type gravity. We suggest fermionic representation of the loop maximally helicity violating amplitudes in the N=4 supersymmetric Yang-Mills theory assuming the identification of the IR regulator branes with Kodaira-Spencer fermions in the B model and Lagrangian branes in the A model. The two-easy mass box diagram ismore » related to the correlator of fermionic currents on the spectral curve in the B model or hyperbolic volume in the A model and it plays the role of a building block in the whole picture. The Bern-Dixon-Smirnov-like ansatz has the interpretation as the semiclassical limit of a fermionic correlator. It is argued that fermionic representation implies a kind of integrability on the moduli spaces. We conjecture the interpretation of the reggeon degrees of freedom in terms of the open strings stretched between the IR regulator branes.« less
Filling of a Poisson trap by a population of random intermittent searchers.
Bressloff, Paul C; Newby, Jay M
2012-03-01
We extend the continuum theory of random intermittent search processes to the case of N independent searchers looking to deliver cargo to a single hidden target located somewhere on a semi-infinite track. Each searcher randomly switches between a stationary state and either a leftward or rightward constant velocity state. We assume that all of the particles start at one end of the track and realize sample trajectories independently generated from the same underlying stochastic process. The hidden target is treated as a partially absorbing trap in which a particle can only detect the target and deliver its cargo if it is stationary and within range of the target; the particle is removed from the system after delivering its cargo. As a further generalization of previous models, we assume that up to n successive particles can find the target and deliver its cargo. Assuming that the rate of target detection scales as 1/N, we show that there exists a well-defined mean-field limit N→∞, in which the stochastic model reduces to a deterministic system of linear reaction-hyperbolic equations for the concentrations of particles in each of the internal states. These equations decouple from the stochastic process associated with filling the target with cargo. The latter can be modeled as a Poisson process in which the time-dependent rate of filling λ(t) depends on the concentration of stationary particles within the target domain. Hence, we refer to the target as a Poisson trap. We analyze the efficiency of filling the Poisson trap with n particles in terms of the waiting time density f(n)(t). The latter is determined by the integrated Poisson rate μ(t)=∫(0)(t)λ(s)ds, which in turn depends on the solution to the reaction-hyperbolic equations. We obtain an approximate solution for the particle concentrations by reducing the system of reaction-hyperbolic equations to a scalar advection-diffusion equation using a quasisteady-state analysis. We compare our analytical results for the mean-field model with Monte Carlo simulations for finite N. We thus determine how the mean first passage time (MFPT) for filling the target depends on N and n.
Investigation of statistical iterative reconstruction for dedicated breast CT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Makeev, Andrey; Glick, Stephen J.
2013-08-15
Purpose: Dedicated breast CT has great potential for improving the detection and diagnosis of breast cancer. Statistical iterative reconstruction (SIR) in dedicated breast CT is a promising alternative to traditional filtered backprojection (FBP). One of the difficulties in using SIR is the presence of free parameters in the algorithm that control the appearance of the resulting image. These parameters require tuning in order to achieve high quality reconstructions. In this study, the authors investigated the penalized maximum likelihood (PML) method with two commonly used types of roughness penalty functions: hyperbolic potential and anisotropic total variation (TV) norm. Reconstructed images weremore » compared with images obtained using standard FBP. Optimal parameters for PML with the hyperbolic prior are reported for the task of detecting microcalcifications embedded in breast tissue.Methods: Computer simulations were used to acquire projections in a half-cone beam geometry. The modeled setup describes a realistic breast CT benchtop system, with an x-ray spectra produced by a point source and an a-Si, CsI:Tl flat-panel detector. A voxelized anthropomorphic breast phantom with 280 μm microcalcification spheres embedded in it was used to model attenuation properties of the uncompressed woman's breast in a pendant position. The reconstruction of 3D images was performed using the separable paraboloidal surrogates algorithm with ordered subsets. Task performance was assessed with the ideal observer detectability index to determine optimal PML parameters.Results: The authors' findings suggest that there is a preferred range of values of the roughness penalty weight and the edge preservation threshold in the penalized objective function with the hyperbolic potential, which resulted in low noise images with high contrast microcalcifications preserved. In terms of numerical observer detectability index, the PML method with optimal parameters yielded substantially improved performance (by a factor of greater than 10) compared to FBP. The hyperbolic prior was also observed to be superior to the TV norm. A few of the best-performing parameter pairs for the PML method also demonstrated superior performance for various radiation doses. In fact, using PML with certain parameter values results in better images, acquired using 2 mGy dose, than FBP-reconstructed images acquired using 6 mGy dose.Conclusions: A range of optimal free parameters for the PML algorithm with hyperbolic and TV norm-based potentials is presented for the microcalcification detection task, in dedicated breast CT. The reported values can be used as starting values of the free parameters, when SIR techniques are used for image reconstruction. Significant improvement in image quality can be achieved by using PML with optimal combination of parameters, as compared to FBP. Importantly, these results suggest improved detection of microcalcifications can be obtained by using PML with lower radiation dose to the patient, than using FBP with higher dose.« less
The Hartman-Grobman theorem for semilinear hyperbolic evolution equations
NASA Astrophysics Data System (ADS)
Hein, Marie-Luise; Prüss, Jan
2016-10-01
The famous Hartman-Grobman theorem for ordinary differential equations is extended to abstract semilinear hyperbolic evolution equations in Banach spaces by means of simple direct proof. It is also shown that the linearising map is Hölder continuous. Several applications to abstract and specific damped wave equations are given, to demonstrate the strength of our results.
NASA Technical Reports Server (NTRS)
Russell, D. L.
1983-01-01
Various aspects of the control theory of hyperbolic systems, including controllability, stabilization, control canonical form theory, etc., are reviewed. To allow a unified and not excessively technical treatment, attention is restricted to the case of a single space variable. A newly developed procedure of canonical augmentation is discussed.
ERIC Educational Resources Information Center
Marcovitz, Alan B., Ed.
A computer program for numeric and symbolic manipulation and the methodology underlying its development are presented. Some features of the program are: an option for implied multiplication; computation of higher-order derivatives; differentiation of 26 different trigonometric, hyperbolic, inverse trigonometric, and inverse hyperbolic functions;…
Estimation of coefficients and boundary parameters in hyperbolic systems
NASA Technical Reports Server (NTRS)
Banks, H. T.; Murphy, K. A.
1984-01-01
Semi-discrete Galerkin approximation schemes are considered in connection with inverse problems for the estimation of spatially varying coefficients and boundary condition parameters in second order hyperbolic systems typical of those arising in 1-D surface seismic problems. Spline based algorithms are proposed for which theoretical convergence results along with a representative sample of numerical findings are given.
NASA Astrophysics Data System (ADS)
Winicour, Jeffrey
2017-08-01
An algebraic-hyperbolic method for solving the Hamiltonian and momentum constraints has recently been shown to be well posed for general nonlinear perturbations of the initial data for a Schwarzschild black hole. This is a new approach to solving the constraints of Einstein’s equations which does not involve elliptic equations and has potential importance for the construction of binary black hole data. In order to shed light on the underpinnings of this approach, we consider its application to obtain solutions of the constraints for linearized perturbations of Minkowski space. In that case, we find the surprising result that there are no suitable Cauchy hypersurfaces in Minkowski space for which the linearized algebraic-hyperbolic constraint problem is well posed.
NASA Technical Reports Server (NTRS)
Yefet, Amir; Petropoulos, Peter G.
1999-01-01
We consider a divergence-free non-dissipative fourth-order explicit staggered finite difference scheme for the hyperbolic Maxwell's equations. Special one-sided difference operators are derived in order to implement the scheme near metal boundaries and dielectric interfaces. Numerical results show the scheme is long-time stable, and is fourth-order convergent over complex domains that include dielectric interfaces and perfectly conducting surfaces. We also examine the scheme's behavior near metal surfaces that are not aligned with the grid axes, and compare its accuracy to that obtained by the Yee scheme.
Bergues Pupo, Ana E; Reyes, Juan Bory; Bergues Cabrales, Luis E; Bergues Cabrales, Jesús M
2011-09-24
Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections.
Marzilli Ericson, Keith M.; White, John Myles; Laibson, David; Cohen, Jonathan D.
2015-01-01
Heuristic models have been proposed for many domains of choice. We compare heuristic models of intertemporal choice, which can account for many of the known intertemporal choice anomalies, to discounting models. We conduct an out-of-sample, cross-validated comparison of intertemporal choice models. Heuristic models outperform traditional utility discounting models, including models of exponential and hyperbolic discounting. The best performing models predict choices by using a weighted average of absolute differences and relative (percentage) differences of the attributes of the goods in a choice set. We conclude that heuristic models explain time-money tradeoff choices in experiments better than utility discounting models. PMID:25911124
Ericson, Keith M Marzilli; White, John Myles; Laibson, David; Cohen, Jonathan D
2015-06-01
Heuristic models have been proposed for many domains involving choice. We conducted an out-of-sample, cross-validated comparison of heuristic models of intertemporal choice (which can account for many of the known intertemporal choice anomalies) and discounting models. Heuristic models outperformed traditional utility-discounting models, including models of exponential and hyperbolic discounting. The best-performing models predicted choices by using a weighted average of absolute differences and relative percentage differences of the attributes of the goods in a choice set. We concluded that heuristic models explain time-money trade-off choices in experiments better than do utility-discounting models. © The Author(s) 2015.
2007-12-06
high order well-balanced schemes to a class of hyperbolic systems with source terms, Boletin de la Sociedad Espanola de Matematica Aplicada, v34 (2006...schemes to a class of hyperbolic systems with source terms, Boletin de la Sociedad Espanola de Matematica Aplicada, v34 (2006), pp.69-80. 39. Y. Xu and C.-W
Well-posedness of characteristic symmetric hyperbolic systems
NASA Astrophysics Data System (ADS)
Secchi, Paolo
1996-06-01
We consider the initial-boundary-value problem for quasi-linear symmetric hyperbolic systems with characteristic boundary of constant multiplicity. We show the well-posedness in Hadamard's sense (i.e., existence, uniqueness and continuous dependence of solutions on the data) of regular solutions in suitable functions spaces which take into account the loss of regularity in the normal direction to the characteristic boundary.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cololla, P.
This review describes a structured approach to adaptivity. The Automated Mesh Refinement (ARM) algorithms developed by M Berger are described, touching on hyperbolic and parabolic applications. Adaptivity is achieved by overlaying finer grids only in areas flagged by a generalized error criterion. The author discusses some of the issues involved in abutting disparate-resolution grids, and demonstrates that suitable algorithms exist for dissipative as well as hyperbolic systems.
Hyperbolic conservation laws and numerical methods
NASA Technical Reports Server (NTRS)
Leveque, Randall J.
1990-01-01
The mathematical structure of hyperbolic systems and the scalar equation case of conservation laws are discussed. Linear, nonlinear systems and the Riemann problem for the Euler equations are also studied. The numerical methods for conservation laws are presented in a nonstandard manner which leads to large time steps generalizations and computations on irregular grids. The solution of conservation laws with stiff source terms is examined.
Second-order numerical solution of time-dependent, first-order hyperbolic equations
NASA Technical Reports Server (NTRS)
Shah, Patricia L.; Hardin, Jay
1995-01-01
A finite difference scheme is developed to find an approximate solution of two similar hyperbolic equations, namely a first-order plane wave and spherical wave problem. Finite difference approximations are made for both the space and time derivatives. The result is a conditionally stable equation yielding an exact solution when the Courant number is set to one.
Navigability of Random Geometric Graphs in the Universe and Other Spacetimes.
Cunningham, William; Zuev, Konstantin; Krioukov, Dmitri
2017-08-18
Random geometric graphs in hyperbolic spaces explain many common structural and dynamical properties of real networks, yet they fail to predict the correct values of the exponents of power-law degree distributions observed in real networks. In that respect, random geometric graphs in asymptotically de Sitter spacetimes, such as the Lorentzian spacetime of our accelerating universe, are more attractive as their predictions are more consistent with observations in real networks. Yet another important property of hyperbolic graphs is their navigability, and it remains unclear if de Sitter graphs are as navigable as hyperbolic ones. Here we study the navigability of random geometric graphs in three Lorentzian manifolds corresponding to universes filled only with dark energy (de Sitter spacetime), only with matter, and with a mixture of dark energy and matter. We find these graphs are navigable only in the manifolds with dark energy. This result implies that, in terms of navigability, random geometric graphs in asymptotically de Sitter spacetimes are as good as random hyperbolic graphs. It also establishes a connection between the presence of dark energy and navigability of the discretized causal structure of spacetime, which provides a basis for a different approach to the dark energy problem in cosmology.
The behavioral economics of will in recovery from addiction.
Monterosso, John; Ainslie, George
2007-09-01
Behavioral economic studies demonstrate that rewards are discounted proportionally with their delay (hyperbolic discounting). Hyperbolic discounting implies temporary preference for smaller rewards when they are imminent, and this concept has been widely considered by researchers interested in the causes of addictive behavior. Far less consideration has been given to the fact that systematic preference reversal also predicts various self-control phenomena, which may also be analyzed from a behavioral economic perspective. Here we summarize self-control phenomena predicted by hyperbolic discounting, particularly with application to the field of addiction. Of greatest interest is the phenomenon of choice bundling, an increase in motivation to wait for delayed rewards that can be expected to result from making choices in whole categories. Specifically, when a person's expectations about her own future behavior are conditional upon her current behavior, the value of these expectations is added to the contingencies for the current behavior, resulting in reduced impulsivity. Hyperbolic discounting provides a bottom-up basis for the intuitive learning of choice bundling, the properties of which match common descriptions of willpower. We suggest that the bundling effect can also be discerned in the advice of 12-step programs.
Doubly-focused echos from spheres unfold into a hyperbolic umbilic diffraction catastrophe
NASA Astrophysics Data System (ADS)
Dzikowicz, Ben; Marston, Philip L.
2003-04-01
An underwater spherical target resides in an Airy field formed by reflection off a curved surface representing the sea floor or sea surface. In prior work [B. Dzikowicz and P. L. Marston, J. Acoust. Soc Am. 110, 2778 (2001)] direct returns of a tone burst from the surface reflection focused toward the target were shown to have a dependence on the target position described by an Airy function. The return echo can also be focused again by the surface onto the source and receive transducer. This gives the square of an Airy function for the case of a point target. With a finite sized target (as in the experiment) this goes over to a hyperbolic umbilic catastrophe with symmetric arguments. The arguments of the hyperbolic umbilic function are derived from only the relative return times of a transient pulse. Experiment confirms the predicted merging of transient echoes in the time domain, as well as the hyperbolic umbilic diffraction integral amplitudes for a tone burst. This method would allow for the observation of a target at a greater distance in the presence of a focusing surface. [Research supported by ONR.
The behavioral economics of will in recovery from addiction
Monterosso, John; Ainslie, George
2007-01-01
Behavioral economic studies demonstrate that rewards are discounted proportionally with their delay (hyperbolic discounting). Hyperbolic discounting implies temporary preference for smaller rewards when they are imminent, and this concept has been widely considered by researchers interested in the causes of addictive behavior. Far less consideration has been given to the fact that systematic preference reversal also predicts various self-control phenomena, which may also be analyzed from a behavioral economic perspective. Here we summarize self-control phenomena predicted by hyperbolic discounting, particularly with application to the field of addiction. Of greatest interest is the phenomenon of choice bundling, an increase in motivation to wait for delayed rewards that can be expected to result from making choices in whole categories. Specifically, when a person’s expectations about her own future behavior are conditional upon her current behavior, the value of these expectations is added to the contingencies for the current behavior, resulting in reduced impulsivity. Hyperbolic discounting provides a bottom-up basis for the intuitive learning of choice bundling, the properties of which match common descriptions of willpower. We suggest that the bundling effect can also be discerned in the advice of 12-step programs. PMID:17034958
Spectral methods for partial differential equations
NASA Technical Reports Server (NTRS)
Hussaini, M. Y.; Streett, C. L.; Zang, T. A.
1983-01-01
Origins of spectral methods, especially their relation to the Method of Weighted Residuals, are surveyed. Basic Fourier, Chebyshev, and Legendre spectral concepts are reviewed, and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic, and mixed type. Fluid dynamical applications are emphasized.
Recent applications of spectral methods in fluid dynamics
NASA Technical Reports Server (NTRS)
Zang, T. A.; Hussaini, M. Y.
1985-01-01
Origins of spectral methods, especially their relation to the method of weighted residuals, are surveyed. Basic Fourier and Chebyshev spectral concepts are reviewed and demonstrated through application to simple model problems. Both collocation and tau methods are considered. These techniques are then applied to a number of difficult, nonlinear problems of hyperbolic, parabolic, elliptic and mixzed type. Fluid dynamical applications are emphasized.
Arnaudon, Alexis; López, Marco Castrillón; Holm, Darryl D
2018-01-01
The un-reduction procedure introduced previously in the context of classical mechanics is extended to covariant field theory. The new covariant un-reduction procedure is applied to the problem of shape matching of images which depend on more than one independent variable (for instance, time and an additional labelling parameter). Other possibilities are also explored: nonlinear [Formula: see text]-models and the hyperbolic flows of curves.
NASA Astrophysics Data System (ADS)
Ur Rehman, Khali; Ali Khan, Abid; Malik, M. Y.; Hussain, Arif
2017-09-01
The effects of temperature stratification on a tangent hyperbolic fluid flow over a stretching cylindrical surface are studied. The fluid flow is achieved by taking the no-slip condition into account. The mathematical modelling of the physical problem yields a nonlinear set of partial differential equations. These obtained partial differential equations are converted in terms of ordinary differential equations. Numerical investigation is done to identify the effects of the involved physical parameters on the dimensionless velocity and temperature profiles. In the presence of temperature stratification it is noticed that the curvature parameter makes both the fluid velocity and fluid temperature increase. In addition, positive variations in the thermal stratification parameter produce retardation with respect to the fluid flow, as a result the fluid temperature drops. The skin friction coefficient shows a decreasing nature for increasing value of both power law index and Weissenberg number, whereas the local Nusselt number is an increasing function of the Prandtl number, but opposite trends are found with respect to the thermal stratification parameter. The obtained results are validated by making a comparison with the existing literature which brings support to the presently developed model.
Material model measurements and predictions for a random pore poly(epsilon-caprolactone) scaffold.
Quinn, T P; Oreskovic, T L; Landis, F A; Washburn, N R
2007-07-01
We investigated material models for a polymeric scaffold used for bone. The material was made by co-extruding poly(epsilon-caprolactone) (PCL), a biodegradable polyester, and poly(ethylene oxide) (PEO). The water soluble PEO was removed resulting in a porous scaffold. The stress-strain curve in compression was fit with a phenomenological model in hyperbolic form. This material model will be useful for designers for quasi-static analysis as it provides a simple form that can easily be used in finite element models. The ASTM D-1621 standard recommends using a secant modulus based on 10% strain. The resulting modulus has a smaller scatter in its value compared with the coefficients of the hyperbolic model, and it is therefore easier to compare differences in material processing and ensure quality of the scaffold. A prediction of the small-strain elastic modulus was constructed from images of the microstructure. Each pixel of the micrographs was represented with a brick finite element and assigned the Young's modulus of bulk PCL or a value of 0 for a pore. A compressive strain was imposed on the model and the resulting stresses were calculated. The elastic constants of the scaffold were then computed with Hooke's law for a linear-elastic isotropic material. The model was able to predict the small-strain elastic modulus measured in the experiments to within one standard deviation. Thus, by knowing the microstructure of the scaffold, its bulk properties can be predicted from the material properties of the constituents. Copyright 2006 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Tripathi, Bharat B.; Marchiano, Régis; Baskar, Sambandam; Coulouvrat, François
2015-10-01
Propagation of acoustical shock waves in complex geometry is a topic of interest in the field of nonlinear acoustics. For instance, simulation of Buzz Saw Noice requires the treatment of shock waves generated by the turbofan through the engines of aeroplanes with complex geometries and wall liners. Nevertheless, from a numerical point of view it remains a challenge. The two main hurdles are to take into account the complex geometry of the domain and to deal with the spurious oscillations (Gibbs phenomenon) near the discontinuities. In this work, first we derive the conservative hyperbolic system of nonlinear acoustics (up to quadratic nonlinear terms) using the fundamental equations of fluid dynamics. Then, we propose to adapt the classical nodal discontinuous Galerkin method to develop a high fidelity solver for nonlinear acoustics. The discontinuous Galerkin method is a hybrid of finite element and finite volume method and is very versatile to handle complex geometry. In order to obtain better performance, the method is parallelized on Graphical Processing Units. Like other numerical methods, discontinuous Galerkin method suffers with the problem of Gibbs phenomenon near the shock, which is a numerical artifact. Among the various ways to manage these spurious oscillations, we choose the method of parabolic regularization. Although, the introduction of artificial viscosity into the system is a popular way of managing shocks, we propose a new approach of introducing smooth artificial viscosity locally in each element, wherever needed. Firstly, a shock sensor using the linear coefficients of the spectral solution is used to locate the position of the discontinuities. Then, a viscosity coefficient depending on the shock sensor is introduced into the hyperbolic system of equations, only in the elements near the shock. The viscosity is applied as a two-dimensional Gaussian patch with its shape parameters depending on the element dimensions, referred here as Element Centered Smooth Artificial Viscosity. Using this numerical solver, various numerical experiments are presented for one and two-dimensional test cases in homogeneous and quiescent medium. This work is funded by CEFIPRA (Indo-French Centre for the Promotion of Advance Research) and partially aided by EGIDE (Campus France).
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.
2016-12-01
This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.
Experimental demonstration of metamaterial "multiverse" in a ferrofluid.
Smolyaninov, Igor I; Yost, Bradley; Bates, Evan; Smolyaninova, Vera N
2013-06-17
Extraordinary light rays propagating inside a hyperbolic metamaterial look similar to particle world lines in a 2 + 1 dimensional Minkowski spacetime. Magnetic nanoparticles in a ferrofluid are known to form nanocolumns aligned along the magnetic field, so that a hyperbolic metamaterial may be formed at large enough nanoparticle concentration nH. Here we investigate optical properties of such a metamaterial just below nH. While on average such a metamaterial is elliptical, thermal fluctuations of nanoparticle concentration lead to transient formation of hyperbolic regions (3D Minkowski spacetimes) inside this metamaterial. Thus, thermal fluctuations in a ferrofluid look similar to creation and disappearance of individual Minkowski spacetimes (universes) in the cosmological multiverse. This theoretical picture is supported by experimental measurements of polarization-dependent optical transmission of a cobalt based ferrofluid at 1500 nm.
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Ricchiuto, Mario; Nishikawa, Hiroaki
2016-01-01
In this paper, we introduce a new hyperbolic first-order system for general dispersive partial differential equations (PDEs). We then extend the proposed system to general advection-diffusion-dispersion PDEs. We apply the fourth-order RD scheme of Ref. 1 to the proposed hyperbolic system, and solve time-dependent dispersive equations, including the classical two-soliton KdV and a dispersive shock case. We demonstrate that the predicted results, including the gradient and Hessian (second derivative), are in a very good agreement with the exact solutions. We then show that the RD scheme applied to the proposed system accurately captures dispersive shocks without numerical oscillations. We also verify that the solution, gradient and Hessian are predicted with equal order of accuracy.
On Another Edge of Defocusing: Hyperbolicity of Asymmetric Lemon Billiards
NASA Astrophysics Data System (ADS)
Bunimovich, Leonid; Zhang, Hong-Kun; Zhang, Pengfei
2016-02-01
Defocusing mechanism provides a way to construct chaotic (hyperbolic) billiards with focusing components by separating all regular components of the boundary of a billiard table sufficiently far away from each focusing component. If all focusing components of the boundary of the billiard table are circular arcs, then the above separation requirement reduces to that all circles obtained by completion of focusing components are contained in the billiard table. In the present paper we demonstrate that a class of convex tables— asymmetric lemons, whose boundary consists of two circular arcs, generate hyperbolic billiards. This result is quite surprising because the focusing components of the asymmetric lemon table are extremely close to each other, and because these tables are perturbations of the first convex ergodic billiard constructed more than 40 years ago.
Self-assembled tunable photonic hyper-crystals
Smolyaninova, Vera N.; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E.; Smolyaninov, Igor I.
2014-01-01
We demonstrate a novel artificial optical material, the “photonic hyper-crystal”, which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing. PMID:25027947
Self-assembled tunable photonic hyper-crystals.
Smolyaninova, Vera N; Yost, Bradley; Lahneman, David; Narimanov, Evgenii E; Smolyaninov, Igor I
2014-07-16
We demonstrate a novel artificial optical material, the "photonic hyper-crystal", which combines the most interesting features of hyperbolic metamaterials and photonic crystals. Similar to hyperbolic metamaterials, photonic hyper-crystals exhibit broadband divergence in their photonic density of states due to the lack of usual diffraction limit on the photon wave vector. On the other hand, similar to photonic crystals, hyperbolic dispersion law of extraordinary photons is modulated by forbidden gaps near the boundaries of photonic Brillouin zones. Three dimensional self-assembly of photonic hyper-crystals has been achieved by application of external magnetic field to a cobalt nanoparticle-based ferrofluid. Unique spectral properties of photonic hyper-crystals lead to extreme sensitivity of the material to monolayer coatings of cobalt nanoparticles, which should find numerous applications in biological and chemical sensing.
Examining Changes in Radioxenon Isotope Activity Ratios during Subsurface Transport
NASA Astrophysics Data System (ADS)
Annewandter, R.
2013-12-01
The Non-Proliferation Experiment (NPE) has demonstrated and modelled the usefulness of barometric pumping induced soil gas sampling during On-Site inspections. Gas transport has been widely studied with different numerical codes. However, gas transport of all radioxenons in the post-detonation regime and their possible fractionation is still neglected in the open literature. Atmospheric concentrations of the radioxenons Xe-135, Xe-133m, Xe-133 and Xe-131m can be used to discriminate between civilian releases (nuclear power plants or medical isotope facilities), and nuclear explosion sources. It is based on the isotopic activity ratio method. Yet it is not clear whether subsurface migration of the radioxenons, with eventual release into the atmosphere, can affect the activity ratios due to fractionation. Fractionation can be caused by different diffusivities due to mass differences between the radioxenons. A previous study showed surface arrival time of a chemically inert gaseous tracer is affected by its diffusivity. They observed detectable amount for SF6 50 days after detonation and 375 days for He-3. They predict 50 and 80 days for Xe-133 and Ar-37 respectively. Cyclical changes in atmospheric pressure can drive subsurface gas transport. This barometric pumping phenomenon causes an oscillatoric flow in upward trending fractures which, combined with diffusion into the porous matrix, leads to a net transport of gaseous components - a ratcheting effect. We use a general purpose reservoir simulator (Complex System Modelling Platform, CSMP++) which has been applied in a range of fields such as deep geothermal systems, three-phase black oil simulations , fracture propagation in fractured, porous media, Navier-Stokes pore-scale modelling among others. It is specifically designed to account for structurally complex geologic situation of fractured, porous media. Parabolic differential equations are solved by a continuous Galerkin finite-element method, hyperbolic differential equations by a complementary finite volume method. The parabolic and hyperbolic problem can be solved separately using the operator-splitting method (Implicit Pressure Explicit Saturation, IMPES). The resulting system of linear equations is solved by the algebraic multigrid library SAMG, developed at the Fraunhofer Institute for Algorithms and Scientific Computing. CSMP++ is developed at Montan University of Leoben, ETH Zuerich, Imperial College London and Heriot-Watt University in Edinburgh. To date, there has been no research investigating how subsurface transport impacts isotope activity ratios. The isotopic activity ratio method can be used to discriminate between civil release or nuclear explosion sources. This study examines possible fractionation of Xe-135, Xe-133m, Xe-133, Xe-131m during barometric pumping-driven subsurface migration, which can affect surface arrival times and isotopic activity ratios. Surface arrival times for the Noble gases Kr-81, Kr-85 and Ar-39 are also calculated.
Extreme sensitivity biosensing platform based on hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Sreekanth, Kandammathe Valiyaveedu; Alapan, Yunus; Elkabbash, Mohamed; Ilker, Efe; Hinczewski, Michael; Gurkan, Umut A.; de Luca, Antonio; Strangi, Giuseppe
2016-06-01
Optical sensor technology offers significant opportunities in the field of medical research and clinical diagnostics, particularly for the detection of small numbers of molecules in highly diluted solutions. Several methods have been developed for this purpose, including label-free plasmonic biosensors based on metamaterials. However, the detection of lower-molecular-weight (<500 Da) biomolecules in highly diluted solutions is still a challenging issue owing to their lower polarizability. In this context, we have developed a miniaturized plasmonic biosensor platform based on a hyperbolic metamaterial that can support highly confined bulk plasmon guided modes over a broad wavelength range from visible to near infrared. By exciting these modes using a grating-coupling technique, we achieved different extreme sensitivity modes with a maximum of 30,000 nm per refractive index unit (RIU) and a record figure of merit (FOM) of 590. We report the ability of the metamaterial platform to detect ultralow-molecular-weight (244 Da) biomolecules at picomolar concentrations using a standard affinity model streptavidin-biotin.
NASA Astrophysics Data System (ADS)
Aksikas, I.; Moghadam, A. Alizadeh; Forbes, J. F.
2018-04-01
This paper deals with the design of an optimal state-feedback linear-quadratic (LQ) controller for a system of coupled parabolic-hypebolic non-autonomous partial differential equations (PDEs). The infinite-dimensional state space representation and the corresponding operator Riccati differential equation are used to solve the control problem. Dynamical properties of the coupled system of interest are analysed to guarantee the existence and uniqueness of the solution of the LQ-optimal control problem and also to guarantee the exponential stability of the closed-loop system. Thanks to the eigenvalues and eigenfunctions of the parabolic operator and also the fact that the hyperbolic-associated operator Riccati differential equation can be converted to a scalar Riccati PDE, an algorithm to solve the LQ control problem has been presented. The results are applied to a non-isothermal packed-bed catalytic reactor. The LQ optimal controller designed in the early portion of the paper is implemented for the original non-linear model. Numerical simulations are performed to show the controller performances.
An adaptive method for a model of two-phase reactive flow on overlapping grids
NASA Astrophysics Data System (ADS)
Schwendeman, D. W.
2008-11-01
A two-phase model of heterogeneous explosives is handled computationally by a new numerical approach that is a modification of the standard Godunov scheme. The approach generates well-resolved and accurate solutions using adaptive mesh refinement on overlapping grids, and treats rationally the nozzling terms that render the otherwise hyperbolic model incapable of a conservative representation. The evolution and structure of detonation waves for a variety of one and two-dimensional configurations will be discussed with a focus given to problems of detonation diffraction and failure.
Analysis of an age structured model for tick populations subject to seasonal effects
NASA Astrophysics Data System (ADS)
Liu, Kaihui; Lou, Yijun; Wu, Jianhong
2017-08-01
We investigate an age-structured hyperbolic equation model by allowing the birth and death functions to be density dependent and periodic in time with the consideration of seasonal effects. By studying the integral form solution of this general hyperbolic equation obtained through the method of integration along characteristics, we give a detailed proof of the uniqueness and existence of the solution in light of the contraction mapping theorem. With additional biologically natural assumptions, using the tick population growth as a motivating example, we derive an age-structured model with time-dependent periodic maturation delays, which is quite different from the existing population models with time-independent maturation delays. For this periodic differential system with seasonal delays, the basic reproduction number R0 is defined as the spectral radius of the next generation operator. Then, we show the tick population tends to die out when R0 < 1 while remains persistent if R0 > 1. When there is no intra-specific competition among immature individuals due to the sufficient availability of immature tick hosts, the global stability of the positive periodic state for the whole model system of four delay differential equations can be obtained with the observation that a scalar subsystem for the adult stage size can be decoupled. The challenge for the proof of such a global stability result can be overcome by introducing a new phase space, based on which, a periodic solution semiflow can be defined which is eventually strongly monotone and strictly subhomogeneous.
Stratified flows with variable density: mathematical modelling and numerical challenges.
NASA Astrophysics Data System (ADS)
Murillo, Javier; Navas-Montilla, Adrian
2017-04-01
Stratified flows appear in a wide variety of fundamental problems in hydrological and geophysical sciences. They may involve from hyperconcentrated floods carrying sediment causing collapse, landslides and debris flows, to suspended material in turbidity currents where turbulence is a key process. Also, in stratified flows variable horizontal density is present. Depending on the case, density varies according to the volumetric concentration of different components or species that can represent transported or suspended materials or soluble substances. Multilayer approaches based on the shallow water equations provide suitable models but are not free from difficulties when moving to the numerical resolution of the governing equations. Considering the variety of temporal and spatial scales, transfer of mass and energy among layers may strongly differ from one case to another. As a consequence, in order to provide accurate solutions, very high order methods of proved quality are demanded. Under these complex scenarios it is necessary to observe that the numerical solution provides the expected order of accuracy but also converges to the physically based solution, which is not an easy task. To this purpose, this work will focus in the use of Energy balanced augmented solvers, in particular, the Augmented Roe Flux ADER scheme. References: J. Murillo , P. García-Navarro, Wave Riemann description of friction terms in unsteady shallow flows: Application to water and mud/debris floods. J. Comput. Phys. 231 (2012) 1963-2001. J. Murillo B. Latorre, P. García-Navarro. A Riemann solver for unsteady computation of 2D shallow flows with variable density. J. Comput. Phys.231 (2012) 4775-4807. A. Navas-Montilla, J. Murillo, Energy balanced numerical schemes with very high order. The Augmented Roe Flux ADER scheme. Application to the shallow water equations, J. Comput. Phys. 290 (2015) 188-218. A. Navas-Montilla, J. Murillo, Asymptotically and exactly energy balanced augmented flux-ADER schemes with application to hyperbolic conservation laws with geometric source terms, J. Comput. Phys. 317 (2016) 108-147. J. Murillo and A. Navas-Montilla, A comprehensive explanation and exercise of the source terms in hyperbolic systems using Roe type solutions. Application to the 1D-2D shallow water equations, Advances in Water Resources 98 (2016) 70-96.
An iterative method for systems of nonlinear hyperbolic equations
NASA Technical Reports Server (NTRS)
Scroggs, Jeffrey S.
1989-01-01
An iterative algorithm for the efficient solution of systems of nonlinear hyperbolic equations is presented. Parallelism is evident at several levels. In the formation of the iteration, the equations are decoupled, thereby providing large grain parallelism. Parallelism may also be exploited within the solves for each equation. Convergence of the interation is established via a bounding function argument. Experimental results in two-dimensions are presented.
High-resolution schemes for hyperbolic conservation laws
NASA Technical Reports Server (NTRS)
Harten, A.
1982-01-01
A class of new explicit second order accurate finite difference schemes for the computation of weak solutions of hyperbolic conservation laws is presented. These highly nonlinear schemes are obtained by applying a nonoscillatory first order accurae scheme to an appropriately modified flux function. The so derived second order accurate schemes achieve high resolution while preserving the robustness of the original nonoscillatory first order accurate scheme.
Singularities and non-hyperbolic manifolds do not coincide
NASA Astrophysics Data System (ADS)
Simányi, Nándor
2013-06-01
We consider the billiard flow of elastically colliding hard balls on the flat ν-torus (ν ⩾ 2), and prove that no singularity manifold can even locally coincide with a manifold describing future non-hyperbolicity of the trajectories. As a corollary, we obtain the ergodicity (actually the Bernoulli mixing property) of all such systems, i.e. the verification of the Boltzmann-Sinai ergodic hypothesis.
A simple finite element method for linear hyperbolic problems
Mu, Lin; Ye, Xiu
2017-09-14
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
A simple finite element method for linear hyperbolic problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Lin; Ye, Xiu
Here, we introduce a simple finite element method for solving first order hyperbolic equations with easy implementation and analysis. Our new method, with a symmetric, positive definite system, is designed to use discontinuous approximations on finite element partitions consisting of arbitrary shape of polygons/polyhedra. Error estimate is established. Extensive numerical examples are tested that demonstrate the robustness and flexibility of the method.
Symmetry analysis for hyperbolic equilibria using a TB/dengue fever model
NASA Astrophysics Data System (ADS)
Massoukou, R. Y. M.'Pika; Govinder, K. S.
2016-08-01
We investigate the interplay between Lie symmetry analysis and dynamical systems analysis. As an example, we take a toy model describing the spread of TB and dengue fever. We first undertake a comprehensive dynamical systems analysis including a discussion about local stability. For those regions in which such analyzes cannot be translated to global behavior, we undertake a Lie symmetry analysis. It is shown that the Lie analysis can be useful in providing information for systems where the (local) dynamical systems analysis breaks down.
Blowup with vorticity control for a 2D model of the Boussinesq equations
NASA Astrophysics Data System (ADS)
Hoang, V.; Orcan-Ekmekci, B.; Radosz, M.; Yang, H.
2018-06-01
We propose a system of equations with nonlocal flux in two space dimensions which is closely modeled after the 2D Boussinesq equations in a hyperbolic flow scenario. Our equations involve a vorticity stretching term and a non-local Biot-Savart law and provide insight into the underlying intrinsic mechanisms of singularity formation. We prove stable, controlled finite time blowup involving upper and lower bounds on the vorticity up to the time of blowup for a wide class of initial data.
Buffering effect in continuous chains of unidirectionally coupled generators
NASA Astrophysics Data System (ADS)
Glyzin, S. D.; Kolesov, A. Yu.; Rozov, N. Kh.
2014-11-01
We propose a mathematical model of a continuous annular chain of unidirectionally coupled generators given by some nonlinear advection-type hyperbolic boundary value problem. Such problems are constructed by a limit transition from annular chains of unidirectionally coupled ordinary differential equations with an unbounded increase in the number of links. We find that a certain buffering phenomenon is realized in our boundary value problem. Namely, we show that any preassigned finite number of stable periodic motions of the traveling-wave type can coexist in the model.
On some approaches to model reversible magnetization processes
NASA Astrophysics Data System (ADS)
Chwastek, K.; Baghel, A. P. S.; Sai Ram, B.; Borowik, B.; Daniel, L.; Kulkarni, S. V.
2018-04-01
This paper focuses on the problem of how reversible magnetization processes are taken into account in contemporary descriptions of hysteresis curves. For comparison, three versions of the phenomenological T(x) model based on hyperbolic tangent mapping are considered. Two of them are based on summing the output of the hysteresis operator with a linear or nonlinear mapping. The third description is inspired by the concept of the product Preisach model. Total susceptibility is modulated with a magnetization-dependent function. The models are verified using measurement data for grain-oriented electrical steel. The proposed third description represents minor loops most accurately.
Cauchy problem as a two-surface based ‘geometrodynamics’
NASA Astrophysics Data System (ADS)
Rácz, István
2015-01-01
Four-dimensional spacetimes foliated by a two-parameter family of homologous two-surfaces are considered in Einstein's theory of gravity. By combining a 1 + (1 + 2) decomposition, the canonical form of the spacetime metric and a suitable specification of the conformal structure of the foliating two-surfaces, a gauge fixing is introduced. It is shown that, in terms of the chosen geometrically distinguished variables, the 1 + 3 Hamiltonian and momentum constraints can be recast into the form of a parabolic equation and a first order symmetric hyperbolic system, respectively. Initial data to this system can be given on one of the two-surfaces foliating the three-dimensional initial data surface. The 1 + 3 reduced Einstein's equations are also determined. By combining the 1 + 3 momentum constraint with the reduced system of the secondary 1 + 2 decomposition, a mixed hyperbolic-hyperbolic system is formed. It is shown that solutions to this mixed hyperbolic-hyperbolic system are also solutions to the full set of Einstein's equations provided that the 1 + 3 Hamiltonian constraint is solved on the initial data surface {{Σ }0} and the 1 + 2 Hamiltonian and momentum type expressions vanish on a world-tube yielded by the Lie transport of one of the two-surfaces foliating {{Σ }0} along the time evolution vector field. Whenever the foliating two-surfaces are compact without boundary in the spacetime and a regular origin exists on the time-slices—this is the location where the foliating two-surfaces smoothly reduce to a point—it suffices to guarantee that the 1 + 3 Hamiltonian constraint holds on the initial data surface. A short discussion on the use of the geometrically distinguished variables in identifying the degrees of freedom of gravity are also included. Dedicated to Zoltán Cseke on the occasion of his 70th birthday.
Cosmological attractors and asymptotic freedom of the inflaton field
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kallosh, Renata; Linde, Andrei
2016-06-28
We show that the inflaton coupling to all other fields is exponentially suppressed during inflation in the cosmological α-attractor models. In the context of supergravity, this feature is a consequence of the underlying hyperbolic geometry of the moduli space which has a flat direction corresponding to the inflaton field. A combination of these factors protects the asymptotic flatness of the inflaton potential.
Strong coupling of collection of emitters on hyperbolic meta-material
NASA Astrophysics Data System (ADS)
Biehs, Svend-Age; Xu, Chenran; Agarwal, Girish S.
2018-04-01
Recently, considerable effort has been devoted to the realization of a strong coupling regime of the radiation matter interaction in the context of an emitter at a meta surface. The strong interaction is well realized in cavity quantum electrodynamics, which also show that strong coupling is much easier to realize using a collection of emitters. Keeping this in mind, we study if emitters on a hyperbolic meta materials can yield a strong coupling regime. We show that strong coupling can be realized for densities of emitters exceeding a critical value. A way to detect strong coupling between emitters and hyperbolic metamaterials is to use the Kretschman-Raether configuration. The strong coupling appears as the splitting of the reflectivity dip. In the weak coupling regime, the dip position shifts. The shift and splitting can be used to sense active molecules at surfaces.
Anomalous resonances of an optical microcavity with a hyperbolic metamaterial core
NASA Astrophysics Data System (ADS)
Travkin, Evgenij; Kiel, Thomas; Sadofev, Sergey; Busch, Kurt; Benson, Oliver; Kalusniak, Sascha
2018-05-01
We embed a hyperbolic metamaterial based on stacked layer pairs of epitaxially grown ZnO/ZnO:Ga in a monolithic optical microcavity, and we investigate the arising unique resonant effects experimentally and theoretically. Unlike traditional metals, the semiconductor-based approach allows us to utilize all three permittivity regions of the hyperbolic metamaterial in the near-infrared spectral range. This configuration gives rise to modes of identical orders appearing at different frequencies, a zeroth-order resonance in an all-positive permittivity region, and a continuum of high-order modes. In addition, an unusual lower cutoff frequency is introduced to the resonator mode spectrum. The observed effects expand the possibilities for customization of optical resonators; in particular, the zeroth-order and high-order modes hold strong potential for the realization of deeply subwavelength cavity sizes.
Free vibration of laminated composite stiffened hyperbolic paraboloid shell panel with cutout
NASA Astrophysics Data System (ADS)
Sahoo, Sarmila
2016-08-01
Composite shell structures are extensively used in aerospace, civil, marine and other engineering applications. In practical civil engineering applications, the necessity of covering large column free open areas is often an issue and hyperbolic paraboloid shells are used as roofing units. Quite often, to save weight and also to provide a facility for inspection, cutouts are provided in shell panels. The paper considers free vibration characteristics of stiffened composite hyperbolic paraboloid shell panel with cutout in terms of natural frequency and mode shapes. A finite element code is developed for the purpose by combining an eight noded curved shell element with a three noded curved beam element. The size of the cutouts and their positions with respect to the shell centre are varied for different edge conditions to arrive at a set of inferences of practical engineering significances.
Subwavelength focusing of terahertz waves in silicon hyperbolic metamaterials.
Kannegulla, Akash; Cheng, Li-Jing
2016-08-01
We theoretically demonstrate the subwavelength focusing of terahertz (THz) waves in a hyperbolic metamaterial (HMM) based on a two-dimensional subwavelength silicon pillar array microstructure. The silicon microstructure with a doping concentration of at least 1017 cm-3 offers a hyperbolic dispersion at terahertz frequency range and promises the focusing of terahertz Gaussian beams. The results agree with the simulation based on effective medium theory. The focusing effect can be controlled by the doping concentration, which determines the real part of the out-of-plane permittivity and, therefore, the refraction angles in HMM. The focusing property in the HMM structure allows the propagation of terahertz wave through a subwavelength aperture. The silicon-based HMM structure can be realized using microfabrication technologies and has the potential to advance terahertz imaging with subwavelength resolution.
Universal properties of the near-horizon optical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gibbons, G. W.; Warnick, C. M.
2009-03-15
Making use of the fact that the optical geometry near a static nondegenerate Killing horizon is asymptotically hyperbolic, we investigate some universal features of black-hole horizons. Applying the Gauss-Bonnet theorem allows us to establish some general properties of gravitational lensing, valid for all black holes. Hyperbolic geometry allows us to find rates for the loss of scalar, vector, and fermionic ''hair'' as objects fall quasistatically towards the horizon, extending previous results for Schwarzschild to all static Killing horizons. In the process we find the Lienard-Wiechert potential for hyperbolic space and calculate the force between electrons mediated by neutrinos, extending themore » flat space result of Feinberg and Sucher. We further demonstrate how these techniques allow us to derive the exact Copson-Linet potential due to a point charge in a Schwarzschild background in a simple fashion.« less
Tunable angle absorption of hyperbolic metamaterials based on plasma photonic crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jiao, Zheng; Ning, Renxia, E-mail: nrxxiner@hsu.edu.cn; Xu, Yuan
2016-06-15
We present the design of a multilayer structure of hyperbolic metamaterials based on plasma photonic crystals which composed of two kinds of traditional dielectric and plasma. The relative permittivity of hyperbolic metamaterials has been studied at certain frequency range. The absorption and reflection of the multilayer period structure at normal and oblique incident have been investigated by the transfer matrix method. We discussed that the absorption is affected by the thickness of material and the electron collision frequency γ of the plasma. The results show that an absorption band at the low frequency can be obtained at normal incident anglemore » and another absorption band at the high frequency can be found at a large incident angle. The results may be applied by logical gate, stealth, tunable angle absorber, and large angle filter.« less
Analysis of generalized negative binomial distributions attached to hyperbolic Landau levels
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chhaiba, Hassan, E-mail: chhaiba.hassan@gmail.com; Demni, Nizar, E-mail: nizar.demni@univ-rennes1.fr; Mouayn, Zouhair, E-mail: mouayn@fstbm.ac.ma
2016-07-15
To each hyperbolic Landau level of the Poincaré disc is attached a generalized negative binomial distribution. In this paper, we compute the moment generating function of this distribution and supply its atomic decomposition as a perturbation of the negative binomial distribution by a finitely supported measure. Using the Mandel parameter, we also discuss the nonclassical nature of the associated coherent states. Next, we derive a Lévy-Khintchine-type representation of its characteristic function when the latter does not vanish and deduce that it is quasi-infinitely divisible except for the lowest hyperbolic Landau level corresponding to the negative binomial distribution. By considering themore » total variation of the obtained quasi-Lévy measure, we introduce a new infinitely divisible distribution for which we derive the characteristic function.« less
Extending unified-theory-of-reinforcement neural networks to steady-state operant behavior.
Calvin, Olivia L; McDowell, J J
2016-06-01
The unified theory of reinforcement has been used to develop models of behavior over the last 20 years (Donahoe et al., 1993). Previous research has focused on the theory's concordance with the respondent behavior of humans and animals. In this experiment, neural networks were developed from the theory to extend the unified theory of reinforcement to operant behavior on single-alternative variable-interval schedules. This area of operant research was selected because previously developed neural networks could be applied to it without significant alteration. Previous research with humans and animals indicates that the pattern of their steady-state behavior is hyperbolic when plotted against the obtained rate of reinforcement (Herrnstein, 1970). A genetic algorithm was used in the first part of the experiment to determine parameter values for the neural networks, because values that were used in previous research did not result in a hyperbolic pattern of behavior. After finding these parameters, hyperbolic and other similar functions were fitted to the behavior produced by the neural networks. The form of the neural network's behavior was best described by an exponentiated hyperbola (McDowell, 1986; McLean and White, 1983; Wearden, 1981), which was derived from the generalized matching law (Baum, 1974). In post-hoc analyses the addition of a baseline rate of behavior significantly improved the fit of the exponentiated hyperbola and removed systematic residuals. The form of this function was consistent with human and animal behavior, but the estimated parameter values were not. Copyright © 2016 Elsevier B.V. All rights reserved.
Optimal disturbance rejecting control of hyperbolic systems
NASA Technical Reports Server (NTRS)
Biswas, Saroj K.; Ahmed, N. U.
1994-01-01
Optimal regulation of hyperbolic systems in the presence of unknown disturbances is considered. Necessary conditions for determining the optimal control that tracks a desired trajectory in the presence of the worst possible perturbations are developed. The results also characterize the worst possible disturbance that the system will be able to tolerate before any degradation of the system performance. Numerical results on the control of a vibrating beam are presented.
High-Order Hyperbolic Residual-Distribution Schemes on Arbitrary Triangular Grids
NASA Technical Reports Server (NTRS)
Mazaheri, Alireza; Nishikawa, Hiroaki
2015-01-01
In this paper, we construct high-order hyperbolic residual-distribution schemes for general advection-diffusion problems on arbitrary triangular grids. We demonstrate that the second-order accuracy of the hyperbolic schemes can be greatly improved by requiring the scheme to preserve exact quadratic solutions. We also show that the improved second-order scheme can be easily extended to third-order by further requiring the exactness for cubic solutions. We construct these schemes based on the LDA and the SUPG methodology formulated in the framework of the residual-distribution method. For both second- and third-order-schemes, we construct a fully implicit solver by the exact residual Jacobian of the second-order scheme, and demonstrate rapid convergence of 10-15 iterations to reduce the residuals by 10 orders of magnitude. We demonstrate also that these schemes can be constructed based on a separate treatment of the advective and diffusive terms, which paves the way for the construction of hyperbolic residual-distribution schemes for the compressible Navier-Stokes equations. Numerical results show that these schemes produce exceptionally accurate and smooth solution gradients on highly skewed and anisotropic triangular grids, including curved boundary problems, using linear elements. We also present Fourier analysis performed on the constructed linear system and show that an under-relaxation parameter is needed for stabilization of Gauss-Seidel relaxation.
Deep-Ultraviolet Hyperbolic Metacavity Laser.
Shen, Kun-Ching; Ku, Chen-Ta; Hsieh, Chiieh; Kuo, Hao-Chung; Cheng, Yuh-Jen; Tsai, Din Ping
2018-05-01
Given the high demand for miniaturized optoelectronic circuits, plasmonic devices with the capability of generating coherent radiation at deep subwavelength scales have attracted great interest for diverse applications such as nanoantennas, single photon sources, and nanosensors. However, the design of such lasing devices remains a challenging issue because of the long structure requirements for producing strong radiation feedback. Here, a plasmonic laser made by using a nanoscale hyperbolic metamaterial cube, called hyperbolic metacavity, on a multiple quantum-well (MQW), deep-ultraviolet emitter is presented. The specifically designed metacavity merges plasmon resonant modes within the cube and provides a unique resonant radiation feedback to the MQW. This unique plasmon field allows the dipoles of the MQW with various orientations into radiative emission, achieving enhancement of spontaneous emission rate by a factor of 33 and of quantum efficiency by a factor of 2.5, which is beneficial for coherent laser action. The hyperbolic metacavity laser shows a clear clamping of spontaneous emission above the threshold, which demonstrates a near complete radiation coupling of the MQW with the metacavity. This approach shown here can greatly simplify the requirements of plasmonic nanolaser with a long plasmonic structure, and the metacavity effect can be extended to many other material systems. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
Polanski, Jaroslaw; Tkocz, Aleksandra; Kucia, Urszula
2017-09-11
On the one hand, ligand efficiency (LE) and the binding efficiency index (BEI), which are binding properties (B) averaged versus the heavy atom count (HAC: LE) or molecular weight (MW: BEI), have recently been declared a novel universal tool for drug design. On the other hand, questions have been raised about the mathematical validity of the LE approach. In fact, neither the critics nor the advocates are precise enough to provide a generally understandable and accepted chemistry of the LE metrics. In particular, this refers to the puzzle of the LE trends for small and large molecules. In this paper, we explain the chemistry and mathematics of the LE type of data. Because LE is a weight metrics related to binding per gram, its hyperbolic decrease with an increasing number of heavy atoms can be easily understood by its 1/MW dependency. Accordingly, we analyzed how this influences the LE trends for ligand-target binding, economic big data or molecular descriptor data. In particular, we compared the trends for the thermodynamic ∆G data of a series of ligands that interact with 14 different target classes, which were extracted from the BindingDB database with the market prices of a commercial compound library of ca. 2.5 mln synthetic building blocks. An interpretation of LE and BEI that clearly explains the observed trends for these parameters are presented here for the first time. Accordingly, we show that the main misunderstanding of the chemical meaning of the BEI and LE parameters is their interpretation as molecular descriptors that are connected with a single molecule, while binding is a statistical effect in which a population of ligands limits the formation of ligand-receptor complexes. Therefore, LE (BEI) should not be interpreted as a molecular (physicochemical) descriptor that is connected with a single molecule but as a property (binding per gram). Accordingly, the puzzle of the surprising behavior of LE is explained by the 1/MW dependency. This effect clearly explains the hyperbolic LE trend not as a real increase in binding potency but as a physical limitation due to the different population of ligands with different MWs in a 1 g sample available for the formation of ligand-receptor complexes. Graphical abstract .
The importance of flow history in mixed shear and extensional flows
NASA Astrophysics Data System (ADS)
Wagner, Caroline; McKinley, Gareth
2015-11-01
Many complex fluid flows of experimental and academic interest exhibit mixed kinematics with regions of shear and elongation. Examples include flows through planar hyperbolic contractions in microfluidic devices and through porous media or geometric arrays. Through the introduction of a ``flow-type parameter'' α which varies between 0 in pure shear and 1 in pure elongation, the local velocity fields of all such mixed flows can be concisely characterized. It is tempting to then consider the local stress field and interpret the local state of stress in a complex fluid in terms of shearing or extensional material functions. However, the material response of such fluids exhibit a fading memory of the entire deformation history. We consider a dilute solution of Hookean dumbbells and solve the Oldroyd-B model to obtain analytic expressions for the entire stress field in any arbitrary mixed flow of constant strain rate and flow-type parameter α. We then consider a more complex flow for which the shear rate is constant but the flow-type parameter α varies periodically in time (reminiscent of flow through a periodic array or through repeated contractions and expansions). We show that the flow history and kinematic sequencing (in terms of whether the flow was initialized as shearing or extensional) is extremely important in determining the ensuing stress field and rate of dissipated energy in the flow, and can only be ignored in the limit of infinitely slow flow variations.
Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oshemkov, Andrey A
2010-10-06
A complete invariant is constructed that is a solution of the problem of semilocal classification of saddle singularities of integrable Hamiltonian systems. Namely, a certain combinatorial object (an f{sub n}-graph) is associated with every nondegenerate saddle singularity of rank zero; as a result, the problem of semilocal classification of saddle singularities of rank zero is reduced to the problem of enumeration of the f{sub n}-graphs. This enables us to describe a simple algorithm for obtaining the lists of saddle singularities of rank zero for a given number of degrees of freedom and a given complexity. Bibliography: 24 titles.
NASA Astrophysics Data System (ADS)
Baskonus, Haci Mehmet; Sulaiman, Tukur Abdulkadir; Bulut, Hasan
2017-10-01
In this paper, with the help of Wolfram Mathematica 9 we employ the powerful sine-Gordon expansion method in investigating the solution structures of the two well known nonlinear evolution equations, namely; Calogero-Bogoyavlenskii-Schiff and Kadomtsev-Petviashvili hierarchy equations. We obtain new solutions with complex, hyperbolic and trigonometric function structures. All the obtained solutions in this paper verified their corresponding equations. We also plot the three- and two-dimensional graphics of all the obtained solutions in this paper by using the same program in Wolfram Mathematica 9. We finally submit a comprehensive conclusion.
2011-01-01
Background Electrotherapy is a relatively well established and efficient method of tumor treatment. In this paper we focus on analytical and numerical calculations of the potential and electric field distributions inside a tumor tissue in a two-dimensional model (2D-model) generated by means of electrode arrays with shapes of different conic sections (ellipse, parabola and hyperbola). Methods Analytical calculations of the potential and electric field distributions based on 2D-models for different electrode arrays are performed by solving the Laplace equation, meanwhile the numerical solution is solved by means of finite element method in two dimensions. Results Both analytical and numerical solutions reveal significant differences between the electric field distributions generated by electrode arrays with shapes of circle and different conic sections (elliptic, parabolic and hyperbolic). Electrode arrays with circular, elliptical and hyperbolic shapes have the advantage of concentrating the electric field lines in the tumor. Conclusion The mathematical approach presented in this study provides a useful tool for the design of electrode arrays with different shapes of conic sections by means of the use of the unifying principle. At the same time, we verify the good correspondence between the analytical and numerical solutions for the potential and electric field distributions generated by the electrode array with different conic sections. PMID:21943385
NASA Astrophysics Data System (ADS)
Sobolev, S. L.
2018-02-01
Some analogies between different nonequilibrium heat conduction models, particularly random walk, the discrete variable model, and the Boltzmann transport equation with the single relaxation time approximation, have been discussed. We show that, under an assumption of a finite value of the heat carrier velocity, these models lead to the hyperbolic heat conduction equation and the modified Fourier law with relaxation term. Corresponding effective temperature and entropy have been introduced and analyzed. It has been demonstrated that the effective temperature, defined as a geometric mean of the kinetic temperatures of the heat carriers moving in opposite directions, acts as a criterion for thermalization and is a nonlinear function of the kinetic temperature and heat flux. It is shown that, under highly nonequilibrium conditions when the heat flux tends to its maximum possible value, the effective temperature, heat capacity, and local entropy go to zero even at a nonzero equilibrium temperature. This provides a possible generalization of the third law to nonequilibrium situations. Analogies and differences between the proposed effective temperature and some other definitions of a temperature in nonequilibrium state, particularly for active systems, disordered semiconductors under electric field, and adiabatic gas flow, have been shown and discussed. Illustrative examples of the behavior of the effective temperature and entropy during nonequilibrium heat conduction in a monatomic gas and a strong shockwave have been analyzed.
1989-01-01
Calculations and Experiments (B.van den Berg/ D.A. Humphreysl E. Krause /J.P. F. Lindhout) Volume 20 Proceedings of the Seventh GAMM-Conference on...GRID METHODS FOR HYPERBOLIC PROBLEMS Wolfgang Hackbusch Sigrid Hagemann Institut fUr Informatik und Praktische Mathematik Christian-Albrechts...Euler Equations. Proceedings of the 8th Inter- national Conference on Numerical Methods in Fluid Dynamics (E. Krause , ed.), Aachen, 1988. Springer
A New Time-Space Accurate Scheme for Hyperbolic Problems. 1; Quasi-Explicit Case
NASA Technical Reports Server (NTRS)
Sidilkover, David
1998-01-01
This paper presents a new discretization scheme for hyperbolic systems of conservations laws. It satisfies the TVD property and relies on the new high-resolution mechanism which is compatible with the genuinely multidimensional approach proposed recently. This work can be regarded as a first step towards extending the genuinely multidimensional approach to unsteady problems. Discontinuity capturing capabilities and accuracy of the scheme are verified by a set of numerical tests.
NASA Astrophysics Data System (ADS)
Rajagopal, Karthikeyan; Pham, Viet-Thanh; Tahir, Fadhil Rahma; Akgul, Akif; Abdolmohammadi, Hamid Reza; Jafari, Sajad
2018-04-01
The literature on chaos has highlighted several chaotic systems with special features. In this work, a novel chaotic jerk system with non-hyperbolic equilibrium is proposed. The dynamics of this new system is revealed through equilibrium analysis, phase portrait, bifurcation diagram and Lyapunov exponents. In addition, we investigate the time-delay effects on the proposed system. Realisation of such a system is presented to verify its feasibility.
Note on the displacement of a trajectory of hyperbolic motion in curved space-time
NASA Astrophysics Data System (ADS)
Krikorian, R. A.
2012-04-01
The object of this note is to present a physical application of the theory of the infinitesimal deformations or displacements of curves developed by Yano using the concept of Lie derivative. It is shown that an infinitesimal point transformation which carries a given trajectory of hyperbolic motion into a trajectory of the same type, and preserves the affine parametrization of the trajectory, defines a homothetic motion.
Hyperbolic Cross Truncations for Stochastic Fourier Cosine Series
Zhang, Zhihua
2014-01-01
Based on our decomposition of stochastic processes and our asymptotic representations of Fourier cosine coefficients, we deduce an asymptotic formula of approximation errors of hyperbolic cross truncations for bivariate stochastic Fourier cosine series. Moreover we propose a kind of Fourier cosine expansions with polynomials factors such that the corresponding Fourier cosine coefficients decay very fast. Although our research is in the setting of stochastic processes, our results are also new for deterministic functions. PMID:25147842
NASA Astrophysics Data System (ADS)
Beilina, L.; Cristofol, M.; Li, S.; Yamamoto, M.
2018-01-01
We consider an inverse problem of reconstructing two spatially varying coefficients in an acoustic equation of hyperbolic type using interior data of solutions with suitable choices of initial condition. Using a Carleman estimate, we prove Lipschitz stability estimates which ensure unique reconstruction of both coefficients. Our theoretical results are justified by numerical studies on the reconstruction of two unknown coefficients using noisy backscattered data.
NASA Technical Reports Server (NTRS)
Warming, R. F.; Beam, R. M.
1978-01-01
Efficient, noniterative, implicit finite difference algorithms are systematically developed for nonlinear conservation laws including purely hyperbolic systems and mixed hyperbolic parabolic systems. Utilization of a rational fraction or Pade time differencing formulas, yields a direct and natural derivation of an implicit scheme in a delta form. Attention is given to advantages of the delta formation and to various properties of one- and two-dimensional algorithms.
Design and fabrication of a basic mass analyzer and vacuum system
NASA Technical Reports Server (NTRS)
Judson, C. M.; Josias, C.; Lawrence, J. L., Jr.
1977-01-01
A two-inch hyperbolic rod quadrupole mass analyzer with a mass range of 400 to 200 amu and a sensitivity exceeding 100 packs per billion has been developed and tested. This analyzer is the basic hardware portion of a microprocessor-controlled quadrupole mass spectrometer for a Gas Analysis and Detection System (GADS). The development and testing of the hyperbolic-rod quadrupole mass spectrometer and associated hardware are described in detail.
A graphene Zener-Klein transistor cooled by a hyperbolic substrate
NASA Astrophysics Data System (ADS)
Yang, Wei; Berthou, Simon; Lu, Xiaobo; Wilmart, Quentin; Denis, Anne; Rosticher, Michael; Taniguchi, Takashi; Watanabe, Kenji; Fève, Gwendal; Berroir, Jean-Marc; Zhang, Guangyu; Voisin, Christophe; Baudin, Emmanuel; Plaçais, Bernard
2018-01-01
The engineering of cooling mechanisms is a bottleneck in nanoelectronics. Thermal exchanges in diffusive graphene are mostly driven by defect-assisted acoustic phonon scattering, but the case of high-mobility graphene on hexagonal boron nitride (hBN) is radically different, with a prominent contribution of remote phonons from the substrate. Bilayer graphene on a hBN transistor with a local gate is driven in a regime where almost perfect current saturation is achieved by compensation of the decrease in the carrier density and Zener-Klein tunnelling (ZKT) at high bias. Using noise thermometry, we show that the ZKT triggers a new cooling pathway due to the emission of hyperbolic phonon polaritons in hBN by out-of-equilibrium electron-hole pairs beyond the super-Planckian regime. The combination of ZKT transport and hyperbolic phonon polariton cooling renders graphene on BN transistors a valuable nanotechnology for power devices and RF electronics.
Lagrangian Coherent Structures, Hyperbolicity, and Lyapunov Exponents
NASA Astrophysics Data System (ADS)
Haller, George
2010-05-01
We review the fundamental physical motivation behind the definition of Lagrangian Coherent Structures (LCS) and show how it leads to the concept of finite-time hyperbolicity in non-autonomous dynamical systems. Using this concept of hyperbolicity, we obtain a self-consistent criterion for the existence of attracting and repelling material surfaces in unsteady fluid flows, such as those in the atmosphere and the ocean. The existence of LCS is often postulated in terms of features of the Finite-Time Lyapunov Exponent (FTLE) field associated with the system. As simple examples show, however, the FTLE field does not necessarily highlight LCS, or may ighlight structures that are not LCS. Under appropriate nondegeneracy conditions, we show that ridges of the FTLE field indeed coincide with LCS in volume-preserving flows. For general flows, we obtain a more general scalar field whose ridges correspond to LCS. We finally review recent applications of LCS techniques to flight safety analysis at Hong Kong International Airport.
Tunable VO{sub 2}/Au hyperbolic metamaterial
DOE Office of Scientific and Technical Information (OSTI.GOV)
Prayakarao, S.; Noginov, M. A., E-mail: mnoginov@nsu.edu; Mendoza, B.
2016-08-08
Vanadium dioxide (VO{sub 2}) is known to have a semiconductor-to-metal phase transition at ∼68 °C. Therefore, it can be used as a tunable component of an active metamaterial. The lamellar metamaterial studied in this work is composed of subwavelength VO{sub 2} and Au layers and is designed to undergo a temperature controlled transition from the optical hyperbolic phase to the metallic phase. VO{sub 2} films and VO{sub 2}/Au lamellar metamaterial stacks have been fabricated and studied in electrical conductivity and optical (transmission and reflection) experiments. The observed temperature-dependent changes in the reflection and transmission spectra of the metamaterials and VO{sub 2}more » thin films are in a good qualitative agreement with theoretical predictions. The demonstrated optical hyperbolic-to-metallic phase transition is a unique physical phenomenon with the potential to enable advanced control of light-matter interactions.« less
Central Configurations of the Curved N-Body Problem
NASA Astrophysics Data System (ADS)
Diacu, Florin; Stoica, Cristina; Zhu, Shuqiang
2018-06-01
We consider the N-body problem of celestial mechanics in spaces of nonzero constant curvature. Using the concept of effective potential, we define the moment of inertia for systems moving on spheres and hyperbolic spheres and show that we can recover the classical definition in the Euclidean case. After proving some criteria for the existence of relative equilibria, we find a natural way to define the concept of central configuration in curved spaces using the moment of inertia and show that our definition is formally similar to the one that governs the classical problem. We prove that, for any given point masses on spheres and hyperbolic spheres, central configurations always exist. We end with results concerning the number of central configurations that lie on the same geodesic, thus extending the celebrated theorem of Moulton to hyperbolic spheres and pointing out that it has no straightforward generalization to spheres, where the count gets complicated even for two bodies.
Exact moduli space metrics for hyperbolic vortex polygons
DOE Office of Scientific and Technical Information (OSTI.GOV)
Krusch, S.; Speight, J. M.
2010-02-15
Exact metrics on some totally geodesic submanifolds of the moduli space of static hyperbolic N-vortices are derived. These submanifolds, denoted as {sigma}{sub n,m}, are spaces of C{sub n}-invariant vortex configurations with n single vortices at the vertices of a regular polygon and m=N-n coincident vortices at the polygon's center. The geometric properties of {sigma}{sub n,m} are investigated, and it is found that {sigma}{sub n,n-1} is isometric to the hyperbolic plane of curvature -(3{pi}n){sup -1}. The geodesic flow on {sigma}{sub n,m} and a geometrically natural variant of geodesic flow recently proposed by Collie and Tong ['The dynamics of Chern-Simons vortices', Phys.more » Rev. D Part. Fields Gravit. Cosmol. 78, 065013 (2008);e-print arXiv:hep-th/0805.0602] are analyzed in detail.« less
The limit space of a Cauchy sequence of globally hyperbolic spacetimes
NASA Astrophysics Data System (ADS)
Noldus, Johan
2004-02-01
In this second paper, I construct a limit space of a Cauchy sequence of globally hyperbolic spacetimes. In section 2, I work gradually towards a construction of the limit space. I prove that the limit space is unique up to isometry. I also show that, in general, the limit space has quite complicated causal behaviour. This work prepares the final paper in which I shall study in more detail properties of the limit space and the moduli space of (compact) globally hyperbolic spacetimes (cobordisms). As a fait divers, I give in this paper a suitable definition of dimension of a Lorentz space in agreement with the one given by Gromov in the Riemannian case. The difference in philosophy between Lorentzian and Riemannian geometry is one of relativism versus absolutism. In the latter every point distinguishes itself while in the former in general two elements get distinguished by a third, different, one.
NASA Astrophysics Data System (ADS)
Berberyan, A. Kh; Garakov, V. G.
2018-04-01
A large number of works have been devoted to investigation of the influence of the piezoelectric properties of a material on the propagation of elastic waves [1–3]. Herewith, the quasi-static piezoelasticity model was mainly used. In the problem of an electromagnetic wave reflection from an elastic medium with piezoelectric properties, it is necessary to consider hyperbolic equations [4].
Fabrication of ф 160 mm convex hyperbolic mirror for remote sensing instrument
NASA Astrophysics Data System (ADS)
Kuo, Ching-Hsiang; Yu, Zong-Ru; Ho, Cheng-Fang; Hsu, Wei-Yao; Chen, Fong-Zhi
2012-10-01
In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the In this study, efficient polishing processes with inspection procedures for a large convex hyperbolic mirror of Cassegrain optical system are presented. The polishing process combines the techniques of conventional lapping and CNC polishing. We apply the conventional spherical lapping process to quickly remove the sub-surface damage (SSD) layer caused by grinding process and to get the accurate radius of best-fit sphere (BFS) of aspheric surface with fine surface texture simultaneously. Thus the removed material for aspherization process can be minimized and the polishing time for SSD removal can also be reduced substantially. The inspection procedure was carried out by using phase shift interferometer with CGH and stitching technique. To acquire the real surface form error of each sub aperture, the wavefront errors of the reference flat and CGH flat due to gravity effect of the vertical setup are calibrated in advance. Subsequently, we stitch 10 calibrated sub-aperture surface form errors to establish the whole irregularity of the mirror in 160 mm diameter for correction polishing. The final result of the Fabrication of ф160 mm Convex Hyperbolic Mirror for Remote Sensing Instrument160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.160 mm convex hyperbolic mirror is 0.15 μm PV and 17.9 nm RMS.
Numerical Simulation of Two Phase Flows
NASA Technical Reports Server (NTRS)
Liou, Meng-Sing
2001-01-01
Two phase flows can be found in broad situations in nature, biology, and industry devices and can involve diverse and complex mechanisms. While the physical models may be specific for certain situations, the mathematical formulation and numerical treatment for solving the governing equations can be general. Hence, we will require information concerning each individual phase as needed in a single phase. but also the interactions between them. These interaction terms, however, pose additional numerical challenges because they are beyond the basis that we use to construct modern numerical schemes, namely the hyperbolicity of equations. Moreover, due to disparate differences in time scales, fluid compressibility and nonlinearity become acute, further complicating the numerical procedures. In this paper, we will show the ideas and procedure how the AUSM-family schemes are extended for solving two phase flows problems. Specifically, both phases are assumed in thermodynamic equilibrium, namely, the time scales involved in phase interactions are extremely short in comparison with those in fluid speeds and pressure fluctuations. Details of the numerical formulation and issues involved are discussed and the effectiveness of the method are demonstrated for several industrial examples.
Using hyperbolic Lagrangian coherent structures to investigate vortices in bioinspired fluid flows
Green, Melissa A.; Rowley, Clarence W.; Smits, Alexander J.
2010-01-01
We use direct Lyapunov exponents to identify Lagrangian coherent structures (LCSs) in a bioinspired fluid flow: the wakes of rigid pitching panels with a trapezoidal planform geometry chosen to model idealized fish caudal fins. When compared with commonly used Eulerian criteria, the Lagrangian method has previously exhibited the ability to define structure boundaries without relying on a preselected threshold. In addition, qualitative changes in the LCS have previously been shown to correspond to physical changes in the vortex structure. For this paper, digital particle image velocimetry experiments were performed to obtain the time-resolved velocity fields for Strouhal numbers of 0.17 and 0.27. A classic reverse von Kármán vortex street pattern was observed along the midspan of the near wake at low Strouhal number, but at higher Strouhal number the complexity of the wake increased downstream of the trailing edge. The spanwise vortices spread transversely across the wake and lose coherence, and this event was shown to correspond to a qualitative change in the LCS at the same time and location. PMID:20370300
Swimming & Propulsion in Viscoelastic Media
NASA Astrophysics Data System (ADS)
Arratia, Paulo
2012-02-01
Many microorganisms have evolved within complex fluids, which include soil, intestinal fluid, and mucus. The material properties or rheology of such fluids can strongly affect an organism's swimming behavior. A major challenge is to understand the mechanism of propulsion in media that exhibit both solid- and fluid-like behavior, such as viscoelastic fluids. In this talk, we present experiments that explore the swimming behavior of biological organisms and artificial particles in viscoelastic media. The organism is the nematode Caenorhabditis elegans, a roundworm widely used for biological research that swims by generating traveling waves along its body. Overall, we find that fluid elasticity hinders self-propulsion compared to Newtonian fluids due to the enhanced resistance to flow near hyperbolic points for viscoelastic fluids. As fluid elasticity increases, the nematode's propulsion speed decreases. These results are consistent with recent theoretical models for undulating sheets and cylinders. In order to gain further understanding on propulsion in viscoelastic media, we perform experiments with simple reciprocal artificial `swimmers' (magnetic dumbbell particles) in polymeric and micellar solutions. We find that self-propulsion is possible in viscoelastic media even if the motion is reciprocal.
Particle orbits in two-dimensional equilibrium models for the magnetotail
NASA Technical Reports Server (NTRS)
Karimabadi, H.; Pritchett, P. L.; Coroniti, F. V.
1990-01-01
Assuming that there exist an equilibrium state for the magnetotail, particle orbits are investigated in two-dimensional kinetic equilibrium models for the magnetotail. Particle orbits in the equilibrium field are compared with those calculated earlier with one-dimensional models, where the main component of the magnetic field (Bx) was approximated as either a hyperbolic tangent or a linear function of z with the normal field (Bz) assumed to be a constant. It was found that the particle orbits calculated with the two types of models are significantly different, mainly due to the neglect of the variation of Bx with x in the one-dimensional fields.
An Elastic Plastic Contact Model with Strain Hardening for the LAMMPS Granular Package
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kuhr, Bryan; Brake, Matthew Robert; Lechman, Jeremy B.
2015-03-01
The following details the implementation of an analytical elastic plastic contact model with strain hardening for normal im pacts into the LAMMPS granular package. The model assumes that, upon impact, the co llision has a period of elastic loading followed by a period of mixed elastic plas tic loading, with contributions to each mechanism estimated by a hyperbolic seca nt weight function. This function is implemented in the LAMMPS source code as the pair style gran/ep/history. Preliminary tests, simulating the pouring of pure nickel spheres, showed the elastic/plastic model took 1.66x as long as similar runs using gran/hertz/history.
On the topology of the inflaton field in minimal supergravity models
NASA Astrophysics Data System (ADS)
Ferrara, Sergio; Fré, Pietro; Sorin, Alexander S.
2014-04-01
We consider global issues in minimal supergravity models where a single field inflaton potential emerges. In a particular case we reproduce the Starobinsky model and its description dual to a certain formulation of R + R 2 supergravity. For definiteness we confine our analysis to spaces at constant curvature, either vanishing or negative. Five distinct models arise, two flat models with respectively a quadratic and a quartic potential and three based on the space where its distinct isometries, elliptic, hyperbolic and parabolic are gauged. Fayet-Iliopoulos terms are introduced in a geometric way and they turn out to be a crucial ingredient in order to describe the de Sitter inflationary phase of the Starobinsky model.
Sigma models with negative curvature
Alonso, Rodrigo; Jenkins, Elizabeth E.; Manohar, Aneesh V.
2016-03-16
Here, we construct Higgs Effective Field Theory (HEFT) based on the scalar manifold Hn, which is a hyperbolic space of constant negative curvature. The Lagrangian has a non-compact O(n, 1) global symmetry group, but it gives a unitary theory as long as only a compact subgroup of the global symmetry is gauged. Whether the HEFT manifold has positive or negative curvature can be tested by measuring the S-parameter, and the cross sections for longitudinal gauge boson and Higgs boson scattering, since the curvature (including its sign) determines deviations from Standard Model values.
1988-01-01
of this abstract got a spontaneous development of a transverse wave-strucure in a shock-oriented coordinate system without per- turbing the global ...We develop a formal asymptotic theory for hyperbolic conservation laws with large amplitude, rapidly varying initial data [1]. For small times, the...HUnefelderstr. 1-S, D-2800 Bremen 1 Today the most accurate and cost effective industrial codes used for aircraft design are based on full potential equations
Bofill, Josep Maria; Quapp, Wolfgang; Caballero, Marc
2012-12-11
The potential energy surface (PES) of a molecule can be decomposed into equipotential hypersurfaces. We show in this article that the hypersurfaces are the wave fronts of a certain hyperbolic partial differential equation, a wave equation. It is connected with the gradient lines, or the steepest descent, or the steepest ascent lines of the PES. The energy seen as a reaction coordinate plays the central role in this treatment.
Fast wavelet based algorithms for linear evolution equations
NASA Technical Reports Server (NTRS)
Engquist, Bjorn; Osher, Stanley; Zhong, Sifen
1992-01-01
A class was devised of fast wavelet based algorithms for linear evolution equations whose coefficients are time independent. The method draws on the work of Beylkin, Coifman, and Rokhlin which they applied to general Calderon-Zygmund type integral operators. A modification of their idea is applied to linear hyperbolic and parabolic equations, with spatially varying coefficients. A significant speedup over standard methods is obtained when applied to hyperbolic equations in one space dimension and parabolic equations in multidimensions.
NASA Technical Reports Server (NTRS)
Goldberg, M.; Tadmor, E.
1985-01-01
New convenient stability criteria are provided in this paper for a large class of finite difference approximations to initial-boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter plane x or = 0, t or = 0. Using the new criteria, stability is easily established for numerous combinations of well known basic schemes and boundary conditins, thus generalizing many special cases studied in recent literature.
NASA Technical Reports Server (NTRS)
Goldberg, M.; Tadmor, E.
1983-01-01
New convenient stability criteria are provided in this paper for a large class of finite difference approximations to initial-boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter plane x or = 0, t or = 0. Using the new criteria, stability is easily established for numerous combinations of well known basic schemes and boundary conditions, thus generalizing many special cases studied in recent literature.
Four-mirror extreme ultraviolet (EUV) lithography projection system
Cohen, Simon J; Jeong, Hwan J; Shafer, David R
2000-01-01
The invention is directed to a four-mirror catoptric projection system for extreme ultraviolet (EUV) lithography to transfer a pattern from a reflective reticle to a wafer substrate. In order along the light path followed by light from the reticle to the wafer substrate, the system includes a dominantly hyperbolic convex mirror, a dominantly elliptical concave mirror, spherical convex mirror, and spherical concave mirror. The reticle and wafer substrate are positioned along the system's optical axis on opposite sides of the mirrors. The hyperbolic and elliptical mirrors are positioned on the same side of the system's optical axis as the reticle, and are relatively large in diameter as they are positioned on the high magnification side of the system. The hyperbolic and elliptical mirrors are relatively far off the optical axis and hence they have significant aspherical components in their curvatures. The convex spherical mirror is positioned on the optical axis, and has a substantially or perfectly spherical shape. The spherical concave mirror is positioned substantially on the opposite side of the optical axis from the hyperbolic and elliptical mirrors. Because it is positioned off-axis to a degree, the spherical concave mirror has some asphericity to counter aberrations. The spherical concave mirror forms a relatively large, uniform field on the wafer substrate. The mirrors can be tilted or decentered slightly to achieve further increase in the field size.
NASA Astrophysics Data System (ADS)
Kelly, Priscilla; Zhang, Wenrui; Liu, Mingzhao; Kuznetsova, Lyuba
2017-08-01
Transparent conductive oxide materials have shown unique optical properties, such as negative refraction, hyperbolic dispersion, and epsilon-near-zero dispersion. In particular, aluminum-doped zinc oxide (Al:ZnO) has shown the most promising results over traditionally used noble metals. Pulsed layer deposition is a popular technique due to its fast and controlled growth rate, as well as the stoichiometric target-to-substrate material transfer. But, since it uses large and inhomogeneous kinetic energy, samples could be prone to macro- and microscopic defects. In this work, we investigate multilayered samples of Al:ZnO/ZnO grown by pulsed laser deposition with the goal of developing a low-loss metamaterial with hyperbolic dispersion. Different fabrication conditions, such as Al:ZnO/ZnO ratio, the thickness of an individual layer, different substrates, and deposition temperatures, were investigated. Results of the ellipsometry analysis, based on fitting spectroscopy data using the Berreman formalism, show that the hyperbolic dispersion transition (Re ɛ∥>0, Re ɛ⊥< 0) is achieved at λc=1868 nm wavelength (Im (ɛ⊥) 0.03) for samples with 1:4 Al:ZnO/ZnO deposition ratio. The fitted dielectric functions for samples with various parameters show that a lower deposition temperature leads to a shorter transition wavelength.
Magnetostatic modes in ferromagnetic samples with inhomogeneous internal fields
NASA Astrophysics Data System (ADS)
Arias, Rodrigo
2015-03-01
Magnetostatic modes in ferromagnetic samples are very well characterized and understood in samples with uniform internal magnetic fields. More recently interest has shifted to the study of magnetization modes in ferromagnetic samples with inhomogeneous internal fields. The present work shows that under the magnetostatic approximation and for samples of arbitrary shape and/or arbitrary inhomogeneous internal magnetic fields the modes can be classified as elliptic or hyperbolic, and their associated frequency spectrum can be delimited. This results from the analysis of the character of the second order partial differential equation for the magnetostatic potential under these general conditions. In general, a sample with an inhomogeneous internal field and at a given frequency, may have regions of elliptic and hyperbolic character separated by a boundary. In the elliptic regions the magnetostatic modes have a smooth monotonic character (generally decaying form the surfaces (a ``tunneling'' behavior)) and in hyperbolic regions an oscillatory wave-like character. A simple local criterion distinguishes hyperbolic from elliptic regions: the sign of a susceptibility parameter. This study shows that one may control to some extent magnetostatic modes via external fields or geometry. R.E.A. acknowledges Financiamiento Basal para Centros Cientificos y Tecnologicos de Excelencia under Project No. FB 0807 (Chile), Grant No. ICM P10-061-F by Fondo de Innovacion para la Competitividad-MINECON, and Proyecto Fondecyt 1130192.
Development and application of unified algorithms for problems in computational science
NASA Technical Reports Server (NTRS)
Shankar, Vijaya; Chakravarthy, Sukumar
1987-01-01
A framework is presented for developing computationally unified numerical algorithms for solving nonlinear equations that arise in modeling various problems in mathematical physics. The concept of computational unification is an attempt to encompass efficient solution procedures for computing various nonlinear phenomena that may occur in a given problem. For example, in Computational Fluid Dynamics (CFD), a unified algorithm will be one that allows for solutions to subsonic (elliptic), transonic (mixed elliptic-hyperbolic), and supersonic (hyperbolic) flows for both steady and unsteady problems. The objectives are: development of superior unified algorithms emphasizing accuracy and efficiency aspects; development of codes based on selected algorithms leading to validation; application of mature codes to realistic problems; and extension/application of CFD-based algorithms to problems in other areas of mathematical physics. The ultimate objective is to achieve integration of multidisciplinary technologies to enhance synergism in the design process through computational simulation. Specific unified algorithms for a hierarchy of gas dynamics equations and their applications to two other areas: electromagnetic scattering, and laser-materials interaction accounting for melting.
NASA Astrophysics Data System (ADS)
Qayyum, Sajid; Hayat, Tasawar; Shehzad, Sabir Ali; Alsaedi, Ahmed
2018-03-01
This article concentrates on the magnetohydrodynamic (MHD) stagnation point flow of tangent hyperbolic nanofluid in the presence of buoyancy forces. Flow analysis caused due to stretching surface. Characteristics of heat transfer are examined under the influence of thermal radiation and heat generation/absorption. Newtonian conditions for heat and mass transfer are employed. Nanofluid model includes Brownian motion and thermophoresis. The governing nonlinear partial differential systems of the problem are transformed into a systems of nonlinear ordinary differential equations through appropriate variables. Impact of embedded parameters on the velocity, temperature and nanoparticle concentration fields are presented graphically. Numerical computations are made to obtain the values of skin friction coefficient, local Nusselt and Sherwood numbers. It is concluded that velocity field enhances in the frame of mixed convection parameter while reverse situation is observed due to power law index. Effect of Brownian motion parameter on the temperature and heat transfer rate is quite reverse. Moreover impact of solutal conjugate parameter on the concentration and local Sherwood number is quite similar.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Muñoz-Andrade, Juan D., E-mail: jdma@correo.azc.uam.mx
2013-12-16
By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation processmore » between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.« less
NASA Astrophysics Data System (ADS)
Muñoz-Andrade, Juan D.
2013-12-01
By systematic study the mapping of polycrystalline flow of sheet 304 austenitic stainless steel (ASS) during tension test at constant crosshead velocity at room temperature was obtained. The main results establish that the trajectory of crystals in the polycrystalline spatially extended system (PCSES), during irreversible deformation process obey a hyperbolic motion. Where, the ratio between the expansion velocity of the field and the velocity of the field source is not constant and the field lines of such trajectory of crystals become curved, this accelerated motion is called a hyperbolic motion. Such behavior is assisted by dislocations dynamics and self-accommodation process between crystals in the PCSES. Furthermore, by applying the quantum mechanics and relativistic model proposed by Muñoz-Andrade, the activation energy for polycrystalline flow during the tension test of 304 ASS was calculated for each instant in a global form. In conclusion was established that the mapping of the polycrystalline flow is fundamental to describe in an integral way the phenomenology and mechanics of irreversible deformation processes.
Investigating the use of a rational Runge Kutta method for transport modelling
NASA Astrophysics Data System (ADS)
Dougherty, David E.
An unconditionally stable explicit time integrator has recently been developed for parabolic systems of equations. This rational Runge Kutta (RRK) method, proposed by Wambecq 1 and Hairer 2, has been applied by Liu et al.3 to linear heat conduction problems in a time-partitioned solution context. An important practical question is whether the method has application for the solution of (nearly) hyperbolic equations as well. In this paper the RRK method is applied to a nonlinear heat conduction problem, the advection-diffusion equation, and the hyperbolic Buckley-Leverett problem. The method is, indeed, found to be unconditionally stable for the linear heat conduction problem and performs satisfactorily for the nonlinear heat flow case. A heuristic limitation on the utility of RRK for the advection-diffusion equation arises in the Courant number; for the second-order accurate one-step two-stage RRK method, a limiting Courant number of 2 applies. First order upwinding is not as effective when used with RRK as with Euler one-step methods. The method is found to perform poorly for the Buckley-Leverett problem.
Displacement Vector Measurement Using 2D Modulation by Virtual Hyperbolic Beam Forming
NASA Astrophysics Data System (ADS)
Kondo, Kengo; Yamakawa, Makoto; Shiina, Tsuyoshi
For the purpose of diagnosing ischemic heart disease by detection of malfunction area and cancer tumor by detection of hard area, 3-D tissue motion must be correctly evaluated. So far various methods of measuring multidimensional displacement have been developed. Most of present techniques are restricted to one-dimensional measurement of tissue displacement such as myocardial stain-rate imaging. Although lateral modulation method enables us to attain high-accuracy measurement of lateral displacement as well as axial direction by generating lateral oscillating RF signals, the method causes distorted RF far from center of aperture. As a result, the method is not suited to sector scan which is used for myocardial examination. We propose a method to solve the problem by using 2-D modulation with the virtual hyperbolic beam forming and detection of 2-D displacement vector. The feasibilities of the proposed method were evaluated by numerically simulating the left ventricle short-axis imaging of cylindrical myocardial model. The volume strain image obtained by the proposed method clearly depicted the hard infarction area where conventional multi-beam Doppler imaging could not.
NASA Astrophysics Data System (ADS)
Salha, A. A.; Stevens, D. K.
2013-12-01
This study presents numerical application and statistical development of Stream Water Quality Modeling (SWQM) as a tool to investigate, manage, and research the transport and fate of water pollutants in Lower Bear River, Box elder County, Utah. The concerned segment under study is the Bear River starting from Cutler Dam to its confluence with the Malad River (Subbasin HUC 16010204). Water quality problems arise primarily from high phosphorus and total suspended sediment concentrations that were caused by five permitted point source discharges and complex network of canals and ducts of varying sizes and carrying capacities that transport water (for farming and agriculture uses) from Bear River and then back to it. Utah Department of Environmental Quality (DEQ) has designated the entire reach of the Bear River between Cutler Reservoir and Great Salt Lake as impaired. Stream water quality modeling (SWQM) requires specification of an appropriate model structure and process formulation according to nature of study area and purpose of investigation. The current model is i) one dimensional (1D), ii) numerical, iii) unsteady, iv) mechanistic, v) dynamic, and vi) spatial (distributed). The basic principle during the study is using mass balance equations and numerical methods (Fickian advection-dispersion approach) for solving the related partial differential equations. Model error decreases and sensitivity increases as a model becomes more complex, as such: i) uncertainty (in parameters, data input and model structure), and ii) model complexity, will be under investigation. Watershed data (water quality parameters together with stream flow, seasonal variations, surrounding landscape, stream temperature, and points/nonpoint sources) were obtained majorly using the HydroDesktop which is a free and open source GIS enabled desktop application to find, download, visualize, and analyze time series of water and climate data registered with the CUAHSI Hydrologic Information System. Processing, assessment of validity, and distribution of time-series data was explored using the GNU R language (statistical computing and graphics environment). Physical, chemical, and biological processes equations were written in FORTRAN codes (High Performance Fortran) in order to compute and solve their hyperbolic and parabolic complexities. Post analysis of results conducted using GNU R language. High performance computing (HPC) will be introduced to expedite solving complex computational processes using parallel programming. It is expected that the model will assess nonpoint sources and specific point sources data to understand pollutants' causes, transfer, dispersion, and concentration in different locations of Bear River. Investigation the impact of reduction/removal in non-point nutrient loading to Bear River water quality management could be addressed. Keywords: computer modeling; numerical solutions; sensitivity analysis; uncertainty analysis; ecosystem processes; high Performance computing; water quality.
Bifurcations and degenerate periodic points in a three dimensional chaotic fluid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L. D., E-mail: lachlan.smith@monash.edu; CSIRO Mineral Resources, Clayton, Victoria 3800; Rudman, M.
2016-05-15
Analysis of the periodic points of a conservative periodic dynamical system uncovers the basic kinematic structure of the transport dynamics and identifies regions of local stability or chaos. While elliptic and hyperbolic points typically govern such behaviour in 3D systems, degenerate (parabolic) points also play an important role. These points represent a bifurcation in local stability and Lagrangian topology. In this study, we consider the ramifications of the two types of degenerate periodic points that occur in a model 3D fluid flow. (1) Period-tripling bifurcations occur when the local rotation angle associated with elliptic points is reversed, creating a reversalmore » in the orientation of associated Lagrangian structures. Even though a single unstable point is created, the bifurcation in local stability has a large influence on local transport and the global arrangement of manifolds as the unstable degenerate point has three stable and three unstable directions, similar to hyperbolic points, and occurs at the intersection of three hyperbolic periodic lines. The presence of period-tripling bifurcation points indicates regions of both chaos and confinement, with the extent of each depending on the nature of the associated manifold intersections. (2) The second type of bifurcation occurs when periodic lines become tangent to local or global invariant surfaces. This bifurcation creates both saddle–centre bifurcations which can create both chaotic and stable regions, and period-doubling bifurcations which are a common route to chaos in 2D systems. We provide conditions for the occurrence of these tangent bifurcations in 3D conservative systems, as well as constraints on the possible types of tangent bifurcation that can occur based on topological considerations.« less
NASA Astrophysics Data System (ADS)
Dumbser, Michael; Guercilena, Federico; Köppel, Sven; Rezzolla, Luciano; Zanotti, Olindo
2018-04-01
We present a strongly hyperbolic first-order formulation of the Einstein equations based on the conformal and covariant Z4 system (CCZ4) with constraint-violation damping, which we refer to as FO-CCZ4. As CCZ4, this formulation combines the advantages of a conformal and traceless formulation, with the suppression of constraint violations given by the damping terms, but being first order in time and space, it is particularly suited for a discontinuous Galerkin (DG) implementation. The strongly hyperbolic first-order formulation has been obtained by making careful use of first and second-order ordering constraints. A proof of strong hyperbolicity is given for a selected choice of standard gauges via an analytical computation of the entire eigenstructure of the FO-CCZ4 system. The resulting governing partial differential equations system is written in nonconservative form and requires the evolution of 58 unknowns. A key feature of our formulation is that the first-order CCZ4 system decouples into a set of pure ordinary differential equations and a reduced hyperbolic system of partial differential equations that contains only linearly degenerate fields. We implement FO-CCZ4 in a high-order path-conservative arbitrary-high-order-method-using-derivatives (ADER)-DG scheme with adaptive mesh refinement and local time-stepping, supplemented with a third-order ADER-WENO subcell finite-volume limiter in order to deal with singularities arising with black holes. We validate the correctness of the formulation through a series of standard tests in vacuum, performed in one, two and three spatial dimensions, and also present preliminary results on the evolution of binary black-hole systems. To the best of our knowledge, these are the first successful three-dimensional simulations of moving punctures carried out with high-order DG schemes using a first-order formulation of the Einstein equations.
NASA Astrophysics Data System (ADS)
Ivan, L.; De Sterck, H.; Susanto, A.; Groth, C. P. T.
2015-02-01
A fourth-order accurate finite-volume scheme for hyperbolic conservation laws on three-dimensional (3D) cubed-sphere grids is described. The approach is based on a central essentially non-oscillatory (CENO) finite-volume method that was recently introduced for two-dimensional compressible flows and is extended to 3D geometries with structured hexahedral grids. Cubed-sphere grids feature hexahedral cells with nonplanar cell surfaces, which are handled with high-order accuracy using trilinear geometry representations in the proposed approach. Varying stencil sizes and slope discontinuities in grid lines occur at the boundaries and corners of the six sectors of the cubed-sphere grid where the grid topology is unstructured, and these difficulties are handled naturally with high-order accuracy by the multidimensional least-squares based 3D CENO reconstruction with overdetermined stencils. A rotation-based mechanism is introduced to automatically select appropriate smaller stencils at degenerate block boundaries, where fewer ghost cells are available and the grid topology changes, requiring stencils to be modified. Combining these building blocks results in a finite-volume discretization for conservation laws on 3D cubed-sphere grids that is uniformly high-order accurate in all three grid directions. While solution-adaptivity is natural in the multi-block setting of our code, high-order accurate adaptive refinement on cubed-sphere grids is not pursued in this paper. The 3D CENO scheme is an accurate and robust solution method for hyperbolic conservation laws on general hexahedral grids that is attractive because it is inherently multidimensional by employing a K-exact overdetermined reconstruction scheme, and it avoids the complexity of considering multiple non-central stencil configurations that characterizes traditional ENO schemes. Extensive numerical tests demonstrate fourth-order convergence for stationary and time-dependent Euler and magnetohydrodynamic flows on cubed-sphere grids, and robustness against spurious oscillations at 3D shocks. Performance tests illustrate efficiency gains that can be potentially achieved using fourth-order schemes as compared to second-order methods for the same error level. Applications on extended cubed-sphere grids incorporating a seventh root block that discretizes the interior of the inner sphere demonstrate the versatility of the spatial discretization method.
Antimonotonicity, Chaos and Multiple Attractors in a Novel Autonomous Jerk Circuit
NASA Astrophysics Data System (ADS)
Kengne, J.; Negou, A. Nguomkam; Njitacke, Z. T.
2017-06-01
We perform a systematic analysis of a system consisting of a novel jerk circuit obtained by replacing the single semiconductor diode of the original jerk circuit described in [Sprott, 2011a] with a pair of semiconductor diodes connected in antiparallel. The model is described by a continuous time three-dimensional autonomous system with hyperbolic sine nonlinearity, and may be viewed as a control system with nonlinear velocity feedback. The stability of the (unique) fixed point, the local bifurcations, and the discrete symmetries of the model equations are discussed. The complex behavior of the system is categorized in terms of its parameters by using bifurcation diagrams, Lyapunov exponents, time series, Poincaré sections, and basins of attraction. Antimonotonicity, period doubling bifurcation, symmetry restoring crises, chaos, and coexisting bifurcations are reported. More interestingly, one of the key contributions of this work is the finding of various regions in the parameters’ space in which the proposed (“elegant”) jerk circuit experiences the unusual phenomenon of multiple competing attractors (i.e. coexistence of four disconnected periodic and chaotic attractors). The basins of attraction of various coexisting attractors display complexity (i.e. fractal basins boundaries), thus suggesting possible jumps between coexisting attractors in experiment. Results of theoretical analyses are perfectly traced by laboratory experimental measurements. To the best of the authors’ knowledge, the jerk circuit/system introduced in this work represents the simplest electrical circuit (only a quadruple op amplifier chip without any analog multiplier chip) reported to date capable of four disconnected periodic and chaotic attractors for the same parameters setting.
Nonlinear Dynamics and Quantum Transport in Small Systems
2012-02-22
2.3 Nonlinear wave and chaos in optical metamaterials 2.3.1 Transient chaos in optical metamaterials We investigated the dynamics of light rays in two...equations can be modeled by a set of ordinary differential equations for light rays . We found that transient chaotic dynamics, hyperbolic or nonhyperbolic...are common in optical metamaterial systems. Due to the analogy between light- ray dynamics in metamaterials and the motion of light and matter as
NASA Astrophysics Data System (ADS)
Kudinov, I. V.; Kudinov, V. A.
2013-09-01
A mathematical model of elastic vibrations of an incompressible liquid has been developed based on the hypothesis on the finite velocity of propagation of field potentials in this liquid. A hyperbolic equation of vibrations of such a liquid with account of its relaxation properties has been obtained. An exact analytical solution of this equation has been found and investigated in detail.
Time-dependent boundary conditions for hyperbolic systems. II
NASA Technical Reports Server (NTRS)
Thompson, Kevin W.
1990-01-01
A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.
On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the hyperbolicity of the Euler equation system and the first principle of plane (simple) wave propagation. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in ID, 2D and 3D space are illustrated to demonstrate its robustness in practical computations.
Asymptotic of the Solutions of Hyperbolic Equations with a Skew-Symmetric Perturbation
NASA Astrophysics Data System (ADS)
Gallagher, Isabelle
1998-12-01
Using methods introduced by S. Schochet inJ. Differential Equations114(1994), 476-512, we compute the first term of an asymptotic expansion of the solutions of hyperbolic equations perturbated by a skew-symmetric linear operator. That result is first applied to two systems describing the motion of geophysic fluids: the rotating Euler equations and the primitive system of the quasigeostrophic equations. Finally in the last part, we study the slightly compressible Euler equations by application of that same result.
ERIC Educational Resources Information Center
Mohanty, R. K.; Arora, Urvashi
2002-01-01
Three level-implicit finite difference methods of order four are discussed for the numerical solution of the mildly quasi-linear second-order hyperbolic equation A(x, t, u)u[subscript xx] + 2B(x, t, u)u[subscript xt] + C(x, t, u)u[subscript tt] = f(x, t, u, u[subscript x], u[subscript t]), 0 less than x less than 1, t greater than 0 subject to…
Time-dependent boundary conditions for hyperbolic systems. II
NASA Astrophysics Data System (ADS)
Thompson, Kevin W.
1990-08-01
A general boundary condition formalism is developed for all types of boundary conditions to which hyperbolic systems are subject; the formalism makes possible a 'cookbook' approach to boundary conditions, by means of which novel boundary 'recipes' may be derived and previously devised ones may be consulted as required. Numerous useful conditions are derived for such CFD problems as subsonic and supersonic inflows and outflows, nonreflecting boundaries, force-free boundaries, constant pressure boundaries, and constant mass flux. Attention is given to the computation and integration of time derivatives.
On a Non-Reflecting Boundary Condition for Hyperbolic Conservation Laws
NASA Technical Reports Server (NTRS)
Loh, Ching Y.
2003-01-01
A non-reflecting boundary condition (NRBC) for practical computations in fluid dynamics and aeroacoustics is presented. The technique is based on the first principle of non-reflecting, plane wave propagation and the hyperbolicity of the Euler equation system. The NRBC is simple and effective, provided the numerical scheme maintains locally a C(sup 1) continuous solution at the boundary. Several numerical examples in 1D, 2D, and 3D space are illustrated to demonstrate its robustness in practical computations.
Hyperbolically Patterned 3D Graphene Metamaterial with Negative Poisson's Ratio and Superelasticity.
Zhang, Qiangqiang; Xu, Xiang; Lin, Dong; Chen, Wenli; Xiong, Guoping; Yu, Yikang; Fisher, Timothy S; Li, Hui
2016-03-16
A hyperbolically patterned 3D graphene metamaterial (GM) with negative Poisson's ratio and superelasticity is highlighted. It is synthesized by a modified hydrothermal approach and subsequent oriented freeze-casting strategy. GM presents a tunable Poisson's ratio by adjusting the structural porosity, macroscopic aspect ratio (L/D), and freeze-casting conditions. Such a GM suggests promising applications as soft actuators, sensors, robust shock absorbers, and environmental remediation. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
2011-03-01
An e?ective Nonlinear Schr?dinger Equation for propagation is derived for optical dark and power law spatial solitons at the subwavelength with a... soliton amplitude profiles are displayed as a hyperbolic secant function and hold there profile at short distances on the order of centimeters. Dark ...spatial solitons are similar but have hyperbolic tangent type profiles. Dark spatial solitons were first observed by Jerominek in 1985 and Belanger and
NASA Technical Reports Server (NTRS)
Goldberg, M.; Tadmor, E.
1986-01-01
The purpose of this paper is to achieve more versatile, convenient stability criteria for a wide class of finite-difference approximations to initial boundary value problems associated with the hyperbolic system u sub t = au sub x + Bu + f in the quarter-plane x greater than or equal to 0, t greater than or equal to 0. With these criteria, stability is easily established for a large number of examples, thus incorporating and generalizing many of the cases studied in recent literature.
NASA Technical Reports Server (NTRS)
Wiegert, P. A.
2011-01-01
Interstellar meteoroids, solid particles arriving from outside our Solar System, are not easily distinguished from local meteoroids. A velocity above the escape velocity of the Sun is often used as an indicator of a possible interstellar origin. We demonstrate that the gravitational slingshot effect, resulting from the passage of local meteoroid near a planet, can produce hyperbolic meteoroids at the Earth s orbit with excess velocities comparable to those expected of interstellar meteoroids.
NASA Technical Reports Server (NTRS)
Dey, C.; Dey, S. K.
1983-01-01
An explicit finite difference scheme consisting of a predictor and a corrector has been developed and applied to solve some hyperbolic partial differential equations (PDEs). The corrector is a convex-type function which is applied at each time level and at each mesh point. It consists of a parameter which may be estimated such that for larger time steps the algorithm should remain stable and generate a fast speed of convergence to the steady-state solution. Some examples have been given.
On the superconvergence of Galerkin methods for hyperbolic IBVP
NASA Technical Reports Server (NTRS)
Gottlieb, David; Gustafsson, Bertil; Olsson, Pelle; Strand, BO
1993-01-01
Finite element Galerkin methods for periodic first order hyperbolic equations exhibit superconvergence on uniform grids at the nodes, i.e., there is an error estimate 0(h(sup 2r)) instead of the expected approximation order 0(h(sup r)). It will be shown that no matter how the approximating subspace S(sup h) is chosen, the superconvergence property is lost if there are characteristics leaving the domain. The implications of this result when constructing compact implicit difference schemes is also discussed.
Membrane hydrophone phase characteristics through nonlinear acoustics measurements.
Bloomfield, Philip E; Gandhi, Gaurav; Lewin, Peter A
2011-11-01
This work considers the need for both the amplitude and phase to fully characterize polyvinylidene fluoride (PVDF) membrane hydrophones and presents a comprehensive discussion of the nonlinear acoustic measurements utilized to extract the phase information and the experimental results taken with two widely used PVDF membrane hydrophones up to 100 MHz. A semi-empirical computer model utilized the hyperbolic propagation operator to predict the nonlinear pressure field and provide the complex frequency response of the corresponding source transducer. The PVDF hydrophone phase characteristics, which were obtained directly from the difference between the computer-modeled nonlinear field simulation and the corresponding measured harmonic frequency phase values, agree to within 10% with the phase predictions obtained from receive-transfer-function simulations based on software modeling of the membrane's physical properties. Cable loading effects and membrane hydrophone resonances were distinguished and identified through a series of impedance measurements and receive transfer function simulations on the hydrophones including their hard-wired coaxial cables. The results obtained indicate that the PVDF membrane hydrophone's phase versus frequency plot exhibits oscillations about a monotonically decreasing line. The maxima and minima inflection point slopes occur at the membrane thickness resonances and antiresonances, respectively. A cable resonance was seen at 100 MHz for the hydrophone with a 1-m cable attached, but not seen for the hydrophone with a shorter 0.65-m cable.
Tunable infrared hyperbolic metamaterials with periodic indium-tin-oxide nanorods
Guo, Peijun; Chang, Robert P. H.; Schaller, Richard D.
2017-07-10
Hyperbolic metamaterials (HMMs) are artificially engineered optical media that have been used for light confinement, excited state decay rate engineering, and subwavelength imaging, due to their highly anisotropic permittivity and with it the capability of supporting high- k modes. HMMs in the infrared range can be conceived for additional applications such as free space communication, thermal engineering, and molecular sensing. Here, we demonstrate infrared HMMs comprised of periodic indium-tin-oxide nanorod arrays (ITO-NRAs). We show that the ITO-NRA based HMMs exhibit a stationary epsilon-near-pole resonance in the near-infrared regime that is insensitive to the filling ratio, and a highly tunable epsilon-near-zeromore » resonance in the mid-infrared range depending on the array periodicity. Experimental results are supported by finite-element simulations, in which the ITO-NRAs are treated both explicitly and as an effective hyperbolic media. Lastly, our work presents a low-loss HMM platform with favorable spectral tunability in the infrared range.« less
Tuning subwavelength-structured focus in the hyperbolic metamaterials
NASA Astrophysics Data System (ADS)
Pan, Rong; Tang, Zhixiang; Pan, Jin; Peng, Runwu
2016-10-01
In this paper, we have systematically investigated light propagating in the hyperbolic metamaterials (HMMs) covered by a subwavelength grating. Based on the equal-frequency contour analyses, light in the HMM is predicted to propagate along a defined direction because of its hyperbolic dispersion, which is similar to the self-collimating effects in photonic crystals. By using the finite-difference time-domain, numerical simulations demonstrate a subwavelength bright spot at the intersection of the adjacent directional beams. Different from the images in homogeneous media, the magnetic fields and electric fields at the spot are layered, especially for the electric fields Ez that is polarized to the propagating direction, i.e., the layer normal direction. Moreover, the Ez is hollow in the layer plane and is stronger than the other electric field component Ex. Therefore, the whole electric field is structured and its pattern can be tuned by the HMM's effective anisotropic electromagnetic parameters. Our results may be useful for generating subwavelength structured light.
Evolution of finite-amplitude localized vortices in planar homogeneous shear flows
NASA Astrophysics Data System (ADS)
Karp, Michael; Shukhman, Ilia G.; Cohen, Jacob
2017-02-01
An analytical-based method is utilized to follow the evolution of localized initially Gaussian disturbances in flows with homogeneous shear, in which the base velocity components are at most linear functions of the coordinates, including hyperbolic, elliptic, and simple shear. Coherent structures, including counterrotating vortex pairs (CVPs) and hairpin vortices, are formed for the cases where the streamlines of the base flow are open (hyperbolic and simple shear). For hyperbolic base flows, the dominance of shear over rotation leads to elongation of the localized disturbance along the outlet asymptote and formation of CVPs. For simple shear CVPs are formed from linear and nonlinear disturbances, whereas hairpins are observed only for highly nonlinear disturbances. For elliptic base flows CVPs, hairpins and vortex loops form initially, however they do not last and break into various vortical structures that spread in the spanwise direction. The effect of the disturbance's initial amplitude and orientation is examined and the optimal orientation achieving maximal growth is identified.
A single-phase elastic hyperbolic metamaterial with anisotropic mass density.
Zhu, R; Chen, Y Y; Wang, Y S; Hu, G K; Huang, G L
2016-06-01
Wave propagation can be manipulated at a deep subwavelength scale through the locally resonant metamaterial that possesses unusual effective material properties. Hyperlens due to metamaterial's anomalous anisotropy can lead to superior-resolution imaging. In this paper, a single-phase elastic metamaterial with strongly anisotropic effective mass density has been designed. The proposed metamaterial utilizes the independently adjustable locally resonant motions of the subwavelength-scale microstructures along the two principal directions. High anisotropy in the effective mass densities obtained by the numerical-based effective medium theory can be found and even have opposite signs. For practical applications, shunted piezoelectric elements are introduced into the microstructure to tailor the effective mass density in a broad frequency range. Finally, to validate the design, an elastic hyperlens made of the single-phase hyperbolic metamaterial is proposed with subwavelength longitudinal wave imaging illustrated numerically. The proposed single-phase hyperbolic metamaterial has many promising applications for high resolution damage imaging in nondestructive evaluation and structural health monitoring.
Determination of Extensional Rheological Properties by Hyperbolic Contraction Flow
NASA Astrophysics Data System (ADS)
Stading, Mats
2008-07-01
Extensional rheologyy is important for diverse applications such as processing of viscoelastic fluids, mouthfeel of semi-solid foods, cell mitosis and baking, and is also a useful tool for testing the applicability of constitutive equations. Despite the documented influence of extensional rheological properties, it is seldom measured due to experimental difficulties. There are only commercial equipments available for low-viscosity fluids by Capillary Breakup and for polymer melts by Meissner-type winding of ribbons around cylinders. Both methods have limited applicability for medium-viscosity fluids such as foods and other biological systems. Contraction flows are extensively studied and a new test method has been developed based on contraction flow through a hyperbolic nozzle. The method is suitable for medium-viscosity fluids and has been validated by comparison to results from Filament Stretching and Capillary Breakup. The hyperbolic contraction flow method has been used to characterize food and medical systems, distinguish between different products having equal shear behavior, quantify ropy mouth feel and to predict foaming behavior of biopolymers.
NASA Astrophysics Data System (ADS)
Startsev, Sergey Ya.
2017-05-01
The paper is devoted to hyperbolic (generally speaking, non-Lagrangian and nonlinear) partial differential systems possessing a full set of differential operators that map any function of one independent variable into a symmetry of the corresponding system. We demonstrate that a system has the above property if and only if this system admits a full set of formal integrals (i.e., differential operators which map symmetries into integrals of the system). As a consequence, such systems possess both direct and inverse Noether operators (in the terminology of a work by B. Fuchssteiner and A.S. Fokas who have used these terms for operators that map cosymmetries into symmetries and perform transformations in the opposite direction). Systems admitting Noether operators are not exhausted by Euler-Lagrange systems and the systems with formal integrals. In particular, a hyperbolic system admits an inverse Noether operator if a differential substitution maps this system into a system possessing an inverse Noether operator.
General phase transition models for vehicular traffic with point constraints on the flow
NASA Astrophysics Data System (ADS)
Dal Santo, E.; Rosini, M. D.; Dymski, N.; Benyahia, M.
2017-12-01
We generalize the phase transition model studied in [R. Colombo. Hyperbolic phase transition in traffic flow.\\ SIAM J.\\ Appl.\\ Math., 63(2):708-721, 2002], that describes the evolution of vehicular traffic along a one-lane road. Two different phases are taken into account, according to whether the traffic is low or heavy. The model is given by a scalar conservation law in the \\emph{free-flow} phase and by a system of two conservation laws in the \\emph{congested} phase. In particular, we study the resulting Riemann problems in the case a local point constraint on the flux of the solutions is enforced.
Characterizing omega-limit sets which are closed orbits
NASA Astrophysics Data System (ADS)
Bautista, S.; Morales, C.
Let X be a vector field in a compact n-manifold M, n⩾2. Given Σ⊂M we say that q∈M satisfies (P) Σ if the closure of the positive orbit of X through q does not intersect Σ, but, however, there is an open interval I with q as a boundary point such that every positive orbit through I intersects Σ. Among those q having saddle-type hyperbolic omega-limit set ω(q) the ones with ω(q) being a closed orbit satisfy (P) Σ for some closed subset Σ. The converse is true for n=2 but not for n⩾4. Here we prove the converse for n=3. Moreover, we prove for n=3 that if ω(q) is a singular-hyperbolic set [C. Morales, M. Pacifico, E. Pujals, On C robust singular transitive sets for three-dimensional flows, C. R. Acad. Sci. Paris Sér. I 26 (1998) 81-86], [C. Morales, M. Pacifico, E. Pujals, Robust transitive singular sets for 3-flows are partially hyperbolic attractors or repellers, Ann. of Math. (2) 160 (2) (2004) 375-432], then ω(q) is a closed orbit if and only if q satisfies (P) Σ for some Σ closed. This result improves [S. Bautista, Sobre conjuntos hiperbólicos-singulares (On singular-hyperbolic sets), thesis Uiversidade Federal do Rio de Janeiro, 2005 (in Portuguese)] and [C. Morales, M. Pacifico, Mixing attractors for 3-flows, Nonlinearity 14 (2001) 359-378].
Analysis of 2D hyperbolic metamaterial dispersion by elementary excitation coupling
NASA Astrophysics Data System (ADS)
Vaianella, Fabio; Maes, Bjorn
2016-04-01
Hyperbolic metamaterials are examined for many applications thanks to the large density of states and extreme confinement of light they provide. For classical hyperbolic metal/dielectric multilayer structures, it was demon- strated that the properties originate from a specific coupling of the surface plasmon polaritons between the metal/dielectric interfaces. We show a similar analysis for 2D hyperbolic arrays of square (or rectangular) silver nanorods in a TiO2 host. In this case the properties derive from a specific coupling of the plasmons carried by the corners of the nanorods. The dispersion can be seen as the coupling of single rods for a through-metal connection of the corners, as the coupling of structures made of four semi-infinite metallic blocks separated by dielectric for a through-dielectric connection, or as the coupling of two semi-infinite rods for a through-metal and through-dielectric situation. For arrays of small square nanorods the elementary structure that explains the dispersion of the array is the single rod, and for arrays of large square nanorods it is four metallic corners. The medium size square nanorod case is more complicated, because the elementary structure can be one of the three basic designs, depending on the frequency and symmetry of the modes. Finally, we show that for arrays of rectangular nanorods the dispersion is explained by coupling of the two coupled rod structure. This work opens the way for a better understanding of a wide class of metamaterials via their elementary excitations.
Entanglement entropy and the colored Jones polynomial
NASA Astrophysics Data System (ADS)
Balasubramanian, Vijay; DeCross, Matthew; Fliss, Jackson; Kar, Arjun; Leigh, Robert G.; Parrikar, Onkar
2018-05-01
We study the multi-party entanglement structure of states in Chern-Simons theory created by performing the path integral on 3-manifolds with linked torus boundaries, called link complements. For gauge group SU(2), the wavefunctions of these states (in a particular basis) are the colored Jones polynomials of the corresponding links. We first review the case of U(1) Chern-Simons theory where these are stabilizer states, a fact we use to re-derive an explicit formula for the entanglement entropy across a general link bipartition. We then present the following results for SU(2) Chern-Simons theory: (i) The entanglement entropy for a bipartition of a link gives a lower bound on the genus of surfaces in the ambient S 3 separating the two sublinks. (ii) All torus links (namely, links which can be drawn on the surface of a torus) have a GHZ-like entanglement structure — i.e., partial traces leave a separable state. By contrast, through explicit computation, we test in many examples that hyperbolic links (namely, links whose complements admit hyperbolic structures) have W-like entanglement — i.e., partial traces leave a non-separable state. (iii) Finally, we consider hyperbolic links in the complexified SL(2,C) Chern-Simons theory, which is closely related to 3d Einstein gravity with a negative cosmological constant. In the limit of small Newton constant, we discuss how the entanglement structure is controlled by the Neumann-Zagier potential on the moduli space of hyperbolic structures on the link complement.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Christov, Ivan C.; Lueptow, Richard M.; Ottino, Julio M.
We study three-dimensional (3D) chaotic dynamics through an analysis of transport in a granular flow in a half-full spherical tumbler rotated sequentially about two orthogonal axes (a bi-axial “blinking” tumbler). The flow is essentially quasi-two-dimensional in any vertical slice of the sphere during rotation about a single axis, and we provide an explicit exact solution to the model in this case. Hence, the cross-sectional flow can be represented by a twist map, allowing us to express the 3D flow as a linked twist map (LTM). We prove that if the rates of rotation about each axis are equal, then (inmore » the absence of stochasticity) particle trajectories are restricted to two-dimensional (2D) surfaces consisting of a portion of a hemispherical shell closed by a “cap''; if the rotation rates are unequal, then particles can leave the surface they start on and traverse a volume of the tumbler. The period-one structures of the governing LTM are examined in detail: analytical expressions are provided for the location of period-one curves, their extent into the bulk of the granular material, and their dependence on the protocol parameters (rates and durations of rotations). Exploiting the restriction of trajectories to 2D surfaces in the case of equal rotation rates about the axes, a method is proposed for identifying and constructing 3D Kolmogorov--Arnold--Moser (KAM) tubes around the normally elliptic period-one curves. The invariant manifold structure arising from the normally hyperbolic period-one curves is also examined. When the motion is restricted to 2D surfaces, the structure of manifolds of the hyperbolic points in the bulk differs from that corresponding to hyperbolic points in the flowing layer. Each is reminiscent of a template provided by a non-integrable perturbation to a Hamiltonian system, though the governing LTM is not. This highlights the novel 3D chaotic behaviors observed in this model dynamical system.« less
Christov, Ivan C.; Lueptow, Richard M.; Ottino, Julio M.; ...
2014-05-22
We study three-dimensional (3D) chaotic dynamics through an analysis of transport in a granular flow in a half-full spherical tumbler rotated sequentially about two orthogonal axes (a bi-axial “blinking” tumbler). The flow is essentially quasi-two-dimensional in any vertical slice of the sphere during rotation about a single axis, and we provide an explicit exact solution to the model in this case. Hence, the cross-sectional flow can be represented by a twist map, allowing us to express the 3D flow as a linked twist map (LTM). We prove that if the rates of rotation about each axis are equal, then (inmore » the absence of stochasticity) particle trajectories are restricted to two-dimensional (2D) surfaces consisting of a portion of a hemispherical shell closed by a “cap''; if the rotation rates are unequal, then particles can leave the surface they start on and traverse a volume of the tumbler. The period-one structures of the governing LTM are examined in detail: analytical expressions are provided for the location of period-one curves, their extent into the bulk of the granular material, and their dependence on the protocol parameters (rates and durations of rotations). Exploiting the restriction of trajectories to 2D surfaces in the case of equal rotation rates about the axes, a method is proposed for identifying and constructing 3D Kolmogorov--Arnold--Moser (KAM) tubes around the normally elliptic period-one curves. The invariant manifold structure arising from the normally hyperbolic period-one curves is also examined. When the motion is restricted to 2D surfaces, the structure of manifolds of the hyperbolic points in the bulk differs from that corresponding to hyperbolic points in the flowing layer. Each is reminiscent of a template provided by a non-integrable perturbation to a Hamiltonian system, though the governing LTM is not. This highlights the novel 3D chaotic behaviors observed in this model dynamical system.« less
An asymptotic membrane model for wrinkling of very thin films
NASA Astrophysics Data System (ADS)
Battista, Antonio; Hamdouni, Aziz; Millet, Olivier
2018-05-01
In this work, a formal deduction of a two-dimensional membrane theory, similar to Landau-Lifshitz model, is performed via an asymptotic development of the weak formulation of the three-dimensional equations of elasticity. Some interesting aspects of the deduced model are investigated, in particular the property of obtaining a hyperbolic equation for the out-of-plane displacement under a certain class of boundary conditions and loads. Some simple cases are analyzed to show the relevant aspects of the model and the phenomenology that can be addressed. In particular, it is shown how this mathematical formulation is capable to describe instabilities well known as wrinkling, often observed for the buckling of very thin membranes.
NASA Astrophysics Data System (ADS)
Ham, J.-Y.; Lee, J.
2016-09-01
We calculate the Chern-Simons invariants of twist-knot orbifolds using the Schläfli formula for the generalized Chern-Simons function on the family of twist knot cone-manifold structures. Following the general instruction of Hilden, Lozano, and Montesinos-Amilibia, we here present concrete formulae and calculations. We use the Pythagorean Theorem, which was used by Ham, Mednykh and Petrov, to relate the complex length of the longitude and the complex distance between the two axes fixed by two generators. As an application, we calculate the Chern-Simons invariants of cyclic coverings of the hyperbolic twist-knot orbifolds. We also derive some interesting results. The explicit formulae of the A-polynomials of twist knots are obtained from the complex distance polynomials. Hence the edge polynomials corresponding to the edges of the Newton polygons of the A-polynomials of twist knots can be obtained. In particular, the number of boundary components of every incompressible surface corresponding to slope -4n+2 turns out to be 2. Bibliography: 39 titles.
Liouville action as path-integral complexity: from continuous tensor networks to AdS/CFT
NASA Astrophysics Data System (ADS)
Caputa, Pawel; Kundu, Nilay; Miyaji, Masamichi; Takayanagi, Tadashi; Watanabe, Kento
2017-11-01
We propose an optimization procedure for Euclidean path-integrals that evaluate CFT wave functionals in arbitrary dimensions. The optimization is performed by minimizing certain functional, which can be interpreted as a measure of computational complexity, with respect to background metrics for the path-integrals. In two dimensional CFTs, this functional is given by the Liouville action. We also formulate the optimization for higher dimensional CFTs and, in various examples, find that the optimized hyperbolic metrics coincide with the time slices of expected gravity duals. Moreover, if we optimize a reduced density matrix, the geometry becomes two copies of the entanglement wedge and reproduces the holographic entanglement entropy. Our approach resembles a continuous tensor network renormalization and provides a concrete realization of the proposed interpretation of AdS/CFT as tensor networks. The present paper is an extended version of our earlier report arXiv:1703.00456 and includes many new results such as evaluations of complexity functionals, energy stress tensor, higher dimensional extensions and time evolutions of thermofield double states.
A spline-based parameter estimation technique for static models of elastic structures
NASA Technical Reports Server (NTRS)
Dutt, P.; Taasan, S.
1986-01-01
The problem of identifying the spatially varying coefficient of elasticity using an observed solution to the forward problem is considered. Under appropriate conditions this problem can be treated as a first order hyperbolic equation in the unknown coefficient. Some continuous dependence results are developed for this problem and a spline-based technique is proposed for approximating the unknown coefficient, based on these results. The convergence of the numerical scheme is established and error estimates obtained.
Optimal Combining Data for Improving Ocean Modeling
2008-09-30
hyperbolic or elliptic) and on the Hurst exponent characterizing the dynamics type (local or non-local). 3. Fusion data for estimating RD. Theoretical...1) RD vs time and different values of Hurst exponent h = 0.1 (black), h = 1 (red), h = 2 (blue) γ = 0.1,Ω = 0, 2) Same for γ = 0.1,Ω = 2 ). 3...accurate estimating the upper ocean velocity field and mixing characteristics such as relative dispersion and finite size Lyapunov exponent , (2
1985-06-01
relative to reactant and with the free energy of reaction. The correlation equations were derived from hyperbolic paraboloid models of the energy...obtained the differen- tial equations which define the best dividing surfaces of this type for both microcanonical and canonical cases. We have...is now generalized to non-uniform reaction systems. For kinetics-diffusion problems the equations of the generalized PAM were (similar in form to
Optical nonlinearities in plasmonic metamaterials (Conference Presentation)
NASA Astrophysics Data System (ADS)
Zayats, Anatoly V.
2016-04-01
Metals exhibit strong and fast nonlinearities making metallic, plasmonic, structures very promising for ultrafast all-optical applications at low light intensities. Combining metallic nanostructures in metamaterials provides additional functionalities via prospect of precise engineering of spectral response and dispersion. From this point of view, hyperbolic metamaterials, in particular those based on plasmonic nanorod arrays, provide wealth of exciting possibilities in nonlinear optics offering designed linear and nonlinear properties, polarization control, spontaneous emission control and many others. Experiments and modeling have already demonstrated very strong Kerr-nonlinear response and its ultrafast recovery due to the nonlocal nature of the plasmonic mode of the metamaterial, so that small changes in the permittivity of the metallic component under the excitation modify the nonlocal response that in turn leads to strong changes of the metamaterial transmission. In this talk, we will discuss experimental studies and numerical modeling of second- and third-order nonlinear optical processes in hyperbolic metamaterials based on metallic nanorods and other plasmonic systems where coupling between the resonances plays important role in defining nonlinear response. Second-harmonic generation and ultrafast Kerr-type nonlinearity originating from metallic component of the metamaterial will be considered, including nonlinear magneto-optical effects. Nonlinear optical response of stand-alone as well as integrated metamaterial components will be presented. Some of the examples to be discussed include nonlinear polarization control, nonlinear metamaterial integrated in silicon photonic circuitry and second-harmonic generation, including magneto-optical effects.
Foster, Tobias
2011-09-01
A novel analytical and continuous density distribution function with a widely variable shape is reported and used to derive an analytical scattering form factor that allows us to universally describe the scattering from particles with the radial density profile of homogeneous spheres, shells, or core-shell particles. Composed by the sum of two Fermi-Dirac distribution functions, the shape of the density profile can be altered continuously from step-like via Gaussian-like or parabolic to asymptotically hyperbolic by varying a single "shape parameter", d. Using this density profile, the scattering form factor can be calculated numerically. An analytical form factor can be derived using an approximate expression for the original Fermi-Dirac distribution function. This approximation is accurate for sufficiently small rescaled shape parameters, d/R (R being the particle radius), up to values of d/R ≈ 0.1, and thus captures step-like, Gaussian-like, and parabolic as well as asymptotically hyperbolic profile shapes. It is expected that this form factor is particularly useful in a model-dependent analysis of small-angle scattering data since the applied continuous and analytical function for the particle density profile can be compared directly with the density profile extracted from the data by model-free approaches like the generalized inverse Fourier transform method. © 2011 American Chemical Society
There was movement that was stationary, for the four-velocity had passed around
NASA Astrophysics Data System (ADS)
Roukema, Boudewijn F.
2010-05-01
Is the Doppler interpretation of galaxy redshifts in a Friedmann-Lemaître-Robertson-Walker (FLRW) model valid in the context of the approach to comoving spatial sections pioneered by de Sitter, Friedmann, Lemaître and Robertson, i.e. according to which the three-manifold of comoving space is characterized by both its curvature and topology? Holonomy transformations for flat, spherical and hyperbolic FLRW spatial sections are proposed. By quotienting a simply connected FLRW spatial section by an appropriate group of holonomy transformations, the Doppler interpretation in a non-expanding Minkowski space-time, obtained via four-velocity parallel transport along a photon path, is found to imply that an inertial observer is receding from herself at a speed greater than zero, implying contradictory world lines. The contradiction in the multiply connected case occurs for arbitrary redshifts in the flat and spherical cases, and for certain large redshifts in the hyperbolic case. The link between the Doppler interpretation of redshifts and cosmic topology can be understood physically as the link between parallel transport along a photon path and the fact that the comoving spatial geodesic corresponding to a photon's path can be a closed loop in an FLRW model of any curvature. Closed comoving spatial loops are fundamental to cosmic topology. With apologies to Andrew Barton `Banjo' Paterson. E-mail: boud@astro.uni.torun.pl
Fourth order difference methods for hyperbolic IBVP's
NASA Technical Reports Server (NTRS)
Gustafsson, Bertil; Olsson, Pelle
1994-01-01
Fourth order difference approximations of initial-boundary value problems for hyperbolic partial differential equations are considered. We use the method of lines approach with both explicit and compact implicit difference operators in space. The explicit operator satisfies an energy estimate leading to strict stability. For the implicit operator we develop boundary conditions and give a complete proof of strong stability using the Laplace transform technique. We also present numerical experiments for the linear advection equation and Burgers' equation with discontinuities in the solution or in its derivative. The first equation is used for modeling contact discontinuities in fluid dynamics, the second one for modeling shocks and rarefaction waves. The time discretization is done with a third order Runge-Kutta TVD method. For solutions with discontinuities in the solution itself we add a filter based on second order viscosity. In case of the non-linear Burger's equation we use a flux splitting technique that results in an energy estimate for certain different approximations, in which case also an entropy condition is fulfilled. In particular we shall demonstrate that the unsplit conservative form produces a non-physical shock instead of the physically correct rarefaction wave. In the numerical experiments we compare our fourth order methods with a standard second order one and with a third order TVD-method. The results show that the fourth order methods are the only ones that give good results for all the considered test problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ori, Amos
2010-11-15
Callan, Giddings, Harvey, and Strominger (CGHS) previously introduced a two-dimensional semiclassical model of gravity coupled to a dilaton and to matter fields. Their model yields a system of field equations which may describe the formation of a black hole in gravitational collapse as well as its subsequent evaporation. Here we present an approximate analytical solution to the semiclassical CGHS field equations. This solution is constructed using the recently introduced formalism of flux-conserving hyperbolic systems. We also explore the asymptotic behavior at the horizon of the evaporating black hole.
Application of the Lienard-Wiechert solution to a lightning return stroke model
NASA Technical Reports Server (NTRS)
Meneghini, R.
1983-01-01
The electric and magnetic fields associated with the lightning return stroke are expressed as a convolution of the current waveform shape and the fields generated by a moving charge of amplitude one (i.e., the Lienard-Wiechert solution for a unit charge). The representation can be used to compute the fields produced by a current waveform of non-uniform velocity that propagates along a filament of arbitrary, but finite, curvature. To study numerically the effects of linear charge acceleration and channel curvature two simple channel models are used: the linear and the hyperbolic.
Application of the Lienard-Wiechert solution to a lightning return stroke model
NASA Technical Reports Server (NTRS)
Meneghini, R.
1984-01-01
The electric and magnetic fields associated with the lightning return stroke are expressed as a convolution of the current waveform shape and the fields generated by a moving charge of amplitude one (i.e., the Lienard-Wiechert solution for a unit charge). The representation can be used to compute the fields produced by a current waveform of non-uniform velocity that propagates along a filament of arbitrary, but finite, curvature. To study numerically the effects of linear charge acceleration and channel curvature two simple channel models are used: the linear and the hyperbolic.