Sample records for complex impact craters

  1. Modeling Low Velocity Impacts: Predicting Crater Depth on Pluto

    NASA Astrophysics Data System (ADS)

    Bray, V. J.; Schenk, P.

    2014-12-01

    The New Horizons mission is due to fly-by the Pluto system in Summer 2015 and provides the first opportunity to image the Pluto surface in detail, allowing both the appearance and number of its crater population to be studied for the first time. Bray and Schenk (2014) combined previous cratering studies and numerical modeling of the impact process to predict crater morphology on Pluto based on current understanding of Pluto's composition, structure and surrounding impactor population. Predictions of how the low mean impact velocity (~2km/s) of the Pluto system will influence crater formation is a complex issue. Observations of secondary cratering (low velocity, high angle) and laboratory experiments of impact at low velocity are at odds regarding how velocity controls depth-diameter ratios: Observations of secondary craters show that these low velocity craters are shallower than would be expected for a hyper-velocity primary. Conversely, gas gun work has shown that relative crater depth increases as impact velocity decreases. We have investigated the influence of impact velocity further with iSALE hydrocode modeling of comet impact into Pluto. With increasing impact velocity, a projectile will produce wider and deeper craters. The depth-diameter ratio (d/D) however has a more complex progression with increasing impact velocity: impacts faster than 2km/s lead to smaller d/D ratios as impact velocity increases, in agreement with gas-gun studies. However, decreasing impact velocity from 2km/s to 300 m/s produced smaller d/D as impact velocity was decreased. This suggests that on Pluto the deepest craters would be produced by ~ 2km/s impacts, with shallower craters produced by velocities either side of this critical point. Further simulations to investigate whether this effect is connected to the sound speed of the target material are ongoing. The complex relationship between impact velocity and crater depth for impacts occurring between 300m/s and 10 km/s suggests that there might be a larger range of 'pristine' crater depths on Pluto than on bodies with higher mean impact velocity. This might affect our ability to define a pristine crater depth as a starting point for crater infill and relaxation studies.

  2. Morphometry of impact craters on Mercury from MESSENGER altimetry and imaging

    NASA Astrophysics Data System (ADS)

    Susorney, Hannah C. M.; Barnouin, Olivier S.; Ernst, Carolyn M.; Johnson, Catherine L.

    2016-06-01

    Data acquired by the Mercury Laser Altimeter and the Mercury Dual Imaging System on the MESSENGER spacecraft in orbit about Mercury provide a means to measure the geometry of many of the impact craters in Mercury's northern hemisphere in detail for the first time. The combination of topographic and imaging data permit a systematic evaluation of impact crater morphometry on Mercury, a new calculation of the diameter Dt at which craters transition with increasing diameter from simple to complex forms, and an exploration of the role of target properties and impact velocity on final crater size and shape. Measurements of impact crater depth on Mercury confirm results from previous studies, with the exception that the depths of large complex craters are typically shallower at a given diameter than reported from Mariner 10 data. Secondary craters on Mercury are generally shallower than primary craters of the same diameter. No significant differences are observed between the depths of craters within heavily cratered terrain and those of craters within smooth plains. The morphological attributes of craters that reflect the transition from simple to complex craters do not appear at the same diameter; instead flat floors first appear with increasing diameter in craters at the smallest diameters, followed with increasing diameter by reduced crater depth and rim height, and then collapse and terracing of crater walls. Differences reported by others in Dt between Mercury and Mars (despite the similar surface gravitational acceleration on the two bodies) are confirmed in this study. The variations in Dt between Mercury and Mars cannot be adequately attributed to differences in either surface properties or mean projectile velocity.

  3. Why do complex impact craters have elevated crater rims?

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Sturm, Sebastian; Krueger, Tim

    2014-05-01

    Most of the complex impact craters on the Moon and on Mars have elevated crater rims like their simple counterparts. The raised rim of simple craters is the result of (i) the deposition of a coherent proximal ejecta blanket at the edge of the transient cavity (overturned flap) and (ii) a structural uplift of the pre-impact surface near the transient cavity rim during the excavation stage of cratering [1]. The latter occurs either by plastic thickening or localized buckling of target rocks, as well as by the emplacement of interthrust wedges [2] or by the injection of dike material. Ejecta and the structural uplift contribute equally to the total elevation of simple crater rims. The cause of elevated crater rims of large complex craters [3] is less obvious, but still, the rim height scales with the final crater diameter. Depending on crater size, gravity, and target rheology, the final crater rim of complex craters can be situated up to 1.5-2.0 transient crater radii distance from the crater center. Here the thickness of the ejecta blanket is only a fraction of that occurring at the rim of simple craters, e.g. [4], and thus cannot account for a strong elevation. Likewise, plastic thickening including dike injection of the underlying target may not play a significant role at this distance any more. We started to systematically investigate the structural uplift and ejecta thickness along the rim of complex impact craters to understand the cause of their elevation. Our studies of two lunar craters (Bessel, 16 km diameter and Euler, 28 km diameter) [5] and one unnamed complex martian crater (16 km diameter) [6] showed that the structural uplift at the final crater rim makes 56-67% of the total rim elevation while the ejecta thickness contributes 33-44%. Thus with increasing distance from the transient cavity rim, the structural uplift seems to dominate. As dike injection and plastic thickening are unlikely at such a distance from the transient cavity, we propose that reverse faulting induced by radially outward directed maximum stresses during the excavation flow may be responsible for the elevation of complex crater rims. This hypothesis is tested at terrestrial craters whose apparent crater rims are often confined by circumferential faults [7]. References:[1] Shoemaker, E. M. (1963) The Solar System, 4, 301-336. [2] Poelchau M.H. et al. (2009), JGR, 114, E01006. [3] Settle, M., and Head, J.W., (1977), Icarus, 31, 123. [4] McGetchin, T. R., et al., (1973), EPSL, 20, 226.[5] Krüger T. et al. (2014), LPSC 45, #1834. [6] Sturm, S. et al. (2014), LPSC 45, 1801. [7] Turtle, E. et al. (2005), GSA-SP. 384, 1.

  4. The scaling of complex craters

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1985-01-01

    The empirical relation between the transient crater diameter (Dg) and final crater diameter (Dr) of complex craters and basins is estimated using cumulative terrace widths, central uplift diameters, continuous ejecta radii, and transient crater reconstructions determined from lunar and terrestrial impact structures. The ratio Dg/Dr is a power law function of Dr, decreasing uniformly from unity at the diameter of the simple-complex crater morphology transition to about 0.5 for large multiring basins like Imbrium on the moon. The empirical constants in the Dg/Dr relation are interpreted physically to mean that the position of the final rim relative to the transient crater, and hence the extent of collapse, is controlled or greatly influenced by the properties of the zone of dissociated material produced by the impact shock. The continuity of the Dg/Dr relation over the entire spectrum of morphologic types from complex craters to multiring basins implies that the rims of all these structures form in the same tectonic environment despite morphologic differences.

  5. The Calvin impact crater and its associated oil production, Cass County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milstein, R.L.

    1996-01-01

    The Calvin impact crater is an isolated, nearly circular subsurface structure of Late Ordovician age in southwestern Michigan. The crater is defined by 110 oil and gas test wells, has a diameter of 6.2 km, and consists of a central dome exhibiting 415 m of structural uplift, an annular depression, and an encircling anticlinal rim. Exploration and development of three Devonian oil fields associated wit this structure provide all available subsurface data. All oil production is from the Middle Devonian Traverse Limestone, with the exception of one well producing from the Middle Devonian Sylvania Sandstone. This study models the grossmore » morphology of the Calvin structure using multiple tools and compares the results to known impact craters. Combined results of reflection seismic, gravity, magnetic, and resistivity data, as well as organized relationships between stratigraphic displacement and structural diameters observed in complex impact craters, suggest the Calvin structure is morphologically similar to recognized complex impact craters in sedimentary targets. In addition, individual quartz grains recovered from the Calvin structure exhibit decorated shock lamellae, Boehm lamellae, rhombohederal cleavage, and radiating concussion fractures. Based on the available data, I conclude the Calvin structure is a buried complex impact crater and that the trapping and reservoir characteristics of the associated Calvin 20, Juno Lake, and Calvin 28 oil fields are resultant of the craters morphology.« less

  6. The Calvin impact crater and its associated oil production, Cass County, Michigan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Milstein, R.L.

    1996-12-31

    The Calvin impact crater is an isolated, nearly circular subsurface structure of Late Ordovician age in southwestern Michigan. The crater is defined by 110 oil and gas test wells, has a diameter of 6.2 km, and consists of a central dome exhibiting 415 m of structural uplift, an annular depression, and an encircling anticlinal rim. Exploration and development of three Devonian oil fields associated wit this structure provide all available subsurface data. All oil production is from the Middle Devonian Traverse Limestone, with the exception of one well producing from the Middle Devonian Sylvania Sandstone. This study models the grossmore » morphology of the Calvin structure using multiple tools and compares the results to known impact craters. Combined results of reflection seismic, gravity, magnetic, and resistivity data, as well as organized relationships between stratigraphic displacement and structural diameters observed in complex impact craters, suggest the Calvin structure is morphologically similar to recognized complex impact craters in sedimentary targets. In addition, individual quartz grains recovered from the Calvin structure exhibit decorated shock lamellae, Boehm lamellae, rhombohederal cleavage, and radiating concussion fractures. Based on the available data, I conclude the Calvin structure is a buried complex impact crater and that the trapping and reservoir characteristics of the associated Calvin 20, Juno Lake, and Calvin 28 oil fields are resultant of the craters morphology.« less

  7. Well-Preserved Impact Ejecta and Impact Melt-Rich Deposits in Terra Sabaea

    NASA Image and Video Library

    2017-01-12

    This image of a well-preserved unnamed elliptical crater in Terra Sabaea, is illustrative of the complexity of ejecta deposits forming as a by-product of the impact process that shapes much of the surface of Mars. Here we see a portion of the western ejecta deposits emanating from a 10-kilometer impact crater that occurs within the wall of a larger, 60-kilometer-wide crater. In the central part is a lobe-shaped portion of the ejecta blanket from the smaller crater. The crater is elliptical not because of an angled (oblique) impact, but because it occurred on the steep slopes of the wall of a larger crater. This caused it to be truncated along the slope and elongated perpendicular to the slope. As a result, any impact melt from the smaller crater would have preferentially deposited down slope and towards the floor of the larger crater (towards the west). Within this deposit, we can see fine-scale morphological features in the form of a dense network of small ridges and pits. These crater-related pitted materials are consistent with volatile-rich impact melt-bearing deposits seen in some of the best-preserved craters on Mars (e.g., Zumba, Zunil, etc.). These deposits formed immediately after the impact event, and their discernible presence relate to the preservation state of the crater. This image is an attempt to visualize the complex formation and emplacement history of these enigmatic deposits formed by this elliptical crater and to understand its degradation history. http://photojournal.jpl.nasa.gov/catalog/PIA13078

  8. Automatic Detection and Recognition of Craters Based on the Spectral Features of Lunar Rocks and Minerals

    NASA Astrophysics Data System (ADS)

    Ye, L.; Xu, X.; Luan, D.; Jiang, W.; Kang, Z.

    2017-07-01

    Crater-detection approaches can be divided into four categories: manual recognition, shape-profile fitting algorithms, machine-learning methods and geological information-based analysis using terrain and spectral data. The mainstream method is Shape-profile fitting algorithms. Many scholars throughout the world use the illumination gradient information to fit standard circles by least square method. Although this method has achieved good results, it is difficult to identify the craters with poor "visibility", complex structure and composition. Moreover, the accuracy of recognition is difficult to be improved due to the multiple solutions and noise interference. Aiming at the problem, we propose a method for the automatic extraction of impact craters based on spectral characteristics of the moon rocks and minerals: 1) Under the condition of sunlight, the impact craters are extracted from MI by condition matching and the positions as well as diameters of the craters are obtained. 2) Regolith is spilled while lunar is impacted and one of the elements of lunar regolith is iron. Therefore, incorrectly extracted impact craters can be removed by judging whether the crater contains "non iron" element. 3) Craters which are extracted correctly, are divided into two types: simple type and complex type according to their diameters. 4) Get the information of titanium and match the titanium distribution of the complex craters with normal distribution curve, then calculate the goodness of fit and set the threshold. The complex craters can be divided into two types: normal distribution curve type of titanium and non normal distribution curve type of titanium. We validated our proposed method with MI acquired by SELENE. Experimental results demonstrate that the proposed method has good performance in the test area.

  9. A global catalogue of Ceres impact craters ≥ 1 km and preliminary analysis

    NASA Astrophysics Data System (ADS)

    Gou, Sheng; Yue, Zongyu; Di, Kaichang; Liu, Zhaoqin

    2018-03-01

    The orbital data products of Ceres, including global LAMO image mosaic and global HAMO DTM with a resolution of 35 m/pixel and 135 m/pixel respectively, are utilized in this research to create a global catalogue of impact craters with diameter ≥ 1 km, and their morphometric parameters are calculated. Statistics shows: (1) There are 29,219 craters in the catalogue, and the craters have a various morphologies, e.g., polygonal crater, floor fractured crater, complex crater with central peak, etc.; (2) The identifiable smallest crater size is extended to 1 km and the crater numbers have been updated when compared with the crater catalogue (D ≥ 20 km) released by the Dawn Science Team; (3) The d/D ratios for fresh simple craters, obviously degraded simple crater and polygonal simple crater are 0.11 ± 0.04, 0.05 ± 0.04 and 0.14 ± 0.02 respectively. (4) The d/D ratios for non-polygonal complex crater and polygonal complex crater are 0.08 ± 0.04 and 0.09 ± 0.03. The global crater catalogue created in this work can be further applied to many other scientific researches, such as comparing d/D with other bodies, inferring subsurface properties, determining surface age, and estimating average erosion rate.

  10. Reading the Magnetic Patterns in Earth complex impact craters to detect similarities and cues from some Nectarian craters of the Moon

    NASA Astrophysics Data System (ADS)

    Isac, Anca; Mandea, Mioara; Purucker, Michael

    2013-04-01

    Most of the terrestrial impact craters have been obliterated by other terrestrial geological processes. Some examples however remain. Among them, complex craters such as Chicxculub, Vredefort, or the outsider Bangui structure (proposed but still unconfirmed as a result of an early Precambrian large impact) exert in the total magnetic field anomaly global map (WDMAM-B) circular shapes with positive anomalies which may suggest the circularity of a multiring structure. A similar pattern is observed from the newest available data (global spherical model of the internal magnetic field by Purucker and Nicolas, 2010) for some Nectarian basins as Moscovienese, Mendel-Rydberg or Crissium. As in the case of Earth's impacts, the positive anomalies appear near the basin center and inside the first ring, this distribution being strongly connected with crater-forming event. Detailed analysis of largest impact craters from Earth and Moon --using a forward modeling approach by means of the Equivalent Source Dipole method--evaluates the shock impact demagnetization effects--a magnetic low--by reducing the thickness of the pre-magnetized lithosphere due to the excavation process (the impact crater being shaped as a paraboloid of revolution). The magnetic signature of representative early Nectarian craters, Crissium, as well as Earth's complex craters, defined by stronger magnetic fields near the basin center and/or inside the first ring, might be a consequence of the shock remanent magnetization of the central uplift plus a thermoremanent magnetization of the impact melt in a steady magnetizing field generated by a former active dynamo. In this case, ESD method is not able to obtain a close fit of the forward model to the observation altitude map or model.

  11. Experimental Investigation of the Formation of Complex Craters

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Dörfler, M. A.; Schuster, B.; Wünnemman, K.; Kenkmann, T.

    2017-09-01

    The formation of complex impact craters is still poorly understood, because standard material models fail to explain the gravity-driven collapse at the observed size-range of a bowl-shaped transient crater into a flat-floored crater structure with a central peak or ring and terraced rim. To explain such a collapse the so-called Acoustic Fluidization (AF) model has been proposed. The AF assumes that heavily fractured target rocks surrounding the transient crater are temporarily softened by an acoustic field in the wake of an expanding shock wave generated upon impact. The AF has been successfully employed in numerous modeling studies of complex crater formation; however, there is no clear relationship between model parameters and observables. In this study, we present preliminary results of laboratory experiments aiming at relating the AF parameters to observables such as the grain size, average wave length of the acoustic field and its decay time τ relative to the crater formation time.

  12. Terrace width variations in complex Mercurian craters and the transient strength of cratered Mercurian and lunar crust

    NASA Technical Reports Server (NTRS)

    Leith, Andrew C.; Mckinnon, William B.

    1991-01-01

    The effective cohesion of the cratered region during crater collapse is determined via the widths of slump terraces of complex craters. Terrace widths are measured for complex craters on Mercury; these generally increase outward toward the rim for a given crater, and the width of the outermost major terrace is generally an increasing function of crater diameter. The terrace widths on Mercury and a gravity-driven slump model are used to estimate the strength of the cratered region immediately after impact (about 1-2 MPa). A comparison with the previous study of lunar complex craters by Pearce and Melosh (1986) indicates that the transient strength of cratered Mercurian crust is no greater than that of the moon. The strength estimates vary only slightly with the geometric model used to restore the outermost major terrace to its precollapse configuration and are consistent with independent strength estimates from the simple-to-complex crater depth/diameter transition.

  13. Venus - Complex Crater Dickinson in NE Atalanta Region

    NASA Image and Video Library

    1996-11-26

    This Magellan image is centered at 74.6 degrees north latitude and 177.3 east longitude, in the northeastern Atalanta Region of Venus. The image is approximately 185 kilometers (115 miles) wide at the base and shows Dickinson, an impact crater 69 kilometers (43 miles) in diameter. The crater is complex, characterized by a partial central ring and a floor flooded by radar-dark and radar-bright materials. Hummocky, rough-textured ejecta extend all around the crater, except to the west. The lack of ejecta to the west may indicate that the impactor that produced the crater was an oblique impact from the west. Extensive radar-bright flows that emanate from the crater's eastern walls may represent large volumes of impact melt, or they may be the result of volcanic material released from the subsurface during the cratering event. http://photojournal.jpl.nasa.gov/catalog/PIA00479

  14. The self-secondary crater population of the Hokusai crater on Mercury

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Prieur, Nils C.; Werner, Stephanie C.

    2016-07-01

    Whether or not self-secondaries dominate small crater populations on continuous ejecta deposits and floors of fresh impact craters has long been a controversy. This issue potentially affects the age determination technique using crater statistics. Here the self-secondary crater population on the continuous ejecta deposits of the Hokusai crater on Mercury is unambiguously recognized. Superposition relationships show that this population was emplaced after both the ballistic sedimentation of excavation flows and the subsequent veneering of impact melt, but it predated the settlement and solidification of melt pools on the crater floor. Fragments that formed self-secondaries were launched via impact spallation with large angles. Complex craters on the Moon, Mercury, and Mars probably all have formed self-secondaries populations. Dating young craters using crater statistics on their continuous ejecta deposits can be misleading. Impact melt pools are less affected by self-secondaries. Overprint by subsequent crater populations with time reduces the predominance of self-secondaries.

  15. Calculation of ejecta thickness and structural uplift for Lunar and Martian complex crater rims.

    NASA Astrophysics Data System (ADS)

    Krüger, Tim; Sturm, Sebastian; Kenkmann, Thomas

    2014-05-01

    Crater rims of simple and complex craters have an elevation that is formed during the excavation stage of crater formation. For simple crater rims it is believed that the elevation is due to the sum of two equal parts, the thickness of the most proximal impact ejecta blanket (overturned flap) plus the thickness that results from plastic deformation including injection [1, 2, 3]. We intend to measure and quantify the kinematics of mass movements, especially concerning the question why complex impact craters have elevated crater rims like simple craters and precisely constrain the ejecta thickness and structural uplift of Lunar and Martian crater rims to understand what the main contributor to the elevated rim is [4]. We investigated a pristine 16 km-diameter unnamed Martian complex crater (21.52°N, 184.35°) and the lunar complex craters Bessel (21.8°N, 17.9°E) 16 km in diameter and Euler (23.3°N, 29.2°W) 28 km in diameter [5, 6]. In the crater walls of these craters we found columnar lavas on Mars and basaltic layering on the Moon. We used the uppermost layers of these exposed outcrops along the crater wall to determine the dip of the target rocks (Mars) and to distinguish between the bedrock and the overlying ejecta. We precisely measured the structural uplift and ejecta thickness of these complex craters. The unnamed crater on Mars has a mean rim height of 375.75 m, with a structural uplift of 233.88 m (57.44%), exposed as columnar lavas and the superposing ejecta has a height of 141.87 m (43.56%). For the Lunar complex crater Euler the mean total rim height is 790 ± 100 m, with a minimal structural uplift of 475 ± 100 m (60 ± 10 %), exposed as basaltic layers [e.g., 7, 8] and a maximum ejecta thickness of 315 ± 100 m (40 ± 10%). The Lunar complex crater Bessel has a total rim height of 430 ± 15 m , with a minimal structural uplift of 290 ± 15 m (67 ± 3 %), exposed as basaltic layers and a maximum ejecta thickness of 140 ± 115 m (33 ± 3%). For the Martian crater, the calculated structural uplift has a value of 215.83 m [9]. For Euler and Bessel crater calculated values for the structural uplift are 310.76 m and 262.8 m, respectively [10]. The structural uplift of the crater rim only by dike injection and plastic deformation in the underlying target material seems unlikely at distances ~1 km beyond the transient crater cavity. Other mechanisms, like reverse faulting, beginning in the excavation stage of crater formation, could be responsible for additional structural uplift of the crater rim. Nevertheless, our results show that structural uplift is a more dominant effect than ejecta emplacement for complex impact craters. References: [1] Melosh H.J. (1989) Oxford monographs on geology and geophysics, 11, Impact cratering: a geologic process. [2] Poelchau M.H. et al. (2009) JGR, 114, E01006. [3] Shoemaker E. M. (1963) The Solar System, 4, 301-336. [4] Settle M., and Head J.W. (1977) Icarus, v. 31, p. 123. [5] Sturm, S. et al. (2014) LPSC 45, #1801. [6] Krüger T. et al. (2014) LPSC 45, #1834. [7] Hiesinger H. et al. (2002) GRL, 29. [8] Enns A.C. (2013) LPSC XLIV, #2751. [9] Steward S. T. and Valiant G. J. (2006) Meteoritics & Planet. Sci., 41, 1509-1537. [10] Pike R. J. (1974) EPSL, 23, 265-274. [11]Turtle, E. et al. (2005) GSA-SP. 384, 1.

  16. A depth versus diameter scaling relationship for the best-preserved melt-bearing complex craters on Mars

    NASA Astrophysics Data System (ADS)

    Tornabene, Livio L.; Watters, Wesley A.; Osinski, Gordon R.; Boyce, Joseph M.; Harrison, Tanya N.; Ling, Victor; McEwen, Alfred S.

    2018-01-01

    We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ∼1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from ;problematic; craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347 ± 0.021)D0.537 ± 0.017 and dr = (0.323 ± 0.017)D0.538 ± 0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.

  17. A Lower Limit on the Thickness of Europa's Ice Shell from Numerical Simulations of Impact Cratering

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; Ivanov, B. A.

    2001-12-01

    If Europa has an ice-covered, liquid water ocean, the thickness of the ice shell can be tested by analyzing the impact crater morphologies revealed by Galileo images. Several of Europa's 28 primary impact structures have morphologies typical of complex impact craters on other planetary bodies: terraced rims, flat floors, and central peaks [1]. To constrain the minimum ice thickness necessary to reproduce the observed complex crater morphologies, we have performed numerical simulations, using the modified SALE-2D code [2], of the formation of impact craters in ice layers with thicknesses ranging from 5 to 11 km overlying liquid water. The target ice has ice strength properties from published laboratory data [3] with a gradual decrease towards the base of the ice as the temperature approaches the melting point. The projectile parameters were chosen to produce a 10 km diameter crater in thick ice. We find that ice layers less than 7 km thick are not sufficient to prevent an outburst of liquid water during collapse of the transient cavity. At thicknesses of 8 and 9 km we observe a boundary regime: crater collapse produces a flat or upward-domed floor, however the water under the crater center does not reach the surface. In ice greater than 10 km thick a normal transient cavity forms. These results indicate that the ice thickness, at the times and locations of complex crater formation, must have been comparable to the diameters of the transient craters, the largest of which was between 11.9 and 18.5 km [1]. Implementation of additional mechanisms such as acoustic fluidization and creep may affect the shape of the final crater produced in our simulations: acoustic fluidization can produce central peak and peak-ring craters [4], and creep may result in a flattened crater. We are currently investigating the influence of these processes on the final crater morphology. References: [1] Moore et al., Icarus 151, 2001. [2] Ivanov et al., GSA Spec. Pap., in press. [3] Beeman et al., JGR 93, 1988. [4] Melosh and Ivanov, Ann. Rev. Earth Plan. Sci. 27, 1999.

  18. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America

    USGS Publications Warehouse

    Poag, C. Wylie; Plescia, J.B.; Molzer, P.C.

    2002-01-01

    Three ancient impact craters (Chesapeake Bay - 35.7 Ma; Toms Canyon - 35.7 Ma; Montagnais - 51 Ma) and one multiring impact basin (Chicxulub - 65 Ma) are currently known to be buried beneath modern continental shelves. All occur on the passive Atlantic margin of North America in regions extensively explored by seismic reflection surveys in the search for oil and gas reserves. We limit our discussion herein to the three youngest structures. These craters were created by submarine impacts, which produced many structural and morphological features similar in construction, composition, and variability to those documented in well-preserved subaerial and planetary impact craters. The subcircular Chesapeake Bay (diameter 85 km) and ovate Montagnais (diameter 45-50 km) structures display outer-rim scarps, annular troughs, peak rings, inner basins, and central peaks similar to those incorporated in the widely cited conceptual model of complex impact craters. These craters differ in several respects from the model, however. For example, the Montagnais crater lacks a raised lip on the outer rim, the Chesapeake Bay crater displays only small remnants of a raised lip, and both craters contain an unusually thick body of impact breccia. The subtriangular Toms Canyon crater (diameter 20-22 km), on the other hand, contains none of the internal features of a complex crater, nor is it typical of a simple crater. It displays a prominent raised lip on the outer rim, but the lip is present only on the western side of the crater. In addition, each of these craters contains some distinct features, which are not present in one or both of the others. For example, the central peak at Montagnais rises well above the elevation of the outer rim, whereas at Chesapeake Bay, the outer rim is higher than the central peak. The floor of the Toms Canyon crater is marked by parallel deep troughs and linear ridges formed of sedimentary rocks, whereas at Chesapeake Bay, the crater floor contains concentric faults and compression ridges formed in rocks of the crystalline basement. The Chesapeake Bay crater is distinguished further by its cluster of at least 23 adjacent secondary craters. The North American tektite strewn field, a widespread deposit of distal ejecta, is thought to be derived from the Chesapeake Bay impact, perhaps with a small contribution from the Toms Canyon impact. No ejecta field is known to be associated with the Montagnais impact. No immediate major extinction event is directly linked to any of these three impacts. There is evidence, however, that the Chesapeake Bay and Toms Canyon impacts helped initiate a long-term pulse of warm global climate, whose eventual dissipation coincided with an early Oligocene mass extinction event, 2 Ma after the impacts.

  19. The structural inventory of a small complex impact crater: Jebel Waqf as Suwwan, Jordan

    NASA Astrophysics Data System (ADS)

    Kenkmann, Thomas; Sturm, Sebastian; Krüger, Tim; Salameh, Elias; Al-Raggad, Marwan; Konsul, Khalil

    2017-07-01

    The investigation of terrestrial impact structures is crucial to gain an in-depth understanding of impact cratering processes in the solar system. Here, we use the impact structure Jebel Waqf as Suwwan, Jordan, as a representative for crater formation into a layered sedimentary target with contrasting rheology. The complex crater is moderately eroded (300-420 m) with an apparent diameter of 6.1 km and an original rim fault diameter of 7 km. Based on extensive field work, IKONOS imagery, and geophysical surveying we present a novel geological map of the entire crater structure that provides the basis for structural analysis. Parametric scaling indicates that the structural uplift (250-350 m) and the depth of the ring syncline (<200 m) are anomalously low. The very shallow relief of the crater along with a NE vergence of the asymmetric central uplift and the enhanced deformations in the up-range and down-range sectors of the annular moat and crater rim suggest that the impact was most likely a very oblique one ( 20°). One of the major consequences of the presence of the rheologically anisotropic target was that extensive strata buckling occurred during impact cratering both on the decameter as well as on the hundred-meter scale. The crater rim is defined by a circumferential normal fault dipping mostly toward the crater. Footwall strata beneath the rim fault are bent-up in the down-range sector but appear unaffected in the up-range sector. The hanging wall displays various synthetic and antithetic rotations in the down-range sector but always shows antithetic block rotation in the up-range sector. At greater depth reverse faulting or folding is indicated at the rim indicating that the rim fault was already formed during the excavation stage.

  20. Investigating large-scale secondary circulations within impact crater topographies in a refractive index-matched facility

    NASA Astrophysics Data System (ADS)

    Blois, Gianluca; Kim, Taehoon; Bristow, Nathan; Day, Mackenzie; Kocurek, Gary; Anderson, William; Christensen, Kenneth

    2017-11-01

    Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter >10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.

  1. Impact melt-bearing breccias of the Mistastin Lake impact structure: A unique planetary analogue for ground-truthing proximal ejecta emplacement

    NASA Astrophysics Data System (ADS)

    Mader, M. M.; Osinski, G. R.

    2013-12-01

    Impact craters are the dominant geological landform on rocky planetary surfaces; however, relationships between specific craters and their ejecta are typically poorly constrained. With limited planetary samples, scientists look to terrestrial craters as analogues. Impact ejecta is defined here as any target material, regardless of its physical state, that is transported beyond the rim of the transient cavity [1]. The original transient cavity reaches its maximum size during the excavation stage of crater formation, before rim collapse begins in the modification stage [2]. In complex craters, during the modification stage, rocks around the periphery of the bowl-shaped transient crater collapse downward and inward to form a series of terraces along the outer margin of the crater structure [3]. Proximal impact ejecta, can therefore be found on the terraces of the modified rim of a complex crater, interior to the final crater rim [1]. Although typically poorly preserved on Earth due to post-impact erosional processes, impact ejecta have been identified in the terraced rim region of the Mistastin Lake impact structure, located in northern Labrador, Canada (55°53'N; 63°18'W) [4]. The Mistastin Lake impact structure is an intermediate-size, complex crater (28 km apparent crater diameter) formed by a meteorite impact ~36 Ma in crystalline target rocks. The original crater has been differentially eroded; however, a terraced rim and distinct central uplift are still observed [5]. The inner portion of the structure is covered by the Mistastin Lake and the surrounding area is locally covered by soil/glacial deposits and vegetation. Locally, allochthonous impactites overlying fractured target rocks are exposed along the lakeshore and along banks of radially cutting streams. They define a consistent stratigraphy, including, from bottom to top: monomict, lithic breccias, allochthonous polymict lithic breccias, and allochthonous impact melt rocks. Mistastin impact breccias range in matrix content, melt-fragment concentration, and contact relationships with adjacent impactites. Initial findings suggest differing origins for impact melt-bearing breccias from a single impact event. Three examples are highlighted: 1) Impact melt-bearing breccias, on an inner terrace, formed in boundary zones where hot impact melt flowed over cooler, ballistically emplaced polymict impact breccias. 2) Locally, a dyke of impact melt-bearing breccia suggests that this unit originated as hot lithic flow that moved laterally along the ground and then intruded as a fracture fill into target rocks. 3) A m-scale lens of melt-bearing breccia within the middle of a thick, 80m impact melt rock unit situated on an inner terrace, suggests that this lens may have originated from the crater floor and been incorporated into the melt pond during emplacement (i.e. movement of the melt from the crater floor to terrace shelf). In summary, the Mistastin Lake impact structure displays a multiple layered ejecta sequence that is consistent with, and requires, a multi-stage ejecta emplacement model as proposed by [1]. References: [1] Osinski et al. (2011) EPSL (310:167-181. [2] Melosh (1989) Oxford Univ. 245 pp. [3] French B. M. (1998) LPI Contribution 954,120pp. [4] Mader et al. (2011) 42nd LPSC, No.1608. [5] Mader et al. (2013) 43rd LPSC, No. 2517.

  2. Dawn Framing Camera: Morphology and morphometry of impact craters on Ceres

    NASA Astrophysics Data System (ADS)

    Platz, T.; A; Nathues; Schäfer, M.; Hoffmann, M.; Kneissl, T.; Schmedemann, N.; Vincent, J.-B.; Büttner, I.; Gutierrez-Marques, P.; Ripken, J.; Russell, C. T.; Schäfer, T.; Thangjam, G. S.

    2015-10-01

    In the first approach images of Ceres we tried to discern the simple-to-complex transition diameter of impact craters. Limited by spatial resolution we found the smallest complex crater without central peak development to be around 21.4 km in diameter. Hence, the transition diameter is expected to be between 21.4 km and 10.6 km, the predicted transition diameter for an icy target. It appears likely that either Ceres' surface material contains a rocky component or has a laterally inhomogeneous composition ranging from icy to ice-rocky

  3. Cratering on Ceres: Implications for its crust and evolution

    USGS Publications Warehouse

    Hiesinger, H.; Marchi, S.; Schmedemann, N.; Schenk, P.; Pasckert, J. H.; Neesemann, A.; O'Brien, D. P.; Kneissl, T.; Ermakov, A.; Fu, R.R.; Bland, M. T.; Nathues, A.; Platz, T.; Williams, D.A.; Jaumann, R.; Castillo-Rogez, J. C.; Ruesch, O.; Schmidt, B.; Park, R.S.; Preusker, F.; Buczkowski, D.L.; Russell, C.T.; Raymond, C.A.

    2016-01-01

    Thermochemical models have predicted that Ceres, is to some extent, differentiated and should have an icy crust with few or no impact craters. We present observations by the Dawn spacecraft that reveal a heavily cratered surface, a heterogeneous crater distribution, and an apparent absence of large craters. The morphology of some impact craters is consistent with ice in the subsurface, which might have favored relaxation, yet large unrelaxed craters are also present. Numerous craters exhibit polygonal shapes, terraces, flowlike features, slumping, smooth deposits, and bright spots. Crater morphology and simple-to-complex crater transition diameters indicate that the crust of Ceres is neither purely icy nor rocky. By dating a smooth region associated with the Kerwan crater, we determined absolute model ages (AMAs) of 550 million and 720 million years, depending on the applied chronology model.

  4. Complex crater formation: Insights from combining observations of shock pressure distribution with numerical models at the West Clearwater Lake impact structure

    NASA Astrophysics Data System (ADS)

    Rae, A. S. P.; Collins, G. S.; Grieve, R. A. F.; Osinski, G. R.; Morgan, J. V.

    2017-07-01

    Large impact structures have complex morphologies, with zones of structural uplift that can be expressed topographically as central peaks and/or peak rings internal to the crater rim. The formation of these structures requires transient strength reduction in the target material and one of the proposed mechanisms to explain this behavior is acoustic fluidization. Here, samples of shock-metamorphosed quartz-bearing lithologies at the West Clearwater Lake impact structure, Canada, are used to estimate the maximum recorded shock pressures in three dimensions across the crater. These measurements demonstrate that the currently observed distribution of shock metamorphism is strongly controlled by the formation of the structural uplift. The distribution of peak shock pressures, together with apparent crater morphology and geological observations, is compared with numerical impact simulations to constrain parameters used in the block-model implementation of acoustic fluidization. The numerical simulations produce craters that are consistent with morphological and geological observations. The results show that the regeneration of acoustic energy must be an important feature of acoustic fluidization in crater collapse, and should be included in future implementations. Based on the comparison between observational data and impact simulations, we conclude that the West Clearwater Lake structure had an original rim (final crater) diameter of 35-40 km and has since experienced up to 2 km of differential erosion.

  5. Migration of the Cratering Flow-Field Center with Implications for Scaling Oblique Impacts

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Schultz, P. H.; Heineck, J. T.

    2004-01-01

    Crater-scaling relationships are used to predict many cratering phenomena such as final crater diameter and ejection speeds. Such nondimensional relationships are commonly determined from experimental impact and explosion data. Almost without exception, these crater-scaling relationships have used data from vertical impacts (90 deg. to the horizontal). The majority of impact craters, however, form by impacts at angles near 45 deg. to the horizontal. While even low impact angles result in relatively circular craters in sand targets, the effects of impact angle have been shown to extend well into the excavation stage of crater growth. Thus, the scaling of oblique impacts needs to be investigated more thoroughly in order to quantify fully how impact angle affects ejection speed and angle. In this study, ejection parameters from vertical (90 deg.) and 30 deg. oblique impacts are measured using three-dimensional particle image velocimetry (3D PIV) at the NASA Ames Vertical Gun Range (AVGR). The primary goal is to determine the horizontal migration of the cratering flow-field center (FFC). The location of the FFC at the time of ejection controls the scaling of oblique impacts. For vertical impacts the FFC coincides with the impact point (IP) and the crater center (CC). Oblique impacts reflect a more complex, horizontally migrating flow-field. A single, stationary point-source model cannot be used accurately to describe the evolution of the ejection angles from oblique impacts. The ejection speeds for oblique impacts also do not follow standard scaling relationships. The migration of the FFC needs to be understood and incorporated into any revised scaling relationships.

  6. The Morphology of Craters on Mercury: Results from MESSENGER Flybys

    NASA Technical Reports Server (NTRS)

    Barnouin, Oliver S.; Zuber, Maria T.; Smith, David E.; Neumann, Gregory A.; Herrick, Robert R.; Chappelow, John E.; Murchie, Scott L.; Prockter, Louise M.

    2012-01-01

    Topographic data measured from the Mercury Laser Altimeter (MLA) and the Mercury Dual Imaging System (MDIS) aboard the MESSENGER spacecraft were used for investigations of the relationship between depth and diameter for impact craters on Mercury. Results using data from the MESSENGER flybys of the innermost planet indicate that most of the craters measured with MLA are shallower than those previously measured by using Mariner 10 images. MDIS images of these same MLA-measured craters show that they have been modified. The use of shadow measurement techniques, which were found to be accurate relative to the MLA results, indicate that both small bowl-shaped and large complex craters that are fresh possess depth-to-diameter ratios that are in good agreement with those measured from Mariner 10 images. The preliminary data also show that the depths of modified craters are shallower relative to fresh ones, and might provide quantitative estimates of crater in-filling by subsequent volcanic or impact processes. The diameter that defines the transition from simple to complex craters on Mercury based on MESSENGER data is consistent with that reported from Mariner 10 data.

  7. The Zhamanshin impact feature: A new class of complex crater?

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Schnetzler, C. C.

    1992-01-01

    The record of 10-km-scale impact events of Quaternary age includes only two 'proven' impact structures: the Zhamanshin Impact Feature (ZIF) and the Bosumtwi Impact Crater (BIC). What makes these impact landforms interesting from the standpoint of recent Earth history is their almost total lack of morphologic similarity, in spite of similar absolute ages and dimensions. The BIC resembles pristine complex craters on the Moon to first order (i.e., 'U'-shaped topographic cross section with preserved rim), while the ZIF displays virtually none of the typical morphologic elements of a 13- to 14-km-diameter complex crater. Indeed, this apparent lack of a craterlike surficial topographic expression initially led Soviet geologists to conclude that the structure was only 5.5 to 6 km in diameter and at least 4.5 Ma in age. However, more recent drilling and geophysical observations at the ZIF have indicated that its pre-erosional diameter is at least 13.5 km, and that its age is most probably 0.87 Ma. Why the present topographic expression of a 13.5-km complex impact crater less than 1 m.y. old most closely resembles heavily degraded Mesozoic shield craters such as Lappajarvi is a question of considerable debate. Hypotheses for the lack of a clearly defined craterlike form at the ZIF include a highly oblique impact, a low-strength 'cometary' projectile, weak or water-saturated target materials, and anomalous erosion patterns. The problem remains unresolved because typical erosion rates within the arid sedimentary platform environment of central Kazakhstan in which the ZIF is located are typically low; it would require at least a factor of 10 greater erosion at the ZIF in order to degrade the near-rim ejecta typical of a 13.5-km complex crater by hundreds of meters in only 0.87 Ma, and to partially infill an inner cavity with 27 cu km (an equivalent uniform thickness of infill of 166 m). Our analysis of the degree of erosion and infill at the ZIF calls for rates in the 0.19 to 0.38 mm/yr range over the lifetime of the landform, which are a factor of 10 to 20 in excess of typical rates for the Kazakhstan semidesert.

  8. Variations in interior morphology of 15-20 km lunar craters - Implications for a major subsurface discontinuity

    NASA Technical Reports Server (NTRS)

    De Hon, R. A.

    1980-01-01

    Craters vary in morphology as a function of crater diameter, age, and mode of origin. This study concentrates on the morphology of young lunar impact craters within a limited size range. Elimination of morphologic variations generally attributed to crater size or age leaves a small population which should nearly reflect the varying properties of the lunar substrate. The sample consists of 17 craters 15-20 km in diameter with both simple and complex morphologies. While depth/diameter ratios do not obviously differ between mare and highland subsets, apparent depth, rim height, and profile data do differ distinctly. Highland craters tend to be deep, simple, and bowl-shaped. Mare craters tend to be shallow and flat-floored. Rim heights of complex mare craters are typically greater than those of simple craters. Differences of highland and mare crater morphologies are attributed to variations in the thickness of the lunar megaregolith. Highland craters in this size range do not penetrate the megaregolith. The depth and morphology of complex craters are controlled by the discontinuity at the transition from highly brecciated megaregolith to more coherent crystalline material of the upper crust.

  9. Investigation of the relationship of crater depths and diameters in selected regions of Mars

    NASA Astrophysics Data System (ADS)

    Hsu, Hsin-Jen

    2013-03-01

    Impact craters are common geomorphological features on Mars. The density of craters is different among various regions. Higher crater density means older terrain. Craters can be divided into two types by the interior morphology: simple and complex. The cavity of Simple craters is bowl-shape, and complex craters display various interior features, such as central peaks. The depth/diameter ratio (d/D) of simple craters is larger than that of complex craters. The transition diameter from simple to complex morphologies ranges between 5 and 10 km, and is commonly cited to be about 7 km in the equatorial regions and 6 km near the poles, but the exact value also could vary with terrain type. In this research, seven regions, Amazonis Planitia, Arabia Terra, Chryse Planitia, Hesperia Planum, Isidis Planitia, Solis/Syria/Sinai Planum, and Terra Sirenum, were selected to investigate the onset diameter of complex craters and the relationship of crater diameter and depth in these regions on Mars in order to understand how the geology affects crater d/D. The analysis revealed that the slopes of the d/D relations are different, and these are linked to the surface material in different regions. The onset diameters in young volcanic regions with stronger material are slightly higher than older volcanic regions, and much higher than that of volatile regions. The research proves the different geological units can affect the morphology and morphometry of craters.

  10. Lunar crater volumes - Interpretation by models of impact cratering and upper crustal structure

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1978-01-01

    Lunar crater volumes can be divided by size into two general classes with distinctly different functional dependence on diameter. Craters smaller than approximately 12 km in diameter are morphologically simple and increase in volume as the cube of the diameter, while craters larger than about 20 km are complex and increase in volume at a significantly lower rate implying shallowing. Ejecta and interior volumes are not identical and their ratio, Schroeters Ratio (SR), increases from about 0.5 for simple craters to about 1.5 for complex craters. The excess of ejecta volume causing the increase, can be accounted for by a discontinuity in lunar crust porosity at 1.5-2 km depth. The diameter range of significant increase in SR corresponds with the diameter range of transition from simple to complex crater morphology. This observation, combined with theoretical rebound calculation, indicates control of the transition diameter by the porosity structure of the upper crust.

  11. Sesquinary reimpacts dominate surface characteristics on Phobos

    NASA Astrophysics Data System (ADS)

    Nayak, Michael

    2018-01-01

    We use topographic data to show that impact craters with pitted floor deposits are among the deepest on Mars. This is consistent with the interpretation of pitted materials as primary crater-fill impactite deposits emplaced during crater formation. Our database consists of 224 pitted material craters ranging in size from ˜1 to 150 km in diameter. Our measurements are based on topographic data from the Mars Orbiter Laser Altimeter (MOLA) and the High-Resolution Stereo Camera (HRSC). We have used these craters to measure the relationship between crater diameter and the initial post-formation depth. Depth was measured as maximum rim-to-floor depth, (dr), but we also report the depth measured using other definitions. The database was down-selected by refining or removing elevation measurements from "problematic" craters affected by processes and conditions that influenced their dr/D, such as pre-impact slopes/topography and later overprinting craters. We report a maximum (deepest) and mean scaling relationship of dr = (0.347±0.021)D0.537±0.017 and dr = (0.323±0.017)D0.538±0.016, respectively. Our results suggest that significant variations between previously-reported MOLA-based dr vs. D relationships may result from the inclusion of craters that: 1) are influenced by atypical processes (e.g., highly oblique impact), 2) are significantly degraded, 3) reside within high-strength regions, and 4) are transitional (partially collapsed). By taking such issues into consideration and only measuring craters with primary floor materials, we present the best estimate to date of a MOLA-based relationship of dr vs. D for the least-degraded complex craters on Mars. This can be applied to crater degradation studies and provides a useful constraint for models of complex crater formation.

  12. Geological Mapping of Impact Melt Deposits at Lunar Complex Craters: New Insights into Morphological Diversity, Distribution and the Cratering Process

    NASA Astrophysics Data System (ADS)

    Dhingra, D.; Head, J. W., III; Pieters, C. M.

    2014-12-01

    We have completed high resolution geological mapping of impact melt deposits at the young lunar complex craters (<1 billion years) Copernicus, Jackson and Tycho using data from recent missions. Crater floors being the largest repository of impact melt, we have mapped their morphological diversity expressed in terms of varied surface texture, albedo, character and occurrence of boulder units as well as relative differences in floor elevation. Examples of wall and rim impact melt units and their relation to floor units have also been mapped. Among the distinctive features of these impact melt deposits are: 1) Impact Melt Wave Fronts: These are extensive (sometimes several kilometers in length) and we have documented their occurrence and distribution in different parts of the crater floor at Jackson and Tycho. These features emphasize melt mobility and style of emplacement during the modification stage of the craters. 2) Variations in Floor Elevations: Spatially extensive and coherent sections of crater floors have different elevations at all the three craters. The observed elevation differences could be caused by subsidence due to cooling of melt and/or structural failure, together with a contribution from regional slope. 3) Melt-Covered Megablocks: We also observe large blocks/rock-fragments (megablocks) covered in impact melt, which could be sections of collapsed wall or in some cases, subdued sections of central peaks. 4) Melt-Covered Central Peaks: Impact melt has also been mapped on the central peaks but varies in spatial extent among the craters. The presence of melt on peaks must be taken into account when interpreting peak mineralogy as exposures of deeper crust. 5) Boulder Distribution: Interesting trends are observed in the distribution of boulder units of various sizes; some impact melt units have spatially extensive boulders, while boulder distribution is very scarce in other units on the floor. We interpret these distributions to be influenced by a) the differential collapse of the crater walls during the modification stage, and b) the amount of relative melt volume retained in different parts of the crater floor. These observations provide important documentation of the morphological diversity and better understanding of the emplacement and final distribution of impact melt deposits.

  13. Morphologic Analysis of Lunar Craters in the Simple-to-Complex Transition

    NASA Astrophysics Data System (ADS)

    Chandnani, M.; Herrick, R. R.; Kramer, G. Y.

    2015-12-01

    The diameter range of 15 km to 20 km on the Moon is within the transition from simple to complex impact craters. We examined 207 well preserved craters in this diameter range distributed across the moon using high resolution Lunar Reconnaissance Orbiter Camera Wide Angle Camera Mosaic (WAC) and Narrow Angle Camera (NAC) data. A map of the distribution of the 207 craters on the Moon using the global LROC WAC mosaic has been attahced with the abstract. By examining craters of similar diameter, impact energy is nearly constant, so differences in shape and morphology must be due to either target (e.g., porosity, density, coherence, layering) or impactor (e.g., velocity, density) properties. On the basis of the crater morphology, topographic profiles and depth-diameter ratio, the craters were classified into simple, craters with slumped walls, craters with both slumping and terracing, those containing a central uplift only, those with a central uplift and slumping, and the craters with a central uplift accompanied by both slumping and terracing, as shown in the image. It was observed that simple craters and craters with slumped walls occur predominately on the lunar highlands. The majority of the craters with terraced walls and all classes of central uplifts were observed predominately on the mare. In short, in this size range craters in the highlands were generally simple craters with occasionally some slumped material in the center, and the more developed features (terracing, central peak) were associated with mare craters. This is somewhat counterintuitive, as we expect the highlands to be generally weaker and less consolidated than the mare. We hypothesize that the presence of rheologic layering in the mare may be the cause of the more complex features that we observe. Relatively weak layers in the mare could develop through regolith formation between individual flows, or perhaps by variations within or between the flows themselves.

  14. Enhancing Magnetic Interpretation Towards Meteorite Impact Crater at Bukit Bunuh, Perak, Malaysia

    NASA Astrophysics Data System (ADS)

    Nur Amalina, M. K. A.; Nordiana, M. M.; Saad, Rosli; Saidin, Mokhtar

    2017-04-01

    Bukit Bunuh is the most popular area of suspected meteorite impact crater. In the history of meteorite impact hitting the earth, Bukit Bunuh has complex crater of a rebound zone of positive magnetic anomaly value. This study area was located at Lenggong, Perak of peninsular Malaysia. The crater rim extended 5 km outwards with a clear subdued zone and immediately surround by a positive magnetic residual crater rim zone. A recent study was done to enhance the magnetic interpretation towards meteorite impact crater on this study area. The result obtained is being correlated with boreholes data to determine the range of local magnetic value. For the magnetic survey, the equipment used is Geometric G-856 Proton Precision magnetometers with the aids of other tools such as compass and GPS. In advance, the using of proton precision magnetometer causes it able in measures the magnetic fields separately within interval of second. Also, 18 boreholes are accumulated at study area to enhance the interpretation. The additional boreholes data had successfully described the structure of the impact crater at Bukit Bunuh in detailed where it is an eroded impact crater. Correlations with borehole records enlighten the results acquired from magnetic methods to be more reliable. A better insight of magnetic interpretation of Bukit Bunuh impact crater was done with the aid of geotechnical methods.

  15. Analysis of impact craters on Mercury's surface.

    NASA Astrophysics Data System (ADS)

    Martellato, E.; Cremonese, G.; Marzari, F.; Massironi, M.; Capria, M. T.

    The formation of a crater is a complex process, which can be analyzed with numerical simulations and/or observational methods. This work reports a preliminary analysis of some craters on Mercury, based on the Mariner 10 images. The physical and dynamical properties of the projectile may not derive from the knowledge of the crater alone, since the size of an impact crater depends on many parameters. We have calculated the diameter of the projectile using the scaling law of Schmidt and Housen (\\citep{SandM87}). It is performed for different projectile compositions and impact velocities, assuming an anorthositic composition of the surface. The melt volume production at the initial phases of the crater formation is also calculated by the experimental law proposed by O'Keefe and Ahrens (\\citep{OA82}), giving the ratio between melt and projectile mass.

  16. Hydrocode Simulations of the Chesapeake Bay Impact

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Melosh, H. J.

    2004-01-01

    The Chesapeake Bay Impact Crater (CBIC) formed about 35 million years ago (late Eocene), in a shallow marine environment (400-600 m water depth). The crater is complex and developed in a multi-layer, rheologically-variable target that comprised 400-1000 meters of soft, water-saturated sediments overlying crystalline basement. Seismic reflection data illustrates that the Chesapeake Bay crater morphology - often described as an "inverted sombrero" - is similar to other marine-target impact craters. It consists of a approx. 1 - 1.5-km deep, highly disturbed central crater, surrounded by a shallower, less deformed basin. The inner crater has a diameter of approx. 40 km; the edge of the outer basin extends to 85-km diameter. The morphological divide between the inner and outer crater is termed the inner ring or peak ring. Little is known about the nature of the inner ring. Seismic reflection data show that the underlying basement is modestly uplifted; however, it is unclear whether the pristine surface expression of the inner ring was elevated above the floor of the outer crater.

  17. Increased depth-diameter ratios in the Medusae Fossae Formation deposits of Mars

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1993-01-01

    Depth to diameter ratios for fresh impact craters on Mars are commonly cited as approximately 0.2 for simple craters and 0.1 for complex craters. Recent computation of depth-diameter ratios in the Amazonis-Memnonia region of Mars indicates that craters within the Medusae Fossae Formation deposits found in this region display greater depth-diameter ratios than expected for both simple and complex craters. Photoclinometric and shadow length techniques have been used to obtain depths of craters within the Amazonis-Memnonia region. The 37 craters in the 2 to 29 km diameter range and displaying fresh impact morphologies were identified in the area of study. This region includes the Amazonian aged upper and middle members of the Medusae Fossae Formation and Noachian aged cratered and hilly units. The Medusae Fossae Formation is characterized by extensive, flat to gently undulating deposits of controversial origin. These deposits appear to vary from friable to indurated. Early analysis of crater degradation in the Medusae Fossae region suggested that simple craters excavated to greater depths than expected based on the general depth-diameter relationships derived for Mars. However, too few craters were available in the initial analysis to estimate the actual depth-diameter ratios within this region. Although the analysis is continuing, we are now beginning to see a convergence towards specific values for the depth-diameter ratio depending on geologic unit.

  18. Modeling the Provenance of Crater Ejecta

    NASA Astrophysics Data System (ADS)

    Huang, Ya-Huei; Minton, David A.

    2014-11-01

    The cratering history of the Moon provides a way to study the violent early history of our early solar system. Nevertheless, we are still limited in our ability to interpret the lunar cratering history because the complex process of generation and subsequent transportation and destruction of impact melt products is relatively poorly understood. Here we describe a preliminary model for the transport of datable impact melt products by craters over Gy timescales on the lunar surface. We use a numerical model based on the Maxwell Z-model to model the exhumation and transport of ejecta material from within the excavation flow of a transient crater. We describe our algorithm for rapidly estimating the provenance of ejecta material for use in a Monte Carlo cratering code capable of simulating lunar cratering over Gy timescales.

  19. The excavation stage of basin formation - A qualitative model

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1981-01-01

    One of the most complex problems in planetary geology and geophysics is the determination of the nature of the impact cratering processes at scales of tens to thousands of kilometers that produce the complex morphological structures of multiring basins. The cratering process is frequently considered to be divided into three stages, including a short high-pressure stage of initial contact between the projectile and the planetary crust, a longer excavation or cratering flow stage culminating in the formation of a transient crater, and a still longer modification stage during which the transient crater is modified into the observed final geologic form. The transient crater may be considered as the initial boundary condition of the modification stage. In the present investigation, the nature of the transient crater is indicated by the cratering flow field determined from numerical simulations of the excavation stage. Attention is given to empirical and theoretical scaling.

  20. Reassessing the Crater Distributions on Ganymede and Callisto: Results from Voyager and Galileo, and an Outlook to ESA's JUICE Mission to Jupiter

    NASA Astrophysics Data System (ADS)

    Wagner, Roland; Schmedemann, Nico; Neukum, Gerhard; Werner, Stephanie C.; Ivanov, Boris A.; Stephan, Katrin; Jaumann, Ralf; Palumbo, Pasquale

    2014-11-01

    Crater distributions and origin of potential impactors on the Galilean satellites has been an issue of controversial debate. In this work, we review the current knowledge of the cratering record on Ganymede and Callisto and present strategies for further studies using images from ESA’s JUICE mission to Jupiter. Crater distributions in densely cratered units on these two satellites show a complex shape between 20 m and 200 km crater diameter, similar to lunar highland distributions implying impacts of members of a collisionally evolved projectile family. Also, the complex shape predominantly indicates production distributions. No evidence for apex-antapex asymmetries in crater frequency was found, therefore the majority of projectiles (a) preferentially impacted from planetocentric orbits, or (b) the satellites were rotating non-synchronously during a time of heavy bombardment. The currently available imaging data are insufficient to investigate in detail significant changes in the shape of crater distributions with time. Clusters of secondary craters are well mappable and excluded from crater counts, lack of sufficient image coverage at high resolution, however, in many cases impedes the identification of source craters. ESA’s future JUICE mission will study Ganymede as the first icy satellite in the outer Solar system from an orbit under stable viewing conditions. Measurements of crater distributions can be carried out based on global geologic mapping at highest spatial resolutions (10s of meters down to 3 m/pxl).

  1. A Youthful Crater in the Cydonia Colles Region

    NASA Image and Video Library

    2015-11-27

    The central portion of this image from NASA's Mars Reconnaissance Orbiter is dominated by a sharp-rimmed crater that is roughly 5 kilometers in diameter. On its slopes, gullies show young (i.e., geologically recent) headward erosion, which is the lengthening of the gully in the upslope direction. This crater is also remarkable for another reason. This image is part of a stereo pair, and the anaglyph of these images shows that the bottom of the crater contains a small mound. This mound hints at a possible complex crater, with the mound being a central uplift. Complex craters as small as this one are uncommon and such examples may provide clues to the lithology of the rocks underground and possibly to the impact process itself. http://photojournal.jpl.nasa.gov/catalog/PIA20158

  2. The geologic history of the Moon

    USGS Publications Warehouse

    Wilhelms, Don E.; with sections by McCauley, John F.; Trask, Newell J.

    1987-01-01

    More than two decades of study have established the major features of lunar geologic style and history. The most numerous and significant landforms belong to a size-morphology series of simple craters, complex craters, and ringed basins that were formed by impacts. Each crater and basin is the source of primary ejecta and secondary craters that, collectively, cover the entire terra. The largest impacts thinned, weakened, and redistributed feldspathic terracrustal material averaging about 75 km in thickness. Relatively small volumes of basalt, generated by partial remelting of mantle material, were erupted through the thin subbasin and subcrater crust to form the maria that cover 16 percent of the lunar surface. Tectonism has modified the various stratigraphic deposits relatively little; most structures are confined to basins and large craters. This general geologic style, basically simple though complex in detail, has persisted longer than 4 aeons (1 aeon = 109 yr). Impacts began to leave a visible record about 4.2 aeons ago, after the crust and mantle had differentiated and the crust had solidified. At least 30 basins and 100 times that many craters larger than 30 km in diameter were formed before a massive impact created the Nectaris basin about 3.92 aeons ago. Impacts continued during the ensuing Nectarian Period at a lesser rate, whereas volcanism left more traces than during pre-Nectarian time. The latest basin-forming impacts created the giant and still-conspicuous Imbrium and Orientale basins during the Early Imbrian Epoch, between 3.85 and 3.80 aeons ago. The rate of crater-forming impacts continued to decline during the Imbrian Period. Beginning in the Late Imbrian Epoch, mare-basalt flows remained exposed because they were no longer obscured by many large impacts. The Eratosthenian Period (3.2-1.1 aeons ago) and the Copernican Period (1.1 aeons ago to present) were times of lesser volcanism and a still lower, probably constant impact rate. Copernican impacts created craters whose surfaces have remained brighter and topographically crisper than those of the more ancient lunar features.

  3. Gravity investigations of the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Plescia, J.B.; Daniels, D.L.; Shah, A.K.

    2009-01-01

    The Chesapeake Bay impact structure is a complex impact crater, ??85 km in diameter, buried beneath postimpact sediments. Its main structural elements include a central uplift of crystalline bedrock, a surrounding inner crater filled with impact debris, and an annular faulted margin composed of block-faulted sediments. The gravity anomaly is consistent with that of a complex impact consisting of a central positive anomaly over the central uplift and an annular negative anomaly over the inner crater. An anomaly is not recognized as being associated with the faulted margin or the outer edge of the structure. Densities from the Eyreville drill core and modeling indicate a density contrast of ??0.3-0.6 g cm-3 between crystalline basement and the material that fills the inner crater (e.g., Exmore breccia and suevite). This density contrast is somewhat higher than for other impact structures, but it is a function of the manner in which the crater fill was deposited (as a marine resurge deposit). Modeling of the gravity data is consistent with a depth to basement of ??1600 m at the site of Eyreville drill hole and 800 m at the central uplift. Both depths are greater than the depth at which crystalline rocks were encountered in the cores, suggesting that the cored material is highly fractured para-allochthonous rock. ?? 2009 The Geological Society of America.

  4. The role of strength defects in shaping impact crater planforms

    NASA Astrophysics Data System (ADS)

    Watters, W. A.; Geiger, L. M.; Fendrock, M.; Gibson, R.; Hundal, C. B.

    2017-04-01

    High-resolution imagery and digital elevation models (DEMs) were used to measure the planimetric shapes of well-preserved impact craters. These measurements were used to characterize the size-dependent scaling of the departure from circular symmetry, which provides useful insights into the processes of crater growth and modification. For example, we characterized the dependence of the standard deviation of radius (σR) on crater diameter (D) as σR ∼ Dm. For complex craters on the Moon and Mars, m ranges from 0.9 to 1.2 among strong and weak target materials. For the martian simple craters in our data set, m varies from 0.5 to 0.8. The value of m tends toward larger values in weak materials and modified craters, and toward smaller values in relatively unmodified craters as well as craters in high-strength targets, such as young lava plains. We hypothesize that m ≈ 1 for planforms shaped by modification processes (slumping and collapse), whereas m tends toward ∼ 1/2 for planforms shaped by an excavation flow that was influenced by strength anisotropies. Additional morphometric parameters were computed to characterize the following planform properties: the planform aspect ratio or ellipticity, the deviation from a fitted ellipse, and the deviation from a convex shape. We also measured the distribution of crater shapes using Fourier decomposition of the planform, finding a similar distribution for simple and complex craters. By comparing the strength of small and large circular harmonics, we confirmed that lunar and martian complex craters are more polygonal at small sizes. Finally, we have used physical and geometrical principles to motivate scaling arguments and simple Monte Carlo models for generating synthetic planforms, which depend on a characteristic length scale of target strength defects. One of these models can be used to generate populations of synthetic planforms which are very similar to the measured population of well-preserved simple craters on Mars.

  5. Large Impact Features on Icy Galilean Satellites

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; Schenk, P. M.; Korycansky, D. G.

    2017-01-01

    Impact crater morphology can be a very useful tool for probing planetary interiors, but nowhere in the solar system is a greater variety of crater morphologies observed (Fig. 1) than on the large icy Galilean satellites Ganymede and Callisto [e.g., 1- 3]. As on the rocky terrestrial planets, impact crater morphology becomes more complex with increasing size on these satellites. With increasing size, however, these same craters become less like their counterparts on the rocky planets. Several impact landforms and structures (multiring furrows, palimpsests, and central domes, for example), have no obvious analogs on any other planets. Further, several studies [e.g., 4-6] have drawn attention to impact landforms on Europa which are unusual, even by Galilean satellite standards. These radical differences in morphology suggest that impact into icy lithospheres that are mechanically distinct from silicate lithospheres may be responsible. As such, large impact structures may be important probes of the interiors of these bodies over time [e.g., 7]. The first goal of this work is to integrate and correlate the detailed morphologic and morphometric measurements and observations of craters on icy Galilean satellites [e.g., 4, 8-12] with new detailed mapping of these structures from Galileo high-resolution images. As a result, we put forward a revised crater taxonomy for Ganymede and Callisto in order to simplify the nonuniform impact crater nomenclature cluttering the literature. We develop and present an integrated model for the development of these unusual crater morphologies and their implications for the thermal evolution of these bodies.

  6. New Constraints on the Slate Islands Impact Structure, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Dressler, Burkhard O.; Herrick, Robert R.; Schnieders, Bernie; Scott, John

    1996-01-01

    The Slate Islands in northern Lake Superior represent the eroded remains of a complex impact crater, originally approximately 32 km in diameter. New field studies there reveal allogenic crater fill deposits along the eastern and northern portions of the islands indicating that this 500-800 Ma impact structure is not as heavily eroded as previously thought. Near the crater center, on the western side or Patterson Island, massive blocks of target rocks, enclosed within a matrix of fine-grained polymict breccia, record the extensive deformation associated with the central uplift. Shatter cones are a common structural feature on the islands and range from less than 3 cm to over 10 m in length. Although shatter cones are powerful tools for recognizing and analyzing eroded impact craters, their origin remains poorly constrained.

  7. Geology of Lofn Crater, Callisto

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Heiner, Sarah; Klemaszewski, James E.

    2001-01-01

    Lofn crater is a 180-km-diameter impact structure in the southern cratered plains of Callisto and is among the youngest features seen on the surface. The Lofn area was imaged by the Galileo spacecraft at regional-scale resolutions (875 m/pixel), which enable the general geology to be investigated. The morphology of Lofn crater suggests that (1) it is a class of impact structure intermediate between complex craters and palimpsests or (2) it formed by the impact of a projectile which fragmented before reaching the surface, resulting in a shallow crater (even for Callisto). The asymmetric pattern of the rim and ejecta deposits suggests that the impactor entered at a low angle from the northwest. The albedo and other characteristics of the ejecta deposits from Lofn also provide insight into the properties of the icy lithosphere and subsurface configuration at the time of impact. The "target" for the Lofn impact is inferred to have included layered materials associated with the Adlinda multiring structure northwest of Loh and ejecta deposits from the Heimdall crater area to the southeast. The Lofn impact might have penetrated through these materials into a viscous substrate of ductile ice or possibly liquid water. This interpretation is consistent with models of the current interior of Callisto based on geophysical information obtained from the Galileo spacecraft.

  8. Improved Measurement of Ejection Velocities From Craters Formed in Sand

    NASA Technical Reports Server (NTRS)

    Cintala, Mark J.; Byers, Terry; Cardenas, Francisco; Montes, Roland; Potter, Elliot E.

    2014-01-01

    A typical impact crater is formed by two major processes: compression of the target (essentially equivalent to a footprint in soil) and ejection of material. The Ejection-Velocity Measurement System (EVMS) in the Experimental Impact Laboratory has been used to study ejection velocities from impact craters formed in sand since the late 1990s. The original system used an early-generation Charge-Coupled Device (CCD) camera; custom-written software; and a complex, multicomponent optical system to direct laser light for illumination. Unfortunately, the electronic equipment was overtaken by age, and the software became obsolete in light of improved computer hardware.

  9. Chesapeake Bay impact structure: Morphology, crater fill, and relevance for impact structures on Mars

    USGS Publications Warehouse

    Horton, J. Wright; Ormo, J.; Powars, D.S.; Gohn, G.S.

    2006-01-01

    The late Eocene Chesapeake Bay impact structure (CBIS) on the Atlantic margin of Virginia is one of the largest and best-preserved "wet-target" craters on Earth. It provides an accessible analog for studying impact processes in layered and wet targets on volatile-rich planets. The CBIS formed in a layered target of water, weak clastic sediments, and hard crystalline rock. The buried structure consists of a deep, filled central crater, 38 km in width, surrounded by a shallower brim known as the annular trough. The annular trough formed partly by collapse of weak sediments, which expanded the structure to ???85 km in diameter. Such extensive collapse, in addition to excavation processes, can explain the "inverted sombrero" morphology observed at some craters in layered targets. The distribution of crater-fill materials i n the CBIS is related to the morphology. Suevitic breccia, including pre-resurge fallback deposits, is found in the central crater. Impact-modified sediments, formed by fluidization and collapse of water-saturated sand and silt-clay, occur in the annular trough. Allogenic sediment-clast breccia, interpreted as ocean-resurge deposits, overlies the other impactites and covers the entire crater beneath a blanket of postimpact sediments. The formation of chaotic terrains on Mars is attributed to collapse due to the release of volatiles from thick layered deposits. Some flat-floored rimless depressions with chaotic infill in these terrains are impact craters that expanded by collapse farther than expected for similar-sized complex craters in solid targets. Studies of crater materials in the CBIS provide insights into processes of crater expansion on Mars and their links to volatiles. ?? The Meteoritical Society, 2006.

  10. Dynamics of yield-stress droplets: Morphology of impact craters

    NASA Astrophysics Data System (ADS)

    Neufeld, Jerome; Sohr, David; Ferrari, Leo; Dalziel, Stuart

    2017-11-01

    Yield strength can play an important role for the dynamics of droplets impacting on surfaces, whether at the industrial or planetary scale, and can capture a zoo of impact crater morphologies, from simple parabolic craters, to more complex forms with forms with, for example, multiple rings, central peaks. Here we show that the morphology of planetary impact craters can be reproduced in the laboratory using carbopol, a transparent yield-stress fluid, as both impactor and bulk fluid. Using high-speed video photography, we characterise the universal, transient initial excavation stage of impact and show the dependence of the subsequent relaxation to final crater morphology on impactor size, impact speed and yield stress. To further interrogate our laboratory impacts, we dye our impactor to map its final distribution and use particle tracking to determine the flow fields during impact and the maximal extent of the yield surface. We characterise the flow-fields induced during impact, and the maximal extent of the yield surface, by tracking particles within the bulk fluid and map the distribution of impactor and bulk by tracing the final distribution of dyed impactor. The results of laboratory impact droplets are used to infer the properties of planetary impactors, and aid in inter.

  11. The Geology of the Marcia Quadrangle of Asteroid Vesta: Assessing the Effects of Large, Young Craters

    NASA Technical Reports Server (NTRS)

    Williams, David A.; Denevi, Brett W.; Mittlefehldt, David W.; Mest, Scott C.; Schenk, Paul M.; Yingst, R. Aileen; Buczowski, Debra L.; Scully, Jennifer E. C.; Garry, W. Brent; McCord, Thomas B.; hide

    2014-01-01

    We used Dawn spacecraft data to identify and delineate geological units and landforms in the Marcia quadrangle of Vesta as a means to assess the role of the large, relatively young impact craters Marcia (approximately 63 kilometers diameter) and Calpurnia (approximately 53 kilometers diameter) and their surrounding ejecta field on the local geology. We also investigated a local topographic high with a dark-rayed crater named Aricia Tholus, and the impact crater Octavia that is surrounded by a distinctive diffuse mantle. Crater counts and stratigraphic relations suggest that Marcia is the youngest large crater on Vesta, in which a putative impact melt on the crater floor ranges in age between approximately 40 and 60 million years (depending upon choice of chronology system), and Marcia's ejecta blanket ranges in age between approximately 120 and 390 million years (depending upon choice of chronology system). We interpret the geologic units in and around Marcia crater to mark a major Vestan time-stratigraphic event, and that the Marcia Formation is one of the geologically youngest formations on Vesta. Marcia crater reveals pristine bright and dark material in its walls and smooth and pitted terrains on its floor. The smooth unit we interpret as evidence of flow of impact melts and (for the pitted terrain) release of volatiles during or after the impact process. The distinctive dark ejecta surrounding craters Marcia and Calpurnia is enriched in OH- or H-bearing phases and has a variable morphology, suggestive of a complex mixture of impact ejecta and impact melts including dark materials possibly derived from carbonaceous chondrite-rich material. Aricia Tholus, which was originally interpreted as a putative Vestan volcanic edifice based on lower resolution observations, appears to be a fragment of an ancient impact basin rim topped by a dark-rayed impact crater. Octavia crater has a cratering model formation age of approximately 280-990 million years based on counts of its ejecta field (depending upon choice of chronology system), and its ejecta field is the second oldest unit in this quadrangle. The relatively young craters and their related ejecta materials in this quadrangle are in stark contrast to the surrounding heavily cratered units that are related to the billion years old or older Rheasilvia and Veneneia impact basins and Vesta's ancient crust preserved on Vestalia Terra.

  12. A Comparative Analysis of the Magnetic Field Signals over Impact Structures on the Earth, Mars and the Moon

    NASA Technical Reports Server (NTRS)

    Isac, Anca; Mandea, Mioara; Purucker, Michael; Langlais, Benoit

    2015-01-01

    An improved description of magnetic fields of terrestrial bodies has been obtained from recent space missions, leading to a better characterization of the internal fields including those of crustal origin. One of the striking differences in their crustal magnetic field is the signature of large impact craters. A comparative analysis of the magnetic characteristics of these structures can shed light on the history of their respective planetary-scale magnetic dynamos. This has motivated us to identify impact craters and basins, first by their quasi-circular features from the most recent and detailed topographic maps and then from available global magnetic field maps. We have examined the magnetic field observed above 27 complex craters on the Earth, 34 impact basins on Mars and 37 impact basins on the Moon. For the first time, systematic trends in the amplitude and frequency of the magnetic patterns, inside and outside of these structures are observed for all three bodies. The demagnetization effects due to the impact shock wave and excavation processes have been evaluated applying the Equivalent Source Dipole forward modeling approach. The main characteristics of the selected impact craters are shown. The trends in their magnetic signatures are indicated, which are related to the presence or absence of a planetary-scale dynamo at the time of their formation and to impact processes. The low magnetic field intensity at center can be accepted as the prime characteristic of a hypervelocity impact and strongly associated with the mechanics of impact crater formation. In the presence of an active internal field, the process of demagnetization due to the shock impact is associated with post-impact remagnetization processes, generating a more complex magnetic signature.

  13. Experimentally Shocked and Altered Basalt: VNIR Spectra of Mars Analog Materials

    NASA Technical Reports Server (NTRS)

    Bell, M. S.

    2017-01-01

    Major occurrences of hydrous alteration minerals on Mars have been found in Noachian impact craters formed in basaltic targets and detected using visible/near infrared (VNIR) spectroscopy. Until recently phyllosilicates were detected only in craters in the southern hemisphere. However, it has been reported that at least nine craters in the northern plains apparently excavated thick layers of lava and sediment to expose phyllosilicates as well and two Hesperian-aged impact craters, Toro and Majuro, bear evidence of phyllosilicates in the southern highlands. Turner et al. 2015 reported that hydrated minerals were identified in three Amazonian aged complex impact craters, located at 52.42degN, 39.86degE in the Ismenius Lacus quadrangle, at 8.93degN, 141.28degE in Elysium, and within Stokes crater. These discoveries indicate that Mars was globally altered by water throughout its past but do not fully constrain formation conditions for phyllosilicate occurrences which have important implications for the evolution of the surface and biological potential of Mars.

  14. Lunar and Planetary Science XXXV: Impact-Related Deposits

    NASA Technical Reports Server (NTRS)

    2004-01-01

    The session "Impact-Related Deposits" included:Evidence for a Lightning-Strike Origin of the Edeowie Glass; 57Fe M ssbauer Spectroscopy of Fulgurites: Implications for Chemical Reduction; Ca-Metasomatism in Crystalline Target Rocks from the Charlevoix Structure, Quebec, Canada: Evidence for Impact-related Hydrothermal Activity; Magnetic Investigations of Breccia Veins and Basement Rocks from Roter Kamm Crater and Surrounding Region, Namibia; Petrologic Complexities of the Manicouagan Melt Sheet: Implications for 40Ar-39Ar Geochronology; Laser Argon Dating of Melt Breccias from the Siljan Impact Structure, Sweden: Implications for Possible Relationship to Late Devonian Extinction Events; Lunar Impact Crater, India: Occurrence of a Basaltic Suevite?; Age of the Lunar Impact Crater, India: First Results from Fission Track Dating; The Fluidized Chicxulub Ejecta Blanket, Mexico: Implications for Mars; Low Velocity Ejection of Boulders from Small Lunar Craters: Ground Truth for Asteroid Surfaces; Ejecta and Secondary Crater Distributions of Tycho Crater: Effects of an Oblique Impact; Potassium Isotope Systematics of Crystalline Lunar Spherules from Apollo 16; Late Paleocene Spherules from the North Sea: Probable Sea Floor Precipitates: A Silverpit Provenance Unproven; A Lithological Investigation of Marine Strata from the Triassic-Jurassic Boundary Interval, Queen Charlotte Islands, British Columbia, Including a Search for Shocked Quartz; Triassic Cratered Cobbles: Shock Effects or Tectonic Pressure?; Regional Variations of Trace Element Composition Within the Australasian Tektite Strewn Field; Cretaceous-Tertiary Boundary Microtektite-bearing Sands and Tsunami Beds, Alabama Gulf Coastal Plain; Sand Lobes on Stewart Island as Probable Impact-Tsunami Deposits; Distal Impact Ejecta, Uppermost Eocene, Texas Coastal Plain; and Continental Impact Debris in the Eltanin Impact Layer.

  15. Physical Modeling of Flow Over Gale Crater, Mars: Laboratory Measurements of Basin Secondary Circulations

    NASA Astrophysics Data System (ADS)

    Bristow, N.; Blois, G.; Kim, T.; Anderson, W.; Day, M. D.; Kocurek, G.; Christensen, K. T.

    2017-12-01

    Impact craters, common large-scale topographic features on the surface of Mars, are circular depressions delimited by a sharp ridge. A variety of crater fill morphologies exist, suggesting that complex intracrater circulations affect their evolution. Some large craters (diameter > 10 km), particularly at mid latitudes on Mars, exhibit a central mound surrounded by circular moat. Foremost among these examples is Gale crater, landing site of NASA's Curiosity rover, since large-scale climatic processes early in in the history of Mars are preserved in the stratigraphic record of the inner mound. Investigating the intracrater flow produced by large scale winds aloft Mars craters is key to a number of important scientific issues including ongoing research on Mars paleo-environmental reconstruction and the planning of future missions (these results must be viewed in conjunction with the affects of radial katabatibc flows, the importance of which is already established in preceding studies). In this work we consider a number of crater shapes inspired by Gale morphology, including idealized craters. Access to the flow field within such geometrically complex topography is achieved herein using a refractive index matched approach. Instantaneous velocity maps, using both planar and volumetric PIV techniques, are presented to elucidate complex three-dimensional flow within the crater. In addition, first- and second-order statistics will be discussed in the context of wind-driven (aeolian) excavation of crater fill.

  16. Recognition of Terrestrial Impact Craters with COSMO-SkyMed

    NASA Astrophysics Data System (ADS)

    Virelli, M.; Staffieri, S.; Battagliere, M. L.; Komatsu, G.; Di Martino, M.; Flamini, E.; Coletta, A.

    2016-08-01

    All bodies having a solid surface, without distinction, show, with greater or lesser evidence, the marks left by the geological processes they undergone during their evolution. There is a geomorphological feature that is evident in all the images obtained by the probes sent to explore our planetary system: impact craters.Craters formed by the impact of small cosmic bodies have dimensions ranging from some meters to hundreds of kilometers. However, for example on the Lunar regolith particles, have been observed also sub- millimeter craters caused by dust impacts. The kinetic energy of the impactor, which velocity is in general of the order of tens km/s, is released in fractions of a second, generally in a explosive way, generating complex phenomena that transform not only the morphology of the surface involved by the impact, but also the mineralogy and crystallography of the impacted material. Even our planet is not immune to these impacts. At present, more than 180 geological structures recognized as of impact origin are known on Earth.In this article, we aim to show how these impact structures on Earth's surface are observed from space. To do this, we used the images obtained by the COSMO-SkyMed satellite constellation.Starting from 2013, ASI proposed, in collaboration with the Astrophysical Observatory of Turin and University D'Annunzio of Chieti, the realization of an Encyclopedic Atlas of Terrestrial Impact Craters using COSMO-SkyMed data that will become the first atlas of all recognized terrestrial impact craters based on images acquired by a X band radar. To observe these impact craters all radar sensor modes have been used, according to the size of the analyzed crater.The project includes research of any new features that could be classified as impact craters and, for the sites whereby it is considered necessary, the implementation of a geological survey on site to validate the observations.In this paper an overview of the Atlas of Terrestrial Impact Craters using COSMO-SkyMed data, currently under review for publication, is provided.

  17. Popigai Impact Structure Modeling: Morphology and Worldwide Ejecta

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.; Artemieva, N. A.; Pierazzo, E.

    2004-01-01

    The approx. 100 km in diameter, 35.7 0.2 Ma old Popigai structure [1], northern Siberia (Russia), is the best-preserved of the large terrestrial complex crater structures containing a central-peak ring [2- 4]. Although remotely located, the excellent outcrops, large number of drill cores, and wealth of geochemical data make Popigai ideal for the general study of the cratering processes. It is most famous for its impact-diamonds [2,5]. Popigai is the best candidate for the source crater of the worldwide late Eocene ejecta [6,7].

  18. Preliminary Geological Map of the Ac-H-2 Coniraya Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Hiesinger, H.; Pasckert, J. H.; Williams, D. A.; Crown, D. A.; Mest, S. C.; Buczkowski, D.; Schenk, P.; Scully, J. E. C.; Jaumann, R.; Roatsch, T.; Preusker, F.; Platz, T.; Nathues, A.; Hoffmann, M.; Marchi, S.; De Sanctis, M. C.; Russell, C. T.; Raymond, C. A.

    2015-12-01

    To better understand the geologic history of dwarf planet Ceres, the surface has been divided into 15 quadrangles that are systematically mapped on the basis of images obtained by NASA's Dawn spacecraft, which began orbiting Ceres in April 2015. We will report on preliminary mapping results for the Ac-H-2 Coniraya Quadrangle based on Framing Camera (FC) mosaics from the Dawn Approach (1.3 km/px) and Survey (415 m/px) orbits. This quadrangle is located between 21-66°N and 0-90°E and is dominated by mostly highly degraded impact craters of diameters between 50 and 200 km and clusters of small- to midsize impact craters. Color data show that this quadrangle is generally darker than most regions of the southern hemisphere. Two prominent impact craters in this quadrangle have been named Coniraya and Gaue crater, respectively. Coniraya is the largest more or less intact impact crater with a diameter of 136 km, centered at 65.8°N/40.5°E. It appears shallow and its crater rim is heavily degraded but still continuous. At the current image resolution, textural differences between the interior and exterior of the crater are not visible. With a diameter of 84 km, Gaue crater appears to be the freshest large impact crater in this quadrangle. It is located at the eastern border of the Coniraya Quadrangle with a small central peak at 30°N/85.7°E. The crater rim is quite sharp and the ejecta blanket can be traced around the crater to a distance of ~200km from the crater center. Most of the crater floor around the central peak is covered by a smooth uniform unit with a lower impact crater population than the surrounding surfaces. Color data show that this smooth unit is darker than the surrounding surfaces. A similar unit can be found on the floor of a complex cluster of 10-56 km diameter craters at 32°N/40°E. With upcoming higher resolution data we will refine our geologic map and will specifically investigate possible formation processes of these smooth units.

  19. The Degradational History of Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Parker, T. J.; Crumpler, L. S.; Wilson, S. A.; Golombek, M. P.; Mittlefehldt, D. W.

    2015-01-01

    Endeavour crater (2.28 deg S, 354.77 deg E) is a Noachian-aged 22 km-diameter impact structure of complex morphology in Meridiani Planum. The degradation state of the crater has been studied using Mars Reconnaissance Orbiter and Opportunity rover data. Exposed rim segments rise approximately 10 m to approximately 100 m above the level of the embaying Burns Formation and the crater is 200-500 m deep with the southern interior wall exposing over approximately 300 m relief. Both pre-impact rocks (Matijevic Formation) and Endeavour impact ejecta (Shoemaker Formation) are present at Cape York, but only the Shoemaker crops out (up to approximately 140 m) along the rim segment from Murray Ridge to Cape Tribulation. Study of pristine complex craters Bopolu and Tooting, and morphometry of other martian complex craters, enables us to approximate Endeavour's pristine form. The original rim likely averaged 410 m (+/-)200 m in elevation and a 250-275 m section of ejecta ((+/-)50-60 m) would have composed a significant fraction of the rim height. The original crater depth was likely between 1.5 km and 2.2 km. Comparison between the predicted original and current form of Endeavour suggests approximately 100-200 m rim lowering that removed most ejecta in some locales (e.g., Cape York) while thick sections remain elsewhere (e.g., Cape Tribulation). Almost complete removal of ejecta at Cape York and minimal observable offset across fractures indicates current differences in rim relief are not solely due to original rim relief. Rim segments are embayed by approximately 100-200 m thickness of plains rocks outside the crater, but thicker deposits lie inside the crater. Ventifact textures confirm ongoing eolian erosion with the overall extent difficult to estimate. Analogy with degraded Noachian-aged craters south of Endeavour, however, suggests fluvial erosion dominated rim degradation in the Noachian and was likely followed by approximately 10s of meters modification by alternate processes. Such degradation is consistent with 1) the interpretation of a pediment on the rim flanks of Endeavour, 2) the formation of features such as Marathon Valley, 3) the nearly complete removal of ejecta at Cape York, 4) preservation of a thicker section of ejecta at Cape Tribulation and perhaps, 5) the origin of some gaps in the rim around the crater. A paucity of debris shed from the rim indicates most degradation occurred prior to embayment by the plains rocks.

  20. The geomorphology of (21) Lutetia: Results from the OSIRIS imaging system onboard ESA's Rosetta spacecraft

    NASA Astrophysics Data System (ADS)

    Thomas, N.; Barbieri, C.; Keller, H. U.; Lamy, P.; Rickman, H.; Rodrigo, R.; Sierks, H.; Wenzel, K. P.; Cremonese, G.; Jorda, L.; Küppers, M.; Marchi, S.; Marzari, F.; Massironi, M.; Preusker, F.; Scholten, F.; Stephan, K.; Barucci, M. A.; Besse, S.; El-Maarry, M. R.; Fornasier, S.; Groussin, O.; Hviid, S. F.; Koschny, D.; Kührt, E.; Martellato, E.; Moissl, R.; Snodgrass, C.; Tubiana, C.; Vincent, J.-B.

    2012-06-01

    The surface of (21) Lutetia is highly complex with significant interactions between ancient and more recent structures. This work attempts to summarize the surface geomorphology observed using the high resolution images from OSIRIS, the imaging system onboard the European Space Agency's Rosetta spacecraft. A wide range of surface morphologies are seen including heavily cratered terrain, extensive sets of lineaments, young impact craters, and a ridge, the height of which is more than 1/5th of the mean radius of the body. Very young and very old terrains (as inferred from crater densities) are seen in close proximity. The longest continuous lineament is over 80 km long. The lineaments show regional-dependent organization and structure. Several categories of lineament can be described. Lineaments radial to impact craters as seen on other asteroidal bodies are mostly absent. Although the lineaments may be of seismic origin (and possibly the result of several impact-induced events), impacts producing recent large craters place constraints on seismic phenomena. In particular, stronger attenuation of shocks than seen on other asteroidal bodies seems to be required. Inhomogeneous energy transport, possibly matching observed inhomogeneous ejecta deposition may offer explanations for some of the observed phenomena. Some impact craters show unusual forms, which are probably the result of impact into a surface with relief comparable to the resultant crater diameter and/or oblique impact. There is evidence that re-surfacing through landslides has occurred at several places on the object.

  1. Styles of crater gradation in Southern Ismenius Lacus, Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    Preserved morphology around selected impact craters together with results from study of long term gradational evolution are used to assess processes responsible for crater modification in southern Ismenius Lacus. Results are compared with the gradational styles of selected terrestrial craters. Although most craters in the region display complex primary morphologies, some first order comparisons with the gradational styles around simple terrestrial craters may be valid. Nearly complete high resolution coverage provides a basis for studying morphologic features at scales comparable to those observed in LANDSAT TM images of terrestrial craters. It is concluded that the relative importance of gradational processes differs around the terrestrial and Martian craters considered here: Martian rimless morphologies are produced by mass wasting, eolian deposition/erosion, and limited fluvial incisement resulting in downwasting and significant backwasting of crater walls.

  2. Paradigm lost: Venus crater depths and the role of gravity in crater modification

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.

    1992-01-01

    Previous to Magellan, a convincing case had been assembled that predicted that complex impact craters on Venus were considerably shallower than their counterparts on Mars, Mercury, the Moon, and perhaps even Earth. This was fueled primarily by the morphometric observation that, for a given diameter (D), crater depth (d) seems to scale inversely with surface gravity for the other planets in the inner solar system. The unpredicted depth of fresh impact craters on Venus argues against a simple inverse relationship between surface gravity and crater depth. Factors that could contribute to deep craters on Venus include (1) more efficient excavation on Venus, possibly reflecting rheological effects of the hot venusian environment; (2) more melting and efficient removal of melt from the crater cavity; and (3) enhanced ejection of material out of the crater, possibly as a result of entrainment in an atmosphere set in motion by the passage of the projectile. The broader issue raised by the venusian crater depths is whether surface gravity is the predominant influence on crater depths on any planet. While inverse gravity scaling of crater depths has been a useful paradigm in planetary cratering, the venusian data do not support this model and the terrestrial data are equivocal at best. The hypothesis that planetary gravity is the primary influence over crater depths and the paradigm that terrestrial craters are shallow should be reevaluated.

  3. Geology of McLaughlin Crater, Mars: A Unique Lacustrine Setting with Implications for Astrobiology

    NASA Technical Reports Server (NTRS)

    Michalski, J. R.; Niles, P. B.; Rogers, A. D.; Johnson, S. S.; Ashley, J. W.; Golombek, M. P.

    2016-01-01

    McLaughlin crater is a 92-kmdiameter Martian impact crater that contained an ancient carbonate- and clay mineral-bearing lake in the Late Noachian. Detailed analysis of the geology within this crater reveals a complex history with important implications for astrobiology [1]. The basin contains evidence for, among other deposits, hydrothermally altered rocks, delta deposits, deep water (>400 m) sediments, and potentially turbidites. The geology of this basin stands in stark contrast to that of some ancient basins that contain evidence for transient aqueous processes and airfall sediments (e.g. Gale Crater [2-3]).

  4. Earth Observations taken by the Expedition 17 Crew

    NASA Image and Video Library

    2008-10-21

    ISS017-E-020538 (21 Oct. 2008) --- Arkenu Craters 1 and 2 in Libya are featured in this image photographed by an Expedition 17 crewmember on the International Space Station. Geologists often study features on Earth, such as impact craters, to gain insight into processes that occur on other planets. On Earth, more than 150 impact craters have been identified on the continents, but only a few of these are classified as double impact craters. One such example, the Arkenu Craters in northern Africa, is shown in this image. Arkenu 1 and 2 are double impact structures located in eastern Libya (22.04 degrees north latitude and 23.45 degrees east longitude) in the Sahara desert, with diameters of approximately 6.8 kilometers and 10.3 kilometers, respectively. The craters are unusual in that they both exhibit concentric annular ridge structures (gray circles in the image indicate the position of the outermost visible ridges). In many terrestrial complex craters these features are highly eroded and no longer visible. While the circular structure of these features had been noted, the impact origin hypothesis was strengthened in December 2003 when a field team observed shatter cones -- conical-shaped features in rocks created by the high shock pressures generated during impact. Large outcrops of impact breccias -- a jumble of rock fragments generated at the impact site that are now cemented together into an identifiable rock layer -- were also observed by the field team. Two impactors, each approximately 500 meters in diameter, are thought to have created the craters. According to scientists, the age of the impact event has been dated as occurring less than 140 million years ago. While the presence of shatter cones and impact breccias is generally considered to be strong evidence for meteor impact, some scientists now question the interpretation of these features observed at the Arkenu structures and suggest that they were caused by erosive and volcanic processes. At present, both craters are being crossed by linear dunes extending northeast-southwest -- the superposition of the dunes across the annular ridges indicates that they are much younger than the craters.

  5. LROC Advances in Lunar Science

    NASA Astrophysics Data System (ADS)

    Robinson, M. S.

    2012-12-01

    Since entering orbit in 2009 the Lunar Reconnaissance Orbiter Camera (LROC) has acquired over 700,000 Wide Angle Camera (WAC) and Narrow Angle Camera (NAC) images of the Moon. This new image collection is fueling research into the origin and evolution of the Moon. NAC images revealed a volcanic complex 35 x 25 km (60N, 100E), between Compton and Belkovich craters (CB). The CB terrain sports volcanic domes and irregular depressed areas (caldera-like collapses). The volcanic complex corresponds to an area of high-silica content (Diviner) and high Th (Lunar Prospector). A low density of impact craters on the CB complex indicates a relatively young age. The LROC team mapped over 150 volcanic domes and 90 volcanic cones in the Marius Hills (MH), many of which were not previously identified. Morphology and compositional estimates (Diviner) indicate that MH domes are silica poor, and are products of low-effusion mare lavas. Impact melt deposits are observed with Copernican impact craters (>10 km) on exterior ejecta, the rim, inner wall, and crater floors. Preserved impact melt flow deposits are observed around small craters (25 km diam.), and estimated melt volumes exceed predictions. At these diameters the amount of melt predicted is small, and melt that is produced is expected to be ejected from the crater. However, we observe well-defined impact melt deposits on the floor of highland craters down to 200 m diameter. A globally distributed population of previously undetected contractional structures were discovered. Their crisp appearance and associated impact crater populations show that they are young landforms (<1 Ga). NAC images also revealed small extensional troughs. Crosscutting relations with small-diameter craters and depths as shallow as 1 m indicate ages <50 Ma. These features place bounds on the amount of global radial contraction and the level of compressional stress in the crust. WAC temporal coverage of the poles allowed quantification of highly illuminated regions, including one site that remains lit for 94% of a year (longest eclipse period of 43 hours). Targeted NAC images provide higher resolution characterization of key sites with permanent shadow and extended illumination. Repeat WAC coverage provides an unparalleled photometric dataset allowing spatially resolved solutions (currently 1 degree) to Hapke's photometric equation - data invaluable for photometric normalization and interpreting physical properties of the regolith. The WAC color also provides the means to solve for titanium, and distinguish subtle age differences within Copernican aged materials. The longevity of the LRO mission allows follow up NAC and WAC observations of previously known and newly discovered targets over a range of illumination and viewing geometries. Of particular merit is the acquisition of NAC stereo pairs and oblique sequences. With the extended SMD phase, the LROC team is working towards imaging the whole Moon with pixel scales of 50 to 200 cm.

  6. Original size of the Vredefort structure, South Africa

    NASA Technical Reports Server (NTRS)

    Therriault, A. M.; Reid, A. M.; Reimold, W. U.

    1993-01-01

    The Vredefort structure is located approximately 120 km southwest of Johannesburg, South Africa, and is deeply eroded. Controversies remain on the origin of this structure with the most popular hypotheses being: (1) by impact cratering about 2.0 Ga; (2) as a cryptoexplosion structure about 2.0 Ga; and (3) by purely tectonic processes starting at about 3.0 Ga and ending with the Vredefort event at 2.0 Ga. In view of recent work in which the granophyre dikes are interpreted as the erosional remants of a more extensive impact melt sheet, injected downward into the underlying country rocks, the impact origin hypothesis for Vredefort is adopted. In order to estimate the original dimensions of the Vredefort impact structure, it is assumed that the structure was initially circular, that its predeformation center corresponds to the center of the granitic core, and that the pre-Vredefort geology of the area prior to approximately 2.0 Ga ago is as suggested by Fletcher and Reimold. The spatial relationship between shock metamorphic effects, the shock pressures they record, and the morphological features of the crater were established for a number of large terrestrial craters. The principles of crater formation at large complex impact structures comparable in size to Vredefort were also established, although many details remain unresolved. An important conclusion is that the transient crater, which is formed directly by excavation and displacement by the shock-induced cratering flow-field (i.e., the particle velocity flow field existing in the region of the transient crater but behind the initial outgoing shock front), is highly modified during the late stage processes. The original transient crater diameter lies well within the final rim of the crater, which is established by structural movements during late-stage cavity modification.

  7. Depth-diameter ratios for Martian impact craters: Implications for target properties and episodes of degradation

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1993-01-01

    This study determines crater depth through use of photoclinometric profiles. Random checks of the photoclinometric results are performed using shadow estimation techniques. The images are Viking Orbiter digital format frames; in cases where the digital image is unusable for photoclinometric analysis, shadow estimation is used to determine crater depths. The two techniques provide depth results within 2 percent of each other. Crater diameters are obtained from the photoclinometric profiles and checked against the diameters measured from the hard-copy images using a digitizer. All images used in this analysis are of approximately 40 m/pixel resolution. The sites that have been analyzed to date include areas within Arabia, Maja Valles, Memnonia, Acidalia, and Elysium. Only results for simple craters (craters less than 5 km in diameter) are discussed here because of the low numbers of complex craters presently measured in the analysis. General results indicate that impact craters are deeper than average. A single d/D relationship for fresh impact craters on Mars does not exist due to changes in target properties across the planet's surface. Within regions where target properties are approximately constant, however, d/D ratios for fresh craters can be determined. In these regions, the d/D ratios of nonpristine craters can be compared with the fresh crater d/D relationship to obtain information on relative degrees of crater degradation. This technique reveals that regional episodes of enhanced degradation have occurred. However, the lack of statistically reliable size-frequency distribution data prevents comparison of the relative ages of these events between different regions, and thus determination of a large-scale episode (or perhaps several episodes) cannot be made at this time.

  8. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data.

    PubMed

    Martinot, M; Besse, S; Flahaut, J; Quantin-Nataf, C; Lozac'h, L; van Westrenen, W

    2018-02-01

    Moon Mineralogy Mapper (M 3 ) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M 3 data, using a custom-made method for M 3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  9. Mineralogical Diversity and Geology of Humboldt Crater Derived Using Moon Mineralogy Mapper Data

    NASA Astrophysics Data System (ADS)

    Martinot, M.; Besse, S.; Flahaut, J.; Quantin-Nataf, C.; Lozac'h, L.; van Westrenen, W.

    2018-02-01

    Moon Mineralogy Mapper (M3) spectroscopic data and high-resolution imagery data sets were used to study the mineralogy and geology of the 207 km diameter Humboldt crater. Analyses of M3 data, using a custom-made method for M3 spectra continuum removal and spectral parameters calculation, reveal multiple pure crystalline plagioclase detections within the Humboldt crater central peak complex, hinting at its crustal origin. However, olivine, spinel, and glass are observed in the crater walls and rims, suggesting these minerals derive from shallower levels than the plagioclase of the central peak complex. High-calcium pyroxenes are detected in association with volcanic deposits emplaced on the crater's floor. Geologic mapping was performed, and the age of Humboldt crater's units was estimated from crater counts. Results suggest that volcanic activity within this floor-fractured crater spanned over a billion years. The felsic mineralogy of the central peak complex region, which presumably excavated deeper material, and the shallow mafic minerals (olivine and spinel) detected in Humboldt crater walls and rim are not in accordance with the general view of the structure of the lunar crust. Our observations can be explained by the presence of a mafic pluton emplaced in the anorthositic crust prior to the Humboldt-forming impact event. Alternatively, the excavation of Australe basin ejecta could explain the observed mineralogical detections. This highlights the importance of detailed combined mineralogical and geological remote sensing studies to assess the heterogeneity of the lunar crust.

  10. Gradational evolution of young, simple impact craters on the Earth

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Schultz, P. H.

    1991-01-01

    From these three craters, a first order gradational evolutionary sequence can be proposed. As crater rims are reduced by backwasting and downwasting through fluvial and mass wasting processes, craters are enlarged by approx. 10 pct. Enlargement of drainages inside the crater eventually forms rim breaches, thereby capturing headward portions of exterior drainages. At the same time, the relative importance of gradational processes may reverse on the ejecta: aeolian activity may supersede fluvial incisement and fan formation at late stages of modification. Despite actual high drainage densities on the crater exterior during early stages of gradation, the subtle scale of these systems results in low density estimates from air photos and satellite images. Because signatures developed on surfaces around all three craters appear to be mostly gradient dependent, they may not be unique to simple crater morphologies. Similar signatures may develop on portions of complex craters as well; however, important differences may also occur.

  11. Seismic expression of the Chesapeake Bay impact crater: Structural and morphologic refinements based on new seismic data

    USGS Publications Warehouse

    Poag, C. Wylie; Hutchinson, Deborah R.; Colman, Steve M.; Lee, Myung W.; Dressler, B.O.; Sharpton, V.L.

    1999-01-01

    This work refines previous interpretations of the structure and morphology of the Chesapeake Bay impact crater on the basis of more than 1,200 km of multichannel and single-channel seismic reflection profiles collected in the bay and on the adjacent continental shelf. The outer rim, formed in sedimentary rocks, is irregularly circular, with an average diameter of ~85 km. A 20–25-km-wide annular trough separates the outer rim from an ovate, crystalline peak ring of ~200 m of maximum relief. The inner basin is 35–40 km in diameter, and at least 1.26 km deep. A crystalline(?) central peak, approximately 1 km high, is faintly imaged on three profiles, and also is indicated by a small positive Bouguer gravity anomaly. These features classify the crater as a complex peak-ring/central peak crater. Chesapeake Bay Crater is most comparable to the Ries and Popigai Craters on Earth; to protobasins on Mars, Mercury, and the Moon; and to type D craters on Venus.

  12. Compositional stratigraphy of crustal material from near-infrared spectra

    NASA Technical Reports Server (NTRS)

    Pieters, Carle M.

    1987-01-01

    An Earth-based telescopic program to acquire near-infrared spectra of freshly exposed lunar material now contains data for 17 large impact craters with central peaks. Noritic, gabbroic, anorthositic and troctolitic rock types can be distinguished for areas within these large craters from characteristic absorptions in individual spectra of their walls and central peaks. Norites dominate the upper lunar crust while the deeper crustal zones also contain significant amounts of gabbros and anorthosites. Data for material associated with large craters indicate that not only is the lunar crust highly heterogeneous across the nearside, but that the compositional stratigraphy of the lunar crust is nonuniform. Crustal complexity should be expected for other planetary bodies, which should be studied using high spatial and spectral resolution data in and around large impact craters.

  13. Melt production in large-scale impact events: Implications and observations at terrestrial craters

    NASA Technical Reports Server (NTRS)

    Grieve, Richard A. F.; Cintala, Mark J.

    1992-01-01

    The volume of impact melt relative to the volume of the transient cavity increases with the size of the impact event. Here, we use the impact of chondrite into granite at 15, 25, and 50 km s(sup -1) to model impact-melt volumes at terrestrial craters in crystalline targets and explore the implications for terrestrial craters. Figures are presented that illustrate the relationships between melt volume and final crater diameter D(sub R) for observed terrestrial craters in crystalline targets; also included are model curves for the three different impact velocities. One implication of the increase in melt volumes with increasing crater size is that the depth of melting will also increase. This requires that shock effects occurring at the base of the cavity in simple craters and in the uplifted peaks of central structures at complex craters record progressively higher pressures with increasing crater size, up to a maximum of partial melting (approx. 45 GPa). Higher pressures cannot be recorded in the parautochthonous rocks of the cavity floor as they will be represented by impact melt, which will not remain in place. We have estimated maximum recorded pressures from a review of the literature, using such observations as planar features in quartz and feldspar, diaplectic glasses of feldspar and quartz, and partial fusion and vesiculation, as calibrated with estimates of the pressures required for their formation. Erosion complicates the picture by removing the surficial (most highly shocked) rocks in uplifted structures, thereby reducing the maximum shock pressures observed. In addition, the range of pressures that can be recorded is limited. Nevertheless, the data define a trend to higher recorded pressures with crater diameter, which is consistent with the implications of the model. A second implication is that, as the limit of melting intersects the base of the cavity, central topographic peaks will be modified in appearance and ultimately will not occur. That is, the peak will first develop a central depression, due to the flow of low-strength melted materials, when the melt volume begins to intersect the transient-cavity base.

  14. Target and Projectile: Material Effects on Crater Excavation and Growth

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Burleson, T.; Cintala, Mark J.

    2010-01-01

    Scaling relationships allow the initial conditions of an impact to be related to the excavation flow and final crater size and have proven useful in understanding the various processes that lead to the formation of a planetary-scale crater. In addition, they can be examined and tested through laboratory experiments in which the initial conditions of the impact are known and ejecta kinematics and final crater morphometry are measured directly. Current scaling relationships are based on a point-source assumption and treat the target material as a continuous medium; however, in planetary-scale impacts, this may not always be the case. Fragments buried in a megaregolith, for instance, could easily approach or exceed the dimensions of the impactor; rubble-pile asteroids could present similar, if not greater, structural complexity. Experiments allow exploration into the effects of target material properties and projectile deformation style on crater excavation and dimensions. This contribution examines two of these properties: (1) the deformation style of the projectile, ductile (aluminum) or brittle (soda-lime glass) and (2) the grain size of the target material, 0.5-1 mm vs. 1-3 mm sand.

  15. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terracestyle slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric fault-bound graben, with both inwardly and outwardly facing faults-carps. This type of multi-ring structure is directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting.

  16. A Colorful Look at the Birt E Crater on the Moon

    NASA Image and Video Library

    2014-07-17

    This false color image of Birt E crater shows the topography of the moon and it is thought to be the source region for lava that carved out Rima Birt, a rille in Mare Nubium. This mare is older than 3.4 billion years, and so is this vent! LROC NAC M1144849711L/R with the a color DTM overlaid; North is up. Download high res: lroc.sese.asu.edu/posts/794 Credit: NASA/GSFC/Arizona State University More info: Birt E crater was not created like most craters on the Moon; there was no meteorite impact. Lava sputtered out of this pyroclastic vent in Mare Nubium over 3.4 billion years ago, dispersing lava onto the surface and leaving the crater we see today. How can we tell it is a volcanic vent and not an impact crater? Impact craters and volcanic vents can be differentiated because vents often have an irregular or elongated shape (as with Birt E). Impact craters are usually circular in shape, created by the shockwave during an impact event. Also, the vee-shape of this crater is likely a product of the formation mechanism. Vee-shaped vents are thought to be formed from a pyroclastic eruption. Gasses fractionating out of the liquid rock create violent events during eruptions. Explosive eruptions created the shape that we see today, but Birt E could have had a complex history with effusive eruptions forming Rima Birt, a rille flowing from Birt E to the SE. Over long enough time scales Birt E will be filled in with ejecta from newly formed craters around Mare Nubium or by mass wasting of the walls into the crater. Let’s enjoy this ancient crater today while we still can! NASA image use policy. NASA Goddard Space Flight Center enables NASA’s mission through four scientific endeavors: Earth Science, Heliophysics, Solar System Exploration, and Astrophysics. Goddard plays a leading role in NASA’s accomplishments by contributing compelling scientific knowledge to advance the Agency’s mission. Follow us on Twitter Like us on Facebook Find us on Instagram

  17. Degradation of Endeavour Crater, Mars

    NASA Technical Reports Server (NTRS)

    Grant, J. A.; Crumpler, L. S.; Parker, T. J.; Golombek, M. P.; Wilson, S. A.; Mittlefehldt, D. W.

    2015-01-01

    The Opportunity rover has traversed portions of two western rim segments of Endeavour, a 22 km-diameter crater in Meridiani Planum, for the past three years. The resultant data enables the evaluation of the geologic expression and degradation state of the crater. Endeavour is Noa-chian-aged, complex in morphology, and originally may have appeared broadly similar to the more pristine 20.5 km-diameter Santa Fe complex crater in Lunae Palus (19.5degN, 312.0degE). By contrast, Endeavour is considerably subdued and largely buried by younger sulfate-rich plains. Exposed rim segments dubbed Cape York (CY) and Solander Point/Murray Ridge/Pillinger Point (MR) located approximately1500 m to the south reveal breccias interpreted as remnants of the ejecta deposit, dubbed the Shoemaker Formation. At CY, the Shoemaker Formation overlies the pre-impact rocks, dubbed the Matijevic Formation.

  18. Impact Lithologies and Post-Impact Hydrothermal Alteration Exposed by the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Zurcher, Lukas; Horz, Friedrich

    2003-01-01

    The Chicxulub Scientific Drilling Project recovered a continuous core from the Yaxcopoil-1 (YAX-1) borehole, which is approx.60-65 km from the center of the Chicxulub structure, approx.15 km beyond the limit of the estimated approx.50 km radius transient crater (excavation cavity), but within the rim of the estimated approx.90 km radius final crater. Approximately approx.100 m of melt-bearing impactites were recoverd from a depth of 794 to 895 m, above approx.600 m of underlying megablocks of Cretaceous target sediments, before bottoming at 1511 m. Compared to lithologies at impact craters like the Ries, the YAX-1 impactite sequence is incredibly rich in impact melts of unusual textural variety and complexity. The impactite sequence has also been altered by hydrothermal activity that may have largely been produced by the impact event.

  19. A search for Potential Impact Sites in Southern Argentina

    NASA Astrophysics Data System (ADS)

    Rocca, M. C. L.

    The Southern part of Argentina is composed of five Provinces; Tierra del Fuego, Santa Cruz, Chubut, Rio Negro and Neuquen. A search for potential impact sites was performed by the author through the examination of 76 color LANDSAT satellite images ( 1:250,000 - resolution = 250 meters ) at the Instituto Geografico Militar ( IGM ) of Buenos Aires city. When a potential candidate was found a more detailed study of the site was done. If available the radar X-SAR satellite images of the Deutsche Forschungsanstalt fur Luft-und Raumfahrt, (DLR), Berlin, Germany , were also examined. The final step was to perform a review of the available published geologic information of each site at the Servicio Geologico y Minero Argentino ( SEGEMAR ), ( =Geological Survey of Argentina ), in Buenos Aires. The resulting catalogue contains information about sites where possible simple crater or complex impact structures could be present. Each case demands future detailed and `in situ' research by an impact cratering specialist. --Tierra del Fuego: TF1 ) Ushuaia 5569-II, No 218. Cerro Taarsh, Estancia San Justo. Possible complex structure. Semi-circular area of concentric low ridges. Estimated diameter : 12 km. Probably very eroded. --Santa Cruz: SC1 ) Gobernador Gregores 4969-I, No 127. Estancia La Aragonesa Possible eroded complex structure. Circular area of low ridges, estimated diameter: 10 km.. Bull's eye like morphology. SC2 ) Gobernador Gregores 4969-I, No 127. Gran Altiplanicie Central. Possible simple crater in basalts. Diameter: 1 km.. SC3 ) Tres Lagos 4972-IV, No 106. Meseta del Bagual Chico. Possible perfectly circular simple crater in basalts. Diameter: 1.0 km.. SC4 )Paso Rio Bote 5172-II, No 20. Rio Pelque, Ruta Provincial No 5. A circular bowl-shaped structure is present on fluvial deposits of pleistocenic age. Diameter: 3.5 km.. SC5 ) Caleta Olivia 4769-II, No 28. North of Cerro Doce Grande. Possible complex structure of concentric circular rings of ridges. SC6 ) Caleta Olivia 4769-II, No 28. NW shore of Laguna Sirven. Possible simple crater of 2.5 km. Most probably, the circular crater is a basaltic caldera of upper Miocene's age. SC7 ) Destacamento La Maria 4769-II, No 188. Estancia Los Mellizos, Ruta Provincial No 39. Possible eroded and covered complex structure. In this site there is a semi-circular feature of ridges and low hills. Diameter: 15 km. Topographic map shows the same pattern. The DLR's X-SAR images show a clear semi-circular feature of ridges and hills in this site. SC8 ) Hipolito Irigoyen 4772-IV, No 116. Meseta del Lago Buenos Aires. Possible perfectly circular simple crater of 1 Km. Neuquen: N1 ) Picun Leufu 3969-III No 14. Meseta de la Barda Negra. Nice perfectly circular possible simple crater in black Miocene's ( 14-10 Ma ) basaltic plateau. Diameter: 1.5 km.. Possible raised rim. Fresh aspect. No visible lava flows .

  20. Initial Assessment of the Excavation and Deposition of Impact Lithologies Exposed by the Chicxulub Scientific Drilling Project, Yaxcopoil, Mexico

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Horz, Friedrich; Zurcher, Lukas

    2003-01-01

    The Chicxulub Scientific Drilling Project (www.icdp-online.de) recovered a continuous core from a depth of 404 m (in Tertiary cover) to 1511 m (in a megablock of Cretaceous target sediments), penetrating approx. 100 m of melt-bearing impactites between 794 and 895 m. The Yaxcopoil-1 (YAX-1) borehole is approx. 60-65 km from the center of the Chicxulub structure, which is approx. 15 km beyond the limit of the estimated approx. 50 km radius transient crater (excavation cavity), but within the rim of the estimated approx. 90 km radius final crater. In general, the impactite sequence is incredibly rich in impact melts of unusual textural variety and complexity, quite unlike melt-bearing impact formations from other terrestrial craters.

  1. Ar-Ar dating techniques for terrestrial meteorite impacts

    NASA Astrophysics Data System (ADS)

    Kelley, S. P.

    2003-04-01

    The ages of the largest (>100 km) known impacts on Earth are now well characterised. However the ages of many intermediate sized craters (20-100 km) are still poorly known, often the only constraints are stratigraphic - the difference between the target rock age and the age of crater filling sediments. The largest impacts result in significant melt bodies which cool to form igneous rocks and can be dated using conventional radiometric techniques. Smaller impacts give rise to thin bands of melted rock or melt clasts intimately mixed with country rock clasts in breccia deposits, and present much more of a challenge to dating. The Ar-Ar dating technique can address a wide variety of complex and heterogeneous samples associated with meteorite impacts and obtain reasonable ages. Ar-Ar results will be presented from a series of terrestrial meteorite impact craters including Boltysh (65.17±0.64 Ma, Strangways (646±42 Ma), and St Martin (220±32 Ma) and a Late Triassic spherule bed, possibly representing distal deposits from Manicouagan (214±1 Ma) crater. Samples from the Boltysh and Strangways craters demonstrate the importance of rapid cooling upon the retention of old ages in glassy impact rocks. A Late Triassic spherule bed in SW England is cemented by both carbonate and K-feldspar cements allowing Ar-Ar dating of fine grained cement to place a mimimum age upon the age of the associated impact. An age of 214.7±2.5 Ma places the deposit with errors of the age of the Manicouagan impact, raising the possibility that it may represent a distal deposit (the deposit lay around 2000 km away from the site of the Manicouagan crater during the Late Triassic). Finally the limits of the technique will be demonstrated using an attempt to date melt rocks from the St Martin Crater in Canada.

  2. Preliminary Geological Map of the Ac-H-3 Dantu Quadrangle of Ceres: An Integrated Mapping Study Using Dawn Spacecraft Data

    NASA Astrophysics Data System (ADS)

    Kneissl, T.; Schmedemann, N.; Neesemann, A.; Williams, D. A.; Crown, D. A.; Mest, S. C.; Buczkowski, D.; Scully, J. E. C.; Frigeri, A.; Ruesch, O.; Hiesinger, H.; Walter, S. H. G.; Jaumann, R.; Roatsch, T.; Preusker, F.; Nathues, A.; Platz, T.; Hoffmann, M.; Schäfer, M.; De Sanctis, M. C.; Raymond, C. A.; Russell, C. T.; Kersten, E.; Naß, A.

    2015-12-01

    We are using Dawn spacecraft data to create a geologic map of the Ac-H-3 Dantu Quadrangle of dwarf planet Ceres. The quadrangle is located between 21-66˚N and 90-180˚E and includes the following dominant features: 1) the central and northern portion of the 124.6 km diameter impact crater Dantu; 2) crater chains and/or grooves oriented in an east-west direction; 3) a portion of the 84 km diameter impact crater Gaue, whose ejecta blanket covers the SW corner of the quadrangle. Dantu is a complex impact crater showing terraces, a central pit structure, concentric fractures, and smooth deposits on the crater floor. The materials interpreted to be ejecta deposits of Dantu show low crater frequencies and dominate the southern half of the quadrangle. These deposits appear to be relatively bright and correspond to parts of the #2 high albedo region observed by (1) with the HST indicating different composition and/or material properties than the surroundings. The east-west striking crater chains and grooves are mainly found in the southern half of the quadrangle. They seem to be connected to the crater chains found in Ac-H-4 Ezinu, the neighboring quadrangle to the east, and are potentially related to ballistic ejecta emplacement (see 2). Further work will be focused on Dantu crater and its complex interior and exterior. The current geologic map is based on Framing Camera (FC) image mosaics derived from Approach (~1.3 km/px) and Survey (~400 m/px) data as well as digital terrain models (DTMs) derived from stereo imagery. In the course of the mission, we will incorporate mosaics from the High Altitude Mapping Orbit (~140 m/px, Fall 2015) and Low Altitude Mapping Orbit (~35 m/px, Spring 2016) phases. We acknowledge the support of the Dawn Instrument, Operations, and Science Teams. This work is partly supported by the German Space Agency (DLR), grant 50 OW 1101. (1) Li, J-Y. et al. (2006), Icarus, 182, 143-160. (2) Scully, J.E.C. et al. (2015), this conference.

  3. Impact Crater Deposits in the Martian Highlands

    NASA Technical Reports Server (NTRS)

    Mest, S. C.; Crown, D. a.

    2005-01-01

    The martian highlands of Noachis Terra (20-30 deg S, 20-50 deg E), Tyrrhena Terra (0-30 deg S, 50- 100 deg E) and Terra Cimmeria (0-60 deg S, 120-170 deg E) preserve long and complex histories of degradation, but the relative effects of such factors as fluvial, eolian, and mass wasting processes have not been well constrained. The effects of this degradation are best observed on large (D greater than 10 km) impact craters that characterize the ancient highlands. Some craters exhibit distinct interior deposits, but precise origins of these deposits are enigmatic; infilling may occur by sedimentary (e.g., fluvial, lacustrine, eolian), mass wasting and (or) volcanic processes.

  4. Mid-Latitude versus Polar-Latitude Transitional Impact Craters: Geometric Properties from Mars Orbiter Laser Altimeter (MOLA) Observations and Viking Images

    NASA Technical Reports Server (NTRS)

    Matias, A.; Garvin, J. B.; Sakimoto, S. E. H.

    1998-01-01

    One intriguing aspect of martian impact crater morphology is the change of crater cavity and ejecta characteristics from the mid-latitudes to the polar regions. This is thought to reflect differences in target properties such as an increasing presence of ice in the polar regions. Previous image-based efforts concerning martian crater morphology has documented some aspects of this, but has been hampered by the lack of adequate topography data. Recent Mars Orbiter Laser Altimeter (MOLA) topographic profiles provide a quantitative perspective for interpreting the detailed morphologies of martian crater cavities and ejecta morphology. This study is a preliminary effort to quantify the latitude-dependent differences in morphology with the goal of identifying target-dependent and crater modification effects from the combined of images and MOLA topography. We combine the available MOLA profiles and the corresponding Viking Mars Digital Image Mosaics (MDIMS), and high resolution Viking Orbiter images to focus on two transitional craters; one on the mid-latitudes, and one in the North Polar region. One MOLA pass (MGS Orbit 34) traverses the center of a 15.9 km diameter fresh complex crater located at 12.8degN 83.8degE on the Hesperian ridge plains unit (Hvr). Viking images, as well as MOLA data, show that this crater has well developed wall terraces and a central peak with 429 m of relative relief. Three MOLA passes have been acquired for a second impact crater, which is located at 69.5degN 41degE on the Vastitas Borealis Formation. This fresh rampart crater lacks terraces and central peak structures and it has a depth af 579 m. Correlation between images and MOLA topographic profiles allows us to construct basic facies maps of the craters. Eight main units were identified, four of which are common on both craters.

  5. Evolution of Lunar Crater Ejecta Through Time: Influence of Crater Size on the Record of Dynamic Processes

    NASA Astrophysics Data System (ADS)

    Ghent, R. R.; Tai Udovicic, C.; Mazrouei, S.; Bottke, W. F., Jr.

    2017-12-01

    The bombardment history of the Moon holds the key to understanding important aspects of the evolution of the Solar System at 1AU. It informs our thinking about the rates and chronology of events on other planetary bodies and the evolution of the asteroid belt. In previous work, we established a quantitative relationship between the ages of lunar craters and the rockiness of their ejecta. That result was based on the idea that crater-forming impacts eject rocks from beneath the regolith, instantaneously emplacing a deposit with characteristic initial physical properties, such as rock abundance. The ejecta rocks are then gradually removed and / or covered by a combination of mechanical breakdown via micrometeorite bombardment, emplacement of regolith fines due to nearby impacts, and possibly rupture due to thermal stresses. We found that ejecta rocks, as detected by the Lunar Reconnaissance Orbiter Diviner thermal radiometer disappear on a timescale of 1 Gyr, eventually becoming undetectable by the Diviner instrument against the ambient background rock abundance of the regolith.The "index" craters we used to establish the rock abundance—age relationship are all larger than 15 km (our smallest index crater is Byrgius A, at 18.7 km), and therefore above the transition diameter between simple and complex craters (15-20 km). Here, we extend our analysis to include craters smaller than the transition diameter. It is not obvious a priori that the initial ejecta properties of simple and complex craters should be identical, and therefore, that the same metrics of crater age can be applied to both populations. We explore this issue using LRO Diviner rock abundance and a high-resolution optical maturity dataset derived from Kaguya multiband imager VIS/NIR data to identify young craters to 5 km diameter. We examine the statistical properties of this population relative to that of the NEO population, and interpret the results in the context of our recently documented evidence for changes in the flux of impactors that create larger craters. Finally, we detail implications of our result for understanding the dynamic history of the lunar surface and the evolution of the asteroid belt.

  6. Search for Impact Craters in the Volcanic and Volcano-Sedimentary Terrains of Mexico

    NASA Astrophysics Data System (ADS)

    Bartali, R.; Fucugauchi, J. U.

    2011-12-01

    It has long been recognized that the numbers of impact craters documented in the terrestrial record are small compared to those of the Moon and other planets and satellites. Processes acting on the Earth surface including tectonics, volcanism and erosion contribute to erase, modify and cover evidence of crater-forming impacts that have occurred through Earth's history. Even evidence on large impact structures is limited to few examples, with only three complex multi-ring structures so far recognized. Chicxulub is a ~200 km diameter multi-ring crater formed by an impact in the southern Gulf of Mexico about 65.5 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub is the only impact structure documented in Mexico, Central and northern South America (http:www.unb.ca/passc/ImpactDatabase). Chicxulub, located in the Yucatan platform buried under a kilometer of carbonate rocks, was initially identified from its concentric semi-circular gravity and magnetic anomaly patterns. Yucatan peninsula has a low-relief topography and high contrasts in physical properties between carbonate rocks, impact lithologies and deformed target rocks. In contrast, most of the country has an abrupt topography with limited outcrops of Paleozoic and Precambrian terrains. The extensive igneous cover of the Sierra Madre Occidental, Trans-Mexican volcanic belt and Sierra Madre del Sur makes search for impact craters a difficult task. Early attempts were limited by the numerous volcanic craters and lack of high-resolution geophysical data. As part of a new country-wide search program, we have been conducting studies in northern Mexico using remote sensing and geophysical data to document circular and semi-circular crater-like features. The search has identified several structures, some well exposed and characterized by simple crater morphologies and topographic rims. These landforms have been mapped, estimating their dimensions, distribution and characterizing the surrounding terrains. Aeromagnetic anomaly data from low-altitude surveys have been used to characterize the structures, together with geological and topographic maps. For the promising sites, low altitude aerial images and on-site reconnaissance surveys and sampling are completed. Sites studied include isolated structures built on low relief terrains as well as multiple crater-like structures on volcanic terrains. Here we present initial results of the project in the Chihuahua region and discuss the methods, findings and difficulties in identification of impact structures.

  7. Recent Impacts on Mars: Cluster Properties and Seismic Signal Predictions

    NASA Astrophysics Data System (ADS)

    Justine Daubar, Ingrid; Schmerr, Nicholas; Banks, Maria; Marusiak, Angela; Golombek, Matthew P.

    2016-10-01

    Impacts are a key source of seismic waves that are a primary constraint on the formation, evolution, and dynamics of planetary objects. Geophysical missions such as InSight (Banerdt et al., 2013) will monitor seismic signals from internal and external sources. New martian craters have been identified in orbital images (Malin et al., 2006; Daubar et al., 2013). Seismically detecting such impacts and subsequently imaging the resulting craters will provide extremely accurate epicenters and source crater sizes, enabling calibration of seismic velocities, the efficiency of impact-seismic coupling, and retrieval of detailed regional and local internal structure.To investigate recent impact-induced seismicity on Mars, we have assessed ~100 new, dated impact sites. In approximately half of new impacts, the bolide partially disintegrates in the atmosphere, forming multiple craters in a cluster. We incorporate the resulting, more complex, seismic effects in our model. To characterize the variation between sites, we focus on clustered impacts. We report statistics of craters within clusters: diameters, morphometry indicating subsurface layering, strewn-field azimuths indicating impact direction, and dispersion within clusters indicating combined effects of bolide strength and elevation of breakup.Measured parameters are converted to seismic predictions for impact sources using a scaling law relating crater diameter to the momentum and source duration, calibrated for impacts recorded by Apollo (Lognonne et al., 2009). We use plausible ranges for target properties, bolide densities, and impact velocities to bound the seismic moment. The expected seismic sources are modeled in the near field using a 3-D wave propagation code (Petersson et al., 2010) and in the far field using a 1-D wave propagation code (Friederich et al., 1995), for a martian seismic model. Thus we calculate the amplitudes of seismic phases at varying distances, which can be used to evaluate the detectability of body and surface wave phases created by different sizes and types of impacts all over Mars.

  8. Shatter cones: (Mis)understood?

    PubMed

    Osinski, Gordon R; Ferrière, Ludovic

    2016-08-01

    Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and "double" cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship D sc = 0.4 D a, where D sc is the maximum spatial extent of in situ shatter cones, and D a is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact.

  9. Shatter cones: (Mis)understood?

    PubMed Central

    Osinski, Gordon R.; Ferrière, Ludovic

    2016-01-01

    Meteorite impact craters are one of the most common geological features in the solar system. An impact event is a near-instantaneous process that releases a huge amount of energy over a very small region on a planetary surface. This results in characteristic changes in the target rocks, from vaporization and melting to solid-state effects, such as fracturing and shock metamorphism. Shatter cones are distinctive striated conical fractures that are considered unequivocal evidence of impact events. They are one of the most used and trusted shock-metamorphic effects for the recognition of meteorite impact structures. Despite this, there is still considerable debate regarding their formation. We show that shatter cones are present in several stratigraphic settings within and around impact structures. Together with the occurrence of complete and “double” cones, our observations are most consistent with shatter cone formation due to tensional stresses generated by scattering of the shock wave due to heterogeneities in the rock. On the basis of field mapping, we derive the relationship Dsc = 0.4 Da, where Dsc is the maximum spatial extent of in situ shatter cones, and Da is the apparent crater diameter. This provides an important, new, more accurate method to estimate the apparent diameter of eroded complex craters on Earth. We have reestimated the diameter of eight well-known impact craters as part of this study. Finally, we suggest that shatter cones may reduce the strength of the target, thus aiding crater collapse, and that their distribution in central uplifts also records the obliquity of impact. PMID:27532050

  10. Numerical Simulations of Silverpit Crater Collapse

    NASA Technical Reports Server (NTRS)

    Collins, G. S.; Ivanov, B. A.; Turtle, E. P.; Melosh, H. J.

    2003-01-01

    The Silverpit crater is a recently discovered, 60-65 Myr old complex crater, which lies buried beneath the North Sea, about 150 km east of Britain. High-resolution images of Silverpit's subsurface structure, provided by three-dimensional seismic reflection data, reveal an inner-crater morphology similar to that expected for a 5-8 km diameter terrestrial crater. The crater walls show evidence of terrace-style slumping and there is a distinct central uplift, which may have produced a central peak in the pristine crater morphology. However, Silverpit is not a typical 5-km diameter terrestrial crater, because it exhibits multiple, concentric rings outside the main cavity. External concentric rings are normally associated with much larger impact structures, for example Chicxulub on Earth, or Orientale on the Moon. Furthermore, external rings associated with large impacts on the terrestrial planets and moons are widely-spaced, predominantly inwardly-facing, asymmetric scarps. However, the seismic data show that the external rings at Silverpit represent closely-spaced, concentric faultbound graben, with both inwardly and outwardly facing fault-scarps. This type of multi-ring structure directly analogous to the Valhalla-type multi-ring basins found on the icy satellites. Thus, the presence and style of the multiple rings at Silverpit is surprising given both the size of the crater and its planetary setting. A further curiosity of the Silverpit structure is that the external concentric rings appear to be extensional features on the West side of the crater and compressional features on the East side. The crater also lies in a local depression, thought to be created by postimpact movement of a salt layer buried beneath the crater.

  11. Estimates of Comet Fragment Masses from Impact Crater Chains on Callisto and Ganymede

    NASA Technical Reports Server (NTRS)

    McKinnon, William B.; Schenk, Paul M.

    1995-01-01

    Chains of impact craters, or catenae, have been identified in Voyager images of Callisto and Ganymede. Although these resemble in some respects secondary crater chains, the source craters and basins for the catenae cannot be identified. The best explanation is a phenomenon similar to that displayed by former comet Shoemaker-Levy 9; tidal (or other) breakup close to Jupiter followed by gradual orbital separation of the fragments and collision with a Galilean satellite on the outbound leg of the trajectory. Because the trajectories must pass close to Jupiter, this constrains the impact geometry (velocity and impact angle) of the individual fragments. For the dominant classes of impactors, short period Jupiter-family comets and asteroids, velocities at Callisto and Ganymede are dominated by Jovian gravity and a satellite's orbital motion, and are insensitive to the pre-fragmentation heliocentric velocity; velocities are insensitive to satellite gravity for all impactor classes. Complex crater shapes on Callisto and Ganymede are determined from Voyager images and Schmidt-Holsapple scaling is used to back out individual fragment masses. We find that comet fragment radii are generally less than about 500 m (for ice densities) but can be larger. These estimates can be compared with those for the Shoemaker-Levy 9 impactors.

  12. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian

    1992-01-01

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical, geochronological, and isotopic data are necessary to provide definitive evidence.

  13. The Cretaceous-Tertiary (K/T) impact: One or more source craters?

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian

    The Cretaceous-Tertiary (K/T) boundary is marked by signs of a worldwide catastrophe, marking the demise of more than 50 percent of all living species. Ever since Alvarez et al. found an enrichment of IR and other siderophile elements in rocks marking the K/T boundary and interpreted it as the mark of a giant asteroid (or comet) impact, scientists have tried to understand the complexities of the K/T boundary event. The impact theory received a critical boost by the discovery of shocked minerals that have so far been found only in association with impact craters. One of the problems of the K/T impact theory was, and still is, the lack of an adequate large crater that is close to the maximum abundance of shocked grains in K/T boundary sections, which was found to occur in sections in Northern America. The recent discovery of impact glasses from a K/T section in Haiti has been crucial in establishing a connection with documented impact processes. The location of the impact-glass findings and the continental nature of detritus found in all K/T sections supports at least one impact site near the North American continent. The Manson Impact Structure is the largest recognized in the United States, 35 km in diameter, and has a radiometric age indistinguishable from that of the Cretaceous-Tertiary (K/T) boundary. Although the Manson structure may be too small, it may be considered at least one element of the events that led to the catastrophic loss of life and extinction of many species at that time. A second candidate for the K/T boundary crater is the Chicxulub structure, which was first suggested to be an impact crater more than a decade ago. Only recently, geophysical studies and petrological (as well as limited chemical) analyses have indicated that this buried structure may in fact be of impact origin. At present we can conclude that the Manson crater is the only confirmed crater of K/T age, but Chicxulub is becoming a strong contender; however, detailed geochemical, geochronological, and isotopic data are necessary to provide definitive evidence.

  14. Breccia Formation at a Complex Impact Crater: Slate Islands, Lake Superior, Ontario, Canada

    NASA Technical Reports Server (NTRS)

    Dressler, B. O.; Sharpton, V. L.

    1997-01-01

    The Slate Islands impact structure is the eroded remnant of a approximately 30-32 km-diameter complex impact structure located in northern Lake Superior, Ontario, Canada. Target rocks are Archean supracrustal and igneous rocks and Proterozoic metavolcanics, metasediments, and diabase. A wide variety of breccias occurs on the islands, many of which contain fragments exhibiting shock metamorphic features. Aphanitic, narrow and inclusion-poor pseudotachylite veins, commonly with more or less parallel boundaries and apophyses branching off them, represent the earliest breccias formed during the compression stage of the impact process. Coarse-grained, polymictic elastic matrix breccias form small to very large, inclusion-rich dikes and irregularly shaped bodies that may contain altered glass fragments. These breccias have sharp contacts with their host rocks and include a wide range of fragment types some of which were transported over minimum distances of approximately 2 km away from the center of the structure. They cut across pseudotachylite veins and contain inclusions of them. Field and petrographic evidence indicate that these polymictic breccias formed predominantly during the excavation and central uplift stages of the impact process. Monomictic breccias, characterized by angular fragments and transitional contacts with their host rocks, occur in parautochthonous target rocks, mainly on the outlying islands of the Slate Islands archipelago. A few contain fragmented and disrupted, coarse-grained, polymictic clastic matrix breccia dikes. This is an indication that at least some of these monomictic breccias formed late in the impact process and that they are probably related to a late crater modification stage. A small number of relatively large occurrences of glass-poor, suevitic breccias occur at the flanks of the central uplift and along the inner flank of the outer ring of the Slate Islands complex crater. A coarse, glass-free, allogenic breccia, containing shatter-coned fragments derived from Proterozoic target rocks (upper target strata), observed at two locations may be analogous to the 'Bunt Breccia' of the Ries crater in Germany. At one of these locations this breccia lies close to a crater suevite deposit. At the other, it overlies parautochthonous, monomictic breccia. The State Islands impact breccias are superbly exposed, much better than breccias in most other terrestrial impact structures. Observations, including those indicative of multiple and and sequential processes, provide insight on how impact breccias form and how they relate to the various phases of the impact process. Eventually they will lead to an improved understanding of planetary impact processes.

  15. The preservation of the Agoudal impact crater, Morocco, under a landslide: Indication of a genetic link between shatter cones and meteorite fragments

    NASA Astrophysics Data System (ADS)

    Nachit, Hassane; Abia, El Hassan; Bonadiman, Costanza; Di Martino, Mario; Vaccaro, Carmela

    2017-10-01

    Geological studies and tomographic profiles of a locality nearby the Agoudal village (Morocco) showed the presence of a single impact crater, 500-600 m diameter, largely hidden by a limestone block, 220 m long and 40 m deep. The site was interpreted as a landslide that followed the fall of a cosmic body. The Agoudal impact crater was not affected by intense erosion. The lack of an evident impact structure, as well as the sporadic distribution of impactites and their limited occurrence, can be explained by a complex geological framework and by recent tectonics. The latter is the result of the sliding of limestone block, which hides almost two-thirds of the crater's depression, and the oblique fall of the meteoroid on sloping ground. In addition, some impact breccia dikes sharply cut the host rock in the Agoudal impact structure. They do not show any genetic relationship with tectonics or hydrothermal activity, nor are they related to any karst or calcrete formations. Altogether, the overlapping of the meteorite strewn field (11 km long and 3 km wide) with the area of occurrence of shatter cones and impact breccias, together with the presence of meteorite fragments (shrapnel) ejected from the crater, the presence of shatter cones contaminated by products of iron meteorites and the presence of impact breccias that contain meteorite fragments of the same chemical composition of the Agoudal meteorite indicate that the fall of this meteorite can be responsible for the formation of the impact structure.

  16. Secondary Craters

    NASA Image and Video Library

    2016-12-21

    This image of a southern mid-latitude crater was intended to investigate the lineated material on the crater floor. At the higher resolution of HiRISE, the image reveals a landscape peppered by small impact craters. These craters range from about 30 meters in diameter down to the resolution limit (about 2 meter diameter in this image acquired by averaging 2x2 picture elements). Such dense clusters of small craters are frequently formed by secondary craters, caused by the impact of material that was excavated and ejected from the surface of Mars during the creation of a larger nearby crater by the impact of a comet or an asteroid. Secondary impact craters are both interesting and vexing. They are interesting because they show the trajectories of the material that was ejected from the primary impact with the greatest speeds, typically material from near the surface of the blast zone. Secondary craters are often found along the traces of crater rays, linear features that extend radially from fresh impact craters and can reach many crater diameters in length. Secondary craters can be useful when crater rays are visible and the small craters can be associated with a particular primary impact crater. They can be used to constrain the age of the surface where they fell, since the surface must be older than the impact event. The age of the crater can be approximately estimated from the probability of an impact that produced a crater of such a size within a given area of Mars over a given time period. But these secondary craters can also be perplexing when no crater rays are preserved and a source crater is not easily identifiable, as is the case here. The impact that formed these secondary craters took place long enough ago that their association with a particular crater has been erased. They do not appear along the trace of a crater ray that is still apparent in visible or thermal infrared observations. These secondary craters complicate the task of estimating the age of the lineated material on the crater floor. It is necessary to distinguish secondary craters from the primary impacts that we rely upon to estimate the ages of Martian surfaces. The large number of small craters clustered together here is typical of crater rays elsewhere on Mars and suggests that these are indeed, secondary impact craters. http://photojournal.jpl.nasa.gov/catalog/PIA14450

  17. New insight into lunar impact melt mobility from the LRO camera

    USGS Publications Warehouse

    Bray, Veronica J.; Tornabene, Livio L.; Keszthelyi, Laszlo P.; McEwen, Alfred S.; Hawke, B. Ray; Giguere, Thomas A.; Kattenhorn, Simon A.; Garry, William B.; Rizk, Bashar; Caudill, C.M.; Gaddis, Lisa R.; van der Bogert, Carolyn H.

    2010-01-01

    The Lunar Reconnaissance Orbiter Camera (LROC) is systematically imaging impact melt deposits in and around lunar craters at meter and sub-meter scales. These images reveal that lunar impact melts, although morphologically similar to terrestrial lava flows of similar size, exhibit distinctive features (e.g., erosional channels). Although generated in a single rapid event, the post-impact mobility and morphology of lunar impact melts is surprisingly complex. We present evidence for multi-stage influx of impact melt into flow lobes and crater floor ponds. Our volume and cooling time estimates for the post-emplacement melt movements noted in LROC images suggest that new flows can emerge from melt ponds an extended time period after the impact event.

  18. GRAIL gravity observations of the transition from complex crater to peak-ring basin on the Moon: Implications for crustal structure and impact basin formation

    NASA Astrophysics Data System (ADS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-08-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles of free-air anomalies and Bouguer anomalies for peak-ring basins, protobasins, and the largest complex craters. Complex craters and protobasins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (∼200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  19. Simultaneous impact and lunar craters

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1972-01-01

    The existence of large terrestrial impact crater doublets and crater doublets that have been inferred to be impact craters on Mars suggests that simultaneous impact of two or more bodies can occur at nearly the same point on planetary surfaces. An experimental study of simultaneous impact of two projectiles near one another shows that doublet craters with ridges perpendicular to the bilateral axis of symmetry result when separation between impact points relative to individual crater diameter is large. When separation is progressively less, elliptical craters with central ridges and peaks, and circular craters with deep round bottoms are produced. These craters are similar in structure to many of the large lunar craters. Results suggest that the simultaneous impact of meteoroids near one another may be an important mechanism for the production of central peaks in large lunar craters.

  20. Martian Polar Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Sakimoto, S. E. H.; Garvin, J. B.

    1999-01-01

    Our knowledge of the age of the layered polar deposits and their activity in the volatile cycling and climate history of Mars is based to a large extent on their apparent ages as determined from crater counts. Interpretation of the polar stratigraphy (in terms of climate change) is complicated by reported differences in the ages of the northern and southern layered deposits. The north polar residual ice deposits are thought to be relatively young, based on the reported lack of any fresh impact craters in Viking Orbiter Images. Herkenhoff et al., report no craters at all on the North polar layered deposits or ice cap, and placed an upper bound on the surface age (or, alternatively, the vertical resurfacing rate) of 100 thousand years to 10 million years, suggesting that the north polar region is an active resurfacing site. In contrast, the southern polar region was found to have at least 15 impact craters in the layered deposits and cap. Plaut et al, concluded that the surface was less than or = 120 million years old. This reported age difference factor of 100 to 1000 increases complexity in climate and volatile modeling. Recent MOLA results for the topography of the northern polar cap document a handful or more of possible craters, which could result in revised age or resurfacing estimates for the northern cap. This study is a preliminary look at putative craters in both polar caps. Additional information is contained in the original extended abstract.

  1. A revised surface age for the North Polar Layered Deposits of Mars

    USGS Publications Warehouse

    Landis, Margaret E.; Byrne, Shane; Daubar, Ingrid J.; Herkenhoff, Kenneth E.; Dundas, Colin M.

    2016-01-01

    The North Polar Layered Deposits (NPLD) of Mars contain a complex stratigraphy that has been suggested to retain a record of past eccentricity- and obliquity-forced climate changes. The surface accumulation rate in the current climate can be constrained by the crater retention age. We scale NPLD crater diameters to account for icy target strength and compare surface age using a new production function for recent small impacts on Mars to the previously used model of Hartmann (2005). Our results indicate that ice is accumulating in these craters several times faster than previously thought, with a 100 m diameter crater being completely infilled within centuries. Craters appear to have a diameter-dependent lifetime, but the data also permit a complete resurfacing of the NPLD at ~1.5 ka.

  2. Topography and Geomorphology of the Interior of Occator Crater on Ceres

    NASA Astrophysics Data System (ADS)

    Jaumann, Ralf

    2017-04-01

    With a diameter of 92km, Occator is one of the most prominent craters on Ceres. Its depth ranges from 4.8km along the crater rim to -1.1km at the crater floor with respect to a reference ellipsoid. Occator shows a set of specific features such as post impact formation crater filling including multiple flow features, a central pit with a dome in its center, extensional tectonics expressed as linear radial and concentric graben, and spectral variations indicating a complex formation process. We processed 550 LAMO stereo images from Cycle01-Cycle11 with a resolution of 35m/pixel to generate a high-resolution digital terrain model (DTM) of the Occator impact structure. Occator crater has mass wasting deposits originating from the crater rims and walls, which extend into the crater for 10 to 20km. However, in the southeast and northeast these mass wasting deposits are completely covered by crater floor plains material that extends from the crater center to the rim, ponding against the crater walls. The flows also superimpose the mass wasting deposits from the rims [1]. Furthermore, crater densities on Occator's interior deposits are slightly lower than on its ejecta blanket, indicating post-impact formation or target parameter variation between consolidated melt and unconsolidated ejecta deposits [2,3,4]. The terrain northwest of the central area is very rough, shows mass wasting deposits and is about 2km thick w.r.t the rim of the central pit. The plains to the southeast are smooth, pond against the crater wall, and are less than 500m thick w.r.t. the rim of the central pit The central pit is about 3.5km wide and 600m deep while the dome rises 250m within the pit [5]. In the northeast, multiple flows approaching the crater rim very closely. These flow plains are also less than 500m thick w.r.t. the rim of the central pit. Some of the flows seem to have been superposed on the lower parts of the crater wall and then flowed back into depressions of the plains. The flows to the northeast appear to originate from the central region and move slightly uphill. This indicates either a feeding zone that pushes the flows forward by supplying low-viscosity material or an extended subsidence of the crater center, possibly after discharging a subsurface reservoir [1,2], or lateral oscillations of an impact melt sheet during emplacement. The plains material covers an area of about 4750km2 with an average depth of about 250m resulting in a body of plains material of about 1200km3. The plains material is slightly younger than the impact event and the bright deposits are even younger than the plains material. Post impact processes might be due to impact melt, hydrothermal alteration, or cryovolcanic crater filling [1] K. Krohn et al, GRL43, 11994, (2016). [2] R. Jaumann et al., LPSC47, 1455 (2016). [3] N. Schmedemann et al, GRL43, 11987. (2016) [4] A. Neesemann, et al., Icarus, in prep. [5] P. Schenk, et al., LPSC47 (2016).

  3. Impact Crater with Peak

    NASA Technical Reports Server (NTRS)

    2002-01-01

    (Released 14 June 2002) The Science This THEMIS visible image shows a classic example of a martian impact crater with a central peak. Central peaks are common in large, fresh craters on both Mars and the Moon. This peak formed during the extremely high-energy impact cratering event. In many martian craters the central peak has been either eroded or buried by later sedimentary processes, so the presence of a peak in this crater indicates that the crater is relatively young and has experienced little degradation. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that the central peak contains material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study the composition of the martian interior using THEMIS multi-spectral infrared observations. The ejecta material around the crater can is well preserved, again indicating relatively little modification of this landform since its initial creation. The inner walls of this approximately 18 km diameter crater show complex slumping that likely occurred during the impact event. Since that time there has been some downslope movement of material to form the small chutes and gullies that can be seen on the inner crater wall. Small (50-100 m) mega-ripples composed of mobile material can be seen on the floor of the crater. Much of this material may have come from the walls of the crater itself, or may have been blown into the crater by the wind. The Story When a meteor smacked into the surface of Mars with extremely high energy, pow! Not only did it punch an 11-mile-wide crater in the smoother terrain, it created a central peak in the middle of the crater. This peak forms kind of on the 'rebound.' You can see this same effect if you drop a single drop of milk into a glass of milk. With craters, in the heat and fury of the impact, some of the land material can even liquefy. Central peaks like the one above are common in large, fresh craters on both Mars and the Moon. In many older Martian craters, however, the central peak has either been eroded or was buried by later deposits of sand, dust, and 'dirt' on the terrain. With the pronounced, non-eroded peak in this crater, you can tell that it hasn't been around for a long time. Its youth is also apparent because of the ejected material around the crater that spreads out from it in an almost flame-or petal-like pattern with little evidence of erosion. Observations of large craters on the Earth and the Moon, as well as computer modeling of the impact process, show that central peaks contain material brought from deep beneath the surface. The material exposed in these peaks will provide an excellent opportunity to study what the interior of Mars is made of. In addition to providing images of Mars like the one above, the THEMIS camera system has the capability to analyze the mineral composition of the surface. That means it will be able to look at this area and 'see' both the composition of the top surface, as well as the exposed interior that is uplifted in the central peak. Stay tuned for more news later from this crater! Until then, take a closer look at the walls of this crater. Particularly on the western side, you can see how whole portions of the wall have slid or 'slumped' downward, probably sometime during the impact event. Since then, smaller amounts of material have slid downslope as well, forming small chutes and gullies that streak down the inner crater wall. On the floor of the crater, you can also see small, mobile mega-ripples that extend up to a football field in length. (Look for the tiny, bright, white ripples especially to the north of the crater floor.) These ripples were probably created from material coming down from the wall of the crater or alternatively from dust and 'dirt' that was blown into the crater by the wind.

  4. Geochemical and petrographic studies of melt-rich breccias from the Chicxulub crater

    NASA Astrophysics Data System (ADS)

    Vera-Sanchez, P.; Urrutia-Fucugauchi, J.; Morton-Bermea, O.; Soler-Arechalde, A.; Reyes-Salas, M.; Lozano-Santamaria, R.; Linares-Lopez, C.; Rebolledo-Vieyra, M.

    2003-04-01

    The proposal by Alvarez et al. (1980) for an extraterrestrial bolide impact marking the Cretaceous/Tertiary boundary was based on the anomalous Ir content in Italian and Danish K/T clay layers. The clay layer with a worldwide distribution and enriched in platinum group elements, shocked quartz and other impact-generated features has come to be interpreted as the global ejecta layer produced by a large impact that formed the Chicxulub crater. The ~200 km diameter crater is located in the carbonate platform of northwestern Yucatan peninsula, Mexico. The crater is covered by a thick sequence of Tertiary sediments, with no surface exposures. The National University of Mexico conducted a drilling program with continuous core recovery, in which three boreholes (UNAM wells 5, 6 and 7) sampled the impact breccia sequences. Deeper drilling inside the carter has been carried out as part of the ICDP program with drilling of the Yaxcopoil-1 borehole, which also cored a section of the impact breccias. The Yaxcopoil-1 borehole has been completed as part of the Chicxulub Scientific Drilling Project. In this work, we report on the geochemical and petrographic studies of selected samples from the impact breccia sequence recovered in the Yaxcopoil-1 borehole inside the Chicxulub crater. One of the major questions emerging after the interpretation of Chicxulub as the K/T boundary impact site and its link to the global ejecta layer has been the nature of the impacting body. Studies have addressed this question from distinct fields, including investigation of the ejecta deposits near and far from the crater, from the crater itself, from impact records on the Moon and other bodies, searching for surviving fragments in K/T boundary sections, etc. The search for material with a possible small component associated to the impactor could open unique research opportunities to further understand the impact event. The melt breccia samples examined exhibit different textures and chemical composition, suggesting a complex composition. Rare earth element plots for the various fragments are on the other hand similar. We report the initial results of the petrographic, microprobe, ICP-MS, X-ray fluorescence and X-ray diffraction studies.

  5. A Bright Lunar Impact Flash Linked to the Virginid Meteor Complex

    NASA Technical Reports Server (NTRS)

    Moser, D. E.; Suggs, R. M.; Suggs, R. J.

    2015-01-01

    On 17 March 2013 at 03:50:54 UTC, NASA detected a bright impact flash on the Moon caused by a meteoroid impacting the lunar surface. There was meteor activity in Earth's atmosphere the same night from the Virginid Meteor Complex. The impact crater associated with the impact flash was found and imaged by Lunar Reconnaissance Orbiter (LRO). Goal: Monitor the Moon for impact flashes produced by meteoroids striking the lunar surface. Determine meteoroid flux in the 10's gram to kilogram size range.

  6. Eastern rim of the Chesapeake Bay impact crater: Morphology, stratigraphy, and structure

    USGS Publications Warehouse

    Poag, C.W.

    2005-01-01

    This study reexamines seven reprocessed (increased vertical exaggeration) seismic reflection profiles that cross the eastern rim of the Chesapeake Bay impact crater. The eastern rim is expressed as an arcuate ridge that borders the crater in a fashion typical of the "raised" rim documented in many well preserved complex impact craters. The inner boundary of the eastern rim (rim wall) is formed by a series of raterfacing, steep scarps, 15-60 m high. In combination, these rim-wall scarps represent the footwalls of a system of crater-encircling normal faults, which are downthrown toward the crater. Outboard of the rim wall are several additional normal-fault blocks, whose bounding faults trend approximately parallel to the rim wall. The tops of the outboard fault blocks form two distinct, parallel, flat or gently sloping, terraces. The innermost terrace (Terrace 1) can be identified on each profile, but Terrace 2 is only sporadically present. The terraced fault blocks are composed mainly of nonmarine, poorly to moderately consolidated, siliciclastic sediments, belonging to the Lower Cretaceous Potomac Formation. Though the ridge-forming geometry of the eastern rim gives the appearance of a raised compressional feature, no compelling evidence of compressive forces is evident in the profiles studied. The structural mode, instead, is that of extension, with the clear dominance of normal faulting as the extensional mechanism. 

  7. The Waqf as Suwwan crater, Eastern Desert of Jordan: aspects of the deep structure of an oblique impact from reflection seismic and gravity data

    NASA Astrophysics Data System (ADS)

    Heinrichs, Till; Salameh, Elias; Khouri, Hani

    2014-01-01

    The deeply eroded Waqf as Suwwan ring structure was recently discovered to be a large impact, the first identified in the near east. Large-scale reflection seismic structure shows the impact situated high on the northeastern flank of the Jordan Uplift sloping into Wadi Sirhan Basin. If exhumation is linked to the Arabia-Eurasia collision, a likely time window for the impact event may be latest Eocene to Late Oligocene. Impact into a shallow sea seems an optional scenario. Old reflection seismic lines offer limited insight into the deep structure of the rim and part of the central uplift of the complex crater. An important structural clue is provided by a well-resolved seismic horizon of a yet tentative correlation with a Paleozoic black shale. The central gravity high is compatible with a mass surplus by the uplift of denser Paleozoic basement below the central uplift. The gravity model further indicates a ring of dense Paleozoic sediments rising from below into the ring syncline. Seismics show presumably radial synclines in the central uplift which are interpreted by centripetal constrictional flow during crater collapse. Beneath the final crater's outer boundary, a shallow-dip normal fault zone, subtle seismic structure in uncollapsed footwall segments reveal an asymmetry of strain. The asymmetry is attributed to the cratering flow by an oblique impact directed toward NE. The finding provides independent support to an earlier suggestion of impact obliquity based on vergency of folds exposed on the central uplift.

  8. Degradation studies of Martian impact craters

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1991-01-01

    The amount of obliteration suffered by Martian impact craters is quantified by comparing measurable attributes of the current crater shape to those values expected for a fresh crater of identical size. Crater diameters are measured from profiles obtained using photoclinometry across the structure. The relationship between the diameter of a fresh crater and a crater depth, floor width, rim height, central peak height, etc. was determined by empirical studies performed on fresh Martian impact craters. We utilized the changes in crater depth and rim height to judge the degree of obliteration suffered by Martian impact craters.

  9. An Impact Cratering Interactive Website Used for Outreach and in Professional Development Workshops for Middle School Science Teachers

    NASA Astrophysics Data System (ADS)

    Croft, S. K.; Pierazzo, E.; Canizo, T.; Lebofsky, L. A.

    2009-12-01

    Impact cratering is one of the fundamental geologic processes affecting all planetary and asteroidal bodies in the Solar System. With few exceptions, all bodies with solid surfaces explored so far show the presence of impact craters - from the less than 200 known craters on Earth to the many thousands seen on the Moon, Mercury, and other bodies. Indeed, the study of crater populations is one of the principal tools for understanding the geologic history of planetary surfaces. In recent years, impact cratering has gained public notoriety through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: “How often do impacts occur?” “How do scientists learn about impact cratering?” and “What information do impact craters provide in understanding the evolution planetary surfaces?” On our website: “Explorer’s Guide to Impact Craters,” we answer those questions in a fun, informative and interactive way. The website provides the interested public with an opportunity to: 1) experience how scientists explore known terrestrial craters through a virtual fieldtrips; 2) learn more about the dynamics of impact cratering using numerical simulations of various impacts; and 3) investigate how impact cratering affects rocks via images and descriptions of field samples of impact rocks. This learning tool has been a popular outreach endeavor (recently reaching 100,000 hits), and it has recently been incorporated in the Impact Cratering Workshop developed by scientists and EPO specialists at the Planetary Science Institute. The workshop provides middle school science teachers with an inquiry-based understanding of the process of impact cratering and how it affects the solar system. Participants are instructed via standards-based multimedia presentations, analysis of planetary images, hands-on experience with geologic samples from terrestrial impact craters, and first-hand experience forming impact craters. Through the “Explorer’s Guide to Impact Craters,” participants are able to virtually explore three terrestrial impact craters, while examining, first-hand, samples of rocks collected at the three impact sites by real field geologists. The rock samples are included in our Impact Rock Kits that are available for check-out by teachers desiring to involve their students in the study of impact craters.

  10. Diversity of basaltic lunar volcanism associated with buried impact structures: Implications for intrusive and extrusive events

    NASA Astrophysics Data System (ADS)

    Zhang, F.; Zhu, M.-H.; Bugiolacchi, R.; Huang, Q.; Osinski, G. R.; Xiao, L.; Zou, Y. L.

    2018-06-01

    Relatively denser basalt infilling and the upward displacement of the crust-mantle interface are thought to be contributing factors for the quasi-circular mass anomalies for buried impact craters in the lunar maria. Imagery and gravity observations from the Lunar Reconnaissance Orbiter (LRO) and dual Gravity Recovery and Interior Laboratory (GRAIL) missions have identified 10 partially or fully buried impact structures where diversity of observable basaltic mare volcanism exists. With a detailed investigation of the characteristics of associated volcanic landforms, we describe their spatial distribution relationship with respect to the subsurface tectonic structure of complex impact craters and propose possible models for the igneous processes which may take advantage of crater-related zones of weakness and enable magmas to reach the surface. We conclude that the lunar crust, having been fractured and reworked extensively by cratering, facilitates substance and energy exchange between different lunar systems, an effect modulated by tectonic activities both at global and regional scales. In addition, we propose that the intrusion-caused contribution to gravity anomalies should be considered in future studies, although this is commonly obscured by other physical factors such as mantle uplift and basalt load.

  11. Centrifuge impact cratering experiment 5

    NASA Technical Reports Server (NTRS)

    1984-01-01

    Transient crates motions, cratering flow fields, crates dynamics, determining impact conditions from total crater welt, centrifuge quarter-space cratering, and impact cratering mechanics research is documented.

  12. Ernst Julius Öpik's (1916) note on the theory of explosion cratering on the Moon's surface—The complex case of a long-overlooked benchmark paper

    NASA Astrophysics Data System (ADS)

    Racki, Grzegorz; Koeberl, Christian; Viik, Tõnu; Jagt-Yazykova, Elena A.; Jagt, John W. M.

    2014-10-01

    High-velocity impact as a common phenomenon in planetary evolution was ignored until well into the twentieth century, mostly because of inadequate understanding of cratering processes. An eight-page note, published in Russian by the young Ernst Julius Öpik, a great Estonian astronomer, was among the key selenological papers, but due to the language barrier, it was barely known and mostly incorrectly cited. This particular paper is here intended to serve as an explanatory supplement to an English translation of Öpik's article, but also to document an early stage in our understanding of cratering. First, we outline the historical-biographical background of this benchmark paper, and second, a comprehensive discussion of its merits is presented, from past and present perspectives alike. In his theoretical research, Öpik analyzed the explosive formation of craters numerically, albeit in a very simple way. For the first time, he approximated relationships among minimal meteorite size, impact energy, and crater diameter; this scaling focused solely on the gravitational energy of excavating the crater (a "useful" working approach). This initial physical model, with a rational mechanical basis, was developed in a series of papers up to 1961. Öpik should certainly be viewed as the founder of the numerical simulation approach in planetary sciences. In addition, the present note also briefly describes Nikolai A. Morozov as a remarkable man, a forgotten Russian scientist and, surprisingly, the true initiator of Öpik's explosive impact theory. In fact, already between 1909 and 1911, Morozov probably was the first to consider conclusively that explosion craters would be circular, bowl-shaped depressions even when formed under different impact angles.

  13. Effects of Pre-Existing Target Structure on the Formation of Large Craters

    NASA Technical Reports Server (NTRS)

    Barnouin-Jha, O. S.; Cintala, M. J.; Crawford, D. A.

    2003-01-01

    The shapes of large-scale craters and the mechanics responsible for melt generation are influenced by broad and small-scale structures present in a target prior to impact. For example, well-developed systems of fractures often create craters that appear square in outline, good examples being Meteor Crater, AZ and the square craters of 433 Eros. Pre-broken target material also affects melt generation. Kieffer has shown how the shock wave generated in Coconino sandstone at Meteor crater created reverberations which, in combination with the natural target heterogeneity present, created peaks and troughs in pressure and compressed density as individual grains collided to produce a range of shock mineralogies and melts within neighboring samples. In this study, we further explore how pre-existing target structure influences various aspects of the cratering process. We combine experimental and numerical techniques to explore the connection between the scales of the impact generated shock wave and the pre-existing target structure. We focus on the propagation of shock waves in coarse, granular media, emphasizing its consequences on excavation, crater growth, ejecta production, cratering efficiency, melt generation, and crater shape. As a baseline, we present a first series of results for idealized targets where the particles are all identical in size and possess the same shock impedance. We will also present a few results, whereby we increase the complexities of the target properties by varying the grain size, strength, impedance and frictional properties. In addition, we investigate the origin and implications of reverberations that are created by the presence of physical and chemical heterogeneity in a target.

  14. Impact mechanics at Meteor Crater, Arizona

    USGS Publications Warehouse

    Shoemaker, Eugene Merle

    1959-01-01

    Meteor Crator is a bowl-shaped depression encompassed by a rim composed chiefly of debris stacked in layers of different composition. Original bedrock stratigraphy is preserved, inverted, in the debris. The debris rests on older disturbed strata, which are turned up at moderate to steep angles in the wall of the crater and are locally overturned near the contact with the debris. These features of Meteor Crater correspond closely to those of a crater produced by nuclear explosion where depth of burial of the device was about 1/5 the diameter of the resultant crater. Studies of craters formed by detonation of nuclear devices show that structures of the crater rims are sensitive to the depth of explosion scaled to the yield of the device. The structure of Meteor Crater is such as would be produced by a very strong shock originating about at the level of the present crater floor, 400 feet below the original surface. At supersonic to hypersonic velocity an impacting meteorite penetrates the ground by a complex mechanism that includes compression of the target rocks and the meteorite by shock as well as hydrodynamic flow of the compressed material under high pressure and temperature. The depth of penetration of the meteorite, before it loses its integrity as a single body, is a function primarily of the velocity and shape of the meteorite and the densities and equations of state of the meteorite and target. The intensely compressed material then becomes dispersed in a large volume of breccia formed in the expanding shock wave. An impact velocity of about 15 km/sec is consonant with the geology of Meteor Crater in light of the experimental equation of state of iron and inferred compressibility of the target rocks. The kinetic energy of the meteorite is estimated by scaling to have been from 1.4 to 1.7 megatons TNT equivalent.

  15. Oudemans Crater

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This image of the interior of Oudemans Crater was taken by the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) at 1800 UTC (1:00 p.m. EDT) on October 2, 2006, near 9.8 degrees south latitude, 268.5 degrees east longitude. CRISM's image was taken in 544 colors covering 0.36-3.92 micrometers, and shows features as small as 20 meters (66 feet) across.

    Oudemans Crater is located at the extreme western end of Valles Marineris in the Sinai Planum region of Mars. The crater measures some 124 kilometers (77 miles) across and sports a large central peak.

    Complex craters like Oudemans are formed when an object, such as an asteroid or comet, impacts the planet. The size, speed and angle at which the object hits all determine the type of crater that forms. The initial impact creates a bowl-shaped crater and flings material (known as ejecta) out in all directions along and beyond the margins of the bowl forming an ejecta blanket. As the initial crater cavity succumbs to gravity, it rebounds to form a central peak while material along the bowl's rim slumps back into the crater forming terraces along the inner wall. If the force of the impact is strong enough, a central peak forms and begins to collapse back into the crater basin, forming a central peak ring.

    The uppermost image in the montage above shows the location of CRISM data on a mosaic taken by the Mars Odyssey spacecraft's Thermal Emission Imaging System (THEMIS). The CRISM data was taken inside the crater, on the northeast slope of the central peak.

    The lower left image is an infrared false-color image that reveals several distinctive deposits. The center of the image holds a ruddy-brown deposit that appears to correlates with a ridge running southwest to northeast. Lighter, buff-colored deposits occupy low areas interspersed within the ruddy-brown deposit. The southeast corner holds small hills that form part of the central peak complex.

    The lower right image shows spectral indicators of different materials, and reveals the composition of the crater floor and its central peak. Rocks rich in the volcanic mineral pyroxene, shown in blue, dominate the north-central part of the image. There is an enhanced content of the volcanic mineral olivine (shown in greens and yellows) in those parts of the images that appear ruddy brown in false color. The low-lying parts of the image that appear buff in false color are covered in dust, and shown in red. This view provides insight into the relationships of deposits beneath Oudemans Crater. The impact excavated the underlying olivine that that is enriched in the crater's central peak. Pyroxene-rich material covered the crater's floor, and later, low-lying areas filled with dust.

    CRISM is one of six science instruments on NASA's Mars Reconnaissance Orbiter. Led by The Johns Hopkins University Applied Physics Laboratory, Laurel, Md., the CRISM team includes expertise from universities, government agencies and small businesses in the United States and abroad. NASA's Jet Propulsion Laboratory, a division of the California Institute of Technology in Pasadena, manages the Mars Reconnaissance Orbiter and the Mars Science Laboratory for NASA's Science Mission Directorate, Washington. Lockheed Martin Space Systems, Denver, built the orbiter.

  16. The Explorer's Guide to Impact Craters

    NASA Technical Reports Server (NTRS)

    Chuang, F.; Pierazzo, E.; Osinski, G.

    2005-01-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: How do scientists learn about impact cratering? , and What information do impact craters provide in understanding the evolution of a planetary surface? Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering.

  17. Anatomy of the Chesapeake Bay impact structure revealed by seismic imaging, Delmarva Peninsula, Virginia, USA

    USGS Publications Warehouse

    Catchings, R.D.; Powars, D.S.; Gohn, G.S.; Horton, J. Wright; Goldman, M.R.; Hole, J.A.

    2008-01-01

    A 30-km-long, radial seismic reflection and refraction survey completed across the northern part of the late Eocene Chesapeake Bay impact structure (CBIS) on the Delmarva Peninsula, Virginia, USA, confirms that the CBIS is a complex central-peak crater. We used a tomographic P wave velocity model and low-fold reflection images, constrained by data from two deep boreholes located on the profile, to interpret the structure and composition of the upper 5 km of crust. The seismic images exhibit well-defined structural features, including (with increasing radial distance) a collapsed central uplift, a breccia-filled moat, and a collapsed transient-crater margin (which collectively constitute a ???40-km-wide collapsed transient crater), and a shallowly deformed annular trough. These seismic images are the first to resolve the deep structure of the crater (>1 km) and the boundaries between the central uplift, moat, and annular trough. Several distinct seismic signatures distinguish breccia units from each other and from more coherent crystalline rocks below the central uplift, moat, and annular trough. Within the moat, breccia extends to a minimum depth of 1.5 km or a maximum of 3.5 km, depending upon the interpretation of the deepest layered materials. The images show ???350 to 500 m of postimpact sediments above the impactites. The imaged structure of the CBIS indicates a complex sequence of event during the cratering process that will provide new constraints for numerical modeling. Copyright 2008 by the American Geophysical Union.

  18. A proposed origin for palimpsests and anomalous pit craters on Ganymede and Callisto

    NASA Technical Reports Server (NTRS)

    Croft, S. K.

    1983-01-01

    The hypothesis that palimpsests and anomalous pit craters are essentially pristine crater forms derived from high-velocity impacts and/or impacts into an ice crust with preimpact temperatures near melting is explored. The observational data are briefly reviewed, and an impact model is proposed for the direct formation of a palimpsest from an impact when the modification flow which produces the final crater is dominated by 'wet' fluid flow, as opposed to the 'dry' granular flow which produces normal craters. Conditions of 'wet' modification occur when the volume of impact melt remaining in the transient crater attains a volume comparable to the transient crater. The normal crater-palimpsest transition is found to occur for sufficiently large impacts or sufficiently fast impactors. The range of crater diameters and morphological characteristics inferred from the impact model is consistent with the observed characteristics of palimpsests and anomalous pit craters.

  19. Deep drilling into the Chesapeake Bay impact structure

    USGS Publications Warehouse

    Gohn, G.S.; Koeberl, C.; Miller, K.G.; Reimold, W.U.; Browning, J.V.; Cockell, C.S.; Horton, J. Wright; Kenkmann, T.; Kulpecz, A.A.; Powars, D.S.; Sanford, W.E.; Voytek, M.A.

    2008-01-01

    Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.

  20. Deep drilling into the Chesapeake Bay impact structure.

    PubMed

    Gohn, G S; Koeberl, C; Miller, K G; Reimold, W U; Browning, J V; Cockell, C S; Horton, J W; Kenkmann, T; Kulpecz, A A; Powars, D S; Sanford, W E; Voytek, M A

    2008-06-27

    Samples from a 1.76-kilometer-deep corehole drilled near the center of the late Eocene Chesapeake Bay impact structure (Virginia, USA) reveal its geologic, hydrologic, and biologic history. We conducted stratigraphic and petrologic analyses of the cores to elucidate the timing and results of impact-melt creation and distribution, transient-cavity collapse, and ocean-water resurge. Comparison of post-impact sedimentary sequences inside and outside the structure indicates that compaction of the crater fill influenced long-term sedimentation patterns in the mid-Atlantic region. Salty connate water of the target remains in the crater fill today, where it poses a potential threat to the regional groundwater resource. Observed depth variations in microbial abundance indicate a complex history of impact-related thermal sterilization and habitat modification, and subsequent post-impact repopulation.

  1. Tabular comparisons of the Flynn Creek impact crater, United States, Steinheim impact crater, Germany and Snowball explosion crater, Canada

    NASA Technical Reports Server (NTRS)

    Roddy, D. J.

    1977-01-01

    A tabular outline of comparative data is presented for 340 basic dimensional, morphological, and structural parameters and related aspects for three craters of the flat-floored, central uplift type, two of which are natural terrestrial impact craters and one is a large-scale experimental explosion crater. The three craters are part of a general class, in terms of their morphology and structural deformation that is represented on each of the terrestrial planets including the moon. One of the considered craters, the Flynn Creek Crater, was formed by a hypervelocity impact event approximately 360 m.y. ago in what is now north central Tennessee. The impacting body appears to have been a carbonaceous chondrite or a cometary mass. The second crater, the Steinheim Crater, was formed by an impact event approximately 14.7 m.y. ago in what is now southwestern Germany. The Snowball Crater was formed by the detonation of a 500-ton TNT hemisphere on flat-lying, unconsolidated alluvium in Alberta, Canada.

  2. Block Distribution Analysis of Impact Craters in the Tharsis and Elysium Planitia Regions on Mars

    NASA Astrophysics Data System (ADS)

    Button, N.; Karunatillake, S.; Diaz, C.; Zadei, S.; Rajora, V.; Barbato, A.; Piorkowski, M.

    2017-12-01

    The block distribution pattern of ejecta surrounding impact craters reveals clues about their formation. Using images from High Resolution Imaging Science Experiment (HiRISE) image onboard the Mars Reconnaissance Orbiter (MRO), we indentified two rayed impact craters on Mars with measurable ejecta fields to quantitatively investigate in this study. Impact Crater 1 (HiRISE image PSP_008011_1975) is located in the Tharsis region at 17.41°N, 248.75°E and is 175 m in diameter. Impact Crater 2 (HiRISE image ESP_018352_1805) is located in Elysium Planitia at 0.51°N, 163.14°E and is 320 m in diameter. Our block measurements, used to determine the area, were conducted using HiView. Employing methods similar to Krishna and Kumar (2016), we compared block size and axis ratio to block distance from the center of the crater, impact angle, and direction. Preliminary analysis of sixteen radial sectors around Impact Crater 1 revealed that in sectors containing mostly small blocks (less than 10 m2), the small blocks were ejected up to three times the diameter of the crater from the center of the crater. These small block-dominated sectors lacked blocks larger than 10 m2. Contrastingly, in large block-dominated sectors (larger than 30 m2) blocks rarely traveled farther than 200 m from the center of the crater. We also seek to determine the impact angle and direction. Krishna and Kumar (2016) calculate the b-value (N(a) = Ca-b; "N(a) equals the number of fragments or craters with a size greater than a, C is a constant, and -b is a power index") as a method to determine the impact direction. Our preliminary results for Impact Crater 1 did not clearly indicate the impact angle. With improved measurements and the assessment of Impact Crater 2, we will compare Impact Crater 1 to Impact Crater 2 as well as assess the impact angle and direction in order to determine if the craters are secondary craters. Hood, D. and Karunatillake, S. (2017), LPSC, Abstract #2640 Krishna, N., and P. S. Kumar (2016), Icarus, 264, 274-299

  3. Computer simulations of large asteroid impacts into oceanic and continental sites--preliminary results on atmospheric, cratering and ejecta dynamics

    USGS Publications Warehouse

    Roddy, D.J.; Schuster, S.H.; Rosenblatt, M.; Grant, L.B.; Hassig, P.J.; Kreyenhagen, K.N.

    1987-01-01

    Computer simulations have been completed that describe passage of a 10-km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics caused by impact of the asteroid into both oceanic and continental sites. The asteroid was modeled as a spherical body moving vertically at 20 km/s with a kinetic energy of 2.6 ?? 1030 ergs (6.2 ?? 107 Mt ). Detailed material modeling of the asteroid, ocean, crustal units, sedimentary unit, and mantle included effects of strength and fracturing, generic asteroid and rock properties, porosity, saturation, lithostatic stresses, and geothermal contributions, each selected to simulate impact and geologic conditions that were as realistic as possible. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock wave followed by a highly shock compressed and heated air mass. Rapid expansion of this shocked air created a large low-density region that also expanded away from the impact area. Shock temperatures in air reached ???20,000 K near the surface of the uplifting crater rim and were as high as ???2000 K at more than 30 km range and 10 km altitude. Calculations to 30 s showed that the shock fronts in the air and in most of the expanding shocked air mass preceded the formation of the crater, ejecta, and rim uplift and did not interact with them. As cratering developed, uplifted rim and target material were ejected into the very low density, shock-heated air immediately above the forming crater, and complex interactions could be expected. Calculations of the impact events showed equally dramatic effects on the oceanic and continental targets through an interval of 120 s. Despite geologic differences in the targets, both cratering events developed comparable dynamic flow fields and by ???29 s had formed similar-sized transient craters ???39 km deep and ???62 km across. Transient-rim uplift of ocean and crust reached a maximum altitude of nearly 40 km at ???30 s and began to decay at velocities of 500 m/s to develop large-tsunami conditions. After ???30 s, strong gravitational rebound drove both craters toward broad flat-floored shapes. At 120 s, transient crater diameters were ???80 km (continental) and ???105 km (oceanic) and transient depths were ???27 km; crater floors consisting of melted and fragmented hot rock were rebounding rapidly upward. By 60 s, the continental crater had ejected ???2 ?? 1014 t, about twice the mass ejected from the oceanic crater. By 120 s, ???70,000 km3 (continental) and ???90,000 km3 (oceanic) target material were excavated (no mantle) and massive ejecta blankets were formed around the craters. We estimate that in excess of ???70% of the ejecta would finally lie within ???3 crater diameters of the impact, and the remaining ejecta (???1013 t), including the vaporized asteroid, would be ejected into the atmosphere to altitudes as high as the ionosphere. Effects of secondary volcanism and return of the ocean over hot oceanic crater floor could also be expected to contribute substantial material to the atmosphere. ?? 1987.

  4. Context of ancient aqueous environments on Mars from in situ geologic mapping at Endeavour Crater

    USGS Publications Warehouse

    Crumpler, L.S.; Arvidson, R. E.; Bell, J.; Clark, B. C.; Cohen, B. A.; Farrand, W. H.; Gellert, Ralf; Golombek, M.; Grant, J. A.; Guinness, E.; Herkenhoff, Kenneth E.; Johnson, J. R.; Jolliff, B.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.; Rice, J. W.; Squyres, S. W.; Sullivan, R.; Yen, A. S.

    2015-01-01

    Using the Mars Exploration Rover Opportunity, we have compiled one of the first field geologic maps on Mars while traversing the Noachian terrain along the rim of the 22 km diameter Endeavour Crater (Latitude −2°16′33″, Longitude −5°10′51″). In situ mapping of the petrographic, elemental, structural, and stratigraphic characteristics of outcrops and rocks distinguishes four mappable bedrock lithologic units. Three of these rock units predate the surrounding Burns formation sulfate-rich sandstones and one, the Matijevic Formation, represents conditions on early Mars predating the formation of Endeavour Crater. The stratigraphy assembled from these observations includes several geologic unconformities. The differences in lithologic units across these unconformities record changes in the character and intensity of the Martian aqueous environment over geologic time. Water circulated through fractures in the oldest rocks over periods long enough that texturally and elementally significant alteration occurred in fracture walls. These oldest pre-Endeavour rocks and their network of mineralized and altered fractures were preserved by burial beneath impact ejecta and were subsequently exhumed and exposed. The alteration along joints in the oldest rocks and the mineralized veins and concentrations of trace metals in overlying lithologic units is direct evidence that copious volumes of mineralized and/or hydrothermal fluids circulated through the early Martian crust. The wide range in intensity of structural and chemical modification from outcrop to outcrop along the crater rim shows that the ejecta of large (>8 km in diameter) impact craters is complex. These results imply that geologic complexity is to be anticipated in other areas of Mars where cratering has been a fundamental process in the local and regional geology and mineralogy.

  5. Relating sedimentary processes in the Bagnold Dunes to the development of crater basin aeolian stratification

    NASA Astrophysics Data System (ADS)

    Ewing, R. C.; Lapotre, M. G. A.; Lewis, K. W.; Day, M. D.; Stein, N.; Rubin, D. M.; Sullivan, R. J., Jr.; Banham, S.; Thomas, N. M.; Lamb, M. P.; Gupta, S.; Fischer, W. W.

    2017-12-01

    Wind-blown sand dunes are ubiquitous on the surface of Mars and are a recognized component of the martian stratigraphic record. Our current knowledge of the aeolian sedimentary processes that determine dune morphology, drive dune dynamics, and create aeolian cross-stratification are based upon orbital studies of ripple and dune morphodynamics, rover observations of stratification on Mars, Earth analogs, and experimental and theoretical studies of sand movement under martian conditions. Exploration of the Bagnold Dunes by the Curiosity Rover in Gale Crater, Mars provided the first opportunity to make in situ observations of martian dunes from the grain-to-dune scale. We used the suite of cameras on Curiosity, including Navigation Camera, Mast Camera, and Mars Hand Lens Imager. We measured grainsize and identified sedimentary processes similar to processes on terrestrial dunes, such as grainfall, grainflow, and impact ripples. Impact ripple grainsize had a median of 0.103 mm. Measurements of grainflow slopes indicate a relaxation angle of 29° and grainfall slopes indicate critical angles of at least 32°. Dissimilar to terrestrial dunes, large, meter-scale ripples form on all slopes of the dunes. The ripples form both sinuous and linear crestlines, have symmetric and asymmetric profiles, range in height between 12cm and 28cm, and host grainfall, grainflow, and impact ripples. The largest ripples are interpreted to integrate the annual wind cycle within the crater, whereas smaller large ripples and impact ripples form or reorient to shorter term wind cycling. Assessment of sedimentary processes in combination with dune type across the Bagnold Dunes shows that dune-field pattern development in response to a complex crater-basin wind regime dictates the distribution of geomorphic processes. From a stratigraphic perspective, zones of highest potential accumulation correlate with zones of wind convergence, which produce complex winds and dune field patterns thereby limiting the potential distribution of types of aeolian stratification preserved within crater basins.

  6. Tethys Eyes Saturn

    NASA Image and Video Library

    2015-06-15

    The two large craters on Tethys, near the line where day fades to night, almost resemble two giant eyes observing Saturn. The location of these craters on Tethys' terminator throws their topography into sharp relief. Both are large craters, but the larger and southernmost of the two shows a more complex structure. The angle of the lighting highlights a central peak in this crater. Central peaks are the result of the surface reacting to the violent post-impact excavation of the crater. The northern crater does not show a similar feature. Possibly the impact was too small to form a central peak, or the composition of the material in the immediate vicinity couldn't support the formation of a central peak. In this image Tethys is significantly closer to the camera, while the planet is in the background. Yet the moon is still utterly dwarfed by the giant Saturn. This view looks toward the anti-Saturn side of Tethys. North on Tethys is up and rotated 42 degrees to the right. The image was taken in visible light with the Cassini spacecraft wide-angle camera on April 11, 2015. The view was obtained at a distance of approximately 75,000 miles (120,000 kilometers) from Tethys. Image scale at Tethys is 4 miles (7 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/pia18318

  7. Modeling of the Central Magnetic Anomaly at Haughton Impact Structure, Canada

    NASA Astrophysics Data System (ADS)

    Quesnel, Y.; Gattacceca, J.; Osinski, G. R.; Rochette, P.

    2011-12-01

    Located on Devon Island, Nunavut, Canada, the 23-km diameter Haughton impact structure is one of the best-preserved medium-size complex impact structures on Earth. The impact occurred ~39 Ma ago into a target formation composed of an ~2-km thick sequence of Lower Paleozoic sedimentary rocks of the Arctic Platform overlying Precambrian metamorphic basement of the Canadian Shield (Osinski et al., 2005). Clast-rich impact melt rocks line the crater and impact-induced hydrothermal activity took place, but since then no significant geological event has affected the area. In the 1980s, ground magnetic and gravity measurements were carried out within the central part of the crater (Pohl et al., 1988). A significant anomaly was discovered and coarsely modeled by a source body of simple geometry. More recently, an airborne magnetic survey delivered additional data that covered the whole crater but no modeling was done (Glass et al., 2002). Here, we present the results of a new ground magnetic survey accompanied by rock magnetic property measurements made on all samples of the crater. This has provided additional constraints to investigate the origin of this central magnetic anomaly. By conducting modeling, we have been able to reveal the geometry and volume of the source body as well as its magnetization properties. Our results suggest that the necessary magnetization intensity to account for this anomaly is too large to be associated with uplifted pre-impact target rocks. Therefore, we suggest that hydrothermal alteration could have enhanced the magnetization of the central part of this crater. References : Osinski, G. R. et al. 2005. MPS, 40:1759-1776 ; Pohl, J. et al. 1988. Meteoritics, 23:235-238 ; Glass, B. J. et al. 2002, Abstract #2008. 33th LPSC

  8. Possible Layers on Floor of Suzhi Crater

    NASA Image and Video Library

    2016-12-14

    This image shows the floor of Suzhi Crater, an approximately 25-kilometer diameter impact crater located northeast of Hellas Planitia. The crater floor is mostly covered by dark-toned deposits; however some patches of the underlying light-toned bedrock are now exposed, like in this Context Camera image. This enhanced-color infrared image shows a close up of the exposed bedrock on the floor of the crater. Here we can see the lighter-toned bedrock partially covered up by darker-toned bedrock and a few wind-blown bedforms. The lighter-toned bedrock appears to lie over yet another type of bedrock in our image, which appears to be yellowish and heavily fractured. What complex tale of Martian geologic and climate history might these rocks tell us if we were able to sample them in person? Perhaps, one day we'll know. The University of Arizona, Tucson, operates HiRISE, which was http://photojournal.jpl.nasa.gov/catalog/PIA21273

  9. GRAIL Gravity Observations of the Transition from Complex Crater to Peak-Ring Basin on the Moon: Implications for Crustal Structure and Impact Basin Formation

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Phillips, Roger J.; Neumann, Gregory A.; Bierson, Carver J.; Smith, David E.; Zuber, Maria T.

    2017-01-01

    High-resolution gravity data from the Gravity Recovery and Interior Laboratory (GRAIL) mission provide the opportunity to analyze the detailed gravity and crustal structure of impact features in the morphological transition from complex craters to peak-ring basins on the Moon. We calculate average radial profiles for free-air anomalies and Bouguer anomalies for peak-ring basins, proto-basins, and the largest complex craters. Complex craters and proto-basins have free-air anomalies that are positively correlated with surface topography, unlike the prominent lunar mascons (positive free-air anomalies in areas of low elevation) associated with large basins. The Bouguer gravity anomaly profiles of complex craters are highly irregular, with central positive anomalies that are generally absent or not clearly tied to interior morphology. In contrast, gravity profiles for peak-ring basins (approx. 200 km to 580 km) are much more regular and are highly correlated with surface morphology. A central positive Bouguer anomaly is confined within the peak ring and a negative Bouguer anomaly annulus extends from the edge of the positive anomaly outward to about the rim crest. A number of degraded basins lacking interior peak rings have diameters and gravity patterns similar to those of well-preserved peak-ring basins. If these structures represent degraded peak-ring basins, the number of peak-ring basins on the Moon would increase by more than a factor of two to 34. The gravity anomalies within basins are interpreted to be due to uplift of the mantle confined within the peak ring and an annulus of thickened crust between the peak ring and rim crest. We hypothesize that mantle uplift is influenced by interaction between the transient cavity and the mantle. Further, mascon formation is generally disconnected from the number of basin rings formed and occurs over a wide range of basin sizes. These observations have important implications for models of basin and mascon formation on the Moon and other planetary bodies.

  10. Impact-generated Hydrothermal Activity at the Chicxulub Crater

    NASA Astrophysics Data System (ADS)

    Kring, D. A.; Zurcher, L.; Abramov, O.

    2007-05-01

    Borehole samples recovered from PEMEX exploration boreholes and an ICDP scientific borehole indicate the Chicxulub impact event generated hydrothermal alteration throughout a large volume of the Maya Block beneath the crater floor and extending across the bulk of the ~180 km diameter crater. The first indications of hydrothermal alteration were observed in the crater discovery samples from the Yucatan-6 borehole and manifest itself in the form of anhydrite and quartz veins. Continuous core from the Yaxcopoil-1 borehole reveal a more complex and temporally extensive alteration sequence: following a brief period at high temperatures, impact- melt-bearing polymict breccias and a thin, underlying unit of impact melt were subjected to metasomatism, producing alkali feldspar, sphene, apatite, and magnetite. As the system continued to cool, smectite-series phyllosilicates appeared. A saline solution was involved. Stable isotopes suggest the fluid was dominated by a basinal brine created mostly from existing groundwater of the Yucatan Peninsula, although contributions from down-welling water also occurred in some parts of the system. Numerical modeling of the hydrothermal system suggests circulation occurred for 1.5 to 2.3 Myr, depending on the permeability of the system. Our understanding of the hydrothermal system, however, is still crude. Additional core recovery projects, particularly into the central melt sheet, are needed to better evaluate the extent and duration of hydrothermal alteration.

  11. Experimental simulation of impact cratering on icy satellites

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Fink, J. H.; Gault, D. E.; Guest, J. E.

    1982-01-01

    Cratering processes on icy satellites were simulated in a series of 102 laboratory impact experiments involving a wide range of target materials. For impacts into homogeneous clay slurries with impact energies ranging from five million to ten billion ergs, target yield strengths ranged from 100 to 38 Pa, and apparent viscosities ranged from 8 to 200 Pa s. Bowl-shaped craters, flat-floored craters, central peak craters with high or little relief, and craters with no relief were observed. Crater diameters increased steadily as energies were raised. A similar sequence was seen for experiment in which impact energy was held constant but target viscosity and strength progressively decreases. The experiments suggest that the physical properties of the target media relative to the gravitationally induced stresses determined the final crater morphology. Crater palimpsests could form by prompt collapse of large central peak craters formed in low target strength materials. Ages estimated from crater size-frequency distributions that include these large craters may give values that are too high.

  12. Excavation of buried hydrated minerals on Mars by impact cratering? (Invited)

    NASA Astrophysics Data System (ADS)

    Carter, J.; Poulet, F.; Loizeau, D.; Bibring, J.

    2010-12-01

    Impact cratering is a key process when studying Mars’s past aqueous environments. It is a widespread and dynamic process which has been active throughout Mars’s history, especially during the Noachian era. Noachian-aged hydrated minerals have been reported on Mars (e.g. [1, 2]) and provide strong constrains on the alleged early wet Martian environment [3]. Our knowledge of this early wet environment will be greatly improved if we understand how hydrated minerals are formed, modified or destroyed by impact processes. One main consequence of impact cratering is the excavation of buried material. Excavated material is found in walls, ejecta and central uplifts in the case of large complex craters. It may originate from the deeply buried crust or subsurface, depending on crater size [4]. In this case craters act as natural boreholes that allow orbital spectroscopic inquiry of otherwise hidden material and is of great importance when investigating the aqueous alteration of Mars. This process has proven particularly useful when studying the northern crust of Mars which is covered by a thick mantling unit [5]. Large craters have penetrated the cover and exhumed buried hydrated crustal material, including the low-grade metamorphic mineral prehnite and there is evidence that the ancient crust has been altered by water down to kilometer depths, both in the northern plains and southern highlands [6]. Using the OMEGA and CRISM [7, 8] near-infrared hyperspectral instruments currently in orbit around Mars we have mapped surface exposures of hydrated minerals and found that many are associated with impact structures [9]. Here we report how detailed analysis of these sites reveal exposures of various hydrated minerals including phyllosilicates, zeolites and sulfates, associated with crater central uplifts, floors, walls, rims and ejecta. We focus on the heavily cratered Tyrrhena Terra region of Mars as well as the large northern plain craters. In both cases, excavation of buried, pre-existing phyllosilicates is thought to be the driving process. Other hydrated mineral formation pathways linked with impact cratering include impact-induced hydrothermal alteration [10-12], shock-induced and post-impact changes to mineral composition. [1]Poulet et al., Nature 438, 623 (2005). [2]Murchie et al., J. Geophys. Res. 114, E00D06 (2009). [3]Bibring et al., Science 312, 5772 (2006). [4]Baratoux et al., J. Geophys. Res. 112, E08S05 (2007). [5]Tanaka et al., J. Geophys. Res. 108, (E4), 8043 (2003). [6]Carter et al., Science 328, 1682 (2010). [7]Bibring et al., Eur. Space Agency Spec. Pub. 1240, 37 (2004). [8]Murchie et al., J. Geophys. Res. 114, E00D07 (2009). [9]Carter et al., Proc. Lunar Planet. Sci. Conf. 40, abstr. 2028 (2009). [10]Abramov and Kring, J. Geophys. Res. 110, (E12), E12S09 (2005). [11]Schwenzer and Kring, Geology 37, 1091 (2009). [12]Marzo et al., Icarus 208, 667-683 (2010).

  13. Crater in Marte Vallis

    NASA Technical Reports Server (NTRS)

    2003-01-01

    MGS MOC Release No. MOC2-566, 6 December 2003

    This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a streamlined tail-pointing toward the upper right (northeast)--in the lee of a meteor impact crater in Marte Vallis, a large valley and channel complex southeast and east of the Elysium volcanic region. The fluid that went through Marte Vallis, whether water, mud, lava, or otherwise, created this form as it moved from the lower left (southwest) toward the upper right. The crater is located near 19.0oN, 174.9oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the left.

  14. The Transition from Complex Crater to Peak-Ring Basin on the Moon: New Observations from the Lunar Orbiter Laser Altimeter (LOLA) Instrument

    NASA Technical Reports Server (NTRS)

    Baker, David M. H.; Head, James W.; Fassett, Caleb I.; Kadish, Seth J.; Smith, Dave E.; Zuber, Maria T.; Neumann, Gregory A.

    2012-01-01

    Impact craters on planetary bodies transition with increasing size from simple, to complex, to peak-ring basins and finally to multi-ring basins. Important to understanding the relationship between complex craters with central peaks and multi-ring basins is the analysis of protobasins (exhibiting a rim crest and interior ring plus a central peak) and peak-ring basins (exhibiting a rim crest and an interior ring). New data have permitted improved portrayal and classification of these transitional features on the Moon. We used new 128 pixel/degree gridded topographic data from the Lunar Orbiter Laser Altimeter (LOLA) instrument onboard the Lunar Reconnaissance Orbiter, combined with image mosaics, to conduct a survey of craters >50 km in diameter on the Moon and to update the existing catalogs of lunar peak-ring basins and protobasins. Our updated catalog includes 17 peak-ring basins (rim-crest diameters range from 207 km to 582 km, geometric mean = 343 km) and 3 protobasins (137-170 km, geometric mean = 157 km). Several basins inferred to be multi-ring basins in prior studies (Apollo, Moscoviense, Grimaldi, Freundlich-Sharonov, Coulomb-Sarton, and Korolev) are now classified as peak-ring basins due to their similarities with lunar peak-ring basin morphologies and absence of definitive topographic ring structures greater than two in number. We also include in our catalog 23 craters exhibiting small ring-like clusters of peaks (50-205 km, geometric mean = 81 km); one (Humboldt) exhibits a rim-crest diameter and an interior morphology that may be uniquely transitional to the process of forming peak rings. Comparisons of the predictions of models for the formation of peak-ring basins with the characteristics of the new basin catalog for the Moon suggest that formation and modification of an interior melt cavity and nonlinear scaling of impact melt volume with crater diameter provide important controls on the development of peak rings. In particular, a power-law model of growth of an interior melt cavity with increasing crater diameter is consistent with power-law fits to the peak-ring basin data for the Moon and Mercury. We suggest that the relationship between the depth of melting and depth of the transient cavity offers a plausible control on the onset diameter and subsequent development of peak-ring basins and also multi-ring basins, which is consistent with both planetary gravitational acceleration and mean impact velocity being important in determining the onset of basin morphological forms on the terrestrial planets.

  15. Geomechanical models of impact cratering: Puchezh-Katunki structure

    NASA Technical Reports Server (NTRS)

    Ivanov, B. A.

    1992-01-01

    Impact cratering is a complex natural phenomenon that involves various physical and mechanical processes. Simulating these processes may be improved using the data obtained during the deep drilling at the central mound of the Puchezh-Katunki impact structure. A research deep drillhole (named Vorotilovskaya) has been drilled in the Puchezh-Katunki impact structure (European Russia, 57 deg 06 min N, 43 deg 35 min E). The age of the structure is estimated at about 180 to 200 m.y. The initial rim crater diameter is estimated at about 40 km. The central uplift is composed of large blocks of crystalline basement rocks. Preliminary study of the core shows that crystalline rocks are shock metamorphosed by shock pressure from 45 GPa near the surface to 15-20 GPa at a depth of about 5 km. The drill core allows the possibility of investigating many previously poorly studied cratering processes in the central part of the impact structure. As a first step one can use the estimates of energy for the homogeneous rock target. The diameter of the crater rim may be estimated as 40 km. The models elaborated earlier show that such a crater may be formed after collapse of a transient cavity with a radius of 10 km. The most probable range of impact velocities from 11.2 to 30 km/s may be inferred for the asteroidal impactor. For the density of a projectile of 2 g/cu cm the energy of the impact is estimated as 1E28 to 3E28 erg. In the case of vertical impact, the diameter of an asteroidal projectile is from 1.5 to 3 km for the velocity range from 11 to 30 km/s. For the most probable impact angle of 45 deg, the estimated diameter of an asteroid is slightly larger: from 2 to 4 km. Numerical simulation of the transient crater collapse has been done using several models of rock rheology during collapse. Results show that the column at the final position beneath the central mound is about 5 km in length. This value is close to the shock-pressure decay observed along the drill core. Further improvement of the model needs to take into account the blocky structure of target rocks revealed by drilling.

  16. Possible Impact Origin for the Late Ordovician Bear Swamp Structure in the Finger Lakes Region of New York

    NASA Astrophysics Data System (ADS)

    Leiphart, D.

    2010-12-01

    Impact structures, or astroblemes, are one of rarest formations in the geologic record. Presently there are 176 confirmed impact structures on the planet with roughly two-thirds of them evident at the surface. A potential impact structure has been discovered in a 3D seismic survey in the Finger Lakes Region of upstate New York (Figure 1 - N42o43.187’; W76o16.637’). The Bear Swamp crater is uppermost Ordovician (~444 Ma) in age and is situated within the fluvial-deltaic to shallow marine Queenston Formation. This nearly circular structure measures 3.5 km (2.2 mi) in diameter and is completely buried in the subsurface at a depth of approximately 1,220 m (4,000 ft). Seismic data show a central uplift within the crater that rises about 160 m (525 ft) above the base. Around the central uplift is an annular basin that is more than 300 m (~1,000 ft) thick and is characterized by synformal seismic reflectors (Figure 1). This three-dimensional morphology resembles other complex craters of confirmed impact origin. Two exploration wells were drilled into the crater and image logs were run. The first well tested the central rebound which consists of steeply dipping beds and heavily brecciated zones. The second well was drilled in the annular basin which contains alternating sequences of chaotic zones and shallow dipping beds. Based on analogous impact structures, this crater fill is here interpreted as resurge breccias and turbidites which were the result of intense wave action in the moments after impact. Above these impact-related deposits lies a zone of very thin (~2cm) laminae which resemble varved sediments in lacustrine environments. A bioturbated zone overlies these thin laminae, which is in turn capped by the End Ordovician unconformity. Observations of both seismic and well data are consistent with a shallow marine to transition zone impact origin for the Bear Swamp crater. Figure 1: Location map showing the area of the ~180 km2 (70 mi2) 3D seismic survey and the proposed Bear Swamp Astrobleme. The map in the lower left is a time slice through a coherency volume at 650 milliseconds. The inset at the lower right is a cutout of the 3D volume with the Queenston top and base crater horizon extrapolated out.

  17. Spatial distribution of impact craters on Deimos

    NASA Astrophysics Data System (ADS)

    Hirata, Naoyuki

    2017-05-01

    Deimos, one of the Martian moons, has numerous impact craters. However, it is unclear whether crater saturation has been reached on this satellite. To address this issue, we apply a statistical test known as nearest-neighbor analysis to analyze the crater distribution of Deimos. When a planetary surface such as the Moon is saturated with impact craters, the spatial distribution of craters is generally changed from random to more ordered. We measured impact craters on Deimos from Viking and HiRISE images and found (1) that the power law of the size-frequency distribution of the craters is approximately -1.7, which is significantly shallower than those of potential impactors, and (2) that the spatial distribution of craters over 30 m in diameter cannot be statistically distinguished from completely random distribution, which indicates that the surface of Deimos is inconsistent with a surface saturated with impact craters. Although a crater size-frequency distribution curve with a slope of -2 is generally interpreted as indicating saturation equilibrium, it is here proposed that two competing mechanisms, seismic shaking and ejecta emplacement, have played a major role in erasing craters on Deimos and are therefore responsible for the shallow slope of this curve. The observed crater density may have reached steady state owing to the obliterations induced by the two competing mechanisms. Such an occurrence indicates that the surface is saturated with impact craters despite the random distribution of craters on Deimos. Therefore, this work proposes that the age determined by the current craters on Deimos reflects neither the age of Deimos itself nor that of the formation of the large concavity centered at its south pole because craters should be removed by later impacts. However, a few of the largest craters on Deimos may be indicative of the age of the south pole event.

  18. Lunar and Planetary Science XXXV: Impacts: Modeling and Observations

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This document covers the following topics: Cratering on Titan: Projectiles, Craters and Impact Melt; The Cratering Database: Making Code Jockeys Honest; Popigai Impact Structure Modeling: Morphology and Worldwide Ejecta; Anhydrite EOS and Phase Diagram in Relation to Shock Decomposition; Computational Investigations of the Chesapeake Bay Impact Structure; Hydrocode Simulations of the Chesapeake Bay Impact; Lockne Crater as a Result of Oblique Impact; The Influence of a Deep Shelf Sea on the Excavation and Modification of a Marine-Target Crater, the Lockne Crater, Central Sweden; Pre-Drilling Investigation of the Lake Bosumtwi Impact Crater: Constraints from Geophysics and Numerical Modelling; Central Uplift Formation at the Middlesboro Impact Structure, Kentucky, USA; A SRTM Investigation of Serra da Cangalho Impact Structure, Brazil; Brazilian Impact Craters: A Review; Flynn Creek Impact Structure: New Insights from Breccias, Melt Features, Shatter Cones, and Remote Sensing; The Howell Structure, Lincoln County, Tennessee: A Review of Past and Current Research; After the Chicxulub Impact: Control on Depositional and Diagenetic History of the Cenozoic Carbonate Formations of the Northwestern Yucatan Peninsula, Mexico; Ni Contents by Non-Destructive In-Situ XRF Method of Takamatsu-Kagawa Crater District in Japan; and Akiyoshi Limestone Blocks Transported by the P/T Boundary Event to Japan Islands.

  19. The Explorer's Guide to Impact Craters

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Osinski, G.; Chuang, F.

    2004-12-01

    Impact cratering is a fundamental geologic process of our solar system. It competes with other processes, such as plate tectonics, volcanism, or fluvial, glacial and eolian activity, in shaping the surfaces of planetary bodies. In some cases, like the Moon and Mercury, impact craters are the dominant landform. On other planetary bodies impact craters are being continuously erased by the action of other geological processes, like volcanism on Io, erosion and plate tectonics on the Earth, tectonic and volcanic resurfacing on Venus, or ancient erosion periods on Mars. The study of crater populations is one of the principal tools for understanding the geologic history of a planetary surface. Among the general public, impact cratering has drawn wide attention through its portrayal in several Hollywood movies. Questions that are raised after watching these movies include: ``How do scientists learn about impact cratering?'', and ``What information do impact craters provide in understanding the evolution of a planetary surface?'' Fundamental approaches used by scientists to learn about impact cratering include field work at known terrestrial craters, remote sensing studies of craters on various solid surfaces of solar system bodies, and theoretical and laboratory studies using the known physics of impact cratering. We will provide students, science teachers, and the general public an opportunity to experience the scientific endeavor of understanding and exploring impact craters through a multi-level approach including images, videos, and rock samples. This type of interactive learning can also be made available to the general public in the form of a website, which can be addressed worldwide at any time.

  20. Successive Formation of Impact Craters

    NASA Image and Video Library

    2012-02-16

    This image from NASA Dawn spacecraft shows two overlapping impact craters on asteroid Vesta. The rims of the craters are both reasonably fresh but the larger crater must be older because the smaller crater cuts across the larger crater rim.

  1. Russian-US Partnership to Study the 23-km-diameter El'gygtgyn Impact Crater, Northeast Russia

    NASA Technical Reports Server (NTRS)

    Sharpton, Virgil L.; Minyuk, Pavel S.; Brigham-Grette, Julie; Glushkova, Olga; Layer, Paul; Raikevich, Mikhail; Stone, David; Smirnov, Valdimir

    2002-01-01

    El'gygytgyn crater, located within Eastern Siberia, is a Pliocene-aged (3.6 Ma), well-preserved impact crater with a rim diameter of roughly 23 km. The target rocks are a coherent assemblage of crystalline rocks ranging from andesite to basalt. At the time of impact the region was forested and the Arctic Ocean was nearly ice-free. A 15-km lake fills the center of the feature and water depths are approximately 175 m. Evidence of shock metamorphism, -- including coesite, fused mineral glasses, and planar deformation features in quartz -- has been reported. This feature is one of the youngest and best preserved complex craters on Earth. Because of its remote Arctic setting, however, El gygytgyn crater remains poorly investigated. The objectives of this three-year project are to establish and maintain a research partnership between scientists from Russia and the United States interested in the El gygytgyn crater. The principal institutions in the U.S. will be the Geophysical Institute, University of Alaska Fairbanks and the University of Massachusetts Amherst. The principal institution in Russia will be the North East Interdisciplinary Scientific Research Institute (NEISRI), which is the Far-East Branch of the Russian Academy of Science. Three science tasks are identified for the exchange program: (1) Evaluate impactite samples collected during previous field excursions for evidence of and level of shock deformation. (2) Build a high-resolution digital elevation model for the crater and its surroundings using interferometric synthetic aperture radar techniques on JERS-1, ERS-1, ERS-2, and/or RadarSat range-doppler data. (3) Gather all existing surface data available from Russian and U.S. institutions (DEM, remote sensing image data, field-based lithological and sample maps, and existing geophysical data) and assemble into a Geographic Information Systems database.

  2. Occurrence and mechanisms of impact melt emplacement at small lunar craters

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Hawke, B. Ray; Robinson, Mark S.; Denevi, Brett W.; Giguere, Thomas A.; Koeber, Steven D.

    2014-11-01

    Using observations from the Lunar Reconnaissance Orbiter Camera (LROC), we assess the frequency and occurrence of impact melt at simple craters less than 5 km in diameter. Nine-hundred-and-fifty fresh, randomly distributed impact craters were identified for study based on their maturity, albedo, and preservation state. The occurrence, frequency, and distribution of impact melt deposits associated with these craters, particularly ponded melt and lobate flows, are diagnostic of melt emplacement mechanisms. Like larger craters, those smaller than a few kilometers in diameter often exhibit ponded melt on the crater floor as well as lobate flows near the crater rim crest. The morphologies of these deposits suggest gravity-driven flow while the melt was molten. Impact melt deposits emplaced as veneers and ;sprays;, thin layers of ejecta that drape other crater materials, indicate deposition late in the cratering process; the deposits of fine sprays are particularly sensitive to degradation. Exterior melt deposits found near the rims of a few dozen craters are distributed asymmetrically around the crater and are rare at craters less than 2 km in diameter. Pre-existing topography plays a role in the occurrence and distribution of these melt deposits, particularly for craters smaller than 1 km in diameter, but does not account for all observed asymmetries in impact melt distribution. The observed relative abundance and frequency of ponded melt and flows in and around simple lunar craters increases with crater diameter, as was previously predicted from models. However, impact melt deposits are found more commonly at simple lunar craters (i.e., those less than a few kilometers in diameter) than previously expected. Ponded melt deposits are observed in roughly 15% of fresh craters smaller than 300 m in diameter and 80% of fresh craters between 600 m and 5 km in diameter. Furthermore, melt deposits are observed at roughly twice as many non-mare craters than at mare craters. We infer that the distributions and occurrences of impact melt are strongly influenced by impact velocity and angle, target porosity, pre-existing topography, and degradation. Additionally, areally small and volumetrically thin melt deposits are sensitive to mixing with solid debris and/or burial during the modification stage of impact cratering as well as post-cratering degradation. Thus, the production of melt at craters less than ∼800 m in diameter is likely greater than inferred from the present occurrence of melt deposits, which is rapidly affected by ongoing degradation processes.

  3. Stratigraphy of the Descartes region /Apollo 16/ - Implications for the origin of samples

    NASA Technical Reports Server (NTRS)

    Head, J. W.

    1974-01-01

    Analysis of terrain in the Apollo 16 Descartes landing region shows a series of features that form a stratigraphic sequence which dominates the history and petrogenesis at the site. An ancient 150-km diam crater centered on the Apollo 16 site is one of the earliest recognizable major structures. Nectaris ejecta was concentrated in a regional low at the base of the back slope of the Nectaris basin to form the Descartes Mountains. Subsequently, a 60-km diam crater formed in the Descartes Mountains centered about 25 km to the west of the site. This crater dominates the geology and petrogenetic history of the site. Stone and Smoky Mountains represent the degraded terraced crater walls, and the dark matrix breccias and metaclastic rocks derived from North and South Ray craters represent floor fallback breccias from this cratering event. The interpretation is developed that the stratigraphy of the Cayley and Descartes, and thus the historical record of the Apollo 16 region, documents the complex interaction of deposits and morphology of local and regional impact cratering events. Large local 60- to 150-km diam craters have had a dramatic and previously unrecognized effect on the history and petrology of the Apollo 16 site.

  4. Mars 2020 Candidate Landing Site in McLaughlin Crater

    NASA Image and Video Library

    2016-01-14

    McLaughlin Crater (21.9 N, 337.6 E) is a large, approximately 95-kilometer diameter impact crater located north of Mawrth Vallis, in Arabia Terra, a region that was made famous by the book and movie "The Martian" by Andy Weir. McLaughlin Crater straddles three major terrain types: the Northern lowlands, the Southern highlands and the Mawrth Vallis region. The crater floor is thought to be covered by clays and carbonates that were deposited in a deep lake at least 3.8 billion years ago perhaps by ground water upwelling from beneath the crater floor (Michalski et al., 2013, Nature Geoscience). McLaughlin Crater is listed as a candidate landing site for the 2020 Mars surface mission. Although it is described as a "flat, low-risk and low-elevation landing zone," the region in this image on the southern floor of the crater shows a complex surface of eroded layers that are rough in places. An unusual feature is a straight fracture cutting diagonally across the layered material at the bottom portion of the image that may be a fault line. http://photojournal.jpl.nasa.gov/catalog/PIA20338

  5. Geology of Chryse Planitia

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Theilig, E.; Guest, J. E.; Carr, M. H.; Masursky, H.; Cutts, J. A.

    1977-01-01

    Chryse Planitia, the site of the first successful landing on Mars by Viking 1, is an asymmetrical basin, centered at 45 deg W and 24 deg N, about 2000 km northeast of Valles Marineris. High-resolution Viking orbiter images show Chryse Planitia to be much more complex than had been suspected from Mariner 9 images. On the basis of a study of the Viking pictures it is concluded that the geological history of Chryse Planitia involves a complex sequence of impact cratering, mantling by extensive deposits of unknown origin, redistribution of mantling and crater materials by erosion and deposition with concurrent eruptions of flood-type basalts, and aeolian activity.

  6. Large Crater Clustering tool

    NASA Astrophysics Data System (ADS)

    Laura, Jason; Skinner, James A.; Hunter, Marc A.

    2017-08-01

    In this paper we present the Large Crater Clustering (LCC) tool set, an ArcGIS plugin that supports the quantitative approximation of a primary impact location from user-identified locations of possible secondary impact craters or the long-axes of clustered secondary craters. The identification of primary impact craters directly supports planetary geologic mapping and topical science studies where the chronostratigraphic age of some geologic units may be known, but more distant features have questionable geologic ages. Previous works (e.g., McEwen et al., 2005; Dundas and McEwen, 2007) have shown that the source of secondary impact craters can be estimated from secondary impact craters. This work adapts those methods into a statistically robust tool set. We describe the four individual tools within the LCC tool set to support: (1) processing individually digitized point observations (craters), (2) estimating the directional distribution of a clustered set of craters, back projecting the potential flight paths (crater clusters or linearly approximated catenae or lineaments), (3) intersecting projected paths, and (4) intersecting back-projected trajectories to approximate the local of potential source primary craters. We present two case studies using secondary impact features mapped in two regions of Mars. We demonstrate that the tool is able to quantitatively identify primary impacts and supports the improved qualitative interpretation of potential secondary crater flight trajectories.

  7. The Geology of Pluto and Charon Through the Eyes of New Horizons

    NASA Technical Reports Server (NTRS)

    Moore, J. M.; McKinnon, W. B.; Spencer, J. R.; Howard, A. D.; Schenk, P. M.; Beyer, R. A.; Nimmo, F.; Singer, K. N.; Umurhan, O. M.; White, O. L.; hide

    2016-01-01

    NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that is involved in convection and advection, with a crater retention age no greater than 10 Ma. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic, and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to 4 Ga old that are extensionally fractured and extensively mantled and eroded by glacial or other processes. Charon is not currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest proposed impactor size-frequency distributions.

  8. KSC-04PD-2180

    NASA Technical Reports Server (NTRS)

    2004-01-01

    KENNEDY SPACE CENTER, FLA. At Astrotech Space Operations in Titusville, Fla., Joe Galamback mounts a bracket on a solar panel on the Deep Impact spacecraft. Galamback is a lead mechanic technician with Ball Aerospace and Technologies Corp. in Boulder, Colo. The spacecraft is undergoing verification testing after its long road trip from Colorado.A NASA Discovery mission, Deep Impact will probe beneath the surface of Comet Tempel 1 on July 4, 2005, when the comet is 83 million miles from Earth, and reveal the secrets of its interior. After releasing a 3- by 3- foot projectile to crash onto the surface, Deep Impacts flyby spacecraft will collect pictures and data of how the crater forms, measuring the craters depth and diameter, as well as the composition of the interior of the crater and any material thrown out, and determining the changes in natural outgassing produced by the impact. It will send the data back to Earth through the antennas of the Deep Space Network. The spacecraft is scheduled to launch Dec. 30, 2004, aboard a Boeing Delta II rocket from Launch Complex 17 at Cape Canaveral Air Force Station, Fla.

  9. Here Looking at You, Tethys

    NASA Image and Video Library

    2017-01-23

    Tethys, one of Saturn's larger icy moons, vaguely resembles an eyeball staring off into space in this view from NASA's Cassini spacecraft. The resemblance is due to the enormous crater, Odysseus, and its complex of central peaks. Like any solar system moon, Tethys (660 miles or 1,062 kilometers across) has suffered many impacts. These impacts are a prime shaper of the appearance of a moon's surface , especially when the moon has no active geological processes. In this case, a large impact not only created a crater known as Odysseus, but the rebound of the impact caused the mountainous peaks, named Scheria Montes, to form in the center of the crater. This view looks toward the leading side of Tethys. North on Tethys is up and rotated 1 degree to the left. The image was taken in green light with the Cassini spacecraft narrow-angle camera on Nov. 10, 2016. The view was acquired at a distance of approximately 228,000 miles (367,000 kilometers) from Tethys. Image scale is 1.2 miles (2 kilometers) per pixel. http://photojournal.jpl.nasa.gov/catalog/PIA20518

  10. Impact melting early in lunar history

    NASA Technical Reports Server (NTRS)

    Lange, M. A.; Ahrens, T. J.

    1979-01-01

    The total amount of impact melt produced during early lunar history is examined in light of theoretically and experimentally determined relations between crater diameter (D) and impact melt volume. The time dependence of the melt production is given by the time dependent impact rate as derived from cratering statistics for two different crater-size classes. Results show that small scale cratering (D less than or equal to 30 km) leads to melt volumes which fit selected observations specifying the amount of impact melt contained in the lunar regolith and in craters with diameters less than 10 km. Larger craters (D greater than 30 km) are capable of forming the abundant impact melt breccias found on the lunar surface. The group of large craters (D greater than 30 km) produces nearly 10 times as much impact melt as all the smaller craters, and thus, the large impacts dominate the modification of the lunar surface. A contradiction between the distribution of radiometric rock ages and a model of exponentially decreasing cratering rate going back to 4.5 b.y. is reflected in uncertainty in the distribution of impact melt as a function of time on the moon.

  11. Artificial lunar impact craters: Four new identifications, part I

    NASA Technical Reports Server (NTRS)

    Whitaker, E. A.

    1972-01-01

    The Apollo 16 panoramic camera photographed the impact locations of the Ranger 7 and 9 spacecraft and the S-4B stage of the Apollo 14 Saturn launch vehicle. Identification of the Ranger craters was very simple because each photographed its target point before impact. Identification of the S-4B impact crater proved to be a simple matter because the impact location, as derived from earth-based tracking, displayed a prominent and unique system of mixed light and dark rays. By using the criterion of a dark ray pattern, a reexamination of the Apollo 14 500 mm Hasselblad sequence taken of the Apollo 13 S-4B impact area was made. This examination quickly led to the discovery of the ray system and the impact crater. The study of artificial lunar impact craters, ejecta blankets, and ray systems provides the long-needed link between the various experimental terrestrial impact and explosion craters, and the naturally occurring impact craters on the moon. This elementary study shows that lunar impact crater diameters are closely predictable from a knowledge of the energies involved, at least in the size range considered, and suggests that parameters, such as velocity, may have a profound effect on crater morphology and ejecta blanket albedo.

  12. Crater dimensions from apollo data and supplemental sources

    USGS Publications Warehouse

    Pike, R.J.

    1976-01-01

    A catalog of crater dimensions that were compiled mostly from the new Apollo-based Lunar Topographic Orthophotomaps is presented in its entirety. Values of crater diameter, depth, rim height, flank width, circularity, and floor diameter (where applicable) are tabulated for a sample of 484 craters on the Moon and 22 craters on Earth. Systematic techniques of mensuration are detailed. The lunar craters range in size from 400 m to 300 km across and include primary impact craters of the main sequence, secondary impact craters, craterlets atop domes and cones, and dark-halo craters. The terrestrial craters are between 10 m and 22.5 km in diameter and were formed by meteorite impact. ?? 1976 D. Reidel Publishing Company.

  13. A first-order model for impact crater degradation on Venus

    NASA Technical Reports Server (NTRS)

    Izenberg, Noam R.; Arvidson, Raymond E.; Phillips, Roger J.

    1993-01-01

    A first-order impact crater aging model is presented based on observations of the global crater population of Venus. The total population consists of 879 craters found over the approximately 98 percent of the planet that has been mapped by the Magellan spacecraft during the first three cycles of its mission. The model is based upon three primary aspects of venusian impact craters: (1) extended ejecta deposits (EED's); (2) crater rims and continuous ejecta deposits; and (3) crater interiors and floors.

  14. Scientific Drilling of Impact Craters - Well Logging and Core Analyses Using Magnetic Methods (Invited)

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Perez-Cruz, L. L.; Velasco-Villarreal, M.

    2013-12-01

    Drilling projects of impact structures provide data on the structure and stratigraphy of target, impact and post-impact lithologies, providing insight on the impact dynamics and cratering. Studies have successfully included magnetic well logging and analyses in core and cuttings, directed to characterize the subsurface stratigraphy and structure at depth. There are 170-180 impact craters documented in the terrestrial record, which is a small proportion compared to expectations derived from what is observed on the Moon, Mars and other bodies of the solar system. Knowledge of the internal 3-D deep structure of craters, critical for understanding impacts and crater formation, can best be studied by geophysics and drilling. On Earth, few craters have yet been investigated by drilling. Craters have been drilled as part of industry surveys and/or academic projects, including notably Chicxulub, Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake, Ries and El gygytgyn craters. Inclusion of continuous core recovery expanded the range of paleomagnetic and rock magnetic applications, with direct core laboratory measurements, which are part of the tools available in the ocean and continental drilling programs. Drilling studies are here briefly reviewed, with emphasis on the Chicxulub crater formed by an asteroid impact 66 Ma ago at the Cretaceous/Paleogene boundary. Chicxulub crater has no surface expression, covered by a kilometer of Cenozoic sediments, thus making drilling an essential tool. As part of our studies we have drilled eleven wells with continuous core recovery. Magnetic susceptibility logging, magnetostratigraphic, rock magnetic and fabric studies have been carried out and results used for lateral correlation, dating, formation evaluation, azimuthal core orientation and physical property contrasts. Contributions of magnetic studies on impact age, cratering, target-impactite stratigraphy, ejecta, impact dynamics, hydrothermal alterations and post-impact processes are presented. The challenges and perspectives of drilling studies of impact craters are discussed.

  15. Application of high explosion cratering data to planetary problems

    NASA Technical Reports Server (NTRS)

    Oberbeck, V. R.

    1977-01-01

    The present paper deals with the conditions of explosion or nuclear cratering required to simulate impact crater formation. Some planetary problems associated with three different aspects of crater formation are discussed, and solutions based on high-explosion data are proposed. Structures of impact craters and some selected explosion craters formed in layered media are examined and are related to the structure of lunar basins. The mode of ejection of material from impact craters is identified using explosion analogs. The ejection mode is shown to have important implications for the origin of material in crater and basin deposits. Equally important are the populations of secondary craters on lunar and planetary surfaces.

  16. Snow-avalanche impact craters in southern Norway: Their morphology and dynamics compared with small terrestrial meteorite craters

    NASA Astrophysics Data System (ADS)

    Matthews, John A.; Owen, Geraint; McEwen, Lindsey J.; Shakesby, Richard A.; Hill, Jennifer L.; Vater, Amber E.; Ratcliffe, Anna C.

    2017-11-01

    This regional inventory and study of a globally uncommon landform type reveals similarities in form and process between craters produced by snow-avalanche and meteorite impacts. Fifty-two snow-avalanche impact craters (mean diameter 85 m, range 10-185 m) were investigated through field research, aerial photographic interpretation and analysis of topographic maps. The craters are sited on valley bottoms or lake margins at the foot of steep avalanche paths (α = 28-59°), generally with an easterly aspect, where the slope of the final 200 m of the avalanche path (β) typically exceeds 15°. Crater diameter correlates with the area of the avalanche start zone, which points to snow-avalanche volume as the main control on crater size. Proximal erosional scars ('blast zones') up to 40 m high indicate up-range ejection of material from the crater, assisted by air-launch of the avalanches and impulse waves generated by their impact into water-filled craters. Formation of distal mounds up to 12 m high of variable shape is favoured by more dispersed down-range deposition of ejecta. Key to the development of snow-avalanche impact craters is the repeated occurrence of topographically-focused snow avalanches that impact with a steep angle on unconsolidated sediment. Secondary craters or pits, a few metres in diameter, are attributed to the impact of individual boulders or smaller bodies of snow ejected from the main avalanche. The process of crater formation by low-density, low-velocity, large-volume snow flows occurring as multiple events is broadly comparable with cratering by single-event, high-density, high-velocity, small-volume projectiles such as small meteorites. Simple comparative modelling of snow-avalanche events associated with a crater of average size (diameter 85 m) indicates that the kinetic energy of a single snow-avalanche impact event is two orders of magnitude less than that of a single meteorite-impact event capable of producing a crater of similar size, which is consistent with the incremental development of snow-avalanche impact craters through the Holocene.

  17. An in-depth study of Marcia Crater, Vesta

    NASA Astrophysics Data System (ADS)

    Hiesinger, Harald; Ruesch, Ottaviano; Williams, David A.; Nathues, Andreas; Prettyman, Thomas H.; Tosi, Frederico; De Sanctis, M. Christina; Scully, Jennifer E. C.; Schenk, Paul M.; Aileen Yingst, R.; Denevi, Bret W.; Jaumann, Ralf; Raymond, Carol A.; Russell, Chris T.

    2014-05-01

    After visiting the second most massive asteroid Vesta from July 2011 to September 2012, the Dawn spacecraft is now on its way to asteroid Ceres. Dawn observed Vesta with three instruments: the German Framing Camera (FC), the Italian Visible and InfraRed mapping spectrometer (VIR), and the American Gamma Ray and Neutron Detector (GRaND) [1]. Marcia crater (190°E, 10°N; 68 x 58 km) is the largest of three adjacent impact structures: Marcia (youngest), Calpurnia, and Minucia (oldest). It is the largest well-preserved post-Rheasilvia impact crater, shows a complex geology [2], is young [2], exhibits evidence for gully-like mass wasting [3], contains the largest location of pitted terrain [4], has smooth impact melt ponds [5], shows enhanced spectral pyroxene signatures on its inner walls [2], and has low abundances of OH and H in comparison to the surrounding low-albedo terrain [6, 7]. Geophysically, the broad region of Marcia and Calpurnia craters is characterized by a higher Bouguer gravity, indicating denser material [9]. Williams et al. [2] have produced a detailed geologic map of Marcia crater and the surrounding terrain. They identified several units within Marcia crater, including bright crater material, pitted terrain, and smooth material. Units outside Marcia, include undivided crater ejecta material, bright lobate material, dark lobate material, and dark crater ray material [2]. Because of its extensive ejecta and fresh appearance, the Marcia impact defines a major stratigraphic event, postdating the Rheasilvia impact [2]. However, the exact age of Marcia crater is still under debate. Compositionally, Marcia crater is characterized by higher iron abundances, which were interpreted as more basaltic-eucrite-rich materials suggesting that this region has not been blanketed by diogenitic materials from large impact events [10, 11]. Using FC data, [13] identified "gray material" associated with the ejecta blanket of Marcia crater. This material is characterized by a 0.75-mm reflectance of ~15%, a shallow visible slope, and a weak R(0.75 µm)/R(0.92 µm) ratio [12], which is still high compared to immediately adjacent terrains. The most prominent thermal feature in Marcia is the pitted terrain on its floor [8]. Temperatures of the pitted floor of Marcia are significantly lower than in the surrounding terrains, when observed under similar solar illumination. Denevi et al. [4] argued that the morphology and geologic setting are consistent with rapid degassing of volatile-bearing materials following an impact, which would lead to an increased local density and/or a higher thermal conductivity [8]. References: [1] Russell et al. (2007), Earth Moon Planets 101; [2] Williams et al. (2014), submitted to Icarus; [3] Scully et al. (2013), LPSC 45; [4] Denevi et al. (2012), Science 338; [5] Williams, D.A., et al. (2013) PSS, in press, j.pss.2013.06.017 [6] De Sanctis et al. (2012b) Astrophys. J. Lett. 758; [7] Prettyman et al. (2012), Science 338; [8] Tosi et al. (2014), submitted to Icarus; [9] Konopliv et al. (2013) Icarus, in press; [10] Yamashita et al. (2013), Met. Planet. Sci. 48; [11] Prettyman et al. (2013), Met. Planet. Sci. 48; [12] Reddy et al. (2012), Science 336

  18. An object-based classification method for automatic detection of lunar impact craters from topographic data

    NASA Astrophysics Data System (ADS)

    Vamshi, Gasiganti T.; Martha, Tapas R.; Vinod Kumar, K.

    2016-05-01

    Identification of impact craters is a primary requirement to study past geological processes such as impact history. They are also used as proxies for measuring relative ages of various planetary or satellite bodies and help to understand the evolution of planetary surfaces. In this paper, we present a new method using object-based image analysis (OBIA) technique to detect impact craters of wide range of sizes from topographic data. Multiresolution image segmentation of digital terrain models (DTMs) available from the NASA's LRO mission was carried out to create objects. Subsequently, objects were classified into impact craters using shape and morphometric criteria resulting in 95% detection accuracy. The methodology developed in a training area in parts of Mare Imbrium in the form of a knowledge-based ruleset when applied in another area, detected impact craters with 90% accuracy. The minimum and maximum sizes (diameters) of impact craters detected in parts of Mare Imbrium by our method are 29 m and 1.5 km, respectively. Diameters of automatically detected impact craters show good correlation (R2 > 0.85) with the diameters of manually detected impact craters.

  19. Earth observations taken during the STS-77 mission

    NASA Image and Video Library

    1996-05-24

    STS077-737-096 (19-29 May 1996) --- The Palmer River emerging from the left corner of the photograph separates the Gardener Range to the right from the James Ranges on the left. To the bottom and off the photograph is the MacDonnell Ranges. The circular feature at bottom right is a highly eroded impact crater located on Missionary Plain. Gosses Bluff is a complex crater about 22 kilometers in diameter and is estimated to be about 142 million years old.

  20. Impact cratering experiments in brittle targets with variable thickness: Implications for deep pit craters on Mars

    NASA Astrophysics Data System (ADS)

    Michikami, T.; Hagermann, A.; Miyamoto, H.; Miura, S.; Haruyama, J.; Lykawka, P. S.

    2014-06-01

    High-resolution images reveal that numerous pit craters exist on the surface of Mars. For some pit craters, the depth-to-diameter ratios are much greater than for ordinary craters. Such deep pit craters are generally considered to be the results of material drainage into a subsurface void space, which might be formed by a lava tube, dike injection, extensional fracturing, and dilational normal faulting. Morphological studies indicate that the formation of a pit crater might be triggered by the impact event, and followed by collapse of the ceiling. To test this hypothesis, we carried out laboratory experiments of impact cratering into brittle targets with variable roof thickness. In particular, the effect of the target thickness on the crater formation is studied to understand the penetration process by an impact. For this purpose, we produced mortar targets with roof thickness of 1-6 cm, and a bulk density of 1550 kg/m3 by using a mixture of cement, water and sand (0.2 mm) in the ratio of 1:1:10, by weight. The compressive strength of the resulting targets is 3.2±0.9 MPa. A spherical nylon projectile (diameter 7 mm) is shot perpendicularly into the target surface at the nominal velocity of 1.2 km/s, using a two-stage light-gas gun. Craters are formed on the opposite side of the impact even when no target penetration occurs. Penetration of the target is achieved when craters on the opposite sides of the target connect with each other. In this case, the cross section of crater somehow attains a flat hourglass-like shape. We also find that the crater diameter on the opposite side is larger than that on the impact side, and more fragments are ejected from the crater on the opposite side than from the crater on the impact side. This result gives a qualitative explanation for the observation that the Martian deep pit craters lack a raised rim and have the ejecta deposit on their floor instead. Craters are formed on the opposite impact side even when no penetration occurs. Penetration is achieved when craters of both sides are connected. Crater diameter on the opposite side is larger than that on the impact side. More fragments are ejected from the opposite side than from the impact side. We present a qualitative explanation for the shapes of Martian deep pit craters.

  1. Geological remote sensing signatures of terrestrial impact craters

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Schnetzler, C.; Grieve, R. A. F.

    1988-01-01

    Geological remote sensing techniques can be used to investigate structural, depositional, and shock metamorphic effects associated with hypervelocity impact structures, some of which may be linked to global Earth system catastrophies. Although detailed laboratory and field investigations are necessary to establish conclusive evidence of an impact origin for suspected crater landforms, the synoptic perspective provided by various remote sensing systems can often serve as a pathfinder to key deposits which can then be targetted for intensive field study. In addition, remote sensing imagery can be used as a tool in the search for impact and other catastrophic explosion landforms on the basis of localized disruption and anomaly patterns. In order to reconstruct original dimensions of large, complex impact features in isolated, inaccessible regions, remote sensing imagery can be used to make preliminary estimates in the absence of field geophysical surveys. The experienced gained from two decades of planetary remote sensing of impact craters on the terrestrial planets, as well as the techniques developed for recognizing stages of degradation and initial crater morphology, can now be applied to the problem of discovering and studying eroded impact landforms on Earth. Preliminary results of remote sensing analyses of a set of terrestrial impact features in various states of degradation, geologic settings, and for a broad range of diameters and hence energies of formation are summarized. The intention is to develop a database of remote sensing signatures for catastrophic impact landforms which can then be used in EOS-era global surveys as the basis for locating the possibly hundreds of missing impact structures. In addition, refinement of initial dimensions of extremely recent structures such as Zhamanshin and Bosumtwi is an important objective in order to permit re-evaluation of global Earth system responses associated with these types of events.

  2. Combining shock barometry with numerical modeling: Insights into complex crater formation—The example of the Siljan impact structure (Sweden)

    NASA Astrophysics Data System (ADS)

    Holm-Alwmark, Sanna; Rae, Auriol S. P.; Ferrière, Ludovic; Alwmark, Carl; Collins, Gareth S.

    2017-12-01

    Siljan, central Sweden, is the largest known impact structure in Europe. It was formed at about 380 Ma, in the late Devonian period. The structure has been heavily eroded to a level originally located underneath the crater floor, and to date, important questions about the original size and morphology of Siljan remain unanswered. Here we present the results of a shock barometry study of quartz-bearing surface and drill core samples combined with numerical modeling using iSALE. The investigated 13 bedrock granitoid samples show that the recorded shock pressure decreases with increasing depth from 15 to 20 GPa near the (present) surface, to 10-15 GPa at 600 m depth. A best-fit model that is consistent with observational constraints relating to the present size of the structure, the location of the downfaulted sediments, and the observed surface and vertical shock barometry profiles is presented. The best-fit model results in a final crater (rim-to-rim) diameter of 65 km. According to our simulations, the original Siljan impact structure would have been a peak-ring crater. Siljan was formed in a mixed target of Paleozoic sedimentary rocks overlaying crystalline basement. Our modeling suggests that, at the time of impact, the sedimentary sequence was approximately 3 km thick. Since then, there has been around 4 km of erosion of the structure.

  3. The central uplift of Ritchey crater, Mars

    NASA Astrophysics Data System (ADS)

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-05-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  4. The central uplift of Ritchey crater, Mars

    USGS Publications Warehouse

    Ding, Ning; Bray, Veronica J.; McEwen, Alfred S.; Mattson, Sarah S.; Okubo, Chris H.; Chojnacki, Matthew; Tornabene, Livio L.

    2015-01-01

    Ritchey crater is a ∼79 km diameter complex crater near the boundary between Hesperian ridged plains and Noachian highland terrain on Mars (28.8°S, 309.0°E) that formed after the Noachian. High Resolution Imaging Science Experiment (HiRISE) images of the central peak reveal fractured massive bedrock and megabreccia with large clasts. Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) spectral analysis reveals low calcium pyroxene (LCP), olivine (OL), hydrated silicates (phyllosilicates) and a possible identification of plagioclase bedrock. We mapped the Ritchey crater central uplift into ten units, with 4 main groups from oldest and originally deepest to youngest: (1) megabreccia with large clasts rich in LCP and OL, and with alteration to phyllosilicates; (2) massive bedrock with bright and dark regions rich in LCP or OL, respectively; (3) LCP and OL-rich impactites draped over the central uplift; and (4) aeolian deposits. We interpret the primitive martian crust as igneous rocks rich in LCP, OL, and probably plagioclase, as previously observed in eastern Valles Marineris. We do not observe high-calcium pyroxene (HCP) rich bedrock as seen in Argyre or western Valles Marineris. The association of phyllosilicates with deep megabreccia could be from impact-induced alteration, either as a result of the Richey impact, or alteration of pre-existing impactites from Argyre basin and other large impacts that preceded the Ritchey impact, or both.

  5. Geology of five small Australian impact craters

    USGS Publications Warehouse

    Shoemaker, E.M.; Macdonald, F.A.; Shoemaker, C.S.

    2005-01-01

    Here we present detailed geological maps and cross-sections of Liverpool, Wolfe Creek, Boxhole, Veevers and Dalgaranga craters. Liverpool crater and Wolfe Creek Meteorite Crater are classic bowlshaped, Barringer-type craters, Liverpool was likely formed during the Neoproterozoic and was filled and covered with sediments soon thereafter. In the Cenozoic, this cover was exhumed exposing the crater's brecciated wall rocks. Wolfe Creek Meteorite Crater displays many striking features, including well-bedded ejecta units, crater-floor faults and sinkholes, a ringed aeromagnetic anomaly, rim-skirting dunes, and numerous iron-rich shale balls. Boxhole Meteorite Crater, Veevers Meteorite Crater and Dalgaranga crater are smaller, Odessa-type craters without fully developed, steep, overturned rims. Boxhole and Dalgaranga craters are developed in highly follated Precambrian basement rocks with a veneer of Holocene colluvium. The pre-existing structure at these two sites complicates structural analyses of the craters, and may have influenced target deformation during impact. Veevers Meteorite Crater is formed in Cenozoic laterites, and is one of the best-preserved impact craters on Earth. The craters discussed herein were formed in different target materials, ranging from crystalline rocks to loosely consolidated sediments, containing evidence that the impactors struck at an array of angles and velocities. This facilitates a comparative study of the influence of these factors on the structural and topographic form of small impact craters. ?? Geological Society of Australia.

  6. Preliminary Results from Initial Investigations of Ceres' Cratering Record from Dawn Imaging Data

    NASA Astrophysics Data System (ADS)

    Schmedemann, Nico; Michael, Gregory; Ivanov, Boris A.; Kneissl, Thomas; Neesemann, Adrian; Hiesinger, Harald; Jaumann, Ralf; Raymond, Carol A.; Russell, Christopher T.

    2015-04-01

    The highly successful Dawn mission [1] finished data collection at Vesta in 2012 and is now on its way to the dwarf planet Ceres. According to the current Ceres approach timeline of the Dawn mission, the ground resolution of the Dawn FC camera [2] will be about 10 times better than Hubble data [3] at the time of the presentation of this work. This may allow for identification of craters about 15 km in diameter. Initial mapping of sample areas may provide enough information of the cratering record in order to compare it with the theoretical Ceres crater production function we present at the 46th LPSC conference (March 16-20, 2015, The Woodlands, Texas) [4]. Our preliminary crater production function for Ceres is derived from the assumption of an icy crust just below a thin surface layer of dust [5], and a projectile population that is very similar to the one that impacted the Moon [6]. In order to scale the lunar cratering record to Ceres we use the Ivanov scaling laws [7], which allow for crater scaling based on parameters that can be derived from observations. The lunar-like approach gave reasonable good results for the crater production function on the asteroids Vesta, Ida, Lutetia and Gaspra [8]. Since the lunar surface is of basaltic composition, the correct scaling between the different materials is challenging. One crucial parameter is the transition diameter from simple to complex craters. Based on the simple to complex transition diameter on Iapetus, an icy satellite of Saturn, we expect this transition at about 12 km crater size at Ceres. This value may be slightly different due to the different temperatures at Ceres and Iapetus. If the simple to complex transition is observed at much larger diameters, the reason could be a substantial fraction of rock in the shallow subsurface of Ceres. In an ice-rich surface material high relaxation rates may also be expected that could change the shape of the crater production function. A thorough geological mapping takes much more time than is available and, thus, will not be available at the time of the presentation. First hi-res imaging data will also provide details about crater morphologies and the major geologic units that will be analyzed during later stages of the Dawn mission. Acknowledgment: This work has been supported by the German Space Agency (DLR) on behalf of the Federal Ministry of Economic Affairs and Energy, grants 50OW1101 (NS, TK, AN) and 50QM1301 (GM). BAI is supported by Program 22 RAS. References: [1] Russell C.T. et al. (2012) Science, 336, 684-686; [2] Sierks H. et al. (2011) Space Science Reviews, 163, 263-327; [3] Li J.Y. et al. (2006) Icarus, 182, 143-160; [4] Schmedemann N. et al. (2015): 46.LPSC, The Woodlands, #1418; [5] McCord T.B. et al. (2012) Ceres: Its Origin, Evolution and Structure and Dawn's Potential Contribution. In: Russell, C.T, Raymond, C.A. (eds.) The Dawn Mission to Minor Planets 4 Vesta and 1 Ceres. Springer, New York, 63-76; [6] Neukum G. and Ivanov B. A. (1994) Crater size distribu-tions and impact probabilities on Earth from Lunar, terrestrial planet, and asteroid cratering data. In: Gehrels T. (ed) Hazards due to comets and asteroids. University of Arizona Press, Tucson, 359-416. [7] Ivanov B.A. (2001) Space Science Reviews, 96, 87-104; [8] Schmedemann N. et al. (2014), 103, 104-130.

  7. Evidence for self-secondary cratering of Copernican-age continuous ejecta deposits on the Moon

    NASA Astrophysics Data System (ADS)

    Zanetti, M.; Stadermann, A.; Jolliff, B.; Hiesinger, H.; van der Bogert, C. H.; Plescia, J.

    2017-12-01

    Crater size-frequency distributions on the ejecta blankets of Aristarchus and Tycho Craters are highly variable, resulting in apparent absolute model age differences despite ejecta being emplaced in a geologic instant. Crater populations on impact melt ponds are a factor of 4 less than on the ejecta, and crater density increases with distance from the parent crater rim. Although target material properties may affect crater diameters and in turn crater size-frequency distribution (CSFD) results, they cannot completely reconcile crater density and population differences observed within the ejecta blanket. We infer from the data that self-secondary cratering, the formation of impact craters immediately following the emplacement of the continuous ejecta blanket by ejecta from the parent crater, contributed to the population of small craters (< 300 m diameter) on ejecta blankets and must be taken into account if small craters and small count areas are to be used for relative and absolute model age determinations on the Moon. Our results indicate that the cumulative number of craters larger than 1 km in diameter per unit area, N(1), on the continuous ejecta blanket at Tycho Crater, ranges between 2.17 × 10-5 and 1.0 × 10-4, with impact melt ponds most accurately reflecting the primary crater flux (N(1) = 3.4 × 10-5). Using the cratering flux recorded on Tycho impact melt deposits calibrated to accepted exposure age (109 ± 1.5 Ma) as ground truth, and using similar crater distribution analyses on impact melt at Aristarchus Crater, we infer the age of Aristarchus Crater to be ∼280 Ma. The broader implications of this work suggest that the measured cratering rate on ejecta blankets throughout the Solar System may be overestimated, and caution should be exercised when using small crater diameters (i.e. < 300 m on the Moon) for absolute model age determination.

  8. Secrets of the Wabar craters

    USGS Publications Warehouse

    Wynn, Jeffrey C.; Shoemaker, Eugene M.

    1997-01-01

    Focuses on the existence of craters in the Empty Quarter of Saudi Arabia created by the impact of meteors in early times. Mars Pathfinder and Mars Global Surveyor's encounter with impact craters; Elimination of craters in the Earth's surface by the action of natural elements; Impact sites' demand for careful scientific inspections; Location of the impact sites.

  9. Lonar Lake, India: An impact Crater in basalt

    USGS Publications Warehouse

    Fredriksson, K.; Dube, A.; Milton, D.J.; Balasundaram, M.S.

    1973-01-01

    Discovery of shock-metamorphosed material establishes the impact origin of Lonar Crater. Coarse breccia with shatter coning and microbreccia with moderately shocked fragments containing maskelynite were found in drill holes through the crater floor. Trenches on the rim yield strongly shocked fragments in which plagioclase has melted and vesiculated, and bombs and spherules of homogeneous rock melt. As the only known terrestrial impact crater in basalt, Lonar Crater provides unique opportunities for comparison with lunar craters. In particular, microbreccias and glass spherules from Lonar Crater have close analogs among the Apollo specimens.

  10. Experimental impact crater morphology

    NASA Astrophysics Data System (ADS)

    Dufresne, A.; Poelchau, M. H.; Hoerth, T.; Schaefer, F.; Thoma, K.; Deutsch, A.; Kenkmann, T.

    2012-04-01

    The research group MEMIN (Multidisciplinary Experimental and Impact Modelling Research Network) is conducting impact experiments into porous sandstones, examining, among other parameters, the influence of target pore-space saturation with water, and projectile velocity, density and mass, on the cratering process. The high-velocity (2.5-7.8 km/s) impact experiments were carried out at the two-stage light-gas gun facilities of the Fraunhofer Institute EMI (Germany) using steel, iron meteorite (Campo del Cielo IAB), and aluminium projectiles with Seeberg Sandstone as targets. The primary objectives of this study within MEMIN are to provide detailed morphometric data of the experimental craters, and to identify trends and characteristics specific to a given impact parameter. Generally, all craters, regardless of impact conditions, have an inner depression within a highly fragile, white-coloured centre, an outer spallation (i.e. tensile failure) zone, and areas of arrested spallation (i.e. spall fragments that were not completely dislodged from the target) at the crater rim. Within this general morphological framework, distinct trends and differences in crater dimensions and morphological characteristics are identified. With increasing impact velocity, the volume of craters in dry targets increases by a factor of ~4 when doubling velocity. At identical impact conditions (steel projectiles, ~5km/s), craters in dry and wet sandstone targets differ significantly in that "wet" craters are up to 76% larger in volume, have depth-diameter ratios generally below 0.19 (whereas dry craters are almost consistently above this value) at significantly larger diameters, and their spallation zone morphologies show very different characteristics. In dry craters, the spall zone surfaces dip evenly at 10-20° towards the crater centre. In wet craters, on the other hand, they consist of slightly convex slopes of 10-35° adjacent to the inner depression, and of sub-horizontal tensile failure planes ("terraces") in the outer, near-surface region of the crater. We suggest that these differences are due to a reduction in tensile strength in pore-space saturated sandstone. Linking morphological characteristics to impact conditions might provide a tool to help reconstruct impact conditions in small, more strength- than gravity-dominated impact craters in nature. Findings in small-scale experiments can aid the identification of particular structures in the field, such as spallation induced uplift of strata outside of the crater margins.

  11. Global Geometric Properties of Martian Impact Craters: A Preliminary Assessment Using Mars Orbiter Laser Altimeter (MOLA)

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Sakimoto, S. E. H.; Schnetzler, C.; Frawley, J. J.

    1999-01-01

    Impact craters on Mars have been used to provide fundamental insights into the properties of the martian crust, the role of volatiles, the relative age of the surface, and on the physics of impact cratering in the Solar System. Before the three-dimensional information provided by the Mars Orbiter Laser Altimeter (MOLA) instrument which is currently operating in Mars orbit aboard the Mars Global Surveyor (MGS), impact features were characterized morphologically using orbital images from Mariner 9 and Viking. Fresh-appearing craters were identified and measurements of their geometric properties were derived from various image-based methods. MOLA measurements can now provide a global sample of topographic cross-sections of martian impact features as small as approx. 2 km in diameter, to basin-scale features. We have previously examined MOLA cross-sections of Northern Hemisphere and North Polar Region impact features, but were unable to consider the global characteristics of these ubiquitous landforms. Here we present our preliminary assessment of the geometric properties of a globally-distributed sample of martian impact craters, most of which were sampled during the initial stages of the MGS mapping mission (i.e., the first 600 orbits). Our aim is to develop a framework for reconsidering theories concerning impact cratering in the martian environment. This first global analysis is focused upon topographically-fresh impact craters, defined here on the basis of MOLA topographic profiles that cross the central cavities of craters that can be observed in Viking-based MDIM global image mosaics. We have considered crater depths, rim heights, ejecta topologies, cross-sectional "shapes", and simple physical models for ejecta emplacement. To date (May, 1999), we have measured the geometric properties of over 1300 impact craters in the 2 to 350 km diameter size interval. A large fraction of these measured craters were sampled with cavity-center cross-sections during the first two months of MGS mapping. Many of these craters are included in Nadine Barlow's Catalogue of Martian Impact Craters, although we have treated simple craters smaller than about 7 km in greater detail than all previous investigations. Additional information is contained in the original extended abstract.

  12. Impact Cratering Calculations

    NASA Technical Reports Server (NTRS)

    Ahrens, Thomas J.

    2002-01-01

    Many Martian craters are surrounded by ejecta blankets which appear to have been fluidized forming lobate and layered deposits terminated by one or more continuous distal scarps, or ramparts. One of the first hypotheses for the formation of so-called rampart ejecta features was shock-melting of subsurface ice, entrainment of liquid water into the ejecta blanket, and subsequent fluidized flow. Our work quantifies this concept. Rampart ejecta found on all but the youngest volcanic and polar regions, and the different rampart ejecta morphologies are correlated with crater size and terrain. In addition, the minimum diameter of craters with rampart features decreases with increasing latitude indicating that ice laden crust resides closer to the surface as one goes poleward on Mars. Our second goal in was to determine what strength model(s) reproduce the faults and complex features found in large scale gravity driven craters. Collapse features found in large scale craters require that the rock strength weaken as a result of the shock processing of rock and the later cratering shear flows. In addition to the presence of molten silicate in the intensely shocked region, the presence of water, either ambient, or the result of shock melting of ice weakens rock. There are several other mechanisms for the reduction of strength in geologic materials including dynamic tensile and shear induced fracturing. Fracturing is a mechanism for large reductions in strength. We found that by incorporating damage into the models that we could in a single integrated impact calculation, starting in the atmosphere produce final crater profiles having the major features found in the field measurements (central uplifts, inner ring, terracing and faulting). This was accomplished with undamaged surface strengths (0.1 GPa) and in depth strengths (1.0 GPa).

  13. Geological mapping of lunar highland crater Lalande: Topographic configuration, morphology and cratering process

    NASA Astrophysics Data System (ADS)

    Li, Bo; Ling, Zongcheng; Zhang, Jiang; Chen, Jian; Liu, ChangQing; Bi, Xiangyu

    2018-02-01

    Highland crater Lalande (4.45°S, 8.63°W; D = 23.4 km) is located on the PKT area of the lunar near side, southeast of the Mare Insularum. It is a complex crater in Copernican era and has three distinguishing features: high silicic anomaly, the highest Th abundance and special landforms on its floor. There are some low-relief bulges on the left of Lalande's floor with regular circle or ellipse shapes. They are ∼250-680 m wide and ∼30-91 m high with maximum flank slopes >20°. There are two possible scenarios for the formation of these low-relief bulges which are impact melt products or young silicic volcanic eruptions. We estimated the absolute model ages of the ejecta deposits, several melt ponds and the hummocky floor and determined the ratio of diameter and depth of the crater Lalande. In addition, we found some similar bugle features within other Copernican-aged craters and there were no volcanic source vents on Lalande's floor. Thus, we hypothesized that these low-relief bulges were most consistent with an origin of impact melts during the crater formation instead of small and young volcanic activities occurring on the floor. Based on Kaguya Terrain Camera (TC) ortho-mosaic and Digital Terrain Model (DTM) data produced by TC imagery in stereo, geological units and some linear features on the floor and wall of Lalande have been mapped. Eight geological units are organized by crater floor units: hummocky floor, central peak and low-relief bulges; and crater wall units: terraced walls, channeled and veneered walls, interior walls, mass wasting areas, blocky areas, and melt ponds. These geological units and linear features provided us a chance to understand some details of the cratering process and elevation differences on the floor. We proposed that subsidence due to melt cooling, late-stage wall collapse and rocks uplifted from beneath the surface could be the possible causes of the observed elevation differences on Lalande's floor.

  14. An Assessment of Regional Variations in Martian Modified Impact Crater Morphology

    NASA Astrophysics Data System (ADS)

    Craddock, Robert A.; Bandeira, Lourenço.; Howard, Alan D.

    2018-03-01

    Impact craters on Mars have been extensively modified by ancient geologic processes that may have included rainfall and surface runoff, snow and ice, denudation by lava flows, burial by eolian material, or others. Many of these processes can leave distinct signatures on the morphometry of the modified impact crater as well as the surrounding landscape. To look for signs of potential regional differences in crater modification processes, we conducted an analysis of different morphometric parameters related to modified impact craters located in the Margaritifer Sinus, Sinus Sabaeus, Iapygia, Mare Tyrrhenum, Aeolis, and Eridania quadrangles, including depth, crater wall slope, crater floor slope, the curvature between the interior wall and the crater floor slope, and the curvature between the interior wall and surrounding landscape. A Welch's t test analysis comparing these parameters shows that fresh impact craters (Type 4) have consistent morphologies regardless of their geographic location examined in this study, which is not unexpected. Modified impact craters both in the initial (Type 3) and terminal stages (Type 1) of modification also have statistically consistent morphologies. This would suggest that the processes that operated in the late Noachian were globally ubiquitous, and that modified craters eventually reached a stable crater morphology. However, craters preserved in advanced (but not terminal) stages of modification (Type 2) have morphologies that vary across the quadrangles. It is possible that these variations reflect spatial differences in the types and intensity of geologic processes that operated during the Noachian, implying that the ancient climate also varied across regions.

  15. Low-velocity impact craters in ice and ice-saturated sand with implications for Martian crater count ages.

    USGS Publications Warehouse

    Croft, S.K.; Kieffer, S.W.; Ahrens, T.J.

    1979-01-01

    We produced a series of decimeter-sized impact craters in blocks of ice near 0oC and -70oC and in ice-saturated sand near -70oC as a preliminary investigation of cratering in materials analogous to those found on Mars and the outer solar satellites. Crater diameters in the ice-saturated sand were 2 times larger than craters in the same energy and velocity range in competent blocks of granite, basalt and cement. Craters in ice were c.3 times larger. Martian impact crater energy versus diameter scaling may thus be a function of latitude. -from Authors

  16. Validation of numerical codes for impact and explosion cratering: Impacts on strengthless and metal targets

    NASA Astrophysics Data System (ADS)

    Pierazzo, E.; Artemieva, N.; Asphaug, E.; Baldwin, E. C.; Cazamias, J.; Coker, R.; Collins, G. S.; Crawford, D. A.; Davison, T.; Elbeshausen, D.; Holsapple, K. A.; Housen, K. R.; Korycansky, D. G.; Wünnemann, K.

    2008-12-01

    Over the last few decades, rapid improvement of computer capabilities has allowed impact cratering to be modeled with increasing complexity and realism, and has paved the way for a new era of numerical modeling of the impact process, including full, three-dimensional (3D) simulations. When properly benchmarked and validated against observation, computer models offer a powerful tool for understanding the mechanics of impact crater formation. This work presents results from the first phase of a project to benchmark and validate shock codes. A variety of 2D and 3D codes were used in this study, from commercial products like AUTODYN, to codes developed within the scientific community like SOVA, SPH, ZEUS-MP, iSALE, and codes developed at U.S. National Laboratories like CTH, SAGE/RAGE, and ALE3D. Benchmark calculations of shock wave propagation in aluminum-on-aluminum impacts were performed to examine the agreement between codes for simple idealized problems. The benchmark simulations show that variability in code results is to be expected due to differences in the underlying solution algorithm of each code, artificial stability parameters, spatial and temporal resolution, and material models. Overall, the inter-code variability in peak shock pressure as a function of distance is around 10 to 20%. In general, if the impactor is resolved by at least 20 cells across its radius, the underestimation of peak shock pressure due to spatial resolution is less than 10%. In addition to the benchmark tests, three validation tests were performed to examine the ability of the codes to reproduce the time evolution of crater radius and depth observed in vertical laboratory impacts in water and two well-characterized aluminum alloys. Results from these calculations are in good agreement with experiments. There appears to be a general tendency of shock physics codes to underestimate the radius of the forming crater. Overall, the discrepancy between the model and experiment results is between 10 and 20%, similar to the inter-code variability.

  17. Granular impact cratering by liquid drops: Understanding raindrop imprints through an analogy to asteroid strikes

    PubMed Central

    Zhao, Runchen; Zhang, Qianyun; Tjugito, Hendro; Cheng, Xiang

    2015-01-01

    When a granular material is impacted by a sphere, its surface deforms like a liquid yet it preserves a circular crater like a solid. Although the mechanism of granular impact cratering by solid spheres is well explored, our knowledge on granular impact cratering by liquid drops is still very limited. Here, by combining high-speed photography with high-precision laser profilometry, we investigate liquid-drop impact dynamics on granular surface and monitor the morphology of resulting impact craters. Surprisingly, we find that despite the enormous energy and length difference, granular impact cratering by liquid drops follows the same energy scaling and reproduces the same crater morphology as that of asteroid impact craters. Inspired by this similarity, we integrate the physical insight from planetary sciences, the liquid marble model from fluid mechanics, and the concept of jamming transition from granular physics into a simple theoretical framework that quantitatively describes all of the main features of liquid-drop imprints in granular media. Our study sheds light on the mechanisms governing raindrop impacts on granular surfaces and reveals a remarkable analogy between familiar phenomena of raining and catastrophic asteroid strikes. PMID:25548187

  18. Using Crater Counts to Constrain Erosion Rates on Mars: Implications for the Global Dust Cycle, Sedimentary Rock Erosion and Organic Matter Preservation

    NASA Astrophysics Data System (ADS)

    Mayer, D. P.; Kite, E. S.

    2016-12-01

    Sandblasting, aeolian infilling, and wind deflation all obliterate impact craters on Mars, complicating the use of crater counts for chronology, particularly on sedimentary rock surfaces. However, crater counts on sedimentary rocks can be exploited to constrain wind erosion rates. Relatively small, shallow craters are preferentially obliterated as a landscape undergoes erosion, so the size-frequency distribution of impact craters in a landscape undergoing steady exhumation will develop a shallower power-law slope than a simple production function. Estimating erosion rates is important for several reasons: (1) Wind erosion is a source of mass for the global dust cycle, so the global dust reservoir will disproportionately sample fast-eroding regions; (2) The pace and pattern of recent wind erosion is a sorely-needed constraint on models of the sculpting of Mars' sedimentary-rock mounds; (3) Near-surface complex organic matter on Mars is destroyed by radiation in <108 years, so high rates of surface exhumation are required for preservation of near-surface organic matter. We use crater counts from 18 HiRISE images over sedimentary rock deposits as the basis for estimating erosion rates. Each image was counted by ≥3 analysts and only features agreed on by ≥2 analysts were included in the erosion rate estimation. Erosion rates range from 0.1-0.2 {μ }m/yr across all images. These rates represent an upper limit on surface erosion by landscape lowering. At the conference we will discuss the within and between-image variability of erosion rates and their implications for recent geological processes on Mars.

  19. Hydrothermal Alteration at Lonar Crater, India and Elemental Variations in Impact Crater Clays

    NASA Technical Reports Server (NTRS)

    Newsom, H. E.; Nelson, M. J.; Shearer, C. K.; Misra, S.; Narasimham, V.

    2005-01-01

    The role of hydrothermal alteration and chemical transport involving impact craters could have occurred on Mars, the poles of Mercury and the Moon, and other small bodies. We are studying terrestrial craters of various sizes in different environments to better understand aqueous alteration and chemical transport processes. The Lonar crater in India (1.8 km diameter) is particularly interesting being the only impact crater in basalt. In January of 2004, during fieldwork in the ejecta blanket around the rim of the Lonar crater we discovered alteration zones not previously described at this crater. The alteration of the ejecta blanket could represent evidence of localized hydrothermal activity. Such activity is consistent with the presence of large amounts of impact melt in the ejecta blanket. Map of one area on the north rim of the crater containing highly altered zones at least 3 m deep is shown.

  20. Variety and complexity in the mound of sedimentary rock in Gale Crater, Mars

    NASA Astrophysics Data System (ADS)

    Edgett, K. S.; Malin, M. C.

    2011-12-01

    NASA's Mars Science Laboratory rover, Curiosity, will be used to explore a portion of the lower stratigraphic record of the northwest side of a mound of layered rock ˜5 km thick in the 155 km-diameter Gale Crater. The rock materials are of a sedimentary origin, though the proportions of clastic sediment, tephra, and chemical precipitates are presently unknown. The mound is usually described as having lower and upper units separated by an erosional unconformity. However, some investigators recognize that it is considerably more complex. The stratigraphy displays vertical and lateral complexity; multiple erosional unconformities; filled, buried, interbedded, and exhumed or partly exhumed impact craters; evidence for deposition along the base of the mound followed by retreat of less-resistant rocks and abandonment of erosion-resistant materials shed from the mound; lithified sediments deposited at the mouths of streams that cut mound rock; inversion of intra-canyon stream channel sediment; and widening of canyons. On the northeast side of the mound there are landslide deposits, shed from the mound, that contain large blocks (10s to 100s of m) of layered rock in various orientations. The mound's highest feature does not exhibit layering and has been interpreted by some as being Gale's impact-generated central peak. However, its highest elevation exceeds that of most of the crater rim, an observation inconsistent with central peaks (where they occur at all) in martian craters of diameters similar to Gale. The layered materials that occur highest in the mound are also at elevations that exceed most of the crater rim; these exhibit repeated stratal packages that drape previously-eroded mound topography; they produce boulders as they erode, attesting to their lithified nature and requiring that a lithification process occurred in materials located ≥ 5 km above the deepest part of Gale. The lower mound strata, including the Curiosity field site, are diverse materials; they include strata of differing thickness, erosional expression, and tone. Resistant rocks form cliffs that shed boulders, less resistant rocks form shallow slopes. One relatively thin, dark unit, interpreted to be a marker bed that outcrops at various places across the lower mound (doi:10.1029/2009GL041870), is more resistant to erosion than sub- and superjacent beds and retains many small impact craters. Some of the lower mound rocks are cross-cut by channel or cavern fills; others are cut by reticulated patterns of filled cracks or ridges formed by inversion of these cracks. These reticulated features might be evidence of interaction between the lower mound rocks and groundwater; we anticipate the Curiosity team will find abundant evidence for dissolution and precipitation of minerals in these rock outcrops.

  1. Centrifuge Impact Cratering Experiments

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.; Housen, K. R.; Bjorkman, M. D.

    1985-01-01

    The kinematics of crater growth, impact induced target flow fields and the generation of impact melt were determined. The feasibility of using scaling relationships for impact melt and crater dimensions to determine impactor size and velocity was studied. It is concluded that a coupling parameter determines both the quantity of melt and the crater dimensions for impact velocities greater than 10km/s. As a result impactor radius, a, or velocity, U cannot be determined individually, but only as a product in the form of a coupling parameter, delta U micron. The melt volume and crater volume scaling relations were applied to Brent crater. The transport of melt and the validity of the melt volume scaling relations are examined.

  2. Morphology and chemistry of projectile residue in small experimental impact craters

    NASA Astrophysics Data System (ADS)

    Horz, F.; Fechtig, H.; Janicke, J.; Schneider, E.

    1983-11-01

    Small-scale impact craters (5-7 mm in diameter) were produced with a light gas gun in high purity Au and Cu targets using soda lime glass (SL) and man-made basalt glass (BG) as projectiles. Maximum impact velocity was 6.4 km/s resulting in peak pressures of approximately 120-150 GPa. Copious amounts of projectile melts are preserved as thin glass liners draping the entire crater cavity; some of this liner may be lost by spallation, however. SEM investigations reveal complex surface textures including multistage flow phenomena and distinct temporal deposition sequences of small droplets. Inasmuch as some of the melts were generated at peak pressures greater than 120 GPa, these glasses represent the most severely shocked silicates recovered from laboratory experiments to date. Major element analyses reveal partial loss of alkalis; Na2O loss of 10-15 percent is observed, while K2O loss may be as high as 30-50 percent. Although the observed volatile loss in these projectile melts is significant, it still remains uncertain whether target melts produced on planetary surfaces are severely fractionated by selective volatilization processes.

  3. On the Origin of Organic Material on Ceres.

    NASA Astrophysics Data System (ADS)

    Bowling, T. J.; Marchi, S.; De Sanctis, M. C.

    2017-12-01

    The detection of organic rich regions on dwarf planet 1 Ceres [1] suggest that, if the organics formed locally, the internal thermodynamic and hydrologic state of the body was at one point conducive to complex chemistry with astrobiological potential [2]. However, impact experiments and high resolution imagery suggest the distinct possibility that exogenic organic material could survive late impact onto the body and be detected at the surface [3-4]. Using the iSALE shock physics code [5-7], we model thermal decomposition of various organic species to describe the expected final location and concentration of exogenic and exdogenic organics within the ejecta blankets of small Cerean craters Our modeling suggests that asteroidal-like impactors, with relatively low incident velocities and containing Murchison-like organics [8], can retain 20-30% of their pre-impact organic material during delivery, especially for small craters and very oblique impact angles. However, assuming the ejecta blankets of small craters are turbulently mixed, the final concentration of organics within the ejecta of small craters should be very low, likely beneath the limit by which they may be spectrally detected. Our work suggests that small craters may excavate, but not destroy, shallow endogenic subsurface organic reservoirs on Ceres such that this material can be detected on the surface by spectral observations. [1] De Sanctis, M. E. et al. (2017) Science, 355, 3626. [2] Castillo-Rogez J. C. et al. Planetary Science Vision 2050 Workshop 2017,#1989. [3] Daly, R. T. and Schultz, P. H, (2015) GRL, 42, 7890. [4] Pieters, C. M.. et al. (2017) LPSC 47 [5] Amsden, A. et al. (1980) LANL Report, LA-8095. [6] Collins, G. S. et al. (2004) MAPS, 39, 217. [7] Wünnemann, K. et al. (2006) Icarus, 180, 514. [8] Kebukawa, Y. et al. (2010) MAPS, 45, 1.

  4. Impact craters on Titan

    USGS Publications Warehouse

    Wood, Charles A.; Lorenz, Ralph; Kirk, Randy; Lopes, Rosaly; Mitchell, Karl; Stofan, Ellen; ,

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles.

  5. Impact craters on Titan

    USGS Publications Warehouse

    Wood, C.A.; Lorenz, R.; Kirk, R.; Lopes, R.; Mitchell, Ken; Stofan, E.

    2010-01-01

    Five certain impact craters and 44 additional nearly certain and probable ones have been identified on the 22% of Titan's surface imaged by Cassini's high-resolution radar through December 2007. The certain craters have morphologies similar to impact craters on rocky planets, as well as two with radar bright, jagged rims. The less certain craters often appear to be eroded versions of the certain ones. Titan's craters are modified by a variety of processes including fluvial erosion, mass wasting, burial by dunes and submergence in seas, but there is no compelling evidence of isostatic adjustments as on other icy moons, nor draping by thick atmospheric deposits. The paucity of craters implies that Titan's surface is quite young, but the modeled age depends on which published crater production rate is assumed. Using the model of Artemieva and Lunine (2005) suggests that craters with diameters smaller than about 35 km are younger than 200 million years old, and larger craters are older. Craters are not distributed uniformly; Xanadu has a crater density 2-9 times greater than the rest of Titan, and the density on equatorial dune areas is much lower than average. There is a small excess of craters on the leading hemisphere, and craters are deficient in the north polar region compared to the rest of the world. The youthful age of Titan overall, and the various erosional states of its likely impact craters, demonstrate that dynamic processes have destroyed most of the early history of the moon, and that multiple processes continue to strongly modify its surface. The existence of 24 possible impact craters with diameters less than 20 km appears consistent with the Ivanov, Basilevsky and Neukum (1997) model of the effectiveness of Titan's atmosphere in destroying most but not all small projectiles. ?? 2009 Elsevier Inc.

  6. Distant Secondary Craters and Age Constraints on Young Martian Terrains

    NASA Technical Reports Server (NTRS)

    McEwen, A.; Preblich, B.; Turtle, E.; Studer, D.; Artemieva, N.; Golombek, M.; Hurst, M.; Kirk, R.; Burr, D.

    2005-01-01

    Are small (less than approx. 1 km diameter) craters on Mars and the Moon dominated by primary impacts, by secondary impacts of much larger primary craters, or are both primaries and secondaries significant? This question is critical to age constraints for young terrains and for older terrains covering small areas, where only small craters are superimposed on the unit. If the martian rayed crater Zunil is representative of large impact events on Mars, then the density of secondaries should exceed the density of primaries at diameters a factor of 1000 smaller than that of the largest contributing primary crater. On the basis of morphology and depth/diameter measurements, most small craters on Mars could be secondaries. Two additional observations (discussed below) suggest that the production functions of Hartmann and Neukum predict too many primary craters smaller than a few hundred meters in diameter. Fewer small, high-velocity impacts may explain why there appears to be little impact regolith over Amazonian terrains. Martian terrains dated by small craters could be older than reported in recent publications.

  7. Martian lineaments from Mariner 6 and 7 photographs

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.; Ingerson, F. E.

    1973-01-01

    Mariner 6 and 7 photographs were used to investigate the nature and importance of linear surface trends on Mars. Cross correlations of frequency-azimuth distributions of linear trends from different Mariner frames indicate that lineations not recognized as topographic features have a component of pseudoforms, probably introduced during digital reconstruction of the pictures. Similar statistical tests may aid in the analysis of surface trends from future satellites and space probes. The most reliable data were separated into photometrically defined provinces. Meridiani Sinus and Margaritifer Sinus display five major trends in common, which are interpreted as extensions of crustal weaknesses related to the enormous equatorial canyon revealed in Mariner 6 and 9 pictures. Alignments of crater wall segments generally match these trends and suggest structural control of crater plan. Crater chains, however, do not match these trends and are interpreted as secondary impacts. Rose diagrams of lineations in Deucalionis Regio exhibit much more complexity and are believed to reflect a better preserved or more complex geologic history.

  8. Investigation of Secondary Craters in the Saturnian System

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Schenk, P.; White, O. L.

    2012-03-01

    To derive accurate ages using impact craters, the impact source must be determined. We investigate secondary crater size, frequency, distribution, formation, and crater chain formation on icy satellites throughout the Jupiter and Saturn systems.

  9. Collisional and dynamical history of Gaspra

    NASA Technical Reports Server (NTRS)

    Greenberg, R.; Nolan, M. C.; Bottke, W. F., Jr.; Kolvoord, R. A.

    1993-01-01

    Interpretation of the impact record on Gaspra requires understanding of the effects of collisions on a target body of Gaspra's size and shape, recognition of impact features that may have different morphologies from craters on larger planets, and models of the geological processes that erase and modify impact features. Crater counts on the 140 sq km of Gaspra imaged at highest resolution by the Galileo spacecraft show a steep size-frequency distribution (cumulative power-law index near -3.5) from the smallest resolvable size (150 m diameter) up through the large feature (1.5 km diameter crater) of familiar crater-like morphology. In addition, there appear to be as many as eight roughly circular concavities with diameters greater than 3 km visible on the asteroid. If we restrict our crater counts to features with traditionally recognized crater morphologies, these concavities would not be included. However, if we define craters to include any concave structures that may represent local or regional damage at an impact size, then the larger features on Gaspra are candidates for consideration. Acceptance of the multi-km features as craters has been cautious for several reasons. First, scaling laws (the physically plausible algorithms for extrapolating from experimental data) indicate that Gaspra could not have sustained such large-crater-forming impacts without being disrupted; second, aside from concavity, the larger structures have no other features (e.g. rims) that can be identified with known impact craters; and third, extrapolation of the power-law size distribution for smaller craters predicts no craters larger than 3 km over the entire surface. On the other hand, recent hydrocode modeling of impacts shows that for given impact (albeit into a sphere), the crater size is much larger than given by scaling laws. Gaspra-size bodies can sustain formation of up to 8-km craters without disruption. Besides allowing larger impact craters, this result doubles the lifetime since the last catastrophic fragmentation event up to one billion years. Events that create multi-km craters also globally damage the material structure, such that regolith is produced, whether or not Gaspra 'initially' had a regolith, contrary to other models in which initial regolith is required in order to allow current regolith. Because the globally destructive shock wave precedes basin formation, crater size is closer to the large size extrapolated from gravity-scaling rather than the strength-scaling that had earlier been assumed for such small bodies. This mechanism may also help explain the existence of Stickney on Phobos. Moreover, rejection of the large concavities as craters based on unfamiliar morphology would be premature, because (aside from Stickney) we have no other data on such large impact structures on such a small, irregular body. The eight candidate concavities cover an area greater than that counted for smaller craters, because they are most apparent where small craters cannot be seen: on low resolution images and at the limb on high resolution images. We estimate that there are at least two with diameter greater than 4 km per 140 sq km, which would have to be accounted for in any model that claims these are impact craters.

  10. Large Meteoroid Impact on the Moon on 17 March 2013

    NASA Technical Reports Server (NTRS)

    Moser, Danielle E.; Suggs, Robert M.; Suggs, Ronnie J.

    2014-01-01

    Since early 2006, NASA's Marshall Space Flight Center has observed over 300 impact flashes on the Moon, produced by meteoroids striking the lunar surface. On 17 March 2013 at 03:50:54.312 UTC, the brightest flash of an 8-year routine observing campaign was observed in two 0.35 m telescopes outfitted with Watec 902H2 Ultimate monochrome CCD cameras recording interleaved 30 fps video. Standard CCD photometric techniques, described in [1], were applied to the video after saturation correction, yielding a peak R magnitude of 3.0 +/- 0.4 in a 1/30 second video exposure. This corresponds to a luminous energy of 7.1 × 10(exp 6) J. Geographic Information System (GIS) tools were used to georeference the lunar impact imagery and yielded a crater location at 20.60 +/- 0.17deg N, 23.92 +/- 0.30deg W. The camera onboard the Lunar Reconnaissance Orbiter (LRO), a NASA spacecraft mapping the Moon from lunar orbit, discovered the fresh crater associated with this impact by comparing post-impact images from 28 July 2013 to pre-impact images on 12 Feb 2012. The images show fresh, bright ejecta around an 18 m diameter circular crater, with a 15 m inner diameter measured from the level of pre-existing terrain, at 20.7135deg N, 24.3302deg W. An asymmetrical ray pattern with both high and low reflectance ejecta zones extends 1-2 km beyond the crater, and a series of mostly low reflectance splotches can be seen within 30 km of the crater - likely due to secondary impacts [2]. The meteoroid impactor responsible for this event may have been part of a stream of large particles encountered by the Earth/Moon associated with the Virginid Meteor Complex, as evidenced by a cluster of 5 fireballs seen in Earth's atmosphere on the same night by the NASA All Sky Fireball Network [3] and the Southern Ontario Meteor Network [4]. Assuming a velocity-dependent luminous efficiency (ratio of luminous energy to kinetic energy) from [5] and an impact velocity of 25.6 km/s derived from fireball measurements, the impactor kinetic energy was 5.4 × 10(exp 9) J and the impactor mass was 16 kg. Assuming an impact angle of 56deg from horizontal (based on fireball orbit measurements), a regolith density of 1500 kg/m(exp 3), and impactor density between 1800 and 3000 kg/m(exp 3), the impact crater diameter was estimated to be 8-18 m at the pre-impact surface and 10-23 m rim-to-rim using the Holsapple [6] and Gault [7] models, a result consistent with the observed crater.

  11. The Martian impact cratering record

    NASA Technical Reports Server (NTRS)

    Strom, Robert G.; Croft, Steven K.; Barlow, Nadine G.

    1992-01-01

    A detailed analysis of the Martian impact cratering record is presented. The major differences in impact crater morphology and morphometry between Mars and the moon and Mercury are argued to be largely the result of subsurface volatiles on Mars. In general, the depth to these volatiles may decrease with increasing latitude in the southern hemisphere, but the base of this layer may be at a more or less constant depth. The Martial crustal dichotomy could have been the result of a very large impact near the end of the accretion of Mars. Monte Carlo computer simulations suggest that such an impact was not only possible, but likely. The Martian highland cratering record shows a marked paucity of craters less than about 30 km in diameter relative to the lunar highlands. This paucity of craters was probably the result of the obliteration of craters by an early period of intense erosion and deposition by aeolian, fluvial, and glacial processes.

  12. Planetary Surface Properties, Cratering Physics, and the Volcanic History of Mars from a New Global Martian Crater Database

    NASA Astrophysics Data System (ADS)

    Robbins, Stuart James

    Impact craters are arguably the primary exogenic planetary process contributing to the surface evolution of solid bodies in the solar system. Craters appear across the entire surface of Mars, and they are vital to understanding its crustal properties as well as surface ages and modification events. They allow inferences into the ancient climate and hydrologic history, and they add a key data point for the understanding of impact physics. Previously available databases of Mars impact craters were created from now antiquated datasets, automated algorithms with biases and inaccuracies, were limited in scope, and/or complete only to multikilometer diameters. This work presents a new global database for Mars that contains 378,540 craters statistically complete for diameters D ≳ 1 km. This detailed database includes location and size, ejecta morphology and morphometry, interior morphology and degradation state, and whether the crater is a secondary impact. This database allowed exploration of global crater type distributions, depth, and morphologies in unprecedented detail that were used to re-examine basic crater scaling laws for the planet. The inclusion of hundreds of thousands of small, approximately kilometer-sized impacts facilitated a detailed study of the properties of nearby fields of secondary craters in relation to their primary crater. It also allowed the discovery of vast distant clusters of secondary craters over 5000 km from their primary crater, Lyot. Finally, significantly smaller craters were used to age-date volcanic calderas on the planet to re-construct the timeline of the last primary eruption events from 20 of the major Martian volcanoes.

  13. Crater with Exposed Layers

    NASA Image and Video Library

    2017-01-17

    On Earth, geologists can dig holes and pull up core samples to find out what lies beneath the surface. On Mars, geologists cannot dig holes very easily themselves, but a process has been occurring for billions of years that has been digging holes for them: impact cratering. Impact craters form when an asteroid, meteoroid, or comet crashes into a planet's surface, causing an explosion. The energy of the explosion, and the resulting size of the impact crater, depends on the size and density of the impactor, as well as the properties of the surface it hits. In general, the larger and denser the impactor, the larger the crater it will form. The impact crater in this image is a little less than 3 kilometers in diameter. The impact revealed layers when it excavated the Martian surface. Layers can form in a variety of different ways. Multiple lava flows in one area can form stacked sequences, as can deposits from rivers or lakes. Understanding the geology around impact craters and searching for mineralogical data within their layers can help scientists on Earth better understand what the walls of impact craters on Mars expose. http://photojournal.jpl.nasa.gov/catalog/PIA12328

  14. Endogenic craters on basaltic lava flows - Size frequency distributions

    NASA Technical Reports Server (NTRS)

    Greeley, R.; Gault, D. E.

    1979-01-01

    Circular crater forms, termed collapse depressions, which occur on many basalt flows on the earth have also been detected on the moon and Mars and possibly on Mercury and Io. The admixture of collapse craters with impact craters would affect age determinations of planetary surface units based on impact crater statistics by making them appear anomalously old. In the work described in the present paper, the techniques conventionally used in planetary crater counting were applied to the determination of the size range and size frequency distribution of collapse craters on lava flows in Idaho, California, and New Mexico. Collapse depressions range in size from 3 to 80 m in diameter; their cumulative size distributions are similar to those of small impact craters on the moon.

  15. Low-emissivity impact craters on Venus

    NASA Technical Reports Server (NTRS)

    Weitz, C. M.; Elachi, C.; Moore, H. J.; Basilevsky, A. T.; Ivanov, B. A.; Schaber, G. G.

    1992-01-01

    An analysis of 144 impact craters on Venus has shown that 11 of these have floors with average emissivities lower than 0.8. The remaining craters have emissivities between 0.8 and 0.9, independent of the specific backscatter cross section of the crater floors. These 144 impact craters were chosen from a possible 164 craters with diameters greater than 30 km as identified by researchers for 89 percent of the surface of Venus. We have only looked at craters below 6053.5 km altitude because a mineralogical change causes high reflectivity/low emissivity above the altitude. We have also excluded all craters with diameters smaller than 30 km because the emissivity footprint at periapsis is 16 x 24 km and becomes larger at the poles.

  16. Interior and Ejecta Morphologies of Impact Craters on Ganymede

    NASA Astrophysics Data System (ADS)

    Barlow, Nadine G.; Klaybor, K.; Katz-Wigmore, J.

    2006-09-01

    We are utilizing Galileo SSI imagery of Ganymede to classify impact crater interior and ejecta morphologies. Although we are in the early stages of compiling our Catalog of Impact Craters on Ganymede, some interesting trends are beginning to emerge. Few craters display obvious ejecta morphologies, but 68 craters are classified as single layer ejecta and 3 as double layer ejecta. We see no obvious correlation of layered ejecta morphologies with terrain or latitude. All layered ejecta craters have diameters between 10 and 40 km. Sinuosity ("lobateness") and ejecta extent ("ejecta mobility ratio") of Ganymede layered ejecta craters are lower than for martian layered ejecta craters. This suggests less mobility of ejecta materials on Ganymede, perhaps due to the colder temperatures. Interior structures being investigated include central domes, peaks, and pits. 57 dome craters, 212 central peak craters, and 313 central pit craters have been identified. Central domes occur in 50-100 km diameter craters while peaks are found in craters between 20 and 50 km and central pit craters range between 29 and 74 km in diameter. The Galileo Regio region displays higher concentrations of central dome and central pit craters than other regions we have investigated. 67% of central pit craters studied to date are small pits, where the ratio of pit diameter to crater diameter is <0.2. Craters containing the three interior structures preferentially occur on darker terrain units, suggesting that an ice-silicate composition is more conducive to interior feature formation than pure ice alone. Results of this study have important implications not only for the formation of specific interior and ejecta morphologies on Ganymede but also for analogous features associated with Martian impact craters. This research is funded through NASA Outer Planets Research Program Award #NNG05G116G to N. G. Barlow.

  17. Formation and mantling ages of lobate debris aprons on Mars: Insights from categorized crater counts

    NASA Astrophysics Data System (ADS)

    Berman, Daniel C.; Crown, David A.; Joseph, Emily C. S.

    2015-06-01

    Lobate debris aprons in the Martian mid-latitudes offer important insights into the history of the Martian climate and the role of volatiles in Martian geologic activity. Here we present the results of counts of small impact craters, categorized by morphology, on debris aprons in the Deuteronilus Mensae region and the area east of Hellas basin. Mars Reconnaissance Orbiter (MRO) ConTeXt Camera (CTX) images were used to document crater populations on the apron surfaces. Each crater was assessed and categorized according to its morphological characteristics (fresh, degraded, or filled). Fresh and most degraded craters likely superpose recent mantling deposits, whereas filled craters contain mantling deposits and thus indicate a minimum formation age for the apron (i.e., the age since stabilization of the debris apron surface following some modification but prior to mantling). Size-frequency distributions (SFDs) were compiled using established methodologies and plotted to assess their fit to the isochrons. The range or ranges in crater diameter over which each distribution paralleled the isochrons was determined by visual inspection, and general age constraints were noted from SFDs for all craters on a given surface and from each morphological class. The diameter range of each SFD segment observed to parallel an isochron was then input into the Craterstats2 analysis tool to calculate specific age estimates. The aprons were assessed both individually and as regional populations, which improved interpretation of the results and demonstrated the value and limitations of both approaches. The categorized counts reveal three groups of ages: (a) filled impact craters at larger diameters (>~500 m) typically show the oldest ages, between ~300 Ma and 1 Ga, (b) smaller diameter filled and degraded craters reveal ages of resurfacing events between ~10 Ma and 300 Ma, and (c) fresh crater populations (<~100 m diameter) indicate mantling deposits of less than ~10 Ma in age. These results indicate that the lobate debris apron populations formed (or their surfaces became stable) in the Early to Middle Amazonian Epochs, and were subsequently subjected to complex degradation by erosion and sublimation and/or melting of contained ice, culminating in episodes of deposition of ice-rich mantles in the Late Amazonian Epoch.

  18. WIRGO in TIC's? [What (on Earth) is Really Going On in Terrestrial Impact Craters?

    NASA Astrophysics Data System (ADS)

    Dence, Michael R.

    2003-02-01

    Canada is well endowed with impact craters formed in crystalline rocks with relatively homogeneous physical properties. They exhibit all the main morphological-structural variations with crater size seen in craters on other rocky planets, from small simple bowl to large peak and ring forms. Lacking stratigraphy, analysis is based on the imprint of shock melting and metamorphism, the position of the GPL (limit of initial Grady-Kipp fracturing due to shock wave reverberations) relative to shock level, the geometry of late stage shears and breccias and the volume of shocked material beyond the GPL. Simple craters, exemplified by Brent (D = 3.7 km) allow direct comparison with models and experimental data. Results of interest include: 1. The central pool of impact melt and underlying breccia at the base of the crater fill is interpreted as the remnant of the transient crater lining; 2. The overlying main mass of breccias filling the final apparent crater results from latestage slumping of large slabs bounded by a primary shear surface that conforms to a sphere segment of radius, rs approx. = 2dtc, where dtc is the transient crater depth; 3. The foot of the primary shear intersects above the GPL at the centre of the melt pool and the rapid emplacement of slumped slabs produces further brecciation while suppressing any tendency for the centre to rise. In the autochthonous breccias below the melt and in the underlying para-allochthone below the GPL, shock metamorphism weakens with depth. The apparent attenuation of the shock pulse can be compared with experimentally derived rates of attenuation to give a measure of displacements down axis and estimates of the size of a nominal bolide of given velocity, the volume of impact melt and the energy released on impact. In larger complex craters (e.g. Charlevoix, D = 52 km) apparent shock attenuation is low near the centre but is higher towards the margin. The inflection point marks the change from uplift of deep material in the centre to subsidence of near-surface material at the margins. From the observed general relationship PGPL = 3.5 D0.5, where PGPL (in GPa) is the estimated level of shock metamorphism at the Grady-Kipp fracture limit, it is apparent that the differential stress due to shock wave reflections weakens at about twice the attenuation rate of the initial shock pulse. Thus, with increasing size, compression of the para-authochthone below the GPL plays an increasingly larger role in controlling the depth of the transient crater and hence the radius of the primary shear. It follows that, where the rate of relaxation of the para-authochthone is more rapid than the propagation of the primary shear from the rim towards the centre, the shear surface intersects below the GPL and central uplift occurs.

  19. A Recent Cluster of Impacts

    NASA Image and Video Library

    2017-02-07

    The dark spots in this enhanced-color infrared image are the recent impact craters that occurred in the Tharsis region between 2008 and 2014. These impact craters were first discovered by the Mars Context Camera (or CTX, also onboard the Mars Reconnaissance Orbiter) as a cluster of dark spots. The meteoroid that formed these craters must have broken up upon atmospheric entry and fragmented into two larger masses along with several smaller fragments, spawning at least twenty or so smaller impact craters. The dark halos around the resulting impact craters are a combination of the light-toned dust being cleared from the impact event and the deposition of the underlying dark toned materials as crater ejecta. The distribution and the pattern of the rayed ejecta suggests that the meteoroid most-likely struck from the south. http://photojournal.jpl.nasa.gov/catalog/PIA11176

  20. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Technical Reports Server (NTRS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-01-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  1. Manson impact structure, Iowa: First geochemical results for drill core M-1

    NASA Astrophysics Data System (ADS)

    Koeberl, Christian; Anderson, Raymond R.; Hartung, Jack B.; Reimold, Wolf Uwe

    1993-03-01

    The Manson Impact Structure is a large complex impact crater centered ca. S km north of the town of Manson, Iowa. It is the largest intact impact structure recognized in the United States (35 km in diameter). Its Ar-40/Ar-39 age is indistinguishable from that of the Cretaceous-Tertiary (K-T) boundary. The Manson structure may be one element of the events at the K-T boundary. The crater is completely covered by Quaternary glacial sedimentary deposits that are normally underlain by Cretaceous clastic sediments and flat-lying carbonate sediments of Phanerozoic age, as well as Proterozoic red clastic, metamorphic, volcanic, and plutonic rock sequences. The study of a reflection seismic profile, provided by Amoco, was critical in interpreting the structure. In the 35 km diameter zone that marks the extension of the crater the normal rock sequence is disturbed due to the impact, and at the center of the structure granitic basement rocks are present that have been uplifted from about 4 km depth. Our studies consist of detailed petrological and geochemical characterization of all cores, with emphasis on a detailed description of all rock types found in the core samples and their relationship to target rocks. Geochemical data on samples from the Manson M-1 core are presented.

  2. Hailar crater - A possible impact structure in Inner Mongolia, China

    NASA Astrophysics Data System (ADS)

    Xiao, Zhiyong; Chen, Zhaoxu; Pu, Jiang; Xiao, Xiao; Wang, Yichen; Huang, Jun

    2018-04-01

    Hailar crater, a probable impact structure, is a circular depression about 300 m diameter in Inner Mongolia, northeast China. With broad elevated rims, the present rim-to-floor depth is 8-20 m. Regional geological background and geomorphological comparison suggest that this feature is likely not formed by surface processes such as salt diapir, karst, aeolian, glacial, or volcanic activity. Its unique occurrence in this region and well-preserved morphology are most consistent with it being a Cenozoic impact crater. Two field expeditions in 2016 and 2017 investigated the origin of this structure, recognizing that (1) no additional craters were identified around Hailar crater in the centimeter-scale digital topography models that were constructed using a drone imaging system and stereo photogrammetry; (2) no bedrock exposures are visible within or adjacent to the crater because of thick regolith coverage, and only small pieces of angular unconsolidated rocks are present on the crater wall and the gently-sloped crater rim, suggesting recent energetic formation of the crater; (3) most samples collected from the crater have identical lithology and petrographic characteristics with the background terrain, but some crater samples contain more abundant clasts and silicate hydrothermal veins, indicating that rocks from depths have been exposed by the crater; (4) no shock metamorphic features were found in the samples after thin section examinations; and (5) a systematic sample survey and iron detector scan within and outside of the crater found no iron-rich meteorites larger than 2 cm in size in a depth of 30 cm. Although no conclusive evidence for an impact origin is found yet, Hailar crater was most likely formed by an impact based on its unique occurrence and comparative geomorphologic study. We suggest that drilling in the crater center is required to verify the impact origin, where hypothesized melt-bearing impactites may be encountered.

  3. Hypervelocity impacts into ice-topped layered targets: Investigating the effects of ice crust thickness and subsurface density on crater morphology

    NASA Astrophysics Data System (ADS)

    Harriss, Kathryn H.; Burchell, Mark J.

    2017-07-01

    Many bodies in the outer solar system are theorized to have an ice shell with a different subsurface material below, be it chondritic, regolith, or a subsurface ocean. This layering can have a significant influence on the morphology of impact craters. Accordingly, we have undertaken laboratory hypervelocity impact experiments on a range of multilayered targets, with interiors of water, sand, and basalt. Impact experiments were undertaken using impact speeds in the range of 0.8-5.3 km s-1, a 1.5 mm Al ball bearing projectile, and an impact incidence of 45°. The surface ice crust had a thickness between 5 and 50 mm, i.e., some 3-30 times the projectile diameter. The thickness of the ice crust as well as the nature of the subsurface layer (liquid, well consolidated, etc.) have a marked effect on the morphology of the resulting impact crater, with thicker ice producing a larger crater diameter (at a given impact velocity), and the crater diameter scaling with impact speed to the power 0.72 for semi-infinite ice, but with 0.37 for thin ice. The density of the subsurface material changes the structure of the crater, with flat crater floors if there is a dense, well-consolidated subsurface layer (basalt) or steep, narrow craters if there is a less cohesive subsurface (sand). The associated faulting in the ice surface is also dependent on ice thickness and the substrate material. We find that the ice layer (in impacts at 5 km s-1) is effectively semi-infinite if its thickness is more than 15.5 times the projectile diameter. Below this, the crater diameter is reduced by 4% for each reduction in ice layer thickness equal to the impactor diameter. Crater depth is also affected. In the ice thickness region, 7-15.5 times the projectile diameter, the crater shape in the ice is modified even when the subsurface layer is not penetrated. For ice thicknesses, <7 times the projectile diameter, the ice layer is breached, but the nature of the resulting crater depends heavily on the subsurface material. If the subsurface is noncohesive (loose) material, a crater forms in it. If it is dense, well-consolidated basalt, no crater forms in the exposed subsurface layer.

  4. Polygonal Craters on Dwarf-Planet Ceres

    NASA Astrophysics Data System (ADS)

    Otto, K. A.; Jaumann, R.; Krohn, K.; Buczkowski, D. L.; von der Gathen, I.; Kersten, E.; Mest, S. C.; Preusker, F.; Roatsch, T.; Schenk, P. M.; Schröder, S.; Schulzeck, F.; Scully, J. E. C.; Stepahn, K.; Wagner, R.; Williams, D. A.; Raymond, C. A.; Russell, C. T.

    2015-10-01

    With approximately 950 km diameter and a mass of #1/3 of the total mass of the asteroid belt, (1) Ceres is the largest and most massive object in the Main Asteroid Belt. As an intact proto-planet, Ceres is key to understanding the origin and evolution of the terrestrialplanets [1]. In particular, the role of water during planet formation is of interest, because the differentiated dwarf-planet is thought to possess a water rich mantle overlying a rocky core [2]. The Dawn space craft arrived at Ceres in March this year after completing its mission at (4) Vesta. At Ceres, the on-board Framing Camera (FC) collected image data which revealed a large variety of impact crater morphologies including polygonal craters (Figure 1). Polygonal craters show straight rim sections aligned to form an angular shape. They are commonly associated with fractures in the target material. Simple polygonal craters develop during the excavation stage when the excavation flow propagates faster along preexisting fractures [3, 5]. Complex polygonal craters adopt their shape during the modification stage when slumping along fractures is favoured [3]. Polygonal craters are known from a variety of planetary bodies including Earth [e.g. 4], the Moon [e.g. 5], Mars [e.g. 6], Mercury [e.g. 7], Venus [e.g. 8] and outer Solar System icy satellites [e.g. 9].

  5. Lunar Crater Slumping Caused by Soil Grain Motion

    NASA Technical Reports Server (NTRS)

    1966-01-01

    Lunar Orbiter 2 oblique northward view towards Copernicus crater on the Moon shows crater wall slumping caused by soil liquefaction following the impact that formed the crater. The crater is about 100 km in diameter. The central peaks are visible towards the top of the image, rising about 400 m above the crater floor, and stretching for about 15 km. The northern wall of the crater is in the background. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).

  6. Magma ascent and magmatism controlled by cratering on the Moon

    NASA Astrophysics Data System (ADS)

    Michaut, C.; Pinel, V.

    2016-12-01

    The lunar primary crust was formed by flotation of light plagioclase minerals on top of the lunar magma ocean, resulting in a relatively light and thick crust. This crust acted as a barrier for the denser primary mantle melts: mare basalts erupted primarily within large impact basins where at least part of this crust was removed. Thus, lunar magmas likely stored at the base of or deep in the lunar crust and the ascent of magma to shallow depths probably required local or regional tensional stresses. On the Moon, evidences of shallow sites of magmatism are mostly concentrated within old and degraded simple and complex craters that surround the Mare basalts. Impacts, that were numerous in the early times of the Moon, created depressions at the lunar surface that induced specific states of stress. Below a crater, magma ascent is helped by the tensional stresses caused by the depression up to a depth that is close to the crater radius. However, many craters that are the sites of shallow magmatism are less than 10 to 20 km in radius and are equally situated in regions of thin (i.e. 20 km) or thick (i.e. 60km) crust suggesting that the depression, although significant enough to control magma emplacement, was not large enough to induce it. Since the sites of magmatism surround the mare basalts, we explore the common idea that the weight of the Mare induced a tensile state of stress in the surrounding regions. We constrain the regional state of stress that was necessary to help magma ascent to shallow depths but was low enough for the local depression due to a crater to control magma emplacement. This state of stress is consistent with a relatively thin but extended mare load. We also show that the depression due to the crater probably caused the horizontalization and hence the storage of the magmatic intrusion at shallow depth below the crater. In the end, because of the neutral buoyancy of magmas in the crust and the lack of tectonic processes, impact processes largely controlled magma transport and secondary crust formation on the Moon.

  7. Landslide

    NASA Image and Video Library

    2014-08-26

    This image from NASA 2001 Mars Odyssey spacecraft shows a landslide deposit within a complex crater note the ejecta to the top and bottom of the image. There is a smaller complex crater on the ejecta to the north of the larger crater.

  8. Evolution of Circular Polarization Ratio (CPR) Profiles of Kilometer-scale Craters on the Lunar Maria

    NASA Technical Reports Server (NTRS)

    King, I. R.; Fassett, C. I.; Thomson, B. J.; Minton, D. A.; Watters, W. A.

    2017-01-01

    When sufficiently large impact craters form on the Moon, rocks and unweathered materials are excavated from beneath the regolith and deposited into their blocky ejecta. This enhances the rockiness and roughness of the proximal ejecta surrounding fresh impact craters. The interior of fresh craters are typically also rough, due to blocks, breccia, and impact melt. Thus, both the interior and proximal ejecta of fresh craters are usually radar bright and have high circular polarization ratios (CPR). Beyond the proximal ejecta, radar-dark halos are observed around some fresh craters, suggesting that distal ejecta is finer-grained than background regolith. The radar signatures of craters fade with time as the regolith grows.

  9. The curious history of Tethys as evidenced by irregular craters and variable tectonism

    NASA Astrophysics Data System (ADS)

    Ferguson, S. N.; Rhoden, A.; Nayak, M.; Asphaug, E. I.

    2017-12-01

    At first glance, the surface of Saturn's moon Tethys appears dominated by craters and its large canyon system, Ithaca Chasma. However, high-resolution Cassini imagery reveals a surface rife with curious geologic features, perhaps indicative of non-heliocentric impact populations and, potentially, a history of tectonic activity. We mapped three regions on Tethys to survey the diversity of features present on the surface, determine crater counts for each region, map and analyze fracture patterns, and identify constraints on the impactor populations. One study region is just south and west of the Odysseus impact basin (R1), and the other two regions sit slightly west of Ithaca Chasma (R2 and R3). The regions were imaged at average resolutions of 200m/pix, which is adequate to identify craters down to D=1km. Of 1200 total craters counted, we have identified 195 elliptical craters and 28 polygonal craters. Elliptical craters likely form from slow, oblique impacts, whereas polygonal craters are indicative of underlying tectonic structure. We identified 605 small craters, D=1-2km, across the three regions; we find that R1 has many more 1-10 km craters than R2 and R3. We also mapped 367 linear features. The median and range of orientations of the linear features vary across the regions. Despite their proximity, the orientations of lineations in R2 and R3 are not consistent with the orientation of Ithaca Chasma. This could be suggestive of different epochs of tectonic activity on Tethys. When compared with R2 and R3, R1 has more small craters, more lineations, and a preferred orientation of lineations that is distinct from the other two regions. Possible causes for a larger population of small craters in R1 include secondary craters from Odysseus and oblique impacts from debris ejected from Tethys' co-orbital moons, which should create many more 1km craters in R1 than the other regions. Due to the oblique impact angles predicted for incoming co-orbital debris, these impacts may have also produced some of the lineations observed in R1. Oblique impacts can also form elliptical craters, but that would imply much larger debris than expected from the craters presently observed on the co-orbitals. We discuss additional analysis and implications of Tethys' curious geologic features on its bombardment and tectonic history.

  10. Chicxulub Impact Melts: Geochemical Signatures of Target Lithology Mixing and Post-Impact Hydrothermal Fluid Processes

    NASA Technical Reports Server (NTRS)

    Kring, David A.; Zurcher, Lukas; Horz, Freidrich; Mertzmann, Stanley A.

    2004-01-01

    Impact melts within complex impact craters are generally homogeneous, unless they differentiated, contain immiscible melt components, or were hydrothermally altered while cooling. The details of these processes, however, and their chemical consequences, are poorly understood. The best opportunity to unravel them may lie with the Chicxulub impact structure, because it is the world s most pristine (albeit buried) large impact crater. The Chicxulub Scientific Drilling Project recovered approx. 100 meters of impactites in a continuous core from the Yaxcopoil-1 (YAX-1) borehole. This dramatically increased the amount of melt available for analyses, which was previously limited to two small samples N17 and N19) recovered from the Yucatan-6 (Y-6) borehole and one sample (N10) recovered from the Chicxulub-1 (C-1) borehole. In this study, we describe the chemical compositions of six melt samples over an approx. 40 m section of the core and compare them to previous melt samples from the Y-6 and C-1 boreholes.

  11. Paleomagnetic and Magnetostratigraphic Studies in Drilling Projects of Impact Craters - Recent Studies, Challenges and Perspectives

    NASA Astrophysics Data System (ADS)

    Fucugauchi, J. U.; Velasco-Villarreal, M.; Perez-Cruz, L. L.

    2013-05-01

    Paleomagnetic studies have long been successfully carried out in drilling projects, to characterize the borehole columns and to investigate the subsurface structure and stratigraphy. Magnetic susceptibility logging and magnetostratigraphic studies provide data for lateral correlation, formation evaluation, azimuthal core orientation, physical properties, etc., and are part of the tools available in the ocean and continental drilling programs. The inclusion of continuous core recovery in scientific drilling projects have greatly expanded the range of potential applications of paleomagnetic and rock magnetic studies, by allowing laboratory measurements on core samples. For this presentation, we concentrate on drilling studies of impact structures and their usefulness for documenting the structure, stratigraphy and physical properties at depth. There are about 170-180 impact craters documented in the terrestrial record, which is a small number compared to what is observed in the Moon, Mars, Venus and other bodies of the solar system. Of the terrestrial impact craters, only a few have been studied by drilling. Some craters have been drilled as part of industry exploration surveys and/or academic projects, including notably the Sudbury, Ries, Vredefort, Manson and many other craters. As part of the Continental ICDP program, drilling projects have been conducted on the Chicxulub, Bosumtwi, Chesapeake and El gygytgyn craters. Drilling of terrestrial craters has proved important in documenting the shallow stratigraphy and structure, providing insight on the cratering and impact dynamics. Questions include several that can only be addressed by retrieving core samples and laboratory analyses. Paleomagnetic, rock magnetic and fabric studies have been conducted in the various craters, which are here summarized with emphasis on the Chicxulub crater and Yucatan carbonate platform. Chicxulub is buried under a kilometer of younger sediments, making drilling an essential tool. Oil exploration included several boreholes, and additionally we have drilled 11 boreholes with continuous core recovery. Contributions and limitations of paleomagnetism for investigating the impact age, crater stratigraphy, cratering, ejecta emplacement, impact dynamics, hydrothermal system and post-impact processes are discussed.

  12. The Role of Breccia Lenses in Regolith Generation From the Formation of Small, Simple Craters: Application to the Apollo 15 Landing Site

    NASA Astrophysics Data System (ADS)

    Hirabayashi, M.; Howl, B. A.; Fassett, C. I.; Soderblom, J. M.; Minton, D. A.; Melosh, H. J.

    2018-02-01

    Impact cratering is likely a primary agent of regolith generation on airless bodies. Regolith production via impact cratering has long been a key topic of study since the Apollo era. The evolution of regolith due to impact cratering, however, is not well understood. A better formulation is needed to help quantify the formation mechanism and timescale of regolith evolution. Here we propose an analytically derived stochastic model that describes the evolution of regolith generated by small, simple craters. We account for ejecta blanketing as well as regolith infilling of the transient crater cavity. Our results show that the regolith infilling plays a key role in producing regolith. Our model demonstrates that because of the stochastic nature of impact cratering, the regolith thickness varies laterally, which is consistent with earlier work. We apply this analytical model to the regolith evolution at the Apollo 15 site. The regolith thickness is computed considering the observed crater size-frequency distribution of small, simple lunar craters (< 381 m in radius for ejecta blanketing and <100 m in radius for the regolith infilling). Allowing for some amount of regolith coming from the outside of the area, our result is consistent with an empirical result from the Apollo 15 seismic experiment. Finally, we find that the timescale of regolith growth is longer than that of crater equilibrium, implying that even if crater equilibrium is observed on a cratered surface, it is likely that the regolith thickness is still evolving due to additional impact craters.

  13. Noachian and more recent phyllosilicates in impact craters on Mars

    PubMed Central

    Fairén, Alberto G.; Chevrier, Vincent; Abramov, Oleg; Marzo, Giuseppe A.; Gavin, Patricia; Davila, Alfonso F.; Tornabene, Livio L.; Bishop, Janice L.; Roush, Ted L.; Gross, Christoph; Kneissl, Thomas; Uceda, Esther R.; Dohm, James M.; Schulze-Makuch, Dirk; Rodríguez, J. Alexis P.; Amils, Ricardo; McKay, Christopher P.

    2010-01-01

    Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times. PMID:20616087

  14. Noachian and more recent phyllosilicates in impact craters on Mars.

    PubMed

    Fairén, Alberto G; Chevrier, Vincent; Abramov, Oleg; Marzo, Giuseppe A; Gavin, Patricia; Davila, Alfonso F; Tornabene, Livio L; Bishop, Janice L; Roush, Ted L; Gross, Christoph; Kneissl, Thomas; Uceda, Esther R; Dohm, James M; Schulze-Makuch, Dirk; Rodríguez, J Alexis P; Amils, Ricardo; McKay, Christopher P

    2010-07-06

    Hundreds of impact craters on Mars contain diverse phyllosilicates, interpreted as excavation products of preexisting subsurface deposits following impact and crater formation. This has been used to argue that the conditions conducive to phyllosilicate synthesis, which require the presence of abundant and long-lasting liquid water, were only met early in the history of the planet, during the Noachian period (> 3.6 Gy ago), and that aqueous environments were widespread then. Here we test this hypothesis by examining the excavation process of hydrated minerals by impact events on Mars and analyzing the stability of phyllosilicates against the impact-induced thermal shock. To do so, we first compare the infrared spectra of thermally altered phyllosilicates with those of hydrated minerals known to occur in craters on Mars and then analyze the postshock temperatures reached during impact crater excavation. Our results show that phyllosilicates can resist the postshock temperatures almost everywhere in the crater, except under particular conditions in a central area in and near the point of impact. We conclude that most phyllosilicates detected inside impact craters on Mars are consistent with excavated preexisting sediments, supporting the hypothesis of a primeval and long-lasting global aqueous environment. When our analyses are applied to specific impact craters on Mars, we are able to identify both pre- and postimpact phyllosilicates, therefore extending the time of local phyllosilicate synthesis to post-Noachian times.

  15. The role of impact events play in redistributing and sequestering water on Early Mars

    NASA Astrophysics Data System (ADS)

    Osinski, G.; Tornabene, L. L.

    2017-12-01

    Impact cratering is one of the most fundamental geological process in the Solar System. Several workers have considered the effect that impact events may have had on the climate of Early Mars. The proposed effects range from impact-induced precipitation to the production of runaway stable climates to the impact delivery of climatically active gases. The role of impact events in forming hydrated minerals has been touched upon but remains debated. In this contribution, we focus on the role that impact events may have played in redistributing and sequestering water on Early Mars; a record that may still be preserved in the Noachian crust. It has been previously proposed that the sequestration of significant quantities of water may have occurred within various hydrated minerals, in particular clays, in the martian crust. There is undoubtedly no single origin for clay-bearing rocks on Mars and the purpose of this contribution is not to review all the possible formation mechanisms. What we do propose, however, is that it is theoretically possible for impact events to create all known occurrences of clays on Mars. We show that clays can form within and around impact craters in two main ways: through the solid-state devitrification of hydrous impact melts and/or impact-generated hydrothermal alteration. Neither of these mechanisms requires a warmer or wetter climate scenario on Early Mars. Notwithstanding the original origin of clays, any clays may be widely redistributed over the Martian surface in the ejecta deposits of large impact craters. However, ejecta deposits are much more complex than commonly thought, with evidence in many instances for two different types of ejecta deposits around martian craters. The first is a ballistic ejecta layer that is low-shock, melt-poor and low-temperature; it will likely not induce the formation of new clays through the mechanisms described above, but could redistribute pre-impact clays over 100's and 1000's of km over the martian surface. Overlying ballistic ejecta deposits is a second ejecta type that is more melt-rich and higher temperature and that has been shown (on Earth) to form new primary clays and other hydrated minerals. This potential to form clays in situ many 100's of km away from the source crater in melt-rich ejecta deposits should be considered in any study of the Noachian crust.

  16. Coupled effects of impact and orogeny: Is the marine Lockne crater, Sweden, pristine?

    NASA Astrophysics Data System (ADS)

    Kenkmann, T.; Kiebach, F.; Rosenau, M.; Raschke, U.; Pigowske, A.; Mittelhaus, K.; Eue, D.

    Our current understanding of marine-impact cratering processes is partly inferred from the geological structure of the Lockne crater. We present results of a mapping campaign and structural data indicating that this crater is not pristine. In the western part of the crater, pre-impact, impact, and post-impact rocks are incorporated in Caledonian thrust slices and are subjected to folding and faulting. A nappe outlier in the central crater depression is a relic of the Caledonian nappe cover that reached a thickness of more than 5 km. The overthrusted crater is gently deformed. Strike of strata and trend of fold axes deviate from standard Caledonian directions (northeast-southwest). Radially oriented crater depressions, which were previously regarded as marine resurge gullies formed when resurging seawater erosively cut through the crater brim, are interpreted to be open synclines in which resurge deposits were better preserved.The presence of the impact structure influenced orogenesis due to morphological and lithological anomalies of the crater: i) a raised crater brim zone acted as an obstacle during nappe propagation, (ii) the occurrence of a central crater depression caused downward sagging of nappes, and (iii) the lack of an appropriate detachment horizon (alum shale) within the crater led to an enhanced mechanical coupling and internal deformation of the nappe and the overthrusted foreland. Preliminary results of 3-D-analogue experiments suggest that a circular high-friction zone representing the crater locally hinders nappe propagation and initiates a circumferentially striking ramp fault that delineates the crater. Crustal shortening is also partitioned into the crater basement and decreases laterally outward. Deformation of the foreland affected the geometry of the detachment and could be associated with the activation of a deeper detachment horizon beneath the crater. Strain gradients both vertically and horizontally result in non-plane strain deformation in the vicinity of the crater. The strain tensors in the hanging and foot walls may deviate up to 90° from each other and rotated by up to 45° with respect to the standard regional orientation. The observed deflection of strata and fold axes within the Lockne crater area as revealed by field mapping is in agreement with the pattern of strain partitioning shown in the analogue models.

  17. Calculational investigation of impact cratering dynamics - Material motions during the crater growth period

    NASA Technical Reports Server (NTRS)

    Austin, M. G.; Thomsen, J. M.; Ruhl, S. F.; Orphal, D. L.; Schultz, P. H.

    1980-01-01

    The considered investigation was conducted in connection with studies which are to provide a better understanding of the detailed dynamics of impact cratering processes. Such an understanding is vital for a comprehension of planetary surfaces. The investigation is the continuation of a study of impact dynamics in a uniform, nongeologic material at impact velocities achievable in laboratory-scale experiments conducted by Thomsen et al. (1979). A calculation of a 6 km/sec impact of a 0.3 g spherical 2024 aluminum projectile into low strength (50 kPa) homogeneous plasticene clay has been continued from 18 microseconds to past 600 microseconds. The cratering flow field, defined as the material flow field in the target beyond the transient cavity but well behind the outgoing shock wave, has been analyzed in detail to see how applicable the Maxwell Z-Model, developed from analysis of near-surface explosion cratering calculations, is to impact cratering

  18. Venus - Impact Crater 'Jeanne

    NASA Technical Reports Server (NTRS)

    1991-01-01

    This Magellan full-resolution image shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt.

  19. Modelling the gravity and magnetic field anomalies of the Chicxulub crater

    NASA Technical Reports Server (NTRS)

    Aleman, C. Ortiz; Pilkington, M.; Hildebrand, A. R.; Roest, W. R.; Grieve, R. A. F.; Keating, P.

    1993-01-01

    The approximately 180-km-diameter Chicxulub crater lies buried by approximately 1 km of sediment on the northwestern corner of the Yucatan Peninsula, Mexico. Geophysical, stratigraphic and petrologic evidence support an impact origin for the structure and biostratigraphy suggests that a K/T age is possible for the impact. The crater's location is in agreement with constraints derived from proximal K/T impact-wave and ejecta deposits and its melt-rock is similar in composition to the K/T tektites. Radiometric dating of the melt rock reveals an age identical to that of the K/T tektites. The impact which produced the Chicxulub crater probably produced the K/T extinctions and understanding the now-buried crater will provide constraints on the impact's lethal effects. The outstanding preservation of the crater, the availability of detailed gravity and magnetic data sets, and the two-component target of carbonate/evaporites overlying silicate basement allow application of geophysical modeling techniques to explore the crater under most favorable circumstances. We have found that the main features of the gravity and magnetic field anomalies may be produced by the crater lithologies.

  20. Crater gradation in Gusev crater and Meridiani Planum, Mars

    NASA Astrophysics Data System (ADS)

    Grant, J. A.; Arvidson, R. E.; Crumpler, L. S.; Golombek, M. P.; Hahn, B.; Haldemann, A. F. C.; Li, R.; Soderblom, L. A.; Squyres, S. W.; Wright, S. P.; Watters, W. A.

    2006-01-01

    The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ~400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred.

  1. Titan's Impact Cratering Record: Erosion of Ganymedean (and other) Craters on a Wet Icy Landscape

    NASA Astrophysics Data System (ADS)

    Schenk, P.; Moore, J.; Howard, A.

    2012-04-01

    We examine the cratering record of Titan from the perspective of icy satellites undergoing persistent landscape erosion. First we evaluate whether Ganymede (and Callisto) or the smaller low-gravity neighboring icy satellites of Saturn are the proper reference standard for evaluating Titan’s impact crater morphologies, using topographic and morphometric measurements (Schenk, 2002; Schenk et al. (2004) and unpublished data). The special case of Titan’s largest crater, Minrva, is addressed through analysis of large impact basins such as Gilgamesh, Lofn, Odysseus and Turgis. Second, we employ a sophisticated landscape evolution and modification model developed for study of martian and other planetary landforms (e.g., Howard, 2007). This technique applies mass redistribution principles due to erosion by impact, fluvial and hydrological processes to a planetary landscape. The primary advantage of our technique is the possession of a limited but crucial body of areal digital elevation models (DEMs) of Ganymede (and Callisto) impact craters as well as global DEM mapping of Saturn’s midsize icy satellites, in combination with the ability to simulate rainfall and redeposition of granular material to determine whether Ganymede craters can be eroded to resemble Titan craters and the degree of erosion required. References: Howard, A. D., “Simulating the development of martian highland landscapes through the interaction of impact cratering, fluvial erosion, and variable hydrologic forcing”, Geomorphology, 91, 332-363, 2007. Schenk, P. "Thickness constraints on the icy shells of the galilean satellites from impact crater shapes". Nature, 417, 419-421, 2002. Schenk, P.M., et al. "Ages and interiors: the cratering record of the Galilean satellites". In: Jupiter: The Planet, Satellites, and Magnetosphere, Cambridge University Press, Cambridge, UK, pp. 427-456, 2004.

  2. Martian impact crater degradation studies: Implications for localized obliteration episodes

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1992-01-01

    Early spacecraft missions to Mars revealed that impact craters display a range of degradational states, but full appreciation of the range of preservational characteristics was not revealed until the Mariner 9 and Viking missions in the 1970's. Many studies have described the spatial and temporal distribution of obliteration episodes based on qualitative descriptions of crater degradation. Recent advances in photoclinometric techniques have led to improved estimates of crater morphometric characteristics. The present study is using photoclinometry to determine crater profiles and is comparing these results with the crater geometry expected for pristine craters of identical size. The result is an estimate of the degree of degradation suffered by Martian impact craters in selected regions of the planet. Size-frequency distribution analyses of craters displaying similar degrees of degradation within localized regions of the planet may provide information about the timing of obliteration episodes in these regions.

  3. Impacts into porous asteroids

    NASA Astrophysics Data System (ADS)

    Housen, Kevin R.; Sweet, William J.; Holsapple, Keith A.

    2018-01-01

    Many small bodies in the solar system have bulk density well below the solid density of the constituent mineral grains in their meteorite counterparts. Those low-density bodies undoubtedly have significant porosity, which is a key factor that affects the formation of impact craters. This paper summarizes the results of lab experiments in which materials with porosity ranging from 43% to 96% were impacted at ∼1800 m/s. The experiments were performed on a geotechnical centrifuge, in order to reproduce the lithostatic overburden stress and ejecta ballistics that occur in large-scale cratering events on asteroids or planetary satellites. Experiments performed at various accelerations, up to 514G, simulate the outcomes of impacts at size scales up to several tens of km in diameter. Our experiments show that an impact into a highly porous cohesionless material generates a large ovoid-shaped cavity, due to crushing by the outgoing shock. The cavity opens up to form a transient crater that grows until the material flow is arrested by gravity. The cavity then collapses to form the final crater. During collapse, finely crushed material that lines the cavity wall is carried down and collected in a localized region below the final crater floor. At large simulated sizes (high accelerations), most of the crater volume is formed by compaction, because growth of the transient crater is quickly arrested. Nearly all ejected material falls back into the crater, leaving the crater without an ejecta blanket. We find that such compaction cratering and suppression of the ejecta blankets occur for large craters on porous bodies when the ratio of the lithostatic stress at one crater depth to the crush strength of the target exceeds ∼0.005. The results are used to identify small solar system bodies on which compaction cratering likely occurs. A model is developed that gives the crater size and ejecta mass that would result for a specified impact into a porous object.

  4. Secondary craters on Europa and implications for cratered surfaces.

    PubMed

    Bierhaus, Edward B; Chapman, Clark R; Merline, William J

    2005-10-20

    For several decades, most planetary researchers have regarded the impact crater populations on solid-surfaced planets and smaller bodies as predominantly reflecting the direct ('primary') impacts of asteroids and comets. Estimates of the relative and absolute ages of geological units on these objects have been based on this assumption. Here we present an analysis of the comparatively sparse crater population on Jupiter's icy moon Europa and suggest that this assumption is incorrect for small craters. We find that 'secondaries' (craters formed by material ejected from large primary impact craters) comprise about 95 per cent of the small craters (diameters less than 1 km) on Europa. We therefore conclude that large primary impacts into a solid surface (for example, ice or rock) produce far more secondaries than previously believed, implying that the small crater populations on the Moon, Mars and other large bodies must be dominated by secondaries. Moreover, our results indicate that there have been few small comets (less than 100 m diameter) passing through the jovian system in recent times, consistent with dynamical simulations.

  5. Martian Central Pit Craters

    NASA Technical Reports Server (NTRS)

    Hillman, E.; Barlow, N. G.

    2005-01-01

    Impact craters containing central pits are rare on the terrestrial planets but common on icy bodies. Mars is the exception among the terrestrial planets, where central pits are seen on crater floors ( floor pits ) as well as on top of central peaks ( summit pits ). Wood et al. [1] proposed that degassing of subsurface volatiles during crater formation produced central pits. Croft [2] argued instead that central pits might form during the impact of volatile-rich comets. Although central pits are seen in impact craters on icy moons such as Ganymede, they do show some significant differences from their martian counterparts: (a) only floor pits are seen on Ganymede, and (b) central pits begin to occur at crater diameters where the peak ring interior morphology begins to appear in terrestrial planet craters [3]. A study of craters containing central pits was conducted by Barlow and Bradley [4] using Viking imagery. They found that 28% of craters displaying an interior morphology on Mars contain central pits. Diameters of craters containing central pits ranged from 16 to 64 km. Barlow and Bradley noted that summit pit craters tended to be smaller than craters containing floor pits. They also noted a correlation of central pit craters with the proposed rings of large impact basins. They argued that basin ring formation fractured the martian crust and allowed subsurface volatiles to concentrate in these locations. They favored the model that degassing of the substrate during crater formation was responsible for central pit formation due to the preferential location of central pit craters along these basin rings.

  6. A Young, Fresh Crater in Hellespontus

    NASA Image and Video Library

    2016-01-14

    This image from NASA Mars Reconnaissance Orbiter spacecraft is of a morphologically fresh and simple impact crater in the Hellespontus region. At 1.3 kilometers in diameter, this unnamed crater is only slightly larger than Arizona's Barringer (aka Meteor) Crater, by about 200 meters. Note the simple bowl shape and the raised crater rim. Rock and soil excavated out of the crater by the impacting meteor -- called ejecta -- forms the ejecta deposit. It is continuous for about one crater radius away from the rim and is likely composed of about 90 percent ejecta and 10 percent in-place material that was re-worked by both the impact and the subsequently sliding ejecta. The discontinuous ejecta deposit extends from about one crater radius outward. Here, high velocity ejecta that was launched from close to the impact point -- and got the biggest kick -- flew a long way, landed, rolled, slid, and scoured the ground, forming long tendrils of ejecta and v-shaped ridges. http://photojournal.jpl.nasa.gov/catalog/PIA20340

  7. Decoding a Geological Message

    NASA Image and Video Library

    2017-06-14

    A close-up image from NASA's Mars Reconnaissance Orbiter of a recent 150-meter diameter impact crater near Amazonis Mensa and Medusae Fossae is another great example of geologic complexity of Mars. The spider web-like texture of this crater is intriguing. But what does it mean? On Earth, we have many geologic mechanisms that embrace the surface of the planet in an almost constant state of metamorphosis. Although Mars is not nearly as geologically active as Earth, it is still a host to many processes that shape its surface even today (e.g., aeolian modification, periglacial processes, recent impacts, etc.). The appearance of the ejecta of this crater is likely a combination of both the characteristics of the target material it was deposited on, and processes that modified and degraded it over time. When we look to other images in this region we find a similar texture. This texture is referred to as “yardangs” by scientists who study wind erosion. Yardangs are streamlined ridge-and-trough patterns formed by the erosion of wind dominating from a specific direction; in this particular case, from the southeast to the northwest. The specific direction of the winds is supported by regional context images that show many craters in the region have wind streak "tails" that points to the northwest. Craters of this size have been observed to form recently on Mars, so the fact that this crater is modified speaks volumes, and gives us a chance to decode some geological messages from Mars. https://photojournal.jpl.nasa.gov/catalog/PIA21759

  8. The Mechanics of Peak-Ring Impact Crater Formation from the IODP-ICDP Expedition 364

    NASA Astrophysics Data System (ADS)

    Melosh, H.; Collins, G. S.; Morgan, J. V.; Gulick, S. P. S.

    2017-12-01

    The Chicxulub impact crater is one of very few peak-ring impact craters on Earth. While small (less than 3 km on Earth) impact craters are typically bowl-shaped, larger craters exhibit central peaks, which in still larger (more than about 100 km on Earth) craters expand into mountainous rings with diameters close to half that of the crater rim. The origin of these peak rings has been contentious: Such craters are far too large to create in laboratory experiments and remote sensing of extraterrestrial examples has not clarified the mechanics of their formation. Two principal models of peak ring formation are currently in vogue, the "nested crater" model, in which the peak ring originates at shallow depths in the target, and the "dynamic collapse" model in which the peak ring is uplifted at the base of a collapsing, over-steepened central peak and its rocks originate at mid-crustal depths. IODP-ICDP Expedition 364 sought to elucidate, among other important goals, the mechanics of peak ring formation in the young (66 Myr), fresh, but completely buried Chicxulub impact crater. The cores from this borehole now show unambiguously that the rocks in the Chicxulub peak ring originated at mid-crustal depths, apparently ruling out the nested crater model. These rocks were shocked to pressures on the order of 10-35 GPa and were so shattered that their densities and seismic velocities now resemble those of sedimentary rocks. The morphology of the final crater, its structure as revealed in previous seismic imaging, and the results from the cores are completely consistent with modern numerical models of impact crater excavation and collapse that incorporate a model for post-impact weakening. Subsequent to the opening of a ca. 100 km diameter and 30 km deep transient crater, this enormous hole in the crust collapsed over a period of about 10 minutes. Collapse was enabled by movement of the underlying rocks, which briefly behaved in the manner of a high-viscosity fluid, a brittle deformation state described by the process of "acoustic" fluidization initiated by strong elastic vibrations accompanying the opening and collapse of the crater. The shattered core, cut by both melt rock and clastic dikes, is consistent with the block model of acoustic fluidization supporting its application to crater collapse both on the Earth and on other planets.

  9. Bright crater outflows: Possible emplacement mechanisms

    NASA Technical Reports Server (NTRS)

    Chadwick, D. John; Schaber, Gerald G.; Strom, Robert G.; Duval, Darla M.

    1992-01-01

    Lobate features with a strong backscatter are associated with 43 percent of the impact craters cataloged in Magellan's cycle 1. Their apparent thinness and great lengths are consistent with a low-viscosity material. The longest outflow yet identified is about 600 km in length and flows from the 90-km-diameter crater Addams. There is strong evidence that the outflows are largely composed of impact melt, although the mechanisms of their emplacement are not clearly understood. High temperatures and pressures of target rocks on Venus allow for more melt to be produced than on other terrestrial planets because lower shock pressures are required for melting. The percentage of impact craters with outflows increases with increasing crater diameter. The mean diameter of craters without outflows is 14.4 km, compared with 27.8 km for craters with outflows. No craters smaller than 3 km, 43 percent of craters in the 10- to 30-km-diameter range, and 90 percent in the 80- to 100-km-diameter range have associated bright outflows. More melt is produced in the more energetic impact events that produce larger craters. However, three of the four largest craters have no outflows. We present four possible mechanisms for the emplacement of bright outflows. We believe this 'shotgun' approach is justified because all four mechanisms may indeed have operated to some degree.

  10. The effect of impact angle on craters formed by hypervelocity particles

    NASA Technical Reports Server (NTRS)

    Hill, David C.; Rose, M. Frank; Best, Steve R.; Crumpler, Michael S.; Crawford, Gary D.; Zee, Ralph H.-C.; Bozack, Michael J.

    1995-01-01

    The Space Power Institute (SPI) at Auburn University has conducted experiments on the effects of impact angle on crater morphology and impactor residue retention for hypervelocity impacts. Copper target plates were set at angles of 30 deg, 45 deg, 60 deg, and 75 deg from the particle flight path. For the 30 deg and 45 deg impacts, in the velocity regime greater than 8 km s(exp -1) the resultant craters are almost identical to normal incidence impacts. The only difference found was in the apparent distribution of particle residue within the crater, and further research is needed to verify this. The 60 deg and 75 deg impacts showed marked differences in crater symmetry, crater lip shape, and particle residue distribution in the same velocity regime. Impactor residue shock fractionation effects have been quantified in first-order. It is concluded that a combination of analysis techniques can yield further information on impact velocity, direction, and angle of incidence.

  11. ARC-1979-A79-7093

    NASA Image and Video Library

    1979-07-09

    Range : 225,000 kilometers (140,625 miles) This image of the Jovian moon Europa was taken by Voyager 2 along the evening terminator, which best shows the surface topography of complex narrow ridges, seen as curved bright streaks, 5 to 10 kilometers wide, and typically 100 kilometers in length. The area shown is about 600 by 800 kilometers, and the smallest features visible are about 4 kilometers in size. Also visable are dark bands, more diffused in character, 20 to 40 kilometers wide and hundreds to thousands of kilometers in length. A few features are suggestive of impact craters but are rare, indication that the surface thought to be dominantly ice is still active, perhaps warmed by tidal heating like Io. The larger icy satellites, Callisto and Ganymede, are evidently colder with much more rigid crusts and ancient impact craters. The complex intersection of dark markings and bright ridges suggest that the surface has been fractured and material from beneath has welled up to fill the cracks.

  12. Atmospheric Fragmentation of the Canyon Diablo Meteoroid

    NASA Technical Reports Server (NTRS)

    Pierazzo, E.; Artemieva, N. A.

    2005-01-01

    About 50 kyr ago the impact of an iron meteoroid excavated Meteor Crater, Arizona, the first terrestrial structure widely recognized as a meteorite impact crater. Recent studies of ballistically dispersed impact melts from Meteor Crater indicate a compositionally unusually heterogeneous impact melt with high SiO2 and exceptionally high (10 to 25% on average) levels of projectile contamination. These are observations that must be explained by any theoretical modeling of the impact event. Simple atmospheric entry models for an iron meteorite similar to Canyon Diablo indicate that the surface impact speed should have been around 12 km/s [Melosh, personal comm.], not the 15-20 km/s generally assumed in previous impact models. This may help explaining the unusual characteristics of the impact melt at Meteor Crater. We present alternative initial estimates of the motion in the atmosphere of an iron projectile similar to Canyon Diablo, to constraint the initial conditions of the impact event that generated Meteor Crater.

  13. Impact-induced seismic activity on asteroid 433 Eros: a surface modification process.

    PubMed

    Richardson, James E; Melosh, H Jay; Greenberg, Richard

    2004-11-26

    High-resolution images of the surface of asteroid 433 Eros revealed evidence of downslope movement of a loose regolith layer, as well as the degradation and erasure of small impact craters (less than approximately 100 meters in diameter). One hypothesis to explain these observations is seismic reverberation after impact events. We used a combination of seismic and geomorphic modeling to analyze the response of regolith-covered topography, particularly craters, to impact-induced seismic shaking. Applying these results to a stochastic cratering model for the surface of Eros produced good agreement with the observed size-frequency distribution of craters, including the paucity of small craters.

  14. Impact cratering experiments in Bingham materials and the morphology of craters on Mars and Ganymede

    NASA Technical Reports Server (NTRS)

    Fink, J. H.; Greeley, R.; Gault, D. E.

    1982-01-01

    Results from a series of laboratory impacts into clay slurry targets are compared with photographs of impact craters on Mars and Ganymede. The interior and ejecta lobe morphology of rampart-type craters, as well as the progression of crater forms seen with increasing diameter on both Mars and Ganymede, are equalitatively explained by a model for impact into Bingham materials. For increasing impact energies and constant target rheology, laboratory craters exhibit a morphologic progression from bowl-shaped forms that are typical of dry planetary surfaces to craters with ejecta flow lobes and decreasing interior relief, characteristic of more volatile-rich planets. A similar sequence is seen for uniform impact energy in slurries of decreasing yield strength. The planetary progressions are explained by assuming that volatile-rich or icy planetary surfaces behave locally in the same way as Bingham materials and produce ejecta slurries with yield strenghs and viscosities comparable to terrestrial debris flows. Hypothetical impact into Mars and Ganymede are compared, and it is concluded that less ejecta would be produced on Ganymede owing to its lower gravitational acceleration, surface temperature, and density of surface materials.

  15. Stratigraphy of the Caloris Basin, Mercury: Implications for Volcanic History and Basin Impact Melt

    NASA Technical Reports Server (NTRS)

    Ernst, Carolyn M.; Denevi, Brett W.; Barnouin, Olivier S.; Klimczak, Christian; Chabot, Nancy L.; Head, James W.; Murchie, Scott L.; Neumann, Gregory A.; Prockter, Louis M.; Robinson, Mark S.; hide

    2015-01-01

    Caloris basin, Mercury's youngest large impact basin, is filled by volcanic plains that are spectrally distinct from surrounding material. Post-plains impact craters of a variety of sizes populate the basin interior, and the spectra of the material they have excavated enable the thickness of the volcanic fill to be estimated and reveal the nature of the subsurface. The thickness of the interior volcanic plains is consistently at least 2.5 km, reaching 3.5 km in places, with thinner fill toward the edge of the basin. No systematic variations in fill thickness are observed with long-wavelength topography or azimuth. The lack of correlation between plains thickness and variations in elevation at large horizontal scales within the basin indicates that plains emplacement must have predated most, if not all, of the changes in long-wavelength topography that affected the basin. There are no embayed or unambiguously buried (ghost) craters with diameters greater than 10 km in the Caloris interior plains. The absence of such ghost craters indicates that one or more of the following scenarios must hold: the plains are sufficiently thick to have buried all evidence of craters that formed between the Caloris impact event and the emplacement of the plains; the plains were emplaced soon after basin formation; or the complex tectonic deformation of the basin interior has disguised wrinkle-ridge rings localized by buried craters. That low-reflectance material (LRM) was exposed by every impact that penetrated through the surface volcanic plains provides a means to explore near-surface stratigraphy. If all occurrences of LRM are derived from a single layer, the subsurface LRM deposit is at least 7.5-8.5 km thick and its top likely once made up the Caloris basin floor. The Caloris-forming impact would have generated a layer of impact melt 3-15 km thick; such a layer could account for the entire thickness of LRM. This material would have been derived from a combination of lower crust and upper mantle.

  16. Geology of 243 Ida

    USGS Publications Warehouse

    Sullivan, R.; Greeley, R.; Pappalardo, R.; Asphaug, E.; Moore, Johnnie N.; Morrison, D.; Belton, M.J.S.; Carr, M.; Chapman, C.R.; Geissler, P.; Greenberg, R.; Granahan, J.; Head, J. W.; Kirk, R.; McEwen, A.; Lee, P.; Thomas, P.C.; Veverka, J.

    1996-01-01

    The surface of 243 Ida is dominated by the effects of impacts. No complex crater morphologies are observed. A complete range of crater degradation states is present, which also reveals optical maturation of the surface (darkening and reddening of materials with increasing exposure age). Regions of bright material associated with the freshest craters might be ballistically emplaced deposits or the result of seismic disturbance of loosely-bound surface materials. Diameter/depth ratios for fresh craters on Ida are ???1:6.5, similar to Gaspra results, but greater than the 1:5 ratios common on other rocky bodies. Contributing causes include rim degradation by whole-body "ringing," relatively thin ejecta blankets around crater rims, or an extended strength gradient in near-surface materials due to low gravitational self-packing. Grooves probably represent expressions in surface debris of reactivated fractures in the deeper interior. Isolated positive relief features as large as 150 m are probably ejecta blocks related to large impacts. Evidence for the presence of debris on the surface includes resolved ejecta blocks, mass-wasting scars, contrasts in color and albedo of fresh crater materials, and albedo streaks oriented down local slopes. Color data indicate relatively uniform calcium abundance in pyroxenes and constant pyroxene/olivine ratio. A large, relatively blue unit across the northern polar area is probably related to regolith processes involving ejecta from Azzurra rather than representing internal compositional heterogeneity. A small number of bluer, brighter craters are randomly distributed across the surface, unlike on Gaspra where these features are concentrated along ridges. This implies that debris on Ida is less mobile and/or consistently thicker than on Gaspra. Estimates of the average depth of mobile materials derived from chute depths (20-60 m), grooves (???30 m), and shallowing of the largest degraded craters (20-50 m minimum, ???100 m maximum) suggest a thickness of potentially mobile materials of ???50 m, and a typical thickness for the debris layer of 50-100 m. ?? 1996 Academic Press, Inc.

  17. Partially-Exhumed Crater in Northern Terra Meridiani: Stereo Anaglyph of overlapping coverage in

    NASA Technical Reports Server (NTRS)

    2002-01-01

    MGS MOC Release No. MOC2-316, 8 August 2002 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) images have shown time and again that the geology and history of Mars is complex. These two pictures show different views of a circular feature in northern Terra Meridiani at 2.3oN, 356.6oW. The first is a mosaic of 3 MOC narrow angle images acquired in August 1999, November 2000, and June 2002. The black area is a gap in coverage resulting from data lost after transmission from Mars to Earth. The second picture is a stereo ('3-D') anaglyph of a portion of the same circular feature. It has been rotated 90o clockwise to show the stereo effect that results from combining the August 1999 image, which was taken while the spacecraft was pointed nadir (straight down) and the June 2002 image, taken with the spacecraft pointing backwards about 16o (i.e., MGS Relay-16 orientation). The anaglyph should be viewed with '3-D' glasses (red in left eye, blue in the right). The circular feature was once an impact crater. The crater was 2.6 km (1.6 mi) across, about 2.6 times larger than the famous Meteor Crater in northern Arizona. Terra Meridiani, like northern Arizona, is a region of vast exposures of layered sedimentary rock. Like the crater in Arizona, this one was formed by a meteor that impacted a layered rock substrate. Later, this crater was filled and completely buried under more than 100 m (more than 327 ft) of additional layered sediment. The sediment hardened to become rock. Later still, the rock was eroded away--by processes unknown (perhaps wind)--to re-expose the buried crater. The crater today remains mostly filled with sediment, its present rim standing only about 40 m (130 ft) above its surroundings.

  18. Population characteristics of submicrometer-sized craters on regolith particles from asteroid Itokawa

    NASA Astrophysics Data System (ADS)

    Matsumoto, Toru; Hasegawa, S.; Nakao, S.; Sakai, M.; Yurimoto, H.

    2018-03-01

    We investigated impact crater structures on regolith particles from asteroid Itokawa using scanning electron microscopy. We observed the surfaces of 51 Itokawa particles, ranging from 15 μm to 240 μm in size. Craters with average diameters ranging from 10 nm to 2.8 μm were identified on 13 Itokawa particles larger than 80 μm. We examined the abundance, spatial distribution, and morphology of approximately 900 craters on six Itokawa particles. Craters with sizes in excess of 200 nm are widely dispersed, with spatial densities from 2.6 μm2 to 4.5 μm2; a fraction of the craters was locally concentrated with a density of 0.1 μm2. The fractal dimension of the cumulative crater diameters ranges from 1.3 to 2.3. Craters of several tens of nanometers in diameter exhibit pit and surrounding rim structures. Craters of more than 100 nm in diameter commonly have melted residue at their bottom. These morphologies are similar to those of submicrometer-sized craters on lunar regolith. We estimated the impactor flux on Itokawa regolith-forming craters, assuming that the craters were accumulated during direct exposure to the space environment for 102 to 104 yr. The range of impactor flux onto Itokawa particles is estimated to be at least one order of magnitude higher than the interplanetary dust flux and comparable to the secondary impact flux on the Moon. This indicates that secondary ejecta impacts are probably the dominant cratering process in the submicrometer range on Itokawa regolith particles, as well as on the lunar surface. We demonstrate that secondary submicrometer craters can be produced anywhere in centimeter- to meter-sized depressions on Itokawa's surface through primary interplanetary dust impacts. If the surface unevenness on centimeter to meter scales is a significant factor determining the abundance of submicrometer secondary cratering, the secondary impact flux could be independent of the overall shapes or sizes of celestial bodies, and the secondary impact flux could have similar values on Itokawa and the Moon.

  19. Crater gradation in Gusev crater and Meridiani Planum, Mars

    USGS Publications Warehouse

    Grant, J. A.; Arvidson, R. E.; Crumpler, L.S.; Golombek, M.P.; Hahn, B.; Haldemann, A.F.C.; Li, R.; Soderblom, L.A.; Squyres, S. W.; Wright, S.P.; Watters, W.A.

    2006-01-01

    The Mars Exploration Rovers investigated numerous craters in Gusev crater and Meridiani Planum during the first ???400 sols of their missions. Craters vary in size and preservation state but are mostly due to secondary impacts at Gusev and primary impacts at Meridiani. Craters at both locations are modified primarily by eolian erosion and infilling and lack evidence for modification by aqueous processes. Effects of gradation on crater form are dependent on size, local lithology, slopes, and availability of mobile sediments. At Gusev, impacts into basaltic rubble create shallow craters and ejecta composed of resistant rocks. Ejecta initially experience eolian stripping, which becomes weathering-limited as lags develop on ejecta surfaces and sediments are trapped within craters. Subsequent eolian gradation depends on the slow production of fines by weathering and impacts and is accompanied by minor mass wasting. At Meridiani the sulfate-rich bedrock is more susceptible to eolian erosion, and exposed crater rims, walls, and ejecta are eroded, while lower interiors and low-relief surfaces are increasingly infilled and buried by mostly basaltic sediments. Eolian processes outpace early mass wasting, often produce meters of erosion, and mantle some surfaces. Some small craters were likely completely eroded/buried. Craters >100 m in diameter on the Hesperian-aged floor of Gusev are generally more pristine than on the Amazonian-aged Meridiani plains. This conclusion contradicts interpretations from orbital views, which do not readily distinguish crater gradation state at Meridiani and reveal apparently subdued crater forms at Gusev that may suggest more gradation than has occurred. Copyright 2006 by the American Geophysical Union.

  20. Experimental Simulations of Large-Scale Collisions

    NASA Technical Reports Server (NTRS)

    Housen, Kevin R.

    2002-01-01

    This report summarizes research on the effects of target porosity on the mechanics of impact cratering. Impact experiments conducted on a centrifuge provide direct simulations of large-scale cratering on porous asteroids. The experiments show that large craters in porous materials form mostly by compaction, with essentially no deposition of material into the ejecta blanket that is a signature of cratering in less-porous materials. The ratio of ejecta mass to crater mass is shown to decrease with increasing crater size or target porosity. These results are consistent with the observation that large closely-packed craters on asteroid Mathilde appear to have formed without degradation to earlier craters.

  1. Shallow and deep fresh impact craters in Hesperia Planum, Mars

    NASA Technical Reports Server (NTRS)

    Mouginis-Mark, Peter J.; Hayashi, Joan N.

    1993-01-01

    The depths of 109 impact craters about 2-16 km in diameter, located on the ridged plains materials of Hesperia Planum, Mars, have been measured from their shadow lengths using digital Viking Orbiter images (orbit numbers 417S-419S) and the PICS computer software. On the basis of their pristine morphology (very fresh lobate ejecta blankets, well preserved rim crests, and lack of superposed impact craters), 57 of these craters have been selected for detailed analysis of their spatial distribution and geometry. We find that south of 30 deg S, craters less than 6.0 km in diameter are markedly shallower than similar-sized craters equatorward of this latitude. No comparable relationship is observed for morphologically fresh craters greater than 6.0 km diameter. We also find that two populations exist for older craters less than 6.0 km diameter. When craters that lack ejecta blankets are grouped on the basis of depth/diameter ratio, the deeper craters also typically lie equatorward of 30 S. We interpret the spatial variation in crater depth/diameter ratios as most likely due to a poleward increase in volatiles within the top 400 m of the surface at the times these craters were formed.

  2. Aboriginal oral traditions of Australian impact craters

    NASA Astrophysics Data System (ADS)

    Hamacher, Duane W.; Goldsmith, John

    2013-11-01

    In this paper we explore Aboriginal oral traditions that relate to Australian meteorite craters. Using the literature, first-hand ethnographic records and field trip data, we identify oral traditions and artworks associated with four impact sites: Gosses Bluff, Henbury, Liverpool and Wolfe Creek. Oral traditions describe impact origins for Gosses Bluff, Henbury and Wolfe Creek Craters, and non-impact origins for Liverpool Crater, with Henbury and Wolfe Creek stories having both impact and non-impact origins. Three impact sites that are believed to have been formed during human habitation of Australia -- Dalgaranga, Veevers, and Boxhole -- do not have associated oral traditions that are reported in the literature.

  3. A chemostratigraphic method to determine the end of impact-related sedimentation at marine-target impact craters (Chesapeake Bay, Lockne, Tvären)

    USGS Publications Warehouse

    Ormö, Jens; Hill, Andrew C.; Self-Trail, Jean M.

    2010-01-01

    To better understand the impact cratering process and its environmental consequences at the local to global scale, it is important to know when in the geological record of an impact crater the impact-related processes cease. In many instances, this occurs with the end of early crater modification, leaving an obvious sedimentological boundary between impactites and secular sediments. However, in marine-target craters the transition from early crater collapse (i.e., water resurge) to postimpact sedimentation can appear gradual. With the a priori assumption that the reworked target materials of the resurge deposits have a different chemical composition to the secular sediments we use chemostratigraphy (δ13Ccarb, %Corg, major elements) of sediments from the Chesapeake Bay, Lockne, and Tvären craters, to define this boundary. We show that the end of impact-related sedimentation in these cases is fairly rapid, and does not necessarily coincide with a visual boundary (e.g., grain size shift). Therefore, in some cases, the boundary is more precisely determined by chemostratigraphy, especially carbonate carbon isotope variations, rather than by visual inspection. It is also shown how chemostratigraphy can confirm the age of marine-target craters that were previously determined by biostratigraphy; by comparing postimpact carbon isotope trends with established regional trends.

  4. Galileo SSI lunar observations: Copernican craters and soils

    NASA Technical Reports Server (NTRS)

    Mcewen, A. S.; Greeley, R.; Head, James W.; Pieters, C. M.; Fischer, E. M.; Johnson, T. V.; Neukum, G.

    1993-01-01

    The Galileo spacecraft completed its first Earth-Moon flyby (EMI) in December 1990 and its second flyby (EM2) in December 1992. Copernican-age craters are among the most prominent features seen in the SSI (Solid-State Imaging) multispectral images of the Moon. The interiors, rays, and continuous ejecta deposits of these youngest craters stand out as the brightest features in images of albedo and visible/1-micron color ratios (except where impact melts are abundant). Crater colors and albedos (away from impact melts) are correlated with their geologic emplacement ages as determined from counts of superposed craters; these age-color relations can be used to estimate the emplacement age (time since impact event) for many Copernican-age craters on the near and far sides of the Moon. The spectral reflectivities of lunar soils are controlled primarily by (1) soil maturity, resulting from the soil's cumulative age of exposure to the space environment; (2) steady-state horizontal and vertical mixing of fresh crystalline materials ; and (3) the mineralogy of the underlying bedrock or megaregolith. Improved understanding of items (1) and (2) above will improve our ability to interpret item (3), especially for the use of crater compositions as probes of crustal stratigraphy. We have examined the multispectral and superposed crater frequencies of large isolated craters, mostly of Eratosthenian and Copernican ages, to avoid complications due to (1) secondaries (as they affect superposed crater counts) and (2) spatially and temporally nonuniform regolith mixing from younger, large, and nearby impacts. Crater counts are available for 11 mare craters and 9 highlands craters within the region of the Moon imaged during EM1. The EM2 coverage provides multispectral data for 10 additional craters with superposed crater counts. Also, the EM2 data provide improved spatial resolution and signal-to-noise ratios over the western nearside.

  5. Venus - Impact Crater Jeanne

    NASA Image and Video Library

    1996-11-20

    This full-resolution image from NASA Magellan spacecraft shows Jeanne crater, a 19.5 kilometer (12 mile) diameter impact crater. Jeanne crater is located at 40.0 degrees north latitude and 331.4 degrees longitude. The distinctive triangular shape of the ejecta indicates that the impacting body probably hit obliquely, traveling from southwest to northeast. The crater is surrounded by dark material of two types. The dark area on the southwest side of the crater is covered by smooth (radar-dark) lava flows which have a strongly digitate contact with surrounding brighter flows. The very dark area on the northeast side of the crater is probably covered by smooth material such as fine-grained sediment. This dark halo is asymmetric, mimicking the asymmetric shape of the ejecta blanket. The dark halo may have been caused by an atmospheric shock or pressure wave produced by the incoming body. Jeanne crater also displays several outflow lobes on the northwest side. These flow-like features may have formed by fine-grained ejecta transported by a hot, turbulent flow created by the arrival of the impacting object. Alternatively, they may have formed by flow of impact melt. http://photojournal.jpl.nasa.gov/catalog/PIA00472

  6. Radar characteristics of small craters - Implications for Venus

    NASA Technical Reports Server (NTRS)

    Greeley, Ronald; Christensen, Philip R.; Mchone, John F.

    1987-01-01

    Shuttle radar images (SIR-A) of volcanic and impact craters were examined to assess their appearance on radar images. Radar characteristics were determined for (1) nine maarlikie craters in the Pinacate volcanic field, Sonora, Mexico; (2) the caldera of Cerro Volcan Quemado, in the Bolivian Andes; (3) Talemzane impact crater, Algeria; and (4) Al Umchaimin, a possible impact structure in Iraq. SIR-A images were compared with conventional photographs and with results from field studies. Consideration was then given to radar images available for Venus, or anticipated from the Magellan mission. Of the criteria ordinarily used to identify impact craters, some can be assessed with radar images and others cannot be used; planimetric form, expressed as circularity, and ejecta-block distribution can be assessed on radar images, but rim and floor elevations relative to the surrounding plain and disposition of rim strata are difficult or impossible to determine. It is concluded that it will be difficult to separate small impact craters from small volcanic craters on Venus using radar images and is suggested that it will be necessary to understand the geological setting of the areas containing the craters in order to determine their origin.

  7. Impact Crater Identified on the Navajo Nation Near Chinle, Arizona

    NASA Astrophysics Data System (ADS)

    Shoemaker, E. M.; Roddy, D. J.; Moore, C. B.; Pfeilsticker, R.; Curley, C. L.; Dunkelman, T.; Kuerzel, K.; Taylor, M.; Shoemaker, C.; Donnelly, P.

    1995-09-01

    A small impact crater has been identified about 8 km north of Chinle, Arizona on the Navajo Nation. Preliminary studies show that the crater is elongate in a N-S direction, measuring about 23 by 34 m in diameter, with a depth of about 1.3 m. The impact origin of the crater is identified by its shape, subsurface deformation, and an iron-nickel oxide fragment. We estimate the age to be about 150 to 250 years. The impact site is on the east side of the Chinle Valley at an altitude of 1685 m and is about 2 km east of Chinle Wash. The crater formed on an alluvial surface that slopes gently west toward the Wash. About 2 m of reddish brown alluvial sand and silt of the Jeddito Formation of late Pleistocene age rests on the Petrified Forest Member of the Chinle Formation of late Triassic age. A moderately developed late Pleistocene pedocal soil has developed on the Jeddito. Several thin discontinuous caliche horizons occur at a depth of about 1 m. The caliche horizons provided easily traced markers by which we could delimit the original walls of the crater and recognize deformation along the crater walls. Three trenches were excavated down to the top of the Chinle bedrock: 1) an east- west trench 31 m long across the center of the crater, 2) a north-south trench 13 m long in the north crater rim, and 3) a north-south trench 12 m long in the south crater rim. Excavation width was about 1 m and provided excellent exposures of the subsurface stratigraphy and deformation. The trenches revealed that the original crater was about 23 m wide and 27 m long. The original rim crests have entirely eroded away so that no perceptible raised rim remains. At the center of the crater, the original depth was about 3 m; material washed from the rims now fills the crater floor to a depth of 1.5 m. The crater is symmetrical; however, the deepest part of the original crater lies south of the center and was not reached in the south trench. The east-west trench showed that the initial floor of the crater was scoured down to the Jeddito-Chinle contact across the center of the crater. Some of the Chinle was excavated by impact south of the center, as seen in the trench in the south wall. The original crater walls slope inward about 30 degrees on the east and west sides, about 20 degrees on the north, and about 45 degrees on the south. Beds are dragged up along the east, west, and south walls, but not along the north wall. The deformation is restricted to within about 0.5 m of the wall. From the asymmetry of shape and deformation in the walls, we believe that the impacting body struck at an oblique angle and was traveling from north to south. A small, magnetic, iron oxide fragment, about 1 mm across, was collected from material excavated from the south crater wall area. Analyses of this fragment by electron microprobe detected a significant nickel concentration of 5%. Two senior Navajo women (70-80 year age range) independently remember this crater as being much deeper during their childhood and both suggest that the impact was witnessed 3 to 4 generations ago. Interestingly, many persons in the Navajo community thought that this crater was of impact origin. Additional work is planned, including a broader aerial search for other possible impact sites.

  8. Meteor Crater (Barringer Meteorite Crater), Arizona: Summary of Impact Conditions

    NASA Astrophysics Data System (ADS)

    Roddy, D. J.; Shoemaker, E. M.

    1995-09-01

    Meteor Crater in northern Arizona represents the most abundant type of impact feature in our Solar System, i.e., the simple bowl-shaped crater. Excellent exposures and preservation of this large crater and its ejecta blanket have made it a critical data set in both terrestrial and planetary cratering research. Recognition of the value of the crater was initiated in the early 1900's by Daniel Moreau Barringer, whose 27 years of exploration championed its impact origin [1]. In 1960, Shoemaker presented information that conclusively demonstrated that Meteor Crater was formed by hypervelocity impact [2]. This led the U.S. Geological Survey to use the crater extensively in the 1960-70's as a prime training site for the Apollo astronauts. Today, Meteor Crater continues to serve as an important research site for the international science community, as well as an educational site for over 300,000 visitors per year. Since the late 1950's, studies of this crater have presented an increasingly clearer view of this impact and its effects and have provided an improved view of impact cratering in general. To expand on this data set, we are preparing an upgraded summary on the Meteor Crater event following the format in [3], including information and interpretations on: 1) Inferred origin and age of the impacting body, 2) Inferred ablation and deceleration history in Earth's atmosphere, 3) Estimated speed, trajectory, angle of impact, and bow shock conditions, 4) Estimated coherence, density, size, and mass of impacting body, 5) Composition of impacting body (Canyon Diablo meteorite), 6) Estimated kinetic energy coupled to target rocks and atmosphere, 7) Terrain conditions at time of impact and age of impact, 8) Estimated impact dynamics, such as pressures in air, meteorite, and rocks, 9) Inferred and estimated material partitioning into vapor, melt, and fragments, 10) Crater and near-field ejecta parameters, 11) Rock unit distributions in ejecta blanket, 12) Estimated far-field rock and meteorite ejecta parameters, 13) Inferred and estimated cloud-rise and fall-out conditions, 14) Late-stage meteorite falls after impact, 15) Estimated damage effect ranges, 16) Erosion of crater and ejecta blanket, 17) New topographic and digital maps of crater and ejecta blanket, 18) Other. (Suggestions are welcome) This compilation will contain expanded discussions of new data as well as revised interpretations of existing information. For example in Item 1, we suggest the impacting body most likely formed during a collision in the main asteroid belt that fragmented the iron-nickel core of an asteroid some 0.5 billion years ago. The fragments remained in space until about 50,000+/-3000 yrs ago, when they were captured by the Earth's gravitational field. In Item 3, the trajectory of the impacting body is interpreted by EMS as traveling north-northwest at a relatively low impact angle. The presence of both shocked meteorite fragments and melt spherules indicate the meteorite had a velocity in the range of about 13 to 20 km/s, probably in the lower part of this range [4]. In Item 4, the coherent meteorite diameter is estimated to have been 45 to 50 m with a mass of 300,000 to 400,000 tons, i.e., large enough to experience less than 1% in both mass ablation and velocity deceleration. During this time, minor flake-off of the meteorite's exterior produced a limited number of smaller fragments that followed the main mass to the impact site but at greatly reduced velocities. In Item 6, we estimate the kinetic energy of impact to be in the range of 20 to 40 Mt depending on the energy coupling functions used and corrections for angle of oblique impact. At impact, terrain conditions were about as we see them today, a gently rolling plain with outcrops of Moenkopi and a meter or so of soil cover. In Item 18, EMS estimates production of a Meteor Crater-size event should occur on the continents about every 50,000 years; interestingly, this is the age of Meteor Crater. References: [1] Barringer D. M. (1906) Proc. Acad. Nat. Sci. Philadelphia, 57, 861-886. [2] Shoemaker E. M. (1960) Intl. Geol. Congress, Rept. 18, 418-434. [3] Roddy D. J. (1978) Proc. LPS 9th, 3891-3930. [4] Roddy D. J. et al. (1980) Proc. LPSC 11th, 2275-2307.

  9. Peripheral Faulting of Eden Patera: Potential Evidence in Support of a New Volcanic Construct on Mars

    NASA Astrophysics Data System (ADS)

    Harlow, J.

    2016-12-01

    Arabia Terra's (AT) pock-marked topography in the expansive upland region of Mars Northern Hemisphere has been assumed to be the result of impact crater bombardment. However, examination of several craters by researchers revealed morphologies inconsistent with neighboring craters of similar size and age. These 'craters' share features with terrestrial super-eruption calderas, and are considered a new volcanic construct on Mars called `plains-style' caldera complexes. Eden Patera (EP), located on the northern boundary of AT is a reference type for these calderas. EP lacks well-preserved impact crater morphologies, including a decreasing depth to diameter ratio. Conversely, Eden shares geomorphological attributes with terrestrial caldera complexes such as Valles Caldera (New Mexico): arcuate caldera walls, concentric fracturing/faulting, flat-topped benches, irregular geometric circumferences, etc. This study focuses on peripheral fractures surrounding EP to provide further evidence of calderas within the AT region. Scaled balloon experiments mimicking terrestrial caldera analogs have showcased fracturing/faulting patterns and relationships of caldera systems. These experiments show: 1) radial fracturing (perpendicular to caldera rim) upon inflation, 2) concentric faulting (parallel to sub-parallel to caldera rim) during evacuation, and 3) intersecting radial and concentric peripheral faulting from resurgence. Utilizing Mars Reconnaissance Orbiter Context Camera (CTX) imagery, peripheral fracturing is analyzed using GIS to study variations in peripheral fracture geometries relative to the caldera rim. Visually, concentric fractures dominate within 20 km, radial fractures prevail between 20 and 50 km, followed by gradation into randomly oriented and highly angular intersections in the fretted terrain region. Rose diagrams of orientation relative to north expose uniformly oriented mean regional stresses, but do not illuminate localized caldera stresses. Further examination of orientation relative to caldera rim reveals expected orientations of ±30° on rose diagrams, taking into account the geometric nature of concentric faulting. These results establish a quantitative geometric system to differentiate localized from regional faulting surrounding Eden Patera.

  10. Well-preserved low thermal inertia ejecta deposits surrounding young secondary impact craters on Mars

    NASA Astrophysics Data System (ADS)

    Hill, J. R.; Christensen, P. R.

    2017-06-01

    Following the most recent updates to the Mars Odyssey Thermal Emission Imaging System daytime and nighttime infrared global mosaics, a colorized global map was produced that combines the thermophysical information from the nighttime infrared global mosaic with the morphologic context of the daytime infrared global mosaic. During the validation of this map, large numbers of low thermal inertia ejecta deposits surrounding small young impact craters were observed. A near-global survey (60°N-60°S) identified 4024 of these low thermal inertia ejecta deposits, which were then categorized based on their apparent state of degradation. Mapping their locations revealed that they occur almost exclusively in regions with intermediate-to-high thermal inertias, with distinct clusters in northern Terra Sirenum, Solis Planum, and southwestern Daedalia Planum. High-Resolution Imaging Science Experiment images show that the thermophysically distinct facies of the deposits are well correlated with the estimated average ejecta grain sizes, which decrease with radial distance from the crater. Comparisons with recent primary impact craters and secondary impact craters surrounding Zunil Crater show that the low thermal inertia ejecta deposits very closely resemble the secondary craters, but not the primary craters. We conclude that the low thermal inertia ejecta deposits are secondary impact crater ejecta deposits, many of which originated from the rayed crater primary impact events, and are both well preserved and easily identifiable due to the absence of dust cover and aeolian modification that would otherwise reduce the thermal contrast between the ejecta facies and the surrounding terrain.

  11. The Carancas meteorite impact crater, Peru: Geologic surveying and modeling of crater formation and atmospheric passage

    NASA Astrophysics Data System (ADS)

    Kenkmann, T.; Artemieva, N. A.; Wünnemann, K.; Poelchau, M. H.; Elbeshausen, D.; Núñez Del Prado, H.

    2009-08-01

    The recent Carancas meteorite impact event caused a worldwide sensation. An H4-5 chondrite struck the Earth south of Lake Titicaca in Peru on September 15, 2007, and formed a crater 14.2 m across. It is the smallest, youngest, and one of two eye-witnessed impact crater events on Earth. The impact violated the hitherto existing view that stony meteorites below a size of 100 m undergo major disruption and deceleration during their passage through the atmosphere and are not capable of producing craters. Fragmentation occurs if the strength of the meteoroid is less than the aerodynamic stresses that occur in flight. The small fragments that result from a breakup rain down at terminal velocity and are not capable of producing impact craters. The Carancas cratering event, however, demonstrates that meter-sized stony meteoroids indeed can survive the atmospheric passage under specific circumstances. We present results of a detailed geologic survey of the crater and its ejecta. To constrain the possible range of impact parameters we carried out numerical models of crater formation with the iSALE hydrocode in two and three dimensions. Depending on the strength properties of the target, the impact energies range between approximately 100-1000 MJ (0.024- 0.24 t TNT). By modeling the atmospheric traverse we demonstrate that low cosmic velocities (12- 14 kms-1) and shallow entry angles (<20°) are prerequisites to keep aerodynamic stresses low (<10 MPa) and thus to prevent fragmentation of stony meteoroids with standard strength properties. This scenario results in a strong meteoroid deceleration, a deflection of the trajectory to a steeper impact angle (40-60°), and an impact velocity of 350-600 ms-1, which is insufficient to produce a shock wave and significant shock effects in target minerals. Aerodynamic and crater modeling are consistent with field data and our microscopic inspection. However, these data are in conflict with trajectories inferred from the analysis of infrasound signals.

  12. Soot and palynologic analysis of Manson impact-related strata (Upper Cretaceous) of Iowa and South Dakota, USA

    USGS Publications Warehouse

    Varricchio, D.J.; Raven, R.F.; Wolbach, W.S.; Elsik, W.C.; Witzke, B.J.

    2009-01-01

    The Campanian Manson impact structure of Iowa represents the best-preserved, large-diameter complex crater within the continental U.S. To assess the timing and potential mode of crater infilling and the possible presence of an impact event horizon, we analyzed samples from both within and distal to the impact structure for their elemental carbon, soot and palynomorphs. Within the impact structure, identifiable soot occurred in fragmented impact breccia and suevite but not in lower impact-melt breccia. Although most of this soot likely represents reworking of material from older Cretaceous marine shales, one high soot concentration occurs with melt material in a Keweenawan Shale-Phanerozoic clast breccia mix. This represents the first association of soot and impact-generated materials within an impact structure and the best sample candidate for Manson impact-generated soot. No palynomorphs occurred in the impact melt breccia. Overlying suevite (Keweenawan Shale clast breccia) of the central peak yielded sparse and thermally altered palynomorphs, indicating deposition prior to full cooling of the crater debris. Presence of easily degraded soot also argues for rapid backfilling of the crater. Distal samples from South Dakota represent the Sharon Springs and Crow Creek members of the Pierre Shale 230 km northwest of the Manson impact structure. Although containing shocked grains, the Crow Creek preserves no soot. In contrast, the Sharon Springs, generally considered as predating the Manson impact, has significant soot quantities. Palynomorphs differ markedly across the unconformity separating the two members with the Crow Creek containing more terrestrial forms, normapolles, and older reworked palynomorphs, consistent with a terrestrial impact to the east. Origin of the Sharon Springs soot remains unclear. Given soot occurrence within four of the five Cretaceous marine units sampled, the relatively shallow, anoxic bottom conditions of the Western Interior Cretaceous Seaway may have simply favored soot preservation. Until a better understanding of the broader occurrence and preservation of soot is achieved, some soot-impact associations will remain ambiguous. ?? 2008 Elsevier Ltd. All rights reserved.

  13. The Manicouagan impact structure - An analysis of its original dimensions and form

    NASA Technical Reports Server (NTRS)

    Grieve, R. A. F.; Head, J. W., III

    1983-01-01

    A reanalysis of the preerosional geology of the Canadian impact crater, Manicouagan, is presented. Although most of the current features of the annular moat are primarily a result of erosional processes, the original dimensions of the cavity have been determined to include a transient cavity 60 km in diam. The final floor of the crater was studied and found to be an impact melt-covered inner plateau 55 km in diam. Comparisons with similar crater bottoms on the moon are used to estimate a final crater rim diameter of 85-95 km. The inner plateau and relatively smooth deposits on the crater floor are noted to be most similar to the lunar crater Copernicus.

  14. A New Impact Crater

    NASA Image and Video Library

    2018-05-29

    NASA's Mars Reconnaissance Orbiter (MRO) keeps finding new impact sites on Mars. This one occurred within the dense secondary crater field of Corinto Crater, to the north-northeast. The new crater and its ejecta have distinctive color patterns. Once the colors have faded in a few decades, this new crater will still be distinctive compared to the secondaries by having a deeper cavity compared to its diameter. https://photojournal.jpl.nasa.gov/catalog/PIA22462

  15. Characteristics of Impact Craters and Interior Deposits: Analysis of the Spatial and Temporal Distribution of Volatiles in the Highlands of Mars

    NASA Technical Reports Server (NTRS)

    Mest, S. C.

    2005-01-01

    The martian southern highlands contain impact craters that display pristine to degraded morphologies, and preserve a record of degradation that can be attributed to fluvial, eolian, mass wasting, volcanic and impact-related processes. However, the relative degree of modification by these processes and the amounts of material contributed to crater interiors are not well constrained. Impact craters (D>10 km) within Terra Cimmeria (0deg-60degS, 190deg-240degW), Terra Tyrrhena (0deg-30degS, 260deg-310degW) and Noachis Terra (20deg-50degS, 310deg-340degW) are being examined to better understand the degradational history and evolution of highland terrains. The following scientific objectives will be accomplished. 1) Determine the geologic processes that modified impact craters (and surrounding highland terrains). 2) Determine the sources (e.g. fluvial, lacustrine, eolian, mass wasting, volcanic, impact melt) and relative amounts of material composing crater interior deposits. 3) Document the relationships between impact crater degradation and highland fluvial systems. 4) Determine the spatial and temporal relationships between degradational processes on local and regional scales. And 5) develop models of impact crater (and highland) degradation that can be applied to these and other areas of the martian highlands. The results of this study will be used to constrain the geologic, hydrologic and climatic evolution of Mars and identify environments in which subsurface water might be present or evidence for biologic activity might be preserved.

  16. Lost Impacts (Invited)

    NASA Astrophysics Data System (ADS)

    Schultz, P. H.; Stickle, A. M.

    2009-12-01

    The absence of a clearly identified crater (or craters) for the proposed YDB impact has raised questions concerning the reality of such an event. Geologic studies have identified impact deposits well before recognizing a causative crater (e.g., Chicxulub and Chesapeake Bay); some have yet to be discovered (e.g., Australasian tektite strewnfields). The absence of a crater, therefore, cannot be used as an argument against the reality of the YDB impact (and its possible consequences). The study here addresses how a large on-land impact during the late Pleistocene or early Holocene could avoid easy detection today. It does not argue the case for a YDB impact, since such evidence must come from the rock record. During the late Pleistocene, the receding Laurentide ice sheet still covered a significant portion of Canada. While a large (1km) body impacting vertically (90°) would penetrate such a low-impedance ice layer and excavate the substrate, an oblique impact couples more of its energy into the surface layer, thereby partially shielding the substrate. Three approaches address the effectiveness of this flak-jacket effect. First, hypervelocity impact experiments at the NASA Ames Vertical Gun Range investigated the effectiveness of low-impedance layers of different thicknesses for mitigating substrate damage. Second, selected experiments were compared with hydrocode models (see Stickle and Schultz, this volume) and extended to large scales. Third, comparisons were made with relict craters found in eroding sediment and ice covers on Mars. Oblique impacts (30 degrees) into soft particulates (no. 24 sand) covering a solid substrate (aluminum) have no effect on the final crater diameter for layer thicknesses exceeding a projectile diameter and result in only plastic deformation in the substrate. In contrast, a vertical impact requires a surface layer at least 3 times the projectile diameter to achieve the same diameter (with significant substrate damage). Oblique impacts into ice and plasticene layers over clear acrylic blocks allow assessing internal damage. These experiments reveal that low-impedance surface layers approaching 1 to 2 projectile diameters effectively shield the substrate from shock damage for impact angles less than 30 degrees. Missing craters (and relict crater roots) within ice-rich deposits on Mars illustrate the rapid erasure the impact record. Numerous small pedestal craters (crater diameter < 5km) occur at high latitudes and reflect the cyclic expansion and disappearance of polar ice/dust deposits up to 0.5 km thick. Much larger examples (> 50km), however, occur at low latitudes but are localized in certain regions where even thicker deposits (locally >2km) have been removed, uncovering a preserved Noachian landscape. Crater statistics further document this missing cratering record. Thick Pleistocene ice sheets on Earth would have played a similar role for the removal of terrestrial cratering record. We calculate that a crater as large as 15km in diameter formed by an oblique impact could have been effectively erased, except for dispersed ejecta containing shocked impactor relicts and a disturbed substrate. While plausible, evidence for specific missing events (e.g., the proposed YB impact) must be found in still-preserved ice layers and sediments.

  17. Sedimentology and hydrology of a well-preserved paleoriver systems with a series of dam-breach paleolakes at Moa Valles, Mars

    NASA Astrophysics Data System (ADS)

    Salese, Francesco; Di Achille, Gaetano; Neesemann, Adrian; Ori, Gian Gabriele; Hauber, Ernst

    2016-04-01

    Moa Valles is a well-preserved paleodrainage system that is nearly 300-km-long and carved into ancient highland terrains west of Idaeus Fossae. The paleofluvial system apparently originated from fluidized ejecta blankets, and it consists of a series of dam-breach paleolakes with associated fan-shaped sedimentary deposits. This paleofluvial system shows a rich morphological record of hydrologic activity in the highlands of Mars. Based on crater counting the latter activity seems to be Amazonian in age (2.43 - 1.41 Ga). This work is based on a digital elevation model (DEM) derived from Context camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) stereo images. Our goals are to (a) study the complex channel flow paths draining into Idaeus Fossae after forming a series of dam-breach paleolakes and to (b) investigate the origin and evolution of this valley system with its implications for climate and tectonic control. The first part of the system is characterized by many paleolakes, which are interconnected and drain eastward into Liberta crater, forming a complex and multilobate deltaic deposit exhibiting a well-developed channelized distributary pattern with evidence of switching on the delta plain. A breach area, consisting of three spillover channels, is present in the eastern part of the crater rim. These channels connect the Liberta crater to the eastward portion of the valley system, continuing toward Moa Valles with a complex pattern of anabranching channels that is more than 180-km-long. Our crater counting results and hydrological calculations of infilling and spillover discharges of the Liberta crater-lake suggest that the system is the result of an Early Amazonian water-rich environment that was likely sustained by relatively short fluvial events (<102 years), thereby supporting the hypotheses that water-related erosion might have been active on Mars (at least locally) during the Amazonian. The most important water source for the system could have been shallow ice melting triggered by impact craters. Indeed, the stratigraphic relationships between channels and crater ejecta show very clearly that the channels cut through the ejecta thus postdating them. The occurrence of relatively recent (likely Amazonian) hydrological activity supports the hypothesis that hydrological activity could have been possible, at least locally, after the Noachian-Hesperian boundary.

  18. The geology of Pluto and Charon through the eyes of New Horizons

    NASA Astrophysics Data System (ADS)

    Moore, Jeffrey M.; McKinnon, William B.; Spencer, John R.; Howard, Alan D.; Schenk, Paul M.; Beyer, Ross A.; Nimmo, Francis; Singer, Kelsi N.; Umurhan, Orkan M.; White, Oliver L.; Stern, S. Alan; Ennico, Kimberly; Olkin, Cathy B.; Weaver, Harold A.; Young, Leslie A.; Binzel, Richard P.; Buie, Marc W.; Buratti, Bonnie J.; Cheng, Andrew F.; Cruikshank, Dale P.; Grundy, Will M.; Linscott, Ivan R.; Reitsema, Harold J.; Reuter, Dennis C.; Showalter, Mark R.; Bray, Veronica J.; Chavez, Carrie L.; Howett, Carly J. A.; Lauer, Tod R.; Lisse, Carey M.; Parker, Alex Harrison; Porter, S. B.; Robbins, Stuart J.; Runyon, Kirby; Stryk, Ted; Throop, Henry B.; Tsang, Constantine C. C.; Verbiscer, Anne J.; Zangari, Amanda M.; Chaikin, Andrew L.; Wilhelms, Don E.; Bagenal, F.; Gladstone, G. R.; Andert, T.; Andrews, J.; Banks, M.; Bauer, B.; Bauman, J.; Barnouin, O. S.; Bedini, P.; Beisser, K.; Bhaskaran, S.; Birath, E.; Bird, M.; Bogan, D. J.; Bowman, A.; Brozovic, M.; Bryan, C.; Buckley, M. R.; Bushman, S. S.; Calloway, A.; Carcich, B.; Conard, S.; Conrad, C. A.; Cook, J. C.; Custodio, O. S.; Ore, C. M. Dalle; Deboy, C.; Dischner, Z. J. B.; Dumont, P.; Earle, A. M.; Elliott, H. A.; Ercol, J.; Ernst, C. M.; Finley, T.; Flanigan, S. H.; Fountain, G.; Freeze, M. J.; Greathouse, T.; Green, J. L.; Guo, Y.; Hahn, M.; Hamilton, D. P.; Hamilton, S. A.; Hanley, J.; Harch, A.; Hart, H. M.; Hersman, C. B.; Hill, A.; Hill, M. E.; Hinson, D. P.; Holdridge, M. E.; Horanyi, M.; Jackman, C.; Jacobson, R. A.; Jennings, D. E.; Kammer, J. A.; Kang, H. K.; Kaufmann, D. E.; Kollmann, P.; Krimigis, S. M.; Kusnierkiewicz, D.; Lee, J. E.; Lindstrom, K. L.; Lunsford, A. W.; Mallder, V. A.; Martin, N.; McComas, D. J.; McNutt, R. L.; Mehoke, D.; Mehoke, T.; Melin, E. D.; Mutchler, M.; Nelson, D.; Nunez, J. I.; Ocampo, A.; Owen, W. M.; Paetzold, M.; Page, B.; Parker, J. W.; Pelletier, F.; Peterson, J.; Pinkine, N.; Piquette, M.; Protopapa, S.; Redfern, J.; Roberts, J. H.; Rogers, G.; Rose, D.; Retherford, K. D.; Ryschkewitsch, M. G.; Schindhelm, E.; Sepan, B.; Soluri, M.; Stanbridge, D.; Steffl, A. J.; Strobel, D. F.; Summers, M. E.; Szalay, J. R.; Tapley, M.; Taylor, A.; Taylor, H.; Tyler, G. L.; Versteeg, M. H.; Vincent, M.; Webbert, R.; Weidner, S.; Weigle, G. E.; Whittenburg, K.; Williams, B. G.; Williams, K.; Williams, S.; Woods, W. W.; Zirnstein, E.

    2016-03-01

    NASA’s New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto’s encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

  19. The geology of Pluto and Charon through the eyes of New Horizons.

    PubMed

    Moore, Jeffrey M; McKinnon, William B; Spencer, John R; Howard, Alan D; Schenk, Paul M; Beyer, Ross A; Nimmo, Francis; Singer, Kelsi N; Umurhan, Orkan M; White, Oliver L; Stern, S Alan; Ennico, Kimberly; Olkin, Cathy B; Weaver, Harold A; Young, Leslie A; Binzel, Richard P; Buie, Marc W; Buratti, Bonnie J; Cheng, Andrew F; Cruikshank, Dale P; Grundy, Will M; Linscott, Ivan R; Reitsema, Harold J; Reuter, Dennis C; Showalter, Mark R; Bray, Veronica J; Chavez, Carrie L; Howett, Carly J A; Lauer, Tod R; Lisse, Carey M; Parker, Alex Harrison; Porter, S B; Robbins, Stuart J; Runyon, Kirby; Stryk, Ted; Throop, Henry B; Tsang, Constantine C C; Verbiscer, Anne J; Zangari, Amanda M; Chaikin, Andrew L; Wilhelms, Don E

    2016-03-18

    NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than ~10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to ~4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt. Copyright © 2016, American Association for the Advancement of Science.

  20. The Geology of Pluto and Charon Through the Eyes of New Horizons

    NASA Technical Reports Server (NTRS)

    Moore, Jeffrey M.; McKinnon, William B.; Spencer, John R.; Howard, Alan D.; Schenk, Paul M.; Beyer, Ross A.; Nimmo, Francis; Singer, Kelsi N.; Umurhan, Orkan M.; White, Oliver L.; hide

    2016-01-01

    NASA's New Horizons spacecraft has revealed the complex geology of Pluto and Charon. Pluto's encounter hemisphere shows ongoing surface geological activity centered on a vast basin containing a thick layer of volatile ices that appears to be involved in convection and advection, with a crater retention age no greater than approximately 10 million years. Surrounding terrains show active glacial flow, apparent transport and rotation of large buoyant water-ice crustal blocks, and pitting, the latter likely caused by sublimation erosion and/or collapse. More enigmatic features include tall mounds with central depressions that are conceivably cryovolcanic and ridges with complex bladed textures. Pluto also has ancient cratered terrains up to approximately 4 billion years old that are extensionally faulted and extensively mantled and perhaps eroded by glacial or other processes. Charon does not appear to be currently active, but experienced major extensional tectonism and resurfacing (probably cryovolcanic) nearly 4 billion years ago. Impact crater populations on Pluto and Charon are not consistent with the steepest impactor size-frequency distributions proposed for the Kuiper belt.

  1. Constraining the thermal conditions of impact environments through integrated low-temperature thermochronometry and numerical modeling

    NASA Astrophysics Data System (ADS)

    Kelly, N. M.; Marchi, S.; Mojzsis, S. J.; Flowers, R. M.; Metcalf, J. R.; Bottke, W. F., Jr.

    2017-12-01

    Impacts have a significant physical and chemical influence on the surface conditions of a planet. The cratering record is used to understand a wide array of impact processes, such as the evolution of the impact flux through time. However, the relationship between impactor size and a resulting impact crater remains controversial (e.g., Bottke et al., 2016). Likewise, small variations in the impact velocity are known to significantly affect the thermal-mechanical disturbances in the aftermath of a collision. Development of more robust numerical models for impact cratering has implications for how we evaluate the disruptive capabilities of impact events, including the extent and duration of thermal anomalies, the volume of ejected material, and the resulting landscape of impacted environments. To address uncertainties in crater scaling relationships, we present an approach and methodology that integrates numerical modeling of the thermal evolution of terrestrial impact craters with low-temperature, (U-Th)/He thermochronometry. The approach uses time-temperature (t-T) paths of crust within an impact crater, generated from numerical simulations of an impact. These t-T paths are then used in forward models to predict the resetting behavior of (U-Th)/He ages in the mineral chronometers apatite and zircon. Differences between the predicted and measured (U-Th)/He ages from a modeled terrestrial impact crater can then be used to evaluate parameters in the original numerical simulations, and refine the crater scaling relationships. We expect our methodology to additionally inform our interpretation of impact products, such as lunar impact breccias and meteorites, providing robust constraints on their thermal histories. In addition, the method is ideal for sample return mission planning - robust "prediction" of ages we expect from a given impact environment enhances our ability to target sampling sites on the Moon, Mars or other solar system bodies where impacts have strongly shaped the surface. Bottke, W.F., Vokrouhlicky, D., Ghent, B., et al. (2016). 47th LPSC, Abstract #2036.

  2. Terrestrial Analogs for Surface Properties Associated with Impact Cratering on the Moon - Self-secondary Impact Features at Kings Bowl, Idaho

    NASA Astrophysics Data System (ADS)

    Matiella Novak, M. A.; Zanetti, M.; Neish, C.; Kukko, A.; Fan, K.; Heldmann, J.; Hughes, S. S.

    2017-12-01

    The Kings Bowl (KB) eruptive fissure and lava field, located in the southern end of Craters of the Moon National Monument, Idaho, is an ideal location for planetary analogue field studies of surface properties related to volcanic and impact processes. Here we look at possible impact features present in the KB lava field near the main vent that resulted in squeeze-ups of molten lava from beneath a semi-solid lava lake crust. These may have been caused by the ejection of blocks during the phreatic eruption that formed the Kings Bowl pit, and their subsequent impact into a partially solidified lava pond. We compare and contrast these features with analogous self-secondary impact features, such as irregular, rimless secondary craters ("splash craters") observed in lunar impact melt deposits, to better understand how self-secondary impacts determine the surface properties of volcanic and impact crater terrains. We do this by analyzing field measurements of these features, as well as high-resolution DEM data collected through the Kinematic LiDAR System (KLS), both of which give us feature dimensions and distributions. We then compare these data with self-secondary impact features on the Moon and related surface roughness constrained through Lunar Reconnaissance Orbiter observations (Mini-RF and LROC NACs). Possible self-secondary impact features can be found in association with many lunar impact craters. These are formed when ballistic ejecta from the crater falls onto the ejecta blanket and melt surrounding the newly formed crater. Self-secondary impact features involving impact melt deposits are particularly useful to study because the visibly smooth melt texture serves to highlight the impact points in spacecraft imagery. The unusual morphology of some of these features imply that they formed when the melt had not yet completely solidified, strongly suggesting a source of impactors from the primary crater itself. We will also discuss ongoing efforts to integrate field and LiDAR data collected at KB with virtual reality environments as another technique for advancing exploration efforts through analogue field studies of impact features.

  3. Ganymede Impact Crater Morphology as Revealed by Galileo

    NASA Astrophysics Data System (ADS)

    Weitz, C. M.; Head, J. W.; Pappalardo, R.; Chapman, C.; Greeley, R.; Helfenstein, P.; Neukum, G.; Galileo SSI Team

    1997-07-01

    We have used the Galileo G1, G2, G7, and G8 images to study the morpholo- gy and degradation of impact craters on Ganymede. Results from the G1 and G2 data showed three types of degradation states: pristine, partially degraded, and heavily degraded. With the more recent G7 and G8 images, there are now several other distinct crater morphologies that we have identified. Enki Catena is about 120 km in length and consists of 13 attached impact craters. The six craters in the chain that impacted onto the bright terrain have visible bright ejecta while those that impacted onto the dark terrain have barely visible ejecta. Kittu crater is about 15 km in diameter and it has a bright central peak surrounded by a bright floor and hummocky wall material. The crater rim in the north is linear in appearance at the location that corresponds to the boundary between the groove terrain and the adjacent dark terrain, indicating structural control by the underlying topography. The dark rays that are easily seen in the Voyager images are barely visible in the Galileo image. Neith crater has a central fractured dome surrounded by a jagged central ring, smoother outer ejecta facies, and less prominent outer rings. Achelous crater and its neighbor, which were imaged at low sun angle to show topography, have smooth floors and subdued pedestal ejecta. Nicholson Regio has tectonically disrupted craters on the groove and fractured terrains while the surrounding smoother dark terrain has numerous degrad- ed craters that may indicate burial by resurfacing or by regolith development.

  4. Craters on comets

    NASA Astrophysics Data System (ADS)

    Vincent, J.; Oklay, N.; Marchi, S.; Höfner, S.; Sierks, H.

    2014-07-01

    This paper reviews the observations of crater-like features on cometary nuclei. ''Pits'' have been observed on almost all cometary nuclei but their origin is not fully understood [1,2,3,4]. It is currently assumed that they are created mainly by the cometary activity with a pocket of volatiles erupting under a dust crust, leaving a hole behind. There are, however, other features which cannot be explained in this way and are interpreted alternatively as remnants of impact craters. This work focusses on the second type of pit features: impact craters. We present an in-depth review of what has been observed previously and conclude that two main types of crater morphologies can be observed: ''pit-halo'' and ''sharp pit''. We extend this review by a series of analysis of impact craters on cometary nuclei through different approaches [5]: (1) Probability of impact: We discuss the chances that a Jupiter Family Comet like 9P/Tempel 1 or the target of Rosetta 67P/Churyumov-Gerasimenko can experience an impact, taking into account the most recent work on the size distribution of small objects in the asteroid Main Belt [6]. (2) Crater morphology from scaling laws: We present the status of scaling laws for impact craters on cometary nuclei [7] and discuss their strengths and limitations when modeling what happens when a rocky projectile hits a very porous material. (3) Numerical experiments: We extend the work on scaling laws by a series of hydrocode impact simulations, using the iSALE shock physics code [8,9,10] for varying surface porosity and impactor velocity (see Figure). (4) Surface processes and evolution: We discuss finally the fate of the projectile and the effects of the impact-induced surface compaction on the activity of the nucleus. To summarize, we find that comets do undergo impacts although the rapid evolution of the surface erases most of the features and make craters difficult to detect. In the case of a collision between a rocky body and a highly porous cometary nucleus, two specific crater morphologies can be formed: a central pit surrounded by a shallow depression, or a pit, deeper than typical craters observed on rocky surfaces. After the impact, it is likely that a significant fraction of the projectile will remain in the crater. During its two years long escort of comet 67P/Churyumov-Gerasimenko, ESA's Rosetta mission should be able to detect specific silicate signatures on the bottom of craters or crater-like features, as evidence of this contamination. For large craters, structural changes in the impacted region, in particular, compaction of material, will affect the local activity. The increase of tensile strength can stop the activity by preventing the gas from lifting up dust grains. On the other hand, material compaction can help the heat flux to travel deeper in the nucleus, potentially reaching unexposed pockets of volatiles, and therefore increasing the activity [11]. Ground truth data from Rosetta will help us infer the relative importance of those two effects.

  5. ARC-1990-A90-3003

    NASA Image and Video Library

    1990-08-24

    This Magellan image mosaic shows the impact crater Golubkina, first identified in Soviet Venera 15/16 data. The crater is names after Anna Golubkina (1864-1927), a Soviet sculptor. The crater is about 34 km (20.4 mi.) across, similar to the size of the West Clearwater impact structure in Canada. The crater Golubkina is located at about 60.5 degrees north latitude, 286.7 degrees est longitude. Magellan data reveal that Golubkina has many characteristics typical of craters formed by a mereorite impact including terraced inner walls, a central peak, and radar-bright rough ejecta surrounding the crater. The extreme darkness of the crater floor indicates a smooth surface, perhaps formed by the ponding of lava flows in the crater floor as seen in may lunar impact craters. The radar-bright ejecta surrounding the crater indicates a relatively fresh or young crater. Craters with centeral peaks in the Soviet data range in size from about 10-60 km (6-36 mi.) across. The largest crater identifed in the Soviet Venera data is 140 km (84 mi) in diameter. This Magellan image strip in approx. 100 km (62 mi.) long. The image is a mosaic of two orbits obtained in the first Magellan radar test and played back to Earth to the Deep Space Network stations near Goldstone, CA and Canberra, Australia, respectively. The resolution of this image is approximately 120 meters (400 feet). The see-saw margins result from the offset of individual radar frames obtained along the orbit. The spacecraft moved from the north (top) to the south, looking to the left.

  6. Chicxulub's Cretaceous-Tertiary Boundary Twin Crater. Was There a Double Impact in the Yucatan Peninsula?

    NASA Astrophysics Data System (ADS)

    Camargo, A. Z.; Juarez, J. S.

    2004-05-01

    In 1980, Alvarez and co-authors proposed that the K/T extinctions were caused by the effects of a celestial body falling on Earth. After a long search for the impact site, the 1981 work by Penfield and Camargo on a 170 km structure in the Yucatan Peninsula got the attention of the specialists, and it was later proved that it was the crater created by the impact of that celestial body. New data suggests the existence of a second impact crater close to Chicxulub, both being of the same age and created by two fragments of the same celestial boby. A new magnetic map plotted as a color-coded shaded relief surface, reveals a feature not evident before: two interlaced ringed anomalies of about 100 and 50 km diameters, the larger one related to the magnetic signature of the Chicxulub Crater, and the second located at its E-SE edge. The 50 km anomaly, with morphology similar to Chicxulub's, is interpreted as also corresponding to an impact crater, centered at about 89 Deg. Long. W and 21 Deg. Lat. N, close to the city of Izamal. The anomaly size indicates that the diameter of the IZAMAL CRATER is about 85 km. The Chicxulub Crater, being buried under several hundred meters of Tertiary carbonate rocks, is not visible from the surface or from space; although some surface expression of its morphology has been reported. The best known is the ring of cenotes (sink holes) at the crater's rim, visible on satellite images and photographs. The JPL/NASA image PIA03379, is a color-coded shaded relief image of terrain elevation in which the topography was exagerated to highlight the Chicxulub Crater rim. On this image, a semi circular arc of dark spots is also visible immediately to the E-SE of the Chicxulub Crater rim. These spots are interpreted as large irregular karstic depressions, similar to the ones along the cenote ring of Chicxulub. On the evidence of the spatial relationship of the magnetic anomalies and the satellite image features, we tested how well the proposed Izamal Crater would fit the karstic depressions E-SE of the Chicxulub crater. We found that an 82 km diameter circle fits well the semi circle of dark spots, and interpret it as a portion of the rim of the IZAMAL impact crater. The interpreted relationships and origin of the Chicxulub and Izamal craters are: The Chicxulub crater was created after Izamal. They were created by two different impact bodies. The craters are of the same age. They were formed by two parts of the same celestial body, the MAYA BOLIDE. The diameter of the fragment impacted in Izamal is estimated to be about 4 km. This finding has implications on studies related to the K/T extinction event. Some scientists argue that the Chicxulub crater is somewhat small to account for the global K/T extinction all by itself. The double impact may account for the observed effects. Also, multiple impacts at sea may have put into the atmosphere much more sea water salts capable of dissociating into damaging chlorine compounds. Furthermore, the impact sequence may help explain the origin of the K/T boundary glasses from Haiti and better define the ballistic trajectories of the impacts ejecta and its effects on the extinctions. And the Maya Bolide orbit can be investigated to define its origin and characteristics as a comet or asteroid.

  7. Colorful Impact Ejecta from Hargraves Crater

    NASA Image and Video Library

    2017-05-08

    The collision that created Hargraves Crater impacted into diverse bedrock lithologies of ancient Mars; the impact ejecta is a rich mix of rock types with different colors and textures, as seen by NASA Mars Reconnaissance Orbiter. The crater is named after Robert Hargraves who discovered and studied meteorite impacts on the Earth. https://photojournal.jpl.nasa.gov/catalog/PIA21609

  8. Scaling Impact-Melt and Crater Dimensions: Implications for the Lunar Cratering Record

    NASA Technical Reports Server (NTRS)

    Cintala , Mark J.; Grieve, Richard A. F.

    1997-01-01

    The consequences of impact on the solid bodies of the solar system are manifest and legion. Although the visible effects on planetary surfaces, such as the Moon's, are the most obvious testimony to the spatial and temporal importance of impacts, less dramatic chemical and petrographic characteristics of materials affected by shock abound. Both the morphologic and petrologic aspects of impact cratering are important in deciphering lunar history, and, ideally, each should complement the other. In practice, however, a gap has persisted in relating large-scale cratering processes to petrologic and geochemical data obtained from lunar samples. While this is due in no small part to the fact that no Apollo mission unambiguously sampled deposits of a large crater, it can also be attributed to the general state of our knowledge of cratering phenomena, particularly those accompanying large events. The most common shock-metamorphosed lunar samples are breccias, but a substantial number are impact-melt rocks. Indeed, numerous workers have called attention to the importance of impact-melt rocks spanning a wide range of ages in the lunar sample collection. Photogeologic studies also have demonstrated the widespread occurrence of impact-melt lithologies in and around lunar craters. Thus, it is clear that impact melting has been a fundamental process operating throughout lunar history, at scales ranging from pits formed on individual regolith grains to the largest impact basins. This contribution examines the potential relationship between impact melting on the Moon and the interior morphologies of large craters and peaking basins. It then examines some of the implications of impact melting at such large scales for lunar-sample provenance and evolution of the lunar crust.

  9. Cratering in Marine Environments and on Ice

    NASA Astrophysics Data System (ADS)

    Newsom, Horton E.

    2004-09-01

    Since the discovery of plate tectonics, impact cratering is arguably the most significant geologic process now recognized as an important process on Earth. Impacts into ice, another main topic covered in this book, may be important on other worlds. Large numbers of impact craters that formed in marine environments on Earth have only been discovered in the last 10 years. Twenty-five craters that formed in marine environments have been documented, according to the first chapter of this book, although none are known that excavated oceanic crust. The papers in Cratering in Marine Environments and on Ice will whet your appetite for the exciting and ambitious range of topics implied by the title, which stems from a conference in Svalbard, Norway, in September 2001. This book provides a flavor of the rapidly advancing and diverse field of impact cratering.

  10. Crater Morphology of Engineered and Natural Impactors into Planetary Ice

    NASA Astrophysics Data System (ADS)

    Danner, M.; Winglee, R.; Koch, J.

    2017-12-01

    Crater morphology of engineered impactors, such as those proposed for the Europa Kinetic Ice Penetrator (EKIP) mission, varies drastically from that of natural impactors (i.e. Asteroids, meteoroids). Previous work of natural impact craters in ice have been conducted with the intent to bound the thickness of Europa's ice crust; this work focuses on the depth, size, and compressional effects caused by various impactor designs, and the possible effects to the Europan surface. The present work details results from nine projectiles that were dropped on the Taku Glacier, AK at an altitude of 775 meters above surface; three rocks to simulate natural impactors, and six iterations of engineered steel and aluminum penetrator projectiles. Density measurements were taken at various locations within the craters, as well as through a cross section of the crater. Due to altitude restrictions, projectiles remained below terminal velocity. The natural/rock impact craters displayed typical cratering characteristics such as shallow, half meter scale depth, and orthogonal compressional forcing. The engineered projectiles produced impact craters with depths averaging two meters, with crater widths matching the impactor diameters. Compressional waves from the engineered impactors propagated downwards, parallel to direction of impact. Engineered impactors create significantly less lateral fracturing than natural impactors. Due to the EKIP landing mechanism, sampling of pristine ice closer to the lander is possible than previously thought with classical impact theory. Future work is planned to penetrate older, multiyear ice with higher velocity impacts.

  11. Relative depths of simple craters and the nature of the lunar regolith

    NASA Astrophysics Data System (ADS)

    Stopar, Julie D.; Robinson, Mark S.; Barnouin, Olivier S.; McEwen, Alfred S.; Speyerer, Emerson J.; Henriksen, Megan R.; Sutton, Sarah S.

    2017-12-01

    We assessed the morphologies of more than 930 simple impact craters (diameters 40 m-10 km) on the Moon using digital terrain models (DTMs) of a variety of terrains in order to characterize the variability of fresh crater morphology as a function of crater diameter. From Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) DTMs, we determined depth-to-diameter (d/D) ratios for an extremely fresh set of these craters with diameters less than 400 m and found that their d/D ratios range from 0.11 to 0.17. Using both NAC and Kaguya Terrain Camera DTMs, we also determined the d/D ratios for the set of fresh simple craters larger than 400 m in diameter. The d/D ratios of these larger craters are typically near 0.21, as expected of gravity-dominated crater excavation. Fresh craters less than ∼400 m in diameter, on the other hand, exhibit significantly lower d/D ratios. Various possible factors affect the morphologies and relative depths (d/D ratios) of small strength-dominated craters, including impactor and target properties (e.g., effective strength, strength contrasts, porosity, pre-existing weaknesses), impact angle and velocity, and degradation state. While impact conditions resulting from secondary impacts can also affect crater morphologies, we found that d/D ratio alone was not a unique discriminator of small secondary craters. To investigate the relative influences of degradation and target properties on the d/D ratios of small strength-dominated craters, we examined a subset of fresh craters located on the geologically young rim deposits of Tycho crater. These craters are deeper and steeper than other craters of similar diameter and degradation state, consistent with their relative freshness and formation in the relatively coherent, melt-rich deposits in this region. The d/D ratios of globally distributed small craters of similar degradation state and size range, on the other hand, are relatively shallow with lower average wall slopes, consistent with crater excavation in a weak or poorly cohesive layer. The widespread predominance of these small, shallow craters is consistent with the pervasive, poorly cohesive upper regolith.

  12. Microgravity

    NASA Image and Video Library

    1966-11-24

    Lunar Orbiter 2 oblique northward view towards Copernicus crater on the Moon shows crater wall slumping caused by soil liquefaction following the impact that formed the crater. The crater is about 100 km in diameter. The central peaks are visible towards the top of the image, rising about 400 m above the crater floor, and stretching for about 15 km. The northern wall of the crater is in the background. Sand and soil grains have faces that can cause friction as they roll and slide against each other, or even cause sticking and form small voids between grains. This complex behavior can cause soil to behave like a liquid under certain conditions such as earthquakes or when powders are handled in industrial processes. MGM experiments aboard the Space Shuttle use the microgravity of space to simulate this behavior under conditions that carnot be achieved in laboratory tests on Earth. MGM is shedding light on the behavior of fine-grain materials under low effective stresses. Applications include earthquake engineering, granular flow technologies (such as powder feed systems for pharmaceuticals and fertilizers), and terrestrial and planetary geology. Nine MGM specimens have flown on two Space Shuttle flights. Another three are scheduled to fly on STS-107. The principal investigator is Stein Sture of the University of Colorado at Boulder. (Credit: University of Colorado at Boulder).

  13. Age and effects of the Odessa meteorite impact, western Texas, USA

    NASA Astrophysics Data System (ADS)

    Holliday, Vance T.; Kring, David A.; Mayer, James H.; Goble, Ronald J.

    2005-12-01

    The Odessa meteorite craters (Texas, United States) include a main crater (˜160 m diameter, ˜30 m deep) plus four smaller meteorite craters. The main crater was sampled by coring (to 22 m depth) to better understand its origin and history. Dating by optically stimulated luminescence indicates that it was produced immediately prior to ca. 63.5 ± 4.5 ka. Sediment filling the crater includes impact breccias produced at the time of impact; wind-dominated silts with minor amounts of pond sediments deposited ca. 63.5 ka, probably just after the impact, and ca. 53 ± 2 ka; wind-dominated silt ca. 38 ± 1.7 ka; and playa muds with a wind-blown silt component younger than 36 ka. The environment was arid or semiarid at the time of impact based on characteristics of soils on the surrounding landscape. The impact caused severe damage within 2 km and produced >1000 km/hr winds and thermal pulse. Animals within a 1 1.5-km-diameter area were probably killed. This is only the second well-dated Pleistocene hypervelocity impact crater in North America.

  14. Shock metamorphism and impact melting in small impact craters on Earth: Evidence from Kamil crater, Egypt

    NASA Astrophysics Data System (ADS)

    Fazio, Agnese; Folco, Luigi; D'Orazio, Massimo; Frezzotti, Maria Luce; Cordier, Carole

    2014-12-01

    Kamil is a 45 m diameter impact crater identified in 2008 in southern Egypt. It was generated by the hypervelocity impact of the Gebel Kamil iron meteorite on a sedimentary target, namely layered sandstones with subhorizontal bedding. We have carried out a petrographic study of samples from the crater wall and ejecta deposits collected during our first geophysical campaign (February 2010) in order to investigate shock effects recorded in these rocks. Ejecta samples reveal a wide range of shock features common in quartz-rich target rocks. They have been divided into two categories, as a function of their abundance at thin section scale: (1) pervasive shock features (the most abundant), including fracturing, planar deformation features, and impact melt lapilli and bombs, and (2) localized shock features (the least abundant) including high-pressure phases and localized impact melting in the form of intergranular melt, melt veins, and melt films in shatter cones. In particular, Kamil crater is the smallest impact crater where shatter cones, coesite, stishovite, diamond, and melt veins have been reported. Based on experimental calibrations reported in the literature, pervasive shock features suggest that the maximum shock pressure was between 30 and 60 GPa. Using the planar impact approximation, we calculate a vertical component of the impact velocity of at least 3.5 km s-1. The wide range of shock features and their freshness make Kamil a natural laboratory for studying impact cratering and shock deformation processes in small impact structures.

  15. Impact crater outflows on Venus: Morphology and emplacement mechanisms

    USGS Publications Warehouse

    Chadwick, D. John; Schaber, Gerald G.

    1993-01-01

    Many of the 932 impact craters discovered by the Magellan spacecraft at Venus are associated with lobate flows that originate at or near the crater rim. They extend for several to several hundred kilometers from the crater, and they commonly have a strong radar backscatter. A morphologic study of all identifiable crater outflows on Venus has revealed that many individual flows each consist of two areas, defined by distinct morphologic features. These two areas appear to represent two stages of deposition for each flow. The part of the flow that is generally deposited closest to the crater tends to be on the downrange side of the crater, flows in the downrange direction, and it is interpreted to be a late-stage ejecta. In many cases, this proximal part of the flow is too thin to completely bury the large blocks in subjacent ejecta deposits. Dendritic channels, present in many proximal flows, appear to have drained liquid from the proximal part in the downhill direction, and they debouch to feed the outer part of the flows. This distal part flows downhill, fills small grabens, and is ponded by ridges, behavior that mimics that of volcanic lava flows. The meandering and dendritic channels and the relation of the distal flows to topography strongly suggest that the distal portion is the result of coalescence and slow drainage of impact melt from the proximal portion. Impact melt forms a lining to the transient crater and mixes turbulently with solid clasts, and part of this mixture may be ejected to form the proximal part of the flow during the excavation stage of crater development. A statistical study of the Venusian craters has revealed that, in general, large craters produced by impacts with relatively low incidence angles to the surface are more likely to produce flows than small craters produced by higher-angle impacts. The greater flow production and downrange focusing of the proximal flows with decreasing incidence angle indicate a strong control of the flows by the impactor flight direction, and a high downrange velocity imparted to the proximal flow material in lower angle impacts. On the Moon, small flows interpreted to be composed of impact melt are observed atop the ejecta of large, fresh craters; on Earth, melt-rich suevite deposits form the uppermost layer of ejecta of some fresh craters. These features, albeit much smaller, may be analogous to the flows on Venus. Numerical models have predicted that larger volumes of impact melt would be produced on Venus than on the cooler terrestrial bodies due to high atmospheric and target temperatures, perhaps 3 times the volume produced on the Moon for a given crater diameter.

  16. Surficial Geology of the Chicxulub Impact Crater, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1993-01-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approx. 240 km in diameter.

  17. Tektite-like bodies at Lonar Crater, India - Implications for the origin of tektites

    NASA Technical Reports Server (NTRS)

    Murali, A. V.; Zolensky, M. E.; Blanchard, D. P.

    1987-01-01

    Homogeneous dense glass bodies (both irregular and splash form) with high silica contents (about 67 pct SiO2) occur in the vicinity of Lonar Crater, India. Their lack of microlites and mineral remnants and their uniform chemical composition virtually preclude a volcanic origin. They are similar to tektites reported in the literature. While such a close association of tektite-like bodies with impact craters is already known (Aouelloul Crater, Mauritania; Zhamanshin Crater, U.S.S.R.), the tektite-like bodies at Lonar Crater are unique in that they occur in an essentially basaltic terrain. Present geochemical data are consistent with these high silica glass bodies being impact melt products of two-thirds basalt and one-third local intertrappean sediment (chert). The tektite-like bodies of the impact craters Lonar, Zhamanshin, and Aouelloul are generally similar. Strong terrestrial geochemical signatures reflect the target rock REE patterns and abundance ratios and demonstrate their terrestrial origin resulting from meteorite impact, as has been suggested by earlier workers.

  18. Surficial geology of the Chicxulub impact crater, Yucatan, Mexico

    NASA Technical Reports Server (NTRS)

    Pope, Kevin O.; Ocampo, Adriana C.; Duller, Charles E.

    1993-01-01

    The Chicxulub impact crater in northwestern Yucatan, Mexico is the primary candidate for the proposed impact that caused mass extinctions at the end of the Cretaceous Period. The crater is buried by up to a kilometer of Tertiary sediment and the most prominent surface expression is a ring of sink holes, known locally as cenotes, mapped with Landsat imagery. This 165 +/- 5 km diameter Cenote Ring demarcates a boundary between unfractured limestones inside the ring, and fractured limestones outside. The boundary forms a barrier to lateral ground water migration, resulting in increased flows, dissolution, and collapse thus forming the cenotes. The subsurface geology indicates that the fracturing that created the Cenote Ring is related to slumping in the rim of the buried crater, differential thicknesses in the rocks overlying the crater, or solution collapse within porous impact deposits. The Cenote Ring provides the most accurate position of the Chicxulub crater's center, and the associated faults, fractures, and stratigraphy indicate that the crater may be approximately 240 km in diameter.

  19. Standardizing the nomenclature of Martian impact crater ejecta morphologies

    USGS Publications Warehouse

    Barlow, Nadine G.; Boyce, Joseph M.; Costard, Francois M.; Craddock, Robert A.; Garvin, James B.; Sakimoto, Susan E.H.; Kuzmin, Ruslan O.; Roddy, David J.; Soderblom, Laurence A.

    2000-01-01

    The Mars Crater Morphology Consortium recommends the use of a standardized nomenclature system when discussing Martian impact crater ejecta morphologies. The system utilizes nongenetic descriptors to identify the various ejecta morphologies seen on Mars. This system is designed to facilitate communication and collaboration between researchers. Crater morphology databases will be archived through the U.S. Geological Survey in Flagstaff, where a comprehensive catalog of Martian crater morphologic information will be maintained.

  20. 100 New Impact Crater Sites Found on Mars

    NASA Astrophysics Data System (ADS)

    Kennedy, M. R.; Malin, M. C.

    2009-12-01

    Recent observations constrain the formation of 100 new impact sites on Mars over the past decade; 19 of these were found using the Mars Global Surveyor Mars Orbiter Camera (MOC), and the other 81 have been identified since 2006 using the Mars Reconnaissance Orbiter Context Camera (CTX). Every 6 meter/pixel CTX image is examined upon receipt and, where they overlap images of 0.3-240 m/pixel scale acquired by the same or other Mars-orbiting spacecraft, we look for features that may have changed. New impact sites are initially identified by the presence of a new dark spot or cluster of dark spots in a CTX image. Such spots may be new impact craters, or result from the effect of impact blasts on the dusty surface. In some (generally rare) cases, the crater is sufficiently large to be resolved in the CTX image. In most cases, however, the crater(s) cannot be seen. These are tentatively designated as “candidate” new impact sites, and the CTX team then creates an opportunity for the MRO spacecraft to point its cameras off-nadir and requests that the High Resolution Imaging Science Experiment (HiRISE) team obtain an image of ~0.3 m/pixel to confirm whether a crater or crater cluster is present. It is clear even from cursory examination that the CTX observations are areographically biased to dusty, higher albedo areas on Mars. All but 3 of the 100 new impact sites occur on surfaces with Lambert albedo values in excess of 23.5%. Our initial study of MOC images greatly benefited from the initial global observations made in one month in 1999, creating a baseline date from which we could start counting new craters. The global coverage by MRO Mars Color Imager is more than a factor of 4 poorer in resolution than the MOC Wide Angle camera and does not offer the opportunity for global analysis. Instead, we must rely on partial global coverage and global coverage that has taken years to accumulate; thus we can only treat impact rates statistically. We subdivide the total data set of 100 sites into 3 sets of observations: the original 19 MOC observations found in a survey of 15% of the planet, craters found only in CTX repeat coverage of 7% of Mars, and the remaining 69 craters found in a data set covering 40% of the planet. Using the mean interval between the latest observation preceding the impact and the first observation showing the impact for these groups of craters, we determine that the cratering rate is roughly 8 ± 6 x 10-7 craters/km2/yr for craters greater than ~1 m diameter. The cratering rate on Mars is sufficiently high to warrant consideration both for scientific studies and as a hazard to future exploration. Impacts are sufficiently frequent to act as seismic sources for studies of shallow crustal structure, if a seismic network is sufficiently dispersed and long-lived. Impacts large enough to provide information about deep interior structure are rare but probably occur on a decadal timescale. As recently noted in Science, new craters can be used to probe the distribution of subsurface ice and to provide samples from shallow depths that otherwise require meter-scale drilling systems. There is a finite probability that visitors to Mars for more than a month or two will hear or feel the effects of a nearby impact.

  1. Microbial Mats of the Tswaing Impact Crater: Results of a South African Exobiology Expedition and Implications for the Search for Biological Molecules on Mars

    NASA Astrophysics Data System (ADS)

    Cockell, C. S.; Brandt, D.; Hand, K.; Lee, P.

    2001-03-01

    We describe microbial mats from the Tswaing impact crater in South Africa. The mats provide insights into the unique biological characteristics of impact craters and can help strategies for the search for biomolecules on Mars.

  2. Experimental impact cratering provides ground truth data for understanding planetary-scale collision processes

    NASA Astrophysics Data System (ADS)

    Poelchau, Michael H.; Deutsch, Alex; Kenkmann, Thomas

    2013-04-01

    Impact cratering is generally accepted as one of the primary processes that shape planetary surfaces in the solar system. While post-impact analysis of craters by remote sensing or field work gives many insights into this process, impact cratering experiments have several advantages for impact research: 1) excavation and ejection processes can be directly observed, 2) physical parameters of the experiment are defined and can be varied, and 3) cratered target material can be analyzed post-impact in an unaltered, uneroded state. The main goal of the MEMIN project is to comprehensively quantify impact processes by conducting a stringently controlled experimental impact cratering campaign on the meso-scale with a multidisciplinary analytical approach. As a unique feature we use two-stage light gas guns capable of producing impact craters in the decimeter size-range in solid rocks that, in turn, allow detailed spatial analysis of petrophysical, structural, and geochemical changes in target rocks and ejecta. In total, we have carried out 24 experiments at the facilities of the Fraunhofer EMI, Freiburg - Germany. Steel, aluminum, and iron meteorite projectiles ranging in diameter from 2.5 to 12 mm were accelerated to velocities ranging from 2.5 to 7.8 km/s. Targets were solid rocks, namely sandstone, quartzite and tuff that were either dry or saturated with water. In the experimental setup, high speed framing cameras monitored the impact process, ultrasound sensors were attached to the target to record the passage of the shock wave, and special particle catchers were positioned opposite of the target surface to capture the ejected target and projectile material. In addition to the cratering experiments, planar shock recovery experiments were performed on the target material, and numerical models of the cratering process were developed. The experiments resulted in craters with diameters up to 40 cm, which is unique in laboratory cratering research. Target porosity exponentially reduces crater volumes and cratering efficiency relative to non-porous rocks, and also yields less steep ejecta angles. Microstructural analysis of the subsurface shows a zone of pervasive grain crushing and pore space reduction. This is in good agreement with new mesoscale numerical models, which are able to quantify localized shock pressure behavior in the target's pore space. Planar shock recovery experiments confirm these local pressure excursions, based on microanalysis of shock metamorphic features in quartz. Saturation of porous target rocks with water counteracts many of the effects of porosity. Post-impact analysis of projectile remnants shows that during mixing of projectile and target melts, the Fe of the projectile is preferentially partitioned into target melt to a greater degree than Ni and Co. We plan to continue evaluating the experimental results in combination with numerical models. These models help to quantify and evaluate cratering processes, while experimental data serve as benchmarks to validate the improved numerical models, thus helping to "bridge the gap" between experiments and nature. The results confirm and expand current crater scaling laws, and make an application to craters on planetary surfaces possible.

  3. Exploring Martian Impact Craters: Why They are Important for the Search for Life

    NASA Technical Reports Server (NTRS)

    Schwenzer, S. P.; Abramov, O.; Allen, C. C.; Clifford, S.; Filiberto, J.; Kring, D. A.; Lasue, J.; McGovern, P. J.; Newsom, H. E.; Treiman, A. H.; hide

    2010-01-01

    Fluvial features and evidence for aqueous alteration indicate that Mars was wet, at least partially and/or periodically, in the Noachian. Also, impact cratering appears to have been the dominant geological process [1] during that epoch. Thus, investigation of Noachian craters will further our understanding of this geologic process, its effects on the water-bearing Martian crust, and any life that may have been present at the time. Impact events disturbed and heated the water- and/or ice-bearing crust, likely initiated long-lived hydrothermal systems [2-4], and formed crater lakes [5], creating environments suitable for life [6]. Thus, Noachian impact craters are particularly important exploration targets because they provide a window into warm, water-rich environments of the past which were possibly conducive to life. In addition to the presence of lake deposits, assessment of the presence of hydrothermal deposits in the walls, floors and uplifts of craters is important in the search for life on Mars. Impact craters are also important for astrobiological exploration in other ways. For example, smaller craters can be used as natural excavation pits, and so can provide information and samples that would otherwise be inaccessible (e.g., [7]). In addition, larger (> 75 km) craters can excavate material from a potentially habitable region, even on present-day Mars, located beneath a >5-km deep cryosphere.

  4. Constraining the thickness of polar ice deposits on Mercury using the Mercury Laser Altimeter and small craters in permanently shadowed regions

    NASA Astrophysics Data System (ADS)

    Deutsch, Ariel N.; Head, James W.; Chabot, Nancy L.; Neumann, Gregory A.

    2018-05-01

    Radar-bright deposits at the poles of Mercury are located in permanently shadowed regions, which provide thermally stable environments for hosting and retaining water ice on the surface or in the near subsurface for geologic timescales. While the areal distribution of these radar-bright deposits is well characterized, their thickness, and thus their total mass and volume, remain poorly constrained. Here we derive thickness estimates for selected water-ice deposits using small, simple craters visible within the permanently shadowed, radar-bright deposits. We examine two endmember scenarios: in Case I, these craters predate the emplacement of the ice, and in Case II, these craters postdate the emplacement of the ice. In Case I, we find the difference between estimated depths of the original unfilled craters and the measured depths of the craters to find the estimated infill of material. The average estimated infilled material for 9 craters assumed to be overlain with water ice is ∼ 41-14+30 m, where 1-σ standard error of the mean is reported as uncertainty. Reported uncertainties are for statistical errors only. Additional systematic uncertainty may stem from georeferencing the images and topographic datasets, from the radial accuracy of the altimeter measurements, or from assumptions in our models including (1) ice is flat in the bowl-shaped crater and (2) there is negligible ice at the crater rims. In Case II, we derive crater excavation depths to investigate the thickness of the ice layer that may have been penetrated by the impact. While the absence of excavated regolith associated with the small craters observed suggests that impacts generally do not penetrate through the ice deposit, the spatial resolution and complex illumination geometry of images may limit the observations. Therefore, it is not possible to conclude whether the small craters in this study penetrate through the ice deposit, and thus Case II does not provide a constraint on the ice thickness. For Mercury's polar deposits, we argue that Case I of the small craters predating the emplacement of the ice deposits is more likely, given other geologic evidence that suggests that these ice deposits are relatively young. Using the ice thickness estimates from Case I to calculate the total amount of water ice currently contained in Mercury's polar deposits results in a value of ∼1014-1015 kg. This is equivalent to ∼100-1000 km3 ice in volume. This volume of water ice is consistent with delivery via micrometeorite bombardment, Jupiter-family comets, or potentially a single impactor.

  5. Large craters on the meteoroid and space debris impact experiment

    NASA Technical Reports Server (NTRS)

    Humes, Donald H.

    1991-01-01

    The distribution around the Long Duration Exposure Facility (LDEF) of 532 large craters in the Al plates from the Meteoroid and Space Debris Impact Experiment (S0001) is discussed along with 74 additional large craters in Al plates donated to the Meteoroid and Debris Special Investigation Group by other LDEF experimenters. The craters are 0.5 mm in diameter and larger. Crater shape is discussed. The number of craters and their distribution around the spacecraft are compared with values predicted with models of the meteoroid environment and the manmade orbital debris environment.

  6. Exploration of Victoria crater by the mars rover opportunity

    USGS Publications Warehouse

    Squyres, S. W.; Knoll, A.H.; Arvidson, R. E.; Ashley, James W.; Bell, J.F.; Calvin, W.M.; Christensen, P.R.; Clark, B. C.; Cohen, B. A.; De Souza, P.A.; Edgar, L.; Farrand, W. H.; Fleischer, I.; Gellert, Ralf; Golombek, M.P.; Grant, J.; Grotzinger, J.; Hayes, A.; Herkenhoff, K. E.; Johnson, J. R.; Jolliff, B.; Klingelhofer, G.; Knudson, A.; Li, R.; McCoy, T.J.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Morris, R.V.; Rice, J. W.; Schroder, C.; Sullivan, R.J.; Yen, A.; Yingst, R.A.

    2009-01-01

    The Mars rover Opportunity has explored Victoria crater, a ???750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those ???6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.

  7. Exploration of Victoria crater by the Mars rover Opportunity.

    PubMed

    Squyres, S W; Knoll, A H; Arvidson, R E; Ashley, J W; Bell, J F; Calvin, W M; Christensen, P R; Clark, B C; Cohen, B A; de Souza, P A; Edgar, L; Farrand, W H; Fleischer, I; Gellert, R; Golombek, M P; Grant, J; Grotzinger, J; Hayes, A; Herkenhoff, K E; Johnson, J R; Jolliff, B; Klingelhöfer, G; Knudson, A; Li, R; McCoy, T J; McLennan, S M; Ming, D W; Mittlefehldt, D W; Morris, R V; Rice, J W; Schröder, C; Sullivan, R J; Yen, A; Yingst, R A

    2009-05-22

    The Mars rover Opportunity has explored Victoria crater, an approximately 750-meter eroded impact crater formed in sulfate-rich sedimentary rocks. Impact-related stratigraphy is preserved in the crater walls, and meteoritic debris is present near the crater rim. The size of hematite-rich concretions decreases up-section, documenting variation in the intensity of groundwater processes. Layering in the crater walls preserves evidence of ancient wind-blown dunes. Compositional variations with depth mimic those approximately 6 kilometers to the north and demonstrate that water-induced alteration at Meridiani Planum was regional in scope.

  8. Small Rayed Crater Ejecta Retention Age Calculated from Current Crater Production Rates on Mars

    NASA Technical Reports Server (NTRS)

    Calef, F. J. III; Herrick, R. R.; Sharpton, V. L.

    2011-01-01

    Ejecta from impact craters, while extant, records erosive and depositional processes on their surfaces. Estimating ejecta retention age (Eret), the time span when ejecta remains recognizable around a crater, can be applied to estimate the timescale that surface processes operate on, thereby obtaining a history of geologic activity. However, the abundance of sub-kilometer diameter (D) craters identifiable in high resolution Mars imagery has led to questions of accuracy in absolute crater dating and hence ejecta retention ages (Eret). This research calculates the maximum Eret for small rayed impact craters (SRC) on Mars using estimates of the Martian impactor flux adjusted for meteorite ablation losses in the atmosphere. In addition, we utilize the diameter-distance relationship of secondary cratering to adjust crater counts in the vicinity of the large primary crater Zunil.

  9. The Importance of Impacts within the Solar System - A Short History

    NASA Astrophysics Data System (ADS)

    Yeomans, D. K.

    2005-08-01

    While early meteorite falls had been observed by Chinese and European observers and lunar craters were identified in the early seventeenth century, the important role of impacts in determining the surface features of the moon and Earth would not be widely recognized for more than three centuries. Despite the fact that Earth's volcanic craters were dissimilar in both size and shape from lunar craters, a volcanic origin for the lunar craters was favored. The impact origin for these craters was not seriously discussed until the early twentieth century. Until then, near-Earth asteroids were unknown and it was difficult to explain why the observed lunar craters had circular rims when those created by impacts should have oblong rims to reflect the oblique approach angle of most impactors. Although Opik first pointed out in 1916 that lunar impactors coming in at any angle would create explosive events that could explain the near circularity of their crater rims, his paper was buried in an obscure journal. In the first half of the twentieth century, the consensus view of astronomers was that volcanic activity was responsible for lunar craters while geologists leaned toward an impact origin. Thus, each group dismissed the mechanism that was most familiar to them. At a time when most astronomers stubbornly refused to acknowledge any impact craters on the moon or Earth, the geologist and entrepreneur Daniel Barringer doggedly championed the impact formation of the Meteor crater near Flagstaff Arizona. It was not until 1980 that Alvarez et al suggested and provided evidence for an impact extinction event that corresponded with the boundary between the Cretaceous and Tertiary periods some 65 million years ago. The issue of an engineering solution for the mitigation of an Earth threatening object (i.e., Project Icarus) was first studied in 1967 by an undergraduate engineering class at MIT.

  10. Impacts into Coarse-Grained Spheres at Moderate Impact Velocities: Implications for Cratering on Asteroids and Planets

    NASA Technical Reports Server (NTRS)

    Barnouin, Olivier S.; Daly, R. Terik; Cintala, Mark J.; Crawford, David A.

    2018-01-01

    The surfaces of many planets and asteroids contain coarsely fragmental material generated by impacts or other geologic processes. The presence of such pre-existing structures may affect subsequent impacts, particularly when the width of the shock is comparable to or smaller than the size of pre-existing structures. Reasonable theoretical predictions and low speed (<300m/s) impact experiments suggest that in such targets the cratering process should be highly dissipative, which would reduce cratering efficiencies and cause a rapid decay in ejection velocity as a function of distance from the impact point. In this study, we assess whether these results apply at higher impact speeds between 0.5 and 2.5 km s-1. This study shows little change in cratering efficiency when 3.18 mm diameter glass beads are launched into targets composed of these same beads. These impacts are very efficient, and ejection velocity decays slowly as function of distance from the impact point. This slow decay in ejection velocity probably indicates a correspondingly slow decay of the shock stresses. However, these experiments reveal that initial interactions between projectile and target strongly influence the cratering process and lead to asymmetries in crater shape and ejection angles, as well as significant variations in ejection velocity at a given launch position. Such effects of asymmetric coupling could be further enhanced by heterogeneity in the initial distribution of grains in the target and by mechanical collisions between grains. These experiments help to explain why so few craters are seen on the rubble-pile asteroid Itokawa: impacts into its coarsely fragmental surface by projectiles comparable to or smaller than the size of these fragments likely yield craters that are not easily recognizable.

  11. Martian ages

    NASA Technical Reports Server (NTRS)

    Neukum, G.; Hiller, K.

    1981-01-01

    Four discussions are conducted: (1) the methodology of relative age determination by impact crater statistics, (2) a comparison of proposed Martian impact chronologies for the determination of absolute ages from crater frequencies, (3) a report on work dating Martian volcanoes and erosional features by impact crater statistics, and (4) an attempt to understand the main features of Martian history through a synthesis of crater frequency data. Two cratering chronology models are presented and used for inference of absolute ages from crater frequency data, and it is shown that the interpretation of all data available and tractable by the methodology presented leads to a global Martian geological history that is characterized by two epochs of activity. It is concluded that Mars is an ancient planet with respect to its surface features.

  12. Mars Exploration Rover Field Observations of Impact Craters at Gusev Crater and Meridiani Planum and Implications for Climate Change

    NASA Technical Reports Server (NTRS)

    Golombek, M.; Grant, J. A.; Crumpler, L. S.

    2005-01-01

    The Mars Exploration Rovers have provided a field geologist's perspective of impact craters in various states of degradation along their traverses at Gusev crater and Meridiani Planum. This abstract will describe the craters observed and changes to the craters that constrain the erosion rates and the climate [l]. Changes to craters on the plains of Gusev argue for a dry and desiccating environment since the Late Hesperian in contrast to the wet and likely warm environment in the Late Noachian at Meridiani in which the sulfate evaporites were deposited in salt-water playas or sabkhas.

  13. Authentication controversies and impactite petrography of the New Quebec Crater

    NASA Technical Reports Server (NTRS)

    Marvin, Ursula B.; Kring, David A.

    1992-01-01

    The literature reports that led to the current acceptance of New Quebec Crater (Chubb Crater) as an authentic impact crater are reviewed, and it is noted that, for reasons that are not entirely clear, a meteoritic origin for the New Quebec Crater achieved wider acceptance at an earlier data than for the Lake Bosumtwi Crater, for which petrographic and chemical evidence is more abundant and compelling. The petrography of two impact melt samples from the New Quebec Crater was investigated, and new evidence is obtained on the degrees of shock metamorphism affecting the accessory minerals such as apatite, sphene, magnetite, and zircon.

  14. The cratering record in the inner solar system: Implications for earth

    NASA Technical Reports Server (NTRS)

    Barlow, N. G.

    1988-01-01

    Internal and external processes have reworked the Earth's surface throughout its history. In particular, the effect of meteorite impacts on the early history of the earth is lost due to fluvial, aeolian, volcanic and plate tectonic action. The cratering record on other inner solar system bodies often provides the only clue to the relative cratering rates and intensities that the earth has experienced throughout its history. Of the five major bodies within the inner solar system, Mercury, Mars, and the Moon retain scars of an early episode of high impact rates. The heavily cratered regions on Mercury, Mars, and the Moon show crater size-frequency distribution curves similar in shape and crater density, whereas the lightly cratered plains on the Moon and Mars show distribution curves which, although similar to each other, are statistically different in shape and density from the more heavily cratered units. The similarities among crater size-frequency distribution curves for the Moon, Mercury, and Mars suggest that the entire inner solar system was subjected to the two populations of impacting objects but Earth and Venus have lost their record of heavy bombardment impactors. Thus, based on the cratering record on the Moon, Mercury, and Mars, it can be inferred that the Earth experienced a period of high crater rates and basin formation prior to about 3.8 BY ago. Recent studies have linked mass extinctions to large terrestrial impacts, so life forms were unable to establish themselves until impact rates decreased substantially and terrestrial conditions became more benign. The possible periodicity of mass extinctions has led to the theory of fluctuating impact rates due to comet showers in the post heavy bombardment period. The active erosional environment on the Earth complicates attempts to verify these showers by erasing geological evidence of older impact craters. The estimated size of the impactor purportedly responsible for the Cretaceous-Tertiary mass extinctions is 10 km in diameter. Thus impactors greater than or equal to the size postulated for K-T impactor are rare within the inner solar system since the end of heavy bombardment.

  15. Numerical modeling of seismic anomalies at impact craters on a laboratory scale

    NASA Astrophysics Data System (ADS)

    Wuennemann, K.; Grosse, C. U.; Hiermaier, S.; Gueldemeister, N.; Moser, D.; Durr, N.

    2011-12-01

    Almost all terrestrial impact craters exhibit a typical geophysical signature. The usually observed circular negative gravity anomaly and reduced seismic velocities in the vicinity of crater structures are presumably related to an approximately hemispherical zone underneath craters where rocks have experienced intense brittle plastic deformation and fracturing during formation (see Fig.1). In the framework of the "MEMIN" (multidisciplinary experimental and modeling impact crater research network) project we carried out hypervelocity cratering experiments at the Fraunhofer Institute for High-Speed Dynamics on a decimeter scale to study the spatiotemporal evolution of the damage zone using ultrasound, acoustic emission techniques, and numerical modeling of crater formation. 2.5-10 mm iron projectiles were shot at 2-5.5 km/s on dry and water-saturated sandstone targets. The target material was characterized before, during and after the impact with high spatial resolution acoustic techniques to detect the extent of the damage zone, the state of rocks therein and to record the growth of cracks. The ultrasound measurements are applied analog to seismic surveys at natural craters but used on a different - i.e. much smaller - scale. We compare the measured data with dynamic models of crater formation, shock, plastic and elastic wave propagation, and tensile/shear failure of rocks in the impacted sandstone blocks. The presence of porosity and pore water significantly affects the propagation of waves. In particular the crushing of pores due to shock compression has to be taken into account. We present preliminary results showing good agreement between experiments and numerical model. In a next step we plan to use the numerical models to upscale the results from laboratory dimensions to the scale of natural impact craters.

  16. Impact Craters on Titan? Cassini RADAR View

    NASA Technical Reports Server (NTRS)

    Wood, Charles A.; Lopes, Rosaly; Stofan, Ellen R.; Paganelli, Flora; Elachi, Charles

    2005-01-01

    Titan is a planet-size (diameter of 5,150 km) satellite of Saturn that is currently being investigated by the Cassini spacecraft. Thus far only one flyby (Oct. 26, 2004; Ta) has occurred when radar images were obtained. In February, 2005, and approximately 20 more times in the next four years, additional radar swaths will be acquired. Each full swath images about 1% of Titan s surface at 13.78 GHz (Ku-band) with a maximum resolution of 400 m. The Ta radar pass [1] demonstrated that Titan has a solid surface with multiple types of landforms. However, there is no compelling detection of impact craters in this first radar swath. Dione, Tethys and other satellites of Saturn are intensely cratered, there is no way that Titan could have escaped a similar impact cratering past; thus there must be ongoing dynamic surface processes that erase impact craters (and other landforms) on Titan. The surface of Titan must be very young and the resurfacing rate must be significantly higher than the impact cratering rate.

  17. Microstructural Study of Micron-Sized Craters Simulating Stardust Impacts in Aluminum 1100 Targets

    NASA Technical Reports Server (NTRS)

    Leroux, Hugues; Borg, Janet; Troadec, David; Djouadi, Zahia; Horz, Friedrich

    2006-01-01

    Various microscopic techniques were used to characterize experimental micro- craters in aluminium foils to prepare for the comprehensive analysis of the cometary and interstellar particle impacts in aluminium foils to be returned by the Stardust mission. First, SEM (Scanning Electron Microscopy) and EDS (Energy Dispersive X-ray Spectroscopy) were used to study the morphology of the impact craters and the bulk composition of the residues left by soda-lime glass impactors. A more detailed structural and compositional study of impactor remnants was then performed using TEM (Transmission Electron Microscopy), EDS, and electron diffraction methods. The TEM samples were prepared by Focused Ion Beam (FIB) methods. This technique proved to be especially valuable in studying impact crater residues and impact crater morphology. Finally, we also showed that InfraRed microscopy (IR) can be a quick and reliable tool for such investigations. The combination of all of these tools enables a complete microscopic characterization of the craters.

  18. Filled Craters

    NASA Image and Video Library

    2006-05-11

    This MOC image shows adjacent impact craters located north-northwest of the Acheron Fossae region of Mars. The two craters are of similar size and formed by meteor impacts. However, one is much more filled than the other, indicating that it is older

  19. Vesta Surface at High Resolution: Dominated by Impact Craters

    NASA Image and Video Library

    2012-02-13

    This image from NASA Dawn spacecraft shows a large number of craters, formed by collisions into the surface of asteroid Vesta. The relatively large circular depressions in this image are older, heavily degraded impact craters.

  20. Terrestrial analog field investigations to enable science and exploration studies of impacts and volcanism on the Moon, NEAs, and moons of Mars (Invited)

    NASA Astrophysics Data System (ADS)

    Heldmann, J. L.; Colaprete, A.; Cohen, B. A.; Elphic, R. C.; Garry, W. B.; Hodges, K. V.; Hughes, S. S.; Kim, K. J.; Lim, D.; McKay, C. P.; Osinski, G. R.; Petro, N. E.; Sears, D. W.; Squyres, S. W.; Tornabene, L. L.

    2013-12-01

    Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.

  1. Terrestrial Analog Field Investigations to Enable Science and Exploration Studies of Impacts and Volcanism on the Moon, NEAs, and Moons of Mars

    NASA Technical Reports Server (NTRS)

    Heldmann, Jennifer Lynne; Colaprete, Anthony; Cohen, Barbara; Elphic, Richard; Garry, William; Hodges, Kip; Hughes, Scott; Kim, Kyeon; Lim, Darlene; McKay, Chris; hide

    2013-01-01

    Terrestrial analog studies are a critical component for furthering our understanding of geologic processes on the Moon, near-Earth asteroids (NEAs), and the moons of Mars. Carefully chosen analog sites provide a unique natural laboratory with high relevance to the associated science on these solar system target bodies. Volcanism and impact cratering are fundamental processes on the Moon, NEAs, and Phobos and Deimos. The terrestrial volcanic and impact records remain invaluable for our understanding of these processes throughout our solar system, since these are our primary source of firsthand knowledge on volcanic landform formation and modification as well as the three-dimensional structural and lithological character of impact craters. Regarding impact cratering, terrestrial fieldwork can help us to understand the origin and emplacement of impactites, the history of impact bombardment in the inner Solar System, the formation of complex impact craters, and the effects of shock on planetary materials. Volcanism is another dominant geologic process that has significantly shaped the surface of planetary bodies and many asteroids. Through terrestrial field investigations we can study the processes, geomorphic features and rock types related to fissure eruptions, volcanic constructs, lava tubes, flows and pyroclastic deposits. Also, terrestrial analog studies have the advantage of enabling simultaneous robotic and/or human exploration testing in a low cost, low risk, high fidelity environment to test technologies and concepts of operations for future missions to the target bodies. Of particular interest is the importance and role of robotic precursor missions prior to human operations for which there is little to no actual mission experience to draw upon. Also critical to understanding new worlds is sample return, and analog studies enable us to develop the appropriate procedures for collecting samples in a manner that will best achieve the science objectives.

  2. Periodic Impact Cratering and Extinction Events Over the Last 260 Million Years

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Caldeira, Ken

    2015-01-01

    The claims of periodicity in impact cratering and biological extinction events are controversial. Anewly revised record of dated impact craters has been analyzed for periodicity, and compared with the record of extinctions over the past 260 Myr. A digital circular spectral analysis of 37 crater ages (ranging in age from 15 to 254 Myr ago) yielded evidence for a significant 25.8 +/- 0.6 Myr cycle. Using the same method, we found a significant 27.0 +/- 0.7 Myr cycle in the dates of the eight recognized marine extinction events over the same period. The cycles detected in impacts and extinctions have a similar phase. The impact crater dataset shows 11 apparent peaks in the last 260 Myr, at least 5 of which correlate closely with significant extinction peaks. These results suggest that the hypothesis of periodic impacts and extinction events is still viable.

  3. A Triple Crater

    NASA Image and Video Library

    2017-06-01

    This image from NASA's Mars Reconnaissance Orbiter shows an elongated depression from three merged craters. The raised rims and ejecta indicate that these are impact craters rather than collapse or volcanic landforms. The pattern made by the ejecta and the craters suggest this was a highly oblique (low angle to the surface) impact, probably coming from the west. There may have been three major pieces flying in close formation to make this triple crater. https://photojournal.jpl.nasa.gov/catalog/PIA21652

  4. Craters on Earth, Moon, and Mars: Multivariate classification and mode of origin

    USGS Publications Warehouse

    Pike, R.J.

    1974-01-01

    Testing extraterrestrial craters and candidate terrestrial analogs for morphologic similitude is treated as a problem in numerical taxonomy. According to a principal-components solution and a cluster analysis, 402 representative craters on the Earth, the Moon, and Mars divide into two major classes of contrasting shapes and modes of origin. Craters of net accumulation of material (cratered lunar domes, Martian "calderas," and all terrestrial volcanoes except maars and tuff rings) group apart from craters of excavation (terrestrial meteorite impact and experimental explosion craters, typical Martian craters, and all other lunar craters). Maars and tuff rings belong to neither group but are transitional. The classification criteria are four independent attributes of topographic geometry derived from seven descriptive variables by the principal-components transformation. Morphometric differences between crater bowl and raised rim constitute the strongest of the four components. Although single topographic variables cannot confidently predict the genesis of individual extraterrestrial craters, multivariate statistical models constructed from several variables can distinguish consistently between large impact craters and volcanoes. ?? 1974.

  5. Impact craters - Are they useful?

    NASA Astrophysics Data System (ADS)

    Masaitis, V. L.

    1992-03-01

    Terrestrial impact craters are important geological and geomorphological objects that are significant not only for scientific research but for industrial and commercial purposes. The structures may contain commercial minerals produced directly by thermodynamic transformation of target rocks (including primary forming ores) controlled by some morphological, structural or lithological factors and exposed in the crater. Iron and uranium ores, nonferrous metals, diamonds, coals, oil shales, hydrocarbons, mineral waters and other raw materials occur in impact craters. Impact morphostructures may be used for underground storage of gases or liquid waste material. Surface craters may serve as reservoirs for hydropower. These ring structures may be of value to society in other ways. Scientific investigation of them is especially important in comparative planetology, terrestrial geology and in other divisions of the natural sciences.

  6. Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes

    PubMed Central

    Elmer, Kathryn R.; Kusche, Henrik; Lehtonen, Topi K.; Meyer, Axel

    2010-01-01

    The polychromatic and trophically polymorphic Midas cichlid fish species complex (Amphilophus cf. citrinellus) is an excellent model system for studying the mechanisms of speciation and patterns of phenotypic diversification in allopatry and in sympatry. Here, we first review research to date on the species complex and the geological history of its habitat. We analyse body shape variation from all currently described species in the complex, sampled from six crater lakes (maximally 1.2–23.9 kyr old) and both great lakes in Nicaragua. We find that Midas cichlid populations in each lake have their own characteristic body shape. In lakes with multiple sympatric species of Midas cichlid, each species has a distinct body shape. Across the species complex, most body shape change relates to body depth, head, snout and mouth shape and caudal peduncle length. There is independent parallel evolution of an elongate limnetic species in at least two crater lakes. Mitochondrial genetic diversity is higher in crater lakes with multiple species. Midas cichlid species richness increases with the size and age of the crater lakes, though no such relationship exists for the other syntopic fishes. We suggest that crater lake Midas cichlids follow the predicted pattern of an adaptive radiation, with early divergence of each crater lake colonization, followed by intralacustrine diversification and speciation by ecological adaptation and sexual selection. PMID:20439280

  7. Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population

    NASA Technical Reports Server (NTRS)

    Herrick, Robert R.; Phillips, Roger J.

    1994-01-01

    The dense atmosphere on Venus prevents craters smaller than about 2 km in daimater from forming and also causes formation of several crater fields and multiple-floored craters (collectively referred to as multiple impacts). A model has been constructed that simulates the behavior of a meteoroid in a dense planetary atmosphere. This model was then combined with an assumed flux of incoming meteoroids in an effort to reproduce the size-frequency distribution of impact craters and several aspects of the population of the crater fields and multiple-floored craters on Venus. The modeling indicates that it is plausible that the observed rollover in the size-frequency curve for Venus is due entirely to atmospheric effects on incoming meteoroids. However, there must be substantial variation in the density and behavior of incoming meteoroids in the atmosphere. Lower-density meteoroids must be less likely to survive atmospheric passage than simple density differences can account for. Consequently, it is likely that the percentage of craters formed by high-density meteoroids is very high at small crater diameters, and this percentage decreases substantially with increasing crater diameter. Overall, high-density meteoroids created a disproportionately large percentage of the impact craters on Venus. Also, our results indicate that a process such as meteoroid flattening or atmospheric explosion of meteoroids must be invoked to prevent craters smaller than the observed minimum diameter (2 km) from forming. In terms of using the size-frequency distribution to age-date the surface, the model indicates that the observed population has at least 75% of the craters over 32 km in diameter that would be expected on an atmosphereless Venus; thus, this part of the curve is most suitable for comparison with calibrated curves for the Moon.

  8. Moon-Mercury: Large impact structures, isostasy and average crustal viscosity

    USGS Publications Warehouse

    Schaber, G.G.; Boyce, J.M.; Trask, N.J.

    1977-01-01

    Thirty-five craters and basins larger than 200 km in diameter are recognized on the imaged portion (45%) of Mercury. If the unimaged portion of the planet is similarly cratered, a total of 78 such impact features may be present. Sixty-two craters and basins 200 km in diameter are recognized on the moon, a body with only half the cross-sectional area of Mercury. If surface areas are considered, however, Mercury is cratered only 70% as densely as the moon. The density of impact craters with diameters greater than 400 km on Mercury is only 30% of that on the moon, and for craters with diameters between 400 and 700 km, the density on Mercury is only 21% of the lunar crater density. The size-frequency distribution curve for the large Mercurian craters follows the same cumulative -2 slope as the lunar curve but lies well below the 10% surface saturation level characteristic of the lunar curve. This is taken as evidence that the old heavily cratered terrain on Mercury is, at least presently, not in a state of cratering equilibrium. The reduced density of large craters and basins on Mercury relative to the moon could be either a function of the crater-production rates on these bodies or an effect of different crustal histories. Resurfacing of the planet after the basin-forming period is ruled out by the presence of 54 craters and basins 100 km in diameter and larger (on the imaged portion of Mercury) that have either well-defined or poorly-defined secondary-crater fields. Total isostatic compensation of impact craters ???800 km in diameter indicates that the average viscosity of the Mercurian crust over the past 4+ aeons was the same as that for the moon (???1026.5 P). This calculated viscosity and the distribution of large craters and basins suggest that either the very early crustal viscosity on Mercury was less than that of the moon and the present viscosity greater, or the differences in large crater populations on the two bodies is indeed the result of variations in rates of crater production. ?? 1977.

  9. In situ flash X-ray observation of projectile penetration processes and crater cavity growth in porous gypsum target analogous to low-density asteroids

    NASA Astrophysics Data System (ADS)

    Yasui, Minami; Arakawa, Masahiko; Hasegawa, Sunao; Fujita, Yukihiro; Kadono, Toshihiko

    2012-11-01

    Recent studies of impact craters formed on low-density asteroids led to the proposal of a new crater formation mechanism dominated by pore collapse and compaction. Thus, it is important to study the crater formation process associated with the projectile penetration on porous cohesive targets. Laboratory impact experiments were conducted for a porous gypsum target with porosity of 50%, and flash X-rays were used to visualize the interior of the target for in situ observation of crater formation and projectile penetration. Spherical projectiles made of three different materials, stainless steel, aluminum, and nylon were impacted at 1.9-2.4 km/s (low-velocity impact) and 5.6-6.4 km/s (high-velocity impact) by using a two-stage light-gas gun. Two imaging plates were used to take two X-ray images at a different delay time from the impact moment for one shot. Two types of crater cavity shape were found on the porous gypsum target, that is, penetration holes or hemispherical cavities, depending on the projectile size and density, and the impact velocity. The drag coefficient of a projectile was determined by measuring the penetration depth changing with time, and we found that it was closely related to the crater cavity shape: it was about 0.9 for a penetration hole, while it was 2.3-3.9 for a hemispherical cavity. This large value for a hemispherical cavity could have been caused by the deformation or the disruption of the projectile. The cratering efficiency, ρtVcr(t)/mp, was found to have a power law relationship to the scaling time for crater growth, πt = vit/rp, where vi is the impact velocity, rp is the projectile radius, and t is the time after the impact, and all data for stainless steel and aluminum projectiles merged completely and could be fitted by a power-law equation of ρtVcr(t)/mp=2.69×10-1πt1.10. Furthermore, the scaled crater volume, πV = Vcr_finalρt/mp, where Vcr_final is the final crater cavity volume, ρt is the target density, and mp is the projectile mass, was successfully fitted by a power law equation when another scaling parameter was used for the crater formation in strength regime, πY=Yt/ρtvi2, where Yt is the target material strength, as follows: πV=1.69×10-1πY-0.51. As a result, the crater formed on porous gypsum was revealed to be more than one order of magnitude smaller than that formed on basalt. Based on our experimental results, which visualize how crater cavities on porous cohesive materials grow with projectile penetration, we are able to discuss compression and excavation processes during crater formation quantitatively. This observation enables us to investigate and revise numerical models and crater scaling laws for high-velocity impacts into porous cohesive materials.

  10. Raining Rocks

    NASA Image and Video Library

    2017-02-01

    Impact ejecta is material that is thrown up and out of the surface of a planet as a result of the impact of an meteorite, asteroid or comet. The material that was originally beneath the surface of the planet then rains down onto the environs of the newly formed impact crater. Some of this material is deposited close to the crater, folding over itself to form the crater rim, visible here as a yellowish ring. Other material is ejected faster and falls down further from the crater rim creating two types of ejecta: a "continuous ejecta blanket" and "discontinuous ejecta." Both are shown in this image. The blocky area at the center of the image close to the yellowish crater rim is the "continuous" ejecta. The discontinuous ejecta is further from the crater rim, streaking away from the crater like spokes on a bicycle. (Note: North is to the right.) http://photojournal.jpl.nasa.gov/catalog/PIA11180

  11. Ceres and the terrestrial planets impact cratering record

    NASA Astrophysics Data System (ADS)

    Strom, R. G.; Marchi, S.; Malhotra, R.

    2018-03-01

    Dwarf planet Ceres, the largest object in the Main Asteroid Belt, has a surface that exhibits a range of crater densities for a crater diameter range of 5-300 km. In all areas the shape of the craters' size-frequency distribution is very similar to those of the most ancient heavily cratered surfaces on the terrestrial planets. The most heavily cratered terrain on Ceres covers ∼15% of its surface and has a crater density similar to the highest crater density on <1% of the lunar highlands. This region of higher crater density on Ceres probably records the high impact rate at early times and indicates that the other 85% of Ceres was partly resurfaced after the Late Heavy Bombardment (LHB) at ∼4 Ga. The Ceres cratering record strongly indicates that the period of Late Heavy Bombardment originated from an impactor population whose size-frequency distribution resembles that of the Main Belt Asteroids.

  12. Secondary Crater-Initiated Debris Flow on the Moon

    NASA Technical Reports Server (NTRS)

    Martin-Wells, K. S.; Campbell, D. B.; Campbell, B. A.; Carter, L. M.; Fox, Q.

    2016-01-01

    In recent work, radar circular polarization echo properties have been used to identify "secondary" craters without distinctive secondary morphologies. Because of the potential for this method to improve our knowledge of secondary crater population-in particular the effect of secondary populations on crater- derived ages based on small craters-it is important to understand the origin of radar polarization signatures associated with secondary impacts. In this paper, we utilize Lunar Reconnaissance Orbiter Camera photographs to examine the geomorphology of secondary craters with radar circular polarization ratio enhancements. Our investigation reveals evidence of dry debris flow with an impact melt component at such secondary craters. We hypothesize that these debris flows were initiated by the secondary impacts themselves, and that they have entrained blocky material ejected from the secondaries. By transporting this blocky material downrange, we propose that these debris flows (rather than solely ballistic emplacement) are responsible for the tail-like geometries of enhanced radar circular polarization ratio associated with the secondary craters investigated in this work. Evidence of debris flow was observed at both clustered and isolated secondary craters, suggesting that such flow may be a widespread occurrence, with important implications for the mixing of primary and local material in crater rays.

  13. Ancient impact and aqueous processes at Endeavour Crater, Mars

    USGS Publications Warehouse

    Squyres, S. W.; Arvidson, R. E.; Bell, J.F.; Calef, F.J.; Clark, B. C.; Cohen, B. A.; Crumpler, L.A.; de Souza, P. A.; Farrand, W. H.; Gellert, Ralf; Grant, J.; Herkenhoff, K. E.; Hurowitz, J.A.; Johnson, J. R.; Jolliff, B.L.; Knoll, A.H.; Li, R.; McLennan, S.M.; Ming, D. W.; Mittlefehldt, D. W.; Parker, T.J.; Paulsen, G.; Rice, M.S.; Ruff, S.W.; Schröder, C.; Yen, A. S.; Zacny, K.

    2012-01-01

    The rover Opportunity has investigated the rim of Endeavour Crater, a large ancient impact crater on Mars. Basaltic breccias produced by the impact form the rim deposits, with stratigraphy similar to that observed at similar-sized craters on Earth. Highly localized zinc enrichments in some breccia materials suggest hydrothermal alteration of rim deposits. Gypsum-rich veins cut sedimentary rocks adjacent to the crater rim. The gypsum was precipitated from low-temperature aqueous fluids flowing upward from the ancient materials of the rim, leading temporarily to potentially habitable conditions and providing some of the waters involved in formation of the ubiquitous sulfate-rich sandstones of the Meridiani region.

  14. Fresh Impact Craters on Asteroid Vesta

    NASA Image and Video Library

    2011-12-06

    This image combines two separate views of the giant asteroid Vesta obtained by NASA Dawn spacecraft. The fresh impact craters in this view are located in the south polar region, which has been partly covered by landslides from the adjacent crater.

  15. The Global Contribution of Secondary Craters on the Icy Satellites

    NASA Astrophysics Data System (ADS)

    Hoogenboom, T.; Johnson, K. E.; Schenk, P.

    2014-12-01

    At present, surface ages of bodies in the Outer Solar System are determined only from crater size-frequency distributions (a method dependent on an understanding of the projectile populations responsible for impact craters in these planetary systems). To derive accurate ages using impact craters, the impactor population must be understood. Impact craters in the Outer Solar System can be primary, secondary or sesquinary. The contribution of secondary craters to the overall population has recently become a "topic of interest." Our objective is to better understand the contribution of dispersed secondary craters to the small crater populations, and ultimately that of small comets to the projectile flux on icy satellites in general. We measure the diameters of obvious secondary craters (determined by e.g. irregular crater shape, small size, clustering) formed by all primary craters on Ganymede for which we have sufficiently high resolution data to map secondary craters. Primary craters mapped range from approximately 40 km to 210 km. Image resolution ranges from 45 to 440 m/pixel. Bright terrain on Ganymede is our primary focus. These resurfaced terrains have relatively low crater densities and serve as a basis for characterizing secondary populations as a function of primary size on an icy body for the first time. Although focusing on Ganymede, we also investigate secondary crater size, frequency, distribution, and formation, as well as secondary crater chain formation on icy satellites throughout the Saturnian and Jovian systems principally Rhea. We compare our results to similar studies of secondary cratering on the Moon and Mercury. Using Galileo and Voyager data, we have identified approximately 3,400 secondary craters on Ganymede. In some cases, we measured crater density as a function of distance from a primary crater. Because of the limitations of the Galileo data, it is necessary to extrapolate from small data sets to the global population of secondary craters. Nonetheless, we confirm that secondary craters on Ganymede have narrow size-frequency distributions and that they correlate with primary crater diameter. From these data we will evaluate the contribution of secondary craters over a range of crater diameters.

  16. Oceanic Impact: Mechanisms and Environmental Perturbations

    NASA Technical Reports Server (NTRS)

    Gersonde, Rainer (Editor); Deutsch, Alex (Editor); Ivanov, Boris A. (Editor); Kyte, Frank T. (Editor)

    2002-01-01

    The contents include the following: Oceanic impacts-a growing field of fundamental geoscience. Shock metamorphism on the ocean floor (numerical simulations). Numerical modeling of impact-induced modifications of the deep-sea floor. Computer modelling of the water resurge at a marine impact: the Lockne crater, Sweden. Experimental investigation of the role of water in impact vaporization chemistry. Calcareous plankton stratigraphy around the Pliocene Eltanin asteroid impact area (SE Pacific): documentation and application for geological and paleoceanographic reconstruction. Composition of impact melt debris from the Eltanin impact strewn field, Bellingshausen Sea. Iridium concentrations and abundances of meteoritic ejecta from the Eltanin impact in sediment cores from Polarstern expedition ANT XII/4. Unmelted meteoritic debris collected from Eltanin ejecta in Polarstern cores from expedition ANT XII/4. Impact tsunami-Eltanin. Ancient impact structures on modern continental shelves: The Chesapeake Bay, Montagnais, and Toms Canyon craters, Atlantic margin of North America. The Mjolnir marine impact crater porosity anomaly. Kardla (Hiiu-maa Island, Estonia) - the buried and well-preserved Ordovician marine impact structure. Long-term effect of the Kardla crater (Hiiu-maa, Estonia) on Late Ordovician carbonate sedimentation. The middle Devonian Kaluga impact crater (Russia): new interpretation of marine setting.

  17. Non-random cratering flux in recent time

    NASA Technical Reports Server (NTRS)

    Schultz, P. H.

    1988-01-01

    Proposed periodic cycles of mass mortality have been linked to periodic changes in the impact flux on Earth. Such changes in the impact flux, however, also should be recorded on the Moon. Previous studies have concluded that the impact flux on the Moon over the last 1 to 2 billion years has been reasonably constant, but sudden changes in the impact flux over time intervals as short as 30 my could not be detected in these studies unless the added crater population greatly exceeded the cumulative cratering record. Consequently this study focuses only on bright-rayed craters larger than 1 km thereby not only limiting the study to recent craters but also largely eliminating contamination by secondary craters. Preservation of ray patterns and other fine-scale surface textures in the ejecta provides first-order culling of craters younger than Tycho, i.e., about 100 my. Although a periodic change in the impact flux in the Earth-Moon system cannot yet be confirmed from the data, a non-random component appears to exist with an increased flux around 7 and 15 my. The concentrations in different quadrants of the lunar hemisphere would be consistent with a shower of debris generally smaller than 0.5 km.

  18. Impact Craters on Earth: Lessons for Understanding Martian Geological Materials and Processes

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.

    2015-12-01

    Impact cratering is one of the most ubiquitous geological processes in the Solar System and has had a significant influence on the geological evolution of Mars. Unlike the Moon and Mercury, the Martian impact cratering record is notably diverse, which is interpreted to reflect interactions during the impact process with target volatiles and/or the atmosphere. The Earth also possesses a volatile-rich crust and an atmosphere and so is one of the best analogues for understanding the effects of impact cratering on Mars. Furthermore, fieldwork at terrestrial craters and analysis of samples is critical to ground-truth observations made based on remote sensing data from Martian orbiters, landers, and rovers. In recent years, the effect of target lithology on various aspects of the impact cratering process has emerged as a major research topic. On Mars, volatiles have been invoked to be the primary factor influencing the morphology of ejecta deposits - e.g., the formation of single-, double- and multiple-layered ejecta deposits - and central uplifts - e.g., the formation of so-called "central pit" craters. Studies of craters on Earth have also shown that volatiles complicate the identification of impactites - i.e., rocks produced and/or affected by impact cratering. Identifying impactites on Earth is challenging, often requiring intensive and multi-technique laboratory analysis of hand specimens. As such, it is even more challenging to recognize such materials in remote datasets. Here, observations from the Haughton (d = 23 km; Canada), Ries (d = 24 km; Germany), Mistastin (d = 28 km; Canada), Tunnunik, (d = 28 km; Canada), and West Clearwater Lake (d = 36 km; Canada) impact structures are presented. First, it is shown that some impactites mimic intrusive, volcanic, volcanoclastic and in some cases sedimentary clastic rocks. Care should, therefore, be taken in the identification of seemingly unusual igneous rocks at rover landing sites as they may represent impact melt rocks. Second, it is proposed that layered ejecta deposits on Earth and Mars form from a common multi-stage emplacement model. Third, in terms of the origin of central pit craters it is shown that based on current definitions, these central uplift morphologies also occur on Earth, which offers important insights in their formation.

  19. Impact crater densities on volcanoes and coronae on venus: implications for volcanic resurfacing.

    PubMed

    Namiki, N; Solomon, S C

    1994-08-12

    The density of impact craters on large volcanoes on Venus is half the average crater density for the planet. The crater density on some classes of coronae is not significantly different from the global average density, but coronae with extensive associated volcanic deposits have lower crater densities. These results are inconsistent with both single-age and steady-state models for global resurfacing and suggest that volcanoes and coronae with associated volcanism have been active on Venus over the last 500 million years.

  20. Correlation of the Largest Craters, Stratigraphic Impact Signatures, and Extinction Events Over the Past 250 Myr

    NASA Technical Reports Server (NTRS)

    Rampino, Michael R.; Caldeira, Ken

    2017-01-01

    The six largest known impact craters of the last 250 Myr (greater than or equal to 70 km in diameter), which are capable of causing significant environmental damage, coincide with four times of recognized extinction events at 36 (with 2 craters), 66, and 145 Myr ago, and possibly with two provisional extinction events at 168 and 215 Myr ago. These impact cratering events are accompanied by layers in the geologic record interpreted as impact ejecta. Chance occurrences of impacts and extinctions can be rejected at confidence levels of 99.96 percent (for 4 impact/extinctions) to 99.99 percent (for 6 impact/extinctions). These results argue that several extinction events over the last 250 Myr may be related to the effects of large-body impacts.

  1. Hydrological and sedimentary analyses of well-preserved paleofluvial-paleolacustrine systems at Moa Valles, Mars

    NASA Astrophysics Data System (ADS)

    Salese, Francesco; Di Achille, Gaetano; Neesemann, Adrian; Ori, Gian Gabriele; Hauber, Ernst

    2016-02-01

    Moa Valles is a well-preserved, likely Amazonian (younger than 2 Ga old), paleodrainage system that is nearly 300 km long and carved into ancient highland terrains west of Idaeus Fossae. The fluvial system apparently originated from fluidized ejecta blankets, and it consists of a series of dam breach paleolakes with associated fan-shaped sedimentary deposits. The paleolakes are interconnected and drain eastward into Liberta crater, forming a complex and multilobate deltaic deposit exhibiting a well-developed channelized distributary pattern with evidence of switching on the delta plain. A breach area, consisting of three spillover channels, is present in the eastern part of the crater rim. These channels connect the Liberta crater to the eastward portion of the valley system, continuing toward Moa Valles with a complex pattern of anabranching channels that is more than 180 km long. Based on hydrological calculations of infilling and spillover discharges of the Liberta crater lake, the formation of the whole fluvial system is compatible with short to medium (<1000 year) timescales, although the length and morphology of the observed fluvial-lacustrine features suggest long-term periods of activity based on terrestrial analogs. Water for the 300 km long fluvial system may have been primarily sourced by the melting of shallow ice due to the thermal anomaly produced by impact craters. The occurrence of relatively recent (likely Amazonian) hydrological activity, which could have been primarily supported by groundwater replenishment, supports the hypothesis that hydrological activity could have been possible after the Noachian-Hesperian boundary, which is commonly considered as the onset epoch of the present cold-dry climate.

  2. Imaging the Buried Chicxulub Crater with Gravity Gradients and Cenotes

    NASA Astrophysics Data System (ADS)

    Hildebrand, A. R.; Pilkington, M.; Halpenny, J. F.; Ortiz-Aleman, C.; Chavez, R. E.; Urrutia-Fucugauchi, J.; Connors, M.; Graniel-Castro, E.; Camara-Zi, A.; Vasquez, J.

    1995-09-01

    Differing interpretations of the Bouguer gravity anomaly over the Chicxulub crater, Yucatan Peninsula, Mexico, have yielded diameter estimates of 170 to 320 km. Knowing the crater's size is necessary to quantify the lethal perturbations to the Cretaceous environment associated with its formation. The crater's size (and internal structure) is revealed by the horizontal gradient of the Bouguer gravity anomaly over the structure, and by mapping the karst features of the Yucatan region. To improve our resolution of the crater's gravity signature we collected additional gravity measurements primarily along radial profiles, but also to fill in previously unsurveyed areas. Horizontal gradient analysis of Bouguer gravity data objectively highlights the lateral density contrasts of the impact lithologies and suppresses regional anomalies which may obscure the gravity signature of the Chicxulub crater lithologies. This gradient technique yields a striking circular structure with at least 6 concentric gradient features between 25 and 85 km radius. These features are most distinct in the southwest probably because of denser sampling of the gravity field. Our detailed profiles detected an additional feature and steeper gradients (up to 5 mGal/km) than the original survey. We interpret the outer four gradient maxima to represent concentric faults in the crater's zone of slumping as is also revealed by seismic reflection data. The inner two probably represent the margin of the central uplift and the peak ring and or collapsed transient cavity. Radial gradients in the SW quadrant over the inferred ~40 km-diameter central uplift (4) may represent structural "puckering" as revealed at eroded terrestrial craters. Gradient features related to regional gravity highs and lows are visible outside the crater, but no concentric gradient features are apparent at distances > 90 km radius. The marginal gradient features may be modelled by slump faults as observed in large complex craters on the other terrestrial planets. A modeled fault of 1.5 km displacement (slightly slumped block exterior and impact breccia interior) reproduces the steepest gradient feature. This model is incompatible with models that place these gradient features inside the collapsed transient cavity. Locations of the karst features of the northern Yucatan region were digitized from 1:50,000 topographic maps, which show most but not all the water-filled sinkholes (locally known as cenotes). A prominent ring of cenotes is visible over the crater that is spatially correlated to the outer steep gravity gradient feature. The mapped cenotes constitute an unbiased sampling of the region's karst surface features of >50 m diameter. The gradient maximum and the cenote ring both meander with amplitudes of up to 2 km. The wiggles in the gradient feature and the cenote distribution probably correspond to the "scalloping" observed at the headwall of terraces in large complex craters. A second partial cenote ring exterior to the southwest side of the main ring corresponds to a less-prominent gravity gradient feature. No concentric structure is observable in the distribution of karst features at radii >90 km. The cenote ring is bounded by the outer peripheral steep gradient feature and must be related to it; the slump faults must have been reactivated sufficiently to create fracturing in the overlying and much younger sediment. Long term subsidence, as found at other terrestrial craters is a possible mechanism for the reactivation. Such long term subsidence may be caused by differential compaction or thermal relaxation. Elevations acquired during gravity surveys show that the cenote ring also corresponds to a topographic low along some of its length that probably reflects preferential erosion.

  3. Apollo 16 exploration of Descartes - A geologic summary.

    NASA Technical Reports Server (NTRS)

    1973-01-01

    The Cayley Plains at the Apollo 16 landing site consist of crudely stratified breccias to a depth of at least 200 meters, overlain by a regolith 10 to 15 meters thick. Samples, photographs, and observations by the astronauts indicate that most of the rocks are impact breccias derived from an anorthosite-gabbro complex. The least brecciated members of the suite include coarse-grained anorthosite and finer-grained, more mafic rocks, some with igneous and some with metamorphic textures. Much of the transverse area is covered by ejecta from North Ray and South Ray craters, but the abundance of rock fragments increases to the south toward the younger South Ray crater.

  4. Stereo Pair, with Topographic Height as Color, Manicouagan Crater, Quebec, Canada

    NASA Image and Video Library

    2003-03-27

    Manicouagan Crater is one of the world largest and oldest known impact craters and perhaps the one most readily apparent to astronauts in orbit. The age of the impact is estimated at 214 million years before present.

  5. Impact Craters and Impactites as Important Targets for Mars Sample Return Missions

    NASA Astrophysics Data System (ADS)

    Osinski, G. R.; Cockell, C. S.; Pontefract, A.; Sapers, H. M.; Tornabene, L. L.

    2018-04-01

    Research conducted over the past few years reveals that meteorite impact craters provide substrates and habitats for life. We propose that craters and their products should be reconsidered as high priority targets for Mars Sample Return missions.

  6. Preliminary Examination of Impact Craters on Al Foil from the Stardust Interstellar Dust Collector

    NASA Astrophysics Data System (ADS)

    Stroud, R.; Stardust Interstellar Preliminary Examination Team; 29,000 Stardust@home Dusters

    2011-12-01

    The Interstellar Dust Collector from the NASA Stardust mission provides an unprecedented opportunity for direct laboratory study of particles from the contemporary interstellar dust (ISD) stream in order to obtain such information as grain composition and microstructure. The collector is comprised of two collection media: silica aerogel tiles and Al foil strips. Preliminary examination (PE) of particles captured in each medium is on-going. To-date, four grains analyzed in situ in aerogel with synchrotron X-ray techniques show track trajectories and elemental composition that indicate a probable interstellar origin. In addition, we report here the discovery of one crater on an Al foil for which the residue elemental composition and crater shape are consistent with the impact of a grain of interstellar origin, although an interplanetary origin has not been ruled out. Automated mapping by SEM is the primary tool for identifi-cation of craters on the Al foils. A complete map of each foil requires collection of several thousand images at a resolution of ~ 50 nm/px. Automated software has been developed to identify crater candidates, but so far it has not replaced manual efforts. Identified candidates are then re-imaged at ~ 15 nm/px, for confirmation as impact craters. Fifteen foils have been imaged; crater identification is complete for eight, yielding 32 craters. The average areal density of craters is 9.7 cm-2, which extrapolates to ~1500 craters on the total foil collection area. Initial elemental analysis of residues in six craters has been performed with a combination of Auger spectroscopy, conventional, off-axis energy dispersive X-ray spectroscopy (EDX), on-axis, silicon drift-detector EDX. Additional analysis by TEM of the residue composition and crater morphology was obtained on FIB cross-sections of four of the craters. All craters contained detectable levels of Si and O. One crater was found to contain Mg, Si, O, Fe, Ni, S, Ca and Cr, indicative of an interstellar or interplanetary origin. The shape of this crater is consistent with the impact of a fluffy aggregate grain at < 10 km/s, similar to three of the four ISD candidates identified in the aerogel, and slower than expected for an interplanetary dust grain. In three cases the impacting grain was determined by detection of additional Ce, Zn, Ti, K, or Na to be a fragment of the solar cell cover glass.

  7. Multivariate analyses of crater parameters and the classification of craters

    NASA Technical Reports Server (NTRS)

    Siegal, B. S.; Griffiths, J. C.

    1974-01-01

    Multivariate analyses were performed on certain linear dimensions of six genetic types of craters. A total of 320 craters, consisting of laboratory fluidization craters, craters formed by chemical and nuclear explosives, terrestrial maars and other volcanic craters, and terrestrial meteorite impact craters, authenticated and probable, were analyzed in the first data set in terms of their mean rim crest diameter, mean interior relief, rim height, and mean exterior rim width. The second data set contained an additional 91 terrestrial craters of which 19 were of experimental percussive impact and 28 of volcanic collapse origin, and which was analyzed in terms of mean rim crest diameter, mean interior relief, and rim height. Principal component analyses were performed on the six genetic types of craters. Ninety per cent of the variation in the variables can be accounted for by two components. Ninety-nine per cent of the variation in the craters formed by chemical and nuclear explosives is explained by the first component alone.

  8. Dimensional scaling for impact cratering and perforation

    NASA Technical Reports Server (NTRS)

    Watts, Alan; Atkinson, Dale; Rieco, Steve

    1993-01-01

    This report summarizes the development of two physics-based scaling laws for describing crater depths and diameters caused by normal incidence impacts into aluminum and TFE Teflon. The report then describes equations for perforations in aluminum and TFE Teflon for normal impacts. Lastly, this report also studies the effects of non-normal incidence on cratering and perforation.

  9. Hydrocode modeling of oblique impacts into terrestrial planets

    NASA Astrophysics Data System (ADS)

    Kendall, Jordan D.

    The abundance of moderately siderophile elements ("iron-loving"; e.g., Co, Ni) in the Earth's mantle is 10 to 100 times larger than predicted by chemical equilibrium between silicate melt and iron at low pressure, but it does match expectation for equilibrium at high pressure and temperature. Recent studies of differentiated planetesimal impacts assume that planetesimal cores survive the impact intact as concentrated masses that passively settle from a zero initial velocity and undergo turbulent entrainment in a global magma ocean; under these conditions, cores greater than 10 km in diameter do not fully mix without a sufficiently deep magma ocean. I have performed hydrocode simulations that revise this assumption and yield a clearer picture of the impact process for differentiated planetesimals possessing iron cores with radius = 100 km that impact into magma oceans. The impact process strips away the silicate mantle of the planetesimal and then stretches the iron core, dispersing the liquid iron into a much larger volume of the underlying liquid silicate mantle. Lagrangian tracer particles track the initially intact iron core as the impact stretches and disperses the core. The final displacement distance of initially closest tracer pairs gives a metric of core stretching. The statistics of stretching imply mixing that separates the iron core into sheets, ligaments, and smaller fragments, on a scale of 10 km or less. The impact dispersed core fragments undergo further mixing through turbulent entrainment as the molten iron fragments sink through the magma ocean and settle deeper into the planet. My results thus support the idea that iron in the cores of even large differentiated planetesimals can chemically equilibrate deep in a terrestrial magma ocean. The largest known impact on the Moon formed the South Pole-Aitken (SP-A) basin and excavated material as deep as the mantle. Here I suggest that large impacts eject enough material to cover the farside of the Moon. During the impact process, ejecta leave the crater and travel well beyond the transient crater. Ejecta blankets depend on impactor size and angle. I use iSALE, an impact hydrocode, to determine the ejecta distribution, volume, and thickness. I calculate the trajectory of ejecta that leave the crater and return to the lunar surface. In these simulations, an ejecta blanket forms, with a thickness of kilometers, over the lunar farside. The ejecta blanket thicknesses are comparable to the difference between nearside and farside crustal thickness. Previous studies suggest other possible mechanisms for the lunar farside-nearside dichotomy. However, the impact that formed SP-A basin was large enough to eject material onto the farside. I also suggest a differentiated impactor's core would disperse downrange of the impact point underneath the basin. Doublet craters form within crater rays on terrestrial bodies. The near simultaneous impact of two projectiles results in overlapping craters. This process results in modified crater morphologies and ejecta morphologies. I modeled the impact of two identical projectiles and vary the angle, timing, and initial separation distance. In this work, I identified projectiles with a separation distance of four times their initial diameter will form distinct craters, but the ejecta from the uprange crater will overfill the downrange crater and result in a smaller crater depth. This result implies the direction of the impactor may be inferred from the crater depths. Also, I found impacts that form closer together result in elliptical or dumbbell craters depending upon the impact parameters. The ejecta curtains interact in each simulation and result in structures similar to the V-shaped ridges or "herringbone" patterns traversing clusters of secondary craters in observations. The ejecta that lands within the ridges comes from a depth that is 100 to 125 m for a 500 m impactor traveling at 1 km/s. This is less deep than the maximum excavation depth of 125 to 150 m, depending upon the impact angle. This work represents a first step towards a more comprehensive method for not only determining how doublet craters form and how aberrant craters form, such as Messier A on the Moon, but also determining how the regolith changes and the ejecta blanket forms for such impacts.

  10. An age of both Ilumetsa structures - support of their impact origin

    NASA Astrophysics Data System (ADS)

    Losiak, A.; Plado, J.; Jõeleht, A.; Szyszka, M.; Wild, E. M.; Bronikowska, M.; Belcher, C.; Steier, P.

    2017-09-01

    Two Ilumetsa craters are listed as a proven meteorite impact site in the Earth Impact Database, but neither remnants of the projectile nor other identification criteria (e.g., PDFs) have been found up to this point [1]. Also, until now, the temporal relation between two Ilumetsa craters has not been established, as only larger structure was dated by determining 14C age of gyttja (containing charcoal and silty sand) present within it [2]. In the present study we have established an age of both Ilumetsa craters by the 14C dating of charcoal present within their ejecta blankets (similar method was used recently to date Kaali crater [3]). Both craters were formed between 7170 and 7000 cal. BP. Such temporal relation supports impact origin of those features.

  11. Some implications of large impact craters and basins on Venus for terrestrial ringed craters and planetary evolution

    NASA Technical Reports Server (NTRS)

    Mckinnon, W. B.; Alexopoulos, J. S.

    1994-01-01

    Approximately 950 impact craters have been identified on the surface of Venus, mainly in Magellan radar images. From a combination of Earth-based Arecibo, Venera 15/1, and Magellan radar images, we have interpreted 72 as unequivocal peak-ring craters and four as multiringed basins. The morphological and structural preservation of these craters is high owing to the low level of geologic activity on the venusian surface (which is in some ways similar to the terrestrial benthic environment). Thus these craters should prove crucial to understanding the mechanics of ringed crater formation. They are also the most direct analogs for craters formed on the Earth in Phanerozoic time, such as Chicxulub. We summarize our findings to date concerning these structures.

  12. Einstein and Einstein A: A Study in Crater Morphology

    NASA Image and Video Library

    2017-12-08

    NASA image release May 14, 2010 Einstein and Einstein A: A Study in Crater Morphology Located on the western limb of the Moon, Einstein and Einstein A craters (16.3oN, 271.3oE ) are only visible to Earth-based observers during certain lunar lighting and orientation conditions. Einstein A is younger than Einstein, as indicated by the fact that it lies squarely in the middle of the floor of Einstein. When viewed in topographic data, these two craters reveal much about the relative age and shape of an impact crater. To understand further, let's first take a look at Einstein. Einstein is a fairly large crater that spans 198 km across. A crater's size alone however cannot reveal much about age. ÊEinstein's relative age can be determined by examining the frequency and distribution of impact craters overprinted on its rim and floor. Younger craters have had fewer impacts, which enables them to retain their original morphology. Einstein A reveals most of its original structure, including a raised rim and ejecta blanket, and is therefore a relatively young crater as compared to Einstein, whose original structure has been somewhat degraded over time by smaller impacts. The Einstein craters were named after famed physicist, philosopher, and scientist Albert Einstein (1879-1955). To learn more go to: www.nasa.gov/mission_pages/LRO/multimedia/lroimages/lola-... NASA Goddard Space Flight Center is home to the nation's largest organization of combined scientists, engineers and technologists that build spacecraft, instruments and new technology to study the Earth, the sun, our solar system, and the universe.

  13. The Chesapeake Bay Impact Crater: An Educational Investigation for Students into the Planetary Impact Process and its Environmental Consequences

    NASA Technical Reports Server (NTRS)

    Levine, Arlene S.

    2008-01-01

    Planetary impact craters are a common surface feature of many planetary bodies, including the Earth, the Moon, Mars, Mercury, Venus, and Jupiter s moons, Ganymede and Callisto. The NASA Langley Research Center in Hampton, VA, is located about 5 km inside the outer rim of the Chesapeake Bay Impact Crater. The Chesapeake Bay Impact Crater, with a diameter of 85 km is the sixth largest impact crater on our planet. The U.S. Geological Survey (USGS), in collaboration with the NASA Langley Research Center, the Virginia Department of Environmental Quality (VDEQ), the Hampton Roads Planning District Commission (HRPDC), and the Department of Geology of the College of William and Mary (WM) drilled into and through the crater at the NASA Langley Research Center and obtained a continuous core to a depth of 2075.9 ft (632.73 meters) from the Chesapeake Bay Impact Crater. At the NASA Langley location, the granite basement depth was at 2046 ft (623.87 meters). This collaborative drilling activity provided a unique educational opportunity and ongoing educational partnership between USGS, NASA Langley and the other collaborators. NASA Langley has a decade-long, ongoing educational partnership with the Colonial Coast Council of the Girl Scouts. The core drilling and on site analysis and cataloguing of the core segments provided a unique opportunity for the Girl Scouts to learn how geologists work in the field, their tools for scientific investigation and evaluation, how they perform geological analyses of the cores in an on-site tent and learn about the formation of impact craters and the impact of impacting bodies on the sub-surface, the surface, the oceans and atmosphere of the target body. This was accomplished with a two-part activity. Girl Scout day camps and local Girl Scout troops were invited to Langley Research Center Conference Center, where more than 300 Girl Scouts, their leaders and adult personnel were given briefings by scientists and educators from the USGS, NASA, VDEQ, HRPDC and WM on the principles of geology, the formation of impact craters, the consequences of the impacting body on the atmosphere, ocean, surface and sub-surface, the geological, chemical and biological analyses of the core and the cataloguing and storage of the core segments, etc. After the briefings, the Girl Scouts visited the drilling site where they inspected the core drilling rig, examined the core samples and discussed the drilling procedures, cores and interpretation of the cores with scientists and educators from the organizations conducting the core drilling. Demonstrations at the drilling site included demonstrations of impacting objects hitting multi-colored layered mud targets at different angles of entry. The multi-colored layers of mud were instructive in mapping out the distribution of impact-ejected material around the impact crater. The presentation will include a series of photographs of the Girl Scout participating in activities at the Chesapeake Bay Impact Crater drill site, including retrieving cores from the drilling rig, inspecting the core samples and participating in the impact-crater formation demonstrations.

  14. Photographer : JPL Range : 225,000 kilometers (140,625 miles) This image of the Jovian moon Europa

    NASA Technical Reports Server (NTRS)

    1979-01-01

    Photographer : JPL Range : 225,000 kilometers (140,625 miles) This image of the Jovian moon Europa was taken by Voyager 2 along the evening terminator, which best shows the surface topography of complex narrow ridges, seen as curved bright streaks, 5 to 10 kilometers wide, and typically 100 kilometers in length. The area shown is about 600 by 800 kilometers, and the smallest features visible are about 4 kilometers in size. Also visable are dark bands, more diffused in character, 20 to 40 kilometers wide and hundreds to thousands of kilometers in length. A few features are suggestive of impact craters but are rare, indication that the surface thought to be dominantly ice is still active, perhaps warmed by tidal heating like Io. The larger icy satellites, Callisto and Ganymede, are evidently colder with much more rigid crusts and ancient impact craters. The complex intersection of dark markings and bright ridges suggest that the surface has been fractured and material from beneath has welled up to fill the cracks.

  15. Meteor Crater: Energy of formation - Implications of centrifuge scaling

    NASA Technical Reports Server (NTRS)

    Schmidt, R. M.

    1980-01-01

    Recent work on explosive cratering has demonstrated the utility of performing subscale experiments on a geotechnic centrifuge to develop scaling rules for very large energy events. The present investigation is concerned with an extension of this technique to impact cratering. Experiments have been performed using a projectile gun mounted directly on the centrifuge rotor to launch projectiles into a suitable soil container undergoing centripetal accelerations in excess of 500 G. The pump tube of a two-stage light-gas gun was used to attain impact velocities of approximately 2 km/sec. The results of the experiments indicate that the energy of formation of any large impact crater depends upon the impact velocity. This dependence, shown for the case of Meteor Crater, is consistent with analogous results for the specific energy dependence of explosives and is expected to persist to impact velocities in excess of 25 km/sec.

  16. A Comparison of Crater-Size Scaling and Ejection-Speed Scaling During Experimental Impacts in Sand

    NASA Technical Reports Server (NTRS)

    Anderson, J. L. B.; Cintala, M. J.; Johnson, M. K.

    2014-01-01

    Non-dimensional scaling relationships are used to understand various cratering processes including final crater sizes and the excavation of material from a growing crater. The principal assumption behind these scaling relationships is that these processes depend on a combination of the projectile's characteristics, namely its diameter, density, and impact speed. This simplifies the impact event into a single point-source. So long as the process of interest is beyond a few projectile radii from the impact point, the point-source assumption holds. These assumptions can be tested through laboratory experiments in which the initial conditions of the impact are controlled and resulting processes measured directly. In this contribution, we continue our exploration of the congruence between crater-size scaling and ejection-speed scaling relationships. In particular, we examine a series of experimental suites in which the projectile diameter and average grain size of the target are varied.

  17. Impactites from Popigai Crater

    NASA Technical Reports Server (NTRS)

    Masaitis, V. L.

    1992-01-01

    Impactites (tagamites and suevites) from Popigai impact crater, whose diameter is about 100 km, are distributed over an area of 5000 sq km. The continuous sheet of suevite overlies the allogenic polymict breccia and partly authogenic breccia, and may also be observed in lenses or irregular bodies. The thickness of suevites in the central part of the crater is more than 100 m. Suevites may be distinguished by content of vitroclasts, lithoclasts, and crystalloclasts, by their dimensions, and by type of cementation, which reflects the facial settings of ejection of crushed and molten material, its sedimentation and lithification. Tagamites (impact melt rocks) are distributed on the surface predominantly in the western sector of the crater. The most characteristic are thick sheetlike bodies overlying the allogenic breccia and occurring in suevites where minor irregular bodies are widespread. The maximal thickness of separate tagamite sheets is up to 600 m. Tagamites, whose matrix is crystallized to a different degree, include fragments of minerals and gneiss blocks, among them shocked and thermally metamorphosed ones. Tagamite sheets have a complex inner structure; separate horizontal zones distinguish in crystallinity and fragment saturation. Differentiation in the impact melt in situ was not observed. The average chemical compositions of tagamites and suevites are similar, and correspond to the composition of biotite-garnet gneisses of the basement. According to the content of supplied Ir, Ni, and other siderophiles, impact melt was contaminated by 5 percent cosmic matter of collided body, probably ordinary chondrite. The total volume of remaining products of chilled impact melt is about 1750 cu km. Half this amount is represented by tagamite bodies. Though impact melt was in general well homogenized, the trend analysis showed that the concentric zonation is distribution of SiO2, MgO, and Na2O and the bandlike distribution of FeO and Al2O3 content testifies to a certain inheritance and heterogeneity in country rock composition laterally and vertically in the melting zone.

  18. Radar scattering mechanisms within the meteor crater ejecta blanket: Geologic implications and relevance to Venus

    NASA Technical Reports Server (NTRS)

    Garvin, J. B.; Campbell, B. A.; Zisk, S. H.; Schaber, Gerald G.; Evans, C.

    1989-01-01

    Simple impact craters are known to occur on all of the terrestrial planets and the morphologic expression of their ejecta blankets is a reliable indicator of their relative ages on the Moon, Mars, Mercury, and most recently for Venus. It will be crucial for the interpretation of the geology of Venus to develop a reliable means of distinguishing smaller impact landforms from volcanic collapse and explosion craters, and further to use the observed SAR characteristics of crater ejecta blankets (CEB) as a means of relative age estimation. With these concepts in mind, a study was initiated of the quantitative SAR textural characteristics of the ejecta blanket preserved at Meteor Crater, Arizona, the well studied 1.2 km diameter simple crater that formed approx. 49,000 years ago from the impact of an octahedrite bolide. While Meteor Crater was formed as the result of an impact into wind and water lain sediments and has undergone recognizable water and wind related erosion, it nonetheless represents the only well studied simple impact crater on Earth with a reasonably preserved CEB. Whether the scattering behavior of the CEB can provide an independent perspective on its preservation state and style of erosion is explored. Finally, airborne laser altimeter profiles of the microtopography of the Meteor Crater CEB were used to further quantify the subradar pizel scale topographic slopes and RMS height variations for comparisons with the scattering mechanisms computed from SAR polarimetry. A preliminary assessment was summarized of the L-band radar scattering mechanisms within the Meteor Crater CEB as derived from a NASA/JPL DC-8 SAR Polarimetry dataset acquired in 1988, and the dominant scattering behavior was compared with microtopographic data (laser altimeter profiles and 1:10,000 scale topographic maps).

  19. A Tale of 3 Craters

    NASA Technical Reports Server (NTRS)

    2004-01-01

    11 November 2004 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image captures some of the complexity of the martian upper crust. Mars does not simply have an impact-cratered surface, it's upper crust is a cratered volume. Over time, older craters on Mars have been eroded, filled, buried, and in some cases exhumed and re-exposed at the martian surface. The crust of Mars is layered to depths of 10 or more kilometers, and mixed in with the layered bedrock are a variety of ancient craters with diameters ranging from a few tens of meters (a few tens of yards) to several hundred kilometers (more than one or two hundred miles).

    The picture shown here captures some of the essence of the layered, cratered volume of the upper crust of Mars in a very simple form. The image shows three distinct circular features. The smallest, in the lower right quarter of the image, is a meteor crater surrounded by a mound of material. This small crater formed within a layer of bedrock that once covered the entire scene, but today is found only in this small remnant adjacent to the crater. The intermediate-sized crater, west (left) of the small one, formed either in the next layer down--that is, below the layer in which the small crater formed--or it formed in some layers that are now removed, but was big enough to penetrate deeply into the rock that is near the surface today. The largest circular feature in the image, in the upper right quarter of the image, is still largely buried. It formed in layers of rock that are below the present surface. Erosion has brought traces of its rim back to the surface of Mars. This picture is located near 50.0oS, 77.8oW, and covers an area approximately 3 km (1.9 mi) across. Sunlight illuminates this October 2004 image from the upper left.

  20. A test of the hypothesis that impact-induced fractures are preferred sites for later tectonic activity

    NASA Technical Reports Server (NTRS)

    Solomon, Sean C.; Duxbury, Elizabeth D.

    1987-01-01

    Impact cratering has been an important process in the solar system. The cratering event is generally accompanied by faulting in adjacent terrain. Impact-induced faults are nearly ubiquitous over large areas on the terrestrial planets. The suggestion is made that these fault systems, particularly those associated with the largest impact features are preferred sites for later deformation in response to lithospheric stresses generated by other processes. The evidence is a perceived clustering of orientations of tectonic features either radial or concentric to the crater or basin in question. An opportunity exists to test this suggestion more directly on Earth. The terrestrial continents contain more than 100 known or probable impact craters, with associated geological structures mapped to varying levels of detail. Prime facie evidence for reactivation of crater-induced faults would be the occurrence of earthquakes on these faults in response to the intraplate stress field. Either an alignment of epicenters with mapped fault traces or fault plane solutions indicating slip on a plane approximately coincident with that inferred for a crater-induced fault would be sufficient to demonstrate such an association.

  1. Geomorphologic mapping of the lunar crater Tycho and its impact melt deposits

    NASA Astrophysics Data System (ADS)

    Krüger, T.; van der Bogert, C. H.; Hiesinger, H.

    2016-07-01

    Using SELENE/Kaguya Terrain Camera and Lunar Reconnaissance Orbiter Camera (LROC) data, we produced a new, high-resolution (10 m/pixel), geomorphological and impact melt distribution map for the lunar crater Tycho. The distal ejecta blanket and crater rays were investigated using LROC wide-angle camera (WAC) data (100 m/pixel), while the fine-scale morphologies of individual units were documented using high resolution (∼0.5 m/pixel) LROC narrow-angle camera (NAC) frames. In particular, Tycho shows a large coherent melt sheet on the crater floor, melt pools and flows along the terraced walls, and melt pools on the continuous ejecta blanket. The crater floor of Tycho exhibits three distinct units, distinguishable by their elevation and hummocky surface morphology. The distribution of impact melt pools and ejecta, as well as topographic asymmetries, support the formation of Tycho as an oblique impact from the W-SW. The asymmetric ejecta blanket, significantly reduced melt emplacement uprange, and the depressed uprange crater rim at Tycho suggest an impact angle of ∼25-45°.

  2. Trends in maar crater size and shape using the global Maar Volcano Location and Shape (MaarVLS) database

    NASA Astrophysics Data System (ADS)

    Graettinger, A. H.

    2018-05-01

    A maar crater is the top of a much larger subsurface diatreme structure produced by phreatomagmatic explosions and the size and shape of the crater reflects the growth history of that structure during an eruption. Recent experimental and geophysical research has shown that crater complexity can reflect subsurface complexity. Morphometry provides a means of characterizing a global population of maar craters in order to establish the typical size and shape of features. A global database of Quaternary maar crater planform morphometry indicates that maar craters are typically not circular and frequently have compound shapes resembling overlapping circles. Maar craters occur in volcanic fields that contain both small volume and complex volcanoes. The global perspective provided by the database shows that maars are common in many volcanic and tectonic settings producing a similar diversity of size and shape within and between volcanic fields. A few exceptional populations of maars were revealed by the database, highlighting directions of future research to improve our understanding on the geometry and spacing of subsurface explosions that produce maars. These outlying populations, such as anomalously large craters (>3000 m), chains of maars, and volcanic fields composed of mostly maar craters each represent a small portion of the database, but provide opportunities to reinvestigate fundamental questions on maar formation. Maar crater morphometry can be integrated with structural, hydrological studies to investigate lateral migration of phreatomagmatic explosion location in the subsurface. A comprehensive database of intact maar morphometry is also beneficial for the hunt for maar-diatremes on other planets.

  3. Evidence for rapid topographic evolution and crater degradation on Mercury from simple crater morphometry

    NASA Astrophysics Data System (ADS)

    Fassett, Caleb I.; Crowley, Malinda C.; Leight, Clarissa; Dyar, M. Darby; Minton, David A.; Hirabayashi, Masatoshi; Thomson, Bradley J.; Watters, Wesley A.

    2017-06-01

    Examining the topography of impact craters and their evolution with time is useful for assessing how fast planetary surfaces evolve. Here, new measurements of depth/diameter (d/D) ratios for 204 craters of 2.5 to 5 km in diameter superposed on Mercury's smooth plains are reported. The median d/D is 0.13, much lower than expected for newly formed simple craters ( 0.21). In comparison, lunar craters that postdate the maria are much less modified, and the median crater in the same size range has a d/D ratio that is nearly indistinguishable from the fresh value. This difference in crater degradation is remarkable given that Mercury's smooth plains and the lunar maria likely have ages that are comparable, if not identical. Applying a topographic diffusion model, these results imply that crater degradation is faster by a factor of approximately two on Mercury than on the Moon, suggesting more rapid landform evolution on Mercury at all scales.Plain Language SummaryMercury and the Moon are both airless bodies that have experienced numerous impact events over billions of years. These impacts form craters in a geologic instant. The question examined in this manuscript is how fast these craters erode after their formation. To simplify the problem, we examined craters of a particular size (2.5 to 5 km in diameter) on a particular geologic terrain type (volcanic smooth plains) on both the Moon and Mercury. We then measured the topography of hundreds of craters on both bodies that met these criteria. Our results suggest that craters on Mercury become shallower much more quickly than craters on the Moon. We estimate that Mercury's topography erodes at a rate at least a factor of two faster than the Moon's.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780033374&hterms=Two+planets+moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTwo%2Bplanets%2Bmoon.','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780033374&hterms=Two+planets+moon&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DTwo%2Bplanets%2Bmoon."><span>Moon-Mercury - Relative preservation states of secondary craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Scott, D. H.</p> <p>1977-01-01</p> <p>Geologic studies including mapping of the Kuiper quadrangle of Mercury suggest that secondary craters are much better preserved than those on the moon. Factors which may account for the apparent differences between lunar and Mercurian secondary crater morphology include: (1) the rapid isostatic adjustment of the parent crater, (2) different impact fluxes of the two planets, (3) the greater concentration of Mercurian secondaries around impact areas, and (4) differences in crater ejection velocities. It has been shown that the ejection velocities on Mercury are about 50% greater than those on the moon at equivalent ranges. This may account for morphologically enhanced secondary craters, and may explain their better preservation with time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000980','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000980"><span>A history of the Lonar crater, India: An overview</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Nayak, V. K.</p> <p>1992-01-01</p> <p>The origin of the circular structure at Lonar, India, described variously as cauldron, pit, hollow, depression, and crater, has been a controversial subject since the early nineteenth century. A history of its origin and other aspects from 1823 to 1990 are overviewed. The structure in the Deccan Trap Basalt is nearly circular with a breach in the northeast, 1830 m in diameter, 150 m deep, with a saline lake in the crater floor. Over the years, the origin of the Lonar structure has risen from volcanism, subsidence, and cryptovolcanism to an authentic meteorite impact crater. Lonar is unique because it is probably the only terrestrial crater in basalt and is the closest analog with the Moon's craters. Some unresolved questions are suggested. The proposal is made that the young Lonar impact crater, which is less than 50,000 years old, should be considered as the best crater laboratory analogous to those of the Moon, be treated as a global monument, and preserved for scientists to comprehend more about the mysteries of nature and impact cratering, which is now emerging as a fundamental ubiquitous geological process in the evolution of the planets.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005103','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005103"><span>Ringed impact craters on Venus: An analysis from Magellan images</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Alexopoulos, Jim S.; Mckinnon, William B.</p> <p>1992-01-01</p> <p>We have analyzed cycle 1 Magellan images covering approximately 90 percent of the venusian surface and have identified 55 unequivocal peak-ring craters and multiringed impact basins. This comprehensive study (52 peak-ring craters and at least 3 multiringed impact basins) complements our earlier independent analysis of Arecibo and Venera images and initial Magellan data and that of the Magellan team.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21631.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21631.html"><span>Stratigraphy Exposed by an Impact Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-05-10</p> <p>Geologists love roadcuts because they reveal the bedrock stratigraphy (layering). Until we have highways on Mars, we can get the same information from fresh impact craters as shown in this image from NASA's Mars Reconnaissance Orbiter. This image reveals these layers filling a larger crater, perhaps a combination of lava, impact ejecta, and sediments. https://photojournal.jpl.nasa.gov/catalog/PIA21631</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20070011619','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20070011619"><span>Cometary Dust Characteristics: Comparison of Stardust Craters with Laboratory Impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kearsley, A. T.; Burchell, M. J.; Graham, G. A.; Horz, F.; Wozniakiewicz, P. A.; Cole, M. J.</p> <p>2007-01-01</p> <p>Aluminium foils exposed to impact during the passage of the Stardust spacecraft through the coma of comet Wild 2 have preserved a record of a wide range of dust particle sizes. The encounter velocity and dust incidence direction are well constrained and can be simulated by laboratory shots. A crater size calibration programme based upon buckshot firings of tightly constrained sizes (monodispersive) of glass, polymer and metal beads has yielded a suite of scaling factors for interpretation of the original impacting grain dimensions. We have now extended our study to include recognition of particle density for better matching of crater to impactor diameter. A novel application of stereometric crater shape measurement, using paired scanning electron microscope (SEM) images has shown that impactors of differing density yield different crater depth/diameter ratios. Comparison of the three-dimensional gross morphology of our experimental craters with those from Stardust reveals that most of the larger Stardust impacts were produced by grains of low internal porosity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA14954.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA14954.html"><span>Fresh Dark Ray Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-10-15</p> <p>The crater on asteroid Vesta shown in this image from NASA Dawn spacecraft was emplaced onto the ejecta blanket of two large twin craters. Commonly, rays from impact craters are brighter than the surrounding surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19770054896&hterms=conversion+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconversion%2Brate%2527','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19770054896&hterms=conversion+rate&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dconversion%2Brate%2527"><span>Relative crater production rates on planets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hartmann, W. K.</p> <p>1977-01-01</p> <p>The relative numbers of impacts on different planets, estimated from the dynamical histories of planetesimals in specified orbits (Wetherill, 1975), are converted by a described procedure to crater production rates. Conversions are dependent on impact velocity and surface gravity. Crater retention ages can then be derived from the ratio of the crater density to the crater production rate. The data indicate that the terrestrial planets have crater production rates within a factor ten of each other. As an example, for the case of Mars, least-squares fits to crater-count data suggest an average age of 0.3 to 3 billion years for two types of channels. The age of Olympus Mons is discussed, and the effect of Tharsis volcanism on channel formation is considered.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4802546','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4802546"><span>Impact structures in Africa: A review</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Reimold, Wolf Uwe; Koeberl, Christian</p> <p>2014-01-01</p> <p>More than 50 years of space and planetary exploration and concomitant studies of terrestrial impact structures have demonstrated that impact cratering has been a fundamental process – an essential part of planetary evolution – ever since the beginning of accretion and has played a major role in planetary evolution throughout the solar system and beyond. This not only pertains to the development of the planets but to evolution of life as well. The terrestrial impact record represents only a small fraction of the bombardment history that Earth experienced throughout its evolution. While remote sensing investigations of planetary surfaces provide essential information about surface evolution and surface processes, they do not provide the information required for understanding the ultra-high strain rate, high-pressure, and high-temperature impact process. Thus, hands-on investigations of rocks from terrestrial impact craters, shock experimentation for pressure and temperature calibration of impact-related deformation of rocks and minerals, as well as parameter studies pertaining to the physics and chemistry of cratering and ejecta formation and emplacement, and laboratory studies of impact-generated lithologies are mandatory tools. These, together with numerical modeling analysis of impact physics, form the backbone of impact cratering studies. Here, we review the current status of knowledge about impact cratering – and provide a detailed account of the African impact record, which has been expanded vastly since a first overview was published in 1994. No less than 19 confirmed impact structures, and one shatter cone occurrence without related impact crater are now known from Africa. In addition, a number of impact glass, tektite and spherule layer occurrences are known. The 49 sites with proposed, but not yet confirmed, possible impact structures contain at least a considerable number of structures that, from available information, hold the promise to be able to expand the African impact record drastically – provided the political conditions for safe ground-truthing will become available. The fact that 28 structures have also been shown to date NOT to be of impact origin further underpins the strong interest in impact in Africa. We hope that this review stimulates the education of students about impact cratering and the fundamental importance of this process for Earth – both for its biological and geological evolution. This work may provide a reference volume for those workers who would like to search for impact craters and their ejecta in Africa. PMID:27065753</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19870014062','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19870014062"><span>Centrifuge impact cratering experiments: Scaling laws for non-porous targets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidt, Robert M.</p> <p>1987-01-01</p> <p>A geotechnical centrifuge was used to investigate large body impacts onto planetary surfaces. At elevated gravity, it is possible to match various dimensionless similarity parameters which were shown to govern large scale impacts. Observations of crater growth and target flow fields have provided detailed and critical tests of a complete and unified scaling theory for impact cratering. Scaling estimates were determined for nonporous targets. Scaling estimates for large scale cratering in rock proposed previously by others have assumed that the crater radius is proportional to powers of the impactor energy and gravity, with no additional dependence on impact velocity. The size scaling laws determined from ongoing centrifuge experiments differ from earlier ones in three respects. First, a distinct dependence of impact velocity is recognized, even for constant impactor energy. Second, the present energy exponent for low porosity targets, like competent rock, is lower than earlier estimates. Third, the gravity exponent is recognized here as being related to both the energy and the velocity exponents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeCoA.217...28G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeCoA.217...28G"><span>On the nature of the Ni-rich component in splash-form Australasian tektites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Goderis, Steven; Tagle, Roald; Fritz, Jörg; Bartoschewitz, Rainer; Artemieva, Natalia</p> <p>2017-11-01</p> <p>The Australasian tektite strewn field is exceptional, not only as the largest and most recent, but also as the only strewn field without an identified source impact crater. Therefore, scenarios without the formation of an impact crater, such as a low altitude cometary airburst, have proven hard to discard. Here, new geochemical evidence is presented for mixing of projectile and target material, which implies the formation of an Australasian tektite-related impact crater. First, ninety-two Australasian tektites were grouped according to their Cr, Co and Ni concentrations. Based on this data, Australasian tektites with the highest Ni contents (>200 μg/g) occur more than 1500 km south-southeast (SSE) of the northern Indochina region, with the highest concentration of Ni-rich tektites in South Vietnam, the islands of Borneo, Belitung, and Java, and reports in literature for Ni-rich tektites in central Australia. The tektites with the highest Cr and Ni abundances often also show highly siderophile element (HSE) enrichments of up to 4 ng/g Ir. The most Ni-rich samples exhibit broadly chondrite-relative HSE proportions. However, a chondritic impactor contribution appears to be inconsistent with the observed Ni/Cr, Ni/Co, and Cr/Co ratios. A previously suggested significant terrestrial mantle contribution can also not explain the siderophile element enrichments in combination with relatively low FeOtot (<7 wt.%) and MgO (<4 wt.%) contents. Elemental fractionation during impact cratering or tektite formation by an impactor with a chondritic signature may explain these observations. Alternatively, a projectile component from a primitive achondrite may be advocated, with contribution from a mafic to ultramafic extraterrestrial lithology with a relatively unfractionated HSE signature and Ni/Cr ratio distinctly higher than those of Earth's mantle. Element distribution maps obtained from individual Australasian tektites document complex mingling processes of chemically distinct melt batches, each exhibiting variable contributions from distinct endmember compositions. These texturally recorded mingling processes are consistent with high-resolution numerical models of impact cratering processes that resolve the growth of Kelvin-Helmholtz instabilities at the projectile/target interface during impact, when both materials co-occur at high pressure. These numerical models indicate that Ni-rich tektite populations across the central part of the Australasian tektite strewn field could represent projectile-enriched material preferentially ejected downrange. Continued tracing of this Ni-rich component across the strewn field may help to constrain the location of the yet to be identified source crater of the Australasian (micro)tektites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006AGUFM.P51B1199S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006AGUFM.P51B1199S"><span>Comparison of Topographic Profiles Across Venus' Coronae and Craters: Implications for Corona Origin Hypothesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stoddard, P. R.; Jurdy, D. M.</p> <p>2006-12-01</p> <p>Venus' surface hosts nearly 1000 unambiguous impact craters, ranging in diameter from 1.5 to 280 km. Although the majority of these are pristine, slightly less than 200 have been modified by either volcanic or tectonic activity or both. In addition, numerous researchers have identified hundreds of ring-like features of varying morphology, termed "coronae." These have typically been thought of as having a diapiric or volcanic origin. Recently, however, based on the circular to quasi-circular nature of coronae, an alternative origin - impact - has been proposed. We compare the profiles across agreed-upon craters to several coronae that have been suggested as impact sites. For each feature, 36 profiles (taken every ten degrees) are aligned and then averaged together. For Mead, Cleopatra, Meitner, and Isabella craters, the profiles display the typical rim and basin structure expected for craters, but for Klenova crater the average is more domal, with only a few of the individual profiles looking crater-like. Among the "contested" coronae, the average profiles for Eurynome, Maya, and C21 appear crater-like, albeit with more variation among the individual profiles than seen in the agreed-upon craters. Anquet has a rim-and-basin structure, but unlike typical craters, the basin is elevated above the surrounding plains. Acrea appears to be a small hill in a large depression, again with a high degree of variability among the profiles. Ninhursag is clearly domal, and cannot be taken as a crater. A summary of the variability of the profiles - where 100% correlation would indicate perfect circular symmetry - indicates that, with the exception of Klenova, those features universally agreed-upon as craters have the highest correlation percentages - all at or above 80%. The disputed features are not as circular, although C21 is close. Based on this analysis, we conclude that Klenova has been mischaracterized as an impact crater, and that C21 and some other features previously classified as coronae may indeed be of impact origin. More careful analyses will be necessary to assess the origin of similar features.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19940028691','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19940028691"><span>Constraints on the Martian cratering rate imposed by the SNC meteorites and Vallis Marineris layered deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brandenburg, J. E.</p> <p>1993-01-01</p> <p>Following two independent lines of evidence -- estimates of the age and formation time of a portion of the Martian geologic column exposed in the layered deposits and the crystallization and ejection ages of the SNC meteorites -- it appears that the Martian cratering rate must be double the lunar rate or even higher. This means models such as NHII or NHIII (Neukum and Hiller models II and III), which estimate the Martian cratering rate as being several times lunar are probably far closer to reality on Mars than lunar rates. The effect of such a shift is profound: Mars is transformed from a rather Moon-like place into a planet with vigorous dynamics, multiple large impacts, erosion, floods, and volcanism throughout its history. A strong shift upward in cratering rates on Mars apparently solves some glaring problems; however, it creates others. The period of time during which Earth-like atmospheric conditions existed, the liquid water era on Mars, persists in NHIII up to only 0.5 b.y. ago. Scenarios of extended Earth-like conditions on Mars have been discounted in the past because they would have removed many of the craters from the early bombardment era found in the south. It does appear that some process of crater removal was quite vigorous in the north during Mars' past. Evidence exists that the northern plains may have been the home of long-lived seas or perhaps even a paleo-ocean, so models exist for highly localized destruction of craters in the north. However, the question of how the ancient crater population could be preserved in the south under a long liquid-water era found in any high-cratering-rate models is a serious question that must be addressed. It does appear to be a higher-order problem because it involves low-energy dynamics acting in localized areas, i.e., erosion of craters in the south of Mars, whereas the two problems with the low-cratering-rate models involve high-energy events acting over large areas: the formation of the Vallis Marineris, the SNC ejecting impacts, and the global atmospheric pressure and temperature conditions that allow liquid water to exist as a robust entity anywhere on the Martian surface. In any case, it appears Mars is a more complex and dynamic planet than previously supposed. It has canyons dating from the middle to late period of its history that contain apparent lake sediments bedded deeper than most sediments on Earth. Recent multiple, violent impacts on Mars have apparently provided us with multiple random samples of its surface that all crystallized less than 1.5 b.y. ago. These things cannot be accommodated in our present cratering chronologies of Mars, based on 1x lunar cratering rates, without great difficulties. These difficulties suggest that a new chronology, probably based on NHII or even NHIII, should be adopted; this new chronology will provide us with a new view of Mars as a dynamic planet of rich history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21021.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21021.html"><span>Small Expanded Craters in the Northern Lowlands</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-08-24</p> <p>This image shows many small craters over a larger degraded one in the northern lowlands. These small craters are smoother and shallower than their counterparts closer to the equator. Scientists believe this difference is a result of impact into a region with subsurface ice, which sublimates when exposed to the Martian atmosphere. This causes the crater to gradually expand and flatten after impact. http://photojournal.jpl.nasa.gov/catalog/PIA21021</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22136537-large-crater-asteroid-steins-really-impact-crater','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22136537-large-crater-asteroid-steins-really-impact-crater"><span>IS THE LARGE CRATER ON THE ASTEROID (2867) STEINS REALLY AN IMPACT CRATER?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Morris, A. J. W.; Price, M. C.; Burchell, M. J., E-mail: m.j.burchell@kent.ac.uk</p> <p></p> <p>The large crater on the asteroid (2867) Steins attracted much attention when it was first observed by the Rosetta spacecraft in 2008. Initially, it was widely thought to be unusually large compared to the size of the asteroid. It was quickly realized that this was not the case and there are other examples of similar (or larger) craters on small bodies in the same size range; however, it is still widely accepted that it is a crater arising from an impact onto the body which occurred after its formation. The asteroid (2867) Steins also has an equatorial bulge, usually consideredmore » to have arisen from redistribution of mass due to spin-up of the body caused by the YORP effect. Conversely, it is shown here that, based on catastrophic disruption experiments in laboratory impact studies, a similarly shaped body to the asteroid Steins can arise from the break-up of a parent in a catastrophic disruption event; this includes the presence of a large crater-like feature and equatorial bulge. This suggests that the large crater-like feature on Steins may not be a crater from a subsequent impact, but may have arisen directly from the fragmentation process of a larger, catastrophically disrupted parent.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss020e026195.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss020e026195.html"><span>Earth observation taken by the Expedition 20 crew</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2009-07-25</p> <p>ISS020-E-026195 (25 July 2009) --- Aorounga Impact Crater is featured in this image photographed by an Expedition 20 crew member on the International Space Station. Aorounga Impact Crater is located in the Sahara Desert of north-central Chad and is one of the best preserved impact structures in the world. According to scientists, the crater is thought to be middle or upper Devonian to lower Mississippian (approximately 345 ? 370 million years old) based on the age of the sedimentary rocks deformed by the impact. Spaceborne Imaging Radar (SIR) data collected in 1994 suggests that Aorounga is one of a set of three craters formed by the same impact event. The other two suggested impact structures are buried by sand deposits. The concentric ring structure of the Aorounga crater ? renamed Aorounga South in the multiple-crater interpretation of SIR data ? is clearly visible in this detailed photograph. The central highland, or peak, of the crater is surrounded by a small sand-filled trough; this in turn is surrounded by a larger circular trough. Linear rock ridges alternating with light orange sand deposits cross the image from upper left to lower right; these are called yardangs by geomorphologists. Yardangs form by wind erosion of exposed rock layers in a unidirectional wind field. The wind blows from the northeast at Aorounga, and sand dunes formed between the yardangs are actively migrating to the southwest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20000010605&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTURTLES','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20000010605&hterms=TURTLES&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DTURTLES"><span>Large Impact Features on Europa: Results of the Galileo Nominal Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, Jeffrey M.; Asphaug, Erik; Sullivan, Robert J.; Klemaszewski, James E.; Bender, Kelly C.; Greeley, Ronald; Geissler, Paul E.; McEwen, Alfred S.; Turtle, Elizabeth P.; Phillips, Cynthia B.</p> <p>1998-01-01</p> <p>The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) "classic" impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer approximately 10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish and Tyre imply that approximately 10-15 km may have been the global average thickness of the rigid crust of Europa when these impacts occurred. The absence of detectable craters superposed on the interior deposits of Callanish suggests that it is geologically young (< 10(exp 8) years). Hence, it seems likely that our preliminary conclusions about the subsurface structure of Europa apply to the current day.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020067','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020067"><span>Large Impact Features on Europa: Results of the Galileo Nominal Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Moore, Johnnie N.; Asphaug, E.; Sullivan, R.J.; Klemaszewski, J.E.; Bender, K.C.; Greeley, R.; Geissler, P.E.; McEwen, A.S.; Turtle, E.P.; Phillips, C.B.; Tufts, B.R.; Head, J. W.; Pappalardo, R.T.; Jones, K.B.; Chapman, C.R.; Belton, M.J.S.; Kirk, R.L.; Morrison, D.</p> <p>1998-01-01</p> <p>The Galileo Orbiter examined several impact features on Europa at considerably better resolution than was possible from Voyager. The new data allow us to describe the morphology and infer the geology of the largest impact features on Europa, which are probes into the crust. We observe two basic types of large impact features: (1) "classic" impact craters that grossly resemble well-preserved lunar craters of similar size but are more topographically subdued (e.g., Pwyll) and (2) very flat circular features that lack the basic topographic structures of impact craters such as raised rims, a central depression, or central peaks, and which largely owe their identification as impact features to the field of secondary craters radially sprayed about them (e.g., Callanish). Our interpretation is that the classic craters (all <30 km diameter) formed entirely within a solid target at least 5 to 10 km thick that exhibited brittle behavior on time scales of the impact events. Some of the classic craters have a more subdued topography than fresh craters of similar size on other icy bodies such as Ganymede and Callisto, probably due to the enhanced viscous relaxation produced by a steeper thermal gradient on Europa. Pedestal ejecta facies on Europa (and Ganymede) may be produced by the relief-flattening movement of plastically deforming but otherwise solid ice that was warm at the time of emplacement. Callanish and Tyre do not appear to be larger and even more viscously relaxed versions of the classic craters; rather they display totally different morphologies such as distinctive textures and a series of large concentric structural rings cutting impact-feature-related materials. Impact simulations suggest that the distinctive morphologies would not be produced by impact into a solid ice target, but may be explained by impact into an ice layer ~10 to 15 km thick overlying a low-viscosity material such as water. The very wide (near antipodal) separation of Callanish and Tyre imply that ~10-15 km may have been the global average thickness of the rigid crust of Europa when these impacts occurred. The absence of detectable craters superposed on the interior deposits of Callanish suggests that it is geologically young (<108years). Hence, it seems likely that our preliminary conclusions about the subsurface structure of Europa apply to the current day. ?? 1998 Academic Press.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70025827','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70025827"><span>Shock-wave-induced fracturing of calcareous nannofossils from the Chesapeake Bay impact crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>,</p> <p>2003-01-01</p> <p>Fractured calcareous nannofossils of the genus Discoaster from synimpact sediments within the Chesapeake Bay impact crater demonstrate that other petrographic shock indicators exist for the cratering process in addition to quartz minerals. Evidence for shock-induced taphonomy includes marginal fracturing of rosette-shaped Discoaster species into pentagonal shapes and pressure- and temperature-induced dissolution of ray tips and edges of discoasters. Rotational deformation of individual crystallites may be the mechanism that produces the fracture pattern. Shock-wave-fractured calcareous nannofossils were recovered from synimpact matrix material representing tsunami or resurge sedimentation that followed impact. Samples taken from cohesive clasts within the crater rubble show no evidence of shock-induced fracturing. The data presented here support growing evidence that microfossils can be used to determine the intensity and timing of wet-impact cratering.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.1297B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.1297B"><span>Morphological Indicators of a Mascon Beneath Ceres's Largest Crater, Kerwan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bland, M. T.; Ermakov, A. I.; Raymond, C. A.; Williams, D. A.; Bowling, T. J.; Preusker, F.; Park, R. S.; Marchi, S.; Castillo-Rogez, J. C.; Fu, R. R.; Russell, C. T.</p> <p>2018-02-01</p> <p>Gravity data of Ceres returned by the National Aeronautics and Space Administration's Dawn spacecraft is consistent with a lower density crust of variable thickness overlying a higher density mantle. Crustal thickness variations can affect the long-term, postimpact modification of impact craters on Ceres. Here we show that the unusual morphology of the 280 km diameter crater Kerwan may result from viscous relaxation in an outer layer that thins substantially beneath the crater floor. We propose that such a structure is consistent with either impact-induced uplift of the high-density mantle beneath the crater or from volatile loss during the impact event. In either case, the subsurface structure inferred from the crater morphology is superisostatic, and the mass excess would result in a positive Bouguer anomaly beneath the crater, consistent with the highest-degree gravity data from Dawn. Ceres joins the Moon, Mars, and Mercury in having basin-associated gravity anomalies, although their origin may differ substantially.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.......143M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.......143M"><span>High Spatial Resolution 40Ar/39Ar Geochronology of Lunar Impact Melt Rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mercer, Cameron Mark</p> <p></p> <p>Impact cratering has played a key role in the evolution of the solid surfaces of Solar System bodies. While much of Earth’s impact record has been erased, its Moon preserves an extensive history of bombardment. Quantifying the timing of lunar impact events is crucial to understanding how impacts have shaped the evolution of early Earth, and provides the basis for estimating the ages of other cratered surfaces in the Solar System. Many lunar impact melt rocks are complex mixtures of glassy and crystalline “melt” materials and inherited clasts of pre-impact minerals and rocks. If analyzed in bulk, these samples can yield complicated incremental release 40Ar/39Ar spectra, making it challenging to uniquely interpret impact ages. Here, I have used a combination of high-spatial resolution 40Ar/39Ar geochronology and thermal-kinetic modeling to gain new insights into the impact histories recorded by such lunar samples. To compare my data to those of previous studies, I developed a software tool to account for differences in the decay, isotopic, and monitor age parameters used for different published 40Ar/39Ar datasets. Using an ultraviolet laser ablation microprobe (UVLAMP) system I selectively dated melt and clast components of impact melt rocks collected during the Apollo 16 and 17 missions. UVLAMP 40Ar/39Ar data for samples 77135, 60315, 61015, and 63355 show evidence of open-system behavior, and provide new insights into how to interpret some complexities of published incremental heating 40Ar/39Ar spectra. Samples 77115, 63525, 63549, and 65015 have relatively simple thermal histories, and UVLAMP 40Ar/39Ar data for the melt components of these rocks indicate the timing of impact events—spanning hundreds of millions of years—that influenced the Apollo 16 and 17 sites. My modeling and UVLAMP 40Ar/39Ar data for sample 73217 indicate that some impact melt rocks can quantitatively retain evidence for multiple melt-producing impact events, and imply that such polygenetic rocks should be regarded as high-value sampling opportunities during future exploration missions to cratered planetary surfaces. Collectively, my results complement previous incremental heating 40Ar/39Ar studies, and support interpretations that the Moon experienced a prolonged period of heavy bombardment early in its history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012JGRE..117.0H06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012JGRE..117.0H06F"><span>Lunar impact basins: Stratigraphy, sequence and ages from superposed impact crater populations measured from Lunar Orbiter Laser Altimeter (LOLA) data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.</p> <p>2012-02-01</p> <p>Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D ≥ 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014881','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014881"><span>Lunar Impact Basins: Stratigraphy, Sequence and Ages from Superposed Impact Crater Populations Measured from Lunar Orbiter Laser Altimeter (LOLA) Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fassett, C. I.; Head, J. W.; Kadish, S. J.; Mazarico, E.; Neumann, G. A.; Smith, D. E.; Zuber, M. T.</p> <p>2012-01-01</p> <p>Impact basin formation is a fundamental process in the evolution of the Moon and records the history of impactors in the early solar system. In order to assess the stratigraphy, sequence, and ages of impact basins and the impactor population as a function of time, we have used topography from the Lunar Orbiter Laser Altimeter (LOLA) on the Lunar Reconnaissance Orbiter (LRO) to measure the superposed impact crater size-frequency distributions for 30 lunar basins (D = 300 km). These data generally support the widely used Wilhelms sequence of lunar basins, although we find significantly higher densities of superposed craters on many lunar basins than derived by Wilhelms (50% higher densities). Our data also provide new insight into the timing of the transition between distinct crater populations characteristic of ancient and young lunar terrains. The transition from a lunar impact flux dominated by Population 1 to Population 2 occurred before the mid-Nectarian. This is before the end of the period of rapid cratering, and potentially before the end of the hypothesized Late Heavy Bombardment. LOLA-derived crater densities also suggest that many Pre-Nectarian basins, such as South Pole-Aitken, have been cratered to saturation equilibrium. Finally, both crater counts and stratigraphic observations based on LOLA data are applicable to specific basin stratigraphic problems of interest; for example, using these data, we suggest that Serenitatis is older than Nectaris, and Humboldtianum is younger than Crisium. Sample return missions to specific basins can anchor these measurements to a Pre-Imbrian absolute chronology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr.422..479J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr.422..479J"><span>Asteroid (21) Lutetia: Semi-Automatic Impact Craters Detection and Classification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jenerowicz, M.; Banaszkiewicz, M.</p> <p>2018-05-01</p> <p>The need to develop an automated method, independent of lighting and surface conditions, for the identification and measurement of impact craters, as well as the creation of a reliable and efficient tool, has become a justification of our studies. This paper presents a methodology for the detection of impact craters based on their spectral and spatial features. The analysis aims at evaluation of the algorithm capabilities to determinate the spatial parameters of impact craters presented in a time series. In this way, time-consuming visual interpretation of images would be reduced to the special cases. The developed algorithm is tested on a set of OSIRIS high resolution images of asteroid Lutetia surface which is characterized by varied landforms and the abundance of craters created by collisions with smaller bodies of the solar system.The proposed methodology consists of three main steps: characterisation of objects of interest on limited set of data, semi-automatic extraction of impact craters performed for total set of data by applying the Mathematical Morphology image processing (Serra, 1988, Soille, 2003), and finally, creating libraries of spatial and spectral parameters for extracted impact craters, i.e. the coordinates of the crater center, semi-major and semi-minor axis, shadow length and cross-section. The overall accuracy of the proposed method is 98 %, the Kappa coefficient is 0.84, the correlation coefficient is ∼ 0.80, the omission error 24.11 %, the commission error 3.45 %. The obtained results show that methods based on Mathematical Morphology operators are effective also with a limited number of data and low-contrast images.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20060024707','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20060024707"><span>Bombardment History of the Moon: What We Think We Know and What We Don't Know</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bogard, Donald</p> <p>2006-01-01</p> <p>The absolute impace history of the moon and inner solar system can in principle be derived from the statistics of radiometric ages of shock-heated planetary samples (lunar or meteoritic), from the formation ages of specific impact craters on the moon or Earth; and from agedating samples representing geologic surface units on the moon (or Mars) for which crater densities have been determined. This impact history, however, is still poorly defined. The heavily cratered surface of the moon is a testimony to the importance of impact events in the evolution of terrestrial planets and satellites. Lunar impacts range in scale from an early intense flux of large objects that defined the surface geology of the moon, down to recent, smaller impacts that continually generate and rework the lunar regolith. Densities of larger craters on lunar surface units of dated age define a projectile flux over time that serves as the basis for estimating surface ages on other solid bodies, particularly Mars. The lunar cratering history may address aspects of Earth s evolution, such as the possible role of early intense impacts on the atmosphere and early life and possible periodicity in large impact events in the more recent past. But, much about the lunar impact history remains unknown.. On Earth approximately 172 impact craters up to 300 km in diameter and up to 2 Gyr in age are recognized. Although these data suggest greater relative numbers of younger craters, possibly suggesting a recent increase in projectile flux, both the diameters and especially the ages of most terrestrial crates are so poorly known that the differential terrestrial impact flux over time is uncertain. For the moon, densities of craters on some mare surfaces and crater ejecta deposits, for which we have measured or estimated formation ages, suggest an approximately constant lunar impact rate of larger projectiles over the past 3.5 Gyr. However, the data are cumulative in nature and limited. Questions exist as to how accurately dated samples correlate with surfaces having measured crater densities. Studies of ages of many tiny impact-melt beads from Apollos 12 and 14 soils show a decrease in the number of beads with age from 4 Gyr ago to 0.4 Gyr ago, followed by a significant increase in beads with age <0.4 Gyr (2). These authors concluded that the projectile flux had decreased over time, followed by a significant flux increase more recently.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020047558&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DAge%2Bearth','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020047558&hterms=Age+earth&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DAge%2Bearth"><span>The Age of the Surface of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zahnle, K. J.; McKinnon, William B.; Young, Richard E. (Technical Monitor)</p> <p>1997-01-01</p> <p>Impact craters on Venus appear to be uniformly and randomly scattered over a once, but no longer, geologically active planet. To first approximation, the planet shows a single surface of a single age. Here we use Monte Carlo cratering simulations to estimate the age of the surface of Venus. The simulations are based on the present populations of Earth-approaching asteroids, Jupiter-family, Halley-family, and long period comets; they use standard Schmidt-Housen crater scalings in the gravity regime; and they describe interaction with the atmosphere using a semi-analytic 'pancake' model that is calibrated to detailed numerical simulations of impactors striking Venus. The lunar and terrestrial cratering records are also simulated. Both of these records suffer from poor statistics. The Moon has few young large craters and fewer still whose ages are known, and the record is biased because small craters tend to look old and large craters tend to look young. The craters of the Earth provide the only reliable ages, but these craters are few, eroded, of uncertain diameter, and statistically incomplete. Together the three cratering records can be inverted to constrain the flux of impacting bodies, crater diameters given impact parameters, and the calibration of atmospheric interactions. The surface age of Venus that results is relatively young. Alternatively, we can use our best estimates for these three input parameters to derive a best estimate for the age of the surface of Venus. Our tentative conclusions are that comets are unimportant, that the lunar and terrestrial crater records are both subject to strong biases, that there is no strong evidence for an increasing cratering flux in recent years, and that that the nominal age of the surface of Venus is about 600 Ma, although the uncertainty is about a factor of two. The chief difference between our estimate and earlier, somewhat younger estimates is that we find that the venusian atmosphere is less permeable to impacting bodies than supposed by earlier studies. An older surface increases the likelihood that Venus is dead.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70010404','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70010404"><span>Moon-Mercury: Relative preservation states of secondary craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Scott, D.H.</p> <p>1977-01-01</p> <p>Geologic mapping of the Kuiper quadrangle of Mercury and other geologic studies of the planet indicate that secondary craters are much better preserved than those on the moon around primary craters of similar size and morphology. Among the oldest recognized secondary craters on the moon associated with craters 100 km across or less are those of Posidonius, Atlas and Plato; these craters have been dated as middle to late Imbrian in age. Many craters on Mercury with dimensions, morphologies and superposed crater densities similar to these lunar craters have fields and clusters of fresher appearing secondary craters. The apparent differences between secondary-crater morphology and parent crater may be due in part to: (1) rapid isostatic adjustment of the parent crater; (2) different impact fluxes between the two planets; and (or) (3) to the greater concentration of Mercurian secondaries around impact areas, thereby accentuating crater forms. Another factor which may contribute to the better state of preservation of Mercurian secondaries relative to the moon is the difference in crater ejecta velocities on both bodies. These velocities have been calculated for fields of secondary craters at about equal ranges from lunar and Mercurian parent craters. Results show that ejection velocities of material producing most of the secondary craters are rather low (<1 km/s) but velocities on Mercury are about 50% greater than those on the moon for equivalent ranges. Higher velocities may produce morphologically enhanced secondary craters which may account for their better preservation with time. ?? 1977.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/11701924','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/11701924"><span>Thickness of a Europan ice shell from impact crater simulations.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Turtle, E P; Pierazzo, E</p> <p>2001-11-09</p> <p>Several impact craters on Jupiter's satellite Europa exhibit central peaks. On the terrestrial planets, central peaks consist of fractured but competent rock uplifted during cratering. Therefore, the observation of central peaks on Europa indicates that an ice layer must be sufficiently thick that the impact events did not completely penetrate it. We conducted numerical simulations of vapor and melt production during cratering of water ice layers overlying liquid water to estimate the thickness of Europa's icy crust. Because impacts disrupt material well beyond the zone of partial melting, our simulations put a lower limit on ice thickness at the locations and times of impact. We conclude that the ice must be more than 3 to 4 kilometers thick.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70001483','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70001483"><span>The complex filling of alae crater, Kilauea Volcano, Hawaii</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Swanson, D.A.; Duffield, W.A.; Jackson, D.B.; Peterson, D.W.</p> <p>1972-01-01</p> <p>Since February 1969 Alae Crater, a 165-m-deep pit crater on the east rift of Kilauea Volcano, has been completely filled with about 18 million m3 of lava. The filling was episodic and complex. It involved 13 major periods of addition of lava to the crater, including spectacular lava falls as high as 100 m, and three major periods of draining of lava from the crater. Alae was nearly filled by August 3, 1969, largely drained during a violent ground-cracking event on August 4, 1969, and then filled to the low point on its rim on October 10, 1969. From August 1970 to May 1971, the crater acted as a reservoir for lava that entered through subsurface tubes leading from the vent fissure 150 m away. Another tube system drained the crater and carried lava as far as the sea, 11 km to the south. Much of the lava entered Alae by invading the lava lake beneath its crust and buoying the crust upward. This process, together with the overall complexity of the filling, results in a highly complicated lava lake that would doubtless be misinterpreted if found in the fossil record. ?? 1972 Stabilimento Tipografico Francesco Giannini & Figli.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20315.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20315.html"><span>Dawn LAMO Image 25</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-02-11</p> <p>This image, taken by NASA Dawn spacecraft, shows a densely cratered region within Meanderi Crater on Ceres. Elongated craters in the wall of the largest impact feature are likely the result of material slumping down the crater walls.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA04448.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA04448.html"><span>Cydonia Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2003-03-22</p> <p>In this image from NASA Mars Odyssey, eroded mesas and secondary craters dot the landscape in an area of Cydonia Mensae. The single oval-shaped crater displays a butterfly ejecta pattern, indicating that the crater formed from a low-angle impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA18384.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA18384.html"><span>Large, Fresh Crater Surrounded by Smaller Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-05-22</p> <p>The largest crater associated with a March 2012 impact on Mars has many smaller craters around it, revealed in this image from the High Resolution Imaging Science Experiment HiRISE camera on NASA Mars Reconnaissance Orbiter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA19673.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA19673.html"><span>Spectral Signals Indicating Impact Glass on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-06-08</p> <p>Deposits of impact glass have been preserved in Martian craters, including Alga Crater, shown here. Detection of the impact glass by researchers at Brown University, Providence, Rhode Island, is based on data from the Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) on NASA's Mars Reconnaissance Orbiter. In color coding based on analysis of CRISM spectra, green indicates the presence of glass. (Blues are pyroxene; reds are olivine.) Impact glass forms in the heat of a violent impact that excavates a crater. Impact glass found on Earth can preserve evidence about ancient life. A deposit of impact glass on Mars could be a good place to look for signs of past life on that planet. This view shows Alga Crater's central peak, which is about 3 miles (5 kilometers) wide within the 12-mile (19-kilometer) diameter of this southern-hemisphere crater. The information from CRISM is shown over a terrain model and image, based on observations by the High Resolution Imaging Science Experiment (HiRISE) camera. The vertical dimension is exaggerated by a factor of two. http://photojournal.jpl.nasa.gov/catalog/PIA19673</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUSM.P41A..03H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUSM.P41A..03H"><span>The Vichada Impact Crater in Northwestern South America and its Potential for Economic Deposits</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez, O.; von Frese, R. R.</p> <p>2008-05-01</p> <p>A prominent positive free-air gravity anomaly mapped over a roughly 50-km diameter basin is consistent with a mascon centered on (4o30`N, -69o15`W) in the Vichada Department, Colombia, South America. The inferred large impact crater is nearly one third the size of the Chicxulub crater. It must have formed recently, in the last 30 m.a. because it controls the partially eroded and jungle-covered path of the Vichada River. No antipodal relationship has been detected. Thick sedimentary cover, erosional processes and dense vegetation greatly limit direct geological testing of the inferred impact basin. However, EGM-96 gravity data together with ground gravity and magnetic profiles support the interpretation of the impact crater structure. The impact extensively thinned and disrupted the Precambrian cratonic crust and may be associated with mineral and hydrocarbon deposits. A combined EM and magnetic airborne program is being developed to resolve additional crustal properties of the inferred Vichada impact basin Keywords: Impact crater, economic deposits, free-air gravity anomalies</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04049&hterms=sputnik&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsputnik','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04049&hterms=sputnik&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dsputnik"><span>Impact Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p><p/> [figure removed for brevity, see original site] <p/>Today marks the 45th anniversary of the dawn of the Space Age (October 4, 1957). On this date the former Soviet Union launched the world's first satellite, Sputnik 1. Sputnik means fellow traveler. For comparison Sputnik 1 weighed only 83.6 kg (184 pounds) while Mars Odyssey weighs in at 758 kg (1,671 pounds).<p/>This scene shows several interesting geologic features associated with impact craters on Mars. The continuous lobes of material that make up the ejecta blanket of the large impact crater are evidence that the crater ejecta were fluidized upon impact of the meteor that formed the crater. Volatiles within the surface mixed with the ejecta upon impact thus creating the fluidized form. Several smaller impact craters are also observed within the ejecta blanket of the larger impact crater giving a relative timing of events. Layering of geologic units is also observed within the large impact crater walls and floor and may represent different compositional units that erode at variable rates. Cliff faces, dissected gullies, and heavily eroded impact craters are observed in the bottom half of the image at the terminus of a flat-topped plateau.<p/>Note: this THEMIS visual image has not been radiometrically nor geometrically calibrated for this preliminary release. An empirical correction has been performed to remove instrumental effects. A linear shift has been applied in the cross-track and down-track direction to approximate spacecraft and planetary motion. Fully calibrated and geometrically projected images will be released through the Planetary Data System in accordance with Project policies at a later time.<p/>NASA's Jet Propulsion Laboratory manages the 2001 Mars Odyssey mission for NASA's Office of Space Science, Washington, D.C. The Thermal Emission Imaging System (THEMIS) was developed by Arizona State University, Tempe, in collaboration with Raytheon Santa Barbara Remote Sensing. The THEMIS investigation is led by Dr. Philip Christensen at Arizona State University. Lockheed Martin Astronautics, Denver, is the prime contractor for the Odyssey project, and developed and built the orbiter. Mission operations are conducted jointly from Lockheed Martin and from JPL, a division of the California Institute of Technology in Pasadena.<p/></p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110002777','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110002777"><span>The Interaction of Impact Melt, Impact-Derived Sediment, and Volatiles at Crater Tooting, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Mouginis-Mark, P.; Boyce, J.</p> <p>2010-01-01</p> <p>We are producing a 1:200K geologic map of Tooting crater, Mars. This work has shown that an incredible amount of information can be gleaned from mapping at even larger scales (1:10K 1:25K) using CTX and HiRISE data. We have produced two new science papers (Morris et al., 2010; Mouginis-Mark and Boyce, 2010) from this mapping, and additional science questions continue to arise from our on-going analysis of Tooting crater: 1) What was the interplay of impact melt and volatile-rich sediments that, presumably, were created during the impact? Kieffer and Simonds [1980] predicted that melt would have been destroyed during impacts on Mars because of the volatiles present within the target we seek to understand if this is indeed the case at Tooting crater. We have identified pitted and fractured terrain that formed during crater modification, but the timing of the formation of these materials in different parts of the crater remains to be resolved. Stratigraphic relationships between these units and the central peak may reveal deformation features as well as overlapping relationships. 2) Morris et al. [2010] identified several lobate flows on the inner and outer walls of Tooting crater. It is not yet clear what the physical characteristics of the source areas of these flows really are; e.g., what are the sizes of the source areas, what elevations are they located at relative to the floor of the crater, are they interconnected, and are they on horizontal or tilted surfaces? 3) What were the details of dewatering of the inner wall of Tooting crater (Fig. 1)? We find evidence within Tooting crater of channels carved by water release, and the remobilization of sediment (which is inferred to have formed during the impact event). Sapping can be identified along the crest of unit 8 near the floor of the crater (Fig. 2a, 2b). This unit displays amphitheater-headed canyons that elsewhere on Mars are typically attributed to water leaking from the substrate [Laity and Malin, 1985; Malin and Edgett, 2000].</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/of/1984/0114/report.pdf','USGSPUBS'); return false;" href="https://pubs.usgs.gov/of/1984/0114/report.pdf"><span>Stratigraphic and volcano-tectonic relations of Crater Flat Tuff and some older volcanic units, Nye County, Nevada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Carr, W.J.; Byers, F.M.; Orkild, Paul P.</p> <p>1984-01-01</p> <p>The Crater Flat Tuff is herein revised to include a newly recognized lowest unit, the Tram Member, exposed at scattered localities in the southwest Nevada Test Site region, and in several drill holes in the Yucca Mountain area. The overlying Bullfrog and Prow Pass Members are well exposed at the type locality of the formation near the southeast edge of Crater Flat, just north of U.S. Highway 95. In previous work, the Tram Member was thought to be the Bullfrog Member, and therefore was shown as Bullfrog or as undifferentiated Crater Flat Tuff on published maps. The revised Crater Flat Tuff is stratigraphically below the Topopah Spring Member of the Paintbrush Tuff and above the Grouse Canyon Member of the Belted Range Tuff, and is approximately 13.6 m.y. old. Drill holes on Yucca Mountain and near Fortymile Wash penetrate all three members of the Crater Flat as well as an underlying quartz-poor unit, which is herein defined as the Lithic Ridge Tuff from exposures on Lithic Ridge near the head of Topopah Wash. In outcrops between Calico Hills and Yucca Flat, the Lithic Ridge Tuff overlies a Bullfrog-like unit of reverse magnetic polarity that probably correlates with a widespread unit around and under Yucca Flat, referred to previously as Crater Flat Tuff. This unit is here informally designated as the tuff of Yucca Flat. Although older, it may be genetically related to the Crater Flat Tuff. Although the rocks are poorly exposed, geophysical and geologic evidence to date suggests that (1) the source of the Crater Flat Tuff is a caldera complex in the Crater Flat area between Yucca Mountain and Bare Mountain, and (2) there are at least two cauldrons within this complex--one probably associated with eruption of the Tram, the other with the Bullfrog and Prow Pass Members. The complex is named the Crater Flat-Prospector Pass caldera complex. The northern part of the Yucca Mountain area is suggested as the general location of the source of pre-Crater Flat tuffs, but a caldera related to the Lithic Ridge Tuff has not been specifically identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018LPICo2066.7030P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018LPICo2066.7030P"><span>Enigmatic Sedimentary Deposits Within Partially Exhumed Impact Craters in the Aeolis Dorsa Region, Mars: Evidence for Past Crater Lakes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peel, S. E.; Burr, D. M.</p> <p>2018-06-01</p> <p>We mapped enigmatic sedimentary deposits within five partially exhumed impact craters within the Aeolis Dorsa Region of Mars. Ten units have been identified and are found to be consistent with deposition within and adjacent to lacustrine systems.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21881.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21881.html"><span>The Case of the Missing Crater Rim</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-08-21</p> <p>In this observation from NASA's Mars Reconnaissance Orbiter, these two craters perched at the edge of an outflow channel, appear to have lost a portion of their crater rims during a flood event. Alternatively, it is also possible that the craters impacted the edge of the outflow channel after the flood occurred and we are seeing the difference in the strength of the material impacted. https://photojournal.jpl.nasa.gov/catalog/PIA21881</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA18887.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA18887.html"><span>Which Way is Up?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2014-10-29</p> <p>This image NASA Mars Reconnaissance Orbiter shows an impact crater that was cut by lava in the Elysium Planitia region of Mars. It looks relatively flat, with a shallow floor, rough surface texture, and possible cooling cracks seem to indicate that the crater was partially filled with lava. The northern part of the image also shows a more extensive lava flow deposit that surrounds the impact ejecta of the largest impact crater in the image. Which way did the lava flow? It might appear that the lava flowed from the north through the channel into the partially filled crater. However, if you look at the anaglyph with your red and blue 3D glasses, it becomes clear that the partially filled crater sits on top of the large crater's ejecta blanket, making it higher than the lava flow to the north. Since lava does not flow uphill, that means the explanation isn't so simple. http://photojournal.jpl.nasa.gov/catalog/PIA18887</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014Icar..244..120K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014Icar..244..120K"><span>Mass movement on Vesta at steep scarps and crater rims</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; De Sanctis, M. C.; Kneissl, T.; Schmedemann, N.; Kersten, E.; Stephan, K.; Matz, K.-D.; Pieters, C. M.; Preusker, F.; Roatsch, T.; Schenk, P.; Russell, C. T.; Raymond, C. A.</p> <p>2014-12-01</p> <p>The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780060136&hterms=drilling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddrilling','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780060136&hterms=drilling&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Ddrilling"><span>Shallow drilling in the 'Bunte Breccia' impact deposits, Ries Crater, Germany</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoerz, F.; Gall, H.; Huettner, R.; Oberbeck, V. R.</p> <p>1977-01-01</p> <p>The paper is a field report concerning a shallow core drilling program in the multicolored breccia deposits which constitute 90% of all the impact breccias beyond the outer rim of the Ries, a 26-km-diam impact crater. About 480 m of core was recovered from 11 locations with radial ranges between 16.5 and 35 km from the crater center. The cores consist of breccias, whose components are derived from the crater itself and the terrain outside the crater. The local components dominate the breccias at the larger ranges, and possibly constitute more than 90% of the breccia volume at the greatest distances investigated. The great depth of the Bunte Breccia (84 m at 27 km range), together with the preponderance of local components, necessitates an emplacement mechanism that ploughed up and mixed the crater surroundings to depths greater than 50 m.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150001338','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150001338"><span>Mass Movement on Vesta at Steep Scarps and Crater Rims</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Krohn, K.; Jaumann, R.; Otto, K.; Hoogenboom, T.; Wagner, R.; Buczkowski, D. L.; Garry, B.; Williams, D. A.; Yingst, R. A.; Scully, J.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20150001338'); toggleEditAbsImage('author_20150001338_show'); toggleEditAbsImage('author_20150001338_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20150001338_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20150001338_hide"></p> <p>2014-01-01</p> <p>The Quadrangles Av-11 and Av-12 on Vesta are located at the northern rim of the giant Rheasilvia south polar impact basin. The primary geologic units in Av-11 and Av-12 include material from the Rheasilvia impact basin formation, smooth material and different types of impact crater structures (such as bimodal craters, dark and bright crater ray material and dark ejecta material). Av-11 and Av-12 exhibit almost the full range of mass wasting features observed on Vesta, such as slump blocks, spur-and-gully morphologies and landslides within craters. Processes of collapse, slope instability and seismically triggered events force material to slump down crater walls or scarps and produce landslides or rotational slump blocks. The spur-and-gully morphology that is known to form on Mars is also observed on Vesta; however, on Vesta this morphology formed under dry conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090033478','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090033478"><span>Cratering Equations for Zinc Orthotitanate Coated Aluminum</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hyde, James; Christiansen, Eric; Liou, Jer-Chyi; Ryan, Shannon</p> <p>2009-01-01</p> <p>The final STS-125 servicing mission (SM4) to the Hubble Space Telescope (HST) in May of 2009 saw the return of the 2nd Wide Field Planetary Camera (WFPC2) aboard the shuttle Discovery. This hardware had been in service on HST since it was installed during the SM1 mission in December of 1993 yielding one of the longest low Earth orbit exposure times (15.4 years) of any returned space hardware. The WFPC2 is equipped with a 0.8 x 2.2 m radiator for thermal control of the camera electronics (Figure 1). The space facing surface of the 4.1 mm thick aluminum radiator is coated with Z93 zinc orthotitanate thermal control paint with a nominal thickness of 0.1 0.2 mm. Post flight inspections of the radiator panel revealed hundreds of micrometeoroid/orbital debris (MMOD) impact craters ranging in size from less than 300 to nearly 1000 microns in diameter. The Z93 paint exhibited large spall areas around the larger impact sites (Figure 2) and the craters observed in the 6061-T651 aluminum had a different shape than those observed in uncoated aluminum. Typical hypervelocity impact craters in aluminum have raised lips around the impact site. The craters in the HST radiator panel had suppressed crater lips, and in some cases multiple craters were present instead of a single individual crater. Humes and Kinard observed similar behavior after the WFPC1 post flight inspection and assumed the Z93 coating was acting like a bumper in a Whipple shield. Similar paint behavior (spall) was also observed by Bland2 during post flight inspection of the International Space Station (ISS) S-Band Antenna Structural Assembly (SASA) in 2008. The SASA, with similar Z93 coated aluminum, was inspected after nearly 4 years of exposure on the ISS. The multi-crater phenomena could be a function of the density, composition, or impact obliquity angle of the impacting particle. For instance, a micrometeoroid particle consisting of loosely bound grains of material could be responsible for creating the multiple craters. Samples were obtained from the HST largest craters for examination by electron microscope equipped with x-ray spectrometers to determine impactor source (micrometeoroid or orbital debris). In an attempt to estimate the MMOD particle diameters that produced these craters, this paper will present equations for spall diameter, crater depth and crater diameter in Z93 coated aluminum. The equations will be based on hypervelocity impact tests of Z93 painted aluminum at the NASA White Sands Test Facility. Equations inputs for velocities beyond the testable regime are expected from hydrocode simulations of Z93 coated aluminum using CTH and ANSYS AUTODYN.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009LPI....40.1379K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009LPI....40.1379K"><span>Ring-Mold Craters on Lineated Valley Fill, Lobate Debris Aprons, and Concentric Crater Fill on Mars: Implications for Near-Surface Structure, Composition, and Age.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kress, A.; Head, J. W.</p> <p>2009-03-01</p> <p>Analysis of ring-mold crater populations on lineated valley fill, lobate debris aprons, and concentric crater fill on Mars and of ice-impact experiments suggest crater-count-derived ages may be erroneously old.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910048874&hterms=joseph+campbell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djoseph%2Bcampbell','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910048874&hterms=joseph+campbell&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Djoseph%2Bcampbell"><span>Impact craters on Venus - Initial analysis from Magellan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Phillips, Roger J.; Arvidson, Raymond E.; Boyce, Joseph M.; Campbell, Donald B.; Guest, John E.</p> <p>1991-01-01</p> <p>The general features of impact craters are described emphasizing two aspects: the effect of the atmosphere on crater and ejecta morphology and the implications of the distribution and appearance of the craters for the volcanic and tectonic resurfacing history of Venus. Magellan radar images reveal 135 craters about 15 km in diameter containing central peaks, multiple central peaks, and peak rings. Craters smaller than 15 km exhibit multiple floors or appear in clusters. Surface flows of material initially entrained in the atmosphere are characterized. Zones of low radar albedo originated from deformation of the surface by the shock or pressure wave associated with the incoming meteoroid surround many craters. A spectrum of surface ages on Venus ranging from 0 to 800 million years indicates that Venus must be a geologically active planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20288.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20288.html"><span>Icy Erosion</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-12-23</p> <p>This image from NASA Mars Reconnaissance Orbiter spacecraft shows an interesting collection of kilometer-scale craters with flat and smooth floors. The craters themselves may be the result of secondary impacts, craters caused by debris from a distant larger impact. Since then, the surface has been significantly modified and reworked, muting the craters and flattening their floors. Presently, there are a few sand dunes and a broad overlay of a dusty soil mantle. This soil mantle occurs over much of the middle latitudes of Mars. Here, as elsewhere, the mantle covers these craters, but a closer inspection reveals that its smooth texture becomes significantly pitted and bumpy on the pole facing slopes of each crater interior wall. http://photojournal.jpl.nasa.gov/catalog/PIA20288</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016MmSAI..87...19V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016MmSAI..87...19V"><span>Morphometric analysis of a fresh simple crater on the Moon.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vivaldi, V.; Ninfo, A.; Massironi, M.; Martellato, E.; Cremonese, G.</p> <p></p> <p>In this research we are proposing an innovative method to determine and quantify the morphology of a simple fresh impact crater. Linné is a well preserved impact crater of 2.2 km in diameter, located at 27.7oN 11.8oE, near the western edge of Mare Serenitatis on the Moon. The crater was photographed by the Lunar Orbiter and the Apollo space missions. Its particular morphology may place Linné as the most striking example of small fresh simple crater. Morphometric analysis, conducted on recent high resolution DTM from LROC (NASA), quantitatively confirmed the pristine morphology of the crater, revealing a clear inner layering which highlight a sequence of lava emplacement events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017P%26SS..149....5N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017P%26SS..149....5N"><span>Impact cratering on porous targets in the strength regime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nakamura, Akiko M.</p> <p>2017-12-01</p> <p>Cratering on small bodies is crucial for the collision cascade and also contributes to the ejection of dust particles into interplanetary space. A crater cavity forms against the mechanical strength of the surface, gravitational acceleration, or both. The formation of moderately sized craters that are sufficiently larger than the thickness of the regolith on small bodies, in which mechanical strength plays the dominant role rather than gravitational acceleration, is in the strength regime. The formation of microcraters on blocks on the surface is also within the strength regime. On the other hand, the formation of a crater of a size comparable to the thickness of the regolith is affected by both gravitational acceleration and cohesion between regolith particles. In this short review, we compile data from the literature pertaining to impact cratering experiments on porous targets, and summarize the ratio of spall diameter to pit diameter, the depth, diameter, and volume of the crater cavity, and the ratio of depth to diameter. Among targets with various porosities studied in the laboratory to date, based on conventional scaling laws (Holsapple and Schmidt, J. Geophys. Res., 87, 1849-1870, 1982) the cratering efficiency obtained for porous sedimentary rocks (Suzuki et al., J. Geophys. Res. 117, E08012, 2012) is intermediate. A comparison with microcraters formed on a glass target with impact velocities up to 14 km s-1 indicates a different dependence of cratering efficiency and depth-to-diameter ratio on impact velocity.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P43C2118B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P43C2118B"><span>Is Ceres' deep interior ice-rich? Constraints from crater morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bland, M. T.; Raymond, C. A.; Fu, R.; Marchi, S.; Castillo, J. C.; King, S. D.; Schenk, P.; Preusker, F.; Park, R. S.; Russell, C. T.</p> <p>2016-12-01</p> <p>Determining the composition and internal structure of Ceres is critical to understanding its origin and evolution. Analysis of the depths of Ceres' largest impact craters [Bland et al. 2016] and global shape [Fu et al. 2016] using data returned by NASA's Dawn spacecraft indicate that the dwarf planet's subsurface contains no more than 30% water ice by volume, with the other 70% consisting of salts (hydrated and/or anhydrous), clathrates, and phyllosilicates. Despite these findings, Ceres is unlikely to be ice-free. The GRaND instrument has detected probable water ice at decimeter depths (with strong latitudinal variations) [Prettyman et al. 2016], water ice has been detected in fresh [Combe et al. 2016] and permanently shadowed craters [Schorghofer et al. 2016], and the simple-complex morphologic transition diameter is consistent with a weak (icy) surface layer [Schenk et al. 2016]. Furthermore, a cryovolcanic origin for Ahuna Mons requires a source of water-rich material [Ruesch et al. 2016]. Here we use numerical simulations of the viscous relaxation of impact craters to provide new constraints on the water ice content of Ceres as a function of depth that enable a more complete understanding of the thickness and composition of its outer layer. These new simulations include three rheological layers: a high-viscosity near-surface layer, a weaker (possibly ice-rich layer), and an essentially immobile rocky layer at depth. Results are latitude (temperature) dependent; however, we generally find that retaining crater topography requires a high-viscosity (ice-poor) layer with a thickness of 50% the crater radius. For example, retaining a 100-km diameter crater at latitudes below 50o requires a high-viscosity (103x water ice) layer at least 30 km thick, if the underlying layer is pure ice. Deep, low-latitude craters 150 km in diameter are observed on Ceres [Bland et al. 2016], so the high-viscosity layer is likely >40 km thick. However, our results do not exclude the existence of a reservoir enriched in water ice at the base of Ceres' outer layer. We also find that the unique morphology of Ceres' largest crater, Kerwan, may result from viscous relaxation in a thin outer layer, potentially providing a constraint on the local thickness of Ceres outer shell.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70194344','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70194344"><span>Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Bland, Michael T.; McKinnon, William B.</p> <p>2018-01-01</p> <p>Ganymede’s bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25–50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede’s surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..306..285B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..306..285B"><span>Viscous relaxation as a prerequisite for tectonic resurfacing on Ganymede: Insights from numerical models of lithospheric extension</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bland, Michael T.; McKinnon, William B.</p> <p>2018-05-01</p> <p>Ganymede's bright terrain formed during a near-global resurfacing event (or events) that produced both heavily tectonized and relatively smooth terrains. The mechanism(s) by which resurfacing occurred on Ganymede (e.g., cryovolcanic or tectonic), and the relationship between the older, dark and the younger, bright terrain are fundamental to understanding the geological evolution of the satellite. Using a two-dimensional numerical model of lithospheric extension that has previously been used to successfully simulate surface deformation consistent with grooved terrain morphologies, we investigate whether large-amplitude preexisting topography can be resurfaced (erased) by extension (i.e., tectonic resurfacing). Using synthetically produced initial topography, we show that when the total relief of the initial topography is larger than 25-50 m, periodic groove-like structures fail to form. Instead, extension is localized in a few individual, isolated troughs. These results pose a challenge to the tectonic resurfacing hypothesis. We further investigate the effects of preexisting topography by performing suites of simulations initialized with topography derived from digital terrain models of Ganymede's surface. These include dark terrain, fresh (relatively deep) impact craters, smooth bright terrain, and a viscously relaxed impact crater. The simulations using dark terrain and fresh impact craters are consistent with our simulations using synthetic topography: periodic groove-like deformation fails to form. In contrast, when simulations were initialized with bright smooth terrain topography, groove-like deformation results from a wide variety of heat flow and surface temperature conditions. Similarly, when a viscously relaxed impact crater was used, groove-like structures were able to form during extension. These results suggest that tectonic resurfacing may require that the amplitude of the initial topography be reduced before extension begins. We emphasize that viscous relaxation may be the key to enabling tectonic resurfacing, as the heat fluxes associated with groove terrain formation are also capable of reducing crater topography through viscous relaxation. For long-wavelength topography (large craters) viscous relaxation is unavoidable. We propose that the resurfacing of Ganymede occurred through a combination of viscous relaxation, tectonic resurfacing, cryovolcanism and, at least in a few cases, band formation. Variations in heat flow and strain magnitudes across Ganymede likely produced the complex variety of terrain types currently observed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870037740&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bwasting','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870037740&hterms=mass+wasting&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dmass%2Bwasting"><span>Lunar and Venusian radar bright rings</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Thompson, T. W.; Saunders, R. S.; Weissman, D. E.</p> <p>1986-01-01</p> <p>Twenty-one lunar craters have radar bright ring appearances which are analogous to eleven complete ring features in the earth-based 12.5 cm observations of Venus. Radar ring diameters and widths for the lunar and Venusian features overlap for sizes from 45 to 100 km. Radar bright areas for the lunar craters are associated with the slopes of the inner and outer rim walls, while level crater floors and level ejecta fields beyond the raised portion of the rim have average radar backscatter. It is proposed that the radar bright areas of the Venusian rings are also associated with the slopes on the rims of craters. The lunar craters have evolved to radar bright rings via mass wasting of crater rim walls and via post-impact flooding of crater floors. Aeolian deposits of fine-grained material on Venusian crater floors may produce radar scattering effects similar to lunar crater floor flooding. These Venusian aeolian deposits may preferentially cover blocky crater floors producing a radar bright ring appearance. It is proposed that the Venusian features with complete bright ring appearances and sizes less than 100 km are impact craters. They have the same sizes as lunar craters and could have evolved to radar bright rings via analogous surface processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890011964','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890011964"><span>Mass mortality and extraterrestrial impacts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jansa, L. F.; Gradstein, F. M.; Pierre-Aubry, M.</p> <p>1988-01-01</p> <p>The discovery of iridium enrichment at the Cretaceous/Tertiary boundary resulted in formulation of hypothesis of a cometary or asteroid impact as the cause of the biological extinctions at this boundary. Subsequent discoveries of geochemical anomalies at major stratigraphic boundaries like the Precambrian/Cambrian, Permian/Triassic, Middle/Late Jurassic, resulted in the application of similar extraterrestrial impact theories to explain biological changes at these boundaries. Until recently the major physical evidence, as is the location of the impact crater site, to test the impact induced biological extinction was lacking. The diameter of such a crater would be in the range of 60 to 100 km. The recent discovery of the first impact crater in the ocean provide the first opportunity to test the above theory. The crater, named Montagnais and located on the outer shelf off Nova Scotia, Canada, has a minimum diameter of 42 km, with some evidence to a diameter of more than 60 km. At the Montagnais impact site, micropaleontological analysis of the uppermost 80 m of the fall-back breccia represented by a mixture of pre-impact sediments and basement rocks which fills the crater and of the basal 50 m of post-impact marine sediments which overly the impact deposits, revealed presence of diversified foraminiferal and nannoplankton assemblages. The sediments which are intercalated within the uppermost part of the fall-back breccia, had to be deposited before the meteorite impact. The post-impact deposits were laid down almost immediately after the impact as also supported by the micropaleontological data. In conclusion, micropaleontological studies of sediments from the first submarine impact crater site identified in the ocean did not reveal any mass extinction or significant biological changes at the impact site or in the proximal deep ocean basin.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.usgs.gov/sim/3158/','USGSPUBS'); return false;" href="https://pubs.usgs.gov/sim/3158/"><span>Geologic map of the Metis Mons quadrangle (V–6), Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Dohm, James M.; Tanaka, Kenneth L.; Skinner, James A.</p> <p>2011-01-01</p> <p>The Metis Mons quadrangle (V–6) in the northern hemisphere of Venus (lat 50° to 75° N., long 240° to 300° E.) includes a variety of coronae, large volcanoes, ridge and fracture (structure) belts, tesserae, impact craters, and other volcanic and structural features distributed within a plains setting, affording study of their detailed age relations and evolutionary development. Coronae in particular have magmatic, tectonic, and topographic signatures that indicate complex evolutionary histories. Previously, the geology of the map region has been described either in general or narrowly focused investigations. Based on Venera radar mapping, a 1:15,000,000-scale geologic map of part of the northern hemisphere of Venus included the V–6 map region and identified larger features such as tesserae, smooth and hummocky plains materials, ridge belts, coronae, volcanoes, and impact craters but proposed little relative-age information. Global-scale mapping from Magellan data identified similar features and also determined their mean global ages with crater counts. However, the density of craters on Venus is too low for meaningful relative-age determinations at local to regional scales. Several of the coronae in the map area have been described using Venera data (Stofan and Head, 1990), while Crumpler and others (1992) compiled detailed identification and description of volcanic and tectonic features from Magellan data. The main purpose of this map is to reconstruct the geologic history of the Metis Mons quadrangle at a level of detail commensurate with a scale of 1:5,000,000 using Magellan data. We interpret four partly overlapping stages of geologic activity, which collectively resulted in the formation of tesserae, coronae (oriented along structure belts), plains materials of varying ages, and four large volcanic constructs. Scattered impact craters, small shields and pancake-shaped domes, and isolated flows superpose the tectonically deformed materials and appear to be the most youthful materials in the map region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70016574','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70016574"><span>Impact craters on Venus: Initial analysis from Magellan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Phillips, R.J.; Arvidson, R. E.; Boyce, J.M.; Campbell, D.B.; Guest, J.E.; Schaber, G.G.; Soderblom, L.A.</p> <p>1991-01-01</p> <p>Magellan radar images of 15 percent of the planet show 135 craters of probable impact origin. Craters more than 15 km across tend to contain central peaks, multiple central peaks, and peak rings. Many craters smaller than 15 km exhibit multiple floors or appear in clusters; these phenomena are attributed to atmospheric breakup of incoming meteoroids. Additionally, the atmosphere appears to have prevented the formation of primary impact craters smaller than about 3 km and produced a deficiency in the number of craters smaller than about 25 km across. Ejecta is found at greater distances than that predicted by simple ballistic emplacement, and the distal ends of some ejecta deposits are lobate. These characteristics may represent surface flows of material initially entrained in the atmosphere. Many craters are surrounded by zones of low radar albedo whose origin may have been deformation of the surface by the shock or pressure wave associated with the incoming meteoroid. Craters are absent from several large areas such as a 5 million square kilometer region around Sappho Patera, where the most likely explanation for the dearth of craters is volcanic resurfacing, There is apparently a spectrum of surface ages on Venus ranging approximately from 0 to 800 million years, and therefore Venus must be a geologically active planet.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Geomo.303..357B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Geomo.303..357B"><span>Application of X-ray computed microtomography to soil craters formed by raindrop splash</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beczek, Michał; Ryżak, Magdalena; Lamorski, Krzysztof; Sochan, Agata; Mazur, Rafał; Bieganowski, Andrzej</p> <p>2018-02-01</p> <p>The creation of craters on the soil surface is part of splash erosion. Due to the small size of these craters, they are difficult to study. The main aim of this paper was to test X-ray computed microtomography to investigate craters formed by raindrop impacts. Measurements were made on soil samples moistened to three different levels corresponding with soil water potentials of 0.1, 3.16 and 16 kPa. Using images obtained by X-ray microtomography, geometric parameters of the craters were recorded and analysed. X-ray computed microtomography proved to be a useful and efficient tool for the investigation of craters formed on the soil surface after the impact of water drops. The parameters of the craters changed with the energy of the water drops and were dependent on the initial moisture content of the soil. Crater depth is more dependent on the increased energy of the water drop than crater diameter.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009Icar..203...77S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009Icar..203...77S"><span>Machine cataloging of impact craters on Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Stepinski, Tomasz F.; Mendenhall, Michael P.; Bue, Brian D.</p> <p>2009-09-01</p> <p>This study presents an automated system for cataloging impact craters using the MOLA 128 pixels/degree digital elevation model of Mars. Craters are detected by a two-step algorithm that first identifies round and symmetric topographic depressions as crater candidates and then selects craters using a machine-learning technique. The system is robust with respect to surface types; craters are identified with similar accuracy from all different types of martian surfaces without adjusting input parameters. By using a large training set in its final selection step, the system produces virtually no false detections. Finally, the system provides a seamless integration of crater detection with its characterization. Of particular interest is the ability of our algorithm to calculate crater depths. The system is described and its application is demonstrated on eight large sites representing all major types of martian surfaces. An evaluation of its performance and prospects for its utilization for global surveys are given by means of detailed comparison of obtained results to the manually-derived Catalog of Large Martian Impact Craters. We use the results from the test sites to construct local depth-diameter relationships based on a large number of craters. In general, obtained relationships are in agreement with what was inferred on the basis of manual measurements. However, we have found that, in Terra Cimmeria, the depth/diameter ratio has an abrupt decrease at ˜38°S regardless of crater size. If shallowing of craters is attributed to presence of sub-surface ice, a sudden change in its spatial distribution is suggested by our findings.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70020687','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70020687"><span>Europa: Initial Galileo Geological Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Greeley, R.; Sullivan, R.; Klemaszewski, J.; Homan, K.; Head, J. W.; Pappalardo, R.T.; Veverka, J.; Clark, B.E.; Johnson, T.V.; Klaasen, K.P.; Belton, M.; Moore, J.; Asphaug, E.; Carr, M.H.; Neukum, G.; Denk, T.; Chapman, C.R.; Pilcher, C.B.; Geissler, P.E.; Greenberg, R.; Tufts, R.</p> <p>1998-01-01</p> <p>Images of Europa from the Galileo spacecraft show a surface with a complex history involving tectonic deformation, impact cratering, and possible emplacement of ice-rich materials and perhaps liquids on the surface. Differences in impact crater distributions suggest that some areas have been resurfaced more recently than others; Europa could experience current cryovolcanic and tectonic activity. Global-scale patterns of tectonic features suggest deformation resulting from non-synchronous rotation of Europa around Jupiter. Some regions of the lithosphere have been fractured, with icy plates separated and rotated into new positions. The dimensions of these plates suggest that the depth to liquid or mobile ice was only a few kilometers at the time of disruption. Some surfaces have also been upwarped, possibly by diapirs, cryomagmatic intrusions, or convective upwelling. In some places, this deformation has led to the development of chaotic terrain in which surface material has collapsed and/or been eroded. ?? 1998 Academic Press.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017M%26PS...52.1577R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017M%26PS...52.1577R"><span>New insights on petrography and geochemistry of impactites from the Lonar crater, India</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ray, Dwijesh; Upadhyay, Dewashish; Misra, Saumitra; Newsom, Horton E.; Ghosh, Sambhunath</p> <p>2017-08-01</p> <p>The Lonar impact crater, India, is one of the few known terrestrial impact craters excavated in continental basaltic target rocks (Deccan Traps, 65 Ma). The impactites reported from the crater to date mainly include centimeter- to decimeter-sized impact-melt bombs, and aerodynamically shaped millimeter- and submillimeter-sized impact spherules. They occur in situ within the ejecta around the crater rim and show schlieren structure. In contrast, non-in situ glassy objects, loosely strewn around the crater lake and in the ejecta around the crater rim do not show any schlieren structure. These non-in situ fragments appear to be similar to ancient bricks from the Daityasudan temple in the Lonar village. Synthesis of existing and new major and trace element data on the Lonar impact spherules show that (1) the target Lonar basalts incorporated into the spherules had undergone minimal preimpact alteration. Also, the paleosol layer as preserved between the top-most target basalt flow and the ejecta blanket, even after the impact, was not a source component for the Lonar impactites, (2) the Archean basement below the Deccan traps were unlikely to have contributed material to the impactite parental melts, and (3) the impactor asteroid components (Cr, Co, Ni) were concentrated only within the submillimeter-sized spherules. Two component mixing calculations using major oxides and Cr, Co, and Ni suggest that the Lonar impactor was a EH-type chondrite with the submillimeter-sized spherules containing 6 wt% impactor components.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000982','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000982"><span>Melting and its relationship to impact crater morphology</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Okeefe, John D.; Ahrens, Thomas J.</p> <p>1992-01-01</p> <p>Shock-melting features occur on planets at scales that range from micrometers to megameters. It is the objective of this study to determine the extent of thickness, volume geometry of the melt, and relationship with crater morphology. The variation in impact crater morphology on planets is influenced by a broad range of parameters: e.g., planetary density, thermal state, strength, impact velocity, gravitational acceleration. We modeled the normal impact of spherical projectiles on a semi-infinite planet over a broad range of conditions using numerical techniques.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA15660.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA15660.html"><span>Crater Impacts on Vesta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-05-10</p> <p>This graphic shows the global distribution of craters that hit the giant asteroid Vesta, based on data from NASA Dawn mission. The yellow circles indicate craters of 2 miles or wider, with the size of the circles indicating the size of the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA15121.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA15121.html"><span>Vesta Cratered Landscape: Double Crater and Craters with Bright Ejecta</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-11-23</p> <p>This image from NASA Dawn spacecraft is dominated by a double crater which may have been formed by the simultaneous impact of a binary asteroid. Binary asteroids are asteroids that orbit their mutual center of mass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA15083.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA15083.html"><span>Dark Material Associated with and between Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2011-11-18</p> <p>This image from NASA Dawn spacecraft shows areas of dark material which are both associated with impact craters and between these craters on asteroid Vesta. Dark material is seen cropping out of the rims and sides of the larger craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19780005021','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19780005021"><span>Microcraters on lunar samples</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fechtig, H.; Gentner, W.; Hartung, J. B.; Nagel, K.; Neukum, G.; Schneider, E.; Storzer, D.</p> <p>1977-01-01</p> <p>The lunar microcrater phenomenology is described. The morphology of the lunar craters is in almost all aspects simulated in laboratory experiments in the diameter range from less than 1 nu to several millimeters and up to 60 km/s impact velocity. An empirically derived formula is given for the conversion of crater diameters into projectile diameters and masses for given impact velocities and projectile and target densities. The production size frequency distribution for lunar craters in the crater size range from approximately 1 nu to several millimeters in diameter is derived from various microcrater measurements within a factor of up to 5. Particle track exposure age measurements for a variety of lunar samples have been performed. They allow the conversion of the lunar crater size frequency production distributions into particle fluxes. The development of crater populations on lunar rocks under self-destruction by subsequent meteoroid impacts and crater overlap is discussed and theoretically described. Erosion rates on lunar rocks on the order of several millimeters per 10 yr are calculated. Chemical investigations of the glass linings of lunar craters yield clear evidence of admixture of projectile material only in one case, where the remnants of an iron-nickel micrometeorite have been identified.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA00462.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA00462.html"><span>Venus - Multiple-Floored, Irregular Impact Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1996-09-26</p> <p>NASA' sMagellan imaged this multiple-floored, irregular impact crater at latitude 16.4 degrees north, longitude 352.1 degrees east, during orbits 481 and 482 on 27 September 1990. This crater, about 9.2 kilometers in maximum diameter, was formed on what appears to be a slightly fractured, radar-dark (smooth) plain. The abundant, low viscosity flows associated with this cratering event have, however, filled local, fault-controlled troughs (called graben). These shallow graben are well portrayed on this Magellan image but would be unrecognizable but for their coincidental infilling by the radar-bright crater flows. This fortuitous enhancement by the crater flows of fault structures that are below the resolution of the Magellan synthetic aperture radar is providing the Magellan Science Team with valuable geologic information. The flow deposits from the craters are thought to consist primarily of shock melted rock and fragmented debris resulting from the nearly simultaneous impacts of two projectile fragments into the hot (800 degrees Fahrenheit) surface rocks of Venus. The presence of the various floors of this irregular crater is interpreted to be the result of crushing, fragmentation, and eventual aerodynamic dispersion of a single entry projectile during passage through the dense Venusian atmosphere. http://photojournal.jpl.nasa.gov/catalog/PIA00462</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19900003137','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19900003137"><span>Three ages of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wood, Charles A.; Coombs, Cassandra R.</p> <p>1989-01-01</p> <p>A central question for any planet is the age of its surface. Based on comparative planetological arguments, Venus should be as young and active as the Earth (Wood and Francis). The detection of probable impact craters in the Venera radar images provides a tool for estimating the age of the surface of Venus. Assuming somewhat different crater production rates, Bazilevskiy et al. derived an age of 1 + or - 0.5 billion years, and Schaber et al. and Wood and Francis estimated an age of 200 to 400 million years. The known impact craters are not randomly distributed, however, thus some area must be older and others younger than this average age. Ages were derived for major geologic units on Venus using the Soviet catalog of impact craters (Bazilevskiy et al.), and the most accessible geologic unit map (Bazilevskiy). The crater counts are presented for (diameters greater than 20 km), areas, and crater densities for the 7 terrain units and coronae. The procedure for examining the distribution of craters is superior to the purely statistical approaches of Bazilevskiy et al. and Plaut and Arvidson because the bins are larger (average size 16 x 10(6) sq km) and geologically significant. Crater densities define three distinct groups: relatively heavily cratered (Lakshmi, mountain belts), moderately cratered (smooth and rolling plains, ridge belts, and tesserae), and essentially uncratered (coronae and domed uplands). Following Schaber et al., Grieve's terrestrial cratering rate of 5.4 + or - 2.7 craters greater than 20 km/10(9) yrs/10(6) sq km was used to calculate ages for the geologic units on Venus. To improve statistics, the data was aggregated into the three crater density groups, deriving the ages. For convenience, the three similar age groups are given informal time stratigraphic unit names, from youngest to oldest: Ulfrunian, Sednaian, Lakshmian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1989LPICo.708...54W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1989LPICo.708...54W"><span>Three ages of Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wood, Charles A.; Coombs, Cassandra R.</p> <p></p> <p>A central question for any planet is the age of its surface. Based on comparative planetological arguments, Venus should be as young and active as the Earth (Wood and Francis). The detection of probable impact craters in the Venera radar images provides a tool for estimating the age of the surface of Venus. Assuming somewhat different crater production rates, Bazilevskiy et al. derived an age of 1 + or - 0.5 billion years, and Schaber et al. and Wood and Francis estimated an age of 200 to 400 million years. The known impact craters are not randomly distributed, however, thus some area must be older and others younger than this average age. Ages were derived for major geologic units on Venus using the Soviet catalog of impact craters (Bazilevskiy et al.), and the most accessible geologic unit map (Bazilevskiy). The crater counts are presented for (diameters greater than 20 km), areas, and crater densities for the 7 terrain units and coronae. The procedure for examining the distribution of craters is superior to the purely statistical approaches of Bazilevskiy et al. and Plaut and Arvidson because the bins are larger (average size 16 x 10(6) sq km) and geologically significant. Crater densities define three distinct groups: relatively heavily cratered (Lakshmi, mountain belts), moderately cratered (smooth and rolling plains, ridge belts, and tesserae), and essentially uncratered (coronae and domed uplands). Following Schaber et al., Grieve's terrestrial cratering rate of 5.4 + or - 2.7 craters greater than 20 km/10(9) yrs/10(6) sq km was used to calculate ages for the geologic units on Venus. To improve statistics, the data was aggregated into the three crater density groups, deriving the ages. For convenience, the three similar age groups are given informal time stratigraphic unit names, from youngest to oldest: Ulfrunian, Sednaian, Lakshmian.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P41F1979T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P41F1979T"><span>Lunar Cratering Chronology: Calibrating Degree of Freshness of Craters to Absolute Ages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Trang, D.; Gillis-Davis, J.; Boyce, J. M.</p> <p>2013-12-01</p> <p>The use of impact craters to age-date surfaces of and/or geomorphological features on planetary bodies is a decades old practice. Various dating techniques use different aspects of impact craters in order to determine ages. One approach is based on the degree of freshness of primary-impact craters. This method examines the degradation state of craters through visual inspection of seven criteria: polygonality, crater ray, continuous ejecta, rim crest sharpness, satellite craters, radial channels, and terraces. These criteria are used to rank craters in order of age from 0.0 (oldest) to 7.0 (youngest). However, the relative decimal scale used in this technique has not been tied to a classification of absolute ages. In this work, we calibrate the degree of freshness to absolute ages through crater counting. We link the degree of freshness to absolute ages through crater counting of fifteen craters with diameters ranging from 5-22 km and degree of freshness from 6.3 to 2.5. We use the Terrain Camera data set on Kaguya to count craters on the continuous ejecta of each crater in our sample suite. Specifically, we divide the crater's ejecta blanket into quarters and count craters between the rim of the main crater out to one crater radii from the rim for two of the four sections. From these crater counts, we are able to estimate the absolute model age of each main crater using the Craterstats2 tool in ArcGIS. Next, we compare the degree of freshness for the crater count-derived age of our main craters to obtain a linear inverse relation that links these two metrics. So far, for craters with degree of freshness from 6.3 to 5.0, the linear regression has an R2 value of 0.7, which corresponds to a relative uncertainty of ×230 million years. At this point, this tool that links degree of freshness to absolute ages cannot be used with craters <8km because this class of crater degrades quicker than larger craters. A graphical solution exists for correcting the degree of freshness for craters <8 km in diameter. We convert this graphical solution to a single function of two independent variables, observed degree of freshness and crater diameter. This function, which results in a corrected degree of freshness is found through a curve-fitting routine and corrects the degree of freshness for craters <8 km in diameter. As a result, we are able to derive absolute ages from the degree of freshness of craters with diameters from about ≤20 km down to a 1 km in diameter with a precision of ×230 million years.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930000955','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930000955"><span>Simulated meteorite impacts and volcanic explosions: Ejecta analyses and planetary implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gratz, A. J.; Nellis, W. J.</p> <p>1992-01-01</p> <p>Past cratering studies have focused primarily on crater morphology. However, important questions remain about the nature of crater deposits. Phenomena that need to be studied include the distribution of shock effects in crater deposits and crater walls; the origin of mono- and polymict breccia; differences between local and distal ejecta; deformation induced by explosive volcanism; and the production of unshocked, high-speed ejecta that could form the lunar and martian meteorites found on the Earth. To study these phenomena, one must characterize ejecta and crater wall materials from impacts produced under controlled conditions. New efforts at LLNL simulate impacts and volcanism and study resultant deformation. All experiments use the two-stage light-gas gun facility at LLNL to accelerate projectiles to velocities of 0.2 to 4.3 km/s, including shock pressures of 0.9 to 50 GPa. We use granite targets and novel experimental geometries to unravel cratering processes in crystalline rocks. We have thus far conducted three types of simulations: soft recovery of ejecta, 'frozen crater' experiments, and an 'artificial volcano. Our ejecta recovery experiments produced a useful separation of impactites. Material originally below the projectile remained trapped there, embedded in the soft metal of the flyer plate. In contrast, material directly adjacent to the projectile was jetted away from the impact, producing an ejecta cone that was trapped in the foam recovery fixture. We find that a significant component of crater ejecta shows no signs of strong shock; this material comes from the near-surface 'interference zone' surrounding the impact site. This phenomenon explains the existence of unshocked meteorites on the Earth of lunar and martian origin. Impact of a large bolide on neighboring planets will produce high-speed, weakly shocked ejecta, which may be trapped by the Earth's gravitational field. 'Frozen crater' experiments show that the interference zone is highly localized; indeed, disaggregation does not extend beyond approx. 1.5 crater radii. A cone-shaped region extending downward from the impact site is completely disaggregated, including powdered rock that escaped into the projectile tube. Petrographic analysis of crater ejecta and wall material will be presented. Finally, study of ejecta from 0.9- and 1.3-GPa simulations of volcanic explosions reveal a complete lack of shock metamorphism. The ejecta shows no evidence of PDF's, amorphization, high-pressure phases, or mosaicism. Instead, all deformation was brittle, with fractures irregular (not planar) and most intergranular. The extent of fracturing was remarkable, with the entire sample reduced to fragments of gravel size and smaller.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992lmip.conf...31G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992lmip.conf...31G"><span>Simulated meteorite impacts and volcanic explosions: Ejecta analyses and planetary implications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gratz, A. J.; Nellis, W. J.</p> <p>1992-09-01</p> <p>Past cratering studies have focused primarily on crater morphology. However, important questions remain about the nature of crater deposits. Phenomena that need to be studied include the distribution of shock effects in crater deposits and crater walls; the origin of mono- and polymict breccia; differences between local and distal ejecta; deformation induced by explosive volcanism; and the production of unshocked, high-speed ejecta that could form the lunar and martian meteorites found on the Earth. To study these phenomena, one must characterize ejecta and crater wall materials from impacts produced under controlled conditions. New efforts at LLNL simulate impacts and volcanism and study resultant deformation. All experiments use the two-stage light-gas gun facility at LLNL to accelerate projectiles to velocities of 0.2 to 4.3 km/s, including shock pressures of 0.9 to 50 GPa. We use granite targets and novel experimental geometries to unravel cratering processes in crystalline rocks. We have thus far conducted three types of simulations: soft recovery of ejecta, 'frozen crater' experiments, and an 'artificial volcano. Our ejecta recovery experiments produced a useful separation of impactites. Material originally below the projectile remained trapped there, embedded in the soft metal of the flyer plate. In contrast, material directly adjacent to the projectile was jetted away from the impact, producing an ejecta cone that was trapped in the foam recovery fixture. We find that a significant component of crater ejecta shows no signs of strong shock; this material comes from the near-surface 'interference zone' surrounding the impact site. This phenomenon explains the existence of unshocked meteorites on the Earth of lunar and martian origin. Impact of a large bolide on neighboring planets will produce high-speed, weakly shocked ejecta, which may be trapped by the Earth's gravitational field. 'Frozen crater' experiments show that the interference zone is highly localized; indeed, disaggregation does not extend beyond approx. 1.5 crater radii. A cone-shaped region extending downward from the impact site is completely disaggregated, including powdered rock that escaped into the projectile tube. Petrographic analysis of crater ejecta and wall material will be presented. Finally, study of ejecta from 0.9- and 1.3-GPa simulations of volcanic explosions reveal a complete lack of shock metamorphism. The ejecta shows no evidence of PDF's, amorphization, high-pressure phases, or mosaicism. <Instead, all deformation was brittle, with fractures irregular (not planar) and most intergranular. &The extent of fracturing was remarkable, with the entire sample reduced to fragments of gravel size and smaller.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA08395.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA08395.html"><span>A Nine Kilometer Impact Crater and Its Central Peak</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-02-08</p> <p>found across the Martian surface. Each impact crater on Mars possesses a unique origin and composition, which makes the HiRISE team very interested in sampling as many of them as possible! Like the impact of a droplet into fluid, once an impact has occurred on the surface of Mars, an ejecta curtain forms immediately after, contributing to the raised rim visible at the top of the crater's walls. After the formation of the initial crater, if it is large enough, then a central peak appears as the surface rebounds. These central peaks can expose rocks that were previously deeply buried beneath the Martian surface. The blue and red colors in this enhanced-contrast image reflect the effects of post-impact sedimentation and weathering over time. http://photojournal.jpl.nasa.gov/catalog/PIA08395</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SSRv..208..187A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SSRv..208..187A"><span>Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.</p> <p>2017-07-01</p> <p>The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890012010','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890012010"><span>Crater size estimates for large-body terrestrial impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schmidt, Robert M.; Housen, Kevin R.</p> <p>1988-01-01</p> <p>Calculating the effects of impacts leading to global catastrophes requires knowledge of the impact process at very large size scales. This information cannot be obtained directly but must be inferred from subscale physical simulations, numerical simulations, and scaling laws. Schmidt and Holsapple presented scaling laws based upon laboratory-scale impact experiments performed on a centrifuge (Schmidt, 1980 and Schmidt and Holsapple, 1980). These experiments were used to develop scaling laws which were among the first to include gravity dependence associated with increasing event size. At that time using the results of experiments in dry sand and in water to provide bounds on crater size, they recognized that more precise bounds on large-body impact crater formation could be obtained with additional centrifuge experiments conducted in other geological media. In that previous work, simple power-law formulae were developed to relate final crater diameter to impactor size and velocity. In addition, Schmidt (1980) and Holsapple and Schmidt (1982) recognized that the energy scaling exponent is not a universal constant but depends upon the target media. Recently, Holsapple and Schmidt (1987) includes results for non-porous materials and provides a basis for estimating crater formation kinematics and final crater size. A revised set of scaling relationships for all crater parameters of interest are presented. These include results for various target media and include the kinematics of formation. Particular attention is given to possible limits brought about by very large impactors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009M%26PS...44.1695H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009M%26PS...44.1695H"><span>Rietveld analysis of X-ray powder diffraction patterns as a potential tool for the identification of impact-deformed carbonate rocks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Huson, S. A.; Foit, F. F.; Watkinson, A. J.; Pope, M. C.</p> <p>2009-12-01</p> <p>Previous X-ray powder diffraction (XRD) studies revealed that shock deformed carbonates and quartz have broader XRD patterns than those of unshocked samples. Entire XRD patterns, single peak profiles and Rietveld refined parameters of carbonate samples from the Sierra Madera impact crater, west Texas, unshocked equivalent samples from 95 miles north of the crater and the Mission Canyon Formation of southwest Montana and western Wyoming were used to evaluate the use of X-ray powder diffraction as a potential tool for distinguishing impact deformed rocks from unshocked and tectonically deformed rocks. At Sierra Madera dolostone and limestone samples were collected from the crater rim (lower shock intensity) and the central uplift (higher shock intensity). Unshocked equivalent dolostone samples were collected from well cores drilled outside of the impact crater. Carbonate rocks of the Mission Canyon Formation were sampled along a transect across the tectonic front of the Sevier and Laramide orogenic belts. Whereas calcite subjected to significant shock intensities at the Sierra Madera impact crater can be differentiated from tectonically deformed calcite from the Mission Canyon Formation using Rietveld refined peak profiles, weakly shocked calcite from the crater rim appears to be indistinguishable from the tectonically deformed calcite. In contrast, Rietveld analysis readily distinguishes shocked Sierra Madera dolomite from unshocked equivalent dolostone samples from outside the crater and tectonically deformed Mission Canyon Formation dolomite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P23H..07L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P23H..07L"><span>Long-Term Recovery of Life in the Chicxulub Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lowery, C.; Jones, H.; Bralower, T. J.; Smit, J.; Rodriguez-Tovar, F. J.; Whalen, M. T.; Owens, J. D.; Expedition 364 Science Party, I. I.</p> <p>2017-12-01</p> <p>The Chicxulub Crater on the Yucatán Peninsula of Mexico was formed by the impact of an asteroid 66 Ma that caused the extinction of 75% of genera on Earth. Immediately following the impact, the decimated ecosystem began the long process of recovery, both in terms of primary productivity and species diversity. This well-documented process was heterogeneous across the world ocean, but until the present time it has been inaccessible at ground zero of the impact. IODP/ICDP Exp. 364 recovered 9.5 m of pelagic limestone spanning the entire Paleocene, including a continuous section spanning the first 5 myr following the impact. The Chicxulub Crater is the largest known marine impact crater on Earth, and the recovery of the ecosystem presented here is the first such record of long-term primary succession in the sterile zone of a large impact crater. Planktic and benthic foraminifera, calcareous nannoplankton, calcispheres, bioturbation, and geochemical proxies all indicate that export productivity in the Chicxulub Crater recovered rapidly (within 30 kyr) following the impact. Recovery in terms of diversity and species abundance took much longer, and varied between groups. Planktic foraminifera quickly diversified, with all common Paleocene tropical/subtropical species appearing roughly when expected. Trace fossils appear rapidly after the event, with a progressive recovery through the lowermost Paleocene. Calcareous nannoplankton took much longer to recover, and disaster taxa like Braarudosphaera dominated the assemblage well into the late Paleocene. Paleoecology and geochemistry relate these trends to oceanographic conditions within the Chicxulub Crater. Planktic foraminifera from known depth habitats, including Morozovellids, Acarininids, Chiloguembelinids, and Subbotinids, track changes in the water column structure and paleoredox conditions within the crater. Diverse and abundant macro- and microbenthic organisms indicate food availability and good oxygen conditions on the seafloor. The latest Paleocene, just prior to the onset of the PETM, is characterized by a typical and diverse assemblage of foraminifera and calcareous nannoplankton; a normal open-marine assemblage with no trace of long-term negative effects from the impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20060038747&hterms=Saunders&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSaunders%252C%2BM','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20060038747&hterms=Saunders&qs=N%3D0%26Ntk%3DAuthor-Name%26Ntx%3Dmode%2Bmatchall%26Ntt%3DSaunders%252C%2BM"><span>(abstract) Radiophysical Properties of Venusian Impact Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Weitz, C. M.; Saunders, R. S.; Plaut, J. J.; Elachi, C.; Moore, H. J.</p> <p>1993-01-01</p> <p>An analysis of 222 large (greater than 20-km-diameter) impact craters on Venus using both cycle 1 and cycle 2 Magellan data is being conducted to determine the radiophysical properties (i.e., backscatter cross section, emissivity, reflectivity, rms slope) of the craters and to search for correlations with target region properties and subsequent geological history.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.P41F1980R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.P41F1980R"><span>Impact-induced compositional variations on Mercury</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rivera-Valentin, E. G.; Barr, A. C.</p> <p>2013-12-01</p> <p>The surface of Mercury shows unexpected spectral variations spatially associated with crater and basin ejecta (the so-called 'low-reflectance material' or LRM; [1]). The low reflectance is suggested to be caused by a native darkening agent at depth that has been excavated and redeposited onto the surface [1]. Although LRM is generally associated with crater ejecta, it is not found within the ejecta blankets of many large impact craters, perhaps suggesting that the subsurface source is heterogeneous [2]. We have developed a 3-D Monte Carlo model of impact cratering, excavation, and ejecta blanket deposition. Our simulations of the effect of early impacts onto Mercury show that if the LRM originates from depth to cover ~15% of Mercury's surface [2], its source is ~30 km deep. Considering the estimated mercurian crustal thickness of 50 km [3] this implies the darkening agent is most probably located within a chemically distinct lower crust. Simulations show that repeated and overlapping impacts redistribute the darkening agent away from the basin source and create a weak association between crater size and LRM abundance. Thus subsurface heterogeneity is not required to produce the weak association between crater size and LRM abundance within crater ejecta; this is a natural consequence of overlapping impacts. Our results can elucidate the new high-resolution compositional mapping of Mercury's heavily cratered terrain and provide insight into subsurface composition. Acknowledgements: This work is supported by the Center for Lunar Origin and Evolution through the NASA Lunar Science Institute NNA09DB32A. References: [1] Denevi and Robinson, 2008, Icarus 197, 239-246. [2] Denevi et al., 2009, Science 324, 613-618. [3] Smith et al., 2012, Science 336, 214-217.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..298...49V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..298...49V"><span>Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van der Bogert, C. H.; Hiesinger, H.; Dundas, C. M.; Krüger, T.; McEwen, A. S.; Zanetti, M.; Robinson, M. S.</p> <p>2017-12-01</p> <p>Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the characteristics of the target. For example, the transition diameter from strength- to gravity-scaling could provide a tool for investigating the relative strengths of different geologic units. The magnitude of the offset between the impact melt and ejecta isochrons may also provide information about the relative target properties and/or exposure/degradation ages of the two units. Robotic or human sampling of coeval units on the Moon could provide a direct test of the importance and magnitude of target property effects on CSFDs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70193218','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70193218"><span>Origin of discrepancies between crater size-frequency distributions of coeval lunar geologic units via target property contrasts</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Van der Bogert, Carolyn H.; Hiesinger, Harald; Dundas, Colin M.; Kruger, T.; McEwen, Alfred S.; Zanetti, Michael; Robinson, Mark S.</p> <p>2017-01-01</p> <p>Recent work on dating Copernican-aged craters, using Lunar Reconnaissance Orbiter (LRO) Camera data, re-encountered a curious discrepancy in crater size-frequency distribution (CSFD) measurements that was observed, but not understood, during the Apollo era. For example, at Tycho, Copernicus, and Aristarchus craters, CSFDs of impact melt deposits give significantly younger relative and absolute model ages (AMAs) than impact ejecta blankets, although these two units formed during one impact event, and would ideally yield coeval ages at the resolution of the CSFD technique. We investigated the effects of contrasting target properties on CSFDs and their resultant relative and absolute model ages for coeval lunar impact melt and ejecta units. We counted craters with diameters through the transition from strength- to gravity-scaling on two large impact melt deposits at Tycho and King craters, and we used pi-group scaling calculations to model the effects of differing target properties on final crater diameters for five different theoretical lunar targets. The new CSFD for the large King Crater melt pond bridges the gap between the discrepant CSFDs within a single geologic unit. Thus, the observed trends in the impact melt CSFDs support the occurrence of target property effects, rather than self-secondary and/or field secondary contamination. The CSFDs generated from the pi-group scaling calculations show that targets with higher density and effective strength yield smaller crater diameters than weaker targets, such that the relative ages of the former are lower relative to the latter. Consequently, coeval impact melt and ejecta units will have discrepant apparent ages. Target property differences also affect the resulting slope of the CSFD, with stronger targets exhibiting shallower slopes, so that the final crater diameters may differ more greatly at smaller diameters. Besides their application to age dating, the CSFDs may provide additional information about the characteristics of the target. For example, the transition diameter from strength- to gravity-scaling could provide a tool for investigating the relative strengths of different geologic units. The magnitude of the offset between the impact melt and ejecta isochrons may also provide information about the relative target properties and/or exposure/degradation ages of the two units. Robotic or human sampling of coeval units on the Moon could provide a direct test of the importance and magnitude of target property effects on CSFDs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820038840&hterms=projectile+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dprojectile%2Bmotion','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820038840&hterms=projectile+motion&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dprojectile%2Bmotion"><span>Impact cratering in viscous targets - Laboratory experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Greeley, R.; Fink, J.; Snyder, D. B.; Gault, D. E.; Guest, J. E.; Schultz, P. H.</p> <p>1980-01-01</p> <p>To determine the effects of target yield strength and viscosity on the formation and morphology of Martian multilobed, slosh and rampart-type impact craters, 75 experiments in which target properties and impact energies were varied were carried out for high-speed motion picture observation in keeping with the following sequence: (1) projectile initial impact; (2) crater excavation and rise of ejecta plume; (3) formation of a transient central mound which generates a surge of material upon collapse that can partly override the plume deposit; and (4) oscillation of the central mound with progressively smaller surges of material leaving the crater. A dimensional analysis of the experimental results indicates that the dimensions of the central mound are proportional to (1) the energy of the impacting projectile and (2) to the inverse of both the yield strength and viscosity of the target material, and it is determined that extrapolation of these results to large Martian craters requires an effective surface layer viscosity of less than 10 to the 10th poise. These results may also be applicable to impacts on outer planet satellites composed of ice-silicate mixtures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030110904&hterms=Particles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DZ%2BParticles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030110904&hterms=Particles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DZ%2BParticles"><span>A Test of Maxwell's Z Model Using Inverse Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Anderson, J. L. B.; Schultz, P. H.; Heineck, T.</p> <p>2003-01-01</p> <p>In modeling impact craters a small region of energy and momentum deposition, commonly called a "point source", is often assumed. This assumption implies that an impact is the same as an explosion at some depth below the surface. Maxwell's Z Model, an empirical point-source model derived from explosion cratering, has previously been compared with numerical impact craters with vertical incidence angles, leading to two main inferences. First, the flowfield center of the Z Model must be placed below the target surface in order to replicate numerical impact craters. Second, for vertical impacts, the flow-field center cannot be stationary if the value of Z is held constant; rather, the flow-field center migrates downward as the crater grows. The work presented here evaluates the utility of the Z Model for reproducing both vertical and oblique experimental impact data obtained at the NASA Ames Vertical Gun Range (AVGR). Specifically, ejection angle data obtained through Three-Dimensional Particle Image Velocimetry (3D PIV) are used to constrain the parameters of Maxwell's Z Model, including the value of Z and the depth and position of the flow-field center via inverse modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA567325','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA567325"><span>New Bottom Roughness Calculation from Multibeam Echo Sounders for Mine Warfare</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2012-09-01</p> <p>complex including craters, gullies, seaweed , rocks, sand ridges, tall obstructions, deep holes and sloping regions. Underwater mines can be hidden...and shadows for detecting objects lying on the seafloor. The seafloor is rather complex including craters, gullies, seaweed , rocks, sand ridges, tall...roughness as craters, gullies, seaweed , sand ridges, tall obstructions, deep holes, or steeply sloping regions. Slopes can make it possible for mines to</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017RAA....17...24J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017RAA....17...24J"><span>Physical properties of lunar craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Joshi, Maitri P.; Bhatt, Kushal P.; Jain, Rajmal</p> <p>2017-02-01</p> <p>The surface of the Moon is highly cratered due to impacts of meteorites, asteroids, comets and other celestial objects. The origin, size, structure, age and composition vary among craters. We study a total of 339 craters observed by the Lunar Reconnaissance Orbiter Camera (LROC). Out of these 339 craters, 214 craters are known (named craters included in the IAU Gazetteer of Planetary Nomenclature) and 125 craters are unknown (craters that are not named and objects that are absent in the IAU Gazetteer). We employ images taken by LROC at the North and South Poles and near side of the Moon. We report for the first time the study of unknown craters, while we also review the study of known craters conducted earlier by previous researchers. Our study is focused on measurements of diameter, depth, latitude and longitude of each crater for both known and unknown craters. The diameter measurements are based on considering the Moon to be a spherical body. The LROC website also provides a plot which enables us to measure the depth and diameter. We found that out of 214 known craters, 161 craters follow a linear relationship between depth (d) and diameter (D), but 53 craters do not follow this linear relationship. We study physical dimensions of these 53 craters and found that either the depth does not change significantly with diameter or the depths are extremely high relative to diameter (conical). Similarly, out of 125 unknown craters, 78 craters follow the linear relationship between depth (d) and diameter (D) but 47 craters do not follow the linear relationship. We propose that the craters following the scaling law of depth and diameter, also popularly known as the linear relationship between d and D, are formed by the impact of meteorites having heavy metals with larger dimension, while those with larger diameter but less depth are formed by meteorites/celestial objects having low density material but larger diameter. The craters with very high depth and with very small diameter are perhaps formed by the impact of meteorites that have very high density but small diameter with a conical shape. Based on analysis of the data selected for the current investigation, we further found that out of 339 craters, 100 (29.5%) craters exist near the equator, 131 (38.6%) are in the northern hemisphere and 108 (31.80%) are in the southern hemisphere. This suggests the Moon is heavily cratered at higher latitudes and near the equatorial zone.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21591.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21591.html"><span>Secondary Craters in Bas Relief</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-04-17</p> <p>NASA's Mars Reconnaissance Orbiter (MRO) captured this region of Mars, sprayed with secondary craters from 10-kilometer Zunil Crater to the northwest. Secondary craters form from rocks ejected at high speed from the primary crater, which then impact the ground at sufficiently high speed to make huge numbers of much smaller craters over a large region. In this scene, however, the secondary crater ejecta has an unusual raised-relief appearance like bas-relief sculpture. How did that happen? One idea is that the region was covered with a layer of fine-grained materials like dust or pyroclastics about 1 to 2 meters thick when the Zunil impact occurred (about a million years ago), and the ejecta served to harden or otherwise protect the fine-grained layer from later erosion by the wind. https://photojournal.jpl.nasa.gov/catalog/PIA21591</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21915.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21915.html"><span>Kokopelli Crater on Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-14</p> <p>This image obtained by NASA's Dawn spacecraft shows a field of small craters next to Kokopelli Crater, seen at bottom right in this image, on dwarf planet Ceres. The small craters overlay a smooth, wavy material that represents ejecta from nearby Dantu Crater. The small craters were formed by blocks ejected in the Dantu impact event, and likely from the Kokopelli impact as well. Kokopelli is named after the fertility deity who presides over agriculture in the tradition of the Pueblo people from the southwestern United States. The crater measures 21 miles (34 kilometers) in diameter. Dawn took this image during its first extended mission on August 11, 2016, from its low-altitude mapping orbit, at about 240 miles (385 kilometers) above the surface. The center coordinates of this image are 20 degrees north latitude, 123 degrees east longitude. https://photojournal.jpl.nasa.gov/catalog/PIA21915</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-chappy-oblique_26137996935_o.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-chappy-oblique_26137996935_o.html"><span>Chappy Oblique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-03-30</p> <p>Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Credit: NASA/Goddard/Arizona State University/LRO/LROC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000391.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-GSFC_20171208_Archive_e000391.html"><span>Chappy Oblique</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-12-08</p> <p>Looking east to west across the rim and down into Chaplygin crater reveals this beautiful example of a fresh young crater and its perfectly preserved ejecta blanket. The delicate patterns of flow across, over, and down local topography clearly show that ejecta traveled as a ground hugging flow for great distances, rather than simply being tossed out on a ballistic trajectory. Very near the rim lies a dark, lacy, discontinuous crust of now frozen impact melt. Clearly this dark material is on top of the bright material so it was the very last material ejected from the crater. The melt was formed as the tremendous energy of impact was converted to heat and the lunar crust was melted at the impact point. As the crater rebounded and material sloughed down the walls of the deforming crater the melt was splashed out over the rim and froze. Its low reflectance is mostly due to a high percentage of glass because the melt cooled so quickly that minerals did not have time to crystallize. The fact that the delicate splash patterns are so well preserved testifies to the very young age of this crater. But how young? For comparison "Chappy" (informal name) is 200 m larger than Meteor crater (1200 m diameter) in Arizona, which is about 50,000 years old. Craters of this size form every 100,000 years or so on the Moon and the Earth. Since there are very few superposed craters on Chappy, and its ejecta is so perfectly preserved it may be much younger than Meteor crater. However, we can't know the true true absolute age of "Chappy" until we can obtain a sample of its impact melt for radiometric age dating. Investigate all of Chappy's ejecta, at full resolution: lroc.sese.asu.edu/posts/901 Credit: NASA/Goddard/Arizona State University/LRO/LROC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.P53A2172B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.P53A2172B"><span>Mapping Ejecta Thickness Around Small Lunar Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brunner, A.; Robinson, M. S.</p> <p>2016-12-01</p> <p>Detailed knowledge of the distribution of ejecta around small ( 1 km) craters is still a key missing piece in our understanding of crater formation. McGetchin et al. [1] compiled data from lunar, terrestrial, and synthetic craters to generate a semi-empirical model of radial ejecta distribution. Despite the abundance of models, experiments, and previous field and remote sensing studies of this problem, images from the 0.5 m/pixel Lunar Reconnaissance Orbiter Camera (LROC) Narrow Angle Camera (NAC) [2] provides the first chance to quantify the extent and thickness of ejecta around kilometer scale lunar craters. Impacts excavate fresh (brighter) material from below the more weathered (darker) surface, forming a relatively bright ejecta blanket. Over time space weathering tends to lower the reflectance of the ejected fresh material [3] resulting in the fading of albedo signatures around craters. Relatively small impacts that excavate through the high reflectance immature ejecta of larger fresh craters provide the means of estimating ejecta thickness. These subsequent impacts may excavate material from within the high reflectance ejecta layer or from beneath that layer to the lower-reflectance mature pre-impact surface. The reflectance of the ejecta around a subsequent impact allows us to categorize it as either an upper or lower limit on the ejecta thickness at that location. The excavation depth of each crater found in the ejecta blanket is approximated by assuming a depth-to-diameter relationship relevant for lunar simple craters [4, e.g.]. Preliminary results [Figure] show that this technique is valuable for finding the radially averaged profile of the ejecta thickness and that the data are roughly consistent with the McGetchin equation. However, data from craters with asymmetric ejecta blankets are harder to interpret. [1] McGetchin et al. (1973) Earth Planet. Sci. Lett., 20, 226-236. [2] Robinson et al. (2010) Space Sci. Rev., 150, 1-4, 81-124. [3] Denevi et al. (2014) J. Geophys. Res. Planets, 119, 5, 976-997. [4] Wood and Anderson (1978), LPSC IX, 3669-3689.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12804371','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12804371"><span>The impact crater as a habitat: effects of impact processing of target materials.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cockell, Charles S; Osinski, Gordon R; Lee, Pascal</p> <p>2003-01-01</p> <p>Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040087638&hterms=succession&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsuccession','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040087638&hterms=succession&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dsuccession"><span>The impact crater as a habitat: effects of impact processing of target materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Cockell, Charles S.; Osinski, Gordon R.; Lee, Pascal</p> <p>2003-01-01</p> <p>Impact structures are a rare habitat on Earth. However, where they do occur they can potentially have an important influence on the local ecology. Some of the types of habitat created in the immediate post-impact environment are not specific to the impact phenomenon, such as hydrothermal systems and crater lakes that can be found, for instance, in post-volcanic environments, albeit with different thermal characteristics than those associated with impact. However, some of the habitats created are specifically linked to processes of impact processing. Two examples of how impact processing of target materials has created novel habitats that improve the opportunities for colonization are found in the Haughton impact structure in the Canadian High Arctic. Impact-shocked rocks have become a habitat for endolithic microorganisms, and large, impact-shattered blocks of rock are used as resting sites by avifauna. However, some materials produced by an impact, such as melt sheet rocks, can make craters more biologically depauperate than the area surrounding them. Although there are no recent craters with which to study immediate post-impact colonization, these data yield insights into generalized mechanisms of how impact processing can influence post-impact succession. Because impact events are one of a number of processes that can bring localized destruction to ecosystems, understanding the manner in which impact structures are recolonized is of ecological interest. Impact craters are a universal phenomenon on solid planetary surfaces, and so they are of potential biological relevance on other planetary surfaces, particularly Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015M%26PS...50.1378C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015M%26PS...50.1378C"><span>Survival of refractory presolar grain analogs during Stardust-like impact into Al foils: Implications for Wild 2 presolar grain abundances and study of the cometary fine fraction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Croat, T. K.; Floss, C.; Haas, B. A.; Burchell, M. J.; Kearsley, A. T.</p> <p>2015-08-01</p> <p>We present results of FIB-TEM studies of 12 Stardust analog Al foil craters which were created by firing refractory Si and Ti carbide and nitride grains into Al foils at 6.05 km s-1 with a light-gas gun to simulate capture of cometary grains by the Stardust mission. These foils were prepared primarily to understand the low presolar grain abundances (both SiC and silicates) measured by SIMS in Stardust Al foil samples. Our results demonstrate the intact survival of submicron SiC, TiC, TiN, and less-refractory Si3N4 grains. In small (<2 μm) craters that are formed by single grain impacts, the entire impacting crystalline grain is often preserved intact with minimal modification. While they also survive in crystalline form, grains at the bottom of larger craters (>5 μm) are typically fragmented and are somewhat flattened in the direction of impact due to partial melting and/or plastic deformation. The low presolar grain abundance estimates derived from SIMS measurements of large craters (mostly >50 μm) likely result from greater modification of these impactors (i.e., melting and isotopic dilution), due to higher peak temperatures/pressures in these crater impacts. The better survivability of grains in smaller craters suggests that more accurate presolar grain estimates may be achievable through measurement of such craters. It also suggests small craters can provide a complementary method of study of the Wild 2 fine fraction, especially for refractory CAI-like minerals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19870027368&hterms=attention+size&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dattention%2Bsize','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19870027368&hterms=attention+size&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dattention%2Bsize"><span>Size-velocity distribution of large ejecta fragments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Vickery, A. M.</p> <p>1986-01-01</p> <p>The characteristics of three primary extraterrestrial craters and the associated craters were examined to generate a size-velocity distribution for large ejecta fragments. The lunar craters Copernicus and Aristillus and the Martian crater Dv on Olympus Mons were used. Attention was focused on the radial distances between the primary and secondary crater centers and the diameters of the secondaries. The primary craters selected are all relatively young, which avoided contamination of the data from secondaries from other primaries. Attempts were made to account for the speed of the hypervelocity impacts and the elemental compositions of the impactors. An apparent velocity cutoff of about 1 km/sec was observed for the secondaries, which implies that no meteoroid impacts can accelerate ejecta to escape velocities from the moon or Mars.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20110008104','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20110008104"><span>Electrical Evolution of a Dust Plume from a Low Energy Lunar Impact: A Model Analog to LCROSS</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Farrell, W. M.; Stubbs, T. J.; Jackson, T. L.; Colaprete, A.; Heldmann, J. L.; Schultz, P. H.; Killen, R. M.; Delory, G. T.; Halekas, J. S.; Marshall, J. R.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20110008104'); toggleEditAbsImage('author_20110008104_show'); toggleEditAbsImage('author_20110008104_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20110008104_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20110008104_hide"></p> <p>2011-01-01</p> <p>A Monte Carlo test particle model was developed that simulates the charge evolution of micron and sub-micron sized dust grains ejected upon low-energy impact of a moderate-size object onto a lunar polar crater floor. Our analog is the LCROSS impact into Cabeus crater. Our primary objective is to model grain discharging as the plume propagates upwards from shadowed crater into sunlight.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006epsc.conf..206C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006epsc.conf..206C"><span>Analysis of impact craters of Mercury</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cremonese, G.; Martellato, E.; Marzari, F.; Massironi, M.; Capria, M. T.</p> <p></p> <p>The size of an impact crater depends on many parameters. As a consequence, it is a demanding task to derive the physical and dynamical properties of the projectile from the knowledge of the crater diameter and making few assumptions. In this work we have assumed the same impact velocity of 34 km/s. We report the analysis of some impact crater on Mercury, based on the Mariner 10 images. We have used the classical scaling law (Schmidt and Housen, 1987) to obtain the impactor diameter and the experimental law proposed by OKeefe and Ahrens (1982) to calculate the melt volume produced. The calculations have been performed for different meteoroid compositions (iron, basalt, chondrite, and ice), assuming the surface composition of Mercury based on anorthosite.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880037987&hterms=hey&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhey','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880037987&hterms=hey&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D10%26Ntt%3Dhey"><span>Zhamanshin and Aouelloul - Craters produced by impact of tektite-like glasses?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>O'Keefe, John A.</p> <p>1987-01-01</p> <p>It is shown that the enhanced abundance of siderophile elements and chromium in tektite-like glasses from the two impact craters of Zhamanshin and Aouelloul cannot be explained as a result of contamination of the country rock by meteorites nor, probably, comets. The pattern is, however, like that found in certain Australasian tektites, and in Ivory Coast tektites. It is concluded, in agreement with earlier suggestions by Campbell-Smith and Hey, that these craters were formed by the impact of large masses of tektite-like glass, of which the glasses which were studied are fragments. It follows that it is necessary, in considering an impact crater, to bear in mind that the projectile may have been a glass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1987Metic..22..219O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1987Metic..22..219O"><span>Zhamanshin and Aouelloul - Craters produced by impact of tektite-like glasses?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Keefe, John A.</p> <p>1987-09-01</p> <p>It is shown that the enhanced abundance of siderophile elements and chromium in tektite-like glasses from the two impact craters of Zhamanshin and Aouelloul cannot be explained as a result of contamination of the country rock by meteorites nor, probably, comets. The pattern is, however, like that found in certain Australasian tektites, and in Ivory Coast tektites. It is concluded, in agreement with earlier suggestions by Campbell-Smith and Hey, that these craters were formed by the impact of large masses of tektite-like glass, of which the glasses which were studied are fragments. It follows that it is necessary, in considering an impact crater, to bear in mind that the projectile may have been a glass.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.V53A2141P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.V53A2141P"><span>Chicxulub Impact Crater and Yucatan Carbonate Platform - PEMEX Oil Exploratory Wells Revisited</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pérez-Drago, G.; Gutierrez-Cirlos, A. G.; Pérez-Cruz, L.; Urrutia-Fucugauchi, J.</p> <p>2008-12-01</p> <p>Geophysical oil exploration surveys carried out by PEMEX in the 1940's revealed occurrence of an anomalous pattern of semi-circular concentric gravity anomalies. The Bouguer gravity anomalies covered an extensive area over the flat carbonate platform in the northwestern Yucatan Peninsula; strong density contrasts were suggestive of a buried igneous complex or basement uplift beneath the carbonates, which was referred as the Chicxulub structure. The exploration program carried out afterwards included a drilling program, starting with Chicxulub-1 well in 1952 and comprising eight deep boreholes through the 1970s. An aeromagnetic survey in late 1970's showed high amplitude anomalies in the gravity anomaly central sector. Thus, research showing Chicxulub as a large complex impact crater formed at the K/T boundary was built on the PEMEX decades-long exploration program. Despite frequent reference to PEMEX information and samples, original data and cores have not been openly available for detailed evaluation and integration with results from recent investigations. Core samples largely remain to be analyzed and interpreted in the context of recent marine, aerial and terrestrial geophysical surveys and the drilling/coring projects of UNAM and ICDP. In this presentation we report on the stratigraphy and paleontological data for PEMEX wells: Chicxulub- 1 (1582m), Sacapuc-1 (1530m), Yucatan-6 (1631m), Ticul-1 (3575m) Yucatan-4 (2398m), Yucatan-2 (3474m), Yucatan-5A (3003m) and Yucatan-1 (3221m). These wells remain the deepest drilled in Chicxulub, providing samples of impact lithologies, carbonate sequences and basement, which give information on post- and pre-impact stratigraphy and crystalline basement. We concentrate on stratigraphic columns, lateral correlations and integration with UNAM and ICDP borehole data. Current plans for deep drilling in Chicxulub crater target the peak ring and central sector, with offshore and onshore boreholes proposed to the IODP and ICDP programs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-iss030e254011.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-iss030e254011.html"><span>Earth Observations taken by Expedition 30 crewmember</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2012-04-21</p> <p>ISS030-E-254011 (21 April 2012) --- The Ouarkziz Impact Crater is featured in this image photographed by an Expedition 30 crew member on the International Space Station. The Ouarkziz Impact Crater is located in northwestern Algeria close to the border with Morocco. According to scientists, the crater was formed by a meteor impact less than 70 million years ago during the late Cretaceous Period of the Mesozoic Era or “Age of Dinosaurs”. Originally called Tindouf, the 3.5-kilometer in diameter impact crater (center) has been heavily eroded since its formation; however its circular morphology is highlighted by exposures of older sedimentary rock layers that form roughly northwest-to-southeast-trending ridgelines to the north and south. From the vantage point of a crew member onboard the space station, the impact crater is clearly visible with a magnifying camera lens. A geologist interpreting this image to build a working geological history of the region would conclude that the Ouarkziz impact crater is younger than the sedimentary rocks, as the rock layers had to be already present for the meteor to hit them. Likewise, a stream channel is visible cutting across the center of the impact structure (center), indicating that the channel formed after the impact had occurred. This Principal of Cross-Cutting Relationships, usually attributed to the famous 19th century geologist Charles Lyell, is a basic logic tool used by geologists to build relative sequence and history of events when investigating a region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA20133.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA20133.html"><span>Dawn HAMO Image 70</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2015-12-04</p> <p>This view from NASA's Dawn spacecraft shows different types of terrain located side by side on Ceres: a smooth terrain at right with numerous small impact craters, and a less-cratered, hummocky terrain at left. A huge crater chain crosses the scene diagonally from upper left to lower right. The smooth terrain, which is in the western part of Yalode impact basin, is interrupted by a set of roughly parallel furrows and ridges at upper right. These linear features are perpendicular to another set of smaller, fainter linear markings, which appear just below them. An impact into the hummocky terrain formed a crater, seen at left, 14 miles (22 kilometers) in diameter with a central peak. A great deal of material has slumped down the walls of the crater -- a phenomenon called mass wasting. The crater's impact ejecta forms a smooth blanket around its rim, which takes on a streaky texture leading away from the crater toward lower right. The image was taken during in Dawn's High Altitude Mapping Orbit (HAMO) phase from an altitude of 911 miles (1,466 kilometers) on Oct. 6, 2015. Image resolution is 394 feet (120 meters) per pixel. The image is centered at 37 degrees south latitude, 279 degrees east longitude. http://photojournal.jpl.nasa.gov/catalog/PIA20133</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1991Icar...89..384F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1991Icar...89..384F"><span>Stickney-forming impact on PHOBOS - Crater shape and induced stress distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fujiwara, A.</p> <p>1991-02-01</p> <p>The results of the present simplified modeling of the size and rim shape of the Phobos crater Stickney, together with the impact-generated stress patterns on the surface of the crater, account for the general features observed and suggest, on the basis of some of the P-waves' surface stress pattern, that a region of higher tensile stress may have occurred in the vicinity of 0 deg latitude and 270 deg W. The correlation of this pattern with the focusing of groove patterns that occurs on the trailing side of Phobos is suggested to demonstrate a connection between these grooves and the Stickney crater-forming impact.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646831','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4646831"><span>Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Neumann, Gregory A.; Zuber, Maria T.; Wieczorek, Mark A.; Head, James W.; Baker, David M. H.; Solomon, Sean C.; Smith, David E.; Lemoine, Frank G.; Mazarico, Erwan; Sabaka, Terence J.; Goossens, Sander J.; Melosh, H. Jay; Phillips, Roger J.; Asmar, Sami W.; Konopliv, Alexander S.; Williams, James G.; Sori, Michael M.; Soderblom, Jason M.; Miljković, Katarina; Andrews-Hanna, Jeffrey C.; Nimmo, Francis; Kiefer, Walter S.</p> <p>2015-01-01</p> <p>Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population. PMID:26601317</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26601317','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26601317"><span>Lunar impact basins revealed by Gravity Recovery and Interior Laboratory measurements.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Neumann, Gregory A; Zuber, Maria T; Wieczorek, Mark A; Head, James W; Baker, David M H; Solomon, Sean C; Smith, David E; Lemoine, Frank G; Mazarico, Erwan; Sabaka, Terence J; Goossens, Sander J; Melosh, H Jay; Phillips, Roger J; Asmar, Sami W; Konopliv, Alexander S; Williams, James G; Sori, Michael M; Soderblom, Jason M; Miljković, Katarina; Andrews-Hanna, Jeffrey C; Nimmo, Francis; Kiefer, Walter S</p> <p>2015-10-01</p> <p>Observations from the Gravity Recovery and Interior Laboratory (GRAIL) mission indicate a marked change in the gravitational signature of lunar impact structures at the morphological transition, with increasing diameter, from complex craters to peak-ring basins. At crater diameters larger than ~200 km, a central positive Bouguer anomaly is seen within the innermost peak ring, and an annular negative Bouguer anomaly extends outward from this ring to the outer topographic rim crest. These observations demonstrate that basin-forming impacts remove crustal materials from within the peak ring and thicken the crust between the peak ring and the outer rim crest. A correlation between the diameter of the central Bouguer gravity high and the outer topographic ring diameter for well-preserved basins enables the identification and characterization of basins for which topographic signatures have been obscured by superposed cratering and volcanism. The GRAIL inventory of lunar basins improves upon earlier lists that differed in their totals by more than a factor of 2. The size-frequency distributions of basins on the nearside and farside hemispheres of the Moon differ substantially; the nearside hosts more basins larger than 350 km in diameter, whereas the farside has more smaller basins. Hemispherical differences in target properties, including temperature and porosity, are likely to have contributed to these different distributions. Better understanding of the factors that control basin size will help to constrain models of the original impactor population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015APS..DFD.A6006M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015APS..DFD.A6006M"><span>Fluid mechanical scaling of impact craters in unconsolidated granular materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Miranda, Colin S.; Dowling, David R.</p> <p>2015-11-01</p> <p>A single scaling law is proposed for the diameter of simple low- and high-speed impact craters in unconsolidated granular materials where spall is not apparent. The scaling law is based on the assumption that gravity- and shock-wave effects set crater size, and is formulated in terms of a dimensionless crater diameter, and an empirical combination of Froude and Mach numbers. The scaling law involves the kinetic energy and speed of the impactor, the acceleration of gravity, and the density and speed of sound in the target material. The size of the impactor enters the formulation but divides out of the final empirical result. The scaling law achieves a 98% correlation with available measurements from drop tests, ballistic tests, missile impacts, and centrifugally-enhanced gravity impacts for a variety of target materials (sand, alluvium, granulated sugar, and expanded perlite). The available measurements cover more than 10 orders of magnitude in impact energy. For subsonic and supersonic impacts, the crater diameter is found to scale with the 1/4- and 1/6-power, respectively, of the impactor kinetic energy with the exponent crossover occurring near a Mach number of unity. The final empirical formula provides insight into how impact energy partitioning depends on Mach number.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19980018466','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19980018466"><span>The Shergottite Age Paradox and the Relative Probabilities of Ejecting Martian Meteorites of Differing Ages</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Borg, L. E.; Shih, C.-Y.; Nyquist, L. E.</p> <p>1998-01-01</p> <p>The apparent paradox that the majority of impacts yielding Martian meteorites appear to have taken place on only a few percent of the Martian surface can be resolved if all the shergottites were ejected in a single event rather than in multiple events as expected from variations in their cosmic ray exposure and crystallization ages. If the shergottite-ejection event is assigned to one of three craters in the vicinity of Olympus Mons that were previously identified as candidate source craters for the SNC (Shergottites, Nakhlites, Chassigny) meteorites, and the nakhlite event to another candidate crater in the vicinity of Ceraunius Tholus, the implied ages of the surrounding terranes agree well with crater density ages. EN,en for high cratering rates (minimum ages), the likely origin of the shergottites is in the Tharsis region, and the paradox of too many meteorites from too little terrane remains for multiple shergottite-ejection events. However, for high cratering rates it is possible to consider sources for the nakhlltes which are away from the Tharsis region. The meteorite-yielding impacts may have been widely dispersed with sources of the young SNC meteorites in the northern plains, and the source of the ancient orthopyroxenite, ALH84001, in the ancient southern uplands. Oblique-impact craters can be identified with the sources of the nakhlites and the orthopyroxenite,, respectively, in the nominal cratering rate model, and with the shergottites and orthopyroxenite, respectively, in the high cratering rate model. Thus, oblique impacts deserve renewed attention as an ejection mechanism for Martian meteorites.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006JGRE..111.2004W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006JGRE..111.2004W"><span>Thermal infrared data analyses of Meteor Crater, Arizona: Implications for Mars spaceborne data from the Thermal Emission Imaging System</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wright, Shawn P.; Ramsey, Michael S.</p> <p>2006-02-01</p> <p>Thermal infrared (TIR) data from the Earth-orbiting Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) instrument are used to identify the lithologic distribution of the Meteor Crater ejecta blanket. Thermal emission laboratory spectra were obtained for collected samples, and spectral deconvolution was performed on ASTER emissivity data using both image and sample end-members. Comparison of the spaceborne ASTER data to the airborne Thermal Infrared Multispectral Scanner (TIMS) data was used to validate the ASTER end-member analyses. The ASTER image end-member analysis agrees well with past studies considering the effects of resolution degradation. The work at Meteor Crater has direct bearing on the interpretation of Thermal Emission Imaging System (THEMIS) data currently being returned from Mars. ASTER and THEMIS have similar spatial and spectral resolutions, and Meteor Crater serves as an analog for similar-sized impact sites on Mars. These small impact craters have not been studied in detail owing to the low spatial resolution of past orbiting TIR instruments. Using the same methodology as that applied to Meteor Crater, THEMIS TIR data of a provisionally named Winslow Crater (~1 km) impact crater in Syrtis Major are analyzed. The crater rim and ejecta blanket were found to contain larger block sizes and a lower albedo than the surrounding ejecta-free plain, indicating a young impact age. The composition of the rim, ejecta, and surrounding plain is determined to be dominated by basalt; however, potential stratigraphy has also been identified. Results of this work could be extended to future investigations using THEMIS data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996M%26PS...31..433C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996M%26PS...31..433C"><span>Discovering research value in the Campo del Cielo, Argentina, meteorite craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cassidy, William A.; Renard, Marc L.</p> <p>1996-07-01</p> <p>The Campo del Cielo meteorite crater field in Argentina contains at least 20 small meteorite craters, but a recent review of the field data and a remote sensing study suggest that there may be more. The fall occurred ˜4000 years ago into a uniform loessy soil, and the craters are well enough preserved so that some of their parameters of impact can be determined after excavation. The craters were formed by multi-ton fragments of a type IA meteoroid with abundant silicate inclusions. Relative to the horizontal, the angle of infall was ˜9°. Reflecting the low angle of infall, the crater field is elongated with apparent dimensions of 3 × 18.5 km. The largest craters are near the center of this ellipse. This suggests that when the parent meteoroid broke apart, the resulting fragments diverged from the original trajectory in inverse relation to their masses and did not undergo size sorting due to atmospheric deceleration. The major axis of the crater field as we know it extends along N63°E, but the azimuths of infall determined by excavation of Craters 9 and 10 are N83.5°E and N75.5°E, respectively. This suggests that the major axis of the crater field is not yet well determined. The three or four largest craters appear to have been formed by impacts that disrupted the projectiles, scattering fragments around the outsides of the craters and leaving no large masses within them; these are relatively symmetrical in shape. Other craters are elongated features with multi-ton masses preserved within them and no fragmentation products outside. There are two ways in which field research on the Campo del Cielo crater field is found to be useful. (1) Studies exist that have been used to interpret impact craters on planetary surfaces other than the Earth. This occurrence of a swarm of projectiles impacting at known angles and similar velocities into a uniform target material provides an excellent field site at which to test the applicability of those studies. (2) Individual craters at Campo del Cielo can yield the masses of the projectiles that formed them and their velocities, angles and azimuths of impact. From these data, there is a possibility to estimate parameters for the parent meteoroid at entry and, thus, learn enough about its orbit to judge whether or not it was compatible with an asteroidal origin. Preliminary indications are that it was. Campo del Cielo is a IA iron meteorite and Sikhote-Alin, an observed fall, is a IIB iron meteorite in Wasson's classification. The Sterlitamak iron, also an observed fall, is a medium octahedrite in the Prior-Hey classification. It would be interesting to compare their orbital parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21205.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21205.html"><span>Exposed Fractured Bedrock in the Central Pit of a Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2016-11-09</p> <p>This HiRISE image shows the central pit feature of an approximately 20-kilometer diameter complex crater in located at 304.480 degrees east, -11.860 degrees south, just north of the Valles Marineris. Here we can observe a partial ring of light-toned, massive and fractured bedrock, which has been exposed by the impact-forming event, and via subsequent erosion that typically obscure the bedrock of complex central features. Features such as this one are of particular interest as they provide scientists with numerous exposures of bedrock that can be readily observed from orbit and originate from the deep Martian subsurface. Unlike on Earth, plate tectonics do not appear to be active on Mars. Thus, much of the Martian subsurface is not directly observable through uplift, erosion and exposure of mountain chains, which provide the majority of bedrock exposures on Earth. Exposures of subsurface materials generated by these features provides us with some of the only "windows" into the subsurface geology. This makes the study of impact craters an invaluable source of information when trying to understand, not only the impact process, but also the composition and history of Mars. Although much of what we see here is composed of massive and fractured bedrock, there are zones of rock fragmentation, called "brecciation." These fragmented rocks (a.k.a., breccias) are best viewed in the eastern portion of the central pit, which was captured in a previous HiRISE image. Additionally, we see some occurrences of impact melt-bearing deposits that surround and coat the bedrock exposed within the central pit. Several dunes are on the surface throughout the central pit and surrounding crater floor. The mechanisms behind the formation of central features, particularly central pits, are not completely understood. Geologic mapping of these circumferential "mega" blocks of bedrock indicate radial and concentric fracturing that is consistent with deformation through uplift. The exposed bedrock shows well-expressed lineament features that are likely fractures and faults formed during the uplift process. Studies of the bedrock, and such structures in this image, allows us better to understand the formative events and physical processes responsible for their formation. Current research suggests that their formation is the result of some component of uplift followed by collapse. http://photojournal.jpl.nasa.gov/catalog/PIA21205</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20000118248','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20000118248"><span>Impact Crater in Coastal Patagonia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>D'Antoni, Hector L; Lasta, Carlos A.; Condon, Estelle (Technical Monitor)</p> <p>2000-01-01</p> <p>Impact craters are geological structures attributed to the impact of a meteoroid on the Earth's (or other planet's) surface (Koeberl and Sharpton. 1999). The inner planets of the solar system as well as other bodies such as our moon show extensive meteoroid impacts (Gallant 1964, French 1998). Because of its size and gravity, we may assume that the Earth has been heavily bombarded but weathering and erosion have erased or masked most of these features. In the 1920's, a meteor crater (Mark 1987) was identified in Arizona and to this first finding the identification of a large number of impact structures on Earth followed (Hodge 1994). Shock metamorphic effects are associated with meteorite impact craters. Due to extremely high pressures, shatter cones are produced as well as planar features in quartz and feldspar grains, diaplectic glass and high-pressure mineral phases such as stishovite (French 1998).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130001619','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130001619"><span>Characterization of the Morphometry of Impact Craters Hosting Polar Deposits in Mercury's North Polar Region</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Talpe Matthieu; Zuber, Maria T.; Yang, Di; Neumann, Gregory A.; Solomon, Sean C.; Mazarico, Erwan; Vilas, Faith</p> <p>2012-01-01</p> <p>Earth-based radar images of Mercury show radar-bright material inside impact craters near the planet s poles. A previous study indicated that the polar-deposit-hosting craters (PDCs) at Mercury s north pole are shallower than craters that lack such deposits. We use data acquired by the Mercury Laser Altimeter on the MESSENGER spacecraft during 11 months of orbital observations to revisit the depths of craters at high northern latitudes on Mercury. We measured the depth and diameter of 537 craters located poleward of 45 N, evaluated the slopes of the northern and southern walls of 30 PDCs, and assessed the floor roughness of 94 craters, including nine PDCs. We find that the PDCs appear to have a fresher crater morphology than the non-PDCs and that the radar-bright material has no detectable influence on crater depths, wall slopes, or floor roughness. The statistical similarity of crater depth-diameter relations for the PDC and non-PDC populations places an upper limit on the thickness of the radar-bright material (< 170 m for a crater 11 km in diameter) that can be refined by future detailed analysis. Results of the current study are consistent with the view that the radar-bright material constitutes a relatively thin layer emplaced preferentially in comparatively young craters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016399&hterms=fracturing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfracturing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016399&hterms=fracturing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Dfracturing"><span>Elevation and igneous crater modification on Venus: Implications for magmatic volatile content</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wichman, R. W.</p> <p>1993-01-01</p> <p>Although most impact craters on Venus preserve nearly pristine crater rim and ejecta features, a small number of craters have been identified showing clear evidence of either igneous intrusion emplacement (floor-fracturing) beneath the crater floor or of volcanically embayed exterior ejecta deposits. Since the volcanically embayed craters consistently occur at higher elevations than the identified floor-fractured craters, this report proposes that igneous crater modification on Venus is elevation dependent. This report describes how regional variations in magmatic neutral buoyancy could produce such elevation dependent crater modification and considers the implications for typical magmatic volatile contents on Venus.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018SoSyR..52....1I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018SoSyR..52....1I"><span>Size-Frequency Distribution of Small Lunar Craters: Widening with Degradation and Crater Lifetime</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, B. A.</p> <p>2018-01-01</p> <p>The review and new measurements are presented for depth/diameter ratio and slope angle evolution during small ( D < 1 km) lunar impact craters aging (degradation). Comparative analysis of available data on the areal cratering density and on the crater degradation state for selected craters, dated with returned Apollo samples, in the first approximation confirms Neukum's chronological model. The uncertainty of crater retention age due to crater degradational widening is estimated. The collected and analyzed data are discussed to be used in the future updating of mechanical models for lunar crater aging.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://geology.gsapubs.org/content/22/8/691.abstract?sid=94e66ccc-a8a3-41ea-80d3-4087b36e24b8','USGSPUBS'); return false;" href="http://geology.gsapubs.org/content/22/8/691.abstract?sid=94e66ccc-a8a3-41ea-80d3-4087b36e24b8"><span>Meteoroid mayhem in Ole Virginny: Source of the North American tektite strewn field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poag, C. Wylie; Powars, David S.; Poppe, Lawrence J.; Mixon, Robert B.</p> <p>1994-01-01</p> <p>New seismic reflection data from Chesapeake Bay reveal a buried, 85-km-wide, 1.5-2.0-km-deep, peak-ring impact crater, carved through upper Eocene to Lower Cretaceous sedimentary strata and into underlying pre-Mesozoic crystalline basement rocks. A polymictic, late Eocene impact breccia, composed mainly of locally derived sedimentary debris (determined from four continuous cores), surrounds and partly fills the crater. Structural and sedimentary characteristics of the Chesapeake Bay crater closely resemble those of the Miocene Ries peakring crater in southern Germany. We speculate that the Chesapeake Bay crater is the source of the North American tektite strewn field.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70017300','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70017300"><span>Meteoroid mayhem in Ole Virginny: source of the North American tektite strewn field</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Poag, C.W.; Powars, D.S.; Poppe, L.J.; Mixon, R.B.</p> <p>1994-01-01</p> <p>New seismic reflection data from Chesapeake Bay reveal a buried, 85-km-wide, 1.5-2.0-km-deep, peak-ring impact crater, carved through upper Eocene to Lower Cretaceous sedimentary strata and into underlying pre-Mesozoic crystalline basement rocks. A polymictic, late Eocene impact breccia, composed mainly of locally derived sedimentary debris (determined from four continuous cores), surrounds and partly fills the crater. Structural and sedimentary characteristics of the Chesapeake Bay crater closely resemble those of the Miocene Ries peak-ring crater in southern Germany. It is speculated that the Chesapeake Bay crater is the source of the North American tektite strewn field. -Authors</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19950017418','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19950017418"><span>Image and compositional characteristics of the LDEF Big Guy impact crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Bunch, T. E.; Paque, Julie M.; Zolensky, Michael</p> <p>1995-01-01</p> <p>A 5.2 mm crater in Al-metal represents the largest found on LDEF. We have examined this crater by field emission scanning electron microscopy (FESEM), energy dispersive spectroscopy (EDS) and time-of-flight/secondary ion mass spectroscopy (TOF-SIMS) in order to determine if there is any evidence of impactor residue. Droplet and dome-shaped columns, along with flow features, are evidence of melting. EDS from the crater cavity and rim show Mg, C, O and variable amounts of Si, in addition to Al. No evidence for a chondritic impactor was found, and it hypothesized that the crater may be the result of impact with space debris.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930005181','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930005181"><span>Impact craters on Venus: An overview from Magellan observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schaber, G. G.; Strom, R. G.; Moore, H. J.; Soderblom, L. A.; Kirk, R. L.; Chadwick, D. J.; Dawson, D. D.; Gaddis, L. R.; Boyce, J. M.; Russell, J.</p> <p>1992-01-01</p> <p>Magellan has revealed an ensemble of impact craters on Venus that is unique in many important ways. We have compiled a database describing 842 craters on 89 percent of the planet's surface mapped through orbit 2578 (the craters range in diameter from 1.5 to 280 km). We have studied the distribution, size-frequency, morphology, and geology of these craters both in aggregate and, for some craters, in more detail. We have found the following: (1) the spatial distribution of craters is highly uniform; (2) the size-density distribution of craters with diameters greater than or equal to 35 km is consistent with a 'production' population having a surprisingly young age of about 0.5 Ga (based on the estimated population of Venus-crossing asteroids); (3) the spectrum of crater modification differs greatly from that on other planets--62 percent of all craters are pristine, only 4 percent volcanically embayed, and the remainder affected by tectonism, but none are severely and progressively depleted based on size-density distribution extrapolated from larger craters; (4) large craters have a progression of morphologies generally similar to those on other planets, but small craters are typically irregular or multiple rather than bowl shaped; (5) diffuse radar-bright or -dark features surround some craters, and about 370 similar diffuse 'splotches' with no central crater are observed whose size-density distribution is similar to that of small craters; and (6) other features unique to Venus include radar-bright or -dark parabolic arcs opening westward and extensive outflows originating in crater ejecta.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.2234G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.2234G"><span>Connectivity among sinkholes and complex networks: The case of Ring of Cenotes in northwest Yucatan, Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gomez-Nicolas, Mariana; Rebolledo-Vieyra, Mario; Huerta-Quintanilla, Rodrigo; Canto-Lugo, Efrain</p> <p>2014-05-01</p> <p>A 180-km-diameter semicircular alignment of abundant karst sinkholes (locally known as cenotes) in northwestern Yucatán, México, coincides approximately with a concentric ring of the buried Chicxulub structure, a circular feature manifested in Cretaceous and older rocks, that has been identified as the product of the impact of a meteorite. The secondary permeability generated by the fracturing and faulting of the sedimentary sequence in the Chicxulub impact, has favored the karstification process and hence the development of genuine underground rivers that carry water from the continent to the sea. The study of the structure and morphology of the crater has allowed researchers to understand the key role of the crater in the Yucatán hydrogeology. It is generally accepted that the Ring of Cenotes, produced by the gravitational deformation of the Tertiary sedimentary sequence within the crater, controls the groundwater in northern Yucatán. However, today there is not solid evidence about the connectivity among cenotes, which is important because if established, public policies could be designed to manage sanitary infrastructure, septic control, regulation of agricultural and industrial activities and the protection of water that has not been compromised by anthropogenic pollution. All these directly affect more than half a million people whose main source of drinking water lies in the aquifer. In this contribution we investigated a set of 16 cenotes located in the vicinity of a gravimetric anomaly of Chicxulub crater ring, using complex networks to model the interconnectivity among them. Data from a geoelectrical tomography survey, collected with SuperSting R1/IP equipment, with multi-electrodes (72 electrodes), in a dipole-dipole configuration was used as input of our model. Since the total number of cenotes on the ring structure amounts to about 2000, the application of graph theoretic algorithms and Monte Carlo simulation to efficiently investigate network properties is proposed. We created a digital network model representing the observation network topology.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010M%26PS...45..638B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010M%26PS...45..638B"><span>Rampart craters on Ganymede: Their implications for fluidized ejecta emplacement</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Boyce, Joseph; Barlow, Nadine; Mouginis-Mark, Peter; Stewart, Sarah</p> <p>2010-04-01</p> <p>Some fresh impact craters on Ganymede have the overall ejecta morphology similar to Martian double-layer ejecta (DLE), with the exception of the crater Nergal that is most like Martian single layer ejecta (SLE) craters (as is the terrestrial crater Lonar). Similar craters also have been identified on Europa, but no outer ejecta layer has been found on these craters. The morphometry of these craters suggests that the types of layered ejecta craters identified by Barlow et al. (2000) are fundamental. In addition, the mere existence of these craters on Ganymede and Europa suggests that an atmosphere is not required for ejecta fluidization, nor can ejecta fluidization be explained by the flow of dry ejecta. Moreover, the absence of fluidized ejecta on other icy bodies suggests that abundant volatiles in the target also may not be the sole cause of ejecta fluidization. The restriction of these craters to the grooved terrain of Ganymede and the concentration of Martian DLE craters on the northern lowlands suggests that these terrains may share key characteristics that control the development of the ejecta of these craters. In addition, average ejecta mobility (EM) ratios indicate that the ejecta of these bodies are self-similar with crater size, but are systematically smaller on Ganymede and Europa. This may be due to the effects of the abundant ice in the crusts of these satellites that results in increased ejection angle causing ejecta to impact closer to the crater and with lower horizontal velocity.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19720008598','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19720008598"><span>Hypervelocity impact cratering calculations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Maxwell, D. E.; Moises, H.</p> <p>1971-01-01</p> <p>A summary is presented of prediction calculations on the mechanisms involved in hypervelocity impact cratering and response of earth media. Considered are: (1) a one-gram lithium-magnesium alloys impacting basalt normally at 6.4 km/sec, and (2) a large terrestrial impact corresponding to that of Sierra Madera.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19720040039&hterms=history+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dhistory%2Btheory','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19720040039&hterms=history+theory&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dhistory%2Btheory"><span>Martian cratering. II - Asteroid impact history.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hartmann, W. K.</p> <p>1971-01-01</p> <p>This paper considers the extent to which Martian craters can be explained by considering asteroidal impact. Sections I, II, and III of this paper derive the diameter distribution of hypothetical asteroidal craters on Mars from recent Palomar-Leiden asteroid statistics and show that the observed Martian craters correspond to a bombardment by roughly 100 times the present number of Mars-crossing asteroids. Section IV discusses the early bombardment history of Mars, based on the capture theory of Opik and probable orbital parameters of early planetesimals. These results show that the visible craters and surface of Mars should not be identified with the initial, accreted surface. A backward extrapolation of the impact rates based on surviving Mars-crossing asteroids can account for the majority of Mars craters over an interval of several aeons, indicating that we see back in time no further than part-way into a period of intense bombardment. An early period of erosion and deposition is thus suggested. Section V presents a comparison with results and terminology of other authors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhDT.........9D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhDT.........9D"><span>Cratering Characteristics of the Europa Kinetic Ice Penetrator</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Danner, Mariah L.</p> <p></p> <p>This thesis further develops the Europa Kinetic Ice Penetrator (EKIP) landing technique for airless bodies, as well as characterizes the effect EKIP would have on Europa's surface. Damage to the extremophile Planococcus Halocryophilus OR1 (PHOR1) during a laboratory hypervelocity impact test was studied the effect of rapid application of pressure to microbes frozen in ice. Significant die-off occurred, however PHOR1 microbes survived a 2.2km/s impact. Field testing the second-stage deployment, as well as to characterize crater morphology of the EKIP system was conducted. With low impact velocities, penetrators consistently had deeper, narrower craters than natural impactors (rocks), and showed less radial and sub-impactor compression. This, and future crater data into harder substrates, will create a cratering hardness curve for this design impactor into airless bodies. This curve, used with the eventual in situ craters, can be used to constrain the hardness and other physical properties of the surface of icy-bodies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03961&hterms=Butterfly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DButterfly','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03961&hterms=Butterfly&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3DButterfly"><span>Small Impact Crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2005-01-01</p> <p><p/> 22 June 2005 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small impact crater with a 'butterfly' ejecta pattern. The butterfly pattern results from an oblique impact. Not all oblique impacts result in an elliptical crater, but they can result in a non-radial pattern of ejecta distribution. The two-toned nature of the ejecta -- with dark material near the crater and brighter material further away -- might indicate the nature of subsurface materials. Below the surface, there may be a layer of lighter-toned material, underlain by a layer of darker material. The impact throws these materials out in a pattern that reflects the nature of the underlying layers. <p/> <i>Location near</i>: 3.7oN, 348.2oW <i>Image width</i>: 3 km (1.9 mi) <i>Illumination from</i>: lower left <i>Season</i>: Northern Autumn</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012DPS....4410507S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012DPS....4410507S"><span>A Numerical Investigation into Low-Speed Impact Cratering Events</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwartz, Stephen; Richardson, D. C.; Michel, P.</p> <p>2012-10-01</p> <p>Impact craters are the geological features most commonly observed on the surface of solid Solar System bodies. Crater shapes and features are crucial sources of information regarding past and present surface environments, and can provide indirect information about the internal structures of these bodies. In this study, we consider the effects of low-speed impacts into granular material. Studies of low-speed impact events are suitable for understanding the cratering process leading, for instance, to secondary craters. In addition, upcoming asteroid sample return missions will employ surface sampling strategies that use impacts into the surface by a projectile. An understanding of the process can lead to better sampling strategies. We use our implementation of the Soft-Sphere Discrete Element Method (SSDEM) (Schwartz et al. 2012, Granular Matter 14, 363-380) into the parallel N-body code PKDGRAV (cf. Richardson et al. 2011, Icarus 212, 427-437) to model the impact cratering process into granular material. We consider the effects of boundary conditions on the ejecta velocity profile and discuss how results relate to the Maxwell Z-Model during the crater growth phase. Cratering simulations are compared to those of Wada et al. 2006 (Icarus 180, 528-545) and to impact experiments performed in conjunction with Hayabusa 2. This work is supported in part by grants from the National Science Foundation under grant number AST1009579 and from the Office of Space Science of NASA under grant number NNX08AM39G. Part of this study resulted from discussions with the International Team (#202) sponsored by ISSI in Bern (Switzerland). Some simulations were performed on the YORP cluster administered by the Center for Theory and Computation of the Department of Astronomy at the University of Maryland in College Park and on the SIGGAM computer cluster hosted by the Côte d'Azur Observatory in Nice (France).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..256...78K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..256...78K"><span>Dione's resurfacing history as determined from a global impact crater database</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kirchoff, Michelle R.; Schenk, Paul</p> <p>2015-08-01</p> <p>Saturn's moon Dione has an interesting and unique resurfacing history recorded by the impact craters on its surface. In order to further resolve this history, we compile a crater database that is nearly global for diameters (D) equal to and larger than 4 km using standard techniques and Cassini Imaging Science Subsystem images. From this database, spatial crater density maps for different diameter ranges are generated. These maps, along with the observed surface morphology, have been used to define seven terrain units for Dione, including refinement of the smooth and "wispy" (or faulted) units from Voyager observations. Analysis of the terrains' crater size-frequency distributions (SFDs) indicates that: (1) removal of D ≈ 4-50 km craters in the "wispy" terrain was most likely by the formation of D ≳ 50 km craters, not faulting, and likely occurred over a couple billion of years; (2) resurfacing of the smooth plains was most likely by cryovolcanism at ∼2 Ga; (3) most of Dione's largest craters (D ⩾ 100 km), including Evander (D = 350 km), may have formed quite recently (<2 Ga), but are still relaxed, indicating Dione has been thermally active for at least half its history; and (4) the variation in crater SFDs at D ≈ 4-15 km is plausibly due to different levels of minor resurfacing (mostly subsequent large impacts) within each terrain.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1995Metic..30Q.545M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1995Metic..30Q.545M"><span>DARWIN Glass and DARWIN Crater Revisited. Multiple Impacts in the Australasian Strewn Field?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meisel, T.; Biino, G. G.; Villa, I. M.; Chambers, J. E.; McHone, J. F.</p> <p>1995-09-01</p> <p>Darwin glass, an impact glass occurring in South West Tasmania, has been found at least since human beings reached Tasmania ca. 40 k.y. ago. Darwin glass, although in the proximity of the Australasian tektites strewn field, has never been counted as part of it. Darwin Crater was recognized about 30 years ago. Still, the existence of an impact structure in Tasmania has been neglected and does not show up in most compilations of known impact craters. Age determinations on Darwin Glass from the early 70's revealed a combined K-Ar and fission track age of 0.73 +/- 0.04 m.y. [1]. The most recent and most precise estimate for Australites and Indochinites yields 0.784 +/- 0.012 m.y. [2]. The two ages are indistinguishable from each other. This contemporaneity lead to the hypothesis that impact on Earth producing australites also formed Darwin Crater as a primary and/or secondary crater (Gentner et al., 1973). If one believes that all tektites of the Australian strewn field were produced by one impact in or near Indochina, then a special case is required to also form Darwin Crater, which is at least 5000 km away. Atmospheric breakup of a planetary body is a very unlikely possibility, because the distance travelled after breakup is too small to account for the dispersion. Double craters on Earth are always close to each other (e.g., Kara and Kara Ust). A more likely scenario could be an impact of an asteroidal body with an accompanying small moon (e.g., Ida and Gaspra). If one believes in multiple impacts for the formation of Muong Nong-type or layered tektites in the Australasian strewn field, then a collision of an asteroidal body with another body shortly before impact on Earth is required. In this case, an impact on Earth a large distance away (i.e., Tasmania) is realistic. To address the problem of crater recognition and possible simultaneous impact events, a new multidisciplinary investigation is currently underway. We intend to determine the age of three Darwin Glasses with the 40Ar-39Ar technique at the University of Bern. We thus hope to obtain a precise age which will permit or deny verification of multiple impacts large distances apart. New samples, taken from the country rock of the proposed Darwin Crater site, are currently being studied for microscopic impact features. Mathematical calculations will be performed to test possible impact scenarios for the likelihood of contemporaneity of multiple impact events in the Australasian strewn field area. References: [1] Gentner W. et al. (1973) EPSL, 20, 204-210. [2] Kunz J. et al. (1995) LPS XXVI, 809.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA03842&hterms=disintegration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddisintegration','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA03842&hterms=disintegration&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Ddisintegration"><span>Hephaestus Fossae</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2002-01-01</p> <p>[figure removed for brevity, see original site] (Released 3 July 2002) Off the western flank of Elysium are the Hephaestus Fossae, including linear arrangements of small, round pits. These features are commonly called 'pit chains' and most likely represent the collapse of lava tubes. Lava tubes allow molten rock to move long distances underground. When the lava drains out it leaves unsupported tunnels, which can collapse and form pits. These particular pit chains are unusual because they change direction abruptly. In the lower portion of the image, pits have collapsed at the bends and allow us to observe the sharp, nearly right angle corners. These direction changes are most likely due to some sort of structural control during the emplacement of the lava tubes. There is an extraordinarily high concentration of small, degraded craters on the plains surface. The size range of these craters is fairly consistent and they all appear to be of similar age. It is unlikely that these were caused by primary impacts (impacts of meteors onto the surface) because both the size and timing distributions of primary impactors vary tremendously. However, the craters in the image could have been created from secondary impacts. Secondaries are impacts of material that is excavated during a large cratering event nearby or from the disintegration of a primary meteor in the atmosphere into many smaller parts that rain onto the surface. In contrast to these older, small craters, there is a relatively young crater in the center of the image. A hummocky ejecta blanket is visible around the crater and has covered some of the smaller craters on the plain around it. The edges of the crater are sharp, formed by rocky material in the crater rim. This material is visible as the layer of rough, grooved material at the top of the inside walls. Small dust avalanches have left dark streaks down the inside walls of the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19920021981&hterms=Earth+space&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEarth%2Bspace','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19920021981&hterms=Earth+space&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3DEarth%2Bspace"><span>Environment modelling in near Earth space: Preliminary LDEF results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Coombs, C. R.; Atkinson, D. R.; Wagner, J. D.; Crowell, L. B.; Allbrooks, M.; Watts, A. J.</p> <p>1992-01-01</p> <p>Hypervelocity impacts by space debris cause not only local cratering or penetrations, but also cause large areas of damage in coated, painted or laminated surfaces. Features examined in these analyses display interesting morphological characteristics, commonly exhibiting a concentric ringed appearance. Virtually all features greater than 0.2 mm in diameter possess a spall zone in which all of the paint was removed from the aluminum surface. These spall zones vary in size from approximately 2 - 5 crater diameters. The actual craters in the aluminum substrate vary from central pits without raised rims, to morphologies more typical of craters formed in aluminum under hypervelocity laboratory conditions for the larger features. Most features also possess what is referred to as a 'shock zone' as well. These zones vary in size from approximately 1 - 20 crater diameters. In most cases, only the outer-most layer of paint was affected by this impact related phenomenon. Several impacts possess ridge-like structures encircling the area in which this outer-most paint layer was removed. In many ways, such features resemble the lunar impact basins, but on an extremely reduced scale. Overall, there were no noticeable penetrations, bulges or spallation features on the backside of the tray. On Row 12, approximately 85 degrees from the leading edge (RAM direction), there was approximately one impact per 15 cm(exp 2). On the trailing edge, there was approximately one impact per 72 cm(exp 2). Currently, craters on four aluminum experiment trays from Bay E09, directly on the leading edge are being measured and analyzed. Preliminary results have produced more than 2200 craters on approximately 1500 cm(exp 2) - or approximately 1 impact per 0.7 cm(exp 2).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70018767','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70018767"><span>The volcanic and tectonic history of Enceladus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Kargel, J.S.; Pozio, S.</p> <p>1996-01-01</p> <p>Enceladus has a protracted history of impact cratering, cryo-volcanism, and extensional, compressional, and probable strike-slip faulting. It is unique in having some of the outer Solar System's least and most heavily cratered surfaces. Enceladus' cratering record, tectonic features, and relief elements have been analyzed more comprehensively than done previously. Like few other icy satellites, Enceladus seems to have experienced major lateral lithospheric motions; it may be the only icy satellite with global features indicating probable lithospheric convergence and folding. Ridged plains, 500 km across, consist of a central labyrinthine ridge complex atop a broad dome surrounded by smooth plains and peripheral sinuous ridge belts. The ridged plains have few if any signs of extension, almost no craters, and an average age of just 107 to 108 years. Ridge belts have local relief ranging from 500 to 2000 m and tend to occur near the bottoms of broad regional troughs between swells. Our reanalysis of Peter Thomas' (Dermott, S. F., and P. C. Thomas, 1994, The determination of the mass and mean density of Enceladus from its observed shape, Icarus, 109, 241-257) limb profiles indicates that high peaks, probably ridge belts, also occur in unmapped areas. Sinuous ridges appear foldlike and are similar to terrestrial fold belts such as the Appalachians. If they are indeed folds, it may require that the ridged plains are mechanically (perhaps volcanically) layered. Regional topography suggests that folding may have occurred along zones of convective downwelling. The cratered plains, in contrast to the ridged plains, are heavily cratered and exhibit extensional structures but no obvious signs of compression. Cratered plains contain a possible strike-slip fault (Isbanir Fossa), along which two pairs of fractures seem to have 15 km of right-lateral offset. The oldest cratered plains might date from shortly after the formation of the saturnian system or the impact disruption and reaccretion of Enceladus. Another area of cratered plains has modified craters (e.g., Ali Baba and Aladdin), which some workers have explained by anomalous heat flow and viscous relaxation; lateral shear and shield-building volcanism also may have been important. A young rift-like structure (northern Samarkand Sulci) has few craters and a concentration of cracks or grabens and flattened, flooded, and rifted craters. Pit chains and cratered domes suggest explosive volcanism. Smooth plains may have formed by cryovolcanic equivalents of flood-basalt volcanism. Pure H2O would be difficult to extrude through an icy crust and is cosmochemically improbable as a cryovolcanic agent. Density relations rule out eutectic brine lavas on Enceladus, but NH3-H2O volcanism is possible. Current steady-state tidal dissipation may cause melting of ammonia hydrate at a depth of ???25 km if the crust is made of ammonia hydrate or ???100 km if it is made of water ice. ?? 1996 Academic Press, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04678&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dunder%2Barmor','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04678&hterms=under+armor&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dunder%2Barmor"><span>Pedestal Crater and Yardangs</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>MGS MOC Release No. MOC2-444, 6 August 2003<p/>This April 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a small meteor impact crater that has been modified by wind erosion. Two things happened after the crater formed. First, the upper few meters of surface material into which the meteor impacted was later eroded away by wind. The crater ejecta formed a protective armor that kept the material under the ejecta from been blown away. This caused the crater and ejecta to appear as if standing upon a raised platform--a feature that Mars geologists call a <i>pedestal crater.</i> Next, the pedestal crater was buried beneath several meters of new sediment, and then this material was eroded away by wind to form the array of sharp ridges that run across the pedestal crater's surface. These small ridges are known as <i>yardangs</i>. This picture is illuminated by sunlight from the upper left; it is located in west Daedalia Planum near 14.6oS, 131.9oW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=PIA04904&hterms=Northeast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DNortheast','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=PIA04904&hterms=Northeast&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3DNortheast"><span>Exhuming Crater in Northeast Arabia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p></p> <p>2003-01-01</p> <p>MGS MOC Release No. MOC2-563, 3 December 2003<p/>The upper crust of Mars is layered, and interbedded with these layers are old, filled and buried meteor impact craters. In a few places on Mars, such as Arabia Terra, erosion has re-exposed some of the filled and buried craters. This October 2003 Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows an example. The larger circular feature was once a meteor crater. It was filled with sediment, then buried beneath younger rocks. The smaller circular feature is a younger impact crater that formed in the surface above the rocks that buried the large crater. Later, erosion removed all of the material that covered the larger, buried crater, except in the location of the small crater. This pair of martian landforms is located near 17.6oN, 312.8oW. The image covers an area 3 km (1.9 mi) wide and is illuminated from the lower left.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19940016309&hterms=missing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmissing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19940016309&hterms=missing&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dmissing"><span>The missing impact craters on Venus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Speidel, D. H.</p> <p>1993-01-01</p> <p>The size-frequency pattern of the 842 impact craters on Venus measured to date can be well described (across four standard deviation units) as a single log normal distribution with a mean crater diameter of 14.5 km. This result was predicted in 1991 on examination of the initial Magellan analysis. If this observed distribution is close to the real distribution, the 'missing' 90 percent of the small craters and the 'anomalous' lack of surface splotches may thus be neither missing nor anomalous. I think that the missing craters and missing splotches can be satisfactorily explained by accepting that the observed distribution approximates the real one, that it is not craters that are missing but the impactors. What you see is what you got. The implication that Venus crossing impactors would have the same type of log normal distribution is consistent with recently described distribution for terrestrial craters and Earth crossing asteroids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017IJAsB..16..286B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017IJAsB..16..286B"><span>Raman spectroscopy of shocked gypsum from a meteorite impact crater</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Brolly, Connor; Parnell, John; Bowden, Stephen</p> <p>2017-07-01</p> <p>Impact craters and associated hydrothermal systems are regarded as sites within which life could originate on Earth, and on Mars. The Haughton impact crater, one of the most well preserved craters on Earth, is abundant in Ca-sulphates. Selenite, a transparent form of gypsum, has been colonized by viable cyanobacteria. Basement rocks, which have been shocked, are more abundant in endolithic organisms, when compared with un-shocked basement. We infer that selenitic and shocked gypsum are more suitable for microbial colonization and have enhanced habitability. This is analogous to many Martian craters, such as Gale Crater, which has sulphate deposits in a central layered mound, thought to be formed by post-impact hydrothermal springs. In preparation for the 2020 ExoMars mission, experiments were conducted to determine whether Raman spectroscopy can distinguish between gypsum with different degrees of habitability. Ca-sulphates were analysed using Raman spectroscopy and results show no significant statistical difference between gypsum that has experienced shock by meteorite impact and gypsum, which has been dissolved and re-precipitated as an evaporitic crust. Raman spectroscopy is able to distinguish between selenite and unaltered gypsum. This shows that Raman spectroscopy can identify more habitable forms of gypsum, and demonstrates the current capabilities of Raman spectroscopy for the interpretation of gypsum habitability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890012008','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890012008"><span>Computer modeling of large asteroid impacts into continental and oceanic sites: Atmospheric, cratering, and ejecta dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Roddy, D. J.; Schuster, S. H.; Rosenblatt, M.; Grant, L. B.; Hassig, P. J.; Kreyenhagen, K. N.</p> <p>1988-01-01</p> <p>Numerous impact cratering events have occurred on the Earth during the last several billion years that have seriously affected our planet and its atmosphere. The largest cratering events, which were caused by asteroids and comets with kinetic energies equivalent to tens of millions of megatons of TNT, have distributed substantial quantities of terrestrial and extraterrestrial material over much or all of the Earth. In order to study a large-scale impact event in detail, computer simulations were completed that model the passage of a 10 km-diameter asteroid through the Earth's atmosphere and the subsequent cratering and ejecta dynamics associated with impact of the asteroid into two different targets, i.e., an oceanic site and a continental site. The calcuations were designed to broadly represent giant impact events that have occurred on the Earth since its formation and specifically represent an impact cratering event proposed to have occurred at the end of Cretaceous time. Calculation of the passage of the asteroid through a U.S. Standard Atmosphere showed development of a strong bow shock that expanded radially outward. Behind the shock front was a region of highly shock compressed and intensely heated air. Behind the asteroid, rapid expansion of this shocked air created a large region of very low density that also expanded away from the impact area. Calculations of the cratering events in both the continental and oceanic targets were carried to 120 s. Despite geologic differences, impacts in both targets developed comparable dynamic flow fields, and by approx. 29 s similar-sized transient craters approx. 39 km deep and approx. 62 km across had formed. For all practical purposes, the atmosphere was nearly completely removed from the impact area for tens of seconds, i.e., air pressures were less than fractions of a bar out to ranges of over 50 km. Consequently, much of the asteroid and target materials were ejected upward into a near vacuum. Effects of secondary volcanism and return of the ocean over hot oceanic crater floor could also be expected to add substantial solid and vaporized material to the atmosphere, but these conditions were not studied.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018Icar..305...33K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018Icar..305...33K"><span>Usability of small impact craters on small surface areas in crater count dating: Analysing examples from the Harmakhis Vallis outflow channel, Mars</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kukkonen, S.; Kostama, V.-P.</p> <p>2018-05-01</p> <p>The availability of very high-resolution images has made it possible to extend crater size-frequency distribution studies to small, deca/hectometer-scale craters. This has enabled the dating of small and young surface units, as well as recent, short-time and small-scale geologic processes that have occurred on the units. Usually, however, the higher the spatial resolution of space images is, the smaller area is covered by the images. Thus the use of single, very high-resolution images in crater count age determination may be debatable if the images do not cover the studied region entirely. Here we compare the crater count results for the floor of the Harmakhis Vallis outflow channel obtained from the images of the ConTeXt camera (CTX) and High Resolution Imaging Science Experiment (HiRISE) aboard the Mars Reconnaissance Orbiter (MRO). The CTX images enable crater counts for entire units on the Harmakhis Vallis main valley, whereas the coverage of the higher-resolution HiRISE images is limited and thus the images can only be used to date small parts of the units. Our case study shows that the crater count data based on small impact craters and small surface areas mainly correspond with the crater count data based on larger craters and more extensive counting areas on the same unit. If differences between the results were founded, they could usually be explained by the regional geology. Usually, these differences appeared when at least one cratering model age is missing from either of the crater datasets. On the other hand, we found only a few cases in which the cratering model ages were completely different. We conclude that the crater counts using small impact craters on small counting areas provide useful information about the geological processes which have modified the surface. However, it is important to remember that all the crater counts results obtained from a specific counting area always primarily represent the results from the counting area-not the whole unit. On the other hand, together with crater count results from extensive counting areas and lower-resolution images, crater counts on small counting areas but by using very high-resolution images is a very valuable tool for obtaining unique additional information about the local processes on the surface units.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930040062&hterms=ia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dia','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930040062&hterms=ia&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dia"><span>Ramgarh Crater, Rajasthan, India - Study of multispectral images obtained by Indian remote sensing satellite (IRS-IA)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Murali, A. V.; Lulla, Kamlesh P.</p> <p>1992-01-01</p> <p>Ramgarh Crater, Rajasthan, India is a potential impact crater that has not been studied so far. The proximity of Ramgarh Crater to the Deccan flood basalt terrain makes it important to examine the spatial and temporal relationship of this crater to Deccan Volcanism because recent studies propose a strong link between impact cratering and major flood basalt eruptions. A detailed multidisciplinary study is necessary to evaluate the structure and lithology of Ramgarh Crater and its temporal relationship to the emplacement of Deccan eruptions in India. Application of the IRS-IA data to study the lithologic/surface characteristics of Ramgarh Crater (attempted for the first time) indicates the potential application of remote sensing data in these studies. The IRS-IA data are of good quality and resolution. Our preliminary assessment has shown that these data are helpful in generating lithology soil vegetation profiles of Ramgarh Crater region. These 'profile maps' would be useful for targeting the specific areas in the region for a closer look and ground truth verification during the field work and sample collection in the region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19850047911&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19850047911&hterms=geomorphology&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D30%26Ntt%3Dgeomorphology"><span>The geomorphology of Rhea - Implications for geologic history and surface processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Moore, J. M.; Horner, V. M.; Greeley, R.</p> <p>1985-01-01</p> <p>Morphological analyses of landforms on Rhea are used to define three physiographic provinces: cratered terrain 1 undifferentiated; cratered terrain 1 lineated; and cratered terrain 2. The important statigraphic relationships between the different provinces are examined with respect to major impact basins and tectonic features. It is shown that the formation of multiringed basins may have caused, or at least controlled the locations of major resurfacing and mantling events. The diameters of the central peaks relative to the impact crater diameters are found to be significantly larger than those within the craters of the moon or Mercury. Both cratered and noncrater lineaments have regional orientations which do not fit current global or regional stress models. On the basis of the morphological analysis, a chronological order is established for the origin of the three provinces: the cratered terrain 1 province was formed first; and cratered terrain 1 lineated and cratered terrain 2 were formed second, and last, respectively. It is shown that the chronological order is generally consistent with current theoretical models of the evolution of Rhea.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70191097','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70191097"><span>Fluvial erosion as a mechanism for crater modification on Titan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Neish, Catherine D.; Molaro, J. L.; Lora, J. M.; Howard, A.D.; Kirk, Randolph L.; Schenk, P.; Bray, V.J.; Lorenz, R.D.</p> <p>2016-01-01</p> <p>There are few identifiable impact craters on Titan, especially in the polar regions. One explanation for this observation is that the craters are being destroyed through fluvial processes, such as weathering, mass wasting, fluvial incision and deposition. In this work, we use a landscape evolution model to determine whether or not this is a viable mechanism for crater destruction on Titan. We find that fluvial degradation can modify craters to the point where they would be unrecognizable by an orbiting spacecraft such as Cassini, given enough time and a large enough erosion rate. A difference in the erosion rate between the equator and the poles of a factor of a few could explain the latitudinal variation in Titan’s crater population. Fluvial erosion also removes central peaks and fills in central pits, possibly explaining their infrequent occurrence in Titan craters. Although many craters on Titan appear to be modified by aeolian infilling, fluvial modification is necessary to explain the observed impact crater morphologies. Thus, it is an important secondary modification process even in Titan’s drier equatorial regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19890008981','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19890008981"><span>The role of impact cratering for Mars sample return</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Schultz, P. H.</p> <p>1988-01-01</p> <p>The preserved cratering record of Mars indicates that impacts play an important role in deciphering Martian geologic history, whether as a mechanism to modify the lithosphere and atmosphere or as a tool to sample the planet. The various roles of impact cratering in adding a broader understanding of Mars through returned samples are examined. Five broad roles include impact craters as: (1) a process in response to a different planetary localizer environment; (2) a probe for excavating crustal/mantle materials; (3) a possible localizer of magmatic and hydrothermal processes; (4) a chronicle of changes in the volcanic, sedimentary, atmospheric, and cosmic flux history; and (5) a chronometer for extending the geologic time scale to unsampled regions. The evidence for Earth-like processes and very nonlunar styles of volcanism and tectonism may shift the emphasis of a sampling strategy away from equally fundamental issues including crustal composition, unit ages, and climate history. Impact cratering not only played an important active role in the early Martian geologic history, it also provides an important tool for addressing such issues.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20977752','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20977752"><span>Phylogeography, colonization and population history of the Midas cichlid species complex (Amphilophus spp.) in the Nicaraguan crater lakes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Barluenga, Marta; Meyer, Axel</p> <p>2010-10-26</p> <p>Elucidation of the mechanisms driving speciation requires detailed knowledge about the phylogenetic relationships and phylogeography of the incipient species within their entire ranges as well as their colonization history. The Midas cichlid species complex Amphilophus spp. has been proven to be a powerful model system for the study of ecological specialization, sexual selection and the mechanisms of sympatric speciation. Here we present a comprehensive and integrative phylogeographic analysis of the complete Midas Cichlid species complex in Nicaragua (> 2000 individuals) covering the entire distributional range, using two types of molecular markers (the mitochondrial DNA control region and 15 microsatellites). We investigated the majority of known lake populations of this species complex and reconstructed their colonization history in order to distinguish between alternative speciation scenarios. We found that the large lakes contain older and more diverse Midas Cichlid populations, while all crater lakes hold younger and genetically less variable species assemblages. The large lakes appear to have repeatedly acted as source populations for all crater lakes, and our data indicate that faunal exchange among crater lakes is extremely unlikely. Despite their very recent (often only a few thousand years old) and common origin from the two large Nicaraguan lakes, all crater lake Midas Cichlid radiations underwent independent, but parallel, evolution, and comprise distinct genetic units. Indeed several of these crater lakes contain multiple genetically distinct incipient species that most likely arose through sympatric speciation. Several crater lake radiations can be traced back to a single ancestral line, but some appear to have more than one founding lineage. The timing of the colonization(s) of each crater lake differs, although most of them occurred more (probably much more) recently than 20,000 years ago. The genetic differentiation of the crater lake populations is directly related to the number of founding lineages, but independent of the timing of colonization. Interestingly, levels of phenotypic differentiation, and speciation events, appeared independent of both factors.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003MNRAS.343...56J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003MNRAS.343...56J"><span>Theoretical calculation of the cratering on Ida, Mathilde, Eros and Gaspra</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jeffers, S. V.; Asher, D. J.</p> <p>2003-07-01</p> <p>The main influences on crater size distributions are investigated by deriving results for the four example target objects, (951) Gaspra, (243) Ida, (253) Mathilde and (433) Eros. The dynamical history of each of these asteroids is modelled using the MERCURY numerical integrator. An efficient, Öpik-type, collision code enables the distribution of impact velocities and the overall impact probability to be found. When combined with a crater scaling law and an impactor size distribution, using a Monte Carlo method, this yields a crater size distribution. The cratering time-scale is longer for Ida than either Gaspra or Mathilde, though it is harder to constrain for Eros due to the chaotic variation of its orbital elements. The slopes of the crater size distribution are in accord with observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.P53G..02B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.P53G..02B"><span>Exploring Tectonic Activity on Vesta and Ceres</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Buczkowski, D.; Scully, J. E. C.; Raymond, C. A.; Russell, C. T.</p> <p>2017-12-01</p> <p>Images of Vesta and Ceres taken by the Dawn spacecraft revealed large-scale linear structural features on both asteroids. We evaluate their morphology to determine 1) what processes caused them to form and 2) what implications this has for the history of Vesta and Ceres as planetary bodies. The Divalia Fossae are wide troughs bounded by steep scarps that encircle Vesta roughly aligned with the equator. Fault plane analysis suggests that their formation was triggered by the impact event that formed the Rheasilvia basin. The Saturnalia Fossae extend from Divalia to the northern polar region; fault plane analysis ties their formation to the Veneneia basin impact event. Also, it has been suggested that the elongate hill Brumalia Tholus could have been formed as a magmatic intrusion utilizing the subsurface Albalonga fracture as a conduit to the surface, intruding into and deforming the rock above it. Kilometer-scale linear structures cross much of the eastern hemisphere of Ceres. Many structures appear to be radial to the large craters Urvara and Yalode, and likely formed due to impact processes. However, the Samhain Catenae do not have any obvious relationship to a crater and the lack of raised rims makes it unlikely that these are secondary impacts; they are also crosscut by linear features radial to Urvara and Yalode, indicating they are not fractures formed during those impact events. Instead, the morphology of these structures more closely resembles that of pit crater chains (buried normal faults), and show en echelon orientation and S-shaped linkages. Polygonal craters, which form where there is pervasive subsurface fracturing, are widespread on Ceres, and those polygonal craters proximal to the Samhain Catenae have straight crater rims aligned with the structures. Several craters on Ceres have fractured floors, similar to lunar floor-fractured craters (FFCs), which are theorized to form from floor uplift due to magmatic intrusion. Large (>50 km) Ceres FFCs can have both radial and concentric fractures at the crater center, and/or concentric fractures near the crater wall. Smaller craters have a v-shaped moat separating the wall scarp from the crater interior, but different interior morphologies. A depth vs. diameter analysis shows that the Ceres FFCs are unusually shallow, consistent with the magmatic intrusion models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017Icar..284..284H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017Icar..284..284H"><span>The central uplift of Elorza Crater: Insights into its geology and possible relationships to the Valles Marineris and Tharsis regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hopkins, R. T.; Tornabene, L. L.; Osinski, G. R.</p> <p>2017-03-01</p> <p>The majority of hydrated silicate occurrences on Mars are associated with impact craters (Ehlmann et al., 2011; Carter et al., 2013). Three formation mechanisms have been suggested to account for this correlation: (1) aqueous alteration occurred pre-impact, and was subsequently exposed via the impact (pre-impact; Bibring et al., 2006; Ehlmann et al., 2011), (2) heat generated from the impact facilitated the formation of a hydrothermal system, leading to alteration products (syn-impact; e.g. Marzo et al., 2010; Osinski et al., 2013), and/or (3) altered materials were deposited after crater formation, or formed within the crater well after the impact had taken place (post-impact). In this study, we analyze the central uplift of Elorza Crater, a ∼40 km diameter impact crater located ∼300 km north of Valles Marineris. To determine whether hydrated minerals found within the uplift were generated pre-, syn-, or post-impact, we used a data synthesis approach, utilizing High Resolution Imaging Science Experiment (HiRISE), Compact Reconnaissance Imaging Spectrometer for Mars (CRISM), Context Camera (CTX), and Thermal Emission Imaging System (THEMIS) imagery. Opaline silica is observed in two locations on the southwestern side of the uplift and is interpreted to have been pre-existing or formed via hydrothermal alteration due to stratigraphic relationships with the overlying impact melt unit. Both Fe/Mg smectite and low-calcium pyroxene (LCP) are found throughout the uplift. Bedrock exposures on the northern wall of Coprates Chasma containing Fe/Mg smectite and LCP suggest an uplifted origin for these units. In all cases, although a pre-existing origin is probable, it is difficult to rule out the possibility of an impact-generated hydrothermal origin. Using the observed stratigraphy exposed in Coprates Chasma and bedrock exposures analyzed in nearby craters, we were able to constrain the pre-impact stratigraphy around Elorza. The near-subsurface consists of Hesperian-aged, discontinuous lava/ash deposits that may be interposed with opaline silica-bearing deposits, overlying Noachian basement consisting of smectite-bearing bedrock and LCP- bearing light-toned fractured bedrock.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19750006607','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19750006607"><span>The micrometeoroid complex and evolution of the lunar regolith</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoerz, F.; Morrison, D. A.; Gault, D. E.; Oberbeck, V. R.; Quaide, W. L.; Vedder, J. F.; Brownlee, D. E.; Hartung, J. B.</p> <p>1974-01-01</p> <p>The interaction of the micrometeoroid complex with the lunar surface is evidenced by numerous glass-lined microcraters on virtually every lunar surface exposed to space. Such craters range in size from less than .1 micron to approximately 2 sq cm diameter. Using small scale laboratory cratering experiments for calibration, the observed crater-sized frequency distributions may be converted into micrometeoroid mass distributions. These lunar mass distributions are in essential agreement with satellite data. Some physical properties of micrometeoroids may be deduced by comparing lunar crater geometries with those obtained in laboratory experiments. The proponderance of circular outlines of lunar microcraters necessitates equidimensional, if not spherical, micrometeoroids.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930020168','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930020168"><span>Continued investigation of LDEF's structural frame and thermal blankets by the Meteoroid and Debris Special Investigation Group</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>See, Thomas H.; Mack, Kimberly S.; Warren, Jack L.; Zolensky, Michael E.; Zook, Herbert A.</p> <p>1993-01-01</p> <p>This report focuses on the data acquired by detailed examination of LDEF intercostals, 68 of which are now in possession of the Meteoroid and Debris Special Investigation Group (M&D SIG) at JSC. In addition, limited data will be presented for several small sections from the A0178 thermal control blankets that were examined/counted prior to being shipped to Principal Investigators (PI's) for scientific study. The data presented here are limited to measurements of crater and penetration-hole diameters and their frequency of occurrence which permits, yet also constrains, more model-dependent, interpretative efforts. Such efforts will focus on the conversion of crater and penetration-hole sizes to projectile diameters (and masses), on absolute particle fluxes, and on the distribution of particle-encounter velocities. These are all complex issues that presently cannot be pursued without making various assumptions which relate, in part, to crater-scaling relationships, and to assumed trajectories of natural and man-made particle populations in LEO that control the initial impact conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996LPI....27..473G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996LPI....27..473G"><span>The Group of Macha Craters in Western Yakutia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gurov, E. P.</p> <p>1996-03-01</p> <p>The group of Macha craters is placed in the marginal part of Aldan Anteclise in Macha river basin, the left tributary of Lena river. Coordinates of the craters: 60 degrees 06 minutes N, 117 degrees 35 minutes E. The Macha craters were discovered by aerovisual observations of Aldan Shield and Aldan Anteclise during the impact craters search in this region.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20100003189','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20100003189"><span>Creation of High Resolution Terrain Models of Barringer Meteorite Crater (Meteor Crater) Using Photogrammetry and Terrestrial Laser Scanning Methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Brown, Richard B.; Navard, Andrew R.; Holland, Donald E.; McKellip, Rodney D.; Brannon, David P.</p> <p>2010-01-01</p> <p>Barringer Meteorite Crater or Meteor Crater, AZ, has been a site of high interest for lunar and Mars analog crater and terrain studies since the early days of the Apollo-Saturn program. It continues to be a site of exceptional interest to lunar, Mars, and other planetary crater and impact analog studies because of its relatively young age (est. 50 thousand years) and well-preserved structure. High resolution (2 meter to 1 decimeter) digital terrain models of Meteor Crater in whole or in part were created at NASA Stennis Space Center to support several lunar surface analog modeling activities using photogrammetric and ground based laser scanning techniques. The dataset created by this activity provides new and highly accurate 3D models of the inside slope of the crater as well as the downslope rock distribution of the western ejecta field. The data are presented to the science community for possible use in furthering studies of Meteor Crater and impact craters in general as well as its current near term lunar exploration use in providing a beneficial test model for lunar surface analog modeling and surface operation studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015Icar..246..165B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015Icar..246..165B"><span>Craters and ejecta on Pluto and Charon: Anticipated results from the New Horizons flyby</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bierhaus, Edward B.; Dones, Luke</p> <p>2015-01-01</p> <p>We examine the flux of bodies striking Pluto and Charon, and the nature of the crater populations that will form as a result of these impacts. Assuming impact speeds of 2 km/s and an impact angle of 45 ° , a 1 km impactor will form a 4.2 km diameter transient crater on Pluto, and a ∼5.0 km crater on Charon, as compared with 8-13 km for several mid-sized saturnian satellites and 8-10 km for the icy Galilean satellites. We predict that secondary craters will be present in the crater size-frequency distribution (SFD) for Pluto and Charon at sizes less than a few km, at spatial densities comparable to the range seen on the mid-sized saturnian satellites and distinctly less than seen on the icy Galilean satellites. Pluto should have more secondary craters formed per primary impact than Charon, so if neither crater population on these bodies is in saturation, Charon's crater SFD should be the "cleanest" reflection of the primary, impacting SFD. Ejecta from Pluto and Charon escape more efficiently from the combined system, relative to ejecta from a satellite in orbit around a giant planet, due to the absence of a large central body. We estimate that Kuiper Belt Objects (KBOs) with diameters larger than 1 km should strike Pluto and Charon on (nominal) timescales of 2.2 and 10 million years, respectively. These estimates are uncertain because the numbers of small KBOs are poorly constrained. Our estimated rates are smaller than earlier predictions of impact rates, primarily because we assume a KBO size distribution that is shallower overall than previous studies did. The impact rate, combined with the observed crater SFD, will enable estimates of relative and absolute age of different geologic units, should different geologic units exist. We explore two scenarios in regards to the crater population: (1) a shallow (differential power-law index of p ∼ 2 , i.e. for dN / dD ∝D-p), based on the crater SFD observed on young terrains of Galilean and saturnian satellites; and (2) a slightly steeper SFD (p ∼ 3), based on extrapolations of larger (∼100 km) KBOs from ground-based surveys. If the observed primary crater SFD, at diameters less than a few tens of km, is consistent with a differential power-law index p ∼ 2 , that will confirm that KBOs are deficient in small bodies relative to extrapolations from known ∼100 km KBOs, consistent with expectations derived from examination of crater populations in young terrains on the Galilean and saturnian satellites. If the crater SFD has p ⩾ 3 over all observed sizes, then that power-law index applies across the KBO population over at least two orders of magnitude (1 km to100 km objects), and there must be some process that erodes the small KBOs when they migrate to the Jupiter-Saturn region of the Solar System. Whatever SFD is observed, the primary crater population on Pluto and Charon will provide the strongest constraint on the SFD of small KBOs, which will be beyond the observational reach of ground- and space-based telescopes for years to come. This, in turn, will provide a fundamental constraint for further understanding of the evolution of this distant and compelling population of bodies beyond Neptune.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ISPAr42.3..865L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ISPAr42.3..865L"><span>Remote Sensing Observations and Numerical Simulation for Martian Layered Ejecta Craters</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, L.; Yue, Z.; Zhang, C.; Li, D.</p> <p>2018-04-01</p> <p>To understand past Martian climates, it is important to know the distribution and nature of water ice on Mars. Impact craters are widely used ubiquitous indicators for the presence of subsurface water or ice on Mars. Remote sensing observations and numerical simulation are powerful tools for investigating morphological and topographic features on planetary surfaces, and we can use the morphology of layered ejecta craters and hydrocode modeling to constrain possible layering and impact environments. The approach of this work consists of three stages. Firstly, the morphological characteristics of the Martian layered ejecta craters are performed based on Martian images and DEM data. Secondly, numerical modeling layered ejecta are performed through the hydrocode iSALE (impact-SALE). We present hydrocode modeling of impacts onto targets with a single icy layer within an otherwise uniform basalt crust to quantify the effects of subsurface H2O on observable layered ejecta morphologies. The model setup is based on a layered target made up of a regolithic layer (described by the basalt ANEOS), on top an ice layer (described by ANEOS equation of H2O ice), in turn on top of an underlying basaltic crust. The bolide is a 0.8 km diameter basaltic asteroid hitting the Martian surface vertically at a velocity of 12.8 km/s. Finally, the numerical results are compared with the MOLA DEM profile in order to analyze the formation mechanism of Martian layered ejecta craters. Our simulations suggest that the presence of an icy layer significantly modifies the cratering mechanics, and many of the unusual features of SLE craters may be explained by the presence of icy layers. Impact cratering on icy satellites is significantly affected by the presence of subsurface H2O.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20040065880&hterms=permeability+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dpermeability%2Bdistribution','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20040065880&hterms=permeability+distribution&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D60%26Ntt%3Dpermeability%2Bdistribution"><span>Starting Conditions for Hydrothermal Systems Underneath Martian Craters: Hydrocode Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Pierazzo, E.; Artemieva, N. A.; Ivanov, B. A.</p> <p>2004-01-01</p> <p>Mars is the most Earth-like of the Solar System s planets, and the first place to look for any sign of present or past extraterrestrial life. Its surface shows many features indicative of the presence of surface and sub-surface water, while impact cratering and volcanism have provided temporary and local surface heat sources throughout Mars geologic history. Impact craters are widely used ubiquitous indicators for the presence of sub-surface water or ice on Mars. In particular, the presence of significant amounts of ground ice or water would cause impact-induced hydrothermal alteration at Martian impact sites. The realization that hydrothermal systems are possible sites for the origin and early evolution of life on Earth has given rise to the hypothesis that hydrothermal systems may have had the same role on Mars. Rough estimates of the heat generated in impact events have been based on scaling relations, or thermal data based on terrestrial impacts on crystalline basements. Preliminary studies also suggest that melt sheets and target uplift are equally important heat sources for the development of a hydrothermal system, while its lifetime depends on the volume and cooling rate of the heat source, as well as the permeability of the host rocks. We present initial results of two-dimensional (2D) and three-dimensional (3D) simulations of impacts on Mars aimed at constraining the initial conditions for modeling the onset and evolution of a hydrothermal system on the red planet. Simulations of the early stages of impact cratering provide an estimate of the amount of shock melting and the pressure-temperature distribution in the target caused by various impacts on the Martian surface. Modeling of the late stage of crater collapse is necessary to characterize the final thermal state of the target, including crater uplift, and distribution of the heated target material (including the melt pool) and hot ejecta around the crater.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013M%26PS...48...87M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013M%26PS...48...87M"><span>Application of nondestructive testing methods to study the damage zone underneath impact craters of MEMIN laboratory experiments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moser, Dorothee; Poelchau, Michael H.; Stark, Florian; Grosse, Christian</p> <p>2013-01-01</p> <p>Within the framework of the Multidisciplinary Experimental and Modeling Impact Research Network (MEMIN) research group, the damage zones underneath two experimentally produced impact craters in sandstone targets were investigated using several nondestructive testing (NDT) methods. The 20 × 20 × 20 cm sandstones were impacted by steel projectiles with a radius of 1.25 mm at approximately 5 km s-1, resulting in craters with approximately 6 cm diameter and approximately 1 cm depth. Ultrasound (US) tomography and vibrational analysis were applied before and after the impact experiments to characterize the damage zone, and micro-computer tomography (μ-CT) measurements were performed to visualize subsurface fractures. The newly obtained experimental data can help to quantify the extent of the damage zone, which extends to about 8 cm depth in the target. The impacted sandstone shows a local p-wave reduction of 18% below the crater floor, and a general reduction in elastic moduli by between approximately 9 and approximately 18%, depending on the type of elastic modulus. The results contribute to a better empirical and theoretical understanding of hypervelocity events and simulations of cratering processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009M%26PS...44.1967T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009M%26PS...44.1967T"><span>A meteorite crater on Earth formed on September 15, 2007: The Carancas hypervelocity impact</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tancredi, G.; Ishitsuka, J.; Schultz, P. H.; Harris, R. S.; Brown, P.; Revelle, D. O.; Antier, K.; Le Pichon, A.; Rosales, D.; Vidal, E.; Varela, M. E.; Sánchez, L.; Benavente, S.; Bojorquez, J.; Cabezas, D.; Dalmau, A.</p> <p>2009-01-01</p> <p>On September 15, 2007, a bright fireball was observed and a big explosion was heard by many inhabitants near the southern shore of Lake Titicaca. In the community of Carancas (Peru), a 13.5 m crater and several fragments of a stony meteorite were found close to the site of the impact. The Carancas event is the first impact crater whose formation was directly observed by several witnesses as well as the first unambiguous seismic recording of a crater-forming meteorite impact on Earth. We present several lines of evidence that suggest that the Carancas crater was a hypervelocity impact. An event like this should have not occurred according to the accepted picture of stony meteoroids ablating in the Earth’s atmosphere, therefore it challenges our present models of entry dynamics. We discuss alternatives to explain this particular event. This emphasizes the weakness in the pervasive use of “average” parameters (such as tensile strength, fragmentation behavior and ablation behavior) in current modeling efforts. This underscores the need to examine a full range of possible values for these parameters when drawing general conclusions from models about impact processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2006epsc.conf..625P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2006epsc.conf..625P"><span>An assessment of crater erosional histories on the Earth and Mars using digital terrain models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Paul, R. L.; Muller, J.-P.; Murray, J. B.</p> <p></p> <p>The research will examine quantitatively the geomorphology of both Terrestrial and Martian craters. The erosional and sub-surface processes will be investigated to understand how these affect a crater's morphology. For example, the Barringer crater in Arizona has an unusual shape. The Earth has a very high percentage of water both in the atmosphere as clouds or rain and under the surface. The presence of water will therefore affect a crater's formation and its subsequent erosional modification. On Mars there is little or no water present currently, though recent observations suggest there may be near-surface ice in some areas. How do craters formed in the Martian environment therefore differ from Terrestrial ones? How has the structure of Martian craters changed in areas of possible fluvial activity? How does the surface material affect crater formation? How does the Earth's fluvial activity affect a crater's evolution? At present, four measurements of circularity have been used to describe a crater (Murray & Guest, 1972). These parameters will be re-examined to see how effectively they describe Terrestrial and Martian craters using high resolution DTMs which were not available at the time of the original study. The model described by Forsberg-Taylor et al. 2004, and others will also be applied to results obtained from the chosen craters to assess how effectively these craters are described. Both hypsometric curves and hydrological analysis will be used to assess crater evolution. A suitable criterion for the selection of Terrestrial and Martian craters is essential for this type of research. Terrestrial craters have been selected in arid or semi-arid terrain with crater diameters larger than one kilometre. Craters less than five million years old would be ideal. However, this was too restrictive and so a variety of crater ages have had to be used. Eight terrestrial craters have been selected in arid or semi-arid areas for study, using the Earth Impact Database and ICEDS. These are: Barringer, Arizona, U.S.A; Goat Paddock, West Australia; Ouarkziz, Algeria; Roter Kamm, Namibia; Talemzane, Algeria; Tenoumer, Mauritania; Tswaing, South Africa 1 and Upheaval Dome, Utah, U.S.A. Comparable Martian craters are in the process of being chosen using the USGS PIGWAD database and the Morphological Catalogue of the Craters of Mars. Digital Terrain Models of each crater using SRTM DEMs and data from the recent Mars Express HRSC will be used at various resolutions (30m upwards) to provide three dimensional models to assess the capabilities of measuring erosional effects. There is also available ASTER DEMs and ASTER Level 1A for terrestrial craters and MOLA tracks for Martian craters. Both laboratory and theoretical models of crater shape and erosion features will provide a better understanding of the processes observed. This will enable us to develop a better explanation of why craters are the shape they are. References. Barlow N., 1987, Crater Size-Frequency Distribution and a Revised Martian Relative Chronology, Icarus, 75, 285-305. Barlow, N., 1995, The degradation of impact craters in Maja Valles and Arabia Mars, Journal GeoPhys. Res., 100, 23307-23316. Earth Impact Database http://www.unb.ca/passc/ImpactDatabase/ Earth PIGWAD database http://webgis.wr.usgs.gov/website/mars%5Fcrater%5Fhtml/viewer.htm ICEDS http://iceds.ge.ucl.ac.uk/ Morphology Catalogue of the Craters of Mars http://selena.sai.msu.ru/Home/Mars_Cat/Mars_Cat.htm Murray J.B, Guest J.E, 1970, Circularities of craters and related structures on Earth and Moon, Modern Geology, 1, 149-159. Forsberg-Taylor N., Howard A.D., 2004, Crater degradation in the Martian Highlands: Morphometric Analysis of the Sinus Sabaeus region and simulation modelling suggest fluvial processes, Journal GeoPhys Res., 109, E05002. 2</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19780060135&hterms=model+geological&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmodel%2Bgeological','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19780060135&hterms=model+geological&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dmodel%2Bgeological"><span>Impact cratering phenomenon for the Ries multiring structure based on constraints of geological, geophysical, and petrological studies and the nature of the impacting body</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chao, E. C. T.; Minkin, J. A.</p> <p>1977-01-01</p> <p>In the present paper, an attempt is made to delineate, on the basis of field and laboratory data, the phenomenon of formation of the Ries multiring basin - the best preserved very large terrestrial impact structure. The model proposed conforms to constraints imposed by geological, geophysical, and petrological studies and by the nature of the postulated impacting body. It is also based on the impact features of a stony meteorite measuring 3 km in diameter at an impact velocity of 15 km/sec. The schematic reconstruction shows that critical to the production of a shallow crater is shallow impact penetration (shallow depth of burst). This and the nonballistic ejection of excavated material appear to be genetically related, i.e., if extensive nonballistic transport is recognized, then the associated crater must be a shallow structure and vice versa. This also means the shallow configuration of a crater may not have anything to do with postcratering readjustment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090012274','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090012274"><span>Mitigation of EMU Cut Glove Hazard from Micrometeoroid and Orbital Debris Impacts on ISS Handrails</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ryan, Shannon; Christiansen, Eric L.; Davis, Bruce A.; Ordonez, Erick</p> <p>2009-01-01</p> <p>Recent cut damages sustained on crewmember gloves during extravehicular activity (ISS) onboard the International Space Station (ISS) have been caused by contact with sharp edges or a pinch point according to analysis of the damages. One potential source are protruding sharp edged crater lips from micrometeoroid and orbital debris (MMOD) impacts on metallic handrails along EVA translation paths. A number of hypervelocity impact tests were performed on ISS handrails, and found that mm-sized projectiles were capable of inducing crater lip heights two orders of magnitude above the minimum value for glove abrasion concerns. Two techniques were evaluated for mitigating the cut glove hazard of MMOD impacts on ISS handrails: flexible overwraps which act to limit contact between crewmember gloves and impact sites, and; alternate materials which form less hazardous impact crater profiles. In parallel with redesign efforts to increase the cut resilience of EMU gloves, the modifications to ISS handrails evaluated in this study provide the means to significantly reduce cut glove risk from MMOD impact craters</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19930001005','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19930001005"><span>Floor-fractured crater models of the Sudbury structure, Canada</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Wichman, R. W.; Schultz, P. H.</p> <p>1992-01-01</p> <p>The Sudbury structure in Ontario, Canada, is one of the oldest and largest impact structures recognized in the geological record. It is also one of the most extensively deformed and volcanically modified impact structures on Earth. Although few other terrestrial craters are recognized as volcanically modified, numerous impact craters on the Moon have been volcanically and tectonically modified and provide possible analogs for the observed pattern of modification at Sudbury. We correlate the pattern of early deformation at Sudbury to fracture patterns in two alternative lunar analogs and then use these analogs both to estimate the initial size of the Sudbury structure and to model the nature of early crater modification at Sudbury.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA21596.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA21596.html"><span>It Shrinks! It Cracks!</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>2017-04-20</p> <p>Given enough time, impact craters on Mars tend to fill up with different materials. For instance, some craters on Mars had lakes inside them in the past. When these lakes dried out, they left behind traces of their past existence, such as sedimentary deposits (materials that were carried along with the running water into the lake inside the crater and then settled down). Some craters, especially in high latitudes, contain ice deposits that filled the crater when an earlier ice age allowed ice to extend into the crater's latitude. Here, NASA's Mars Reconnaissance Orbiter spies a crater that lies close to Elysium, a major volcanic system on Mars. The whole region surrounding the crater was at some point covered by lava from the volcano creating vast lava plains, and in the process, flooding impact craters in their way. When the lava eventually cooled down, it solidified and began to shrink in size. This shrinking led to formation of cracks on the surface of the lava that grew in a circular pattern matching the shape of the crater it was filling. Scientists can study these fractures and estimate how much it shrank in volume to better understand the properties of the lava (such as its temperature) during the time it filled the crater. https://photojournal.jpl.nasa.gov/catalog/PIA21596</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19900061677&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbarlow','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19900061677&hterms=barlow&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D80%26Ntt%3Dbarlow"><span>Martian impact craters - Correlations of ejecta and interior morphologies with diameter, latitude, and terrain</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Barlow, Nadine G.; Bradley, Tracy L.</p> <p>1990-01-01</p> <p>An effort is made to establish the ability of a correlation between crater morphology and latitude, diameter, and terrain, to discriminate among the effects of impact energy, atmosphere, and subsurface volatiles in 3819 larger-than-8 km diameter craters distributed over the Martian surface. It is noted that changes in ejecta and interior morphology correlate with increases in crater diameter, and that while many of the interior structures exhibit distributions interpretable as terrain-dependent, central peak and peak ring interior morphologies exhibit minimal relationships with planetary properties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://images.nasa.gov/#/details-PIA01723.html','SCIGOVIMAGE-NASA'); return false;" href="https://images.nasa.gov/#/details-PIA01723.html"><span>Space Radar Image of the Yucatan Impact Crater Site</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://images.nasa.gov/">NASA Image and Video Library</a></p> <p></p> <p>1999-01-27</p> <p>This is a radar image of the southwest portion of the buried Chicxulub impact crater in the Yucatan Peninsula, Mexico. The radar image was acquired on orbit 81 of space shuttle Endeavour on April 14, 1994 by the Spaceborne Imaging Radar C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR). The image is centered at 20 degrees north latitude and 90 degrees west longitude. Scientists believe the crater was formed by an asteroid or comet which slammed into the Earth more than 65 million years ago. It is this impact crater that has been linked to a major biological catastrophe where more than 50 percent of the Earth's species, including the dinosaurs, became extinct. The 180-to 300-kilometer-diameter (110- to 180-mile) crater is buried by 300 to 1,000 meters (1,000 to 3,000 feet) of limestone. The exact size of the crater is currently being debated by scientists. This is a total power radar image with L-band in red, C-band in green, and the difference between C-band L-band in blue. The 10-kilometer-wide (6-mile) band of yellow and pink with blue patches along the top left (northwestern side) of the image is a mangrove swamp. The blue patches are islands of tropical forests created by freshwater springs that emerge through fractures in the limestone bedrock and are most abundant in the vicinity of the buried crater rim. The fracture patterns and wetland hydrology in this region are controlled by the structure of the buried crater. Scientists are using the SIR-C/X-SAR imagery to study wetland ecology and help determine the exact size of the impact crater. http://photojournal.jpl.nasa.gov/catalog/PIA01723</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>