Sample records for complex infrastructure systems

  1. The Pedagogy of Complex Work Support Systems: Infrastructuring Practices and the Production of Critical Awareness in Risk Auditing

    ERIC Educational Resources Information Center

    Mathisen, Arve; Nerland, Monika

    2012-01-01

    This paper employs a socio-technical perspective to explore the role of complex work support systems in organising knowledge and providing opportunities for learning in professional work. Drawing on concepts from infrastructure studies, such systems are seen as work infrastructures which connect information, knowledge, standards and work…

  2. Complex Networks and Critical Infrastructures

    NASA Astrophysics Data System (ADS)

    Setola, Roberto; de Porcellinis, Stefano

    The term “Critical Infrastructures” indicates all those technological infrastructures such as: electric grids, telecommunication networks, railways, healthcare systems, financial circuits, etc. that are more and more relevant for the welfare of our countries. Each one of these infrastructures is a complex, highly non-linear, geographically dispersed cluster of systems, that interact with their human owners, operators, users and with the other infrastructures. Their augmented relevance and the actual political and technological scenarios, which have increased their exposition to accidental failure and deliberate attacks, demand for different and innovative protection strategies (generally indicate as CIP - Critical Infrastructure Protection). To this end it is mandatory to understand the mechanisms that regulate the dynamic of these infrastructures. In this framework, an interesting approach is those provided by the complex networks. In this paper we illustrate some results achieved considering structural and functional properties of the corresponding topological networks both when each infrastructure is assumed as an autonomous system and when we take into account also the dependencies existing among the different infrastructures.

  3. Positioning infrastructure and technologies for low-carbon urbanization

    NASA Astrophysics Data System (ADS)

    Chester, Mikhail V.; Sperling, Josh; Stokes, Eleanor; Allenby, Braden; Kockelman, Kara; Kennedy, Christopher; Baker, Lawrence A.; Keirstead, James; Hendrickson, Chris T.

    2014-10-01

    The expected urbanization of the planet in the coming century coupled with aging infrastructure in developed regions, increasing complexity of man-made systems, and pressing climate change impacts have created opportunities for reassessing the role of infrastructure and technologies in cities and how they contribute to greenhouse gas (GHG) emissions. Modern urbanization is predicated on complex, increasingly coupled infrastructure systems, and energy use continues to be largely met from fossil fuels. Until energy infrastructures evolve away from carbon-based fuels, GHG emissions are critically tied to the urbanization process. Further complicating the challenge of decoupling urban growth from GHG emissions are lock-in effects and interdependencies. This paper synthesizes state-of-the-art thinking for transportation, fuels, buildings, water, electricity, and waste systems and finds that GHG emissions assessments tend to view these systems as static and isolated from social and institutional systems. Despite significant understanding of methods and technologies for reducing infrastructure-related GHG emissions, physical, institutional, and cultural constraints continue to work against us, pointing to knowledge gaps that must be addressed. This paper identifies three challenge themes to improve our understanding of the role of infrastructure and technologies in urbanization processes and position these increasingly complex systems for low-carbon growth. The challenges emphasize how we can reimagine the role of infrastructure in the future and how people, institutions, and ecological systems interface with infrastructure.

  4. Complex Dynamics of the Power Transmission Grid (and other Critical Infrastructures)

    NASA Astrophysics Data System (ADS)

    Newman, David

    2015-03-01

    Our modern societies depend crucially on a web of complex critical infrastructures such as power transmission networks, communication systems, transportation networks and many others. These infrastructure systems display a great number of the characteristic properties of complex systems. Important among these characteristics, they exhibit infrequent large cascading failures that often obey a power law distribution in their probability versus size. This power law behavior suggests that conventional risk analysis does not apply to these systems. It is thought that much of this behavior comes from the dynamical evolution of the system as it ages, is repaired, upgraded, and as the operational rules evolve with human decision making playing an important role in the dynamics. In this talk, infrastructure systems as complex dynamical systems will be introduced and some of their properties explored. The majority of the talk will then be focused on the electric power transmission grid though many of the results can be easily applied to other infrastructures. General properties of the grid will be discussed and results from a dynamical complex systems power transmission model will be compared with real world data. Then we will look at a variety of uses of this type of model. As examples, we will discuss the impact of size and network homogeneity on the grid robustness, the change in risk of failure as generation mix (more distributed vs centralized for example) changes, as well as the effect of operational changes such as the changing the operational risk aversion or grid upgrade strategies. One of the important outcomes from this work is the realization that ``improvements'' in the system components and operational efficiency do not always improve the system robustness, and can in fact greatly increase the risk, when measured as a risk of large failure.

  5. Engineering Infrastructures: Problems of Safety and Security in the Russian Federation

    NASA Astrophysics Data System (ADS)

    Makhutov, Nikolay A.; Reznikov, Dmitry O.; Petrov, Vitaly P.

    Modern society cannot exist without stable and reliable engineering infrastructures (EI), whose operation is vital for any national economy. These infrastructures include energy, transportation, water and gas supply systems, telecommunication and cyber systems, etc. Their performance is commensurate with storing and processing huge amounts of information, energy and hazardous substances. Ageing infrastructures are deteriorating — with operating conditions declining from normal to emergency and catastrophic. The complexity of engineering infrastructures and their interdependence with other technical systems makes them vulnerable to emergency situations triggered by natural and manmade catastrophes or terrorist attacks.

  6. The Emergence of Dominant Design(s) in Large Scale Cyber-Infrastructure Systems

    ERIC Educational Resources Information Center

    Diamanti, Eirini Ilana

    2012-01-01

    Cyber-infrastructure systems are integrated large-scale IT systems designed with the goal of transforming scientific practice by enabling multi-disciplinary, cross-institutional collaboration. Their large scale and socio-technical complexity make design decisions for their underlying architecture practically irreversible. Drawing on three…

  7. UNH Data Cooperative: A Cyber Infrastructure for Earth System Studies

    NASA Astrophysics Data System (ADS)

    Braswell, B. H.; Fekete, B. M.; Prusevich, A.; Gliden, S.; Magill, A.; Vorosmarty, C. J.

    2007-12-01

    Earth system scientists and managers have a continuously growing demand for a wide array of earth observations derived from various data sources including (a) modern satellite retrievals, (b) "in-situ" records, (c) various simulation outputs, and (d) assimilated data products combining model results with observational records. The sheer quantity of data, and formatting inconsistencies make it difficult for users to take full advantage of this important information resource. Thus the system could benefit from a thorough retooling of our current data processing procedures and infrastructure. Emerging technologies, like OPeNDAP and OGC map services, open standard data formats (NetCDF, HDF) data cataloging systems (NASA-Echo, Global Change Master Directory, etc.) are providing the basis for a new approach in data management and processing, where web- services are increasingly designed to serve computer-to-computer communications without human interactions and complex analysis can be carried out over distributed computer resources interconnected via cyber infrastructure. The UNH Earth System Data Collaborative is designed to utilize the aforementioned emerging web technologies to offer new means of access to earth system data. While the UNH Data Collaborative serves a wide array of data ranging from weather station data (Climate Portal) to ocean buoy records and ship tracks (Portsmouth Harbor Initiative) to land cover characteristics, etc. the underlaying data architecture shares common components for data mining and data dissemination via web-services. Perhaps the most unique element of the UNH Data Cooperative's IT infrastructure is its prototype modeling environment for regional ecosystem surveillance over the Northeast corridor, which allows the integration of complex earth system model components with the Cooperative's data services. While the complexity of the IT infrastructure to perform complex computations is continuously increasing, scientists are often forced to spend considerable amount of time to solve basic data management and preprocessing tasks and deal with low level computational design problems like parallelization of model codes. Our modeling infrastructure is designed to take care the bulk of the common tasks found in complex earth system models like I/O handling, computational domain and time management, parallel execution of the modeling tasks, etc. The modeling infrastructure allows scientists to focus on the numerical implementation of the physical processes on a single computational objects(typically grid cells) while the framework takes care of the preprocessing of input data, establishing of the data exchange between computation objects and the execution of the science code. In our presentation, we will discuss the key concepts of our modeling infrastructure. We will demonstrate integration of our modeling framework with data services offered by the UNH Earth System Data Collaborative via web interfaces. We will layout the road map to turn our prototype modeling environment into a truly community framework for wide range of earth system scientists and environmental managers.

  8. Safety and operations of hydrogen fuel infrastructure in northern climates : a collaborative complex systems approach.

    DOT National Transportation Integrated Search

    2010-10-07

    "This project examined the safety and operation of hydrogen (H2) fueling system infrastructure in : northern climates. A multidisciplinary team lead by the University of Vermont (UVM), : combined with investigators from Zhejiang and Tsinghua Universi...

  9. Editorial [Special issue on software defined networks and infrastructures, network function virtualisation, autonomous systems and network management

    DOE PAGES

    Biswas, Amitava; Liu, Chen; Monga, Inder; ...

    2016-01-01

    For last few years, there has been a tremendous growth in data traffic due to high adoption rate of mobile devices and cloud computing. Internet of things (IoT) will stimulate even further growth. This is increasing scale and complexity of telecom/internet service provider (SP) and enterprise data centre (DC) compute and network infrastructures. As a result, managing these large network-compute converged infrastructures is becoming complex and cumbersome. To cope up, network and DC operators are trying to automate network and system operations, administrations and management (OAM) functions. OAM includes all non-functional mechanisms which keep the network running.

  10. Infrastructure resiliency : a risk-based framework

    DOT National Transportation Integrated Search

    2013-06-26

    We are living in a world of escalating risks. Globalization and spiraling infrastructure interdependencies have created complex and interlinked systems that generate many benefits but also significant risks. High-impact disruptions whether caused...

  11. Complex Failure Forewarning System - DHS Conference Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain, aging bridges, is used to explain the Complex Structure Failure Forewarning System. We discuss the workings ofmore » such a system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less

  12. Evaluating the Benefits of Adaptation of Critical Infrastructures to Hydrometeorological Risks.

    PubMed

    Thacker, Scott; Kelly, Scott; Pant, Raghav; Hall, Jim W

    2018-01-01

    Infrastructure adaptation measures provide a practical way to reduce the risk from extreme hydrometeorological hazards, such as floods and windstorms. The benefit of adapting infrastructure assets is evaluated as the reduction in risk relative to the "do nothing" case. However, evaluating the full benefits of risk reduction is challenging because of the complexity of the systems, the scarcity of data, and the uncertainty of future climatic changes. We address this challenge by integrating methods from the study of climate adaptation, infrastructure systems, and complex networks. In doing so, we outline an infrastructure risk assessment that incorporates interdependence, user demands, and potential failure-related economic losses. Individual infrastructure assets are intersected with probabilistic hazard maps to calculate expected annual damages. Protection measure costs are integrated to calculate risk reduction and associated discounted benefits, which are used to explore the business case for investment in adaptation. A demonstration of the methodology is provided for flood protection of major electricity substations in England and Wales. We conclude that the ongoing adaptation program for major electricity assets is highly cost beneficial. © 2017 Society for Risk Analysis.

  13. The Resilient Infrastructure Initiative

    DOE PAGES

    Clifford, Megan

    2016-10-01

    Infrastructure is, by design, largely unnoticed until it breaks down and services fail. This includes water supplies, gas pipelines, bridges and dams, phone lines and cell towers, roads and culverts, railways, and the electric grid—all of the complex systems that keep our societies and economies running. Climate change, population growth, increased urbanization, system aging, and outdated design standards stress existing infrastructure and its ability to satisfy the rapidly changing demands from users. Here, the resilience of both physical and cyber infrastructure systems, however, is critical to a community as it prepares for, responds to, and recovers from a disaster, whethermore » natural or man-made.« less

  14. Resilience in social insect infrastructure systems

    PubMed Central

    2016-01-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. PMID:26962030

  15. Assessment Systems and Data Management in Colleges of Education: An Examination of Systems and Infrastructure

    ERIC Educational Resources Information Center

    Haughton, Noela A.; Keil, Virginia L.

    2009-01-01

    The College of Education Assessment Infrastructure Survey was developed and administered to 1011 institutions over a twelve-month period ending April 2007. The survey examined the capacity of university-based teacher preparation programs to respond to the growing and increasingly complex data management requirements that accompanies assessment and…

  16. Strategic behaviors and governance challenges in social-ecological systems

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, Rachata; Anderies, John M.

    2017-08-01

    The resource management and environmental policy literature focuses on devising regulations and incentive structures to achieve desirable goals. It often presumes the existence of public infrastructure that actualizes these incentives and regulations through a process loosely referred to as `governance.' In many cases, it is not clear if and how such governance infrastructure can be created and supported. Here, we take a complex systems view in which `governance' is an emergent phenomenon generated by interactions between social, economic, and environmental (both built and natural) factors. We present a framework and formal stylized model to explore under what circumstances stable governance structures may emerge endogenously in coupled infrastructure systems comprising shared natural, social, and built infrastructures of which social-ecological systems are specific examples. The model allows us to derive general conditions for a sustainable coupled infrastructure system in which critical infrastructure (e.g., canals) is provided by a governing entity that enables resource users (e.g., farmers) to produce outputs from natural infrastructure (e.g., water) to meet their needs while supporting the governing entity.

  17. Predicting the behavior of techno-social systems.

    PubMed

    Vespignani, Alessandro

    2009-07-24

    We live in an increasingly interconnected world of techno-social systems, in which infrastructures composed of different technological layers are interoperating within the social component that drives their use and development. Examples are provided by the Internet, the World Wide Web, WiFi communication technologies, and transportation and mobility infrastructures. The multiscale nature and complexity of these networks are crucial features in understanding and managing the networks. The accessibility of new data and the advances in the theory and modeling of complex networks are providing an integrated framework that brings us closer to achieving true predictive power of the behavior of techno-social systems.

  18. A Pub/Sub Message Distribution Architecture for Disruption Tolerant Networks

    NASA Astrophysics Data System (ADS)

    Carrilho, Sergio; Esaki, Hiroshi

    Access to information is taken for granted in urban areas covered by a robust communication infrastructure. Nevertheless most of the areas in the world, are not covered by such infrastructures. We propose a DTN publish and subscribe system called Hikari, which uses nodes' mobility in order to distribute messages without using a robust infrastructure. The area of Disruption/Delay Tolerant Networks (DTN) focuses on providing connectivity to locations separated by networks with disruptions and delays. The Hikari system does not use node identifiers for message forwarding thus eliminating the complexity of routing associated with many forwarding schemes in DTN. Hikari uses nodes paths' information, advertised by special nodes in the system or predicted by the system itself, for optimizing the message dissemination process. We have used the Paris subway system, due to it's complexity, to validate Hikari and to analyze it's performance. We have shown that Hikari achieves a superior deliver rate while keeping redundant messages in the system low, which is ideal when using devices with limited resources for message dissemination.

  19. Internet-enabled collaborative agent-based supply chains

    NASA Astrophysics Data System (ADS)

    Shen, Weiming; Kremer, Rob; Norrie, Douglas H.

    2000-12-01

    This paper presents some results of our recent research work related to the development of a new Collaborative Agent System Architecture (CASA) and an Infrastructure for Collaborative Agent Systems (ICAS). Initially being proposed as a general architecture for Internet based collaborative agent systems (particularly complex industrial collaborative agent systems), the proposed architecture is very suitable for managing the Internet enabled complex supply chain for a large manufacturing enterprise. The general collaborative agent system architecture with the basic communication and cooperation services, domain independent components, prototypes and mechanisms are described. Benefits of implementing Internet enabled supply chains with the proposed infrastructure are discussed. A case study on Internet enabled supply chain management is presented.

  20. Risk assessment of sewer condition using artificial intelligence tools: application to the SANEST sewer system.

    PubMed

    Sousa, V; Matos, J P; Almeida, N; Saldanha Matos, J

    2014-01-01

    Operation, maintenance and rehabilitation comprise the main concerns of wastewater infrastructure asset management. Given the nature of the service provided by a wastewater system and the characteristics of the supporting infrastructure, technical issues are relevant to support asset management decisions. In particular, in densely urbanized areas served by large, complex and aging sewer networks, the sustainability of the infrastructures largely depends on the implementation of an efficient asset management system. The efficiency of such a system may be enhanced with technical decision support tools. This paper describes the role of artificial intelligence tools such as artificial neural networks and support vector machines for assisting the planning of operation and maintenance activities of wastewater infrastructures. A case study of the application of this type of tool to the wastewater infrastructures of Sistema de Saneamento da Costa do Estoril is presented.

  1. Resilience in social insect infrastructure systems.

    PubMed

    Middleton, Eliza J T; Latty, Tanya

    2016-03-01

    Both human and insect societies depend on complex and highly coordinated infrastructure systems, such as communication networks, supply chains and transportation networks. Like human-designed infrastructure systems, those of social insects are regularly subject to disruptions such as natural disasters, blockages or breaks in the transportation network, fluctuations in supply and/or demand, outbreaks of disease and loss of individuals. Unlike human-designed systems, there is no deliberate planning or centralized control system; rather, individual insects make simple decisions based on local information. How do these highly decentralized, leaderless systems deal with disruption? What factors make a social insect system resilient, and which factors lead to its collapse? In this review, we bring together literature on resilience in three key social insect infrastructure systems: transportation networks, supply chains and communication networks. We describe how systems differentially invest in three pathways to resilience: resistance, redirection or reconstruction. We suggest that investment in particular resistance pathways is related to the severity and frequency of disturbance. In the final section, we lay out a prospectus for future research. Human infrastructure networks are rapidly becoming decentralized and interconnected; indeed, more like social insect infrastructures. Human infrastructure management might therefore learn from social insect researchers, who can in turn make use of the mature analytical and simulation tools developed for the study of human infrastructure resilience. © 2016 The Author(s).

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clifford, Megan

    Infrastructure is, by design, largely unnoticed until it breaks down and services fail. This includes water supplies, gas pipelines, bridges and dams, phone lines and cell towers, roads and culverts, railways, and the electric grid—all of the complex systems that keep our societies and economies running. Climate change, population growth, increased urbanization, system aging, and outdated design standards stress existing infrastructure and its ability to satisfy the rapidly changing demands from users. Here, the resilience of both physical and cyber infrastructure systems, however, is critical to a community as it prepares for, responds to, and recovers from a disaster, whethermore » natural or man-made.« less

  3. Scalable collaborative risk management technology for complex critical systems

    NASA Technical Reports Server (NTRS)

    Campbell, Scott; Torgerson, Leigh; Burleigh, Scott; Feather, Martin S.; Kiper, James D.

    2004-01-01

    We describe here our project and plans to develop methods, software tools, and infrastructure tools to address challenges relating to geographically distributed software development. Specifically, this work is creating an infrastructure that supports applications working over distributed geographical and organizational domains and is using this infrastructure to develop a tool that supports project development using risk management and analysis techniques where the participants are not collocated.

  4. Utilizing Semantic Big Data for realizing a National-scale Infrastructure Vulnerability Analysis System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chinthavali, Supriya; Shankar, Mallikarjun

    Critical Infrastructure systems(CIs) such as energy, water, transportation and communication are highly interconnected and mutually dependent in complex ways. Robust modeling of CIs interconnections is crucial to identify vulnerabilities in the CIs. We present here a national-scale Infrastructure Vulnerability Analysis System (IVAS) vision leveraging Se- mantic Big Data (SBD) tools, Big Data, and Geographical Information Systems (GIS) tools. We survey existing ap- proaches on vulnerability analysis of critical infrastructures and discuss relevant systems and tools aligned with our vi- sion. Next, we present a generic system architecture and discuss challenges including: (1) Constructing and manag- ing a CI network-of-networks graph,more » (2) Performing analytic operations at scale, and (3) Interactive visualization of ana- lytic output to generate meaningful insights. We argue that this architecture acts as a baseline to realize a national-scale network based vulnerability analysis system.« less

  5. The Challenge of Space Infrastructure Construction

    NASA Technical Reports Server (NTRS)

    Howe, A. Scott; Colombano, Silvano P.

    2010-01-01

    This paper reviews the range of technologies that will contribute to the construction of space infrastructure that will both enable and, in some cases, provide the motivation for space exploration. Five parts are addressed: Managing complexity, robotics based construction, materials acquisition, manufacturing, and self-sustaining systems.

  6. Integrating a geographic information system, a scientific visualization system and an orographic precipitation model

    USGS Publications Warehouse

    Hay, L.; Knapp, L.

    1996-01-01

    Investigating natural, potential, and man-induced impacts on hydrological systems commonly requires complex modelling with overlapping data requirements, and massive amounts of one- to four-dimensional data at multiple scales and formats. Given the complexity of most hydrological studies, the requisite software infrastructure must incorporate many components including simulation modelling, spatial analysis and flexible, intuitive displays. There is a general requirement for a set of capabilities to support scientific analysis which, at this time, can only come from an integration of several software components. Integration of geographic information systems (GISs) and scientific visualization systems (SVSs) is a powerful technique for developing and analysing complex models. This paper describes the integration of an orographic precipitation model, a GIS and a SVS. The combination of these individual components provides a robust infrastructure which allows the scientist to work with the full dimensionality of the data and to examine the data in a more intuitive manner.

  7. Fragmented Flows: Water Supply in Los Angeles County

    NASA Astrophysics Data System (ADS)

    Pincetl, Stephanie; Porse, Erik; Cheng, Deborah

    2016-08-01

    In the Los Angeles metropolitan region, nearly 100 public and private entities are formally involved in the management and distribution of potable water—a legacy rooted in fragmented urban growth in the area and late 19th century convictions about local control of services. Yet, while policy debates focus on new forms of infrastructure, restructured pricing mechanisms, and other technical fixes, the complex institutional architecture of the present system has received little attention. In this paper, we trace the development of this system, describe its interconnections and disjunctures, and demonstrate the invisibility of water infrastructure in LA in multiple ways—through mapping, statistical analysis, and historical texts. Perverse blessings of past water abundance led to a complex, but less than resilient, system with users accustomed to cheap, easily accessible water. We describe the lack of transparency and accountability in the current system, as well as its shortcomings in building needed new infrastructure and instituting new water rate structures. Adapting to increasing water scarcity and likely droughts must include addressing the architecture of water management.

  8. Service Modeling Language Applied to Critical Infrastructure

    NASA Astrophysics Data System (ADS)

    Baldini, Gianmarco; Fovino, Igor Nai

    The modeling of dependencies in complex infrastructure systems is still a very difficult task. Many methodologies have been proposed, but a number of challenges still remain, including the definition of the right level of abstraction, the presence of different views on the same critical infrastructure and how to adequately represent the temporal evolution of systems. We propose a modeling methodology where dependencies are described in terms of the service offered by the critical infrastructure and its components. The model provides a clear separation between services and the underlying organizational and technical elements, which may change in time. The model uses the Service Modeling Language proposed by the W3 consortium for describing critical infrastructure in terms of interdependent services nodes including constraints, behavior, information flows, relations, rules and other features. Each service node is characterized by its technological, organizational and process components. The model is then applied to a real case of an ICT system for users authentication.

  9. Modeling complexity in engineered infrastructure system: Water distribution network as an example

    NASA Astrophysics Data System (ADS)

    Zeng, Fang; Li, Xiang; Li, Ke

    2017-02-01

    The complex topology and adaptive behavior of infrastructure systems are driven by both self-organization of the demand and rigid engineering solutions. Therefore, engineering complex systems requires a method balancing holism and reductionism. To model the growth of water distribution networks, a complex network model was developed following the combination of local optimization rules and engineering considerations. The demand node generation is dynamic and follows the scaling law of urban growth. The proposed model can generate a water distribution network (WDN) similar to reported real-world WDNs on some structural properties. Comparison with different modeling approaches indicates that a realistic demand node distribution and co-evolvement of demand node and network are important for the simulation of real complex networks. The simulation results indicate that the efficiency of water distribution networks is exponentially affected by the urban growth pattern. On the contrary, the improvement of efficiency by engineering optimization is limited and relatively insignificant. The redundancy and robustness, on another aspect, can be significantly improved through engineering methods.

  10. Evaluating Infrastructure Development in Complex Home Visiting Systems

    ERIC Educational Resources Information Center

    Hargreaves, Margaret; Cole, Russell; Coffee-Borden, Brandon; Paulsell, Diane; Boller, Kimberly

    2013-01-01

    In recent years, increased focus on the effectiveness and accountability of prevention and intervention programs has led to greater government funding for the implementation and spread of evidence-based health and human service delivery models. In particular, attention has been paid to programs that require significant infrastructure investment…

  11. A modular (almost) automatic set-up for elastic multi-tenants cloud (micro)infrastructures

    NASA Astrophysics Data System (ADS)

    Amoroso, A.; Astorino, F.; Bagnasco, S.; Balashov, N. A.; Bianchi, F.; Destefanis, M.; Lusso, S.; Maggiora, M.; Pellegrino, J.; Yan, L.; Yan, T.; Zhang, X.; Zhao, X.

    2017-10-01

    An auto-installing tool on an usb drive can allow for a quick and easy automatic deployment of OpenNebula-based cloud infrastructures remotely managed by a central VMDIRAC instance. A single team, in the main site of an HEP Collaboration or elsewhere, can manage and run a relatively large network of federated (micro-)cloud infrastructures, making an highly dynamic and elastic use of computing resources. Exploiting such an approach can lead to modular systems of cloud-bursting infrastructures addressing complex real-life scenarios.

  12. QMU as an approach to strengthening the predictive capabilities of complex models.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gray, Genetha Anne.; Boggs, Paul T.; Grace, Matthew D.

    2010-09-01

    Complex systems are made up of multiple interdependent parts, and the behavior of the entire system cannot always be directly inferred from the behavior of the individual parts. They are nonlinear and system responses are not necessarily additive. Examples of complex systems include energy, cyber and telecommunication infrastructures, human and animal social structures, and biological structures such as cells. To meet the goals of infrastructure development, maintenance, and protection for cyber-related complex systems, novel modeling and simulation technology is needed. Sandia has shown success using M&S in the nuclear weapons (NW) program. However, complex systems represent a significant challenge andmore » relative departure from the classical M&S exercises, and many of the scientific and mathematical M&S processes must be re-envisioned. Specifically, in the NW program, requirements and acceptable margins for performance, resilience, and security are well-defined and given quantitatively from the start. The Quantification of Margins and Uncertainties (QMU) process helps to assess whether or not these safety, reliability and performance requirements have been met after a system has been developed. In this sense, QMU is used as a sort of check that requirements have been met once the development process is completed. In contrast, performance requirements and margins may not have been defined a priori for many complex systems, (i.e. the Internet, electrical distribution grids, etc.), particularly not in quantitative terms. This project addresses this fundamental difference by investigating the use of QMU at the start of the design process for complex systems. Three major tasks were completed. First, the characteristics of the cyber infrastructure problem were collected and considered in the context of QMU-based tools. Second, UQ methodologies for the quantification of model discrepancies were considered in the context of statistical models of cyber activity. Third, Bayesian methods for optimal testing in the QMU framework were developed. This completion of this project represent an increased understanding of how to apply and use the QMU process as a means for improving model predictions of the behavior of complex systems. 4« less

  13. @neurIST: infrastructure for advanced disease management through integration of heterogeneous data, computing, and complex processing services.

    PubMed

    Benkner, Siegfried; Arbona, Antonio; Berti, Guntram; Chiarini, Alessandro; Dunlop, Robert; Engelbrecht, Gerhard; Frangi, Alejandro F; Friedrich, Christoph M; Hanser, Susanne; Hasselmeyer, Peer; Hose, Rod D; Iavindrasana, Jimison; Köhler, Martin; Iacono, Luigi Lo; Lonsdale, Guy; Meyer, Rodolphe; Moore, Bob; Rajasekaran, Hariharan; Summers, Paul E; Wöhrer, Alexander; Wood, Steven

    2010-11-01

    The increasing volume of data describing human disease processes and the growing complexity of understanding, managing, and sharing such data presents a huge challenge for clinicians and medical researchers. This paper presents the @neurIST system, which provides an infrastructure for biomedical research while aiding clinical care, by bringing together heterogeneous data and complex processing and computing services. Although @neurIST targets the investigation and treatment of cerebral aneurysms, the system's architecture is generic enough that it could be adapted to the treatment of other diseases. Innovations in @neurIST include confining the patient data pertaining to aneurysms inside a single environment that offers clinicians the tools to analyze and interpret patient data and make use of knowledge-based guidance in planning their treatment. Medical researchers gain access to a critical mass of aneurysm related data due to the system's ability to federate distributed information sources. A semantically mediated grid infrastructure ensures that both clinicians and researchers are able to seamlessly access and work on data that is distributed across multiple sites in a secure way in addition to providing computing resources on demand for performing computationally intensive simulations for treatment planning and research.

  14. The CMS Tier0 goes cloud and grid for LHC Run 2

    DOE PAGES

    Hufnagel, Dirk

    2015-12-23

    In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threadedmore » framework to deal with the increased event complexity and to ensure efficient use of the resources. Furthermore, this contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.« less

  15. The CMS TierO goes Cloud and Grid for LHC Run 2

    NASA Astrophysics Data System (ADS)

    Hufnagel, Dirk

    2015-12-01

    In 2015, CMS will embark on a new era of collecting LHC collisions at unprecedented rates and complexity. This will put a tremendous stress on our computing systems. Prompt Processing of the raw data by the Tier-0 infrastructure will no longer be constrained to CERN alone due to the significantly increased resource requirements. In LHC Run 2, we will need to operate it as a distributed system utilizing both the CERN Cloud-based Agile Infrastructure and a significant fraction of the CMS Tier-1 Grid resources. In another big change for LHC Run 2, we will process all data using the multi-threaded framework to deal with the increased event complexity and to ensure efficient use of the resources. This contribution will cover the evolution of the Tier-0 infrastructure and present scale testing results and experiences from the first data taking in 2015.

  16. Complex Systems Analysis | Energy Analysis | NREL

    Science.gov Websites

    Generators, Transmission Infrastructure. A Power Plant drawing is above the text boxes. Solar Arrays drawing Flexibility and Storage. An Industry plant drawing and a house with the label Monitor Energy Use is connected to Transmission Infrastructure. A Geothermal Power Plant drawing and a Rooftop PV drawing is connect

  17. Outlook for grid service technologies within the @neurIST eHealth environment.

    PubMed

    Arbona, A; Benkner, S; Fingberg, J; Frangi, A F; Hofmann, M; Hose, D R; Lonsdale, G; Ruefenacht, D; Viceconti, M

    2006-01-01

    The aim of the @neurIST project is to create an IT infrastructure for the management of all processes linked to research, diagnosis and treatment development for complex and multi-factorial diseases. The IT infrastructure will be developed for one such disease, cerebral aneurysm and subarachnoid haemorrhage, but its core technologies will be transferable to meet the needs of other medical areas. Since the IT infrastructure for @neurIST will need to encompass data repositories, computational analysis services and information systems handling multi-scale, multi-modal information at distributed sites, the natural basis for the IT infrastructure is a Grid Service middleware. The project will adopt a service-oriented architecture because it aims to provide a system addressing the needs of medical researchers, clinicians and health care specialists (and their IT providers/systems) and medical supplier/consulting industries.

  18. Distinctions between intelligent manufactured and constructed systems and a new discipline for intelligent infrastructure hypersystems

    NASA Astrophysics Data System (ADS)

    Aktan, A. Emin

    2003-08-01

    Although the interconnected systems nature of the infrastructures, and the complexity of interactions between their engineered, socio-technical and natural constituents have been recognized for some time, the principles of effectively operating, protecting and preserving such systems by taking full advantage of "modeling, simulations, optimization, control and decision making" tools developed by the systems engineering and operations research community have not been adequately studied or discussed by many engineers including the writer. Differential and linear equation systems, numerical and finite element modeling techniques, statistical and probabilistic representations are universal, however, different disciplines have developed their distinct approaches to conceptualizing, idealizing and modeling the systems they commonly deal with. The challenge is in adapting and integrating deterministic and stochastic, geometric and numerical, physics-based and "soft (data-or-knowledge based)", macroscopic or microscopic models developed by various disciplines for simulating infrastructure systems. There is a lot to be learned by studying how different disciplines have studied, improved and optimized the systems relating to various processes and products in their domains. Operations research has become a fifty-year old discipline addressing complex systems problems. Its mathematical tools range from linear programming to decision processes and game theory. These tools are used extensively in management and finance, as well as by industrial engineers for optimizing and quality control. Progressive civil engineering academic programs have adopted "systems engineering" as a focal area. However, most of the civil engineering systems programs remain focused on constructing and analyzing highly idealized, often generic models relating to the planning or operation of transportation, water or waste systems, maintenance management, waste management or general infrastructure hazards risk management. We further note that in the last decade there have been efforts for "agent-based" modeling of synthetic infrastructure systems by taking advantage of supercomputers at various DOE Laboratories. However, whether there is any similitude between such synthetic and actual systems needs investigating further.

  19. a System Dynamics Model to Study the Importance of Infrastructure Facilities on Quality of Primary Education System in Developing Countries

    NASA Astrophysics Data System (ADS)

    Pedamallu, Chandra Sekhar; Ozdamar, Linet; Weber, Gerhard-Wilhelm; Kropat, Erik

    2010-06-01

    The system dynamics approach is a holistic way of solving problems in real-time scenarios. This is a powerful methodology and computer simulation modeling technique for framing, analyzing, and discussing complex issues and problems. System dynamics modeling and simulation is often the background of a systemic thinking approach and has become a management and organizational development paradigm. This paper proposes a system dynamics approach for study the importance of infrastructure facilities on quality of primary education system in developing nations. The model is proposed to be built using the Cross Impact Analysis (CIA) method of relating entities and attributes relevant to the primary education system in any given community. We offer a survey to build the cross-impact correlation matrix and, hence, to better understand the primary education system and importance of infrastructural facilities on quality of primary education. The resulting model enables us to predict the effects of infrastructural facilities on the access of primary education by the community. This may support policy makers to take more effective actions in campaigns.

  20. New public management in Iran's health complex: a management framework for primary health care system.

    PubMed

    Tabrizi, Jafar Sadegh; HaghGoshayie, Elaheh; Doshmangir, Leila; Yousefi, Mahmood

    2018-05-01

    New public management (NPM) was developed as a management reform to improve the efficiency and effectiveness in public organizations, especially in health sector. Using the features of private sector management, the managers of health organizations may try to implement the elements of NPM with the hope to improve the performance of their systems.AimsOur aim in the present study was to identify the elements and infrastructures suitable for implementing NPM in the Iranian health complex. In this qualitative study with conventional content analysis approach, we tried to explore the NPM elements and infrastructures in Iranian public health sector. A series of semi-structured interviews (n=48) were conducted in 2016 with a managers in public and private health complex. Three focus group discussions with nine faculty members were also conducted. A data collection form was used to collect the demographic characteristics and perspectives of the participants.FindingsFrom the perspective of managers, managerialism, decentralization, using market mechanism, performance management, customer orientation and performance budgeting were the main elements of NPM in the Iranian context. The most important infrastructures for implementing this reform were as follows: education and training, information technology, the proper use of human resources, decision support systems, top management commitment, organizational culture, flexibility of rules, rehabilitating of the aging infrastructures, and expanding the coverage of services. The NPM was generally identified to be an effective replacement for the traditional administration method. These reforms may be helpful in strengthening the public health complex and the management capacity, as well. NPM also seems to be useful in interacting the public health sector with the private sector in terms of personnel and resources, performance, reward structure, and methods of doing business.

  1. Decision analysis and risk models for land development affecting infrastructure systems.

    PubMed

    Thekdi, Shital A; Lambert, James H

    2012-07-01

    Coordination and layering of models to identify risks in complex systems such as large-scale infrastructure of energy, water, and transportation is of current interest across application domains. Such infrastructures are increasingly vulnerable to adjacent commercial and residential land development. Land development can compromise the performance of essential infrastructure systems and increase the costs of maintaining or increasing performance. A risk-informed approach to this topic would be useful to avoid surprise, regret, and the need for costly remedies. This article develops a layering and coordination of models for risk management of land development affecting infrastructure systems. The layers are: system identification, expert elicitation, predictive modeling, comparison of investment alternatives, and implications of current decisions for future options. The modeling layers share a focus on observable factors that most contribute to volatility of land development and land use. The relevant data and expert evidence include current and forecasted growth in population and employment, conservation and preservation rules, land topography and geometries, real estate assessments, market and economic conditions, and other factors. The approach integrates to a decision framework of strategic considerations based on assessing risk, cost, and opportunity in order to prioritize needs and potential remedies that mitigate impacts of land development to the infrastructure systems. The approach is demonstrated for a 5,700-mile multimodal transportation system adjacent to 60,000 tracts of potential land development. © 2011 Society for Risk Analysis.

  2. The Information Technology Infrastructure for the Translational Genomics Core and the Partners Biobank at Partners Personalized Medicine

    PubMed Central

    Boutin, Natalie; Holzbach, Ana; Mahanta, Lisa; Aldama, Jackie; Cerretani, Xander; Embree, Kevin; Leon, Irene; Rathi, Neeta; Vickers, Matilde

    2016-01-01

    The Biobank and Translational Genomics core at Partners Personalized Medicine requires robust software and hardware. This Information Technology (IT) infrastructure enables the storage and transfer of large amounts of data, drives efficiencies in the laboratory, maintains data integrity from the time of consent to the time that genomic data is distributed for research, and enables the management of complex genetic data. Here, we describe the functional components of the research IT infrastructure at Partners Personalized Medicine and how they integrate with existing clinical and research systems, review some of the ways in which this IT infrastructure maintains data integrity and security, and discuss some of the challenges inherent to building and maintaining such infrastructure. PMID:26805892

  3. Digital divide, biometeorological data infrastructures and human vulnerability definition

    NASA Astrophysics Data System (ADS)

    Fdez-Arroyabe, Pablo; Lecha Estela, Luis; Schimt, Falko

    2018-05-01

    The design and implementation of any climate-related health service, nowadays, imply avoiding the digital divide as it means having access and being able to use complex technological devices, massive meteorological data, user's geographic location and biophysical information. This article presents the co-creation, in detail, of a biometeorological data infrastructure, which is a complex platform formed by multiple components: a mainframe, a biometeorological model called Pronbiomet, a relational database management system, data procedures, communication protocols, different software packages, users, datasets and a mobile application. The system produces four daily world maps of the partial density of the atmospheric oxygen and collects user feedback on their health condition. The infrastructure is shown to be a useful tool to delineate individual vulnerability to meteorological changes as one key factor in the definition of any biometeorological risk. This technological approach to study weather-related health impacts is the initial seed for the definition of biometeorological profiles of persons, and for the future development of customized climate services for users in the near future.

  4. Digital divide, biometeorological data infrastructures and human vulnerability definition.

    PubMed

    Fdez-Arroyabe, Pablo; Lecha Estela, Luis; Schimt, Falko

    2018-05-01

    The design and implementation of any climate-related health service, nowadays, imply avoiding the digital divide as it means having access and being able to use complex technological devices, massive meteorological data, user's geographic location and biophysical information. This article presents the co-creation, in detail, of a biometeorological data infrastructure, which is a complex platform formed by multiple components: a mainframe, a biometeorological model called Pronbiomet, a relational database management system, data procedures, communication protocols, different software packages, users, datasets and a mobile application. The system produces four daily world maps of the partial density of the atmospheric oxygen and collects user feedback on their health condition. The infrastructure is shown to be a useful tool to delineate individual vulnerability to meteorological changes as one key factor in the definition of any biometeorological risk. This technological approach to study weather-related health impacts is the initial seed for the definition of biometeorological profiles of persons, and for the future development of customized climate services for users in the near future.

  5. Digital divide, biometeorological data infrastructures and human vulnerability definition

    NASA Astrophysics Data System (ADS)

    Fdez-Arroyabe, Pablo; Lecha Estela, Luis; Schimt, Falko

    2017-06-01

    The design and implementation of any climate-related health service, nowadays, imply avoiding the digital divide as it means having access and being able to use complex technological devices, massive meteorological data, user's geographic location and biophysical information. This article presents the co-creation, in detail, of a biometeorological data infrastructure, which is a complex platform formed by multiple components: a mainframe, a biometeorological model called Pronbiomet, a relational database management system, data procedures, communication protocols, different software packages, users, datasets and a mobile application. The system produces four daily world maps of the partial density of the atmospheric oxygen and collects user feedback on their health condition. The infrastructure is shown to be a useful tool to delineate individual vulnerability to meteorological changes as one key factor in the definition of any biometeorological risk. This technological approach to study weather-related health impacts is the initial seed for the definition of biometeorological profiles of persons, and for the future development of customized climate services for users in the near future.

  6. A Telecommunications Industry Primer: A Systems Model.

    ERIC Educational Resources Information Center

    Obermier, Timothy R.; Tuttle, Ronald H.

    2003-01-01

    Describes the Telecommunications Systems Model to help technical educators and students understand the increasingly complex telecommunications infrastructure. Specifically looks at ownership and regulatory status, service providers, transport medium, network protocols, and end-user services. (JOW)

  7. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Melaina, W.; Heath, Garvin; Sandor, Debra

    2013-04-01

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect tomore » four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.« less

  8. Topological Methods for Design and Control of Adaptive Stochastic Complex Systems - to Meet the Challenges of Resilient Urban Infrastructure

    DTIC Science & Technology

    2017-03-24

    for Design and Control of Adaptive Stochastic Complex Systems John Baillieul∗ Contents 1 Executive Summary 2 2 Introduction and Issues to Be Addressed...difficult of real-world Systems-of-Systems challenges is the design and operational control of medical treatment networks that support forces operating...This report describes a brief research project on foundartional aspects of systems-of-systems design and operation. The overarching goal of the

  9. Towards integrative risk management and more resilient societies

    NASA Astrophysics Data System (ADS)

    Al-Khudhairy, D.; Axhausen, K.; Bishop, S.; Herrmann, H.; Hu, B.; Kröger, W.; Lewis, T.; MacIntosh, J.; Nowak, A.; Pickl, S.; Stauffacher, D.; Tan, E.

    2012-11-01

    Society depends decisively on the availability of infrastructure systems such as energy, telecommunication, transportation, banking and finance, health care and governmental and public administration. Even selective damages of one of these infrastructures may result in disruptions of governmental, industrial or public functions. Vulnerability of infrastructures therefore provides spectacular leverage for natural disasters as well as criminal and terrorist actions. Threats and risks are part of the technological, economical, and societal development. This article focuses on the development and characterization of an integrative risk-management which, from the perspective of "resilient systems", can be seen as an innovative and pro-active crisis management approach dealing with the increasing amount of complexity in societies in a comprehensive, agile and adaptive way.

  10. Grid computing technology for hydrological applications

    NASA Astrophysics Data System (ADS)

    Lecca, G.; Petitdidier, M.; Hluchy, L.; Ivanovic, M.; Kussul, N.; Ray, N.; Thieron, V.

    2011-06-01

    SummaryAdvances in e-Infrastructure promise to revolutionize sensing systems and the way in which data are collected and assimilated, and complex water systems are simulated and visualized. According to the EU Infrastructure 2010 work-programme, data and compute infrastructures and their underlying technologies, either oriented to tackle scientific challenges or complex problem solving in engineering, are expected to converge together into the so-called knowledge infrastructures, leading to a more effective research, education and innovation in the next decade and beyond. Grid technology is recognized as a fundamental component of e-Infrastructures. Nevertheless, this emerging paradigm highlights several topics, including data management, algorithm optimization, security, performance (speed, throughput, bandwidth, etc.), and scientific cooperation and collaboration issues that require further examination to fully exploit it and to better inform future research policies. The paper illustrates the results of six different surface and subsurface hydrology applications that have been deployed on the Grid. All the applications aim to answer to strong requirements from the Civil Society at large, relatively to natural and anthropogenic risks. Grid technology has been successfully tested to improve flood prediction, groundwater resources management and Black Sea hydrological survey, by providing large computing resources. It is also shown that Grid technology facilitates e-cooperation among partners by means of services for authentication and authorization, seamless access to distributed data sources, data protection and access right, and standardization.

  11. Importance of biometrics to addressing vulnerabilities of the U.S. infrastructure

    NASA Astrophysics Data System (ADS)

    Arndt, Craig M.; Hall, Nathaniel A.

    2004-08-01

    Human identification technologies are important threat countermeasures in minimizing select infrastructure vulnerabilities. Properly targeted countermeasures should be selected and integrated into an overall security solution based on disciplined analysis and modeling. Available data on infrastructure value, threat intelligence, and system vulnerabilities are carefully organized, analyzed and modeled. Prior to design and deployment of an effective countermeasure; the proper role and appropriateness of technology in addressing the overall set of vulnerabilities is established. Deployment of biometrics systems, as with other countermeasures, introduces potentially heightened vulnerabilities into the system. Heightened vulnerabilities may arise from both the newly introduced system complexities and an unfocused understanding of the set of vulnerabilities impacted by the new countermeasure. The countermeasure's own inherent vulnerabilities and those introduced by the system's integration with the existing system are analyzed and modeled to determine the overall vulnerability impact. The United States infrastructure is composed of government and private assets. The infrastructure is valued by their potential impact on several components: human physical safety, physical/information replacement/repair cost, potential contribution to future loss (criticality in weapons production), direct productivity output, national macro-economic output/productivity, and information integrity. These components must be considered in determining the overall impact of an infrastructure security breach. Cost/benefit analysis is then incorporated in the security technology deployment decision process. Overall security risks based on system vulnerabilities and threat intelligence determines areas of potential benefit. Biometric countermeasures are often considered when additional security at intended points of entry would minimize vulnerabilities.

  12. Regional Payment Systems Partnership action plan

    DOT National Transportation Integrated Search

    2000-09-25

    Development of an integrated regional payment infrastructure for the Washington, D.C. area will be a complex undertaking. Nevertheless the benefits of creating a seamless transportation system, the initial success of Smart Tag and SmarTrip and the bu...

  13. Forewarning of Failure in Complex Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Abercrombie, Robert K; Hively, Lee M; Prowell, Stacy J

    2011-01-01

    As the critical infrastructures of the United States have become more and more dependent on public and private networks, the potential for widespread national impact resulting from disruption or failure of these networks has also increased. Securing the nation s critical infrastructures requires protecting not only their physical systems but, just as important, the cyber portions of the systems on which they rely. A failure is inclusive of random events, design flaws, and instabilities caused by cyber (and/or physical) attack. One such domain is failure in critical equipment. A second is aging bridges. We discuss the workings of such amore » system in the context of the necessary sensors, command and control and data collection as well as the cyber security efforts that would support this system. Their application and the implications of this computing architecture are also discussed, with respect to our nation s aging infrastructure.« less

  14. Handling Emergency Management in [an] Object Oriented Modeling Environment

    NASA Technical Reports Server (NTRS)

    Tokgoz, Berna Eren; Cakir, Volkan; Gheorghe, Adrian V.

    2010-01-01

    It has been understood that protection of a nation from extreme disasters is a challenging task. Impacts of extreme disasters on a nation's critical infrastructures, economy and society could be devastating. A protection plan itself would not be sufficient when a disaster strikes. Hence, there is a need for a holistic approach to establish more resilient infrastructures to withstand extreme disasters. A resilient infrastructure can be defined as a system or facility that is able to withstand damage, but if affected, can be readily and cost-effectively restored. The key issue to establish resilient infrastructures is to incorporate existing protection plans with comprehensive preparedness actions to respond, recover and restore as quickly as possible, and to minimize extreme disaster impacts. Although national organizations will respond to a disaster, extreme disasters need to be handled mostly by local emergency management departments. Since emergency management departments have to deal with complex systems, they have to have a manageable plan and efficient organizational structures to coordinate all these systems. A strong organizational structure is the key in responding fast before and during disasters, and recovering quickly after disasters. In this study, the entire emergency management is viewed as an enterprise and modelled through enterprise management approach. Managing an enterprise or a large complex system is a very challenging task. It is critical for an enterprise to respond to challenges in a timely manner with quick decision making. This study addresses the problem of handling emergency management at regional level in an object oriented modelling environment developed by use of TopEase software. Emergency Operation Plan of the City of Hampton, Virginia, has been incorporated into TopEase for analysis. The methodology used in this study has been supported by a case study on critical infrastructure resiliency in Hampton Roads.

  15. Stochastic Coloured Petrinet Based Healthcare Infrastructure Interdependency Model

    NASA Astrophysics Data System (ADS)

    Nukavarapu, Nivedita; Durbha, Surya

    2016-06-01

    The Healthcare Critical Infrastructure (HCI) protects all sectors of the society from hazards such as terrorism, infectious disease outbreaks, and natural disasters. HCI plays a significant role in response and recovery across all other sectors in the event of a natural or manmade disaster. However, for its continuity of operations and service delivery HCI is dependent on other interdependent Critical Infrastructures (CI) such as Communications, Electric Supply, Emergency Services, Transportation Systems, and Water Supply System. During a mass casualty due to disasters such as floods, a major challenge that arises for the HCI is to respond to the crisis in a timely manner in an uncertain and variable environment. To address this issue the HCI should be disaster prepared, by fully understanding the complexities and interdependencies that exist in a hospital, emergency department or emergency response event. Modelling and simulation of a disaster scenario with these complexities would help in training and providing an opportunity for all the stakeholders to work together in a coordinated response to a disaster. The paper would present interdependencies related to HCI based on Stochastic Coloured Petri Nets (SCPN) modelling and simulation approach, given a flood scenario as the disaster which would disrupt the infrastructure nodes. The entire model would be integrated with Geographic information based decision support system to visualize the dynamic behaviour of the interdependency of the Healthcare and related CI network in a geographically based environment.

  16. Critical Infrastructure Interdependencies Assessment

    DOE PAGES

    Petit, Frederic; Verner, Duane

    2016-11-01

    Throughout the world there is strong recognition that critical infrastructure security and resilience needs to be improved. In the United States, the National Infrastructure Protection Plan (NIPP) provides the strategic vision to guide the national effort to manage risk to the Nation’s critical infrastructure.”1 The achievement of this vision is challenged by the complexity of critical infrastructure systems and their inherent interdependencies. The update to the NIPP presents an opportunity to advance the nation’s efforts to further understand and analyze interdependencies. Such an important undertaking requires the involvement of public and private sector stakeholders and the reinforcement of existing partnershipsmore » and collaborations within the U.S. Department of Homeland Security (DHS) and other Federal agencies, including national laboratories; State, local, tribal, and territorial governments; and nongovernmental organizations.« less

  17. THE EPA MULTIMEDIA INTEGRATED MODELING SYSTEM SOFTWARE SUITE

    EPA Science Inventory

    The U.S. EPA is developing a Multimedia Integrated Modeling System (MIMS) framework that will provide a software infrastructure or environment to support constructing, composing, executing, and evaluating complex modeling studies. The framework will include (1) common software ...

  18. Regional Payment Systems Partnership action plan : executive summary

    DOT National Transportation Integrated Search

    2000-09-25

    Development of an integrated regional payment infrastructure for the Washington, D.C. area will be a complex undertaking. Nevertheless the benefits of creating a seamless transportation system, the initial success of Smart Tag and SmarTrip and the bu...

  19. Designing a concept for an IT-infrastructure for an integrated research and treatment center.

    PubMed

    Stäubert, Sebastian; Winter, Alfred; Speer, Ronald; Löffler, Markus

    2010-01-01

    Healthcare and medical research in Germany are heading to more interconnected systems. New initiatives are funded by the German government to encourage the development of Integrated Research and Treatment Centers (IFB). Within an IFB new organizational structures and infrastructures for interdisciplinary, translational and trans-sectoral working relationship between existing rigid separated sectors are intended and needed. This paper describes how an IT-infrastructure of an IFB could look like, what major challenges have to be solved and what methods can be used to plan such a complex IT-infrastructure in the field of healthcare. By means of project management, system analyses, process models, 3LGM2-models and resource plans an appropriate concept with different views is created. This concept supports the information management in its enterprise architecture planning activities and implies a first step of implementing a connected healthcare and medical research platform.

  20. The Impact of a Carbapenem-Resistant Enterobacteriaceae Outbreak on Facilitating Development of a National Infrastructure for Infection Control in Israel.

    PubMed

    Schwaber, Mitchell J; Carmeli, Yehuda

    2017-11-29

    In 2006 the Israeli healthcare system faced an unprecedented outbreak of carbapenem-resistant Enterobacteriaceae, primarily involving KPC-producing Klebsiella pneumoniae clonal complex CC258. This public health crisis exposed major gaps in infection control. In response, Israel established a national infection control infrastructure. The steps taken to build this infrastructure and benefits realized from its creation are described here. © The Author 2017. Published by Oxford University Press for the Infectious Diseases Society of America. All rights reserved. For permissions, e-mail: journals.permissions@oup.com.

  1. Situational Analysis for Complex Systems: Methodological Development in Public Health Research.

    PubMed

    Martin, Wanda; Pauly, Bernie; MacDonald, Marjorie

    2016-01-01

    Public health systems have suffered infrastructure losses worldwide. Strengthening public health systems requires not only good policies and programs, but also development of new research methodologies to support public health systems renewal. Our research team considers public health systems to be complex adaptive systems and as such new methods are necessary to generate knowledge about the process of implementing public health programs and services. Within our program of research, we have employed situational analysis as a method for studying complex adaptive systems in four distinct research studies on public health program implementation. The purpose of this paper is to demonstrate the use of situational analysis as a method for studying complex systems and highlight the need for further methodological development.

  2. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision.

    PubMed

    Lynggaard, Per; Skouby, Knud Erik

    2016-11-02

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world's population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the "smart" vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the "big challenges" and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants.

  3. Complex IoT Systems as Enablers for Smart Homes in a Smart City Vision

    PubMed Central

    Lynggaard, Per; Skouby, Knud Erik

    2016-01-01

    The world is entering a new era, where Internet-of-Things (IoT), smart homes, and smart cities will play an important role in meeting the so-called big challenges. In the near future, it is foreseen that the majority of the world’s population will live their lives in smart homes and in smart cities. To deal with these challenges, to support a sustainable urban development, and to improve the quality of life for citizens, a multi-disciplinary approach is needed. It seems evident, however, that a new, advanced Information and Communications Technology ICT infrastructure is a key feature to realize the “smart” vision. This paper proposes a specific solution in the form of a hierarchical layered ICT based infrastructure that handles ICT issues related to the “big challenges” and seamlessly integrates IoT, smart homes, and smart city structures into one coherent unit. To exemplify benefits of this infrastructure, a complex IoT system has been deployed, simulated and elaborated. This simulation deals with wastewater energy harvesting from smart buildings located in a smart city context. From the simulations, it has been found that the proposed infrastructure is able to harvest between 50% and 75% of the wastewater energy in a smart residential building. By letting the smart city infrastructure coordinate and control the harvest time and duration, it is possible to achieve considerable energy savings in the smart homes, and it is possible to reduce the peak-load for district heating plants. PMID:27827851

  4. A Different Trolley Problem: The Limits of Environmental Justice and the Promise of Complex Moral Assessments for Transportation Infrastructure.

    PubMed

    Epting, Shane

    2016-12-01

    Transportation infrastructure tremendously affects the quality of life for urban residents, influences public and mental health, and shapes social relations. Historically, the topic is rich with social and political controversy and the resultant transit systems in the United States cause problems for minority residents and issues for the public. Environmental justice frameworks provide a means to identify and address harms that affect marginalized groups, but environmental justice has limits that cannot account for the mainstream population. To account for this condition, I employ a complex moral assessment measure that provides a way to talk about harms that affect the public.

  5. Application of Smart Infrastructure Systems approach to precision medicine.

    PubMed

    Govindaraju, Diddahally R; Annaswamy, Anuradha M

    2015-12-01

    All biological variation is hierarchically organized dynamic network system of genomic components, organelles, cells, tissues, organs, individuals, families, populations and metapopulations. Individuals are axial in this hierarchy, as they represent antecedent, attendant and anticipated aspects of health, disease, evolution and medical care. Humans show individual specific genetic and clinical features such as complexity, cooperation, resilience, robustness, vulnerability, self-organization, latent and emergent behavior during their development, growth and senescence. Accurate collection, measurement, organization and analyses of individual specific data, embedded at all stratified levels of biological, demographic and cultural diversity - the big data - is necessary to make informed decisions on health, disease and longevity; which is a central theme of precision medicine initiative (PMI). This initiative also calls for the development of novel analytical approaches to handle complex multidimensional data. Here we suggest the application of Smart Infrastructure Systems (SIS) approach to accomplish some of the goals set forth by the PMI on the premise that biological systems and the SIS share many common features. The latter has been successfully employed in managing complex networks of non-linear adaptive controls, commonly encountered in smart engineering systems. We highlight their concordance and discuss the utility of the SIS approach in precision medicine programs.

  6. Development and Classroom Implementation of an Environmental Data Creation and Sharing Tool

    ERIC Educational Resources Information Center

    Brogan, Daniel S.; McDonald, Walter M.; Lohani, Vinod K.; Dymond, Randel L.; Bradner, Aaron J.

    2016-01-01

    Education is essential for solving the complex water-related challenges facing society. The Learning Enhanced Watershed Assessment System (LEWAS) and the Online Watershed Learning System (OWLS) provide data creation and data sharing infrastructures, respectively, that combine to form an environmental learning tool. This system collects, integrates…

  7. Adapting New Space System Designs into Existing Ground Infrastructure

    NASA Technical Reports Server (NTRS)

    Delgado, Hector N.; McCleskey, Carey M.

    2008-01-01

    As routine space operations extend beyond earth orbit, the ability for ground infrastructures to take on new launch vehicle systems and a more complex suite of spacecraft and payloads has become a new challenge. The U.S. Vision for Space Exploration and its Constellation Program provides opportunities for our space operations community to meet this challenge. Presently, as new flight and ground systems add to the overall groundbased and space-based capabilities for NASA and its international partners, specific choices are being made as to what to abandon, what to retain, as well as what to build new. The total ground and space-based infrastructure must support a long-term, sustainable operation after it is all constructed, deployed, and activated. This paper addresses key areas of engineering concern during conceptual design, development, and routine operations, with a particular focus on: (1) legacy system reusability, (2) system supportability attributes and operations characteristics, (3) ground systems design trades and criteria, and (4) technology application survey. Each key area explored weighs the merits of reusability of the infrastructure in terms of: engineering analysis methods and techniques; top-level facility, systems, and equipment design criteria; and some suggested methods for making the operational system attributes (the "-ilities") highly visible to the design teams and decisionmakers throughout the design process.

  8. People at risk - nexus critical infrastructure and society

    NASA Astrophysics Data System (ADS)

    Heiser, Micha; Thaler, Thomas; Fuchs, Sven

    2016-04-01

    Strategic infrastructure networks include the highly complex and interconnected systems that are so vital to a city or state that any sudden disruption can result in debilitating impacts on human life, the economy and the society as a whole. Recently, various studies have applied complex network-based models to study the performance and vulnerability of infrastructure systems under various types of attacks and hazards - a major part of them is, particularly after the 9/11 incident, related to terrorism attacks. Here, vulnerability is generally defined as the performance drop of an infrastructure system under a given disruptive event. The performance can be measured by different metrics, which correspond to various levels of resilience. In this paper, we will address vulnerability and exposure of critical infrastructure in the Eastern Alps. The Federal State Tyrol is an international transport route and an essential component of the north-south transport connectivity in Europe. Any interruption of the transport flow leads to incommensurable consequences in terms of indirect losses, since the system does not feature redundant elements at comparable economic efficiency. Natural hazard processes such as floods, debris flows, rock falls and avalanches, endanger this infrastructure line, such as large flood events in 2005 or 2012, rock falls 2014, which had strong impacts to the critical infrastructure, such as disruption of the railway lines (in 2005 and 2012), highways and motorways (in 2014). The aim of this paper is to present how critical infrastructures as well as communities and societies are vulnerable and can be resilient against natural hazard risks and the relative cascading effects to different compartments (industrial, infrastructural, societal, institutional, cultural, etc.), which is the dominant by the type of hazard (avalanches, torrential flooding, debris flow, rock falls). Specific themes will be addressed in various case studies to allow cross-learning and cross-comparison of, for example rural and urban areas, and different scales. Correspondingly, scale-specific resilience indicators and metrics will be developed to tailor methods to specific needs according to the scale of assessment (micro/local and macro/regional) and to the type of infrastructure. The traditional indicators normally used in structural analysis are not sufficient to understand how events happening on the networks can have cascading consequences. Moreover, effects have multidimensional (technical, economic, organizational and human), multiscale (micro and macro) and temporal characteristics (short- to long-term incidence). These considerations will guide to different activities: 1) computation of classic structural analysis indicators on the case studies in order to obtain an identity of the transport infrastructure and; 2) development of a set of new measures of resilience. To mitigate natural hazard risk a large amount of protection measures of different typology have been constructed following inhomogeneous reliability standards. The focus of this case study will be on resilience issues and decision making in the context of a large scale sectorial approach focused on transport infrastructure network.

  9. Unraveling the complexities of disaster management: a framework for critical social infrastructure to promote population health and resilience.

    PubMed

    O'Sullivan, Tracey L; Kuziemsky, Craig E; Toal-Sullivan, Darene; Corneil, Wayne

    2013-09-01

    Complexity is a useful frame of reference for disaster management and understanding population health. An important means to unraveling the complexities of disaster management is to recognize the interdependencies between health care and broader social systems and how they intersect to promote health and resilience before, during and after a crisis. While recent literature has expanded our understanding of the complexity of disasters at the macro level, few studies have examined empirically how dynamic elements of critical social infrastructure at the micro level influence community capacity. The purpose of this study was to explore empirically the complexity of disasters, to determine levers for action where interventions can be used to facilitate collaborative action and promote health among high risk populations. A second purpose was to build a framework for critical social infrastructure and develop a model to identify potential points of intervention to promote population health and resilience. A community-based participatory research design was used in nine focus group consultations (n = 143) held in five communities in Canada, between October 2010 and March 2011, using the Structured Interview Matrix facilitation technique. The findings underscore the importance of interconnectedness of hard and soft systems at the micro level, with culture providing the backdrop for the social fabric of each community. Open coding drawing upon the tenets of complexity theory was used to develop four core themes that provide structure for the framework that evolved; they relate to dynamic context, situational awareness and connectedness, flexible planning, and collaboration, which are needed to foster adaptive responses to disasters. Seven action recommendations are presented, to promote community resilience and population health. Copyright © 2012 Elsevier Ltd. All rights reserved.

  10. Improving the analysis, storage and sharing of neuroimaging data using relational databases and distributed computing.

    PubMed

    Hasson, Uri; Skipper, Jeremy I; Wilde, Michael J; Nusbaum, Howard C; Small, Steven L

    2008-01-15

    The increasingly complex research questions addressed by neuroimaging research impose substantial demands on computational infrastructures. These infrastructures need to support management of massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative research, and to achieve these aims securely and with minimum management overhead. Here we present an approach that overcomes many current limitations in data analysis and data sharing. This approach is based on open source database management systems that support complex data queries as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing using cluster computing and Grid computing resources. We assess the strengths of these approaches as compared to current frameworks based on storage of binary or text files. We then describe in detail the implementation of such a system and provide a concrete description of how it was used to enable a complex analysis of fMRI time series data.

  11. Improving the Analysis, Storage and Sharing of Neuroimaging Data using Relational Databases and Distributed Computing

    PubMed Central

    Hasson, Uri; Skipper, Jeremy I.; Wilde, Michael J.; Nusbaum, Howard C.; Small, Steven L.

    2007-01-01

    The increasingly complex research questions addressed by neuroimaging research impose substantial demands on computational infrastructures. These infrastructures need to support management of massive amounts of data in a way that affords rapid and precise data analysis, to allow collaborative research, and to achieve these aims securely and with minimum management overhead. Here we present an approach that overcomes many current limitations in data analysis and data sharing. This approach is based on open source database management systems that support complex data queries as an integral part of data analysis, flexible data sharing, and parallel and distributed data processing using cluster computing and Grid computing resources. We assess the strengths of these approaches as compared to current frameworks based on storage of binary or text files. We then describe in detail the implementation of such a system and provide a concrete description of how it was used to enable a complex analysis of fMRI time series data. PMID:17964812

  12. Towards sustainable infrastructure management: knowledge-based service-oriented computing framework for visual analytics

    NASA Astrophysics Data System (ADS)

    Vatcha, Rashna; Lee, Seok-Won; Murty, Ajeet; Tolone, William; Wang, Xiaoyu; Dou, Wenwen; Chang, Remco; Ribarsky, William; Liu, Wanqiu; Chen, Shen-en; Hauser, Edd

    2009-05-01

    Infrastructure management (and its associated processes) is complex to understand, perform and thus, hard to make efficient and effective informed decisions. The management involves a multi-faceted operation that requires the most robust data fusion, visualization and decision making. In order to protect and build sustainable critical assets, we present our on-going multi-disciplinary large-scale project that establishes the Integrated Remote Sensing and Visualization (IRSV) system with a focus on supporting bridge structure inspection and management. This project involves specific expertise from civil engineers, computer scientists, geographers, and real-world practitioners from industry, local and federal government agencies. IRSV is being designed to accommodate the essential needs from the following aspects: 1) Better understanding and enforcement of complex inspection process that can bridge the gap between evidence gathering and decision making through the implementation of ontological knowledge engineering system; 2) Aggregation, representation and fusion of complex multi-layered heterogeneous data (i.e. infrared imaging, aerial photos and ground-mounted LIDAR etc.) with domain application knowledge to support machine understandable recommendation system; 3) Robust visualization techniques with large-scale analytical and interactive visualizations that support users' decision making; and 4) Integration of these needs through the flexible Service-oriented Architecture (SOA) framework to compose and provide services on-demand. IRSV is expected to serve as a management and data visualization tool for construction deliverable assurance and infrastructure monitoring both periodically (annually, monthly, even daily if needed) as well as after extreme events.

  13. Map Matching and Real World Integrated Sensor Data Warehousing (Presentation)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Burton, E.

    2014-02-01

    The inclusion of interlinked temporal and spatial elements within integrated sensor data enables a tremendous degree of flexibility when analyzing multi-component datasets. The presentation illustrates how to warehouse, process, and analyze high-resolution integrated sensor datasets to support complex system analysis at the entity and system levels. The example cases presented utilizes in-vehicle sensor system data to assess vehicle performance, while integrating a map matching algorithm to link vehicle data to roads to demonstrate the enhanced analysis possible via interlinking data elements. Furthermore, in addition to the flexibility provided, the examples presented illustrate concepts of maintaining proprietary operational information (Fleet DNA)more » and privacy of study participants (Transportation Secure Data Center) while producing widely distributed data products. Should real-time operational data be logged at high resolution across multiple infrastructure types, map matched to their associated infrastructure, and distributed employing a similar approach; dependencies between urban environment infrastructures components could be better understood. This understanding is especially crucial for the cities of the future where transportation will rely more on grid infrastructure to support its energy demands.« less

  14. Collaboratively Architecting a Scalable and Adaptable Petascale Infrastructure to Support Transdisciplinary Scientific Research for the Australian Earth and Environmental Sciences

    NASA Astrophysics Data System (ADS)

    Wyborn, L. A.; Evans, B. J. K.; Pugh, T.; Lescinsky, D. T.; Foster, C.; Uhlherr, A.

    2014-12-01

    The National Computational Infrastructure (NCI) at the Australian National University (ANU) is a partnership between CSIRO, ANU, Bureau of Meteorology (BoM) and Geoscience Australia. Recent investments in a 1.2 PFlop Supercomputer (Raijin), ~ 20 PB data storage using Lustre filesystems and a 3000 core high performance cloud have created a hybrid platform for higher performance computing and data-intensive science to enable large scale earth and climate systems modelling and analysis. There are > 3000 users actively logging in and > 600 projects on the NCI system. Efficiently scaling and adapting data and software systems to petascale infrastructures requires the collaborative development of an architecture that is designed, programmed and operated to enable users to interactively invoke different forms of in-situ computation over complex and large scale data collections. NCI makes available major and long tail data collections from both the government and research sectors based on six themes: 1) weather, climate and earth system science model simulations, 2) marine and earth observations, 3) geosciences, 4) terrestrial ecosystems, 5) water and hydrology and 6) astronomy, bio and social. Collectively they span the lithosphere, crust, biosphere, hydrosphere, troposphere, and stratosphere. Collections are the operational form for data management and access. Similar data types from individual custodians are managed cohesively. Use of international standards for discovery and interoperability allow complex interactions within and between the collections. This design facilitates a transdisciplinary approach to research and enables a shift from small scale, 'stove-piped' science efforts to large scale, collaborative systems science. This new and complex infrastructure requires a move to shared, globally trusted software frameworks that can be maintained and updated. Workflow engines become essential and need to integrate provenance, versioning, traceability, repeatability and publication. There are also human resource challenges as highly skilled HPC/HPD specialists, specialist programmers, and data scientists are required whose skills can support scaling to the new paradigm of effective and efficient data-intensive earth science analytics on petascale, and soon to be exascale systems.

  15. Creating an open environment software infrastructure

    NASA Technical Reports Server (NTRS)

    Jipping, Michael J.

    1992-01-01

    As the development of complex computer hardware accelerates at increasing rates, the ability of software to keep pace is essential. The development of software design tools, however, is falling behind the development of hardware for several reasons, the most prominent of which is the lack of a software infrastructure to provide an integrated environment for all parts of a software system. The research was undertaken to provide a basis for answering this problem by investigating the requirements of open environments.

  16. Geoinformatics: Transforming data to knowledge for geosciences

    USGS Publications Warehouse

    Sinha, A.K.; Malik, Z.; Rezgui, A.; Barnes, C.G.; Lin, K.; Heiken, G.; Thomas, W.A.; Gundersen, L.C.; Raskin, R.; Jackson, I.; Fox, P.; McGuinness, D.; Seber, D.; Zimmerman, H.

    2010-01-01

    An integrative view of Earth as a system, based on multidisciplinary data, has become one of the most compelling reasons for research and education in the geosciences. It is now necessary to establish a modern infrastructure that can support the transformation of data to knowledge. Such an information infrastructure for geosciences is contained within the emerging science of geoinformatics, which seeks to promote the utilizetion and integration of complex, multidisciplinary data in seeking solutions to geosciencebased societal challenges.

  17. Modelling the urban water cycle as an integrated part of the city: a review.

    PubMed

    Urich, Christian; Rauch, Wolfgang

    2014-01-01

    In contrast to common perceptions, the urban water infrastructure system is a complex and dynamic system that is constantly evolving and adapting to changes in the urban environment, to sustain existing services and provide additional ones. Instead of simplifying urban water infrastructure to a static system that is decoupled from its urban context, new management strategies use the complexity of the system to their advantage by integrating centralised with decentralised solutions and explicitly embedding water systems into their urban form. However, to understand and test possible adaptation strategies, urban water modelling tools are required to support exploration of their effectiveness as the human-technology-environment system coevolves under different future scenarios. The urban water modelling community has taken first steps to developing these new modelling tools. This paper critically reviews the historical development of urban water modelling tools and provides a summary of the current state of integrated modelling approaches. It reflects on the challenges that arise through the current practice of coupling urban water management tools with urban development models and discusses a potential pathway towards a new generation of modelling tools.

  18. Integrated remote sensing and visualization (IRSV) system for transportation infrastructure operations and management, phase one, volume 1 : summary report.

    DOT National Transportation Integrated Search

    2009-12-01

    The Integrated Remote Sensing and Visualization System (IRSV) is being designed to accommodate the needs of todays Bridge : Engineers at the state and local level from the following aspects: : Better understanding and enforcement of a complex ...

  19. Computational Systems for Multidisciplinary Applications

    NASA Technical Reports Server (NTRS)

    Soni, Bharat; Haupt, Tomasz; Koomullil, Roy; Luke, Edward; Thompson, David

    2002-01-01

    In this paper, we briefly describe our efforts to develop complex simulation systems. We focus first on four key infrastructure items: enterprise computational services, simulation synthesis, geometry modeling and mesh generation, and a fluid flow solver for arbitrary meshes. We conclude by presenting three diverse applications developed using these technologies.

  20. Volcanic hazards at distant critical infrastructure: A method for bespoke, multi-disciplinary assessment

    NASA Astrophysics Data System (ADS)

    Odbert, H. M.; Aspinall, W.; Phillips, J.; Jenkins, S.; Wilson, T. M.; Scourse, E.; Sheldrake, T.; Tucker, P.; Nakeshree, K.; Bernardara, P.; Fish, K.

    2015-12-01

    Societies rely on critical services such as power, water, transport networks and manufacturing. Infrastructure may be sited to minimise exposure to natural hazards but not all can be avoided. The probability of long-range transport of a volcanic plume to a site is comparable to other external hazards that must be considered to satisfy safety assessments. Recent advances in numerical models of plume dispersion and stochastic modelling provide a formalized and transparent approach to probabilistic assessment of hazard distribution. To understand the risks to critical infrastructure far from volcanic sources, it is necessary to quantify their vulnerability to different hazard stressors. However, infrastructure assets (e.g. power plantsand operational facilities) are typically complex systems in themselves, with interdependent components that may differ in susceptibility to hazard impact. Usually, such complexity means that risk either cannot be estimated formally or that unsatisfactory simplifying assumptions are prerequisite to building a tractable risk model. We present a new approach to quantifying risk by bridging expertise of physical hazard modellers and infrastructure engineers. We use a joint expert judgment approach to determine hazard model inputs and constrain associated uncertainties. Model outputs are chosen on the basis of engineering or operational concerns. The procedure facilitates an interface between physical scientists, with expertise in volcanic hazards, and infrastructure engineers, with insight into vulnerability to hazards. The result is a joined-up approach to estimating risk from low-probability hazards to critical infrastructure. We describe our methodology and show preliminary results for vulnerability to volcanic hazards at a typical UK industrial facility. We discuss our findings in the context of developing bespoke assessment of hazards from distant sources in collaboration with key infrastructure stakeholders.

  1. Interoperability and security in wireless body area network infrastructures.

    PubMed

    Warren, Steve; Lebak, Jeffrey; Yao, Jianchu; Creekmore, Jonathan; Milenkovic, Aleksandar; Jovanov, Emil

    2005-01-01

    Wireless body area networks (WBANs) and their supporting information infrastructures offer unprecedented opportunities to monitor state of health without constraining the activities of a wearer. These mobile point-of-care systems are now realizable due to the convergence of technologies such as low-power wireless communication standards, plug-and-play device buses, off-the-shelf development kits for low-power microcontrollers, handheld computers, electronic medical records, and the Internet. To increase acceptance of personal monitoring technology while lowering equipment cost, advances must be made in interoperability (at both the system and device levels) and security. This paper presents an overview of WBAN infrastructure work in these areas currently underway in the Medical Component Design Laboratory at Kansas State University (KSU) and at the University of Alabama in Huntsville (UAH). KSU efforts include the development of wearable health status monitoring systems that utilize ISO/IEEE 11073, Bluetooth, Health Level 7, and OpenEMed. WBAN efforts at UAH include the development of wearable activity and health monitors that incorporate ZigBee-compliant wireless sensor platforms with hardware-level encryption and the TinyOS development environment. WBAN infrastructures are complex, requiring many functional support elements. To realize these infrastructures through collaborative efforts, organizations such as KSU and UAH must define and utilize standard interfaces, nomenclature, and security approaches.

  2. Autonomic Management of Application Workflows on Hybrid Computing Infrastructure

    DOE PAGES

    Kim, Hyunjoo; el-Khamra, Yaakoub; Rodero, Ivan; ...

    2011-01-01

    In this paper, we present a programming and runtime framework that enables the autonomic management of complex application workflows on hybrid computing infrastructures. The framework is designed to address system and application heterogeneity and dynamics to ensure that application objectives and constraints are satisfied. The need for such autonomic system and application management is becoming critical as computing infrastructures become increasingly heterogeneous, integrating different classes of resources from high-end HPC systems to commodity clusters and clouds. For example, the framework presented in this paper can be used to provision the appropriate mix of resources based on application requirements and constraints.more » The framework also monitors the system/application state and adapts the application and/or resources to respond to changing requirements or environment. To demonstrate the operation of the framework and to evaluate its ability, we employ a workflow used to characterize an oil reservoir executing on a hybrid infrastructure composed of TeraGrid nodes and Amazon EC2 instances of various types. Specifically, we show how different applications objectives such as acceleration, conservation and resilience can be effectively achieved while satisfying deadline and budget constraints, using an appropriate mix of dynamically provisioned resources. Our evaluations also demonstrate that public clouds can be used to complement and reinforce the scheduling and usage of traditional high performance computing infrastructure.« less

  3. Development Model for Research Infrastructures

    NASA Astrophysics Data System (ADS)

    Wächter, Joachim; Hammitzsch, Martin; Kerschke, Dorit; Lauterjung, Jörn

    2015-04-01

    Research infrastructures (RIs) are platforms integrating facilities, resources and services used by the research communities to conduct research and foster innovation. RIs include scientific equipment, e.g., sensor platforms, satellites or other instruments, but also scientific data, sample repositories or archives. E-infrastructures on the other hand provide the technological substratum and middleware to interlink distributed RI components with computing systems and communication networks. The resulting platforms provide the foundation for the design and implementation of RIs and play an increasing role in the advancement and exploitation of knowledge and technology. RIs are regarded as essential to achieve and maintain excellence in research and innovation crucial for the European Research Area (ERA). The implementation of RIs has to be considered as a long-term, complex development process often over a period of 10 or more years. The ongoing construction of Spatial Data Infrastructures (SDIs) provides a good example for the general complexity of infrastructure development processes especially in system-of-systems environments. A set of directives issued by the European Commission provided a framework of guidelines for the implementation processes addressing the relevant content and the encoding of data as well as the standards for service interfaces and the integration of these services into networks. Additionally, a time schedule for the overall construction process has been specified. As a result this process advances with a strong participation of member states and responsible organisations. Today, SDIs provide the operational basis for new digital business processes in both national and local authorities. Currently, the development of integrated RIs in Earth and Environmental Sciences is characterised by the following properties: • A high number of parallel activities on European and national levels with numerous institutes and organisations participating. The maturity of individual scientific domains differs considerably. • Technologically and organisationally many different RI components have to be integrated. Individual systems are often complex and have a long-term history. Existing approaches are on different maturity levels, e.g. in relation to the standardisation of interfaces. • The concrete implementation process consists of independent and often parallel development activities. In many cases no detailed architectural blue-print for the envisioned system exists. • Most of the funding currently available for RI implementation is provided on a project basis. To increase the synergies in infrastructure development the authors propose a specific RI Maturity Model (RIMM) that is specifically qualified for open system-of-system environments. RIMM is based on the concepts of Capability Maturity Models for organisational development, concretely the Levels of Conceptual Interoperability Model (LCIM) specifying the technical, syntactical, semantic, pragmatic, dynamic, and conceptual layers of interoperation [1]. The model is complemented by the identification and integration of growth factors (according to the Nolan Stages Theory [2]). These factors include supply and demand factors. Supply factors comprise available resources, e.g., data, services and IT-management capabilities including organisations and IT-personal. Demand factors are the overall application portfolio for RIs but also the skills and requirements of scientists and communities using the infrastructure. RIMM thus enables a balanced development process of RI and RI components by evaluating the status of the supply and demand factors in relation to specific levels of interoperability. [1] Tolk, A., Diallo, A., Turnitsa, C. (2007): Applying the Levels of Conceptual Interoperability Model in Support of Integratability, Interoperability, and Composability for System-of-Systems Engineering. Systemics, Cybernetics and Informatics, Volume 5 - Number 5. [2] Mutsaers, E.-J., van der Zee, H., and Giertz, H. (1998): The evolution of information technology. Information Management & Computer Security, Volume 6 - Issue 3.

  4. Operable Data Management for Ocean Observing Systems

    NASA Astrophysics Data System (ADS)

    Chavez, F. P.; Graybeal, J. B.; Godin, M. A.

    2004-12-01

    As oceanographic observing systems become more numerous and complex, data management solutions must follow. Most existing oceanographic data management systems fall into one of three categories: they have been developed as dedicated solutions, with limited application to other observing systems; they expect that data will be pre-processed into well-defined formats, such as netCDF; or they are conceived as robust, generic data management solutions, with complexity (high) and maturity and adoption rates (low) to match. Each approach has strengths and weaknesses; no approach yet fully addresses, nor takes advantage of, the sophistication of ocean observing systems as they are now conceived. In this presentation we describe critical data management requirements for advanced ocean observing systems, of the type envisioned by ORION and IOOS. By defining common requirements -- functional, qualitative, and programmatic -- for all such ocean observing systems, the performance and nature of the general data management solution can be characterized. Issues such as scalability, maintaining metadata relationships, data access security, visualization, and operational flexibility suggest baseline architectural characteristics, which may in turn lead to reusable components and approaches. Interoperability with other data management systems, with standards-based solutions in metadata specification and data transport protocols, and with the data management infrastructure envisioned by IOOS and ORION, can also be used to define necessary capabilities. Finally, some requirements for the software infrastructure of ocean observing systems can be inferred. Early operational results and lessons learned, from development and operations of MBARI ocean observing systems, are used to illustrate key requirements, choices, and challenges. Reference systems include the Monterey Ocean Observing System (MOOS), its component software systems (Software Infrastructure and Applications for MOOS, and the Shore Side Data System), and the Autonomous Ocean Sampling Network (AOSN).

  5. Web-GIS platform for green infrastructure in Bucharest, Romania

    NASA Astrophysics Data System (ADS)

    Sercaianu, Mihai; Petrescu, Florian; Aldea, Mihaela; Oana, Luca; Rotaru, George

    2015-06-01

    In the last decade, reducing urban pollution and improving quality of public spaces became a more and more important issue for public administration authorities in Romania. The paper describes the development of a web-GIS solution dedicated to monitoring of the green infrastructure in Bucharest, Romania. Thus, the system allows the urban residents (citizens) to collect themselves and directly report relevant information regarding the current status of the green infrastructure of the city. Consequently, the citizens become an active component of the decision-support process within the public administration. Besides the usual technical characteristics of such geo-information processing systems, due to the complex legal and organizational problems that arise in collecting information directly from the citizens, additional analysis was required concerning, for example, local government involvement, environmental protection agencies regulations or public entities requirements. Designing and implementing the whole information exchange process, based on the active interaction between the citizens and public administration bodies, required the use of the "citizen-sensor" concept deployed with GIS tools. The information collected and reported from the field is related to a lot of factors, which are not always limited to the city level, providing the possibility to consider the green infrastructure as a whole. The "citizen-request" web-GIS for green infrastructure monitoring solution is characterized by a very diverse urban information, due to the fact that the green infrastructure itself is conditioned by a lot of urban elements, such as urban infrastructures, urban infrastructure works and construction density.

  6. A social-ecological database to advance research on infrastructure development impacts in the Brazilian Amazon.

    PubMed

    Tucker Lima, Joanna M; Valle, Denis; Moretto, Evandro Mateus; Pulice, Sergio Mantovani Paiva; Zuca, Nadia Lucia; Roquetti, Daniel Rondinelli; Beduschi, Liviam Elizabeth Cordeiro; Praia, Amanda Salles; Okamoto, Claudia Parucce Franco; da Silva Carvalhaes, Vinicius Leite; Branco, Evandro Albiach; Barbezani, Bruna; Labandera, Emily; Timpe, Kelsie; Kaplan, David

    2016-08-30

    Recognized as one of the world's most vital natural and cultural resources, the Amazon faces a wide variety of threats from natural resource and infrastructure development. Within this context, rigorous scientific study of the region's complex social-ecological system is critical to inform and direct decision-making toward more sustainable environmental and social outcomes. Given the Amazon's tightly linked social and ecological components and the scope of potential development impacts, effective study of this system requires an easily accessible resource that provides a broad and reliable data baseline. This paper brings together multiple datasets from diverse disciplines (including human health, socio-economics, environment, hydrology, and energy) to provide investigators with a variety of baseline data to explore the multiple long-term effects of infrastructure development in the Brazilian Amazon.

  7. A social-ecological database to advance research on infrastructure development impacts in the Brazilian Amazon

    PubMed Central

    Tucker Lima, Joanna M.; Valle, Denis; Moretto, Evandro Mateus; Pulice, Sergio Mantovani Paiva; Zuca, Nadia Lucia; Roquetti, Daniel Rondinelli; Beduschi, Liviam Elizabeth Cordeiro; Praia, Amanda Salles; Okamoto, Claudia Parucce Franco; da Silva Carvalhaes, Vinicius Leite; Branco, Evandro Albiach; Barbezani, Bruna; Labandera, Emily; Timpe, Kelsie; Kaplan, David

    2016-01-01

    Recognized as one of the world’s most vital natural and cultural resources, the Amazon faces a wide variety of threats from natural resource and infrastructure development. Within this context, rigorous scientific study of the region’s complex social-ecological system is critical to inform and direct decision-making toward more sustainable environmental and social outcomes. Given the Amazon’s tightly linked social and ecological components and the scope of potential development impacts, effective study of this system requires an easily accessible resource that provides a broad and reliable data baseline. This paper brings together multiple datasets from diverse disciplines (including human health, socio-economics, environment, hydrology, and energy) to provide investigators with a variety of baseline data to explore the multiple long-term effects of infrastructure development in the Brazilian Amazon. PMID:27575915

  8. Attacker-defender game from a network science perspective

    NASA Astrophysics Data System (ADS)

    Li, Ya-Peng; Tan, Suo-Yi; Deng, Ye; Wu, Jun

    2018-05-01

    Dealing with the protection of critical infrastructures, many game-theoretic methods have been developed to study the strategic interactions between defenders and attackers. However, most game models ignore the interrelationship between different components within a certain system. In this paper, we propose a simultaneous-move attacker-defender game model, which is a two-player zero-sum static game with complete information. The strategies and payoffs of this game are defined on the basis of the topology structure of the infrastructure system, which is represented by a complex network. Due to the complexity of strategies, the attack and defense strategies are confined by two typical strategies, namely, targeted strategy and random strategy. The simulation results indicate that in a scale-free network, the attacker virtually always attacks randomly in the Nash equilibrium. With a small cost-sensitive parameter, representing the degree to which costs increase with the importance of a target, the defender protects the hub targets with large degrees preferentially. When the cost-sensitive parameter exceeds a threshold, the defender switches to protecting nodes randomly. Our work provides a new theoretical framework to analyze the confrontations between the attacker and the defender on critical infrastructures and deserves further study.

  9. Length based vehicle classification on freeways from single loop detectors.

    DOT National Transportation Integrated Search

    2009-10-15

    Roadway usage, particularly by large vehicles, is one of the fundamental factors determining the lifespan : of highway infrastructure, e.g., as evidenced by the federally mandated Highway Performance : Monitoring System (HPMS). But the complexity of ...

  10. Seven Defense Priorities for the New Administration

    DTIC Science & Technology

    2016-12-01

    building consume human and financial military resources for decades. New weapons like cyber and autonomous systems are aimed at the heart of the U.S...information infrastructure enables for adversaries and for the U.S.; 5. Anticipating intelligent systems and autonomy including numbers and...challenging in a complex electromagnetic environment ...............................................37 Space and the global positioning system play a

  11. Regional Charging Infrastructure for Plug-In Electric Vehicles: A Case Study of Massachusetts

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, Eric; Raghavan, Sesha; Rames, Clement

    Given the complex issues associated with plug-in electric vehicle (PEV) charging and options in deploying charging infrastructure, there is interest in exploring scenarios of future charging infrastructure deployment to provide insight and guidance to national and regional stakeholders. The complexity and cost of PEV charging infrastructure pose challenges to decision makers, including individuals, communities, and companies considering infrastructure installations. The value of PEVs to consumers and fleet operators can be increased with well-planned and cost-effective deployment of charging infrastructure. This will increase the number of miles driven electrically and accelerate PEV market penetration, increasing the shared value of charging networksmore » to an expanding consumer base. Given these complexities and challenges, the objective of the present study is to provide additional insight into the role of charging infrastructure in accelerating PEV market growth. To that end, existing studies on PEV infrastructure are summarized in a literature review. Next, an analysis of current markets is conducted with a focus on correlations between PEV adoption and public charging availability. A forward-looking case study is then conducted focused on supporting 300,000 PEVs by 2025 in Massachusetts. The report concludes with a discussion of potential methodology for estimating economic impacts of PEV infrastructure growth.« less

  12. ITER Cryoplant Infrastructures

    NASA Astrophysics Data System (ADS)

    Fauve, E.; Monneret, E.; Voigt, T.; Vincent, G.; Forgeas, A.; Simon, M.

    2017-02-01

    The ITER Tokamak requires an average 75 kW of refrigeration power at 4.5 K and 600 kW of refrigeration Power at 80 K to maintain the nominal operation condition of the ITER thermal shields, superconducting magnets and cryopumps. This is produced by the ITER Cryoplant, a complex cluster of refrigeration systems including in particular three identical Liquid Helium Plants and two identical Liquid Nitrogen Plants. Beyond the equipment directly part of the Cryoplant, colossal infrastructures are required. These infrastructures account for a large part of the Cryoplants lay-out, budget and engineering efforts. It is ITER Organization responsibility to ensure that all infrastructures are adequately sized and designed to interface with the Cryoplant. This proceeding presents the overall architecture of the cryoplant. It provides order of magnitude related to the cryoplant building and utilities: electricity, cooling water, heating, ventilation and air conditioning (HVAC).

  13. NextGen Future Safety Assessment Game

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Gheorghe, Adian; Jones, Sharon Monica

    2010-01-01

    The successful implementation of the next generation infrastructure systems requires solid understanding of their technical, social, political and economic aspects along with their interactions. The lack of historical data that relate to the long-term planning of complex systems introduces unique challenges for decision makers and involved stakeholders which in turn result in unsustainable systems. Also, the need to understand the infrastructure at the societal level and capture the interaction between multiple stakeholders becomes important. This paper proposes a methodology in order to develop a holistic approach aiming to provide an alternative subject-matter expert (SME) elicitation and data collection method for future sociotechnical systems. The methodology is adapted to Next Generation Air Transportation System (NextGen) decision making environment in order to demonstrate the benefits of this holistic approach.

  14. NextGen Future Safety Assessment Game

    NASA Technical Reports Server (NTRS)

    Ancel, Ersin; Gheorghe, Adrian; Jones, Sharon Monica

    2011-01-01

    The successful implementation of the next generation infrastructure systems requires solid understanding of their technical, social, political and economic aspects along with their interactions. The lack of historical data that relate to the long-term planning of complex systems introduces unique challenges for decision makers and involved stakeholders which in turn result in unsustainable systems. Also, the need to understand the infrastructure at the societal level and capture the interaction between multiple stakeholders becomes important. This paper proposes a methodology in order to develop a holistic approach aiming to provide an alternative subject-matter expert (SME) elicitation and data collection method for future sociotechnical systems. The methodology is adapted to Next Generation Air Transportation System (NextGen) decision making environment in order to demonstrate the benefits of this holistic approach.

  15. Improvement of economic security management system of municipalities with account of transportation system development: methods of assessment

    NASA Astrophysics Data System (ADS)

    Khe Sun, Pak; Vorona-Slivinskaya, Lubov; Voskresenskay, Elena

    2017-10-01

    The article highlights the necessity of a complex approach to assess economic security of municipalities, which would consider municipal management specifics. The approach allows comparing the economic security level of municipalities, but it does not describe parameter differences between compared municipalities. Therefore, there is a second method suggested: parameter rank order method. Applying these methods allowed to figure out the leaders and outsiders of the economic security among municipalities and rank all economic security parameters according to the significance level. Complex assessment of the economic security of municipalities, based on the combination of the two approaches, allowed to assess the security level more accurate. In order to assure economic security and equalize its threshold values, one should pay special attention to transportation system development in municipalities. Strategic aims of projects in the area of transportation infrastructure development in municipalities include the following issues: contribution into creating and elaborating transportation logistics and manufacture transport complexes, development of transportation infrastructure with account of internal and external functions of the region, public transport development, improvement of transport security and reducing its negative influence on the environment.

  16. Ontology-Driven Provenance Management in eScience: An Application in Parasite Research

    NASA Astrophysics Data System (ADS)

    Sahoo, Satya S.; Weatherly, D. Brent; Mutharaju, Raghava; Anantharam, Pramod; Sheth, Amit; Tarleton, Rick L.

    Provenance, from the French word "provenir", describes the lineage or history of a data entity. Provenance is critical information in scientific applications to verify experiment process, validate data quality and associate trust values with scientific results. Current industrial scale eScience projects require an end-to-end provenance management infrastructure. This infrastructure needs to be underpinned by formal semantics to enable analysis of large scale provenance information by software applications. Further, effective analysis of provenance information requires well-defined query mechanisms to support complex queries over large datasets. This paper introduces an ontology-driven provenance management infrastructure for biology experiment data, as part of the Semantic Problem Solving Environment (SPSE) for Trypanosoma cruzi (T.cruzi). This provenance infrastructure, called T.cruzi Provenance Management System (PMS), is underpinned by (a) a domain-specific provenance ontology called Parasite Experiment ontology, (b) specialized query operators for provenance analysis, and (c) a provenance query engine. The query engine uses a novel optimization technique based on materialized views called materialized provenance views (MPV) to scale with increasing data size and query complexity. This comprehensive ontology-driven provenance infrastructure not only allows effective tracking and management of ongoing experiments in the Tarleton Research Group at the Center for Tropical and Emerging Global Diseases (CTEGD), but also enables researchers to retrieve the complete provenance information of scientific results for publication in literature.

  17. Abstracting application deployment on Cloud infrastructures

    NASA Astrophysics Data System (ADS)

    Aiftimiei, D. C.; Fattibene, E.; Gargana, R.; Panella, M.; Salomoni, D.

    2017-10-01

    Deploying a complex application on a Cloud-based infrastructure can be a challenging task. In this contribution we present an approach for Cloud-based deployment of applications and its present or future implementation in the framework of several projects, such as “!CHAOS: a cloud of controls” [1], a project funded by MIUR (Italian Ministry of Research and Education) to create a Cloud-based deployment of a control system and data acquisition framework, “INDIGO-DataCloud” [2], an EC H2020 project targeting among other things high-level deployment of applications on hybrid Clouds, and “Open City Platform”[3], an Italian project aiming to provide open Cloud solutions for Italian Public Administrations. We considered to use an orchestration service to hide the complex deployment of the application components, and to build an abstraction layer on top of the orchestration one. Through Heat [4] orchestration service, we prototyped a dynamic, on-demand, scalable platform of software components, based on OpenStack infrastructures. On top of the orchestration service we developed a prototype of a web interface exploiting the Heat APIs. The user can start an instance of the application without having knowledge about the underlying Cloud infrastructure and services. Moreover, the platform instance can be customized by choosing parameters related to the application such as the size of a File System or the number of instances of a NoSQL DB cluster. As soon as the desired platform is running, the web interface offers the possibility to scale some infrastructure components. In this contribution we describe the solution design and implementation, based on the application requirements, the details of the development of both the Heat templates and of the web interface, together with possible exploitation strategies of this work in Cloud data centers.

  18. Pervasive Monitoring—An Intelligent Sensor Pod Approach for Standardised Measurement Infrastructures

    PubMed Central

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a “digital skin for planet earth”. The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making. PMID:22163537

  19. Pervasive monitoring--an intelligent sensor pod approach for standardised measurement infrastructures.

    PubMed

    Resch, Bernd; Mittlboeck, Manfred; Lippautz, Michael

    2010-01-01

    Geo-sensor networks have traditionally been built up in closed monolithic systems, thus limiting trans-domain usage of real-time measurements. This paper presents the technical infrastructure of a standardised embedded sensing device, which has been developed in the course of the Live Geography approach. The sensor pod implements data provision standards of the Sensor Web Enablement initiative, including an event-based alerting mechanism and location-aware Complex Event Processing functionality for detection of threshold transgression and quality assurance. The goal of this research is that the resultant highly flexible sensing architecture will bring sensor network applications one step further towards the realisation of the vision of a "digital skin for planet earth". The developed infrastructure can potentially have far-reaching impacts on sensor-based monitoring systems through the deployment of ubiquitous and fine-grained sensor networks. This in turn allows for the straight-forward use of live sensor data in existing spatial decision support systems to enable better-informed decision-making.

  20. Intelligent systems technology infrastructure for integrated systems

    NASA Technical Reports Server (NTRS)

    Lum, Henry, Jr.

    1991-01-01

    Significant advances have occurred during the last decade in intelligent systems technologies (a.k.a. knowledge-based systems, KBS) including research, feasibility demonstrations, and technology implementations in operational environments. Evaluation and simulation data obtained to date in real-time operational environments suggest that cost-effective utilization of intelligent systems technologies can be realized for Automated Rendezvous and Capture applications. The successful implementation of these technologies involve a complex system infrastructure integrating the requirements of transportation, vehicle checkout and health management, and communication systems without compromise to systems reliability and performance. The resources that must be invoked to accomplish these tasks include remote ground operations and control, built-in system fault management and control, and intelligent robotics. To ensure long-term evolution and integration of new validated technologies over the lifetime of the vehicle, system interfaces must also be addressed and integrated into the overall system interface requirements. An approach for defining and evaluating the system infrastructures including the testbed currently being used to support the on-going evaluations for the evolutionary Space Station Freedom Data Management System is presented and discussed. Intelligent system technologies discussed include artificial intelligence (real-time replanning and scheduling), high performance computational elements (parallel processors, photonic processors, and neural networks), real-time fault management and control, and system software development tools for rapid prototyping capabilities.

  1. Reconnecting cities to the biosphere: stewardship of green infrastructure and urban ecosystem services.

    PubMed

    Andersson, Erik; Barthel, Stephan; Borgström, Sara; Colding, Johan; Elmqvist, Thomas; Folke, Carl; Gren, Åsa

    2014-05-01

    Within-city green infrastructure can offer opportunities and new contexts for people to become stewards of ecosystem services. We analyze cities as social-ecological systems, synthesize the literature, and provide examples from more than 15 years of research in the Stockholm urban region, Sweden. The social-ecological approach spans from investigating ecosystem properties to the social frameworks and personal values that drive and shape human interactions with nature. Key findings demonstrate that urban ecosystem services are generated by social-ecological systems and that local stewards are critically important. However, land-use planning and management seldom account for their role in the generation of urban ecosystem services. While the small scale patchwork of land uses in cities stimulates intense interactions across borders much focus is still on individual patches. The results highlight the importance and complexity of stewardship of urban biodiversity and ecosystem services and of the planning and governance of urban green infrastructure.

  2. Hadoop distributed batch processing for Gaia: a success story

    NASA Astrophysics Data System (ADS)

    Riello, Marco

    2015-12-01

    The DPAC Cambridge Data Processing Centre (DPCI) is responsible for the photometric calibration of the Gaia data including the low resolution spectra. The large data volume produced by Gaia (~26 billion transits/year), the complexity of its data stream and the self-calibrating approach pose unique challenges for scalability, reliability and robustness of both the software pipelines and the operations infrastructure. DPCI has been the first in DPAC to realise the potential of Hadoop and Map/Reduce and to adopt them as the core technologies for its infrastructure. This has proven a winning choice allowing DPCI unmatched processing throughput and reliability within DPAC to the point that other DPCs have started following our footsteps. In this talk we will present the software infrastructure developed to build the distributed and scalable batch data processing system that is currently used in production at DPCI and the excellent results in terms of performance of the system.

  3. Robustness and Recovery of Lifeline Infrastructure and Ecosystem Networks

    NASA Astrophysics Data System (ADS)

    Bhatia, U.; Ganguly, A. R.

    2015-12-01

    Disruptive events, both natural and man-made, can have widespread impacts on both natural systems and lifeline infrastructure networks leading to the loss of biodiversity and essential functionality, respectively. Projected sea-level rise and climate change can further increase the frequency and severity of large-scale floods on urban-coastal megacities. Nevertheless, Failure in infrastructure systems can trigger cascading impacts on dependent ecosystems, and vice-versa. An important consideration in the behavior of the isolated networks and inter-connected networks following disruptive events is their resilience, or the ability of the network to "bounce back" to a pre-disaster state. Conventional risk analysis and subsequent risk management frameworks have focused on identifying the components' vulnerability and strengthening of the isolated components to withstand these disruptions. But high interconnectedness of these systems, and evolving nature of hazards, particularly in the context of climate extremes, make the component level analysis unrealistic. In this study, we discuss the complex network-based resilience framework to understand fragility and recovery strategies for infrastructure systems impacted by climate-related hazards. We extend the proposed framework to assess the response of ecological networks to multiple species loss and design the restoration management framework to identify the most efficient restoration sequence of species, which can potentially lead to disproportionate gains in biodiversity.

  4. Infrastructural intelligence: Contemporary entanglements between neuroscience and AI.

    PubMed

    Bruder, Johannes

    2017-01-01

    In this chapter, I reflect on contemporary entanglements between artificial intelligence and the neurosciences by tracing the development of Google's recent DeepMind algorithms back to their roots in neuroscientific studies of episodic memory and imagination. Google promotes a new form of "infrastructural intelligence," which excels by constantly reassessing its cognitive architecture in exchange with a cloud of data that surrounds it, and exhibits putatively human capacities such as intuition. I argue that such (re)alignments of biological and artificial intelligence have been enabled by a paradigmatic infrastructuralization of the brain in contemporary neuroscience. This infrastructuralization is based in methodologies that epistemically liken the brain to complex systems of an entirely different scale (i.e., global logistics) and has given rise to diverse research efforts that target the neuronal infrastructures of higher cognitive functions such as empathy and creativity. What is at stake in this process is no less than the shape of brains to come and a revised understanding of the intelligent and creative social subject. © 2017 Elsevier B.V. All rights reserved.

  5. Advanced Materials, Technologies, and Complex Systems Analyses: Emerging Opportunities to Enhance Urban Water Security.

    PubMed

    Zodrow, Katherine R; Li, Qilin; Buono, Regina M; Chen, Wei; Daigger, Glen; Dueñas-Osorio, Leonardo; Elimelech, Menachem; Huang, Xia; Jiang, Guibin; Kim, Jae-Hong; Logan, Bruce E; Sedlak, David L; Westerhoff, Paul; Alvarez, Pedro J J

    2017-09-19

    Innovation in urban water systems is required to address the increasing demand for clean water due to population growth and aggravated water stress caused by water pollution, aging infrastructure, and climate change. Advances in materials science, modular water treatment technologies, and complex systems analyses, coupled with the drive to minimize the energy and environmental footprints of cities, provide new opportunities to ensure a resilient and safe water supply. We present a vision for enhancing efficiency and resiliency of urban water systems and discuss approaches and research needs for overcoming associated implementation challenges.

  6. Maritime Cyber Security University Research: Phase 1

    DTIC Science & Technology

    2016-05-01

    the global economy . The vulnerabilities associated with reliance on digital systems in the maritime environment must be continuously examined. System...Report: Modern maritime systems are highly complex digital systems to ensure the safety and efficient operation of the shipping traffic so vital to...entrances to our " digital ports" and work to develop practical cyber security solutions to protect the nation’s maritime infrastructure. 17. Key

  7. The Social Progress Index in International Business Site Selection: Three Case Studies

    ERIC Educational Resources Information Center

    Pate, Sandra K.

    2016-01-01

    International businesses face a difficult task when trying to decide where to place or expand a business that could be located anywhere in the world. Each country is a complex system of human capabilities, technical systems, [infrastructure bases, laws, cultures and economic systems. How can a company know which country is best for it today, and…

  8. Transportation Infrastructure: Central Artery/Tunnel Project Faces Continued Financial Uncertainties

    DOT National Transportation Integrated Search

    1996-05-01

    At a cost of over $1 billion a mile, the Central Artery/Tunnel project - an Interstate Highway System project in Boston, Massachusetts - is one of the largest, most complex, and most expensive highway construction projects ever undertaken. In respons...

  9. Efficiency vs. Security: Information Technology Consolidations - Resilience, Complexity, and Monoculture

    DTIC Science & Technology

    infrastructure. This may result in vulnerabilities not typically considered by policymakers, due to concentration and homogenization of critical...Resilience of a system is counter-proportional to the product of vulnerability and spectral radius; therefore, any increase in vulnerability, spectral

  10. On modeling complex interplay in small-scale self-organized socio-hydrological systems

    NASA Astrophysics Data System (ADS)

    Muneepeerakul, Rachata

    2017-04-01

    Successful and sustainable socio-hydrological systems, as in any coupled natural human-systems, require effective governance, which depends on the existence of proper infrastructure (both hard and soft). Recent work has addressed systems in which resource users and the organization responsible for maintaining the infrastructure are separate entities. However, many socio-hydrological systems, especially in developing countries, are small and without such formal division of labor; rather, such division of labor typically arises from self-organization within the population. In this work, we modify and mathematically operationalize a conceptual framework by developing a system of differential equations that capture the strategic behavior within such a self-organized population, its interplay with infrastructure characteristics and hydrological dynamics, and feedbacks between these elements. The model yields a number of insightful conditions related to long-term sustainability and collapse of the socio-hydrological system in the form of relationships between biophysical and social factors. These relationships encapsulate nonlinear interactions of these factors. The modeling framework is grounded in a solid conceptual foundation upon which additional modifications and realism can be built for potential reconciliation between socio-hydrology with other related fields and further applications.

  11. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    NASA Astrophysics Data System (ADS)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt; Larson, Krista; Sfiligoi, Igor; Rynge, Mats

    2014-06-01

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared over the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by "Big Data" will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.

  12. Cloud Bursting with GlideinWMS: Means to satisfy ever increasing computing needs for Scientific Workflows

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mhashilkar, Parag; Tiradani, Anthony; Holzman, Burt

    Scientific communities have been in the forefront of adopting new technologies and methodologies in the computing. Scientific computing has influenced how science is done today, achieving breakthroughs that were impossible to achieve several decades ago. For the past decade several such communities in the Open Science Grid (OSG) and the European Grid Infrastructure (EGI) have been using GlideinWMS to run complex application workflows to effectively share computational resources over the grid. GlideinWMS is a pilot-based workload management system (WMS) that creates on demand, a dynamically sized overlay HTCondor batch system on grid resources. At present, the computational resources shared overmore » the grid are just adequate to sustain the computing needs. We envision that the complexity of the science driven by 'Big Data' will further push the need for computational resources. To fulfill their increasing demands and/or to run specialized workflows, some of the big communities like CMS are investigating the use of cloud computing as Infrastructure-As-A-Service (IAAS) with GlideinWMS as a potential alternative to fill the void. Similarly, communities with no previous access to computing resources can use GlideinWMS to setup up a batch system on the cloud infrastructure. To enable this, the architecture of GlideinWMS has been extended to enable support for interfacing GlideinWMS with different Scientific and commercial cloud providers like HLT, FutureGrid, FermiCloud and Amazon EC2. In this paper, we describe a solution for cloud bursting with GlideinWMS. The paper describes the approach, architectural changes and lessons learned while enabling support for cloud infrastructures in GlideinWMS.« less

  13. Designing Freshwater Resilience for the Mexico City Metropolitan Area

    NASA Astrophysics Data System (ADS)

    Freeman, S.; Wi, S.; Brown, C.

    2017-12-01

    There are few places in the world where the water management challenges associated with global urbanization are as fully visible as in the Greater Mexico City Metropolitan Area (MCMA). MCMA has a population of 22 million of which only 82% have daily water provision and this figure is projected by local agencies to decrease drastically in the next decade due to population growth, infrastructure degradation and climate change. The city is served by a massive water delivery system, consisting of complex network of infrastructure in the surrounding basins that provides about 40% of the supply for MCMA and is characterized by increasing land use change and competition for water. The remaining 60% of MCMA's water is sourced internally from already depleted groundwater resources whose exploitation also results in significant subsidence throughout the city, further damaging already degraded infrastructure. Consequently, there is interest and need for investments that improve the performance of the freshwater delivery system, including local resources and connected basins, in the face of change and shocks that can be only partially anticipated. The quest for such resilience is a common theme in urban infrastructure design yet practical approaches for achieving it remain nascent. In this study, we use MCMA and the Cutzamala Water supply system to demonstrate a quantitative framework to evaluate investment strategies which seek resilience for the water supply system of MCMA. Multiobjective optimization and decisions under deep uncertainty approaches are used to evaluate the best performing investment portfolios across different resilience performance metrics which encompass social equity, environmental and economic objectives. This analysis shows dynamic system responses that result from different investment portfolios, elucidating difficult planning and management decisions around tradeoffs between allocations as well as performance metrics (e.g short period of total failure vs. prolonged partial service). Finally, novel data visualizations are used to translate complexities of the study results into actionable information for decision makers.

  14. An Overview of the Distributed Space Exploration Simulation (DSES) Project

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Chung, Victoria I.; Blum, Michael G.; Bowman, James D.

    2007-01-01

    This paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which investigates technologies, and processes related to integrated, distributed simulation of complex space systems in support of NASA's Exploration Initiative. In particular, it describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. With regard to network infrastructure, DSES is developing a Distributed Simulation Network for use by all NASA centers. With regard to software, DSES is developing software models, tools and procedures that streamline distributed simulation development and provide an interoperable infrastructure for agency-wide integrated simulation. Finally, with regard to simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper presents the current status and plans for these three areas, including examples of specific simulations.

  15. URBAN-NET: A Network-based Infrastructure Monitoring and Analysis System for Emergency Management and Public Safety

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Sangkeun; Chen, Liangzhe; Duan, Sisi

    Abstract Critical Infrastructures (CIs) such as energy, water, and transportation are complex networks that are crucial for sustaining day-to-day commodity flows vital to national security, economic stability, and public safety. The nature of these CIs is such that failures caused by an extreme weather event or a man-made incident can trigger widespread cascading failures, sending ripple effects at regional or even national scales. To minimize such effects, it is critical for emergency responders to identify existing or potential vulnerabilities within CIs during such stressor events in a systematic and quantifiable manner and take appropriate mitigating actions. We present here amore » novel critical infrastructure monitoring and analysis system named URBAN-NET. The system includes a software stack and tools for monitoring CIs, pre-processing data, interconnecting multiple CI datasets as a heterogeneous network, identifying vulnerabilities through graph-based topological analysis, and predicting consequences based on what-if simulations along with visualization. As a proof-of-concept, we present several case studies to show the capabilities of our system. We also discuss remaining challenges and future work.« less

  16. Lowering Entry Barriers for Multidisciplinary Cyber(e)-Infrastructures

    NASA Astrophysics Data System (ADS)

    Nativi, S.

    2012-04-01

    Multidisciplinarity is more and more important to study the Earth System and address Global Changes. To achieve that, multidisciplinary cyber(e)-infrastructures are an important instrument. In the last years, several European, US and international initiatives have been started to carry out multidisciplinary infrastructures, including: the Spatial Information in the European Community (INSPIRE), the Global Monitoring for Environment and Security (GMES), the Data Observation Network for Earth (DataOne), and the Global Earth Observation System of Systems (GEOSS). The majority of these initiatives are developing service-based digital infrastructures asking scientific Communities (i.e. disciplinary Users and data Producers) to implement a set of standards for information interoperability. For scientific Communities, this has represented an entry barrier which has proved to be high, in several cases. In fact, both data Producers and Users do not seem to be willing to invest precious resources to become expert on interoperability solutions -on the contrary, they are focused on developing disciplinary and thematic capacities. Therefore, an important research topic is lowering entry barriers for joining multidisciplinary cyber(e)-Infrastructures. This presentation will introduce a new approach to achieve multidisciplinary interoperability underpinning multidisciplinary infrastructures and lowering the present entry barriers for both Users and data Producers. This is called the Brokering approach: it extends the service-based paradigm by introducing a new a Brokering layer or cloud which is in charge of managing all the interoperability complexity (e.g. data discovery, access, and use) thus easing Users' and Producers' burden. This approach was successfully experimented in the framework of several European FP7 Projects and in GEOSS.

  17. Prerequisites for Setting Up Management System in Municipal Retail Trade

    ERIC Educational Resources Information Center

    Suraeva, Maria O.; Grigoryants, Igor A.; Karpova, Galina A.; Khoreva, Lyubov V.; Schreyer, Alexander V.; Sirotkin, Victor A.

    2016-01-01

    The relevance of the research problem Urban district, management, trade, sales network is determined by the number of complex problems that exist in present Samara municipal retail trade system, which is manifested in the lack of regulation, a glut of sales area, and poorly developed infrastructure. The purpose of this article is to form a…

  18. Overview of Infrastructure Science and Analysis for Homeland Security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Backhaus, Scott N.

    This presentation offers an analysis of infrastructure science with goals to provide third-party independent science based input into complex problems of national concern and to use scientific analysis to "turn down the noise" around complex problems.

  19. Epidemic modeling in complex realities.

    PubMed

    Colizza, Vittoria; Barthélemy, Marc; Barrat, Alain; Vespignani, Alessandro

    2007-04-01

    In our global world, the increasing complexity of social relations and transport infrastructures are key factors in the spread of epidemics. In recent years, the increasing availability of computer power has enabled both to obtain reliable data allowing one to quantify the complexity of the networks on which epidemics may propagate and to envision computational tools able to tackle the analysis of such propagation phenomena. These advances have put in evidence the limits of homogeneous assumptions and simple spatial diffusion approaches, and stimulated the inclusion of complex features and heterogeneities relevant in the description of epidemic diffusion. In this paper, we review recent progresses that integrate complex systems and networks analysis with epidemic modelling and focus on the impact of the various complex features of real systems on the dynamics of epidemic spreading.

  20. AMMO-Prot: amine system project 3D-model finder.

    PubMed

    Navas-Delgado, Ismael; Montañez, Raúl; Pino-Angeles, Almudena; Moya-García, Aurelio A; Urdiales, José Luis; Sánchez-Jiménez, Francisca; Aldana-Montes, José F

    2008-04-25

    Amines are biogenic amino acid derivatives, which play pleiotropic and very important yet complex roles in animal physiology. For many other relevant biomolecules, biochemical and molecular data are being accumulated, which need to be integrated in order to be effective in the advance of biological knowledge in the field. For this purpose, a multidisciplinary group has started an ontology-based system named the Amine System Project (ASP) for which amine-related information is the validation bench. In this paper, we describe the Ontology-Based Mediator developed in the Amine System Project (http://asp.uma.es) using the infrastructure of Semantic Directories, and how this system has been used to solve a case related to amine metabolism-related protein structures. This infrastructure is used to publish and manage not only ontologies and their relationships, but also metadata relating to the resources committed with the ontologies. The system developed is available at http://asp.uma.es/WebMediator.

  1. Applying a Space-Based Security Recovery Scheme for Critical Homeland Security Cyberinfrastructure Utilizing the NASA Tracking and Data Relay (TDRS) Based Space Network

    NASA Technical Reports Server (NTRS)

    Shaw, Harry C.; McLaughlin, Brian; Stocklin, Frank; Fortin, Andre; Israel, David; Dissanayake, Asoka; Gilliand, Denise; LaFontaine, Richard; Broomandan, Richard; Hyunh, Nancy

    2015-01-01

    Protection of the national infrastructure is a high priority for cybersecurity of the homeland. Critical infrastructure such as the national power grid, commercial financial networks, and communications networks have been successfully invaded and re-invaded from foreign and domestic attackers. The ability to re-establish authentication and confidentiality of the network participants via secure channels that have not been compromised would be an important countermeasure to compromise of our critical network infrastructure. This paper describes a concept of operations by which the NASA Tracking and Data Relay (TDRS) constellation of spacecraft in conjunction with the White Sands Complex (WSC) Ground Station host a security recovery system for re-establishing secure network communications in the event of a national or regional cyberattack. Users would perform security and network restoral functions via a Broadcast Satellite Service (BSS) from the TDRS constellation. The BSS enrollment only requires that each network location have a receive antenna and satellite receiver. This would be no more complex than setting up a DIRECTTV-like receiver at each network location with separate network connectivity. A GEO BSS would allow a mass re-enrollment of network nodes (up to nationwide) simultaneously depending upon downlink characteristics. This paper details the spectrum requirements, link budget, notional assets and communications requirements for the scheme. It describes the architecture of such a system and the manner in which it leverages off of the existing secure infrastructure which is already in place and managed by the NASAGSFC Space Network Project.

  2. Microbially influenced corrosion communities associated with fuel-grade ethanol environments.

    PubMed

    Williamson, Charles H D; Jain, Luke A; Mishra, Brajendra; Olson, David L; Spear, John R

    2015-08-01

    Microbially influenced corrosion (MIC) is a costly problem that impacts hydrocarbon production and processing equipment, water distribution systems, ships, railcars, and other types of metallic infrastructure. In particular, MIC is known to cause considerable damage to hydrocarbon fuel infrastructure including production, transportation, and storage systems, often times with catastrophic environmental contamination results. As the production and use of alternative fuels such as fuel-grade ethanol (FGE) increase, it is important to consider MIC of engineered materials exposed to these "newer fuels" as they enter existing infrastructure. Reports of suspected MIC in systems handling FGE and water prompted an investigation of the microbial diversity associated with these environments. Small subunit ribosomal RNA gene pyrosequencing surveys indicate that acetic-acid-producing bacteria (Acetobacter spp. and Gluconacetobacter spp.) are prevalent in environments exposed to FGE and water. Other microbes previously implicated in corrosion, such as sulfate-reducing bacteria and methanogens, were also identified. In addition, acetic-acid-producing microbes and sulfate-reducing microbes were cultivated from sampled environments containing FGE and water. Results indicate that complex microbial communities form in these FGE environments and could cause significant MIC-related damage that may be difficult to control. How to better manage these microbial communities will be a defining aspect of improving mitigation of global infrastructure corrosion.

  3. A network-based framework for assessing infrastructure resilience: a case study of the London metro system.

    PubMed

    Chopra, Shauhrat S; Dillon, Trent; Bilec, Melissa M; Khanna, Vikas

    2016-05-01

    Modern society is increasingly dependent on the stability of a complex system of interdependent infrastructure sectors. It is imperative to build resilience of large-scale infrastructures like metro systems for addressing the threat of natural disasters and man-made attacks in urban areas. Analysis is needed to ensure that these systems are capable of withstanding and containing unexpected perturbations, and develop heuristic strategies for guiding the design of more resilient networks in the future. We present a comprehensive, multi-pronged framework that analyses information on network topology, spatial organization and passenger flow to understand the resilience of the London metro system. Topology of the London metro system is not fault tolerant in terms of maintaining connectivity at the periphery of the network since it does not exhibit small-world properties. The passenger strength distribution follows a power law, suggesting that while the London metro system is robust to random failures, it is vulnerable to disruptions on a few critical stations. The analysis further identifies particular sources of structural and functional vulnerabilities that need to be mitigated for improving the resilience of the London metro network. The insights from our framework provide useful strategies to build resilience for both existing and upcoming metro systems. © 2016 The Author(s).

  4. An Infrastructure for UML-Based Code Generation Tools

    NASA Astrophysics Data System (ADS)

    Wehrmeister, Marco A.; Freitas, Edison P.; Pereira, Carlos E.

    The use of Model-Driven Engineering (MDE) techniques in the domain of distributed embedded real-time systems are gain importance in order to cope with the increasing design complexity of such systems. This paper discusses an infrastructure created to build GenERTiCA, a flexible tool that supports a MDE approach, which uses aspect-oriented concepts to handle non-functional requirements from embedded and real-time systems domain. GenERTiCA generates source code from UML models, and also performs weaving of aspects, which have been specified within the UML model. Additionally, this paper discusses the Distributed Embedded Real-Time Compact Specification (DERCS), a PIM created to support UML-based code generation tools. Some heuristics to transform UML models into DERCS, which have been implemented in GenERTiCA, are also discussed.

  5. Data distribution service-based interoperability framework for smart grid testbed infrastructure

    DOE PAGES

    Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.

    2016-03-02

    This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less

  6. Life-cycle energy implications of different residential settings : recognizing buildings, travel, and public infrastructure.

    DOT National Transportation Integrated Search

    2013-08-01

    The built environment can be used to influence travel demand, but very few studies consider the relative energy : savings of such policies in context of a complex urban system. This analysis quantifies the day-to-day and embodied : energy consumption...

  7. Space Weather Effects on Spacecraft Systems

    NASA Technical Reports Server (NTRS)

    Barth, Janet L.

    2003-01-01

    Space-based systems are developing into critical infrastructure required to support the quality of life on Earth. Hence, spacecraft reliability is a serious issue that is complicated by exposure to the space environment. Complex mission designs along with rapidly evolving technologies have outpaced efforts to accommodate detrimental space environment impacts on systems. Hazardous space environments, the effects on systems, and the accommodation of the effects are described with a focus on the need to predict space environments.

  8. Influence of governance structure on green stormwater infrastructure investment

    USGS Publications Warehouse

    Hopkins, Kristina G.; Grimm, Nancy B.; York, Abigail M.

    2018-01-01

    Communities are faced with the challenge of meeting regulatory requirements mandating reductions in water pollution from stormwater and combined sewer overflows (CSO). Green stormwater infrastructure and gray stormwater infrastructure are two types of water management strategies communities can use to address water pollution. In this study, we used long-term control plans from 25 U.S. cities to synthesize: the types of gray and green infrastructure being used by communities to address combined sewer overflows; the types of goals set; biophysical characteristics of each city; and factors associated with the governance of stormwater management. These city characteristics were then used to identify common characteristics of “green leader” cities—those that dedicated >20% of the control plan budget in green infrastructure. Five “green leader” cities were identified: Milwaukee, WI, Philadelphia, PA, Syracuse, NY, New York City, NY, and Buffalo, NY. These five cities had explicit green infrastructure goals targeting the volume of stormwater or percentage of impervious cover managed by green infrastructure. Results suggested that the management scale and complexity of the management system are less important factors than the ability to harness a “policy window” to integrate green infrastructure into control plans. Two case studies—Philadelphia, PA, and Milwaukee, WI—indicated that green leader cities have a long history of building momentum for green infrastructure through a series of phases from experimentation, demonstration, and finally—in the case of Philadelphia—a full transition in the approach used to manage CSOs.

  9. Application of the unified mask data format based on OASIS for VSB EB writers

    NASA Astrophysics Data System (ADS)

    Suzuki, Toshio; Hirumi, Junji; Suga, Osamu

    2005-11-01

    Mask data preparation (MDP) for modern mask manufacturing becomes a complex process because many kinds of EB data formats are used in mask makers and EB data files continue to become bigger by the application of RET. Therefore we developed a unified mask pattern data format named "OASIS.VSB1" and a job deck format named "MALY2" for Variable-Shaped-Beam (VSB) EB writers. OASIS.VSB is the mask pattern data format based on OASISTM 3 (Open Artwork System Interchange Standard) released as a successive format to GDSII by SEMI. We defined restrictions on OASIS for VSB EB writers to input OASIS.VSB data directly to VSB EB writers just like the native EB data. OASIS.VSB specification and MALY specification have been disclosed to the public and will become a SEMI standard in the near future. We started to promote the spread activities of OASIS.VSB and MALY. For practical use of OASIS.VSB and MALY, we are discussing the infrastructure system of MDP processing using OASIS.VSB and MALY with mask makers, VSB EB makers, and device makers. We are also discussing the tools for the infrastructure system with EDA vendors. The infrastructure system will enable TAT, the man-hour, and the cost in MDP to be reduced. In this paper, we propose the plan of the infrastructure system of MDP processing using OASIS.VSB and MALY as an application of OASIS.VSB and MALY.

  10. Changing Perceptions of Flooding and Stormwater as a Driver of Urban Hydrology and Biogeochemistry

    NASA Astrophysics Data System (ADS)

    Hale, R. L.

    2015-12-01

    Urbanization can have detrimental impacts on downstream ecosystems due to its effects on hydrological and biogeochemical cycles. In particular, how urban stormwater systems are designed have implications for flood regimes and biogeochemical transformations. Flood and stormwater management paradigms have shifted over time at large scales, but patterns and drivers of local stormwater infrastructure designs are unknown. We describe patterns of infrastructure design and use over the 20th century in three cities along an urbanization gradient in Utah: Salt Lake, Logan, and Heber City. To understand changes in stormwater management paradigms we conducted a historical media content analysis of newspaper articles related to flooding and stormwater in Salt Lake City from 1900 to 2012. Stormwater infrastructure design varied spatially and temporally, both within and among cities. All three cities transitioned from agriculture to urban land use, and legacies were evident in the use of agricultural canals for stormwater conveyance. Salt Lake City infrastructure transitioned from centralized storm sewers during early urbanization to decentralized detention systems in the 1970's. In contrast, newer cities, Logan and Heber, saw parallel increases in conveyance and detention systems with urbanization. The media analysis revealed significant changes in flood and stormwater management paradigms over the 20th century that were driven by complex factors including top-down regulations, local disturbances, and funding constraints. Early management paradigms focused on infrastructural solutions to address problems with private and public property damage, whereas more recent paradigms focus on behavioral solutions to flooding and green infrastructure solutions to prevent negative impacts of urban stormwater on local ecosystems. Changes in human perceptions of the environment can affect how we design urban ecosystems, with important implications for ecological functions.

  11. IT Requirements Integration in High-Rise Construction Design Projects

    NASA Astrophysics Data System (ADS)

    Levina, Anastasia; Ilin, Igor; Esedulaev, Rustam

    2018-03-01

    The paper discusses the growing role of IT support for the operation of modern high-rise buildings, due to the complexity of managing engineering systems of buildings and the requirements of consumers for the IT infrastructure. The existing regulatory framework for the development of design documentation for construction, including high-rise buildings, is analyzed, and the lack of coherence in the development of this documentation with the requirements for the creation of an automated management system and the corresponding IT infrastructure is stated. The lack of integration between these areas is the cause of delays and inefficiencies both at the design stage and at the stage of putting the building into operation. The paper proposes an approach to coordinate the requirements of the IT infrastructure of high-rise buildings and design documentation for construction. The solution to this problem is possible within the framework of the enterprise architecture concept by coordinating the requirements of the IT and technological layers at the design stage of the construction.

  12. Uncovering hidden heterogeneity: Geo-statistical models illuminate the fine scale effects of boating infrastructure on sediment characteristics and contaminants.

    PubMed

    Hedge, L H; Dafforn, K A; Simpson, S L; Johnston, E L

    2017-06-30

    Infrastructure associated with coastal communities is likely to not only directly displace natural systems, but also leave environmental footprints' that stretch over multiple scales. Some coastal infrastructure will, there- fore, generate a hidden layer of habitat heterogeneity in sediment systems that is not immediately observable in classical impact assessment frameworks. We examine the hidden heterogeneity associated with one of the most ubiquitous coastal modifications; dense swing moorings fields. Using a model based geo-statistical framework we highlight the variation in sedimentology throughout mooring fields and reference locations. Moorings were correlated with patches of sediment with larger particle sizes, and associated metal(loid) concentrations in these patches were depressed. Our work highlights two important ideas i) mooring fields create a mosaic of habitat in which contamination decreases and grain sizes increase close to moorings, and ii) model- based frameworks provide an information rich, easy-to-interpret way to communicate complex analyses to stakeholders. Crown Copyright © 2017. Published by Elsevier Ltd. All rights reserved.

  13. Exploratory of society

    NASA Astrophysics Data System (ADS)

    Cederman, L.-E.; Conte, R.; Helbing, D.; Nowak, A.; Schweitzer, F.; Vespignani, A.

    2012-11-01

    A huge flow of quantitative social, demographic and behavioral data is becoming available that traces the activities and interactions of individuals, social patterns, transportation infrastructures and travel fluxes. This has caused, together with innovative computational techniques and methods for modeling social actions in hybrid (natural and artificial) societies, a qualitative change in the ways we model socio-technical systems. For the first time, society can be studied in a comprehensive fashion that addresses social and behavioral complexity. In other words we are in the position to envision the development of large data and computational cyber infrastructure defining an exploratory of society that provides quantitative anticipatory, explanatory and scenario analysis capabilities ranging from emerging infectious disease to conflict and crime surges. The goal of the exploratory of society is to provide the basic infrastructure embedding the framework of tools and knowledge needed for the design of forecast/anticipatory/crisis management approaches to socio technical systems, supporting future decision making procedures by accelerating the scientific cycle that goes from data generation to predictions.

  14. A semi-automated workflow for biodiversity data retrieval, cleaning, and quality control

    PubMed Central

    Mathew, Cherian; Obst, Matthias; Vicario, Saverio; Haines, Robert; Williams, Alan R.; de Jong, Yde; Goble, Carole

    2014-01-01

    Abstract The compilation and cleaning of data needed for analyses and prediction of species distributions is a time consuming process requiring a solid understanding of data formats and service APIs provided by biodiversity informatics infrastructures. We designed and implemented a Taverna-based Data Refinement Workflow which integrates taxonomic data retrieval, data cleaning, and data selection into a consistent, standards-based, and effective system hiding the complexity of underlying service infrastructures. The workflow can be freely used both locally and through a web-portal which does not require additional software installations by users. PMID:25535486

  15. Enabling technologies for transition to utilization of space-based resources and operations

    NASA Technical Reports Server (NTRS)

    Sadin, S. R.; Litty, J. D.

    1985-01-01

    This article explores a potential scenario for the further development of space infrastructure resources and operations management. It is a scenario that transitions from the current ground-based system to an architecture that is predominantly space-based by exploiting key mission systems in an operational support role. If this view is accurate, an examination of the range of potential infrastructure elements and how they might interact in a maximally productive space-based operations complex is needed, innovative technologies beyond the current Shuttle and Space Station legacy need to be identified, and research programs pursued. Development of technologies within the areas of telerobotics, machine autonomy, human autonomy, in-space manufacturing and construction, propulsion and energy is discussed.

  16. Exploring Complex Systems Aspects of Blackout Risk and Mitigation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Newman, David E; Carreras, Benjamin A; Lynch, Vickie E

    2011-01-01

    Electric power transmission systems are a key infrastructure, and blackouts of these systems have major consequences for the economy and national security. Analyses of blackout data suggest that blackout size distributions have a power law form over much of their range. This result is an indication that blackouts behave as a complex dynamical system. We use a simulation of an upgrading power transmission system to investigate how these complex system dynamics impact the assessment and mitigation of blackout risk. The mitigation of failures in complex systems needs to be approached with care. The mitigation efforts can move the system tomore » a new dynamic equilibrium while remaining near criticality and preserving the power law region. Thus, while the absolute frequency of blackouts of all sizes may be reduced, the underlying forces can still cause the relative frequency of large blackouts to small blackouts to remain the same. Moreover, in some cases, efforts to mitigate small blackouts can even increase the frequency of large blackouts. This result occurs because the large and small blackouts are not mutually independent, but are strongly coupled by the complex dynamics.« less

  17. Information Infrastructure, Information Environments, and Long-Term Collaboration

    NASA Astrophysics Data System (ADS)

    Baker, K. S.; Pennington, D. D.

    2009-12-01

    Information infrastructure that supports collaborative science is a complex system of people, organizational arrangements, and tools that require co-management. Contemporary studies are exploring how to establish and characterize effective collaborative information environments. Collaboration depends on the flow of information across the human and technical system components through mechanisms that create linkages, both conceptual and technical. This transcends the need for requirements solicitation and usability studies, highlighting synergistic interactions between humans and technology that can lead to emergence of group level cognitive properties. We consider the ramifications of placing priority on establishing new metaphors and new types of learning environments located near-to-data-origin for the field sciences. In addition to changes in terms of participant engagement, there are implications in terms of innovative contributions to the design of information systems and data exchange. While data integration occurs in the minds of individual participants, it may be facilitated by collaborative thinking and community infrastructure. Existing learning frameworks - from Maslow’s hierarchy of needs to organizational learning - require modification and extension if effective approaches to decentralized information management and systems design are to emerge. Case studies relating to data integration include ecological community projects: development of cross-disciplinary conceptual maps and of a community unit registry.

  18. Tips for Ensuring Successful Software Implementation

    ERIC Educational Resources Information Center

    Weathers, Robert

    2013-01-01

    Implementing an enterprise-level, mission-critical software system is an infrastructure project akin to other sizable projects, such as building a school. It's costly and complex, takes a year or more to complete, requires the collaboration of many different parties, involves uncertainties, results in a long-lived asset requiring ongoing…

  19. Mr. Vetro, a Collective Simulation Cyberlearning Infrastructure for Science Education

    ERIC Educational Resources Information Center

    Ioannidou, Andri; Repenning, Alexander

    2010-01-01

    The comprehension of interdependent complex systems, which is part of state and national standards, is an enormous challenge for learners. In traditional physiology teaching materials, which structure the human body into decoupled subsystems (e.g., respiratory and cardiovascular) isolated in separate chapters, there is a ubiquitous absence of…

  20. Computing and data processing

    NASA Technical Reports Server (NTRS)

    Smarr, Larry; Press, William; Arnett, David W.; Cameron, Alastair G. W.; Crutcher, Richard M.; Helfand, David J.; Horowitz, Paul; Kleinmann, Susan G.; Linsky, Jeffrey L.; Madore, Barry F.

    1991-01-01

    The applications of computers and data processing to astronomy are discussed. Among the topics covered are the emerging national information infrastructure, workstations and supercomputers, supertelescopes, digital astronomy, astrophysics in a numerical laboratory, community software, archiving of ground-based observations, dynamical simulations of complex systems, plasma astrophysics, and the remote control of fourth dimension supercomputers.

  1. Data discovery and data processing for environmental research infrastructures

    NASA Astrophysics Data System (ADS)

    Los, Wouter; Beranzoli, Laura; Corriero, Giuseppe; Cossu, Roberto; Fiore, Nicola; Hardisty, Alex; Legré, Yannick; Pagano, Pasquale; Puglisi, Giuseppe; Sorvari, Sanna; Turunen, Esa

    2013-04-01

    The European ENVRI project (Common operations of Environmental Research Infrastructures) is addressing common ICT solutions for the research infrastructures as selected in the ESFRI Roadmap. More specifically, the project is looking for solutions that will assist interdisciplinary users who want to benefit from the data and other services of more than a single research infrastructure. However, the infrastructure architectures, the data, data formats, scales and granularity are very different. Indeed, they deal with diverse scientific disciplines, from plate tectonics, the deep sea, sea and land surface up to atmosphere and troposphere, from the dead to the living environment, and with a variety of instruments producing increasingly larger amounts of data. One of the approaches in the ENVRI project is to design a common Reference Model that will serve to promote infrastructure interoperability at the data, technical and service levels. The analysis of the characteristics of the environmental research infrastructures assisted in developing the Reference Model, and which is also an example for comparable infrastructures worldwide. Still, it is for users already now important to have the facilities available for multi-disciplinary data discovery and data processing. The rise of systems research, addressing Earth as a single complex and coupled system is requiring such capabilities. So, another approach in the project is to adapt existing ICT solutions to short term applications. This is being tested for a few study cases. One of these is looking for possible coupled processes following a volcano eruption in the vertical column from deep sea to troposphere. Another one deals with volcano either human impacts on atmospheric and sea CO2 pressure and the implications for sea acidification and marine biodiversity and their ecosystems. And a third one deals with the variety of sensor and satellites data sensing the area around a volcano cone. Preliminary results on these studies will be reported. The common results will assist in shaping more generic solutions to be adopted by the appropriate research infrastructures.

  2. Software Engineering Infrastructure in a Large Virtual Campus

    ERIC Educational Resources Information Center

    Cristobal, Jesus; Merino, Jorge; Navarro, Antonio; Peralta, Miguel; Roldan, Yolanda; Silveira, Rosa Maria

    2011-01-01

    Purpose: The design, construction and deployment of a large virtual campus are a complex issue. Present virtual campuses are made of several software applications that complement e-learning platforms. In order to develop and maintain such virtual campuses, a complex software engineering infrastructure is needed. This paper aims to analyse the…

  3. The High-Performance Computing and Communications program, the national information infrastructure and health care.

    PubMed Central

    Lindberg, D A; Humphreys, B L

    1995-01-01

    The High-Performance Computing and Communications (HPCC) program is a multiagency federal effort to advance the state of computing and communications and to provide the technologic platform on which the National Information Infrastructure (NII) can be built. The HPCC program supports the development of high-speed computers, high-speed telecommunications, related software and algorithms, education and training, and information infrastructure technology and applications. The vision of the NII is to extend access to high-performance computing and communications to virtually every U.S. citizen so that the technology can be used to improve the civil infrastructure, lifelong learning, energy management, health care, etc. Development of the NII will require resolution of complex economic and social issues, including information privacy. Health-related applications supported under the HPCC program and NII initiatives include connection of health care institutions to the Internet; enhanced access to gene sequence data; the "Visible Human" Project; and test-bed projects in telemedicine, electronic patient records, shared informatics tool development, and image systems. PMID:7614116

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Youssef, Tarek A.; Elsayed, Ahmed T.; Mohammed, Osama A.

    This study presents the design and implementation of a communication and control infrastructure for smart grid operation. The proposed infrastructure enhances the reliability of the measurements and control network. The advantages of utilizing the data-centric over message-centric communication approach are discussed in the context of smart grid applications. The data distribution service (DDS) is used to implement a data-centric common data bus for the smart grid. This common data bus improves the communication reliability, enabling distributed control and smart load management. These enhancements are achieved by avoiding a single point of failure while enabling peer-to-peer communication and an automatic discoverymore » feature for dynamic participating nodes. The infrastructure and ideas presented in this paper were implemented and tested on the smart grid testbed. A toolbox and application programing interface for the testbed infrastructure are developed in order to facilitate interoperability and remote access to the testbed. This interface allows control, monitoring, and performing of experiments remotely. Furthermore, it could be used to integrate multidisciplinary testbeds to study complex cyber-physical systems (CPS).« less

  5. Effects of road infrastructure and traffic complexity in speed adaptation behaviour of distracted drivers.

    PubMed

    Oviedo-Trespalacios, Oscar; Haque, Md Mazharul; King, Mark; Washington, Simon

    2017-04-01

    The use of mobile phones while driving remains a major human factors issue in the transport system. A significant safety concern is that driving while distracted by a mobile phone potentially modifies the driving speed leading to conflicts with other road users and consequently increases crash risk. However, the lack of systematic knowledge of the mechanisms involved in speed adaptation of distracted drivers constrains the explanation and modelling of the extent of this phenomenon. The objective of this study was to investigate speed adaptation of distracted drivers under varying road infrastructure and traffic complexity conditions. The CARRS-Q Advanced Driving Simulator was used to test participants on a simulated road with different traffic conditions, such as free flow traffic along straight roads, driving in urbanized areas, and driving in heavy traffic along suburban roads. Thirty-two licensed young drivers drove the simulator under three phone conditions: baseline (no phone conversation), hands-free and handheld phone conversations. To understand the relationships between distraction, road infrastructure and traffic complexity, speed adaptation calculated as the deviation of driving speed from the posted speed limit was modelled using a decision tree. The identified groups of road infrastructure and traffic characteristics from the decision tree were then modelled with a Generalized Linear Mixed Model (GLMM) with repeated measures to develop inferences about speed adaptation behaviour of distracted drivers. The GLMM also included driver characteristics and secondary task demands as predictors of speed adaptation. Results indicated that complex road environments like urbanization, car-following situations along suburban roads, and curved road alignment significantly influenced speed adaptation behaviour. Distracted drivers selected a lower speed while driving along a curved road or during car-following situations, but speed adaptation was negligible in the presence of high visual cutter, indicating the prioritization of the driving task over the secondary task. Additionally, drivers who scored high on self-reported safe attitudes towards mobile phone usage, and who reported prior involvement in a road traffic crash, selected a lower driving speed in the distracted condition than in the baseline. The results aid in understanding how driving task demands influence speed adaptation of distracted drivers under various road infrastructure and traffic complexity conditions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Precipitation Processes and their Modulation by Synoptic Conditions and Complex Terrain Observed during the GPM Ground Validation Olympic Mountains Experiment (OLYMPEX)

    NASA Astrophysics Data System (ADS)

    McMurdie, L. A.; Houze, R.; Zagrodnik, J.; Rowe, A.; DeHart, J.; Barnes, H.

    2016-12-01

    Successful and sustainable coupling of human societies and natural systems requires effective governance, which depends on the existence of proper infrastructure (both hard and soft). In recent decades, much attention has been paid to what has allowed many small-scale self-organized coupled natural-human systems around the world to persist for centuries, thanks to a large part to the work by Elinor Ostrom and colleagues. In this work, we mathematically operationalize a conceptual framework that is developed based on this body of work by way of a stylized model. The model captures the interplay between replicator dynamics within the population, dynamics of natural resources, and threshold characteristics of public infrastructure. The model analysis reveals conditions for long-term sustainability and collapse of the coupled systems as well as other tradeoffs and potential pitfalls in governing these systems.

  7. Pandemic influenza and critical infrastructure dependencies: possible impact on hospitals.

    PubMed

    Itzwerth, Ralf L; Macintyre, C Raina; Shah, Smita; Plant, Aileen J

    2006-11-20

    Hospitals will be particularly challenged when pandemic influenza spreads. Within the health sector in general, existing pandemic plans focus on health interventions to control outbreaks. The critical relationship between the health sector and other sectors is not well understood and addressed. Hospitals depend on critical infrastructure external to the organisation itself. Existing plans do not adequately consider the complexity and interdependency of systems upon which hospitals rely. The failure of one such system can trigger a failure of another, causing cascading breakdowns. Health is only one of the many systems that struggle at maximum capacity during "normal" times, as current business models operate with no or minimal "excess" staff and have become irreducible operations. This makes interconnected systems highly vulnerable to acute disruptions, such as a pandemic. Companies use continuity plans and highly regulated business continuity management to overcome process interruptions. This methodology can be applied to hospitals to minimise the impact of a pandemic.

  8. Integrating Puppet and Gitolite to provide a novel solution for scalable system management at the MPPMU Tier2 centre

    NASA Astrophysics Data System (ADS)

    Delle Fratte, C.; Kennedy, J. A.; Kluth, S.; Mazzaferro, L.

    2015-12-01

    In a grid computing infrastructure tasks such as continuous upgrades, services installations and software deployments are part of an admins daily work. In such an environment tools to help with the management, provisioning and monitoring of the deployed systems and services have become crucial. As experiments such as the LHC increase in scale, the computing infrastructure also becomes larger and more complex. Moreover, today's admins increasingly work within teams that share responsibilities and tasks. Such a scaled up situation requires tools that not only simplify the workload on administrators but also enable them to work seamlessly in teams. In this paper will be presented our experience from managing the Max Planck Institute Tier2 using Puppet and Gitolite in a cooperative way to help the system administrator in their daily work. In addition to describing the Puppet-Gitolite system, best practices and customizations will also be shown.

  9. Security Policy and Infrastructure in the Context of a Multi-Centeric Information System Dedicated to Autism Spectrum Disorder.

    PubMed

    Ben Said, Mohamed; Robel, Laurence; Golse, Bernard; Jais, Jean Philippe

    2017-01-01

    Autism spectrum disorders (ASD) are complex neuro-developmental disorders affecting children in their early age. The diagnosis of ASD relies on multidisciplinary investigations, in psychiatry, neurology, genetics, electrophysiology, neuro-imagery, audiology and ophthalmology. In order to support clinicians, researchers and public health decision makers, we designed an information system dedicated to ASD, called TEDIS. TEDIS was designed to manage systematic, exhaustive and continuous multi-centric patient data collection via secured Internet connections. In this paper, we present the security policy and security infrastructure we developed to protect ASD' patients' clinical data and patients' privacy. We tested our system on 359 ASD patient records in a local secured intranet environment and showed that the security system is functional, with a consistent, transparent and safe encrypting-decrypting behavior. It is ready for deployment in the nine ASD expert assessment centers in the Ile de France district.

  10. Evolving a lingua franca and associated software infrastructure for computational systems biology: the Systems Biology Markup Language (SBML) project.

    PubMed

    Hucka, M; Finney, A; Bornstein, B J; Keating, S M; Shapiro, B E; Matthews, J; Kovitz, B L; Schilstra, M J; Funahashi, A; Doyle, J C; Kitano, H

    2004-06-01

    Biologists are increasingly recognising that computational modelling is crucial for making sense of the vast quantities of complex experimental data that are now being collected. The systems biology field needs agreed-upon information standards if models are to be shared, evaluated and developed cooperatively. Over the last four years, our team has been developing the Systems Biology Markup Language (SBML) in collaboration with an international community of modellers and software developers. SBML has become a de facto standard format for representing formal, quantitative and qualitative models at the level of biochemical reactions and regulatory networks. In this article, we summarise the current and upcoming versions of SBML and our efforts at developing software infrastructure for supporting and broadening its use. We also provide a brief overview of the many SBML-compatible software tools available today.

  11. Interdependence and dynamics of essential services in an extensive risk context: a case study in Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Sword-Daniels, V. L.; Rossetto, T.; Wilson, T. M.; Sargeant, S.

    2015-05-01

    The essential services that support urban living are complex and interdependent, and their disruption in disasters directly affects society. Yet there are few empirical studies to inform our understanding of the vulnerabilities and resilience of complex infrastructure systems in disasters. This research takes a systems thinking approach to explore the dynamic behaviour of a network of essential services, in the presence and absence of volcanic ashfall hazards in Montserrat, West Indies. Adopting a case study methodology and qualitative methods to gather empirical data, we centre the study on the healthcare system and its interconnected network of essential services. We identify different types of relationship between sectors and develop a new interdependence classification system for analysis. Relationships are further categorised by hazard conditions, for use in extensive risk contexts. During heightened volcanic activity, relationships between systems transform in both number and type: connections increase across the network by 41%, and adapt to increase cooperation and information sharing. Interconnections add capacities to the network, increasing the resilience of prioritised sectors. This in-depth and context-specific approach provides a new methodology for studying the dynamics of infrastructure interdependence in an extensive risk context, and can be adapted for use in other hazard contexts.

  12. Interdependence and dynamics of essential services in an extensive risk context: a case study in Montserrat, West Indies

    NASA Astrophysics Data System (ADS)

    Sword-Daniels, V. L.; Rossetto, T.; Wilson, T. M.; Sargeant, S.

    2015-02-01

    The essential services that support urban living are complex and interdependent, and their disruption in disasters directly affects society. Yet there are few empirical studies to inform our understanding of the vulnerabilities and resilience of complex infrastructure systems in disasters. This research takes a systems thinking approach to explore the dynamic behaviour of a network of essential services, in the presence and absence of volcanic ashfall hazards in Montserrat, West Indies. Adopting a case study methodology and qualitative methods to gather empirical data we centre the study on the healthcare system and its interconnected network of essential services. We identify different types of relationship between sectors and develop a new interdependence classification system for analysis. Relationships are further categorised by hazard condition, for use in extensive risk contexts. During heightened volcanic activity, relationships between systems transform in both number and type: connections increase across the network by 41%, and adapt to increase cooperation and information sharing. Interconnections add capacities to the network, increasing the resilience of prioritised sectors. This in-depth and context-specific approach provides a new methodology for studying the dynamics of infrastructure interdependence in an extensive risk context, and can be adapted for use in other hazard contexts.

  13. Distributed Coding/Decoding Complexity in Video Sensor Networks

    PubMed Central

    Cordeiro, Paulo J.; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality. PMID:22736972

  14. Distributed coding/decoding complexity in video sensor networks.

    PubMed

    Cordeiro, Paulo J; Assunção, Pedro

    2012-01-01

    Video Sensor Networks (VSNs) are recent communication infrastructures used to capture and transmit dense visual information from an application context. In such large scale environments which include video coding, transmission and display/storage, there are several open problems to overcome in practical implementations. This paper addresses the most relevant challenges posed by VSNs, namely stringent bandwidth usage and processing time/power constraints. In particular, the paper proposes a novel VSN architecture where large sets of visual sensors with embedded processors are used for compression and transmission of coded streams to gateways, which in turn transrate the incoming streams and adapt them to the variable complexity requirements of both the sensor encoders and end-user decoder terminals. Such gateways provide real-time transcoding functionalities for bandwidth adaptation and coding/decoding complexity distribution by transferring the most complex video encoding/decoding tasks to the transcoding gateway at the expense of a limited increase in bit rate. Then, a method to reduce the decoding complexity, suitable for system-on-chip implementation, is proposed to operate at the transcoding gateway whenever decoders with constrained resources are targeted. The results show that the proposed method achieves good performance and its inclusion into the VSN infrastructure provides an additional level of complexity control functionality.

  15. Envri Cluster - a Community-Driven Platform of European Environmental Researcher Infrastructures for Providing Common E-Solutions for Earth Science

    NASA Astrophysics Data System (ADS)

    Asmi, A.; Sorvari, S.; Kutsch, W. L.; Laj, P.

    2017-12-01

    European long-term environmental research infrastructures (often referred as ESFRI RIs) are the core facilities for providing services for scientists in their quest for understanding and predicting the complex Earth system and its functioning that requires long-term efforts to identify environmental changes (trends, thresholds and resilience, interactions and feedbacks). Many of the research infrastructures originally have been developed to respond to the needs of their specific research communities, however, it is clear that strong collaboration among research infrastructures is needed to serve the trans-boundary research requires exploring scientific questions at the intersection of different scientific fields, conducting joint research projects and developing concepts, devices, and methods that can be used to integrate knowledge. European Environmental research infrastructures have already been successfully worked together for many years and have established a cluster - ENVRI cluster - for their collaborative work. ENVRI cluster act as a collaborative platform where the RIs can jointly agree on the common solutions for their operations, draft strategies and policies and share best practices and knowledge. Supporting project for the ENVRI cluster, ENVRIplus project, brings together 21 European research infrastructures and infrastructure networks to work on joint technical solutions, data interoperability, access management, training, strategies and dissemination efforts. ENVRI cluster act as one stop shop for multidisciplinary RI users, other collaborative initiatives, projects and programmes and coordinates and implement jointly agreed RI strategies.

  16. A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate

    NASA Astrophysics Data System (ADS)

    Culley, S.; Noble, S.; Yates, A.; Timbs, M.; Westra, S.; Maier, H. R.; Giuliani, M.; Castelletti, A.

    2016-09-01

    Many water resource systems have been designed assuming that the statistical characteristics of future inflows are similar to those of the historical record. This assumption is no longer valid due to large-scale changes in the global climate, potentially causing declines in water resource system performance, or even complete system failure. Upgrading system infrastructure to cope with climate change can require substantial financial outlay, so it might be preferable to optimize existing system performance when possible. This paper builds on decision scaling theory by proposing a bottom-up approach to designing optimal feedback control policies for a water system exposed to a changing climate. This approach not only describes optimal operational policies for a range of potential climatic changes but also enables an assessment of a system's upper limit of its operational adaptive capacity, beyond which upgrades to infrastructure become unavoidable. The approach is illustrated using the Lake Como system in Northern Italy—a regulated system with a complex relationship between climate and system performance. By optimizing system operation under different hydrometeorological states, it is shown that the system can continue to meet its minimum performance requirements for more than three times as many states as it can under current operations. Importantly, a single management policy, no matter how robust, cannot fully utilize existing infrastructure as effectively as an ensemble of flexible management policies that are updated as the climate changes.

  17. Modeling joint restoration strategies for interdependent infrastructure systems.

    PubMed

    Zhang, Chao; Kong, Jingjing; Simonovic, Slobodan P

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems.

  18. Central Pattern Generation and the Motor Infrastructure for Suck, Respiration, and Speech

    ERIC Educational Resources Information Center

    Barlow, Steven M.; Estep, Meredith

    2006-01-01

    The objective of the current report is to review experimental findings on centrally patterned movements and sensory and descending modulation of central pattern generators (CPGs) in a variety of animal and human models. Special emphasis is directed toward speech production muscle systems, including the chest wall and orofacial complex during…

  19. Balancing Good Intentions: Protecting the Privacy of Electronic Health Information

    ERIC Educational Resources Information Center

    McClanahan, Kitty

    2008-01-01

    Electronic information is a vital but complex component in the modern health care system, fueling ongoing efforts to develop a universal electronic health record infrastructure. This innovation creates a substantial tension between two desirable values: the increased quality and utility of patient medical records and the protection of the privacy…

  20. An Ontology Infrastructure for an E-Learning Scenario

    ERIC Educational Resources Information Center

    Guo, Wen-Ying; Chen, De-Ren

    2007-01-01

    Selecting appropriate learning services for a learner from a large number of heterogeneous knowledge sources is a complex and challenging task. This article illustrates and discusses how Semantic Web technologies such as RDF [resource description framework] and ontology can be applied to e-learning systems to help the learner in selecting an…

  1. Enhancing future resilience in urban drainage system: Green versus grey infrastructure.

    PubMed

    Dong, Xin; Guo, Hao; Zeng, Siyu

    2017-11-01

    In recent years, the concept transition from fail-safe to safe-to-fail makes the application of resilience analysis popular in urban drainage systems (UDSs) with various implications and quantifications. However, most existing definitions of UDSs resilience are confined to the severity of flooding, while uncertainties from climate change and urbanization are not considered. In this research, we take into account the functional variety, topological complexity, and disturbance randomness of UDSs and define a new formula of resilience based on three parts of system severity, i.e. social severity affected by urban flooding, environmental severity caused by sewer overflow, and technological severity considering the safe operation of downstream facilities. A case study in Kunming, China is designed to compare the effect of green and grey infrastructure strategies on the enhancement of system resilience together with their costs. Different system configurations with green roofs, permeable pavement and storage tanks are compared by scenario analysis with full consideration of future uncertainties induced by urbanization and climate change. The research contributes to the development of sustainability assessment of urban drainage system with consideration of the resilience of green and grey infrastructure under future change. Finding the response measures with high adaptation across a variety of future scenarios is crucial to establish sustainable urban drainage system in a long term. Copyright © 2017. Published by Elsevier Ltd.

  2. Aeronautical Situational Awareness - Airport Surface

    NASA Technical Reports Server (NTRS)

    Linetsky, Vladimir M.; Ivancic, William D.; Vaden, Karl R.

    2017-01-01

    This paper advocates for a specific design approach, based on simple principals, yet addresses challenges faced by the system engineers when designing complex data and information infrastructure. The document provides guidance for breaking out various work elements in the overall network architecture design, so that communication systems are conceived and effectively realized regardless of their location, size and local specifics. Although targeted at the Global Airspace System (GAS) and National Airspace System (NAS), this framework can be applied to any network-centric architecture.

  3. Artificial intelligence and signal processing for infrastructure assessment

    NASA Astrophysics Data System (ADS)

    Assaleh, Khaled; Shanableh, Tamer; Yehia, Sherif

    2015-04-01

    The Ground Penetrating Radar (GPR) is being recognized as an effective nondestructive evaluation technique to improve the inspection process. However, data interpretation and complexity of the results impose some limitations on the practicality of using this technique. This is mainly due to the need of a trained experienced person to interpret images obtained by the GPR system. In this paper, an algorithm to classify and assess the condition of infrastructures utilizing image processing and pattern recognition techniques is discussed. Features extracted form a dataset of images of defected and healthy slabs are used to train a computer vision based system while another dataset is used to evaluate the proposed algorithm. Initial results show that the proposed algorithm is able to detect the existence of defects with about 77% success rate.

  4. Non-Uniform Microstrip Antenna Array for DSRC in Single-Lane Structures.

    PubMed

    Varum, Tiago; Matos, João N; Pinho, Pedro

    2016-12-11

    Vehicular communications have been subject to a great development in recent years, with multiple applications, such as electronic payments, improving the convenience and comfort of drivers. Its communication network is supported by dedicated short range communications (DSRC), a system composed of onboard units (OBU) and roadside units (RSU). A recently conceived different set-up for the tolling infrastructures consists of placing them in highway access roads, allowing a number of benefits over common gateway infrastructures, divided into several lanes and using complex systems. This paper presents an antenna array whose characteristics are according to the DSRC standards. Additionally, the array holds an innovative radiation pattern adjusted to the new approach requirements, with an almost uniform wide beamwidth along the road width, negligible side lobes, and operating in a significant bandwidth.

  5. Infrastructure to support learning health systems: are we there yet? Innovative solutions and lessons learned from American Recovery and Reinvestment Act CER investments.

    PubMed

    Holve, Erin; Segal, Courtney

    2014-11-01

    The 11 big health data networks participating in the AcademyHealth Electronic Data Methods Forum represent cutting-edge efforts to harness the power of big health data for research and quality improvement. This paper is a comparative case study based on site visits conducted with a subset of these large infrastructure grants funded through the Recovery Act, in which four key issues emerge that can inform the evolution of learning health systems, including the importance of acknowledging the challenges of scaling specialized expertise needed to manage and run CER networks; the delicate balance between privacy protections and the utility of distributed networks; emerging community engagement strategies; and the complexities of developing a robust business model for multi-use networks.

  6. Non-Uniform Microstrip Antenna Array for DSRC in Single-Lane Structures

    PubMed Central

    Varum, Tiago; Matos, João N.; Pinho, Pedro

    2016-01-01

    Vehicular communications have been subject to a great development in recent years, with multiple applications, such as electronic payments, improving the convenience and comfort of drivers. Its communication network is supported by dedicated short range communications (DSRC), a system composed of onboard units (OBU) and roadside units (RSU). A recently conceived different set-up for the tolling infrastructures consists of placing them in highway access roads, allowing a number of benefits over common gateway infrastructures, divided into several lanes and using complex systems. This paper presents an antenna array whose characteristics are according to the DSRC standards. Additionally, the array holds an innovative radiation pattern adjusted to the new approach requirements, with an almost uniform wide beamwidth along the road width, negligible side lobes, and operating in a significant bandwidth. PMID:27973424

  7. Report of the Commission to Assess the Threat to the United States from Electromagnetic Pulse (EMP) Attack: Critical National Infrastructures

    DTIC Science & Technology

    2008-04-01

    consumers and electric utilities in Arizona and Southern California. Twelve people, including five children, died as a result of the explosion. The...Modern electronics, communications, pro- tection, control and computers have allowed the physical system to be utilized fully with ever smaller... margins for error. Therefore, a relatively modest upset to the system can cause functional collapse. As the system grows in complexity and interdependence

  8. MPEG-7-based description infrastructure for an audiovisual content analysis and retrieval system

    NASA Astrophysics Data System (ADS)

    Bailer, Werner; Schallauer, Peter; Hausenblas, Michael; Thallinger, Georg

    2005-01-01

    We present a case study of establishing a description infrastructure for an audiovisual content-analysis and retrieval system. The description infrastructure consists of an internal metadata model and access tool for using it. Based on an analysis of requirements, we have selected, out of a set of candidates, MPEG-7 as the basis of our metadata model. The openness and generality of MPEG-7 allow using it in broad range of applications, but increase complexity and hinder interoperability. Profiling has been proposed as a solution, with the focus on selecting and constraining description tools. Semantic constraints are currently only described in textual form. Conformance in terms of semantics can thus not be evaluated automatically and mappings between different profiles can only be defined manually. As a solution, we propose an approach to formalize the semantic constraints of an MPEG-7 profile using a formal vocabulary expressed in OWL, which allows automated processing of semantic constraints. We have defined the Detailed Audiovisual Profile as the profile to be used in our metadata model and we show how some of the semantic constraints of this profile can be formulated using ontologies. To work practically with the metadata model, we have implemented a MPEG-7 library and a client/server document access infrastructure.

  9. Integration of RAMS in LCC analysis for linear transport infrastructures. A case study for railways.

    NASA Astrophysics Data System (ADS)

    Calle-Cordón, Álvaro; Jiménez-Redondo, Noemi; Morales-Gámiz, F. J.; García-Villena, F. A.; Garmabaki, Amir H. S.; Odelius, Johan

    2017-09-01

    Life-cycle cost (LCC) analysis is an economic technique used to assess the total costs associated with the lifetime of a system in order to support decision making in long term strategic planning. For complex systems, such as railway and road infrastructures, the cost of maintenance plays an important role in the LCC analysis. Costs associated with maintenance interventions can be more reliably estimated by integrating the probabilistic nature of the failures associated to these interventions in the LCC models. Reliability, Maintainability, Availability and Safety (RAMS) parameters describe the maintenance needs of an asset in a quantitative way by using probabilistic information extracted from registered maintenance activities. Therefore, the integration of RAMS in the LCC analysis allows obtaining reliable predictions of system maintenance costs and the dependencies of these costs with specific cost drivers through sensitivity analyses. This paper presents an innovative approach for a combined RAMS & LCC methodology for railway and road transport infrastructures being developed under the on-going H2020 project INFRALERT. Such RAMS & LCC analysis provides relevant probabilistic information to be used for condition and risk-based planning of maintenance activities as well as for decision support in long term strategic investment planning.

  10. LEMON - LHC Era Monitoring for Large-Scale Infrastructures

    NASA Astrophysics Data System (ADS)

    Marian, Babik; Ivan, Fedorko; Nicholas, Hook; Hector, Lansdale Thomas; Daniel, Lenkes; Miroslav, Siket; Denis, Waldron

    2011-12-01

    At the present time computer centres are facing a massive rise in virtualization and cloud computing as these solutions bring advantages to service providers and consolidate the computer centre resources. However, as a result the monitoring complexity is increasing. Computer centre management requires not only to monitor servers, network equipment and associated software but also to collect additional environment and facilities data (e.g. temperature, power consumption, cooling efficiency, etc.) to have also a good overview of the infrastructure performance. The LHC Era Monitoring (Lemon) system is addressing these requirements for a very large scale infrastructure. The Lemon agent that collects data on every client and forwards the samples to the central measurement repository provides a flexible interface that allows rapid development of new sensors. The system allows also to report on behalf of remote devices such as switches and power supplies. Online and historical data can be visualized via a web-based interface or retrieved via command-line tools. The Lemon Alarm System component can be used for notifying the operator about error situations. In this article, an overview of the Lemon monitoring is provided together with a description of the CERN LEMON production instance. No direct comparison is made with other monitoring tool.

  11. Modeling joint restoration strategies for interdependent infrastructure systems

    PubMed Central

    Simonovic, Slobodan P.

    2018-01-01

    Life in the modern world depends on multiple critical services provided by infrastructure systems which are interdependent at multiple levels. To effectively respond to infrastructure failures, this paper proposes a model for developing optimal joint restoration strategy for interdependent infrastructure systems following a disruptive event. First, models for (i) describing structure of interdependent infrastructure system and (ii) their interaction process, are presented. Both models are considering the failure types, infrastructure operating rules and interdependencies among systems. Second, an optimization model for determining an optimal joint restoration strategy at infrastructure component level by minimizing the economic loss from the infrastructure failures, is proposed. The utility of the model is illustrated using a case study of electric-water systems. Results show that a small number of failed infrastructure components can trigger high level failures in interdependent systems; the optimal joint restoration strategy varies with failure occurrence time. The proposed models can help decision makers to understand the mechanisms of infrastructure interactions and search for optimal joint restoration strategy, which can significantly enhance safety of infrastructure systems. PMID:29649300

  12. Designing and validating the joint battlespace infosphere

    NASA Astrophysics Data System (ADS)

    Peterson, Gregory D.; Alexander, W. Perry; Birdwell, J. Douglas

    2001-08-01

    Fielding and managing the dynamic, complex information systems infrastructure necessary for defense operations presents significant opportunities for revolutionary improvements in capabilities. An example of this technology trend is the creation and validation of the Joint Battlespace Infosphere (JBI) being developed by the Air Force Research Lab. The JBI is a system of systems that integrates, aggregates, and distributes information to users at all echelons, from the command center to the battlefield. The JBI is a key enabler of meeting the Air Force's Joint Vision 2010 core competencies such as Information Superiority, by providing increased situational awareness, planning capabilities, and dynamic execution. At the same time, creating this new operational environment introduces significant risk due to an increased dependency on computational and communications infrastructure combined with more sophisticated and frequent threats. Hence, the challenge facing the nation is the most effective means to exploit new computational and communications technologies while mitigating the impact of attacks, faults, and unanticipated usage patterns.

  13. Running SW4 On New Commodity Technology Systems (CTS-1) Platform

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rodgers, Arthur J.; Petersson, N. Anders; Pitarka, Arben

    We have recently been running earthquake ground motion simulations with SW4 on the new capacity computing systems, called the Commodity Technology Systems - 1 (CTS-1) at Lawrence Livermore National Laboratory (LLNL). SW4 is a fourth order time domain finite difference code developed by LLNL and distributed by the Computational Infrastructure for Geodynamics (CIG). SW4 simulates seismic wave propagation in complex three-dimensional Earth models including anelasticity and surface topography. We are modeling near-fault earthquake strong ground motions for the purposes of evaluating the response of engineered structures, such as nuclear power plants and other critical infrastructure. Engineering analysis of structures requiresmore » the inclusion of high frequencies which can cause damage, but are often difficult to include in simulations because of the need for large memory to model fine grid spacing on large domains.« less

  14. Interconnecting Multidiscilinary Data Infrastructures: From Federation to Brokering Framework

    NASA Astrophysics Data System (ADS)

    Nativi, S.

    2014-12-01

    Standardization and federation activities have been played an essential role to push interoperability at the disciplinary and cross-disciplinary level. However, they demonstrated not to be sufficient to resolve important interoperability challenges, including: disciplinary heterogeneity, cross-organizations diversities, cultural differences. Significant international initiatives like GEOSS, IODE, and CEOS demonstrated that a federation system dealing with global and multi-disciplinary domain turns out to be rater complex, raising more the already high entry level barriers for both Providers and Users. In particular, GEOSS demonstrated that standardization and federation actions must be accompanied and complemented by a brokering approach. Brokering architecture and its implementing technologies are able to implement an effective interoperability level among multi-disciplinary systems, lowering the entry level barriers for both data providers and users. This presentation will discuss the brokering philosophy as a complementary approach for standardization and federation to interconnect existing and heterogeneous infrastructures and systems. The GEOSS experience will be analyzed, specially.

  15. A Framework for the Evaluation of the Cost and Benefits of Microgrids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Morris, Greg Young; Abbey, Chad; Joos, Geza

    2011-07-15

    A Microgrid is recognized as an innovative technology to help integrate renewables into distribution systems and to provide additional benefits to a variety of stakeholders, such as offsetting infrastructure investments and improving the reliability of the local system. However, these systems require additional investments for control infrastructure, and as such, additional costs and the anticipated benefits need to be quantified in order to determine whether the investment is economically feasible. This paper proposes a methodology for systematizing and representing benefits and their interrelationships based on the UML Use Case paradigm, which allows complex systems to be represented in a concise,more » elegant format. This methodology is demonstrated by determining the economic feasibility of a Microgrid and Distributed Generation installed on a typical Canadian rural distribution system model as a case study. The study attempts to minimize the cost of energy served to the community, considering the fixed costs associated with Microgrids and Distributed Generation, and suggests benefits to a variety of stakeholders.« less

  16. Alpine infrastructure in Central Europe: integral evaluation of wastewater treatment systems at mountain refuges.

    PubMed

    Weissenbacher, N; Mayr, E; Niederberger, T; Aschauer, C; Lebersorger, S; Steinbacher, G; Haberl, R

    2008-01-01

    Planning, construction and operation of onsite wastewater treatment systems at mountain refuges is a challenge. Energy supply, costly transport, limited water resources, unfavourable climate and load variations are only some of the problems that have to be faced. Additionally, legal regulations are different between and even within countries of the Alps. To ensure sustainability, integrated management of the alpine infrastructure management is needed. The energy and water supply and the wastewater and waste disposal systems and the cross-relations between them were analysed for 100 mountain refuges. Wastewater treatment is a main part of the overall 'mountain refuge' system. The data survey and first analyses showed the complex interaction of the wastewater treatment with the other infrastructure. Main criteria for reliable and efficient operation are training, technical support, user friendly control and a relatively simple system set up. Wastewater temperature, alkalinity consumption and high peak loads have to be considered in the planning process. The availability of power in terms of duration and connexion is decisive for the choice of the system. Further, frequency fluctuations may lead to damages to the installed aerators. The type of water source and the type of sanitary equipment influence the wastewater quantity and quality. Biosolids are treated and disposed separately or together with primary or secondary sludge from wastewater treatment dependent on the legal requirements. IWA Publishing 2008.

  17. Integrating operation design into infrastructure planning to foster robustness of planned water systems

    NASA Astrophysics Data System (ADS)

    Bertoni, Federica; Giuliani, Matteo; Castelletti, Andrea

    2017-04-01

    Over the past years, many studies have looked at the planning and management of water infrastructure systems as two separate problems, where the dynamic component (i.e., operations) is considered only after the static problem (i.e., planning) has been resolved. Most recent works have started to investigate planning and management as two strictly interconnected faces of the same problem, where the former is solved jointly with the latter in an integrated framework. This brings advantages to multi-purpose water reservoir systems, where several optimal operating strategies exist and similar system designs might perform differently on the long term depending on the considered short-term operating tradeoff. An operationally robust design will be therefore one performing well across multiple feasible tradeoff operating policies. This work aims at studying the interaction between short-term operating strategies and their impacts on long-term structural decisions, when long-lived infrastructures with complex ecological impacts and multi-sectoral demands to satisfy (i.e., reservoirs) are considered. A parametric reinforcement learning approach is adopted for nesting optimization and control yielding to both optimal reservoir design and optimal operational policies for water reservoir systems. The method is demonstrated on a synthetic reservoir that must be designed and operated for ensuring reliable water supply to downstream users. At first, the optimal design capacity derived is compared with the 'no-fail storage' computed through Rippl, a capacity design function that returns the minimum storage needed to satisfy specified water demands without allowing supply shortfall. Then, the optimal reservoir volume is used to simulate the simplified case study under other operating objectives than water supply, in order to assess whether and how the system performance changes. The more robust the infrastructural design, the smaller the difference between the performances of different operating strategies.

  18. Resilient workflows for computational mechanics platforms

    NASA Astrophysics Data System (ADS)

    Nguyên, Toàn; Trifan, Laurentiu; Désidéri, Jean-Antoine

    2010-06-01

    Workflow management systems have recently been the focus of much interest and many research and deployment for scientific applications worldwide [26, 27]. Their ability to abstract the applications by wrapping application codes have also stressed the usefulness of such systems for multidiscipline applications [23, 24]. When complex applications need to provide seamless interfaces hiding the technicalities of the computing infrastructures, their high-level modeling, monitoring and execution functionalities help giving production teams seamless and effective facilities [25, 31, 33]. Software integration infrastructures based on programming paradigms such as Python, Mathlab and Scilab have also provided evidence of the usefulness of such approaches for the tight coupling of multidisciplne application codes [22, 24]. Also high-performance computing based on multi-core multi-cluster infrastructures open new opportunities for more accurate, more extensive and effective robust multi-discipline simulations for the decades to come [28]. This supports the goal of full flight dynamics simulation for 3D aircraft models within the next decade, opening the way to virtual flight-tests and certification of aircraft in the future [23, 24, 29].

  19. Outsourcing strategy and tendering methodology for the operation and maintenance of CERN’s cryogenic facilities

    NASA Astrophysics Data System (ADS)

    Serio, L.; Bremer, J.; Claudet, S.; Delikaris, D.; Ferlin, G.; Ferrand, F.; Pezzetti, M.; Pirotte, O.

    2017-12-01

    CERN operates and maintains the world largest cryogenic infrastructure ranging from ageing but well maintained installations feeding detectors, test facilities and general services, to the state-of-the-art cryogenic system serving the flagship LHC machine complex. A study was conducted and a methodology proposed to outsource to industry the operation and maintenance of the whole cryogenic infrastructure. The cryogenic installations coupled to non LHC-detectors, test facilities and general services infrastructure have been fully outsourced for operation and maintenance on the basis of performance obligations. The contractor is responsible for the operational performance of the installations based on a yearly operation schedule provided by CERN. The maintenance of the cryogenic system serving the LHC machine and its detectors has been outsourced on the basis of tasks oriented obligations, monitored by key performance indicators. CERN operation team, with the support of the contractor operation team, remains responsible for the operational strategy and performances. We report the analysis, strategy, definition of the requirements and technical specifications as well as the achieved technical and economic performances after one year of operation.

  20. Designing and Operating Through Compromise: Architectural Analysis of CKMS for the Advanced Metering Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duren, Mike; Aldridge, Hal; Abercrombie, Robert K

    2013-01-01

    Compromises attributable to the Advanced Persistent Threat (APT) highlight the necessity for constant vigilance. The APT provides a new perspective on security metrics (e.g., statistics based cyber security) and quantitative risk assessments. We consider design principals and models/tools that provide high assurance for energy delivery systems (EDS) operations regardless of the state of compromise. Cryptographic keys must be securely exchanged, then held and protected on either end of a communications link. This is challenging for a utility with numerous substations that must secure the intelligent electronic devices (IEDs) that may comprise complex control system of systems. For example, distribution andmore » management of keys among the millions of intelligent meters within the Advanced Metering Infrastructure (AMI) is being implemented as part of the National Smart Grid initiative. Without a means for a secure cryptographic key management system (CKMS) no cryptographic solution can be widely deployed to protect the EDS infrastructure from cyber-attack. We consider 1) how security modeling is applied to key management and cyber security concerns on a continuous basis from design through operation, 2) how trusted models and key management architectures greatly impact failure scenarios, and 3) how hardware-enabled trust is a critical element to detecting, surviving, and recovering from attack.« less

  1. [No exchange of information without technology : modern infrastructure in radiology].

    PubMed

    Hupperts, H; Hermann, K-G A

    2014-01-01

    Modern radiology cannot accomplish the daily numbers of examinations without supportive technology. Even though technology seems to be becoming increasingly more indispensable, business continuity should be ensured at any time and if necessary even with a limited technical infrastructure by business continuity management. An efficient information security management system forms the basis. The early radiology information systems were islands of information processing. A modern radiology department must be able to be modularly integrated into an informational network of a bigger organization. The secondary use of stored data for clinical decision-making support poses new challenges for the integrity of the data or systems because medical knowledge is displayed and provided in a context of treatment. In terms of imaging the creation and distribution radiology services work in a fully digital manner which is often different for radiology reports. Legally secure electronic diagnostic reports require a complex technical infrastructure; therefore, diagnostic findings still need to be filed as a paper document. The internal exchange and an improved dose management can be simplified by systems which continuously and automatically record the doses and thus provide the possibility of permanent analysis and reporting. Communication between patient and radiologist will gain ongoing importance. Intelligent use of technology will convey this to the radiologist and it will facilitate the understanding of the information by the patient.

  2. Defense Infrastructure: Challenges Increase Risks for Providing Timely Infrastructure Support for Army Installations Expecting Substantial Personnel Growth

    DTIC Science & Technology

    2007-09-01

    Office Why GAO Did This Study Highlights Accountability Integrity Reliability September 2007 DEFENSE INFRASTRUCTURE Challenges Increase Risks for...authority to conduct evaluations on his own initiative. It addresses (1) the challenges and associated risks the Army faces in providing for timely...but it faces several complex implementation challenges that risk late provision of needed infrastructure to adequately support incoming personnel

  3. European environmental research infrastructures are going for common 30 years strategy

    NASA Astrophysics Data System (ADS)

    Asmi, Ari; Konjin, Jacco; Pursula, Antti

    2014-05-01

    Environmental Research infrastructures are facilities, resources, systems and related services that are used by research communities to conduct top-level research. Environmental research is addressing processes at very different time scales, and supporting research infrastructures must be designed as long-term facilities in order to meet the requirements of continuous environmental observation, measurement and analysis. This longevity makes the environmental research infrastructures ideal structures to support the long-term development in environmental sciences. ENVRI project is a collaborative action of the major European (ESFRI) Environmental Research Infrastructures working towards increased co-operation and interoperability between the infrastructures. One of the key products of the ENVRI project is to combine the long-term plans of the individual infrastructures towards a common strategy, describing the vision and planned actions. The envisaged vision for environmental research infrastructures toward 2030 is to support the holistic understanding of our planet and it's behavior. The development of a 'Standard Model of the Planet' is a common ambition, a challenge to define an environmental standard model; a framework of all interactions within the Earth System, from solid earth to near space. Indeed scientists feel challenged to contribute to a 'Standard Model of the Planet' with data, models, algorithms and discoveries. Understanding the Earth System as an interlinked system requires a systems approach. The Environmental Sciences are rapidly moving to become a one system-level science. Mainly since modern science, engineering and society are increasingly facing complex problems that can only be understood in the context of the full overall system. The strategy of the supporting collaborating research infrastructures is based on developing three key factors for the Environmental Sciences: the technological, the cultural and the human capital. The technological capital development concentrates on improving the capacities to measure, observe, preserve and compute. This requires staff, technologies, sensors, satellites, floats, software to integrate and to do analysis and modeling, including data storage, computing platforms and networks. The cultural capital development addresses issues such as open access to data, rules, licenses, citation agreements, IPR agreements, technologies for machine-machine interaction, workflows, metadata, and RI community on the policy level. Human capital actions are based on anticipated need of specialists, including data scientists and 'generalists' that oversee more than just their own discipline. Developing these, as interrelated services, should help the scientific community to enter innovative and large projects contributing to a 'Standard Model of the Planet'. To achieve the overall goal, ENVRI will publish a set of action items that contains intermediate aims, bigger and smaller steps to work towards the development of the 'Standard Model of the Planet' approach. This timeline of actions can used as reference and 'common denominator' in defining new projects and research programs. Either within the various environmental scientific disciplines or when cooperating among these disciplines or even when outreaching towards other disciplines like social sciences, physics/chemistry, medical/life sciences etc.

  4. The AAL project: automated monitoring and intelligent analysis for the ATLAS data taking infrastructure

    NASA Astrophysics Data System (ADS)

    Kazarov, A.; Lehmann Miotto, G.; Magnoni, L.

    2012-06-01

    The Trigger and Data Acquisition (TDAQ) system of the ATLAS experiment at CERN is the infrastructure responsible for collecting and transferring ATLAS experimental data from detectors to the mass storage system. It relies on a large, distributed computing environment, including thousands of computing nodes with thousands of application running concurrently. In such a complex environment, information analysis is fundamental for controlling applications behavior, error reporting and operational monitoring. During data taking runs, streams of messages sent by applications via the message reporting system together with data published from applications via information services are the main sources of knowledge about correctness of running operations. The flow of data produced (with an average rate of O(1-10KHz)) is constantly monitored by experts to detect problem or misbehavior. This requires strong competence and experience in understanding and discovering problems and root causes, and often the meaningful information is not in the single message or update, but in the aggregated behavior in a certain time-line. The AAL project is meant at reducing the man power needs and at assuring a constant high quality of problem detection by automating most of the monitoring tasks and providing real-time correlation of data-taking and system metrics. This project combines technologies coming from different disciplines, in particular it leverages on an Event Driven Architecture to unify the flow of data from the ATLAS infrastructure, on a Complex Event Processing (CEP) engine for correlation of events and on a message oriented architecture for components integration. The project is composed of 2 main components: a core processing engine, responsible for correlation of events through expert-defined queries and a web based front-end to present real-time information and interact with the system. All components works in a loose-coupled event based architecture, with a message broker to centralize all communication between modules. The result is an intelligent system able to extract and compute relevant information from the flow of operational data to provide real-time feedback to human experts who can promptly react when needed. The paper presents the design and implementation of the AAL project, together with the results of its usage as automated monitoring assistant for the ATLAS data taking infrastructure.

  5. TA 55 Reinvestment Project II Phase C Update Project Status May 23, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Giordano, Anthony P.

    The TA-55 Reinvestment Project (TRP) II Phase C is a critical infrastructure project focused on improving safety and reliability of the Los Alamos National Laboratory (LANL) TA-55 Complex. The Project recapitalizes and revitalizes aging and obsolete facility and safety systems providing a sustainable nuclear facility for National Security Missions.

  6. Percolation in multiplex networks with overlap.

    PubMed

    Cellai, Davide; López, Eduardo; Zhou, Jie; Gleeson, James P; Bianconi, Ginestra

    2013-11-01

    From transportation networks to complex infrastructures, and to social and communication networks, a large variety of systems can be described in terms of multiplexes formed by a set of nodes interacting through different networks (layers). Multiplexes may display an increased fragility with respect to the single layers that constitute them. However, so far the overlap of the links in different layers has been mostly neglected, despite the fact that it is an ubiquitous phenomenon in most multiplexes. Here, we show that the overlap among layers can improve the robustness of interdependent multiplex systems and change the critical behavior of the percolation phase transition in a complex way.

  7. Effective Capital Provision Within Government. Methodologies for Right-Sizing Base Infrastructure

    DTIC Science & Technology

    2005-01-01

    unknown distributions, since they more accurately represent the complexity of real -world problems. Forecasting uncertain future demand flows is critical to...ordering system with no time lags and no additional costs for instantaneous delivery, shortage and holding costs would be eliminated, because the...order a fixed quantity, Q. 4.1.4 Analyzed Time Step Time is an important dimension in inventory models, since the way the system changes over time affects

  8. Hypertonic Saline Dextran (HSD) in a Complex Military Injury - A Preclinical Study

    DTIC Science & Technology

    2010-04-01

    applicable to civilian settings e.g. after terrorist bombings where there is often disruption to infrastructure and security issues relating to secondary... systemic inflammatory response that develops after trauma and which is thought to be part of the aetiology underlying later complications [19- 22...consisted of end-tidal CO2, pulse oximetry via a tail probe and skin surface electrocardiogram electrodes (Propac 106EL, Protocol Systems Inc., Oregon

  9. Monitoring performance of a highly distributed and complex computing infrastructure in LHCb

    NASA Astrophysics Data System (ADS)

    Mathe, Z.; Haen, C.; Stagni, F.

    2017-10-01

    In order to ensure an optimal performance of the LHCb Distributed Computing, based on LHCbDIRAC, it is necessary to be able to inspect the behavior over time of many components: firstly the agents and services on which the infrastructure is built, but also all the computing tasks and data transfers that are managed by this infrastructure. This consists of recording and then analyzing time series of a large number of observables, for which the usage of SQL relational databases is far from optimal. Therefore within DIRAC we have been studying novel possibilities based on NoSQL databases (ElasticSearch, OpenTSDB and InfluxDB) as a result of this study we developed a new monitoring system based on ElasticSearch. It has been deployed on the LHCb Distributed Computing infrastructure for which it collects data from all the components (agents, services, jobs) and allows creating reports through Kibana and a web user interface, which is based on the DIRAC web framework. In this paper we describe this new implementation of the DIRAC monitoring system. We give details on the ElasticSearch implementation within the DIRAC general framework, as well as an overview of the advantages of the pipeline aggregation used for creating a dynamic bucketing of the time series. We present the advantages of using the ElasticSearch DSL high-level library for creating and running queries. Finally we shall present the performances of that system.

  10. Urban gray vs. urban green vs. soil protection — Development of a systemic solution to soil sealing management on the example of Germany

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Artmann, Martina, E-mail: m.artmann@ioer.de

    Managing urban soil sealing is a difficult venture due to its spatial heterogeneity and embedding in a socio-ecological system. A systemic solution is needed to tackle its spatial, ecological and social sub-systems. This study develops a guideline for urban actors to find a systemic solution to soil sealing management based on two case studies in Germany: Munich and Leipzig. Legal-planning, informal-planning, economic-fiscal, co-operative and informational responses were evaluated by indicators to proof which strategy considers the spatial complexity of urban soil sealing (systemic spatial efficiency) and, while considering spatial complexity, to assess what the key management areas for action aremore » to reduce the ecological impacts by urban soil sealing (ecological impact efficiency) and to support an efficient implementation by urban actors (social implementation efficiency). Results suggest framing the systemic solution to soil sealing management through a cross-scale, legal-planning development strategy embedded in higher European policies. Within the socio-ecological system, the key management area for action should focus on the protection of green infrastructure being of high value for actors from the European to local scales. Further efforts are necessary to establish a systemic monitoring concept to optimize socio-ecological benefits and avoid trade-offs such as between urban infill development and urban green protection. This place-based study can be regarded as a stepping stone on how to develop systemic strategies by considering different spatial sub-targets and socio-ecological systems. - Highlights: • Urban soil sealing management is spatially complex. • The legal-planning strategy supports a systemic sealing management. • Urban green infrastructure protection should be in the management focus. • Soil protection requires policies from higher levels of government. • A systemic urban soil sealing monitoring concept is needed.« less

  11. Organizational Strategies for Critical Transportation Infrastructure: Characteristics of Urban Resilience. The Case of Montreal.

    NASA Astrophysics Data System (ADS)

    Beauregard, Stéphane; Therrien, Marie-Christine; Normandin, Julie-Maude

    2010-05-01

    Organizational Strategies for Critical Transportation Infrastructure: Characteristics of Urban Resilience. The Case of Montreal. Stéphane Beauregard M.Sc. Candidate École nationale d'administration publique Julie-Maude Normandin Ph.D. Candidate École nationale d'administration publique Marie-Christine Therrien Professor École nationale d'administration publique The proposed paper presents preliminary results on the resilience of organizations managing critical infrastructure in the Metropolitan Montreal area (Canada). A resilient city is characterized by a network of infrastructures and individuals capable of maintaining their activities in spite of a disturbance (Godschalk, 2002). Critical infrastructures provide essential services for the functioning of society. In a crisis situation, the interruption or a decrease in performance of critical infrastructures could have important impacts on the population. They are also vulnerable to accidents and cascading effects because on their complexity and tight interdependence (Perrow, 1984). For these reasons, protection and security of the essential assets and networks are one of the objectives of organizations and governments. But prevention and recovery are two endpoints of a continuum which include also intermediate concerns: ensuring organizational robustness or failing with elegance rather than catastrophically. This continuum also includes organizational resilience (or system), or the ability to recover quickly after an interruption has occurred. Wildavsky (1988) proposes that anticipation strategies work better against known problems while resilience strategies focus on unknown problems. Anticipation policies can unnecessarily immobilize investments against risks, while resilience strategies include the potential for a certain sacrifice in the interests of a more long-term survival and adaptation to changing threats. In addition, a too large confidence in anticipation strategies can bring loss of capacity of an organization to adapt to conditions. Each strategy must adapt to specific conditions. Where uncertainties important, resilience is probably the most appropriate. Where conditions are stable, and where future projections are generally fair, anticipating works better, although it should be used judiciously (Fiksel, 2003). Anticipation strategies immobilize specific or tangible resources and, can eventually be costly in the long-term. On the other hand, resilient systems and organizations are those that quickly acquire information about their environments, quickly change their behaviour and their structures, even if the circumstances are chaotic. They communicate easily and openly, and largely mobilize networks of expertise and support (Perrow, 1999). We conducted qualitative research to assess different variables that positively affect the organizational resilience in the management of critical infrastructure. We preferred a methodology allowing us to retain the complexity of the phenomenon, not affecting the nature of the system studied. Our methodology allows us to create pragmatic theoretical concepts (grounded theory) (Glaser and Strauss, 1967). Our main concern is not to separate the phenomenon studied in its context. This methodology allows us to better understand the coordination between the organizations network infrastructure essential by a process of "sweeping-in" (Dewey, 1938). After conducting a literature review of various concepts of our research (Comfort, L. K., 2002; Lagadec and Michel-Kerjan, 2004; Perrow, 1999; Weick and Sutcliffe, 2001; and more) we have conducted numerous interviews and distributed a questionnaire to highlight significant indicators. For the first part of this research, we targeted the transportation critical infrastructure of Montreal area because it is crucial and also this infrastructure includes public, parapublic and private organisations. The first results of this research demonstrate the contribution of different structural and functional factors that influence the intraorganizational resilience and interorganizational resilience for the transportation sector of Montreal.

  12. Enhancements of the "eHabitat

    NASA Astrophysics Data System (ADS)

    Santoro, M.; Dubois, G.; Schulz, M.; Skøien, J. O.; Nativi, S.; Peedell, S.; Boldrini, E.

    2012-04-01

    The number of interoperable research infrastructures has increased significantly with the growing awareness of the efforts made by the Global Earth Observation System of Systems (GEOSS). One of the Social Benefit Areas (SBA) that is benefiting most from GEOSS is biodiversity, given the costs of monitoring the environment and managing complex information, from space observations to species records including their genetic characteristics. But GEOSS goes beyond the simple sharing of the data as it encourages the connectivity of models (the GEOSS Model Web), an approach easing the handling of often complex multi-disciplinary questions such as understanding the impact of environmental and climatological factors on ecosystems and habitats. In the context of GEOSS Architecture Implementation Pilot - Phase 3 (AIP-3), the EC-funded EuroGEOSS and GENESIS projects have developed and successfully demonstrated the "eHabitat" use scenario dealing with Climate Change and Biodiversity domains. Based on the EuroGEOSS multidisciplinary brokering infrastructure and on the DOPA (Digital Observatory for Protected Areas, see http://dopa.jrc.ec.europa.eu/), this scenario demonstrated how a GEOSS-based interoperability infrastructure can aid decision makers to assess and possibly forecast the irreplaceability of a given protected area, an essential indicator for assessing the criticality of threats this protected area is exposed to. The "eHabitat" use scenario was advanced in the GEOSS Sprint to Plenary activity; the advanced scenario will include the "EuroGEOSS Data Access Broker" and a new version of the eHabitat model in order to support the use of uncertain data. The multidisciplinary interoperability infrastructure which is used to demonstrate the "eHabitat" use scenario is composed of the following main components: a) A Discovery Broker: this component is able to discover resources from a plethora of different and heterogeneous geospatial services, presenting them on a single and standard discovery service; b) A Discovery Augmentation Component (DAC): this component builds on existing discovery and semantic services in order to provide the infrastructure with semantics enabled queries; c) A Data Access Broker: this component provides a seamless access of heterogeneous remote resources via a unique and standard service; d) Environmental Modeling Components (i.e. OGC WPS): these implement algorithms to predict evolution of protected areas This presentation introduces the advanced infrastructure developed to enhance the "eHabitat" use scenario. The presented infrastructure will be accessible through the GEO Portal and was used for demonstrating the "eHabitat" model at the last GEO Plenary Meeting - Istanbul, November 2011.

  13. The Moral Dimensions of Infrastructure.

    PubMed

    Epting, Shane

    2016-04-01

    Moral issues in urban planning involving technology, residents, marginalized groups, ecosystems, and future generations are complex cases, requiring solutions that go beyond the limits of contemporary moral theory. Aside from typical planning problems, there is incongruence between moral theory and some of the subjects that require moral assessment, such as urban infrastructure. Despite this incongruence, there is not a need to develop another moral theory. Instead, a supplemental measure that is compatible with existing moral positions will suffice. My primary goal in this paper is to explain the need for this supplemental measure, describe what one looks like, and show how it works with existing moral systems. The secondary goal is to show that creating a supplemental measure that provides congruency between moral systems that are designed to assess human action and non-human subjects advances the study of moral theory.

  14. Design of an air traffic computer simulation system to support investigation of civil tiltrotor aircraft operations

    NASA Technical Reports Server (NTRS)

    Rogers, Ralph V.

    1992-01-01

    This research project addresses the need to provide an efficient and safe mechanism to investigate the effects and requirements of the tiltrotor aircraft's commercial operations on air transportation infrastructures, particularly air traffic control. The mechanism of choice is computer simulation. Unfortunately, the fundamental paradigms of the current air traffic control simulation models do not directly support the broad range of operational options and environments necessary to study tiltrotor operations. Modification of current air traffic simulation models to meet these requirements does not appear viable given the range and complexity of issues needing resolution. As a result, the investigation of systemic, infrastructure issues surrounding the effects of tiltrotor commercial operations requires new approaches to simulation modeling. These models should be based on perspectives and ideas closer to those associated with tiltrotor air traffic operations.

  15. Toward Multi-Model Frameworks Addressing Multi-Sector Dynamics, Risks, and Resiliency

    NASA Astrophysics Data System (ADS)

    Moss, R. H.; Fisher-Vanden, K.; Barrett, C.; Kraucunas, I.; Rice, J.; Sue Wing, I.; Bhaduri, B. L.; Reed, P. M.

    2016-12-01

    This presentation will report on the findings of recent modeling studies and a series of workshops and other efforts convened under the auspices of the US Global Change Research Program (USGCRP) to improve integration of critical infrastructure, natural resources, integrated assessment, and human systems modeling. The focus is issues related to drought and increased variability of water supply at the energy-water-land nexus. One motivation for the effort is the potential for impact cascades across coupled built, natural, and socioeconomic systems stressed by social and environmental change. The design is for an adaptable modeling framework that will includes a repository of independently-developed modeling tools of varying complexity - from coarser grid, longer time-horizon to higher-resolution shorter-term models of socioeconomic systems, infrastructure, and natural resources. The models draw from three interlocking research communities: Earth system, impacts/adaptation/vulnerability, and integrated assessment. A key lesson will be explored, namely the importance of defining a clear use perspective to limit dimensionality, focus modeling, and facilitate uncertainty characterization and communication.

  16. Sustainable Development Strategy Of Domestic Waste Infrastructure In The City Of Surakarta

    NASA Astrophysics Data System (ADS)

    Rezagama, Arya; Purwono; Damayanti, Verika

    2018-02-01

    Shifting from traditional system to large, centralised infrastructure domestic waste is widely complex challenge. Most of fhe sanitary system on household in Surakarta use on site septictank, 17% sewerage system reached and16,0% stll open defecations. Sanitation development sustained aims to develop policy and strategies waste management domestic Surakarta in the long term (20 years). The projection use quantitative method and institutional condition approach by SWOT analysis. Surakarta City get priority sanitation urban planning from Indonesian government in Presiden Joko Widodo era. The domestic waste management systems that is Surakarta divided into system on-site and system off site. Waste Water Treatment Plant (WWTP) mojosongo, WWTP pucangsawit and WWTP Semanggi will be developed to treat 30% domestic waste of Surakarta Residence. While on-site system will are served 70% residence by service programs Regular Cleaning Septictank. The toughest challenge is how to increase community participation in waste management and improve the company"s financial condition. Sanitation sustainable development is going to happen if supported by facility development also good, institutional development, the arrangement that oversees, and the public participation.

  17. Utilization of design data on conventional system to building information modeling (BIM)

    NASA Astrophysics Data System (ADS)

    Akbar, Boyke M.; Z. R., Dewi Larasati

    2017-11-01

    Nowadays infrastructure development becomes one of the main priorities in the developed country such as Indonesia. The use of conventional design system is considered no longer effectively support the infrastructure projects, especially for the high complexity building design, due to its fragmented system issues. BIM comes as one of the solutions in managing projects in an integrated manner. Despite of the all known BIM benefits, there are some obstacles on the migration process to BIM. The two main of the obstacles are; the BIM implementation unpreparedness of some project parties and a concerns to leave behind the existing database and create a new one on the BIM system. This paper discusses the utilization probabilities of the existing CAD data from the conventional design system for BIM system. The existing conventional CAD data's and BIM design system output was studied to examine compatibility issues between two subject and followed by an utilization scheme-strategy probabilities. The goal of this study is to add project parties' eagerness in migrating to BIM by maximizing the existing data utilization and hopefully could also increase BIM based project workflow quality.

  18. The Role of Social Media in the Civic Co-Management of Urban Infrastructure Resilience

    NASA Astrophysics Data System (ADS)

    Turpin, E.; Holderness, T.; Wickramasuriya, R.

    2014-12-01

    As cities evolve to become increasingly complex systems of people and interconnected infrastructure the impacts of extreme events and long term climatological change are significantly heightened (Walsh et al. 2011). Understanding the resilience of urban systems and the impacts of infrastructure failure is therefore key to understanding the adaptability of cities to climate change (Rosenzweig 2011). Such information is particularly critical in developing nations which are predicted to bear the brunt of climate change (Douglas et al., 2008), but often lack the resources and data required to make informed decisions regarding infrastructure and societal resilience (e.g. Paar & Rekittke 2011). We propose that mobile social media in a people-as-sensors paradigm provides a means of monitoring the response of a city to cascading infrastructure failures induced by extreme weather events. Such an approach is welcomed in developing nations where crowd-sourced data are increasingly being used as an alternative to missing or incomplete formal data sources to help solve infrastructure challenges (Holderness 2014). In this paper we present PetaJakarta.org as a case study that harnesses the power of social media to gather, sort and display information about flooding for residents of Jakarta, Indonesia in real time, recuperating the failures of infrastructure and monitoring systems through a web of social media connections. Our GeoSocial Intelligence Framework enables the capture and comprehension of significant time-critical information to support decision-making, and as a means of transparent communication, while maintaining user privacy, to enable civic co-management processes to aid city-scale climate adaptation and resilience. PetaJakarta empowers community residents to collect and disseminate situational information about flooding, via the social media network Twitter, to provide city-scale decision support for Jakarta's Emergency Management Team, and a neighbourhood-scale public information service for individuals and communities to alert them of nearby flood events. Douglas I., et al. 2008 ENVIRONMENT & URBANIZATION Holderness T. 2014 IEEE TECHNOLOGY & SOCIETY MAGAZINE Paar P. & Rekittke J. 2011 FUTURE INTERNET Rosenzweig C. 2011 SCIENTIFIC AMERICAN Walsh C. L., et al. 2011 URBAN DESIGN & PLANNING

  19. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2005-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing open-standards hardware and software interfaces as the enabling technology is essential for affordable md sustainable space exploration programs. This mission-systems architecture requires (8) robust communication between heterogeneous systems, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, end verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered systems are applied to define the model. Technology projections reaching out 5 years are made to refine model details.

  20. Sustainable, Reliable Mission-Systems Architecture

    NASA Technical Reports Server (NTRS)

    O'Neil, Graham; Orr, James K.; Watson, Steve

    2007-01-01

    A mission-systems architecture, based on a highly modular infrastructure utilizing: open-standards hardware and software interfaces as the enabling technology is essential for affordable and sustainable space exploration programs. This mission-systems architecture requires (a) robust communication between heterogeneous system, (b) high reliability, (c) minimal mission-to-mission reconfiguration, (d) affordable development, system integration, and verification of systems, and (e) minimal sustaining engineering. This paper proposes such an architecture. Lessons learned from the Space Shuttle program and Earthbound complex engineered system are applied to define the model. Technology projections reaching out 5 years are mde to refine model details.

  1. Instinctive analytics for coalition operations (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    de Mel, Geeth R.; La Porta, Thomas; Pham, Tien; Pearson, Gavin

    2017-05-01

    The success of future military coalition operations—be they combat or humanitarian—will increasingly depend on a system's ability to share data and processing services (e.g. aggregation, summarization, fusion), and automatically compose services in support of complex tasks at the network edge. We call such an infrastructure instinctive—i.e., an infrastructure that reacts instinctively to address the analytics task at hand. However, developing such an infrastructure is made complex for the coalition environment due to its dynamism both in terms of user requirements and service availability. In order to address the above challenge, in this paper, we highlight our research vision and sketch some initial solutions into the problem domain. Specifically, we propose means to (1) automatically infer formal task requirements from mission specifications; (2) discover data, services, and their features automatically to satisfy the identified requirements; (3) create and augment shared domain models automatically; (4) efficiently offload services to the network edge and across coalition boundaries adhering to their computational properties and costs; and (5) optimally allocate and adjust services while respecting the constraints of operating environment and service fit. We envision that the research will result in a framework which enables self-description, discover, and assemble capabilities to both data and services in support of coalition mission goals.

  2. Avoiding Decline: Fostering Resilience and Sustainability in ...

    EPA Pesticide Factsheets

    Eighty-five percent of United States citizens live in urban areas. However, research surrounding the resilience and sustainability of complex urban systems focuses largely on coastal megacities (>1 million people). Midsize cities differ from their larger counterparts due to tight urban-rural feedbacks with their immediate natural environments that result from heavy reliance and close management of local ecosystem services. They also may be less path-dependent than larger cities due to shorter average connection length among system components, contributing to higher responsiveness among social, infrastructural, and ecological feedbacks. These distinct midsize city features call for a framework that organizes information and concepts concerning the sustainability of midsize cities specifically. We argue that an integrative approach is necessary to capture properties emergent from the complex interactions of the social, infrastructural, and ecological subsystems that comprise a city system. We suggest approaches to estimate the relative resilience of midsize cities, and include an example assessment to illustrate one such estimation approach. Resilience assessments of a midsize city can be used to examine why some cities end up on sustainable paths while others diverge to unsustainable paths, and which feedbacks may be partially responsible. They also provide insight into how city planners and decision makers can use information about the resilience of midsize citi

  3. Infrastructure Systems for Advanced Computing in E-science applications

    NASA Astrophysics Data System (ADS)

    Terzo, Olivier

    2013-04-01

    In the e-science field are growing needs for having computing infrastructure more dynamic and customizable with a model of use "on demand" that follow the exact request in term of resources and storage capacities. The integration of grid and cloud infrastructure solutions allows us to offer services that can adapt the availability in terms of up scaling and downscaling resources. The main challenges for e-sciences domains will on implement infrastructure solutions for scientific computing that allow to adapt dynamically the demands of computing resources with a strong emphasis on optimizing the use of computing resources for reducing costs of investments. Instrumentation, data volumes, algorithms, analysis contribute to increase the complexity for applications who require high processing power and storage for a limited time and often exceeds the computational resources that equip the majority of laboratories, research Unit in an organization. Very often it is necessary to adapt or even tweak rethink tools, algorithms, and consolidate existing applications through a phase of reverse engineering in order to adapt them to a deployment on Cloud infrastructure. For example, in areas such as rainfall monitoring, meteorological analysis, Hydrometeorology, Climatology Bioinformatics Next Generation Sequencing, Computational Electromagnetic, Radio occultation, the complexity of the analysis raises several issues such as the processing time, the scheduling of tasks of processing, storage of results, a multi users environment. For these reasons, it is necessary to rethink the writing model of E-Science applications in order to be already adapted to exploit the potentiality of cloud computing services through the uses of IaaS, PaaS and SaaS layer. An other important focus is on create/use hybrid infrastructure typically a federation between Private and public cloud, in fact in this way when all resources owned by the organization are all used it will be easy with a federate cloud infrastructure to add some additional resources form the Public cloud for following the needs in term of computational and storage resources and release them where process are finished. Following the hybrid model, the scheduling approach is important for managing both cloud models. Thanks to this model infrastructure every time resources are available for additional request in term of IT capacities that can used "on demand" for a limited time without having to proceed to purchase additional servers.

  4. Reducing the complexity of NASA's space communications infrastructure

    NASA Technical Reports Server (NTRS)

    Miller, Raymond E.; Liu, Hong; Song, Junehwa

    1995-01-01

    This report describes the range of activities performed during the annual reporting period in support of the NASA Code O Success Team - Lifecycle Effectiveness for Strategic Success (COST LESS) team. The overall goal of the COST LESS team is to redefine success in a constrained fiscal environment and reduce the cost of success for end-to-end mission operations. This goal is more encompassing than the original proposal made to NASA for reducing complexity of NASA's Space Communications Infrastructure. The COST LESS team approach for reengineering the space operations infrastructure has a focus on reversing the trend of engineering special solutions to similar problems.

  5. Multi Infrastructure Control and Optimization Toolkit, Resilient Design Module (MICOT-RDT), version 2.X

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bent, Russell; Nagarajan, Harsha; Yamangil, Emre

    2016-06-24

    MICOT is a tool for optimizing and controlling infrastructure systems. In includes modules for optimizing the operations of an infrastructure structure (for example optimal dispatch), designing infrastructure systems, restoring infrastructures systems, resiliency, preparing for natural disasters, interdicting networks, state estimation, sensor placement, and simulation of infrastructure systems. It implements algorithms developed at LANL that have been published in the academic community. This is a release of the of resilient design module of the MICOT.

  6. Conceptual Green Infrastructure Design for Washington Street, City of Sanford

    EPA Pesticide Factsheets

    Summary of the Sanford Mill Yard Complex presents an opportunity to include green infrastructure practices in a land redevelopment initiative with relative ease while providing multiple benefits to the surrounding community.

  7. A vision-based approach for the direct measurement of displacements in vibrating systems

    NASA Astrophysics Data System (ADS)

    Mazen Wahbeh, A.; Caffrey, John P.; Masri, Sami F.

    2003-10-01

    This paper reports the results of an analytical and experimental study to develop, calibrate, implement and evaluate the feasibility of a novel vision-based approach for obtaining direct measurements of the absolute displacement time history at selectable locations of dispersed civil infrastructure systems such as long-span bridges. The measurements were obtained using a highly accurate camera in conjunction with a laser tracking reference. Calibration of the vision system was conducted in the lab to establish performance envelopes and data processing algorithms to extract the needed information from the captured vision scene. Subsequently, the monitoring apparatus was installed in the vicinity of the Vincent Thomas Bridge in the metropolitan Los Angeles region. This allowed the deployment of the instrumentation system under realistic conditions so as to determine field implementation issues that need to be addressed. It is shown that the proposed approach has the potential of leading to an economical and robust system for obtaining direct, simultaneous, measurements at several locations of the displacement time histories of realistic infrastructure systems undergoing complex three-dimensional deformations.

  8. The development and pilot testing of a rapid assessment tool to improve local public health system capacity in Australia.

    PubMed

    Bagley, Prue; Lin, Vivian

    2009-11-15

    To operate effectively the public health system requires infrastructure and the capacity to act. Public health's ability to attract funding for infrastructure and capacity development would be enhanced if it was able to demonstrate what level of capacity was required to ensure a high performing system. Australia's public health activities are undertaken within a complex organizational framework that involves three levels of government and a diverse range of other organizations. The question of appropriate levels of infrastructure and capacity is critical at each level. Comparatively little is known about infrastructure and capacity at the local level. In-depth interviews were conducted with senior managers in two Australian states with different frameworks for health administration. They were asked to reflect on the critical components of infrastructure and capacity required at the local level. The interviews were analyzed to identify the major themes. Workshops with public health experts explored this data further. The information generated was used to develop a tool, designed to be used by groups of organizations within discrete geographical locations to assess local public health capacity. Local actors in these two different systems pointed to similar areas for inclusion for the development of an instrument to map public health capacity at the local level. The tool asks respondents to consider resources, programs and the cultural environment within their organization. It also asks about the policy environment - recognizing that the broader environment within which organizations operate impacts on their capacity to act. Pilot testing of the tool pointed to some of the challenges involved in such an exercise, particularly if the tool were to be adopted as policy. This research indicates that it is possible to develop a tool for the systematic assessment of public health capacity at the local level. Piloting the tool revealed some concerns amongst participants, particularly about how the tool would be used. However there was also recognition that the areas covered by the tool were those considered relevant.

  9. Landscape of the EU-US Research Infrastructures and actors: Moving towards international interoperability of earth system data

    NASA Astrophysics Data System (ADS)

    Asmi, Ari; Powers, Lindsay

    2015-04-01

    Research Infrastructures (RIs) are major long-term investments supporting innovative, bottom-up research activities. In the environmental research, they range from high atmosphere radars, to field observation networks and coordinated laboratory facilities. The Earth system is highly interactive and each part of the system interconnected across the spatial and disciplinary borders. However, due practical and historical reasons, the RIs are built from disciplinary points-of-view and separately in different parts of the world, with differing standards, policies, methods and research cultures. This heterogeneity provides necessary diversity to study the complex Earth system, but makes cross-disciplinary and/or global interoperability a challenge. Global actions towards better interoperability are surfacing, especially with EU and US. For example, recent mandates within the US government prioritize open data for federal agencies and federally funded science, and encourage collaboration among agencies to reduce duplication of efforts and increase efficient use of resources. There are several existing initiatives working toward these goals (e.g., COOPEUS, EarthCube, RDA, ICSU-WDS, DataOne, ESIP, USGEO, GEO). However, there is no cohesive framework to coordinate efforts among these, and other, entities. COOPEUS and EarthCube have now begun to map the landscape of interoperability efforts across earth science domains. The COOPEUS mapping effort describes the EU and US landscape of environmental research infrastructures to accomplish the following: identify gaps in services (data provision) necessary to address societal priorities; provide guidance for development of future research infrastructures; and identify opportunities for Research Infrastructures (RIs) to collaborate on issues of common interest. EarthCube mapping effort identifies opportunities to engage a broader community by identifying scientific domain organizations and entities. We present the current situation of the landscape analysis to create a sustainable effort towards removing barriers to interoperability on a global scale.

  10. Avoiding decline: Fostering resilience and sustainability in midsize cities

    USGS Publications Warehouse

    Allen, Craig R.; Birge, Hannah E.; Bartelt-Hunt, Shannon; Bevans, Rebecca A.; Burnett, Jessica L.; Cosens, Barbara; Cai, Ximing; Garmestani, Ahjond S.; Linkov, Igor; Scott, Elizabeth A.; Solomon, Mark D.; Uden, Daniel R.

    2016-01-01

    Eighty-five percent of United States citizens live in urban areas. However, research surrounding the resilience and sustainability of complex urban systems focuses largely on coastal megacities (>1 million people). Midsize cities differ from their larger counterparts due to tight urban-rural feedbacks with their immediate natural environments that result from heavy reliance and close management of local ecosystem services. They also may be less path-dependent than larger cities due to shorter average connection length among system components, contributing to higher responsiveness among social, infrastructural, and ecological feedbacks. These distinct midsize city features call for a framework that organizes information and concepts concerning the sustainability of midsize cities specifically. We argue that an integrative approach is necessary to capture properties emergent from the complex interactions of the social, infrastructural, and ecological subsystems that comprise a city system. We suggest approaches to estimate the relative resilience of midsize cities, and include an example assessment to illustrate one such estimation approach. Resilience assessments of a midsize city can be used to examine why some cities end up on sustainable paths while others diverge to unsustainable paths, and which feedbacks may be partially responsible. They also provide insight into how city planners and decision makers can use information about the resilience of midsize cities undergoing growth or shrinkage relative to their larger and smaller counterparts, to transform them into long-term, sustainable social-ecological systems.

  11. Information Dynamics as Foundation for Network Management

    DTIC Science & Technology

    2014-12-04

    developed to adapt to channel dynamics in a mobile network environment. We devise a low- complexity online scheduling algorithm integrated with the...has been accepted for the Journal on Network and Systems Management in 2014. - RINC programmable platform for Infrastructure -as-a-Service public... backend servers. Rather than implementing load balancing in dedicated appliances, commodity SDN switches can perform this function. We design

  12. Development of an informatics infrastructure for data exchange of biomolecular simulations: architecture, data models and ontology$

    PubMed Central

    Thibault, J. C.; Roe, D. R.; Eilbeck, K.; Cheatham, T. E.; Facelli, J. C.

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data – both within the same organization and among different ones – remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations. PMID:26387907

  13. Development of an informatics infrastructure for data exchange of biomolecular simulations: Architecture, data models and ontology.

    PubMed

    Thibault, J C; Roe, D R; Eilbeck, K; Cheatham, T E; Facelli, J C

    2015-01-01

    Biomolecular simulations aim to simulate structure, dynamics, interactions, and energetics of complex biomolecular systems. With the recent advances in hardware, it is now possible to use more complex and accurate models, but also reach time scales that are biologically significant. Molecular simulations have become a standard tool for toxicology and pharmacology research, but organizing and sharing data - both within the same organization and among different ones - remains a substantial challenge. In this paper we review our recent work leading to the development of a comprehensive informatics infrastructure to facilitate the organization and exchange of biomolecular simulations data. Our efforts include the design of data models and dictionary tools that allow the standardization of the metadata used to describe the biomedical simulations, the development of a thesaurus and ontology for computational reasoning when searching for biomolecular simulations in distributed environments, and the development of systems based on these models to manage and share the data at a large scale (iBIOMES), and within smaller groups of researchers at laboratory scale (iBIOMES Lite), that take advantage of the standardization of the meta data used to describe biomolecular simulations.

  14. The pandemic of physical inactivity: global action for public health.

    PubMed

    Kohl, Harold W; Craig, Cora Lynn; Lambert, Estelle Victoria; Inoue, Shigeru; Alkandari, Jasem Ramadan; Leetongin, Grit; Kahlmeier, Sonja

    2012-07-21

    Physical inactivity is the fourth leading cause of death worldwide. We summarise present global efforts to counteract this problem and point the way forward to address the pandemic of physical inactivity. Although evidence for the benefits of physical activity for health has been available since the 1950s, promotion to improve the health of populations has lagged in relation to the available evidence and has only recently developed an identifiable infrastructure, including efforts in planning, policy, leadership and advocacy, workforce training and development, and monitoring and surveillance. The reasons for this late start are myriad, multifactorial, and complex. This infrastructure should continue to be formed, intersectoral approaches are essential to advance, and advocacy remains a key pillar. Although there is a need to build global capacity based on the present foundations, a systems approach that focuses on populations and the complex interactions among the correlates of physical inactivity, rather than solely a behavioural science approach focusing on individuals, is the way forward to increase physical activity worldwide.

  15. The AGING Initiative experience: a call for sustained support for team science networks.

    PubMed

    Garg, Tullika; Anzuoni, Kathryn; Landyn, Valentina; Hajduk, Alexandra; Waring, Stephen; Hanson, Leah R; Whitson, Heather E

    2018-05-18

    Team science, defined as collaborative research efforts that leverage the expertise of diverse disciplines, is recognised as a critical means to address complex healthcare challenges, but the practical implementation of team science can be difficult. Our objective is to describe the barriers, solutions and lessons learned from our team science experience as applied to the complex and growing challenge of multiple chronic conditions (MCC). MCC is the presence of two or more chronic conditions that have a collective adverse effect on health status, function or quality of life, and that require complex healthcare management, decision-making or coordination. Due to the increasing impact on the United States society, MCC research has been identified as a high priority research area by multiple federal agencies. In response to this need, two national research entities, the Healthcare Systems Research Network (HCSRN) and the Claude D. Pepper Older Americans Independence Centers (OAIC), formed the Advancing Geriatrics Infrastructure and Network Growth (AGING) Initiative to build nationwide capacity for MCC team science. This article describes the structure, lessons learned and initial outcomes of the AGING Initiative. We call for funding mechanisms to sustain infrastructures that have demonstrated success in fostering team science and innovation in translating findings to policy change necessary to solve complex problems in healthcare.

  16. Examining Cybersecurity of Cyberphysical Systems for Critical Infrastructures Through Work Domain Analysis.

    PubMed

    Wang, Hao; Lau, Nathan; Gerdes, Ryan M

    2018-04-01

    The aim of this study was to apply work domain analysis for cybersecurity assessment and design of supervisory control and data acquisition (SCADA) systems. Adoption of information and communication technology in cyberphysical systems (CPSs) for critical infrastructures enables automated and distributed control but introduces cybersecurity risk. Many CPSs employ SCADA industrial control systems that have become the target of cyberattacks, which inflict physical damage without use of force. Given that absolute security is not feasible for complex systems, cyberintrusions that introduce unanticipated events will occur; a proper response will in turn require human adaptive ability. Therefore, analysis techniques that can support security assessment and human factors engineering are invaluable for defending CPSs. We conducted work domain analysis using the abstraction hierarchy (AH) to model a generic SCADA implementation to identify the functional structures and means-ends relations. We then adopted a case study approach examining the Stuxnet cyberattack by developing and integrating AHs for the uranium enrichment process, SCADA implementation, and malware to investigate the interactions between the three aspects of cybersecurity in CPSs. The AHs for modeling a generic SCADA implementation and studying the Stuxnet cyberattack are useful for mapping attack vectors, identifying deficiencies in security processes and features, and evaluating proposed security solutions with respect to system objectives. Work domain analysis is an effective analytical method for studying cybersecurity of CPSs for critical infrastructures in a psychologically relevant manner. Work domain analysis should be applied to assess cybersecurity risk and inform engineering and user interface design.

  17. A Governance Roadmap and Framework for EarthCube

    NASA Astrophysics Data System (ADS)

    Governance Steering Committee, EarthCube

    2013-04-01

    EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and more effectively, by providing a community endorsed Governance Framework, released in September of 2012. The Framework, and corresponding community outreach, maximizes engagement of the broader EarthCube community, which in turn minimizes the risks that the community will not adopt EarthCube in its development and final states. The target stakeholder community includes academia, government, and the private-sector, both nationally and internationally. http://earthcube.ning.com/group/governance

  18. Systemic Analysis Approaches for Air Transportation

    NASA Technical Reports Server (NTRS)

    Conway, Sheila

    2005-01-01

    Air transportation system designers have had only limited success using traditional operations research and parametric modeling approaches in their analyses of innovations. They need a systemic methodology for modeling of safety-critical infrastructure that is comprehensive, objective, and sufficiently concrete, yet simple enough to be used with reasonable investment. The methodology must also be amenable to quantitative analysis so issues of system safety and stability can be rigorously addressed. However, air transportation has proven itself an extensive, complex system whose behavior is difficult to describe, no less predict. There is a wide range of system analysis techniques available, but some are more appropriate for certain applications than others. Specifically in the area of complex system analysis, the literature suggests that both agent-based models and network analysis techniques may be useful. This paper discusses the theoretical basis for each approach in these applications, and explores their historic and potential further use for air transportation analysis.

  19. Jungle Computing: Distributed Supercomputing Beyond Clusters, Grids, and Clouds

    NASA Astrophysics Data System (ADS)

    Seinstra, Frank J.; Maassen, Jason; van Nieuwpoort, Rob V.; Drost, Niels; van Kessel, Timo; van Werkhoven, Ben; Urbani, Jacopo; Jacobs, Ceriel; Kielmann, Thilo; Bal, Henri E.

    In recent years, the application of high-performance and distributed computing in scientific practice has become increasingly wide spread. Among the most widely available platforms to scientists are clusters, grids, and cloud systems. Such infrastructures currently are undergoing revolutionary change due to the integration of many-core technologies, providing orders-of-magnitude speed improvements for selected compute kernels. With high-performance and distributed computing systems thus becoming more heterogeneous and hierarchical, programming complexity is vastly increased. Further complexities arise because urgent desire for scalability and issues including data distribution, software heterogeneity, and ad hoc hardware availability commonly force scientists into simultaneous use of multiple platforms (e.g., clusters, grids, and clouds used concurrently). A true computing jungle.

  20. The Advanced Technology Development Center (ATDC)

    NASA Technical Reports Server (NTRS)

    Clements, G. R.; Willcoxon, R. (Technical Monitor)

    2001-01-01

    NASA is building the Advanced Technology Development Center (ATDC) to provide a 'national resource' for the research, development, demonstration, testing, and qualification of Spaceport and Range Technologies. The ATDC will be located at Space Launch Complex 20 (SLC-20) at Cape Canaveral Air Force Station (CCAFS) in Florida. SLC-20 currently provides a processing and launch capability for small-scale rockets; this capability will be augmented with additional ATDC facilities to provide a comprehensive and integrated in situ environment. Examples of Spaceport Technologies that will be supported by ATDC infrastructure include densified cryogenic systems, intelligent automated umbilicals, integrated vehicle health management systems, next-generation safety systems, and advanced range systems. The ATDC can be thought of as a prototype spaceport where industry, government, and academia, in partnership, can work together to improve safety of future space initiatives. The ATDC is being deployed in five separate phases. Major ATDC facilities will include a Liquid Oxygen Area; a Liquid Hydrogen Area, a Liquid Nitrogen Area, and a multipurpose Launch Mount; 'Iron Rocket' Test Demonstrator; a Processing Facility with a Checkout and Control System; and Future Infrastructure Developments. Initial ATDC development will be completed in 2006.

  1. A Methodology for Assessing the Seismic Vulnerability of Highway Systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cirianni, Francis; Leonardi, Giovanni; Scopelliti, Francesco

    2008-07-08

    Modern society is totally dependent on a complex and articulated infrastructure network of vital importance for the existence of the urban settlements scattered on the territory. On these infrastructure systems, usually indicated with the term lifelines, are entrusted numerous services and indispensable functions of the normal urban and human activity.The systems of the lifelines represent an essential element in all the urbanised areas which are subject to seismic risk. It is important that, in these zones, they are planned according to opportune criteria based on two fundamental assumptions: a) determination of the best territorial localization, avoiding, within limits, the placesmore » of higher dangerousness; b) application of constructive technologies finalized to the reduction of the vulnerability.Therefore it is indispensable that in any modern process of seismic risk assessment the study of the networks is taken in the rightful consideration, to be integrated with the traditional analyses of the buildings.The present paper moves in this direction, dedicating particular attention to one kind of lifeline: the highway system, proposing a methodology of analysis finalized to the assessment of the seismic vulnerability of the system.« less

  2. Environmentally-Preferable Launch Coatings

    NASA Technical Reports Server (NTRS)

    Kessel, Kurt R.

    2015-01-01

    The Ground Systems Development and Operations (GSDO) Program at NASA Kennedy Space Center (KSC), Florida, has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of NASA and the GSDO Program, the objective of this project is to determine the feasibility of environmentally friendly corrosion protecting coatings for launch facilities and ground support equipment (GSE). The focus of the project is corrosion resistance and survivability with the goal to reduce the amount of maintenance required to preserve the performance of launch facilities while reducing mission risk. The project compares coating performance of the selected alternatives to existing coating systems or standards.

  3. Development of a telemedicine model for emerging countries: a case study on pediatric oncology in Brazil.

    PubMed

    Hira, A Y; Nebel de Mello, A; Faria, R A; Odone Filho, V; Lopes, R D; Zuffo, M K

    2006-01-01

    This article discusses a telemedicine model for emerging countries, through the description of ONCONET, a telemedicine initiative applied to pediatric oncology in Brazil. The ONCONET core technology is a Web-based system that offers health information and other services specialized in childhood cancer such as electronic medical records and cooperative protocols for complex treatments. All Web-based services are supported by the use of high performance computing infrastructure based on clusters of commodity computers. The system was fully implemented on an open-source and free-software approach. Aspects of modeling, implementation and integration are covered. A model, both technologically and economically viable, was created through the research and development of in-house solutions adapted to the emerging countries reality and with focus on scalability both in the total number of patients and in the national infrastructure.

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sun, Amy Cha-Tien; Downes, Paula Sue; Heinen, Russell

    Analysis of chemical supply chains is an inherently complex task, given the dependence of these supply chains on multiple infrastructure systems (e.g., the petroleum sector, transportation, etc.). This effort requires data and information at various levels of resolution, ranging from network-level distribution systems to individual chemical reactions. Sandia National Laboratories (Sandia) has integrated its existing simulation and infrastructure analysis capabilities with chemical data models to analyze the chemical supply chains of several nationally critical chemical commodities. This paper describes how Sandia models the ethylene supply chain; that is, the supply chain for the most widely used raw material for plasticsmore » production including a description of the types of data and modeling capabilities that are required to represent the ethylene supply chain. The paper concludes with a description of Sandia's use the model to project how the supply chain would be affected by and adapt to a disruptive scenario hurricane.« less

  5. Context-aware system design

    NASA Astrophysics Data System (ADS)

    Chan, Christine S.; Ostertag, Michael H.; Akyürek, Alper Sinan; Šimunić Rosing, Tajana

    2017-05-01

    The Internet of Things envisions a web-connected infrastructure of billions of sensors and actuation devices. However, the current state-of-the-art presents another reality: monolithic end-to-end applications tightly coupled to a limited set of sensors and actuators. Growing such applications with new devices or behaviors, or extending the existing infrastructure with new applications, involves redesign and redeployment. We instead propose a modular approach to these applications, breaking them into an equivalent set of functional units (context engines) whose input/output transformations are driven by general-purpose machine learning, demonstrating an improvement in compute redundancy and computational complexity with minimal impact on accuracy. In conjunction with formal data specifications, or ontologies, we can replace application-specific implementations with a composition of context engines that use common statistical learning to generate output, thus improving context reuse. We implement interconnected context-aware applications using our approach, extracting user context from sensors in both healthcare and grid applications. We compare our infrastructure to single-stage monolithic implementations with single-point communications between sensor nodes and the cloud servers, demonstrating a reduction in combined system energy by 22-45%, and multiplying the battery lifetime of power-constrained devices by at least 22x, with easy deployment across different architectures and devices.

  6. Operational models of infrastructure resilience.

    PubMed

    Alderson, David L; Brown, Gerald G; Carlyle, W Matthew

    2015-04-01

    We propose a definition of infrastructure resilience that is tied to the operation (or function) of an infrastructure as a system of interacting components and that can be objectively evaluated using quantitative models. Specifically, for any particular system, we use quantitative models of system operation to represent the decisions of an infrastructure operator who guides the behavior of the system as a whole, even in the presence of disruptions. Modeling infrastructure operation in this way makes it possible to systematically evaluate the consequences associated with the loss of infrastructure components, and leads to a precise notion of "operational resilience" that facilitates model verification, validation, and reproducible results. Using a simple example of a notional infrastructure, we demonstrate how to use these models for (1) assessing the operational resilience of an infrastructure system, (2) identifying critical vulnerabilities that threaten its continued function, and (3) advising policymakers on investments to improve resilience. © 2014 Society for Risk Analysis.

  7. Post-disaster supply chain interdependent critical infrastructure system restoration: A review of data necessary and available for modeling

    USGS Publications Warehouse

    Ramachandran, Varun; Long, Suzanna K.; Shoberg, Thomas G.; Corns, Steven; Carlo, Hector J.

    2016-01-01

    The majority of restoration strategies in the wake of large-scale disasters have focused on short-term emergency response solutions. Few consider medium- to long-term restoration strategies to reconnect urban areas to national supply chain interdependent critical infrastructure systems (SCICI). These SCICI promote the effective flow of goods, services, and information vital to the economic vitality of an urban environment. To re-establish the connectivity that has been broken during a disaster between the different SCICI, relationships between these systems must be identified, formulated, and added to a common framework to form a system-level restoration plan. To accomplish this goal, a considerable collection of SCICI data is necessary. The aim of this paper is to review what data are required for model construction, the accessibility of these data, and their integration with each other. While a review of publically available data reveals a dearth of real-time data to assist modeling long-term recovery following an extreme event, a significant amount of static data does exist and these data can be used to model the complex interdependencies needed. For the sake of illustration, a particular SCICI (transportation) is used to highlight the challenges of determining the interdependencies and creating models capable of describing the complexity of an urban environment with the data publically available. Integration of such data as is derived from public domain sources is readily achieved in a geospatial environment, after all geospatial infrastructure data are the most abundant data source and while significant quantities of data can be acquired through public sources, a significant effort is still required to gather, develop, and integrate these data from multiple sources to build a complete model. Therefore, while continued availability of high quality, public information is essential for modeling efforts in academic as well as government communities, a more streamlined approach to a real-time acquisition and integration of these data is essential.

  8. Assured communications and combat resiliency: the relationship between effective national communications and combat efficiency

    NASA Astrophysics Data System (ADS)

    Allgood, Glenn O.; Kuruganti, Phani Teja; Nutaro, James; Saffold, Jay

    2009-05-01

    Combat resiliency is the ability of a commander to prosecute, control, and consolidate his/her's sphere of influence in adverse and changing conditions. To support this, an infrastructure must exist that allows the commander to view the world in varying degrees of granularity with sufficient levels of detail to permit confidence estimates to be levied against decisions and course of actions. An infrastructure such as this will include the ability to effectively communicate context and relevance within and across the battle space. To achieve this will require careful thought, planning, and understanding of a network and its capacity limitations in post-event command and control. Relevance and impact on any existing infrastructure must be fully understood prior to deployment to exploit the system's full capacity and capabilities. In this view, the combat communication network is considered an integral part of or National communication network and infrastructure. This paper will describe an analytical tool set developed at ORNL and RNI incorporating complexity theory, advanced communications modeling, simulation, and visualization technologies that could be used as a pre-planning tool or post event reasoning application to support response and containment.

  9. System Architecture Development for Energy and Water Infrastructure Data Management and Geovisual Analytics

    NASA Astrophysics Data System (ADS)

    Berres, A.; Karthik, R.; Nugent, P.; Sorokine, A.; Myers, A.; Pang, H.

    2017-12-01

    Building an integrated data infrastructure that can meet the needs of a sustainable energy-water resource management requires a robust data management and geovisual analytics platform, capable of cross-domain scientific discovery and knowledge generation. Such a platform can facilitate the investigation of diverse complex research and policy questions for emerging priorities in Energy-Water Nexus (EWN) science areas. Using advanced data analytics, machine learning techniques, multi-dimensional statistical tools, and interactive geovisualization components, such a multi-layered federated platform is being developed, the Energy-Water Nexus Knowledge Discovery Framework (EWN-KDF). This platform utilizes several enterprise-grade software design concepts and standards such as extensible service-oriented architecture, open standard protocols, event-driven programming model, enterprise service bus, and adaptive user interfaces to provide a strategic value to the integrative computational and data infrastructure. EWN-KDF is built on the Compute and Data Environment for Science (CADES) environment in Oak Ridge National Laboratory (ORNL).

  10. Towards usable and interdisciplinary e-infrastructure (Invited)

    NASA Astrophysics Data System (ADS)

    de Roure, D.

    2010-12-01

    e-Science and cyberinfrastucture at their outset tended to focus on ‘big science’ and cross-organisational infrastructures, demonstrating complex engineering with the promise of high returns. It soon became evident that the key to researchers harnessing new technology for everyday use is a user-centric approach which empowers the user - both from a developer and an end user viewpoint. For example, this philosophy is demonstrated in workflow systems for systematic data processing and in the Web 2.0 approach as exemplified by the myExperiment social web site for sharing workflows, methods and ‘research objects’. Hence the most disruptive aspect of Cloud and virtualisation is perhaps that they make new computational resources and applications usable, creating a flourishing ecosystem for routine processing and innovation alike - and in this we must consider software sustainability. This talk will discuss the changing nature of e-Science digital ecosystem, focus on the e-infrastructure for cross-disciplinary work, and highlight issues in sustainable software development in this context.

  11. A Method of Separation Assurance for Instrument Flight Procedures at Non-Radar Airports

    NASA Technical Reports Server (NTRS)

    Conway, Sheila R.; Consiglio, Maria

    2002-01-01

    A method to provide automated air traffic separation assurance services during approach to or departure from a non-radar, non-towered airport environment is described. The method is constrained by provision of these services without radical changes or ambitious investments in current ground-based technologies. The proposed procedures are designed to grant access to a large number of airfields that currently have no or very limited access under Instrument Flight Rules (IFR), thus increasing mobility with minimal infrastructure investment. This paper primarily addresses a low-cost option for airport and instrument approach infrastructure, but is designed to be an architecture from which a more efficient, albeit more complex, system may be developed. A functional description of the capabilities in the current NAS infrastructure is provided. Automated terminal operations and procedures are introduced. Rules of engagement and the operations are defined. Results of preliminary simulation testing are presented. Finally, application of the method to more terminal-like operations, and major research areas, including necessary piloted studies, are discussed.

  12. The Distributed Space Exploration Simulation (DSES)

    NASA Technical Reports Server (NTRS)

    Crues, Edwin Z.; Chung, Victoria I.; Blum, Mike G.; Bowman, James D.

    2007-01-01

    The paper describes the Distributed Space Exploration Simulation (DSES) Project, a research and development collaboration between NASA centers which focuses on the investigation and development of technologies, processes and integrated simulations related to the collaborative distributed simulation of complex space systems in support of NASA's Exploration Initiative. This paper describes the three major components of DSES: network infrastructure, software infrastructure and simulation development. In the network work area, DSES is developing a Distributed Simulation Network that will provide agency wide support for distributed simulation between all NASA centers. In the software work area, DSES is developing a collection of software models, tool and procedures that ease the burden of developing distributed simulations and provides a consistent interoperability infrastructure for agency wide participation in integrated simulation. Finally, for simulation development, DSES is developing an integrated end-to-end simulation capability to support NASA development of new exploration spacecraft and missions. This paper will present current status and plans for each of these work areas with specific examples of simulations that support NASA's exploration initiatives.

  13. Petri net-based dependability modeling methodology for reconfigurable field programmable gate arrays

    NASA Astrophysics Data System (ADS)

    Graczyk, Rafał; Orleański, Piotr; Poźniak, Krzysztof

    2015-09-01

    Dependability modeling is an important issue for aerospace and space equipment designers. From system level perspective, one has to choose from multitude of possible architectures, redundancy levels, component combinations in a way to meet desired properties and dependability and finally fit within required cost and time budgets. Modeling of such systems is getting harder as its levels of complexity grow together with demand for more functional and flexible, yet more available systems that govern more and more crucial parts of our civilization's infrastructure (aerospace transport systems, telecommunications, exploration probes). In this article promising method of modeling complex systems using Petri networks is introduced in context of qualitative and quantitative dependability analysis. This method, although with some limitation and drawback offer still convenient visual formal method of describing system behavior on different levels (functional, timing, random events) and offers straight correspondence to underlying mathematical engine, perfect for simulations and engineering support.

  14. Architecture for Cognitive Networking within NASAs Future Space Communications Infrastructure

    NASA Technical Reports Server (NTRS)

    Clark, Gilbert J., III; Eddy, Wesley M.; Johnson, Sandra K.; Barnes, James; Brooks, David

    2016-01-01

    Future space mission concepts and designs pose many networking challenges for command, telemetry, and science data applications with diverse end-to-end data delivery needs. For future end-to-end architecture designs, a key challenge is meeting expected application quality of service requirements for multiple simultaneous mission data flows with options to use diverse onboard local data buses, commercial ground networks, and multiple satellite relay constellations in LEO, MEO, GEO, or even deep space relay links. Effectively utilizing a complex network topology requires orchestration and direction that spans the many discrete, individually addressable computer systems, which cause them to act in concert to achieve the overall network goals. The system must be intelligent enough to not only function under nominal conditions, but also adapt to unexpected situations, and reorganize or adapt to perform roles not originally intended for the system or explicitly programmed. This paper describes architecture features of cognitive networking within the future NASA space communications infrastructure, and interacting with the legacy systems and infrastructure in the meantime. The paper begins by discussing the need for increased automation, including inter-system collaboration. This discussion motivates the features of an architecture including cognitive networking for future missions and relays, interoperating with both existing endpoint-based networking models and emerging information-centric models. From this basis, we discuss progress on a proof-of-concept implementation of this architecture as a cognitive networking on-orbit application on the SCaN Testbed attached to the International Space Station.

  15. Climate Forecasts and Water Resource Management: Applications for a Developing Country

    NASA Astrophysics Data System (ADS)

    Brown, C.; Rogers, P.

    2002-05-01

    While the quantity of water on the planet earth is relatively constant, the demand for water is continuously increasing. Population growth leads to linear increases in water demand, and economic growth leads to further demand growth. Strzepek et al. calculate that with a United Nations mean population estimate of 8.5 billion people by 2025 and globally balanced economic growth, water use could increase by 70% over that time (Strzepek et al., 1995). For developing nations especially, supplying water for this growing demand requires the construction of new water supply infrastructure. The prospect of designing and constructing long life-span infrastructure is clouded by the uncertainty of future climate. The availability of future water resources is highly dependent on future climate. With realization of the nonstationarity of climate, responsible design emphasizes resiliency and robustness of water resource systems (IPCC, 1995; Gleick et al., 1999). Resilient systems feature multiple sources and complex transport and distribution systems, and so come at a high economic and environmental price. A less capital-intense alternative to creating resilient and robust water resource systems is the use of seasonal climate forecasts. Such forecasts provide adequate lead time and accuracy to allow water managers and water-based sectors such as agriculture or hydropower to optimize decisions for the expected water supply. This study will assess the use of seasonal climate forecasts from regional climate models as a method to improve water resource management in systems with limited water supply infrastructure

  16. Building the Digital Library Infrastructure: A Primer.

    ERIC Educational Resources Information Center

    Tebbetts, Diane R.

    1999-01-01

    Provides a framework for examining the complex infrastructure needed to successfully implement a digital library. Highlights include database development, online public-access catalogs, interactive technical services, full-text documents, hardware and wiring, licensing, access, and security issues. (Author/LRW)

  17. Bytes: Weapons of Mass Disruption

    DTIC Science & Technology

    2002-04-01

    advances compound the problems of protecting complex global infrastructures from attacks. How should the U.S. integrate the many disparate...deploy and sustain military forces.".16 According to the direst of information warfare theories , all computer systems are vulnerable to attack. The...Crisis Show of Force Punitive Strikes Armed Intervention Regional Conflict Regional War Global Conventional War Strategic Nuclear War IW & C2W area of

  18. Understanding space weather to shield society: A global road map for 2015-2025 commissioned by COSPAR and ILWS

    NASA Astrophysics Data System (ADS)

    Schrijver, Carolus J.; Kauristie, Kirsti; Aylward, Alan D.; Denardini, Clezio M.; Gibson, Sarah E.; Glover, Alexi; Gopalswamy, Nat; Grande, Manuel; Hapgood, Mike; Heynderickx, Daniel; Jakowski, Norbert; Kalegaev, Vladimir V.; Lapenta, Giovanni; Linker, Jon A.; Liu, Siqing; Mandrini, Cristina H.; Mann, Ian R.; Nagatsuma, Tsutomu; Nandy, Dibyendu; Obara, Takahiro; Paul O'Brien, T.; Onsager, Terrance; Opgenoorth, Hermann J.; Terkildsen, Michael; Valladares, Cesar E.; Vilmer, Nicole

    2015-06-01

    There is a growing appreciation that the environmental conditions that we call space weather impact the technological infrastructure that powers the coupled economies around the world. With that comes the need to better shield society against space weather by improving forecasts, environmental specifications, and infrastructure design. We recognize that much progress has been made and continues to be made with a powerful suite of research observatories on the ground and in space, forming the basis of a Sun-Earth system observatory. But the domain of space weather is vast - extending from deep within the Sun to far outside the planetary orbits - and the physics complex - including couplings between various types of physical processes that link scales and domains from the microscopic to large parts of the solar system. Consequently, advanced understanding of space weather requires a coordinated international approach to effectively provide awareness of the processes within the Sun-Earth system through observation-driven models. This roadmap prioritizes the scientific focus areas and research infrastructure that are needed to significantly advance our understanding of space weather of all intensities and of its implications for society. Advancement of the existing system observatory through the addition of small to moderate state-of-the-art capabilities designed to fill observational gaps will enable significant advances. Such a strategy requires urgent action: key instrumentation needs to be sustained, and action needs to be taken before core capabilities are lost in the aging ensemble. We recommend advances through priority focus (1) on observation-based modeling throughout the Sun-Earth system, (2) on forecasts more than 12 h ahead of the magnetic structure of incoming coronal mass ejections, (3) on understanding the geospace response to variable solar-wind stresses that lead to intense geomagnetically-induced currents and ionospheric and radiation storms, and (4) on developing a comprehensive specification of space climate, including the characterization of extreme space storms to guide resilient and robust engineering of technological infrastructures. The roadmap clusters its implementation recommendations by formulating three action pathways, and outlines needed instrumentation and research programs and infrastructure for each of these. An executive summary provides an overview of all recommendations.

  19. Damage assessment of bridge infrastructure subjected to flood-related hazards

    NASA Astrophysics Data System (ADS)

    Michalis, Panagiotis; Cahill, Paul; Bekić, Damir; Kerin, Igor; Pakrashi, Vikram; Lapthorne, John; Morais, João Gonçalo Martins Paulo; McKeogh, Eamon

    2017-04-01

    Transportation assets represent a critical component of society's infrastructure systems. Flood-related hazards are considered one of the main climate change impacts on highway and railway infrastructure, threatening the security and functionality of transportation systems. Of such hazards, flood-induced scour is a primarily cause of bridge collapses worldwide and one of the most complex and challenging water flow and erosion phenomena, leading to structural instability and ultimately catastrophic failures. Evaluation of scour risk under severe flood events is a particularly challenging issue considering that depth of foundations is very difficult to evaluate in water environment. The continual inspection, assessment and maintenance of bridges and other hydraulic structures under extreme flood events requires a multidisciplinary approach, including knowledge and expertise of hydraulics, hydrology, structural engineering, geotechnics and infrastructure management. The large number of bridges under a single management unit also highlights the need for efficient management, information sharing and self-informing systems to provide reliable, cost-effective flood and scour risk management. The "Intelligent Bridge Assessment Maintenance and Management System" (BRIDGE SMS) is an EU/FP7 funded project which aims to couple state-of-the art scientific expertise in multidisciplinary engineering sectors with industrial knowledge in infrastructure management. This involves the application of integrated low-cost structural health monitoring systems to provide real-time information towards the development of an intelligent decision support tool and a web-based platform to assess and efficiently manage bridge assets. This study documents the technological experience and presents results obtained from the application of sensing systems focusing on the damage assessment of water-hazards at bridges over watercourses in Ireland. The applied instrumentation is interfaced with an open-source platform that can offer a more economical remote monitoring solution. The results presented in this investigation provide an important guide for a multidisciplinary approach to bridge monitoring and can be used as a benchmark for the field application of cost-effective and robust sensing methods. This will deliver key information regarding the impact of water-related hazards at bridge structures through an integrated structural health monitoring and management system. Acknowledgement: The authors wish to acknowledge the financial support of the European Commission, through the Marie Curie action Industry-Academia Partnership and Pathways Network BRIDGE SMS (Intelligent Bridge Assessment Maintenance and Management System) - FP7-People-2013-IAPP- 612517.

  20. Challenges in integrating multidisciplinary data into a single e-infrastructure

    NASA Astrophysics Data System (ADS)

    Atakan, Kuvvet; Jeffery, Keith G.; Bailo, Daniele; Harrison, Matthew

    2015-04-01

    The European Plate Observing System (EPOS) aims to create a pan-European infrastructure for solid Earth science to support a safe and sustainable society. The mission of EPOS is to monitor and understand the dynamic and complex Earth system by relying on new e-science opportunities and integrating diverse and advanced Research Infrastructures in Europe for solid Earth Science. EPOS will enable innovative multidisciplinary research for a better understanding of the Earth's physical and chemical processes that control earthquakes, volcanic eruptions, ground instability and tsunami as well as the processes driving tectonics and Earth's surface dynamics. EPOS will improve our ability to better manage the use of the subsurface of the Earth. Through integration of data, models and facilities EPOS will allow the Earth Science community to make a step change in developing new concepts and tools for key answers to scientific and socio-economic questions concerning geo-hazards and geo-resources as well as Earth sciences applications to the environment and to human welfare. EPOS is now getting into its Implementation Phase (EPOS-IP). One of the main challenges during the implementation phase is the integration of multidisciplinary data into a single e-infrastructure. Multidisciplinary data are organized and governed by the Thematic Core Services (TCS) and are driven by various scientific communities encompassing a wide spectrum of Earth science disciplines. TCS data, data products and services will be integrated into a platform "the ICS system" that will ensure their interoperability and access to these services by the scientific community as well as other users within the society. This requires dedicated tasks for interactions with the various TCS-WPs, as well as the various distributed ICS (ICS-Ds), such as High Performance Computing (HPC) facilities, large scale data storage facilities, complex processing and visualization tools etc. Computational Earth Science (CES) services are identified as a transversal activity and as such need to be harmonized and provided within the ICS. In order to develop a metadata catalogue and the ICS system, the content from the entire spectrum of services included in TCS, ICS-Ds as well as CES activities, need to be organized in a systematic manner taking into account global and European IT-standards, while complying with the user needs and data provider requirements.

  1. IEEE TRANSACTIONS ON CYBERNETICS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Craig R. RIeger; David H. Scheidt; William D. Smart

    2014-11-01

    MODERN societies depend on complex and critical infrastructures for energy, transportation, sustenance, medical care, emergency response, communications security. As computers, automation, and information technology (IT) have advanced, these technologies have been exploited to enhance the efficiency of operating the processes that make up these infrastructures

  2. Developing a concept of social-ecological-technological systems to characterize resilience of urban areas and infrastructure to extreme events

    NASA Astrophysics Data System (ADS)

    Chester, M.; Grimm, N. B.; Redman, C.; Miller, T.; McPherson, T.; Munoz-Erickson, T.; Chandler, D. G.

    2015-12-01

    Climate change is widely considered one of the greatest challenges to global sustainability, with extreme events being the most immediate way that people experience this phenomenon. Urban areas are particularly vulnerable to these events given their location, concentration of people, and increasingly complex and interdependent infrastructure. We are developing a conceptual framework for urban social-ecological-technological systems (SETS) that will allow researchers and practitioners to assess how infrastructure can be resilient, provide ecosystem services, improve social well being, and exploit new technologies in ways that benefit urban populations. The framework integrates the three domains of social and equity issues, environmental quality and protection, and technical/engineering aspects, to form a concept of infrastructure that occurs at the intersection of the domains. Examples show how the more common socioecological systems and socially sensitive engineering approaches that fail to incorporate the third dimension may elevate vulnerability to climate-related disaster. The SETS conceptual framework bridges currently siloed social science, environmental science, and engineering approaches to significantly advance research into the structure, function, and emergent properties of SETS. Extreme events like heat waves in Phoenix; coastal and urban flooding in the wake of superstorm Sandy and following hurricanes in Miami, FL; drought in Mexico; and urban flooding in Baltimore, Portland, San Juan PR, Syracuse, and Valdivia, Chile provide examples of the impacts of and vulnerability to extreme events that demand a new approach. The infrastructure of the future must be resilient, leverage ecosystem services, improve social well being, and exploit new technologies in ways that benefit all segments of urban populations and are appropriate to the particular urban contexts. These contexts are defined not only by the biophysical environment but also by culture and institutions of each place. We apply the SETS conceptual framework to nine western hemisphere cities in diverse settings, presenting hypotheses about the relative efficacy of strategies for resilient SETS infrastructure in cities contrasting in event type, biophysical setting, and cultural and institutional contexts.

  3. Online & Offline data storage and data processing at the European XFEL facility

    NASA Astrophysics Data System (ADS)

    Gasthuber, Martin; Dietrich, Stefan; Malka, Janusz; Kuhn, Manuela; Ensslin, Uwe; Wrona, Krzysztof; Szuba, Janusz

    2017-10-01

    For the upcoming experiments at the European XFEL light source facility, a new online and offline data processing and storage infrastructure is currently being built and verified. Based on the experience of the system being developed for the Petra III light source at DESY, presented at the last CHEP conference, we further develop the system to cope with the much higher volumes and rates ( 50GB/sec) together with a more complex data analysis and infrastructure conditions (i.e. long range InfiniBand connections). This work will be carried out in collaboration of DESY/IT, European XFEL and technology support from IBM/Research. This presentation will shortly wrap up the experience of 1 year runtime of the PetraIII ([3]) system, continue with a short description of the challenges for the European XFEL ([2]) experiments and the main section, showing the proposed system for online and offline with initial result from real implementation (HW & SW). This will cover the selected cluster filesystem GPFS ([5]) including Quality of Service (QOS), extensive use of flash based subsystems and other new and unique features this architecture will benefit from.

  4. System Dynamics Model to develop resilience management strategies for lifelines exposed to natural hazards

    NASA Astrophysics Data System (ADS)

    Pagano, Alessandro; Pluchinotta, Irene; Giordano, Raffaele; Vurro, Michele

    2016-04-01

    Resilience has recently become a key concept, and a crucial paradigm in the analysis of the impacts of natural disasters, mainly concerning Lifeline Systems (LS). Indeed, the traditional risk management approaches require a precise knowledge of all potential hazards and a full understanding of the interconnections among different infrastructures, based on past events and trends analysis. Nevertheless, due to the inner complexity of LS, their interconnectedness and the dynamic context in which they operate (i.e. technology, economy and society), it is difficult to gain a complete comprehension of the processes influencing vulnerabilities and threats. Therefore, resilience thinking addresses the complexities of large integrated systems and the uncertainty of future threats, emphasizing the absorbing, adapting and responsive behavior of the system. Resilience thinking approaches are focused on the capability of the system to deal with the unforeseeable. The increasing awareness of the role played by LS, has led governmental agencies and institutions to develop resilience management strategies. Risk prone areas, such as cities, are highly dependent on infrastructures providing essential services that support societal functions, safety, economic prosperity and quality of life. Among the LS, drinking water supply is critical for supporting citizens during emergency and recovery, since a disruption could have a range of serious societal impacts. A very well-known method to assess LS resilience is the TOSE approach. The most interesting feature of this approach is the integration of four dimensions: Technical, Organizational, Social and Economic. Such issues are all concurrent to the resilience level of an infrastructural system, and should be therefore quantitatively assessed. Several researches underlined that the lack of integration among the different dimensions, composing the resilience concept, may contribute to a mismanagement of LS in case of natural disasters. Moving in such direction, System Dynamics Modeling (SDM) is a suitable operative approach. The SDM allows taking into account all resilience dimensions in an integrated and dynamic way. Furthermore, it allows to combine predictive and learning functionality through feedback mechanisms, and to foster active involvement of stakeholders in the modelling process. The present paper show some results of ongoing research activities. The main aim of the work is to describe using SDM, the relationships and interdependencies between drinking water supply infrastructures and societies in building the resilience of urban communities in case of natural disasters. Reflections are carried out on the comparison between two major earthquakes in Italy: L'Aquila in 2009 and Emilia Romagna in 2012. The model aims at defining a quantitative tool to assess the evolution of resilience of drinking water supply system. Specifically, it has been used to evaluate the impact of actions and strategies for resilience improvement on the dynamic evolution of the system, thus suggesting the most suitable ones.

  5. Solar-thermal complex sample processing for nucleic acid based diagnostics in limited resource settings

    PubMed Central

    Gumus, Abdurrahman; Ahsan, Syed; Dogan, Belgin; Jiang, Li; Snodgrass, Ryan; Gardner, Andrea; Lu, Zhengda; Simpson, Kenneth; Erickson, David

    2016-01-01

    The use of point-of-care (POC) devices in limited resource settings where access to commonly used infrastructure, such as water and electricity, can be restricted represents simultaneously one of the best application fits for POC systems as well as one of the most challenging places to deploy them. Of the many challenges involved in these systems, the preparation and processing of complex samples like stool, vomit, and biopsies are particularly difficult due to the high number and varied nature of mechanical and chemical interferents present in the sample. Previously we have demonstrated the ability to use solar-thermal energy to perform PCR based nucleic acid amplifications. In this work demonstrate how the technique, using similar infrastructure, can also be used to perform solar-thermal based sample processing system for extracting and isolating Vibrio Cholerae nucleic acids from fecal samples. The use of opto-thermal energy enables the use of sunlight to drive thermal lysing reactions in large volumes without the need for external electrical power. Using the system demonstrate the ability to reach a 95°C threshold in less than 5 minutes and maintain a stable sample temperature of +/− 2°C following the ramp up. The system is demonstrated to provide linear results between 104 and 108 CFU/mL when the released nucleic acids were quantified via traditional means. Additionally, we couple the sample processing unit with our previously demonstrated solar-thermal PCR and tablet based detection system to demonstrate very low power sample-in-answer-out detection. PMID:27231636

  6. Developing a data life cycle for carbon and greenhouse gas measurements: challenges, experiences and visions

    NASA Astrophysics Data System (ADS)

    Kutsch, W. L.

    2015-12-01

    Environmental research infrastructures and big data integration networks require common data policies, standardized workflows and sophisticated e-infrastructure to optimise the data life cycle. This presentation summarizes the experiences in developing the data life cycle for the Integrated Carbon Observation System (ICOS), a European Research Infrastructure. It will also outline challenges that still exist and visions for future development. As many other environmental research infrastructures ICOS RI built on a large number of distributed observational or experimental sites. Data from these sites are transferred to Thematic Centres and quality checked, processed and integrated there. Dissemination will be managed by the ICOS Carbon Portal. This complex data life cycle has been defined in detail by developing protocols and assigning responsibilities. Since data will be shared under an open access policy there is a strong need for common data citation tracking systems that allow data providers to identify downstream usage of their data so as to prove their importance and show the impact to stakeholders and the public. More challenges arise from interoperating with other infrastructures or providing data for global integration projects as done e.g. in the framework of GEOSS or in global integration approaches such as fluxnet or SOCAt. Here, common metadata systems are the key solutions for data detection and harvesting. The metadata characterises data, services, users and ICT resources (including sensors and detectors). Risks may arise when data of high and low quality are mixed during this process or unexperienced data scientists without detailed knowledge on the data aquisition derive scientific theories through statistical analyses. The vision of fully open data availability is expressed in a recent GEO flagship initiative that will address important issues needed to build a connected and interoperable global network for carbon cycle and greenhouse gas observations and aims to meet the most urgent needs for integration between different information sources and methodologies, between different regional networks and from data providers to users.

  7. Virtualization for the LHCb Online system

    NASA Astrophysics Data System (ADS)

    Bonaccorsi, Enrico; Brarda, Loic; Moine, Gary; Neufeld, Niko

    2011-12-01

    Virtualization has long been advertised by the IT-industry as a way to cut down cost, optimise resource usage and manage the complexity in large data-centers. The great number and the huge heterogeneity of hardware, both industrial and custom-made, has up to now led to reluctance in the adoption of virtualization in the IT infrastructure of large experiment installations. Our experience in the LHCb experiment has shown that virtualization improves the availability and the manageability of the whole system. We have done an evaluation of available hypervisors / virtualization solutions and find that the Microsoft HV technology provides a high level of maturity and flexibility for our purpose. We present the results of these comparison tests, describing in detail, the architecture of our virtualization infrastructure with a special emphasis on the security for services visible to the outside world. Security is achieved by a sophisticated combination of VLANs, firewalls and virtual routing - the cost and benefits of this solution are analysed. We have adapted our cluster management tools, notably Quattor, for the needs of virtual machines and this allows us to migrate smoothly services on physical machines to the virtualized infrastructure. The procedures for migration will also be described. In the final part of the document we describe our recent R&D activities aiming to replacing the SAN-backend for the virtualization by a cheaper iSCSI solution - this will allow to move all servers and related services to the virtualized infrastructure, excepting the ones doing hardware control via non-commodity PCI plugin cards.

  8. From Informal to Formal: Status and Challenges of Informal Water Infrastructures in Indonesia

    NASA Astrophysics Data System (ADS)

    Maryati, S.; Humaira, A. N. S.; Kipuw, D. M.

    2018-05-01

    Informal water infrastructures in Indonesia have emerged due to the government’s inability or incapacity to guarantee the service of water provision to all communities. Communities have their own mechanisms to meet their water needs and arrange it as a self-supplying or self-governed form of water infrastructure provision. In general, infrastructure provisions in Indonesia are held in the form of public systems (centralized systems) that cover most of the urban communities; communal systems that serve some groups of households limited only to a particular small-scale area; and individual systems. The communal and individual systems are systems that are provided by the communities themselves, sometimes with some intervention by the government. This kind of system is usually built according to lower standards compared to the system built by the government. Informal systems in this study are not defined in terms of their legal aspect, but more in technical terms. The aim of this study was to examine the existing status and challenges in transforming informal water infrastructures to formal infrastructures. Formalizing informal infrastructures is now becoming an issue because of the limitations the government faces in building new formal infrastructures. On the other hand, global and national targets state 100% access to water supplies for the whole population in the near future. Formalizing informal infrastructures seems more realistic than building new infrastructures. The scope of this study were the technical aspects thereof. Making descriptive and comparative analyses was the methodology used. Generally, most of the informal systems do not apply progressive tariffs, do not have storage/reservoirs, do not have water treatment plants, and rarely conduct treatment in accordance with standards and procedures as formal systems do, which leads to dubious access to safe water, especially considering the quality aspect.

  9. A Governance Roadmap and Framework for EarthCube

    NASA Astrophysics Data System (ADS)

    Allison, M. L.

    2012-12-01

    EarthCube is a process and an outcome, established to transform the conduct of research through the development of community-guided cyberinfrastructure for the Geosciences as the prototype for potential deployment across all domain sciences. EarthCube aims to create a knowledge management system and infrastructure that integrates all Earth system and human dimensions data in an open transparent, and inclusive manner. EarthCube requires broad community participation in concept, framework, and implementation and must not be hindered by rigid preconceptions. We discovered widely varying interpretations, expectations, and assumptions about governance among EarthCube participants. Our definition of governance refers to the processes, structure and organizational elements that determine, within an organization or system of organizations, how power is exercised, how stakeholders have their say, how decisions are made, and how decision makers are held accountable. We have learned, from historic infrastructure case studies, background research on governance and from community feedback during this roadmap process, that other types of large-scale, complex infrastructures, including the Internet, have no central control, administration, or management. No national infrastructure that we examined is governed by a single entity, let alone a single governance archetype. Thus we feel the roadmap process must accommodate a governance system or system of systems that may have a single governing entity, particularly at the start, but can evolve into a collective of governing bodies as warranted, in order to be successful. A fast-track process during Spring, 2012 culminated in a Governance Roadmap delivered to an NSF-sponsored charrette in June with an aggressive timetable to define and implement a governance structure to enable the elements of EarthCube to become operational expeditiously. Our goal is to help ensure the realization of this infrastructure sooner, more efficiently, and more effectively, by providing a community endorsed Governance Framework. The Framework, and corresponding community outreach, will maximize engagement of the broader EarthCube community, which in turn will minimize the risks that the community will not adopt EarthCube in its development and final states. The target community includes academia, government, and the private-sector, both nationally and internationally. Based on community feedback to-date, we compiled and synthesized system-wide governance requirements to draft an initial set of EarthCube Governance functions. These functions will permit us to produce a Governance Framework based on an aggressive community outreach and engagement plan.

  10. Serious Gaming for Test & Evaluation of Clean-Slate (Ab Initio) National Airspace System (NAS) Designs

    NASA Technical Reports Server (NTRS)

    Allen, B. Danette; Alexandrov, Natalia

    2016-01-01

    Incremental approaches to air transportation system development inherit current architectural constraints, which, in turn, place hard bounds on system capacity, efficiency of performance, and complexity. To enable airspace operations of the future, a clean-slate (ab initio) airspace design(s) must be considered. This ab initio National Airspace System (NAS) must be capable of accommodating increased traffic density, a broader diversity of aircraft, and on-demand mobility. System and subsystem designs should scale to accommodate the inevitable demand for airspace services that include large numbers of autonomous Unmanned Aerial Vehicles and a paradigm shift in general aviation (e.g., personal air vehicles) in addition to more traditional aerial vehicles such as commercial jetliners and weather balloons. The complex and adaptive nature of ab initio designs for the future NAS requires new approaches to validation, adding a significant physical experimentation component to analytical and simulation tools. In addition to software modeling and simulation, the ability to exercise system solutions in a flight environment will be an essential aspect of validation. The NASA Langley Research Center (LaRC) Autonomy Incubator seeks to develop a flight simulation infrastructure for ab initio modeling and simulation that assumes no specific NAS architecture and models vehicle-to-vehicle behavior to examine interactions and emergent behaviors among hundreds of intelligent aerial agents exhibiting collaborative, cooperative, coordinative, selfish, and malicious behaviors. The air transportation system of the future will be a complex adaptive system (CAS) characterized by complex and sometimes unpredictable (or unpredicted) behaviors that result from temporal and spatial interactions among large numbers of participants. A CAS not only evolves with a changing environment and adapts to it, it is closely coupled to all systems that constitute the environment. Thus, the ecosystem that contains the system and other systems evolves with the CAS as well. The effects of the emerging adaptation and co-evolution are difficult to capture with only combined mathematical and computational experimentation. Therefore, an ab initio flight simulation environment must accommodate individual vehicles, groups of self-organizing vehicles, and large-scale infrastructure behavior. Inspired by Massively Multiplayer Online Role Playing Games (MMORPG) and Serious Gaming, the proposed ab initio simulation environment is similar to online gaming environments in which player participants interact with each other, affect their environment, and expect the simulation to persist and change regardless of any individual player's active participation.

  11. Measuring the pulse of urban green infrastructure: vegetation dynamics across residential landscapes

    EPA Science Inventory

    Vegetation can be an important component of urban green infrastructure. Its structure is a complex result of the socio-ecological milieu and management decisions, and it can influence numerous ecohydrological processes such as stormwater interception and evapotranspiration. Despi...

  12. Weathering the Storm: Developing a Spatial Data Infrastructure and Online Research Platform for Oil Spill Preparedness

    NASA Astrophysics Data System (ADS)

    Bauer, J. R.; Rose, K.; Romeo, L.; Barkhurst, A.; Nelson, J.; Duran-Sesin, R.; Vielma, J.

    2016-12-01

    Efforts to prepare for and reduce the risk of hazards, from both natural and anthropogenic sources, which threaten our oceans and coasts requires an understanding of the dynamics and interactions between the physical, ecological, and socio-economic systems. Understanding these coupled dynamics are essential as offshore oil & gas exploration and production continues to push into harsher, more extreme environments where risks and uncertainty increase. However, working with these large, complex data from various sources and scales to assess risks and potential impacts associated with offshore energy exploration and production poses several challenges to research. In order to address these challenges, an integrated assessment model (IAM) was developed at the Department of Energy's (DOE) National Energy Technology Laboratory (NETL) that combines spatial data infrastructure and an online research platform to manage, process, analyze, and share these large, multidimensional datasets, research products, and the tools and models used to evaluate risk and reduce uncertainty for the entire offshore system, from the subsurface, through the water column, to coastal ecosystems and communities. Here, we will discuss the spatial data infrastructure and online research platform, NETL's Energy Data eXchange (EDX), that underpin the offshore IAM, providing information on how the framework combines multidimensional spatial data and spatio-temporal tools to evaluate risks to the complex matrix of potential environmental, social, and economic impacts stemming from modeled offshore hazard scenarios, such as oil spills or hurricanes. In addition, we will discuss the online analytics, tools, and visualization methods integrated into this framework that support availability and access to data, as well as allow for the rapid analysis and effective communication of analytical results to aid a range of decision-making needs.

  13. Building Civilian-Military Collaboration to Enhance Response Following an Anthrax Release

    DTIC Science & Technology

    2012-05-04

    thought that rural communities are not considered ―high risk‖ for the anthrax scenario as their widely dispersed population may not be a likely a...terrorist target.27 The community planners’ perception of risk will impact the time and effort a rural community places towards planning for these...types of scenarios. The diversity of urban and rural populations and their differing healthcare systems and infrastructures present complexities when

  14. Energy-Water Nexus Knowledge Discovery Framework, Experts’ Meeting Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bhaduri, Budhendra L.; Simon, AJ; Allen, Melissa R.

    Energy and water generation and delivery systems are inherently interconnected. With worldwide demandfor energy growing, the energy sector is experiencing increasing competition for water. With increasingpopulation and changing environmental, socioeconomic, and demographic scenarios, new technology andinvestment decisions must be made for optimized and sustainable energy-water resource management. These decisions require novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales.

  15. SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology.

    PubMed

    Adams, Richard; Clark, Allan; Yamaguchi, Azusa; Hanlon, Neil; Tsorman, Nikos; Ali, Shakir; Lebedeva, Galina; Goltsov, Alexey; Sorokin, Anatoly; Akman, Ozgur E; Troein, Carl; Millar, Andrew J; Goryanin, Igor; Gilmore, Stephen

    2013-03-01

    Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process. SBSI is a modular software suite composed of three major components: SBSINumerics, a high-performance library containing parallelized algorithms for performing parameter fitting; SBSIDispatcher, a middleware application to track experiments and submit jobs to back-end servers; and SBSIVisual, an extensible client application used to configure optimization experiments and view results. Furthermore, we have created a plugin infrastructure to enable project-specific modules to be easily installed. Plugin developers can take advantage of the existing user-interface and application framework to customize SBSI for their own uses, facilitated by SBSI's use of standard data formats. All SBSI binaries and source-code are freely available from http://sourceforge.net/projects/sbsi under an Apache 2 open-source license. The server-side SBSINumerics runs on any Unix-based operating system; both SBSIVisual and SBSIDispatcher are written in Java and are platform independent, allowing use on Windows, Linux and Mac OS X. The SBSI project website at http://www.sbsi.ed.ac.uk provides documentation and tutorials.

  16. Modeling the resilience of urban water supply using the capital portfolio approach

    NASA Astrophysics Data System (ADS)

    Krueger, E. H.; Klammler, H.; Borchardt, D.; Frank, K.; Jawitz, J. W.; Rao, P. S.

    2017-12-01

    The dynamics of global change challenge the resilience of cities in a multitude of ways, including pressures resulting from population and consumption changes, production patterns, climate and landuse change, as well as environmental hazards. Responses to these challenges aim to improve urban resilience, but lack an adequate understanding of 1) the elements and processes that lead to the resilience of coupled natural-human-engineered systems, 2) the complex dynamics emerging from the interaction of these elements, including the availability of natural resources, infrastructure, and social capital, which may lead to 3) unintended consequences resulting from management responses. We propose a new model that simulates the coupled dynamics of five types of capitals (water resources, infrastructure, finances, political capital /management, and social adaptive capacity) that are necessary for the provision of water supply to urban residents. We parameterize the model based on data for a case study city, which is limited by constraints in water availability, financial resources, and faced with degrading infrastructure, as well as population increase, which challenge the urban management institutions. Our model analyzes the stability of the coupled system, and produces time series of the capital dynamics to quantify its resilience as a result of the portfolio of capitals available to usher adaptive capacity and to secure water supply subjected to multiple recurring shocks. We apply our model to one real urban water supply system located in an arid environment, as well as a wide range of hypothetical case studies, which demonstrates its applicability to various types of cities, and its ability to quantify and compare water supply resilience. The analysis of a range of urban water systems provides valuable insights into guiding more sustainable responses for maintaining the resilience of urban water supply around the globe, by showing how unsustainable responses risk the loss of resilience. We suggest that the same model can be generalized to represent other types of urban infrastructure service systems with different parameterizations.

  17. LANL: Weapons Infrastructure Briefing to Naval Reactors, July 18, 2017

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chadwick, Frances

    Presentation slides address: The Laboratory infrastructure supports hundreds of high hazard, complex operations daily; LANL’s unique science and engineering infrastructure is critical to delivering on our mission; LANL FY17 Budget & Workforce; Direct-Funded Infrastructure Accounts; LANL Org Chart; Weapons Infrastructure Program Office; The Laboratory’s infrastructure relies on both Direct and Indirect funding; NA-50’s Operating, Maintenance & Recapitalization funding is critical to the execution of the mission; Los Alamos is currently executing several concurrent Line Item projects; Maintenance @ LANL; NA-50 is helping us to address D&D needs; We are executing a CHAMP Pilot Project at LANL; G2 = Main Toolmore » for Program Management; MDI: Future Investments are centered on facilities with a high Mission Dependency Index; Los Alamos hosted first “Deep Dive” in November 2016; Safety, Infrastructure & Operations is one of the most important programs at LANL, and is foundational for our mission success.« less

  18. Developing Sustainable Urban Water-Energy Infrastructures: Applying a Multi-Sectoral Social-Ecological-Infrastructural Systems (SEIS) Framework

    NASA Astrophysics Data System (ADS)

    Ramaswami, A.

    2016-12-01

    Urban infrastructure - broadly defined to include the systems that provide water, energy, food, shelter, transportation-communication, sanitation and green/public spaces in cities - have tremendous impact on the environment and on human well-being (Ramaswami et al., 2016; Ramaswami et al., 2012). Aggregated globally, these sectors contribute 90% of global greenhouse gas (GHG) emissions and 96% of global water withdrawals. Urban infrastructure contributions to such impacts are beginning to dominate. Cities are therefore becoming the action arena for infrastructure transformations that can achieve high levels of service delivery while reducing environmental impacts and enhancing human well-being. Achieving sustainable urban infrastructure transitions requires: information about the engineered infrastructure, and its interaction with the natural (ecological-environmental) and the social sub-systems In this paper, we apply a multi-sector, multi-scalar Social-Ecological-Infrastructural Systems framework that describes the interactions among biophysical engineered infrastructures, the natural environment and the social system in a systems-approach to inform urban infrastructure transformations. We apply the SEIS framework to inform water and energy sector transformations in cities to achieve environmental and human health benefits realized at multiple scales - local, regional and global. Local scales address pollution, health, wellbeing and inequity within the city; regional scales address regional pollution, scarcity, as well as supply risks in the water-energy sectors; global impacts include greenhouse gas emissions and climate impacts. Different actors shape infrastructure transitions including households, businesses, and policy actors. We describe the development of novel cross-sectoral strategies at the water-energy nexus in cities, focusing on water, waste and energy sectors, in a case study of Delhi, India. Ramaswami, A.; Russell, A.G.; Culligan, P.J.; Sharma, K.R.; Kumar, E. (2016). Meta-Principles for developing smart, sustainable, and healthy cities, Science, 352(6288), 940-3. Ramaswami, A., et al. A Social-Ecological Infrastructural Systems Framework for Inter-Disciplinary Study of Sustainable City-Systems. J. Ind Ecol, 16(6): 801-813, 2012.

  19. 77 FR 28901 - Amended Certification Regarding Eligibility To Apply for Worker Adjustment Assistance; The UBS...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-16

    ... Partners, Inc., Corporate Center Division, Group Technology Infrastructure Services, Infrastructure Service... Infrastructure Services, Distributed Systems and Storage Group, Chicago, Illinois. The workers provide... unit formerly known as Group Technology Infrastructure Services, Distributed Systems and Storage is...

  20. NGScloud: RNA-seq analysis of non-model species using cloud computing.

    PubMed

    Mora-Márquez, Fernando; Vázquez-Poletti, José Luis; López de Heredia, Unai

    2018-05-03

    RNA-seq analysis usually requires large computing infrastructures. NGScloud is a bioinformatic system developed to analyze RNA-seq data using the cloud computing services of Amazon that permit the access to ad hoc computing infrastructure scaled according to the complexity of the experiment, so its costs and times can be optimized. The application provides a user-friendly front-end to operate Amazon's hardware resources, and to control a workflow of RNA-seq analysis oriented to non-model species, incorporating the cluster concept, which allows parallel runs of common RNA-seq analysis programs in several virtual machines for faster analysis. NGScloud is freely available at https://github.com/GGFHF/NGScloud/. A manual detailing installation and how-to-use instructions is available with the distribution. unai.lopezdeheredia@upm.es.

  1. Network structure of subway passenger flows

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Mao, B. H.; Bai, Y.

    2016-03-01

    The results of transportation infrastructure network analyses have been used to analyze complex networks in a topological context. However, most modeling approaches, including those based on complex network theory, do not fully account for real-life traffic patterns and may provide an incomplete view of network functions. This study utilizes trip data obtained from the Beijing Subway System to characterize individual passenger movement patterns. A directed weighted passenger flow network was constructed from the subway infrastructure network topology by incorporating trip data. The passenger flow networks exhibit several properties that can be characterized by power-law distributions based on flow size, and log-logistic distributions based on the fraction of boarding and departing passengers. The study also characterizes the temporal patterns of in-transit and waiting passengers and provides a hierarchical clustering structure for passenger flows. This hierarchical flow organization varies in the spatial domain. Ten cluster groups were identified, indicating a hierarchical urban polycentric structure composed of large concentrated flows at urban activity centers. These empirical findings provide insights regarding urban human mobility patterns within a large subway network.

  2. Application of the dynamically allocated virtual clustering management system to emulated tactical network experimentation

    NASA Astrophysics Data System (ADS)

    Marcus, Kelvin

    2014-06-01

    The U.S Army Research Laboratory (ARL) has built a "Network Science Research Lab" to support research that aims to improve their ability to analyze, predict, design, and govern complex systems that interweave the social/cognitive, information, and communication network genres. Researchers at ARL and the Network Science Collaborative Technology Alliance (NS-CTA), a collaborative research alliance funded by ARL, conducted experimentation to determine if automated network monitoring tools and task-aware agents deployed within an emulated tactical wireless network could potentially increase the retrieval of relevant data from heterogeneous distributed information nodes. ARL and NS-CTA required the capability to perform this experimentation over clusters of heterogeneous nodes with emulated wireless tactical networks where each node could contain different operating systems, application sets, and physical hardware attributes. Researchers utilized the Dynamically Allocated Virtual Clustering Management System (DAVC) to address each of the infrastructure support requirements necessary in conducting their experimentation. The DAVC is an experimentation infrastructure that provides the means to dynamically create, deploy, and manage virtual clusters of heterogeneous nodes within a cloud computing environment based upon resource utilization such as CPU load, available RAM and hard disk space. The DAVC uses 802.1Q Virtual LANs (VLANs) to prevent experimentation crosstalk and to allow for complex private networks. Clusters created by the DAVC system can be utilized for software development, experimentation, and integration with existing hardware and software. The goal of this paper is to explore how ARL and the NS-CTA leveraged the DAVC to create, deploy and manage multiple experimentation clusters to support their experimentation goals.

  3. Collaborative-Large scale Engineering Assessment Networks for Environmental Research: The Overview

    NASA Astrophysics Data System (ADS)

    Moo-Young, H.

    2004-05-01

    A networked infrastructure for engineering solutions and policy alternatives is necessary to assess, manage, and protect complex, anthropogenic ally stressed environmental resources effectively. Reductionist and discrete disciplinary methodologies are no longer adequate to evaluate and model complex environmental systems and anthropogenic stresses. While the reductonist approach provides important information regarding individual mechanisms, it cannot provide complete information about how multiple processes are related. Therefore, it is not possible to make accurate predictions about system responses to engineering interventions and the effectiveness of policy options. For example, experts cannot agree on best management strategies for contaminated sediments in riverine and estuarine systems. This is due, in part to the fact that existing models do not accurately capture integrated system dynamics. In addition, infrastructure is not available for investigators to exchange and archive data, to collaborate on new investigative methods, and to synthesize these results to develop engineering solutions and policy alternatives. Our vision for the future is to create a network comprising field facilities and a collaboration of engineers, scientists, policy makers, and community groups. This will allow integration across disciplines, across different temporal and spatial scales, surface and subsurface geographies, and air sheds and watersheds. Benefits include fast response to changes in system health, real-time decision making, and continuous data collection that can be used to anticipate future problems, and to develop sound engineering solutions and management decisions. CLEANER encompasses four general aspects: 1) A Network of environmental field facilities instrumented for the acquisition and analysis of environmental data; 2) A Virtual Repository of Data and information technology for engineering modeling, analysis and visualization of data, i.e. an environmental cyber-infrastructure; 3) A Mechanism for multidisciplinary research and education activities designed to exploit the output of the instrumented sites and networked information technology, to formulate engineering and policy options directed toward the protection, remediation, and restoration of stressed environments and sustainability of environmental resources; and 4) A Collaboration among engineers, natural and social scientists, educators, policy makers, industry, non-governmental organizations, the public, and other stakeholders.

  4. Infrastructure sensing.

    PubMed

    Soga, Kenichi; Schooling, Jennifer

    2016-08-06

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors.

  5. Infrastructure sensing

    PubMed Central

    Soga, Kenichi; Schooling, Jennifer

    2016-01-01

    Design, construction, maintenance and upgrading of civil engineering infrastructure requires fresh thinking to minimize use of materials, energy and labour. This can only be achieved by understanding the performance of the infrastructure, both during its construction and throughout its design life, through innovative monitoring. Advances in sensor systems offer intriguing possibilities to radically alter methods of condition assessment and monitoring of infrastructure. In this paper, it is hypothesized that the future of infrastructure relies on smarter information; the rich information obtained from embedded sensors within infrastructure will act as a catalyst for new design, construction, operation and maintenance processes for integrated infrastructure systems linked directly with user behaviour patterns. Some examples of emerging sensor technologies for infrastructure sensing are given. They include distributed fibre-optics sensors, computer vision, wireless sensor networks, low-power micro-electromechanical systems, energy harvesting and citizens as sensors. PMID:27499845

  6. A Flexible framework for forward and inverse modeling of stormwater control measures

    NASA Astrophysics Data System (ADS)

    Aflaki, S.; Massoudieh, A.

    2016-12-01

    Models that allow for design considerations of green infrastructure (GI) practices to control stormwater runoff and associated contaminants have received considerable attention in recent years. While popular, generally, the GI models are relatively simplistic. However, GI model predictions are being relied upon by many municipalities and State/Local agencies to make decisions about grey vs. green infrastructure improvement planning. Adding complexity to GI modeling frameworks may preclude their use in simpler urban planning situations. Therefore, the goal here was to develop a sophisticated, yet flexible tool that could be used by design engineers and researchers to capture and explore the effect of design factors and properties of the media used in the performance of GI systems at a relatively small scale. We deemed it essential to have a flexible GI modeling tool that is capable of simulating GI system components and specific biophysical processes affecting contaminants such as reactions, and particle-associated transport accurately while maintaining a high degree of flexibly to account for the myriad of GI alternatives. The mathematical framework for a stand-alone GI performance assessment tool has been developed and will be demonstrated. The process-based model framework developed here can be used to model a diverse range of GI practices such as green roof, retention pond, bioretention, infiltration trench, permeable pavement and other custom-designed combinatory systems. Four demonstration applications covering a diverse range of systems will be presented. The example applications include a evaluating hydraulic performance of a complex bioretention system, hydraulic analysis of porous pavement system, flow colloid-facilitated transport, reactive transport and groundwater recharge underneath an infiltration pond and finally reactive transport and bed-sediment interactions in a wetland system will be presented.

  7. About Distributed Simulation-based Optimization of Forming Processes using a Grid Architecture

    NASA Astrophysics Data System (ADS)

    Grauer, Manfred; Barth, Thomas

    2004-06-01

    Permanently increasing complexity of products and their manufacturing processes combined with a shorter "time-to-market" leads to more and more use of simulation and optimization software systems for product design. Finding a "good" design of a product implies the solution of computationally expensive optimization problems based on the results of simulation. Due to the computational load caused by the solution of these problems, the requirements on the Information&Telecommunication (IT) infrastructure of an enterprise or research facility are shifting from stand-alone resources towards the integration of software and hardware resources in a distributed environment for high-performance computing. Resources can either comprise software systems, hardware systems, or communication networks. An appropriate IT-infrastructure must provide the means to integrate all these resources and enable their use even across a network to cope with requirements from geographically distributed scenarios, e.g. in computational engineering and/or collaborative engineering. Integrating expert's knowledge into the optimization process is inevitable in order to reduce the complexity caused by the number of design variables and the high dimensionality of the design space. Hence, utilization of knowledge-based systems must be supported by providing data management facilities as a basis for knowledge extraction from product data. In this paper, the focus is put on a distributed problem solving environment (PSE) capable of providing access to a variety of necessary resources and services. A distributed approach integrating simulation and optimization on a network of workstations and cluster systems is presented. For geometry generation the CAD-system CATIA is used which is coupled with the FEM-simulation system INDEED for simulation of sheet-metal forming processes and the problem solving environment OpTiX for distributed optimization.

  8. Interdisciplinary Pathways for Urban Metabolism Research

    NASA Astrophysics Data System (ADS)

    Newell, J. P.

    2011-12-01

    With its rapid rise as a metaphor to express coupled natural-human systems in cities, the concept of urban metabolism is evolving into a series of relatively distinct research frameworks amongst various disciplines, with varying definitions, theories, models, and emphases. In industrial ecology, housed primarily within the disciplinary domain of engineering, urban metabolism research has focused on quantifying material and energy flows into, within, and out of cities, using methodologies such as material flow analysis and life cycle assessment. In the field of urban ecology, which is strongly influenced by ecology and urban planning, research focus has been placed on understanding and modeling the complex patterns and processes of human-ecological systems within urban areas. Finally, in political ecology, closely aligned with human geography and anthropology, scholars theorize about the interwoven knots of social and natural processes, material flows, and spatial structures that form the urban metabolism. This paper offers three potential interdisciplinary urban metabolism research tracks that might integrate elements of these three "ecologies," thereby bridging engineering and the social and physical sciences. First, it presents the idea of infrastructure ecology, which explores the complex, emergent interdependencies between gray (water and wastewater, transportation, etc) and green (e.g. parks, greenways) infrastructure systems, as nested within a broader socio-economic context. For cities to be sustainable and resilient over time-space, the theory follows, these is a need to understand and redesign these infrastructure linkages. Second, there is the concept of an urban-scale carbon metabolism model which integrates consumption-based material flow analysis (including goods, water, and materials), with the carbon sink and source dynamics of the built environment (e.g. buildings, etc) and urban ecosystems. Finally, there is the political ecology of the material urban metabolism, which adds spatial differentiation to materials flows and form, as well as a focus on equity, access, and governance dimensions of the urban metabolism.

  9. Rapid assessment of infrastructure of primary health care facilities - a relevant instrument for health care systems management.

    PubMed

    Scholz, Stefan; Ngoli, Baltazar; Flessa, Steffen

    2015-05-01

    Health care infrastructure constitutes a major component of the structural quality of a health system. Infrastructural deficiencies of health services are reported in literature and research. A number of instruments exist for the assessment of infrastructure. However, no easy-to-use instruments to assess health facility infrastructure in developing countries are available. Present tools are not applicable for a rapid assessment by health facility staff. Therefore, health information systems lack data on facility infrastructure. A rapid assessment tool for the infrastructure of primary health care facilities was developed by the authors and pilot-tested in Tanzania. The tool measures the quality of all infrastructural components comprehensively and with high standardization. Ratings use a 2-1-0 scheme which is frequently used in Tanzanian health care services. Infrastructural indicators and indices are obtained from the assessment and serve for reporting and tracing of interventions. The tool was pilot-tested in Tanga Region (Tanzania). The pilot test covered seven primary care facilities in the range between dispensary and district hospital. The assessment encompassed the facilities as entities as well as 42 facility buildings and 80 pieces of technical medical equipment. A full assessment of facility infrastructure was undertaken by health care professionals while the rapid assessment was performed by facility staff. Serious infrastructural deficiencies were revealed. The rapid assessment tool proved a reliable instrument of routine data collection by health facility staff. The authors recommend integrating the rapid assessment tool in the health information systems of developing countries. Health authorities in a decentralized health system are thus enabled to detect infrastructural deficiencies and trace the effects of interventions. The tool can lay the data foundation for district facility infrastructure management.

  10. The Defense Science Board 1999 Summer Study Task Force on 21st Century Defense Technology Strategies. Volume 1

    DTIC Science & Technology

    1999-11-01

    C17 C130 + $2B upgrade SSTOL VTOL Advanced VTOL 6060120150 Vehicle wt. (tons) Ktons 2015 26 U.S. military dominance in future crises . It is also a...improvement between crises . A “pick-up” approach to C4ISR systems is not effective for today’s complex contingencies, yet it has become the norm. Instead...demands during crises and to stress imposed on the system by adversaries. The infrastructure must allow information to be distributed to and from any

  11. The history of infrastructures and the future of cyberinfrastructure in the Earth system sciences

    NASA Astrophysics Data System (ADS)

    Edwards, P. N.

    2012-12-01

    Infrastructures display similar historical patterns of inception, development, growth and decay. They typically begin as centralized systems which later proliferate into competing variants. Users' desire for seamless functionality tends eventually to push these variants toward interoperability, usually through "gateway" technologies that link incompatible systems into networks. Another stage is reached when these networks are linked to others, as in the cases of container transport (connecting trucking, rail, and shipping) or the Internet. End stages of infrastructure development include "splintering" (specialized service tiering) and decay, as newer infrastructures displace older ones. Temporal patterns are also visible in historical infrastructure development. This presentation, by a historian of science and technology, describes these patterns through examples of both physical and digital infrastructures, focusing on the global weather forecast infrastructure since the 19th century. It then investigates how some of these patterns might apply to the future of cyberinfrastructure for the Earth system sciences.

  12. To connect or not to connect? Modelling the optimal degree of centralisation for wastewater infrastructures.

    PubMed

    Eggimann, Sven; Truffer, Bernhard; Maurer, Max

    2015-11-01

    The strong reliance of most utility services on centralised network infrastructures is becoming increasingly challenged by new technological advances in decentralised alternatives. However, not enough effort has been made to develop planning tools designed to address the implications of these new opportunities and to determine the optimal degree of centralisation of these infrastructures. We introduce a planning tool for sustainable network infrastructure planning (SNIP), a two-step techno-economic heuristic modelling approach based on shortest path-finding and hierarchical-agglomerative clustering algorithms to determine the optimal degree of centralisation in the field of wastewater management. This SNIP model optimises the distribution of wastewater treatment plants and the sewer network outlay relative to several cost and sewer-design parameters. Moreover, it allows us to construct alternative optimal wastewater system designs taking into account topography, economies of scale as well as the full size range of wastewater treatment plants. We quantify and confirm that the optimal degree of centralisation decreases with increasing terrain complexity and settlement dispersion while showing that the effect of the latter exceeds that of topography. Case study results for a Swiss community indicate that the calculated optimal degree of centralisation is substantially lower than the current level. Copyright © 2015 Elsevier Ltd. All rights reserved.

  13. Scaling the PuNDIT project for wide area deployments

    NASA Astrophysics Data System (ADS)

    McKee, Shawn; Batista, Jorge; Carcassi, Gabriele; Dovrolis, Constantine; Lee, Danny

    2017-10-01

    In today’s world of distributed scientific collaborations, there are many challenges to providing reliable inter-domain network infrastructure. Network operators use a combination of active monitoring and trouble tickets to detect problems, but these are often ineffective at identifying issues that impact wide-area network users. Additionally, these approaches do not scale to wide area inter-domain networks due to unavailability of data from all the domains along typical network paths. The Pythia Network Diagnostic InfrasTructure (PuNDIT) project aims to create a scalable infrastructure for automating the detection and localization of problems across these networks. The project goal is to gather and analyze metrics from existing perfSONAR monitoring infrastructures to identify the signatures of possible problems, locate affected network links, and report them to the user in an intuitive fashion. Simply put, PuNDIT seeks to convert complex network metrics into easily understood diagnoses in an automated manner. We present our progress in creating the PuNDIT system and our status in developing, testing and deploying PuNDIT. We report on the project progress to-date, describe the current implementation architecture and demonstrate some of the various user interfaces it will support. We close by discussing the remaining challenges and next steps and where we see the project going in the future.

  14. Modeling the Hydrologic Effects of Large-Scale Green Infrastructure Projects with GIS

    NASA Astrophysics Data System (ADS)

    Bado, R. A.; Fekete, B. M.; Khanbilvardi, R.

    2015-12-01

    Impervious surfaces in urban areas generate excess runoff, which in turn causes flooding, combined sewer overflows, and degradation of adjacent surface waters. Municipal environmental protection agencies have shown a growing interest in mitigating these effects with 'green' infrastructure practices that partially restore the perviousness and water holding capacity of urban centers. Assessment of the performance of current and future green infrastructure projects is hindered by the lack of adequate hydrological modeling tools; conventional techniques fail to account for the complex flow pathways of urban environments, and detailed analyses are difficult to prepare for the very large domains in which green infrastructure projects are implemented. Currently, no standard toolset exists that can rapidly and conveniently predict runoff, consequent inundations, and sewer overflows at a city-wide scale. We demonstrate how streamlined modeling techniques can be used with open-source GIS software to efficiently model runoff in large urban catchments. Hydraulic parameters and flow paths through city blocks, roadways, and sewer drains are automatically generated from GIS layers, and ultimately urban flow simulations can be executed for a variety of rainfall conditions. With this methodology, users can understand the implications of large-scale land use changes and green/gray storm water retention systems on hydraulic loading, peak flow rates, and runoff volumes.

  15. Challenges in network science: Applications to infrastructures, climate, social systems and economics

    NASA Astrophysics Data System (ADS)

    Havlin, S.; Kenett, D. Y.; Ben-Jacob, E.; Bunde, A.; Cohen, R.; Hermann, H.; Kantelhardt, J. W.; Kertész, J.; Kirkpatrick, S.; Kurths, J.; Portugali, J.; Solomon, S.

    2012-11-01

    Network theory has become one of the most visible theoretical frameworks that can be applied to the description, analysis, understanding, design and repair of multi-level complex systems. Complex networks occur everywhere, in man-made and human social systems, in organic and inorganic matter, from nano to macro scales, and in natural and anthropogenic structures. New applications are developed at an ever-increasing rate and the promise for future growth is high, since increasingly we interact with one another within these vital and complex environments. Despite all the great successes of this field, crucial aspects of multi-level complex systems have been largely ignored. Important challenges of network science are to take into account many of these missing realistic features such as strong coupling between networks (networks are not isolated), the dynamics of networks (networks are not static), interrelationships between structure, dynamics and function of networks, interdependencies in given networks (and other classes of links, including different signs of interactions), and spatial properties (including geographical aspects) of networks. This aim of this paper is to introduce and discuss the challenges that future network science needs to address, and how different disciplines will be accordingly affected.

  16. Metrics required for Power System Resilient Operations and Protection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Eshghi, K.; Johnson, B. K.; Rieger, C. G.

    Today’s complex grid involves many interdependent systems. Various layers of hierarchical control and communication systems are coordinated, both spatially and temporally to achieve gird reliability. As new communication network based control system technologies are being deployed, the interconnected nature of these systems is becoming more complex. Deployment of smart grid concepts promises effective integration of renewable resources, especially if combined with energy storage. However, without a philosophical focus on resilience, a smart grid will potentially lead to higher magnitude and/or duration of disruptive events. The effectiveness of a resilient infrastructure depends upon its ability to anticipate, absorb, adapt to, and/ormore » rapidly recover from a potentially catastrophic event. Future system operations can be enhanced with a resilient philosophy through architecting the complexity with state awareness metrics that recognize changing system conditions and provide for an agile and adaptive response. The starting point for metrics lies in first understanding the attributes of performance that will be qualified. In this paper, we will overview those attributes and describe how they will be characterized by designing a distributed agent that can be applied to the power grid.« less

  17. NASA Ames Sustainability Initiatives: Aeronautics, Space Exploration, and Sustainable Futures

    NASA Technical Reports Server (NTRS)

    Grymes, Rosalind A.

    2015-01-01

    In support of the mission-specific challenges of aeronautics and space exploration, NASA Ames produces a wealth of research and technology advancements with significant relevance to larger issues of planetary sustainability. NASA research on NexGen airspace solutions and its development of autonomous and intelligent technologies will revolutionize both the nation's air transporation systems and have applicability to the low altitude flight economy and to both air and ground transporation, more generally. NASA's understanding of the Earth as a complex of integrated systems contributes to humanity's perception of the sustainability of our home planet. Research at NASA Ames on closed environment life support systems produces directly applicable lessons on energy, water, and resource management in ground-based infrastructure. Moreover, every NASA campus is a 'city'; including an urbanscape and a workplace including scientists, human relations specialists, plumbers, engineers, facility managers, construction trades, transportation managers, software developers, leaders, financial planners, technologists, electricians, students, accountants, and even lawyers. NASA is applying the lessons of our mission-related activities to our urbanscapes and infrastructure, and also anticipates a leadership role in developing future environments for living and working in space.

  18. E-DECIDER Decision Support Gateway For Earthquake Disaster Response

    NASA Astrophysics Data System (ADS)

    Glasscoe, M. T.; Stough, T. M.; Parker, J. W.; Burl, M. C.; Donnellan, A.; Blom, R. G.; Pierce, M. E.; Wang, J.; Ma, Y.; Rundle, J. B.; Yoder, M. R.

    2013-12-01

    Earthquake Data Enhanced Cyber-Infrastructure for Disaster Evaluation and Response (E-DECIDER) is a NASA-funded project developing capabilities for decision-making utilizing remote sensing data and modeling software in order to provide decision support for earthquake disaster management and response. E-DECIDER incorporates earthquake forecasting methodology and geophysical modeling tools developed through NASA's QuakeSim project in order to produce standards-compliant map data products to aid in decision-making following an earthquake. Remote sensing and geodetic data, in conjunction with modeling and forecasting tools, help provide both long-term planning information for disaster management decision makers as well as short-term information following earthquake events (i.e. identifying areas where the greatest deformation and damage has occurred and emergency services may need to be focused). E-DECIDER utilizes a service-based GIS model for its cyber-infrastructure in order to produce standards-compliant products for different user types with multiple service protocols (such as KML, WMS, WFS, and WCS). The goal is to make complex GIS processing and domain-specific analysis tools more accessible to general users through software services as well as provide system sustainability through infrastructure services. The system comprises several components, which include: a GeoServer for thematic mapping and data distribution, a geospatial database for storage and spatial analysis, web service APIs, including simple-to-use REST APIs for complex GIS functionalities, and geoprocessing tools including python scripts to produce standards-compliant data products. These are then served to the E-DECIDER decision support gateway (http://e-decider.org), the E-DECIDER mobile interface, and to the Department of Homeland Security decision support middleware UICDS (Unified Incident Command and Decision Support). The E-DECIDER decision support gateway features a web interface that delivers map data products including deformation modeling results (slope change and strain magnitude) and aftershock forecasts, with remote sensing change detection results under development. These products are event triggered (from the USGS earthquake feed) and will be posted to event feeds on the E-DECIDER webpage and accessible via the mobile interface and UICDS. E-DECIDER also features a KML service that provides infrastructure information from the FEMA HAZUS database through UICDS and the mobile interface. The back-end GIS service architecture and front-end gateway components form a decision support system that is designed for ease-of-use and extensibility for end-users.

  19. The Mayor of EarthCube: Cities as an Analogue for Governing Cyberinfrastructure

    NASA Astrophysics Data System (ADS)

    Pearthree, G. M.; Allison, M. L.; Patten, K.

    2012-12-01

    Historical development of national and global infrastructure follows common paths with common imperatives. The nascent development may be led a by champion, innovator, or incubating organization. Once the infrastructure reaches a tipping point and adoption spreads rapidly, the organization and governance evolves in concert. Ultimately, no wide-spread infrastructure (from canals to highways to the electric grid to radio/television, or the Internet) operates with a single overarching governing body. The NSF EarthCube initiative is a prototype implementation of cyberinfrastructure, using the broad geoscience community as the testbed. Governance for EarthCube is emulating the pattern of other infrastructure, which we argue is a system of systems that can be described by organized complexity, emergent systems, and non-linear thermodynamics. As we consider governance cyberinfrastructure in the geosciences, we might look to cities as analogs: cities provide services such as fire, police, water, and trash collection. Cities issue permits and often oversee zoning, but much of what defines cities is outside the direct control of city government. Businesses choose whether to locate there, where to operate, and what to build. Residents make similar decisions. State and federal agencies make decisions or impose criteria that greatly affect cities, without necessarily getting agreement from them. City government must thus operate at multiple levels - providing oversight and management of city services, interaction with residents, businesses, and visitors, and dealing with actions and decisions made by independent entities over which they have little or no control. Cities have a range of organizational and management models, ranging from city managers, councils, and weak to strong mayors, some elected directly, some chosen from councils. The range and complexity of governance issues in building, operating, and sustaining cyberinfrastructure in the geosciences and beyond, rival those of running a medium to large city. The range of organizational and management structures in meeting community needs and goals are also diverse and may embody a multi-faceted set of governing archetypes, best suited to carry out each of myriad functions. We envision cyberinfrastructure governance to be a community-driven enterprise empowered to carry out a dynamic set of functions, operating within a set of processes (comparable to a city charter) and guiding principles (constitution).

  20. Centralized Fabric Management Using Puppet, Git, and GLPI

    NASA Astrophysics Data System (ADS)

    Smith, Jason A.; De Stefano, John S., Jr.; Fetzko, John; Hollowell, Christopher; Ito, Hironori; Karasawa, Mizuki; Pryor, James; Rao, Tejas; Strecker-Kellogg, William

    2012-12-01

    Managing the infrastructure of a large and complex data center can be extremely difficult without taking advantage of recent technological advances in administrative automation. Puppet is a seasoned open-source tool that is designed for enterprise class centralized configuration management. At the RHIC and ATLAS Computing Facility (RACF) at Brookhaven National Laboratory, we use Puppet along with Git, GLPI, and some custom scripts as part of our centralized configuration management system. In this paper, we discuss how we use these tools for centralized configuration management of our servers and services, change management requiring authorized approval of production changes, a complete version controlled history of all changes made, separation of production, testing and development systems using puppet environments, semi-automated server inventory using GLPI, and configuration change monitoring and reporting using the Puppet dashboard. We will also discuss scalability and performance results from using these tools on a 2,000+ node cluster and 400+ infrastructure servers with an administrative staff of approximately 25 full-time employees (FTEs).

  1. Innovative designs for the smart ICU: Part 3: Advanced ICU informatics.

    PubMed

    Halpern, Neil A

    2014-04-01

    This third and final installment of this series on innovative designs for the smart ICU addresses the steps involved in conceptualizing, actualizing, using, and maintaining the advanced ICU informatics infrastructure and systems. The smart ICU comprehensively and electronically integrates the patient in the ICU with all aspects of care, displays data in a variety of formats, converts data to actionable information, uses data proactively to enhance patient safety, and monitors the ICU environment to facilitate patient care and ICU management. The keys to success in this complex informatics design process include an understanding of advanced informatics concepts, sophisticated planning, installation of a robust infrastructure capable of both connectivity and interoperability, and implementation of middleware solutions that provide value. Although new technologies commonly appear compelling, they are also complicated and challenging to incorporate within existing or evolving hospital informatics systems. Therefore, careful analysis, deliberate testing, and a phased approach to the implementation of innovative technologies are necessary to achieve the multilevel solutions of the smart ICU.

  2. Strengthening Data Confidentiality and Integrity Protection in the Context of a Multi-Centric Information System Dedicated to Autism Spectrum Disorder.

    PubMed

    Ben Said, Mohamed; Robel, Laurence; Golse, Bernard; Jais, Jean Philippe

    2017-01-01

    Autism spectrum disorders (ASD) are complex neuro-developmental disorders affecting children in early age. Diagnosis relies on multidisciplinary investigations, in psychiatry, neurology, genetics, electrophysiology, neuro-imagery, audiology, and ophthalmology. To support clinicians, researchers, and public health decision makers, we developed an information system dedicated to ASD, called TEDIS. It was designed to manage systematic, exhaustive and continuous multi-centric patient data collection via secured internet connections. TEDIS will be deployed in nine ASD expert assessment centers in Ile-DeFrance district. We present security policy and infrastructure developed in context of TEDIS to protect patient privacy and clinical information. TEDIS security policy was organized around governance, ethical and organisational chart-agreement, patients consents, controlled user access, patients' privacy protection, constrained patients' data access. Security infrastructure was enriched by further technical solutions to reinforce ASD patients' privacy protection. Solutions were tested on local secured intranet environment and showed fluid functionality with consistent, transparent and safe encrypting-decrypting results.

  3. The MSFC Systems Engineering Guide: An Overview and Plan

    NASA Technical Reports Server (NTRS)

    Shelby, Jerry A.; Thomas, L. Dale

    2007-01-01

    As systems and subsystems requirements become more complex in the pursuit of the exploration of space, advanced technology will demand and require an integrated approach to the design and development of safe and successful space vehicles and there products. System engineers play a vital and key role in transforming mission needs into vehicle requirements that can be verified and validated. This will result in a safe and cost effective design that will satisfy the mission schedule. A key to successful vehicle design within systems engineering is communication. Communication, through a systems engineering infrastructure, will not only ensure that customers and stakeholders are satisfied but will also assist in identifying vehicle requirements; i.e. identification, integration and management. This vehicle design will produce a system that is verifiable, traceable, and effectively satisfies cost, schedule, performance, and risk throughout the life-cycle of the product. A communication infrastructure will bring about the integration of different engineering disciplines within vehicle design. A system utilizing these aspects will enhance system engineering performance and improve upon required activities such as Development of Requirements, Requirements Management, Functional Analysis, Test, Synthesis, Trade Studies, Documentation, and Lessons Learned to produce a successful final product. This paper will describe the guiding vision, progress to date and the plan forward for development of the Marshall Space Flight Center (MSFC) Systems Engineering Guide (SEG), a virtual systems engineering handbook and archive that will describe the system engineering processes that are used by MSFC in the development of complex systems such as the Ares launch vehicle. It is the intent of this website to be a "One Stop Shop" for our systems engineers that will provide tutorial information, an overview of processes and procedures and links to assist system engineering with guidance and references, and provide an archive of systems engineering artifacts produced by the many NASA projects developed and managed by MSFC over the years.

  4. Automating Deep Space Network scheduling and conflict resolution

    NASA Technical Reports Server (NTRS)

    Johnston, Mark D.; Clement, Bradley

    2005-01-01

    The Deep Space Network (DSN) is a central part of NASA's infrastructure for communicating with active space missions, from earth orbit to beyond the solar system. We describe our recent work in modeling the complexities of user requirements, and then scheduling and resolving conflicts on that basis. We emphasize our innovative use of background 'intelligent' assistants' that carry out search asynchrnously while the user is focusing on various aspects of the schedule.

  5. Common Ground: An Interactive Visual Exploration and Discovery for Complex Health Data

    DTIC Science & Technology

    2014-04-01

    annotate other ontologies for the visual interface client. Finally, we are actively working on software development of both a backend server and the...the following infrastructure and resources. For the development and management of the ontologies, we installed a framework consisting of a server...that is being developed by Google. Using these 9 technologies, we developed an HTML5 client that runs on Windows, Mac OSX, Linux and mobile systems

  6. Open | SpeedShop: An Open Source Infrastructure for Parallel Performance Analysis

    DOE PAGES

    Schulz, Martin; Galarowicz, Jim; Maghrak, Don; ...

    2008-01-01

    Over the last decades a large number of performance tools has been developed to analyze and optimize high performance applications. Their acceptance by end users, however, has been slow: each tool alone is often limited in scope and comes with widely varying interfaces and workflow constraints, requiring different changes in the often complex build and execution infrastructure of the target application. We started the Open | SpeedShop project about 3 years ago to overcome these limitations and provide efficient, easy to apply, and integrated performance analysis for parallel systems. Open | SpeedShop has two different faces: it provides an interoperable tool set covering themore » most common analysis steps as well as a comprehensive plugin infrastructure for building new tools. In both cases, the tools can be deployed to large scale parallel applications using DPCL/Dyninst for distributed binary instrumentation. Further, all tools developed within or on top of Open | SpeedShop are accessible through multiple fully equivalent interfaces including an easy-to-use GUI as well as an interactive command line interface reducing the usage threshold for those tools.« less

  7. An Optimizing Space Data-Communications Scheduling Method and Algorithm with Interference Mitigation, Generalized for a Broad Class of Optimization Problems

    NASA Technical Reports Server (NTRS)

    Rash, James L.

    2010-01-01

    NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.

  8. Trust Management Considerations For the Cooperative Infrastructure Defense Framework: Trust Relationships, Evidence, and Decisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maiden, Wendy M.

    Cooperative Infrastructure Defense (CID) is a hierarchical, agent-based, adaptive, cyber-security framework designed to collaboratively protect multiple enclaves or organizations participating in a complex infrastructure. CID employs a swarm of lightweight, mobile agents called Sensors designed to roam hosts throughout a security enclave to find indications of anomalies and report them to host-based Sentinels. The Sensors’ findings become pieces of a larger puzzle, which the Sentinel puts together to determine the problem and respond per policy as given by the enclave-level Sergeant agent. Horizontally across multiple enclaves and vertically within each enclave, authentication and access control technologies are necessary but insufficientmore » authorization mechanisms to ensure that CID agents continue to fulfill their roles in a trustworthy manner. Trust management fills the gap, providing mechanisms to detect malicious agents and offering more robust mechanisms for authorization. This paper identifies the trust relationships throughout the CID hierarchy, the types of trust evidence that could be gathered, and the actions that the CID system could take if an entity is determined to be untrustworthy.« less

  9. Policy Model of Sustainable Infrastructure Development (Case Study : Bandarlampung City, Indonesia)

    NASA Astrophysics Data System (ADS)

    Persada, C.; Sitorus, S. R. P.; Marimin; Djakapermana, R. D.

    2018-03-01

    Infrastructure development does not only affect the economic aspect, but also social and environmental, those are the main dimensions of sustainable development. Many aspects and actors involved in urban infrastructure development requires a comprehensive and integrated policy towards sustainability. Therefore, it is necessary to formulate an infrastructure development policy that considers various dimensions of sustainable development. The main objective of this research is to formulate policy of sustainable infrastructure development. In this research, urban infrastructure covers transportation, water systems (drinking water, storm water, wastewater), green open spaces and solid waste. This research was conducted in Bandarlampung City. This study use a comprehensive modeling, namely the Multi Dimensional Scaling (MDS) with Rapid Appraisal of Infrastructure (Rapinfra), it uses of Analytic Network Process (ANP) and it uses system dynamics model. The findings of the MDS analysis showed that the status of Bandarlampung City infrastructure sustainability is less sustainable. The ANP analysis produces 8 main indicators of the most influential in the development of sustainable infrastructure. The system dynamics model offered 4 scenarios of sustainable urban infrastructure policy model. The best scenario was implemented into 3 policies consist of: the integrated infrastructure management, the population control, and the local economy development.

  10. Resilient Military Systems and the Advanced Cyber Threat

    DTIC Science & Technology

    2013-01-01

    systems; intelligence, surveillance, and reconnaissance systems; logistics and human resource systems; and mobile as well as fixed- infrastructure ...significant portions of military and critical infrastructure : power generation, communications, fuel and transportation, emergency services, financial...vulnerabilities in the domestic power grid and critical infrastructure systems.4,5 DoD, and the United States, is extremely reliant on the

  11. Multisensor system for the protection of critical infrastructure of a seaport

    NASA Astrophysics Data System (ADS)

    Kastek, Mariusz; Dulski, Rafał; Zyczkowski, Marek; Szustakowski, Mieczysław; Trzaskawka, Piotr; Ciurapinski, Wiesław; Grelowska, Grazyna; Gloza, Ignacy; Milewski, Stanislaw; Listewnik, Karol

    2012-06-01

    There are many separated infrastructural objects within a harbor area that may be considered "critical", such as gas and oil terminals or anchored naval vessels. Those objects require special protection, including security systems capable of monitoring both surface and underwater areas, because an intrusion into the protected area may be attempted using small surface vehicles (boats, kayaks, rafts, floating devices with weapons and explosives) as well as underwater ones (manned or unmanned submarines, scuba divers). The paper will present the concept of multisensor security system for a harbor protection, capable of complex monitoring of selected critical objects within the protected area. The proposed system consists of a command centre and several different sensors deployed in key areas, providing effective protection from land and sea, with special attention focused on the monitoring of underwater zone. The initial project of such systems will be presented, its configuration and initial tests of the selected components. The protection of surface area is based on medium-range radar and LLTV and infrared cameras. Underwater zone will be monitored by a sonar and acoustic and magnetic barriers, connected into an integrated monitoring system. Theoretical analyses concerning the detection of fast, small surface objects (such as RIB boats) by a camera system and real test results in various weather conditions will also be presented.

  12. Working Group on Virtual Data Integration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Williams, D. N.; Palanisamy, G.; van Dam, K. K.

    2016-02-04

    This report is the outcome of a workshop commissioned by the U.S. Department of Energy’s (DOE) Climate and Environmental Sciences Division (CESD) to examine current and future data infrastructure requirements foundational for achieving CESD scientific mission goals in advancing a robust, predictive understanding of Earth’s climate and environmental systems. Over the past several years, data volumes in CESD disciplines have risen sharply to unprecedented levels (tens of petabytes). Moreover, the complexity and diversity of this research data— including simulations, observations, and reanalysis— have grown significantly, posing new challenges for data capture, storage, verification, analysis, and integration. With the trends ofmore » increased data volume (in the hundreds of petabytes), more complex analysis processes, and growing cross-disciplinary collaborations, it is timely to investigate whether the CESD community has the computational and data support needed to fully realize the scientific potential of its data collections. In recognition of the challenges, a partnership is forming across CESD and among national and international agencies to examine the viability of creating an integrated, collaborative data infrastructure: a Virtual Laboratory. The overarching goal of this report is to identify the community’s key data technology requirements and high-priority development needs for sustaining and growing its scientific discovery potential. The report also aims to map these requirements to existing solutions and to identify gaps in current services, tools, and infrastructure that will need to be addressed in the short, medium, and long term to advance scientific progress.« less

  13. Modeling in architectural-planning solutions of agrarian technoparks as elements of the infrastructure

    NASA Astrophysics Data System (ADS)

    Abdrassilova, Gulnara S.

    2017-09-01

    In the context of development of the agriculture as the driver of the economy of Kazakhstan it is imperative to study new types of agrarian constructions (agroparks, agrotourists complexes, "vertical" farms, conservatories, greenhouses) that can be combined into complexes - agrarian technoparks. Creation of agrarian technoparks as elements of the infrastructure of the agglomeration shall ensure the breakthrough in the field of agrarian goods production, storing and recycling. Modeling of architectural-planning solutions of agrarian technoparks supports development of the theory and practice of designing objects based on innovative approaches.

  14. Policy experimentation and innovation as a response to complexity in China's management of health reforms.

    PubMed

    Husain, Lewis

    2017-08-03

    There are increasing criticisms of dominant models for scaling up health systems in developing countries and a recognition that approaches are needed that better take into account the complexity of health interventions. Since Reform and Opening in the late 1970s, Chinese government has managed complex, rapid and intersecting reforms across many policy areas. As with reforms in other policy areas, reform of the health system has been through a process of trial and error. There is increasing understanding of the importance of policy experimentation and innovation in many of China's reforms; this article argues that these processes have been important in rebuilding China's health system. While China's current system still has many problems, progress is being made in developing a functioning system able to ensure broad population access. The article analyses Chinese thinking on policy experimentation and innovation and their use in management of complex reforms. It argues that China's management of reform allows space for policy tailoring and innovation by sub-national governments under a broad agreement over the ends of reform, and that shared understandings of policy innovation, alongside informational infrastructures for the systemic propagation and codification of useful practices, provide a framework for managing change in complex environments and under conditions of uncertainty in which 'what works' is not knowable in advance. The article situates China's use of experimentation and innovation in management of health system reform in relation to recent literature which applies complex systems thinking to global health, and concludes that there are lessons to be learnt from China's approaches to managing complexity in development of health systems for the benefit of the poor.

  15. 76 FR 21789 - ITS Joint Program Office; Vehicle to Infrastructure Core System Concept of Operations; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-18

    ... DEPARTMENT OF TRANSPORTATION ITS Joint Program Office; Vehicle to Infrastructure Core System... Program Office (ITS JPO) will host a free public meeting to discuss the Vehicle to Infrastructure (V2I... to work originally performed under the Vehicle Infrastructure Integration Proof of Concept (VII POC...

  16. A Drupal-Based Collaborative Framework for Science Workflows

    NASA Astrophysics Data System (ADS)

    Pinheiro da Silva, P.; Gandara, A.

    2010-12-01

    Cyber-infrastructure is built from utilizing technical infrastructure to support organizational practices and social norms to provide support for scientific teams working together or dependent on each other to conduct scientific research. Such cyber-infrastructure enables the sharing of information and data so that scientists can leverage knowledge and expertise through automation. Scientific workflow systems have been used to build automated scientific systems used by scientists to conduct scientific research and, as a result, create artifacts in support of scientific discoveries. These complex systems are often developed by teams of scientists who are located in different places, e.g., scientists working in distinct buildings, and sometimes in different time zones, e.g., scientist working in distinct national laboratories. The sharing of these specifications is currently supported by the use of version control systems such as CVS or Subversion. Discussions about the design, improvement, and testing of these specifications, however, often happen elsewhere, e.g., through the exchange of email messages and IM chatting. Carrying on a discussion about these specifications is challenging because comments and specifications are not necessarily connected. For instance, the person reading a comment about a given workflow specification may not be able to see the workflow and even if the person can see the workflow, the person may not specifically know to which part of the workflow a given comments applies to. In this paper, we discuss the design, implementation and use of CI-Server, a Drupal-based infrastructure, to support the collaboration of both local and distributed teams of scientists using scientific workflows. CI-Server has three primary goals: to enable information sharing by providing tools that scientists can use within their scientific research to process data, publish and share artifacts; to build community by providing tools that support discussions between scientists about artifacts used or created through scientific processes; and to leverage the knowledge collected within the artifacts and scientific collaborations to support scientific discoveries.

  17. Game Changing: NASA's Space Launch System and Science Mission Design

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2013-01-01

    NASA s Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as "monolithic" telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  18. Game changing: NASA's space launch system and science mission design

    NASA Astrophysics Data System (ADS)

    Creech, S. D.

    NASA's Marshall Space Flight Center (MSFC) is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will carry the Orion Multi-Purpose Crew Vehicle (MPCV) and other important payloads far beyond Earth orbit (BEO). Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids and Mars. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required - with several gravity-assist planetary fly-bys - to achieve the necessary outbound velocity. The SLS rocket, using significantly higher characteristic energy (C3) energies, can more quickly and effectively take the mission directly to its destination, reducing trip time and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as “ monolithic” telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  19. Game-Theoretic strategies for systems of components using product-form utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S; Ma, Cheng-Yu; Hausken, K.

    Many critical infrastructures are composed of multiple systems of components which are correlated so that disruptions to one may propagate to others. We consider such infrastructures with correlations characterized in two ways: (i) an aggregate failure correlation function specifies the conditional failure probability of the infrastructure given the failure of an individual system, and (ii) a pairwise correlation function between two systems specifies the failure probability of one system given the failure of the other. We formulate a game for ensuring the resilience of the infrastructure, wherein the utility functions of the provider and attacker are products of an infrastructuremore » survival probability term and a cost term, both expressed in terms of the numbers of system components attacked and reinforced. The survival probabilities of individual systems satisfy first-order differential conditions that lead to simple Nash Equilibrium conditions. We then derive sensitivity functions that highlight the dependence of infrastructure resilience on the cost terms, correlation functions, and individual system survival probabilities. We apply these results to simplified models of distributed cloud computing and energy grid infrastructures.« less

  20. A Security Architecture for Grid-enabling OGC Web Services

    NASA Astrophysics Data System (ADS)

    Angelini, Valerio; Petronzio, Luca

    2010-05-01

    In the proposed presentation we describe an architectural solution for enabling a secure access to Grids and possibly other large scale on-demand processing infrastructures through OGC (Open Geospatial Consortium) Web Services (OWS). This work has been carried out in the context of the security thread of the G-OWS Working Group. G-OWS (gLite enablement of OGC Web Services) is an international open initiative started in 2008 by the European CYCLOPS , GENESI-DR, and DORII Project Consortia in order to collect/coordinate experiences in the enablement of OWS's on top of the gLite Grid middleware. G-OWS investigates the problem of the development of Spatial Data and Information Infrastructures (SDI and SII) based on the Grid/Cloud capacity in order to enable Earth Science applications and tools. Concerning security issues, the integration of OWS compliant infrastructures and gLite Grids needs to address relevant challenges, due to their respective design principles. In fact OWS's are part of a Web based architecture that demands security aspects to other specifications, whereas the gLite middleware implements the Grid paradigm with a strong security model (the gLite Grid Security Infrastructure: GSI). In our work we propose a Security Architectural Framework allowing the seamless use of Grid-enabled OGC Web Services through the federation of existing security systems (mostly web based) with the gLite GSI. This is made possible mediating between different security realms, whose mutual trust is established in advance during the deployment of the system itself. Our architecture is composed of three different security tiers: the user's security system, a specific G-OWS security system, and the gLite Grid Security Infrastructure. Applying the separation-of-concerns principle, each of these tiers is responsible for controlling the access to a well-defined resource set, respectively: the user's organization resources, the geospatial resources and services, and the Grid resources. While the gLite middleware is tied to a consolidated security approach based on X.509 certificates, our system is able to support different kinds of user's security infrastructures. Our central component, the G-OWS Security Framework, is based on the OASIS WS-Trust specifications and on the OGC GeoRM architectural framework. This allows to satisfy advanced requirements such as the enforcement of specific geospatial policies and complex secure web service chained requests. The typical use case is represented by a scientist belonging to a given organization who issues a request to a G-OWS Grid-enabled Web Service. The system initially asks the user to authenticate to his/her organization's security system and, after verification of the user's security credentials, it translates the user's digital identity into a G-OWS identity. This identity is linked to a set of attributes describing the user's access rights to the G-OWS services and resources. Inside the G-OWS Security system, access restrictions are applied making use of the enhanced Geospatial capabilities specified by the OGC GeoXACML. If the required action needs to make use of the Grid environment the system checks if the user is entitled to access a Grid infrastructure. In that case his/her identity is translated to a temporary Grid security token using the Short Lived Credential Services (IGTF Standard). In our case, for the specific gLite Grid infrastructure, some information (VOMS Attributes) is plugged into the Grid Security Token to grant the access to the user's Virtual Organization Grid resources. The resulting token is used to submit the request to the Grid and also by the various gLite middleware elements to verify the user's grants. Basing on the presented framework, the G-OWS Security Working Group developed a prototype, enabling the execution of OGC Web Services on the EGEE Production Grid through the federation with a Shibboleth based security infrastructure. Future plans aim to integrate other Web authentication services such as OpenID, Kerberos and WS-Federation.

  1. Using NASA's Space Launch System to Enable Game Changing Science Mission Designs

    NASA Technical Reports Server (NTRS)

    Creech, Stephen D.

    2013-01-01

    NASA's Marshall Space Flight Center is directing efforts to build the Space Launch System (SLS), a heavy-lift rocket that will help restore U.S. leadership in space by carrying the Orion Multi-Purpose Crew Vehicle and other important payloads far beyond Earth orbit. Its evolvable architecture will allow NASA to begin with Moon fly-bys and then go on to transport humans or robots to distant places such as asteroids, Mars, and the outer solar system. Designed to simplify spacecraft complexity, the SLS rocket will provide improved mass margins and radiation mitigation, and reduced mission durations. These capabilities offer attractive advantages for ambitious missions such as a Mars sample return, by reducing infrastructure requirements, cost, and schedule. For example, if an evolved expendable launch vehicle (EELV) were used for a proposed mission to investigate the Saturn system, a complicated trajectory would be required with several gravity-assist planetary fly-bys to achieve the necessary outbound velocity. The SLS rocket, using significantly higher C3 energies, can more quickly and effectively take the mission directly to its destination, reducing trip times and cost. As this paper will report, the SLS rocket will launch payloads of unprecedented mass and volume, such as monolithic telescopes and in-space infrastructure. Thanks to its ability to co-manifest large payloads, it also can accomplish complex missions in fewer launches. Future analyses will include reviews of alternate mission concepts and detailed evaluations of SLS figures of merit, helping the new rocket revolutionize science mission planning and design for years to come.

  2. Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Manning, Curtis W.; Good, Jim

    2007-01-01

    Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. Fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR Element supports the entire life cycle of Exploration by: reducing downtime due to failed components; decreasing risk to crew by recovering quickly from degraded operation of equipment; improving system functionality with advanced geometry capabilities; and enhancing mission safety by reducing assembly part counts of original designs where possible. This paper addresses the fabrication infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; these infrastructures allow sustained, affordable and highly effective operations on the Moon, Mars and beyond.

  3. Supervisory Control and Data Acquisition (SCADA) Systems and Cyber-Security: Best Practices to Secure Critical Infrastructure

    ERIC Educational Resources Information Center

    Morsey, Christopher

    2017-01-01

    In the critical infrastructure world, many critical infrastructure sectors use a Supervisory Control and Data Acquisition (SCADA) system. The sectors that use SCADA systems are the electric power, nuclear power and water. These systems are used to control, monitor and extract data from the systems that give us all the ability to light our homes…

  4. Citric Acid Alternative to Nitric Acid Passivation

    NASA Technical Reports Server (NTRS)

    Lewis, Pattie L. (Compiler)

    2013-01-01

    The Ground Systems Development and Operations GSDO) Program at NASA John F. Kennedy Space Center (KSC) has the primary objective of modernizing and transforming the launch and range complex at KSC to benefit current and future NASA programs along with other emerging users. Described as the launch support and infrastructure modernization program in the NASA Authorization Act of 2010, the GSDO Program will develop and implement shared infrastructure and process improvements to provide more flexible, affordable, and responsive capabilities to a multi-user community. In support of the GSDO Program, the purpose of this project is to demonstratevalidate citric acid as a passivation agent for stainless steel. Successful completion of this project will result in citric acid being qualified for use as an environmentally preferable alternative to nitric acid for passivation of stainless steel alloys in NASA and DoD applications.

  5. Testbed-based Performance Evaluation of Attack Resilient Control for AGC

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ashok, Aditya; Sridhar, Siddharth; McKinnon, Archibald D.

    The modern electric power grid is a complex cyber-physical system whose reliable operation is enabled by a wide-area monitoring and control infrastructure. This infrastructure, supported by an extensive communication backbone, enables several control applications functioning at multiple time scales to ensure the grid is maintained within stable operating limits. Recent events have shown that vulnerabilities in this infrastructure may be exploited to manipulate the data being exchanged. Such a scenario could cause the associated control application to mis-operate, potentially causing system-wide instabilities. There is a growing emphasis on looking beyond traditional cybersecurity solutions to mitigate such threats. In this papermore » we perform a testbed-based validation of one such solution - Attack Resilient Control (ARC) - on Iowa State University's \\textit{PowerCyber} testbed. ARC is a cyber-physical security solution that combines domain-specific anomaly detection and model-based mitigation to detect stealthy attacks on Automatic Generation Control (AGC). In this paper, we first describe the implementation architecture of the experiment on the testbed. Next, we demonstrate the capability of stealthy attack templates to cause forced under-frequency load shedding in a 3-area test system. We then validate the performance of ARC by measuring its ability to detect and mitigate these attacks. Our results reveal that ARC is efficient in detecting stealthy attacks and enables AGC to maintain system operating frequency close to its nominal value during an attack. Our studies also highlight the importance of testbed-based experimentation for evaluating the performance of cyber-physical security and control applications.« less

  6. Challenges in Managing Trustworthy Large-scale Digital Science

    NASA Astrophysics Data System (ADS)

    Evans, B. J. K.

    2017-12-01

    The increased use of large-scale international digital science has opened a number of challenges for managing, handling, using and preserving scientific information. The large volumes of information are driven by three main categories - model outputs including coupled models and ensembles, data products that have been processing to a level of usability, and increasingly heuristically driven data analysis. These data products are increasingly the ones that are usable by the broad communities, and far in excess of the raw instruments data outputs. The data, software and workflows are then shared and replicated to allow broad use at an international scale, which places further demands of infrastructure to support how the information is managed reliably across distributed resources. Users necessarily rely on these underlying "black boxes" so that they are productive to produce new scientific outcomes. The software for these systems depend on computational infrastructure, software interconnected systems, and information capture systems. This ranges from the fundamentals of the reliability of the compute hardware, system software stacks and libraries, and the model software. Due to these complexities and capacity of the infrastructure, there is an increased emphasis of transparency of the approach and robustness of the methods over the full reproducibility. Furthermore, with large volume data management, it is increasingly difficult to store the historical versions of all model and derived data. Instead, the emphasis is on the ability to access the updated products and the reliability by which both previous outcomes are still relevant and can be updated for the new information. We will discuss these challenges and some of the approaches underway that are being used to address these issues.

  7. InterMine Webservices for Phytozome

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlson, Joseph; Hayes, David; Goodstein, David

    2014-01-10

    A data warehousing framework for biological information provides a useful infrastructure for providers and users of genomic data. For providers, the infrastructure give them a consistent mechanism for extracting raw data. While for the users, the web services supported by the software allows them to make either simple and common, or complex and unique, queries of the data

  8. A model-Driven Approach to Customize the Vocabulary of Communication Boards: Towards More Humanization of Health Care.

    PubMed

    Franco, Natália M; Medeiros, Gabriel F; Silva, Edson A; Murta, Angela S; Machado, Aydano P; Fidalgo, Robson N

    2015-01-01

    This work presents a Modeling Language and its technological infrastructure to customize the vocabulary of Communication Boards (CB), which are important tools to provide more humanization of health care. Using a technological infrastructure based on Model-Driven Development (MDD) approach, our Modelin Language (ML) creates an abstraction layer between users (e.g., health professionals such as an audiologist or speech therapist) and application code. Moreover, the use of a metamodel enables a syntactic corrector for preventing creation of wrong models. Our ML and metamodel enable more autonomy for health professionals in creating customized CB because it abstracts complexities and permits them to deal only with the domain concepts (e.g., vocabulary and patient needs). Additionally, our infrastructure provides a configuration file that can be used to share and reuse models. This way, the vocabulary modelling effort will decrease our time since people share vocabulary models. Our study provides an infrastructure that aims to abstract the complexity of CB vocabulary customization, giving more autonomy to health professionals when they need customizing, sharing and reusing vocabularies for CB.

  9. Managing Sustainable Data Infrastructures: The Gestalt of EOSDIS

    NASA Astrophysics Data System (ADS)

    Behnke, J.; Lindsay, F. E.; Lowe, D. R.; Mitchell, A. E.; Lynnes, C.

    2016-12-01

    NASA's Earth Observing System Data and Information System (EOSDIS) has been a central component of the NASA Earth observation program since the 1990's. The data collected by NASA's remote sensing instruments represent a significant public investment in research. EOSDIS provides free and open access to this data to a worldwide public research community. From the very beginning, EOSDIS was conceived as a system built on partnerships between NASA Centers, US agencies and academia. EOSDIS manages a wide range of Earth science discipline data that include cryosphere, land cover change, polar processes, field campaigns, ocean surface, digital elevation, atmosphere dynamics and composition, and inter-disciplinary research, among many others. Over the years, EOSDIS has evolved to support increasingly complex and diverse NASA Earth Science data collections. EOSDIS epitomizes a System of Systems, whose many varied and distributed parts are integrated into a single, highly functional organized science data system. A distributed architecture was adopted to ensure discipline-specific support for the science data, while also leveraging standards and establishing policies and tools to enable interdisciplinary research, and analysis across multiple scientific instruments. The EOSDIS is composed of system elements such as geographically distributed archive centers used to manage the stewardship of data. The infrastructure consists of underlying capabilities/connections that enable the primary system elements to function together. For example, one key infrastructure component is the common metadata repository, which enables discovery of all data within the EOSDIS system. . EOSDIS employs processes and standards to ensure partners can work together effectively, and provide coherent services to users. While the separation into domain-specific science archives helps to manage the wide variety of missions and datasets, the common services and practices serve to knit the overall system together into a coherent whole, with sharing of data, metadata, information and software making EOSDIS more than the simple sum of its parts. This paper will describe those parts and how the whole system works together to deliver Earth science data to millions of users.

  10. A Cloud-based Infrastructure and Architecture for Environmental System Research

    NASA Astrophysics Data System (ADS)

    Wang, D.; Wei, Y.; Shankar, M.; Quigley, J.; Wilson, B. E.

    2016-12-01

    The present availability of high-capacity networks, low-cost computers and storage devices, and the widespread adoption of hardware virtualization and service-oriented architecture provide a great opportunity to enable data and computing infrastructure sharing between closely related research activities. By taking advantage of these approaches, along with the world-class high computing and data infrastructure located at Oak Ridge National Laboratory, a cloud-based infrastructure and architecture has been developed to efficiently deliver essential data and informatics service and utilities to the environmental system research community, and will provide unique capabilities that allows terrestrial ecosystem research projects to share their software utilities (tools), data and even data submission workflow in a straightforward fashion. The infrastructure will minimize large disruptions from current project-based data submission workflows for better acceptances from existing projects, since many ecosystem research projects already have their own requirements or preferences for data submission and collection. The infrastructure will eliminate scalability problems with current project silos by provide unified data services and infrastructure. The Infrastructure consists of two key components (1) a collection of configurable virtual computing environments and user management systems that expedite data submission and collection from environmental system research community, and (2) scalable data management services and system, originated and development by ORNL data centers.

  11. Layered virus protection for the operations and administrative messaging system

    NASA Technical Reports Server (NTRS)

    Cortez, R. H.

    2002-01-01

    NASA's Deep Space Network (DSN) is critical in supporting the wide variety of operating and plannedunmanned flight projects. For day-to-day operations it relies on email communication between the three Deep Space Communication Complexes (Canberra, Goldstone, Madrid) and NASA's Jet Propulsion Laboratory. The Operations & Administrative Messaging system, based on the Microsoft Windows NTand Exchange platform, provides the infrastructure that is required for reliable, mission-critical messaging. The reliability of this system, however, is threatened by the proliferation of email viruses that continue to spread at alarming rates. A layered approach to email security has been implemented across the DSN to protect against this threat.

  12. Distributed Monitoring Infrastructure for Worldwide LHC Computing Grid

    NASA Astrophysics Data System (ADS)

    Andrade, P.; Babik, M.; Bhatt, K.; Chand, P.; Collados, D.; Duggal, V.; Fuente, P.; Hayashi, S.; Imamagic, E.; Joshi, P.; Kalmady, R.; Karnani, U.; Kumar, V.; Lapka, W.; Quick, R.; Tarragon, J.; Teige, S.; Triantafyllidis, C.

    2012-12-01

    The journey of a monitoring probe from its development phase to the moment its execution result is presented in an availability report is a complex process. It goes through multiple phases such as development, testing, integration, release, deployment, execution, data aggregation, computation, and reporting. Further, it involves people with different roles (developers, site managers, VO[1] managers, service managers, management), from different middleware providers (ARC[2], dCache[3], gLite[4], UNICORE[5] and VDT[6]), consortiums (WLCG[7], EMI[11], EGI[15], OSG[13]), and operational teams (GOC[16], OMB[8], OTAG[9], CSIRT[10]). The seamless harmonization of these distributed actors is in daily use for monitoring of the WLCG infrastructure. In this paper we describe the monitoring of the WLCG infrastructure from the operational perspective. We explain the complexity of the journey of a monitoring probe from its execution on a grid node to the visualization on the MyWLCG[27] portal where it is exposed to other clients. This monitoring workflow profits from the interoperability established between the SAM[19] and RSV[20] frameworks. We show how these two distributed structures are capable of uniting technologies and hiding the complexity around them, making them easy to be used by the community. Finally, the different supported deployment strategies, tailored not only for monitoring the entire infrastructure but also for monitoring sites and virtual organizations, are presented and the associated operational benefits highlighted.

  13. Challenges and Opportunities for Tribal Waters: Addressing Disparities in Safe Public Drinking Water on the Crow Reservation in Montana, USA.

    PubMed

    Doyle, John T; Kindness, Larry; Realbird, James; Eggers, Margaret J; Camper, Anne K

    2018-03-21

    Disparities in access to safe public drinking water are increasingly being recognized as contributing to health disparities and environmental injustice for vulnerable communities in the United States. As the Co-Directors of the Apsaálooke Water and Wastewater Authority (AWWWA) for the Crow Tribe, with our academic partners, we present here the multiple and complex challenges we have addressed in improving and maintaining tribal water and wastewater infrastructure, including the identification of diverse funding sources for infrastructure construction, the need for many kinds of specialized expertise and long-term stability of project personnel, ratepayer difficulty in paying for services, an ongoing legacy of inadequate infrastructure planning, and lack of water quality research capacity. As a tribal entity, the AWWWA faces additional challenges, including the complex jurisdictional issues affecting all phases of our work, lack of authority to create water districts, and additional legal and regulatory gaps-especially with regards to environmental protection. Despite these obstacles, the AWWWA and Crow Tribe have successfully upgraded much of the local water and wastewater infrastructure. We find that ensuring safe public drinking water for tribal and other disadvantaged U.S. communities will require comprehensive, community-engaged approaches across a broad range of stakeholders to successfully address these complex legal, regulatory, policy, community capacity, and financial challenges.

  14. Challenges and Opportunities for Tribal Waters: Addressing Disparities in Safe Public Drinking Water on the Crow Reservation in Montana, USA

    PubMed Central

    Doyle, John T.; Kindness, Larry; Realbird, James; Camper, Anne K.

    2018-01-01

    Disparities in access to safe public drinking water are increasingly being recognized as contributing to health disparities and environmental injustice for vulnerable communities in the United States. As the Co-Directors of the Apsaálooke Water and Wastewater Authority (AWWWA) for the Crow Tribe, with our academic partners, we present here the multiple and complex challenges we have addressed in improving and maintaining tribal water and wastewater infrastructure, including the identification of diverse funding sources for infrastructure construction, the need for many kinds of specialized expertise and long-term stability of project personnel, ratepayer difficulty in paying for services, an ongoing legacy of inadequate infrastructure planning, and lack of water quality research capacity. As a tribal entity, the AWWWA faces additional challenges, including the complex jurisdictional issues affecting all phases of our work, lack of authority to create water districts, and additional legal and regulatory gaps—especially with regards to environmental protection. Despite these obstacles, the AWWWA and Crow Tribe have successfully upgraded much of the local water and wastewater infrastructure. We find that ensuring safe public drinking water for tribal and other disadvantaged U.S. communities will require comprehensive, community-engaged approaches across a broad range of stakeholders to successfully address these complex legal, regulatory, policy, community capacity, and financial challenges. PMID:29561815

  15. Safety Practices Followed in ISRO Launch Complex- An Overview

    NASA Astrophysics Data System (ADS)

    Krishnamurty, V.; Srivastava, V. K.; Ramesh, M.

    2005-12-01

    The spaceport of India, Satish Dhawan Space Centre (SDSC) SHAR of Indian Space Research Organisation (ISRO), is located at Sriharikota, a spindle shaped island on the east coast of southern India.SDSC SHAR has a unique combination of facilities, such as a solid propellant production plant, a rocket motor static test facility, launch complexes for different types of rockets, telemetry, telecommand, tracking, data acquisition and processing facilities and other support services.The Solid Propellant Space Booster Plant (SPROB) located at SDSC SHAR produces composite solid propellant for rocket motors of ISRO. The main ingredients of the propellant produced here are ammonium perchlorate (oxidizer), fine aluminium powder (fuel) and hydroxyl terminated polybutadiene (binder).SDSC SHAR has facilities for testing solid rocket motors, both at ambient conditions and at simulated high altitude conditions. Other test facilities for the environmental testing of rocket motors and their subsystems include Vibration, Shock, Constant Acceleration and Thermal / Humidity.SDSC SHAR has the necessary infrastructure for launching satellites into low earth orbit, polar orbit and geo-stationary transfer orbit. The launch complexes provide complete support for vehicle assembly, fuelling with both earth storable and cryogenic propellants, checkout and launch operations. Apart from these, it has facilities for launching sounding rockets for studying the Earth's upper atmosphere and for controlled reentry and recovery of ISRO's space capsule reentry missions.Safety plays a major role at SDSC SHAR right from the mission / facility design phase to post launch operations. This paper presents briefly the infrastructure available at SDSC SHAR of ISRO for launching sounding rockets, satellite launch vehicles, controlled reentry missions and the built in safety systems. The range safety methodology followed as a part of the real time mission monitoring is presented. The built in safety systems provided onboard the launch vehicle are automatic shut off the propulsion system based on real time mission performance and a passivation system incorporated in the orbit insertion stage are highlighted.

  16. Enhancing the Resilience of Interdependent Critical Infrastructure Systems Using a Common Computational Framework

    NASA Astrophysics Data System (ADS)

    Little, J. C.; Filz, G. M.

    2016-12-01

    As modern societies become more complex, critical interdependent infrastructure systems become more likely to fail under stress unless they are designed and implemented to be resilient. Hurricane Katrina clearly demonstrated the catastrophic and as yet unpredictable consequences of such failures. Resilient infrastructure systems maintain the flow of goods and services in the face of a broad range of natural and manmade hazards. In this presentation, we illustrate a generic computational framework to facilitate high-level decision-making about how to invest scarce resources most effectively to enhance resilience in coastal protection, transportation, and the economy of a region. Coastal Louisiana, our study area, has experienced the catastrophic effects of several land-falling hurricanes in recent years. In this project, we implement and further refine three process models (a coastal protection model, a transportation model, and an economic model) for the coastal Louisiana region. We upscale essential mechanistic features of the three detailed process models to the systems level and integrate the three reduced-order systems models in a modular fashion. We also evaluate the proposed approach in annual workshops with input from stakeholders. Based on stakeholder inputs, we derive a suite of goals, targets, and indicators for evaluating resilience at the systems level, and assess and enhance resilience using several deterministic scenarios. The unifying framework will be able to accommodate the different spatial and temporal scales that are appropriate for each model. We combine our generic computational framework, which encompasses the entire system of systems, with the targets, and indicators needed to systematically meet our chosen resilience goals. We will start with targets that focus on technical and economic systems, but future work will ensure that targets and indicators are extended to other dimensions of resilience including those in the environmental and social systems. The overall model can be used to optimize decision making in a probabilistic risk-based framework.

  17. Evaluation of Urban Drainage Infrastructure: New York City Case Study

    NASA Astrophysics Data System (ADS)

    Hamidi, A.; Grossberg, M.; Khanbilvardi, R.

    2017-12-01

    Flood response in an urban area is the product of interactions of spatially and temporally varying rainfall and infrastructures. In urban areas, however, the complex sub-surface networks of tunnels, waste and storm water drainage systems are often inaccessible, pose challenges for modeling and prediction of the drainage infrastructure performance. The increased availability of open data in cities is an emerging information asset for a better understanding of the dynamics of urban water drainage infrastructure. This includes crowd sourced data and community reporting. A well-known source of this type of data is the non-emergency hotline "311" which is available in many US cities, and may contain information pertaining to the performance of physical facilities, condition of the environment, or residents' experience, comfort and well-being. In this study, seven years of New York City 311 (NYC311) call during 2010-2016 is employed, as an alternative approach for identifying the areas of the city most prone to sewer back up flooding. These zones are compared with the hydrologic analysis of runoff flooding zones to provide a predictive model for the City. The proposed methodology is an example of urban system phenomenology using crowd sourced, open data. A novel algorithm for calculating the spatial distribution of flooding complaints across NYC's five boroughs is presented in this study. In this approach, the features that represent reporting bias are separated from those that relate to actual infrastructure system performance. The sewer backup results are assessed with the spatial distribution of runoff in NYC during 2010-2016. With advances in radar technologies, a high spatial-temporal resolution data set for precipitation is available for most of the United States that can be implemented in hydrologic analysis of dense urban environments. High resolution gridded Stage IV radar rainfall data along with the high resolution spatially distributed land cover data are employed to investigate the urban pluvial flooding. The monthly results of excess runoff are compared with the sewer backup in NYC to build a predictive model of flood zones according to the 311 phone calls.

  18. Fuzzy architecture assessment for critical infrastructure resilience

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, George

    2012-12-01

    This paper presents an approach for the selection of alternative architectures in a connected infrastructure system to increase resilience of the overall infrastructure system. The paper begins with a description of resilience and critical infrastructure, then summarizes existing approaches to resilience, and presents a fuzzy-rule based method of selecting among alternative infrastructure architectures. This methodology includes considerations which are most important when deciding on an approach to resilience. The paper concludes with a proposed approach which builds on existing resilience architecting methods by integrating key system aspects using fuzzy memberships and fuzzy rule sets. This novel approach aids the systemsmore » architect in considering resilience for the evaluation of architectures for adoption into the final system architecture.« less

  19. Integrated information systems for electronic chemotherapy medication administration.

    PubMed

    Levy, Mia A; Giuse, Dario A; Eck, Carol; Holder, Gwen; Lippard, Giles; Cartwright, Julia; Rudge, Nancy K

    2011-07-01

    Chemotherapy administration is a highly complex and distributed task in both the inpatient and outpatient infusion center settings. The American Society of Clinical Oncology and the Oncology Nursing Society (ASCO/ONS) have developed standards that specify procedures and documentation requirements for safe chemotherapy administration. Yet paper-based approaches to medication administration have several disadvantages and do not provide any decision support for patient safety checks. Electronic medication administration that includes bar coding technology may provide additional safety checks, enable consistent documentation structure, and have additional downstream benefits. We describe the specialized configuration of clinical informatics systems for electronic chemotherapy medication administration. The system integrates the patient registration system, the inpatient order entry system, the pharmacy information system, the nursing documentation system, and the electronic health record. We describe the process of deploying this infrastructure in the adult and pediatric inpatient oncology, hematology, and bone marrow transplant wards at Vanderbilt University Medical Center. We have successfully adapted the system for the oncology-specific documentation requirements detailed in the ASCO/ONS guidelines for chemotherapy administration. However, several limitations remain with regard to recording the day of treatment and dose number. Overall, the configured systems facilitate compliance with the ASCO/ONS guidelines and improve the consistency of documentation and multidisciplinary team communication. Our success has prompted us to deploy this infrastructure in our outpatient chemotherapy infusion centers, a process that is currently underway and that will require a few unique considerations.

  20. Defense Strategies for Asymmetric Networked Systems with Discrete Components.

    PubMed

    Rao, Nageswara S V; Ma, Chris Y T; Hausken, Kjell; He, Fei; Yau, David K Y; Zhuang, Jun

    2018-05-03

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models.

  1. Defense Strategies for Asymmetric Networked Systems with Discrete Components

    PubMed Central

    Rao, Nageswara S. V.; Ma, Chris Y. T.; Hausken, Kjell; He, Fei; Yau, David K. Y.

    2018-01-01

    We consider infrastructures consisting of a network of systems, each composed of discrete components. The network provides the vital connectivity between the systems and hence plays a critical, asymmetric role in the infrastructure operations. The individual components of the systems can be attacked by cyber and physical means and can be appropriately reinforced to withstand these attacks. We formulate the problem of ensuring the infrastructure performance as a game between an attacker and a provider, who choose the numbers of the components of the systems and network to attack and reinforce, respectively. The costs and benefits of attacks and reinforcements are characterized using the sum-form, product-form and composite utility functions, each composed of a survival probability term and a component cost term. We present a two-level characterization of the correlations within the infrastructure: (i) the aggregate failure correlation function specifies the infrastructure failure probability given the failure of an individual system or network, and (ii) the survival probabilities of the systems and network satisfy first-order differential conditions that capture the component-level correlations using multiplier functions. We derive Nash equilibrium conditions that provide expressions for individual system survival probabilities and also the expected infrastructure capacity specified by the total number of operational components. We apply these results to derive and analyze defense strategies for distributed cloud computing infrastructures using cyber-physical models. PMID:29751588

  2. The Path to Convergence: Design, Coordination and Social Issues in the Implementation of a Middleware Data Broker.

    NASA Astrophysics Data System (ADS)

    Slota, S.; Khalsa, S. J. S.

    2015-12-01

    Infrastructures are the result of systems, networks, and inter-networks that accrete, overlay and segment one another over time. As a result, working infrastructures represent a broad heterogeneity of elements - data types, computational resources, material substrates (computing hardware, physical infrastructure, labs, physical information resources, etc.) as well as organizational and social functions which result in divergent outputs and goals. Cyber infrastructure's engineering often defaults to a separation of the social from the technical that results in the engineering succeeding in limited ways, or the exposure of unanticipated points of failure within the system. Studying the development of middleware intended to mediate interactions among systems within an earth systems science infrastructure exposes organizational, technical and standards-focused negotiations endemic to a fundamental trait of infrastructure: its characteristic invisibility in use. Intended to perform a core function within the EarthCube cyberinfrastructure, the development, governance and maintenance of an automated brokering system is a microcosm of large-scale infrastructural efforts. Points of potential system failure, regardless of the extent to which they are more social or more technical in nature, can be considered in terms of the reverse salient: a point of social and material configuration that momentarily lags behind the progress of an emerging or maturing infrastructure. The implementation of the BCube data broker has exposed reverse salients in regards to the overall EarthCube infrastructure (and the role of middleware brokering) in the form of organizational factors such as infrastructural alignment, maintenance and resilience; differing and incompatible practices of data discovery and evaluation among users and stakeholders; and a preponderance of local variations in the implementation of standards and authentication in data access. These issues are characterized by their role in increasing tension or friction among components that are on the path to convergence and may help to predict otherwise-occluded endogenous points of failure or non-adoption in the infrastructure.

  3. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 1 2010-10-01 2010-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  4. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 1 2012-10-01 2012-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  5. 47 CFR 10.330 - Provider infrastructure requirements.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 1 2011-10-01 2011-10-01 false Provider infrastructure requirements. 10.330 Section 10.330 Telecommunication FEDERAL COMMUNICATIONS COMMISSION GENERAL COMMERCIAL MOBILE ALERT SYSTEM System Architecture § 10.330 Provider infrastructure requirements. This section specifies the general...

  6. Consideration of an Applied Model of Public Health Program Infrastructure

    PubMed Central

    Lavinghouze, Rene; Snyder, Kimberly; Rieker, Patricia; Ottoson, Judith

    2015-01-01

    Systemic infrastructure is key to public health achievements. Individual public health program infrastructure feeds into this larger system. Although program infrastructure is rarely defined, it needs to be operationalized for effective implementation and evaluation. The Ecological Model of Infrastructure (EMI) is one approach to defining program infrastructure. The EMI consists of 5 core (Leadership, Partnerships, State Plans, Engaged Data, and Managed Resources) and 2 supporting (Strategic Understanding and Tactical Action) elements that are enveloped in a program’s context. We conducted a literature search across public health programs to determine support for the EMI. Four of the core elements were consistently addressed, and the other EMI elements were intermittently addressed. The EMI provides an initial and partial model for understanding program infrastructure, but additional work is needed to identify evidence-based indicators of infrastructure elements that can be used to measure success and link infrastructure to public health outcomes, capacity, and sustainability. PMID:23411417

  7. Wireless Communications in Smart Grid

    NASA Astrophysics Data System (ADS)

    Bojkovic, Zoran; Bakmaz, Bojan

    Communication networks play a crucial role in smart grid, as the intelligence of this complex system is built based on information exchange across the power grid. Wireless communications and networking are among the most economical ways to build the essential part of the scalable communication infrastructure for smart grid. In particular, wireless networks will be deployed widely in the smart grid for automatic meter reading, remote system and customer site monitoring, as well as equipment fault diagnosing. With an increasing interest from both the academic and industrial communities, this chapter systematically investigates recent advances in wireless communication technology for the smart grid.

  8. A simulation study of the impact of the public-private partnership strategy on the performance of transport infrastructure.

    PubMed

    Huang, Zhengfeng; Zheng, Pengjun; Ma, Yanqiang; Li, Xuan; Xu, Wenjun; Zhu, Wanlu

    2016-01-01

    The choice of investment strategy has a great impact on the performance of transport infrastructure. Positive projects such as the "Subway plus Property" model in Hong Kong have created sustainable financial profits for the public transport projects. Owing to a series of public debt and other constraints, public-private partnership (PPP) was introduced as an innovative investment model to address this issue and help develop transport infrastructure. Yet, few studies provide a deeper understanding of relationships between PPP strategy and the performance of such transport projects (particularly the whole transport system). This paper defines the research scope as a regional network of freeway. With a popular PPP model, travel demand prediction method, and relevant parameters as input, agents in a simulation framework can simulate the choice of PPP freeway over time. The simulation framework can be used to analyze the relationship between the PPP strategy and performance of the regional freeway network. This study uses the Freeway Network of Yangtze River Delta (FN-YRD) in China as the context. The results demonstrate the value of using simulation models of complex transportation systems to help decision makers choose the right PPP projects. Such a tool is viewed as particularly important given the ongoing transformation of functions of the Chinese transportation sector, including franchise rights of transport projects, and freeway charging mechanism.

  9. Network information attacks on the control systems of power facilities belonging to the critical infrastructure

    NASA Astrophysics Data System (ADS)

    Loginov, E. L.; Raikov, A. N.

    2015-04-01

    The most large-scale accidents occurred as a consequence of network information attacks on the control systems of power facilities belonging to the United States' critical infrastructure are analyzed in the context of possibilities available in modern decision support systems. Trends in the development of technologies for inflicting damage to smart grids are formulated. A volume matrix of parameters characterizing attacks on facilities is constructed. A model describing the performance of a critical infrastructure's control system after an attack is developed. The recently adopted measures and legislation acts aimed at achieving more efficient protection of critical infrastructure are considered. Approaches to cognitive modeling and networked expertise of intricate situations for supporting the decision-making process, and to setting up a system of indicators for anticipatory monitoring of critical infrastructure are proposed.

  10. A Smart City Lighting Case Study on an OpenStack-Powered Infrastructure.

    PubMed

    Merlino, Giovanni; Bruneo, Dario; Distefano, Salvatore; Longo, Francesco; Puliafito, Antonio; Al-Anbuky, Adnan

    2015-07-06

    The adoption of embedded systems, mobile devices and other smart devices keeps rising globally, and the scope of their involvement broadens, for instance, in smart city-like scenarios. In light of this, a pressing need emerges to tame such complexity and reuse as much tooling as possible without resorting to vertical ad hoc solutions, while at the same time taking into account valid options with regard to infrastructure management and other more advanced functionalities. Existing solutions mainly focus on core mechanisms and do not allow one to scale by leveraging infrastructure or adapt to a variety of scenarios, especially if actuators are involved in the loop. A new, more flexible, cloud-based approach, able to provide device-focused workflows, is required. In this sense, a widely-used and competitive framework for infrastructure as a service, such as OpenStack, with its breadth in terms of feature coverage and expanded scope, looks to fit the bill, replacing current application-specific approaches with an innovative application-agnostic one. This work thus describes the rationale, efforts and results so far achieved for an integration of IoT paradigms and resource ecosystems with such a kind of cloud-oriented device-centric environment, by focusing on a smart city scenario, namely a park smart lighting example, and featuring data collection, data visualization, event detection and coordinated reaction, as example use cases of such integration.

  11. A Smart City Lighting Case Study on an OpenStack-Powered Infrastructure

    PubMed Central

    Merlino, Giovanni; Bruneo, Dario; Distefano, Salvatore; Longo, Francesco; Puliafito, Antonio; Al-Anbuky, Adnan

    2015-01-01

    The adoption of embedded systems, mobile devices and other smart devices keeps rising globally, and the scope of their involvement broadens, for instance, in smart city-like scenarios. In light of this, a pressing need emerges to tame such complexity and reuse as much tooling as possible without resorting to vertical ad hoc solutions, while at the same time taking into account valid options with regard to infrastructure management and other more advanced functionalities. Existing solutions mainly focus on core mechanisms and do not allow one to scale by leveraging infrastructure or adapt to a variety of scenarios, especially if actuators are involved in the loop. A new, more flexible, cloud-based approach, able to provide device-focused workflows, is required. In this sense, a widely-used and competitive framework for infrastructure as a service, such as OpenStack, with its breadth in terms of feature coverage and expanded scope, looks to fit the bill, replacing current application-specific approaches with an innovative application-agnostic one. This work thus describes the rationale, efforts and results so far achieved for an integration of IoT paradigms and resource ecosystems with such a kind of cloud-oriented device-centric environment, by focusing on a smart city scenario, namely a park smart lighting example, and featuring data collection, data visualization, event detection and coordinated reaction, as example use cases of such integration. PMID:26153775

  12. Collaboration and decision making tools for mobile groups

    NASA Astrophysics Data System (ADS)

    Abrahamyan, Suren; Balyan, Serob; Ter-Minasyan, Harutyun; Degtyarev, Alexander

    2017-12-01

    Nowadays the use of distributed collaboration tools is widespread in many areas of people activity. But lack of mobility and certain equipment-dependency creates difficulties and decelerates development and integration of such technologies. Also mobile technologies allow individuals to interact with each other without need of traditional office spaces and regardless of location. Hence, realization of special infrastructures on mobile platforms with help of ad-hoc wireless local networks could eliminate hardware-attachment and be useful also in terms of scientific approach. Solutions from basic internet-messengers to complex software for online collaboration equipment in large-scale workgroups are implementations of tools based on mobile infrastructures. Despite growth of mobile infrastructures, applied distributed solutions in group decisionmaking and e-collaboration are not common. In this article we propose software complex for real-time collaboration and decision-making based on mobile devices, describe its architecture and evaluate performance.

  13. Integrating Cost Engineering and Project Management in a Junior Engineering Economics Course and a Senior Capstone Project Design Course

    ERIC Educational Resources Information Center

    Tickles, Virginia C.; Li, Yadong; Walters, Wilbur L.

    2013-01-01

    Much criticism exists concerning a lack of focus on real-world problem-solving in the science, technology, engineering and mathematics (STEM) infrastructures. Many of these critics say that current educational infrastructures are incapable in preparing future scientists and engineers to solve the complex and multidisciplinary problems this society…

  14. Enhancing infrastructure resilience through business continuity planning.

    PubMed

    Fisher, Ronald; Norman, Michael; Klett, Mary

    2017-01-01

    Critical infrastructure is crucial to the functionality and wellbeing of the world around us. It is a complex network that works together to create an efficient society. The core components of critical infrastructure are dependent on one another to function at their full potential. Organisations face unprecedented environmental risks such as increased reliance on information technology and telecommunications, increased infrastructure interdependencies and globalisation. Successful organisations should integrate the components of cyber-physical and infrastructure interdependencies into a holistic risk framework. Physical security plans, cyber security plans and business continuity plans can help mitigate environmental risks. Cyber security plans are becoming the most crucial to have, yet are the least commonly found in organisations. As the reliance on cyber continues to grow, it is imperative that organisations update their business continuity and emergency preparedness activities to include this.

  15. Establishing a Nation Wide Infrastructure for Systematic Use of Patient Reported Information.

    PubMed

    Jensen, Sanne; Lyng, Karen Marie

    2018-01-01

    In Denmark, we have set up a program to establish a nationwide infrastructure for Patient Reported Outcome (PRO) questionnaires. The effort is divided into an IT infrastructure part and a questionnaire development part. This paper describes how development and evaluation are closely knit together in the two tracks, as complexity is high in the PRO field and IT infrastructure, legal issues, various clinical workflows and the numerous stakeholders have to be taken into account concurrently. In the design process, we have thus used a participatory design approach to ensure a high level of active stakeholder involvement and capability of addressing all the relevant issues. In the next phases, we will apply the IT infrastructure in the planned full-scale evaluation of the questionnaires developed in the first phase, while we continue to develop new national questionnaires.

  16. Using Object Storage Technology vs Vendor Neutral Archives for an Image Data Repository Infrastructure.

    PubMed

    Bialecki, Brian; Park, James; Tilkin, Mike

    2016-08-01

    The intent of this project was to use object storage and its database, which has the ability to add custom extensible metadata to an imaging object being stored within the system, to harness the power of its search capabilities, and to close the technology gap that healthcare faces. This creates a non-disruptive tool that can be used natively by both legacy systems and the healthcare systems of today which leverage more advanced storage technologies. The base infrastructure can be populated alongside current workflows without any interruption to the delivery of services. In certain use cases, this technology can be seen as a true alternative to the VNA (Vendor Neutral Archive) systems implemented by healthcare today. The scalability, security, and ability to process complex objects makes this more than just storage for image data and a commodity to be consumed by PACS (Picture Archiving and Communication System) and workstations. Object storage is a smart technology that can be leveraged to create vendor independence, standards compliance, and a data repository that can be mined for truly relevant content by adding additional context to search capabilities. This functionality can lead to efficiencies in workflow and a wealth of minable data to improve outcomes into the future.

  17. Integrating complexity into data-driven multi-hazard supply chain network strategies

    USGS Publications Warehouse

    Long, Suzanna K.; Shoberg, Thomas G.; Ramachandran, Varun; Corns, Steven M.; Carlo, Hector J.

    2013-01-01

    Major strategies in the wake of a large-scale disaster have focused on short-term emergency response solutions. Few consider medium-to-long-term restoration strategies that reconnect urban areas to the national supply chain networks (SCN) and their supporting infrastructure. To re-establish this connectivity, the relationships within the SCN must be defined and formulated as a model of a complex adaptive system (CAS). A CAS model is a representation of a system that consists of large numbers of inter-connections, demonstrates non-linear behaviors and emergent properties, and responds to stimulus from its environment. CAS modeling is an effective method of managing complexities associated with SCN restoration after large-scale disasters. In order to populate the data space large data sets are required. Currently access to these data is hampered by proprietary restrictions. The aim of this paper is to identify the data required to build a SCN restoration model, look at the inherent problems associated with these data, and understand the complexity that arises due to integration of these data.

  18. Unreliable Sustainable Infrastructure: Three Transformations to Guide Cities towards Becoming Healthy 'Smart Cities'

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sperling, Joshua; Fisher, Stephen; Reiner, Mark B.

    The term 'leapfrogging' has been applied to cities and nations that have adopted a new form of infrastructure by bypassing the traditional progression of development, e.g., from no phones to cell phones - bypassing landlines all together. However, leapfrogging from unreliable infrastructure systems to 'smart' cities is too large a jump resulting in unsustainable and unhealthy infrastructure systems. In the Global South, a baseline of unreliable infrastructure is a prevalent problem. The push for sustainable and 'smart' [re]development tends to ignore many of those already living with failing, unreliable infrastructure. Without awareness of baseline conditions, uninformed projects run the riskmore » of returning conditions to the status quo, keeping many urban populations below targets of the United Nations' Sustainable Development Goals. A key part of understanding the baseline is to identify how citizens have long learned to adjust their expectations of basic services. To compensate for poor infrastructure, most residents in the Global South invest in remedial secondary infrastructure (RSI) at the household and business levels. The authors explore three key 'smart' city transformations that address RSI within a hierarchical planning pyramid known as the comprehensive resilient and reliable infrastructure systems (CRISP) planning framework.« less

  19. NASA Langley Distributed Propulsion VTOL Tilt-Wing Aircraft Testing, Modeling, Simulation, Control, and Flight Test Development

    NASA Technical Reports Server (NTRS)

    Rothhaar, Paul M.; Murphy, Patrick C.; Bacon, Barton J.; Gregory, Irene M.; Grauer, Jared A.; Busan, Ronald C.; Croom, Mark A.

    2014-01-01

    Control of complex Vertical Take-Off and Landing (VTOL) aircraft traversing from hovering to wing born flight mode and back poses notoriously difficult modeling, simulation, control, and flight-testing challenges. This paper provides an overview of the techniques and advances required to develop the GL-10 tilt-wing, tilt-tail, long endurance, VTOL aircraft control system. The GL-10 prototype's unusual and complex configuration requires application of state-of-the-art techniques and some significant advances in wind tunnel infrastructure automation, efficient Design Of Experiments (DOE) tunnel test techniques, modeling, multi-body equations of motion, multi-body actuator models, simulation, control algorithm design, and flight test avionics, testing, and analysis. The following compendium surveys key disciplines required to develop an effective control system for this challenging vehicle in this on-going effort.

  20. System Dynamics Approach for Critical Infrastructure and Decision Support. A Model for a Potable Water System.

    NASA Astrophysics Data System (ADS)

    Pasqualini, D.; Witkowski, M.

    2005-12-01

    The Critical Infrastructure Protection / Decision Support System (CIP/DSS) project, supported by the Science and Technology Office, has been developing a risk-informed Decision Support System that provides insights for making critical infrastructure protection decisions. The system considers seventeen different Department of Homeland Security defined Critical Infrastructures (potable water system, telecommunications, public health, economics, etc.) and their primary interdependencies. These infrastructures have been modeling in one model called CIP/DSS Metropolitan Model. The modeling approach used is a system dynamics modeling approach. System dynamics modeling combines control theory and the nonlinear dynamics theory, which is defined by a set of coupled differential equations, which seeks to explain how the structure of a given system determines its behavior. In this poster we present a system dynamics model for one of the seventeen critical infrastructures, a generic metropolitan potable water system (MPWS). Three are the goals: 1) to gain a better understanding of the MPWS infrastructure; 2) to identify improvements that would help protect MPWS; and 3) to understand the consequences, interdependencies, and impacts, when perturbations occur to the system. The model represents raw water sources, the metropolitan water treatment process, storage of treated water, damage and repair to the MPWS, distribution of water, and end user demand, but does not explicitly represent the detailed network topology of an actual MPWS. The MPWS model is dependent upon inputs from the metropolitan population, energy, telecommunication, public health, and transportation models as well as the national water and transportation models. We present modeling results and sensitivity analysis indicating critical choke points, negative and positive feedback loops in the system. A general scenario is also analyzed where the potable water system responds to a generic disruption.

  1. An open-source software platform for data management, visualisation, model building and model sharing in water, energy and other resource modelling domains.

    NASA Astrophysics Data System (ADS)

    Knox, S.; Meier, P.; Mohammed, K.; Korteling, B.; Matrosov, E. S.; Hurford, A.; Huskova, I.; Harou, J. J.; Rosenberg, D. E.; Thilmant, A.; Medellin-Azuara, J.; Wicks, J.

    2015-12-01

    Capacity expansion on resource networks is essential to adapting to economic and population growth and pressures such as climate change. Engineered infrastructure systems such as water, energy, or transport networks require sophisticated and bespoke models to refine management and investment strategies. Successful modeling of such complex systems relies on good data management and advanced methods to visualize and share data.Engineered infrastructure systems are often represented as networks of nodes and links with operating rules describing their interactions. Infrastructure system management and planning can be abstracted to simulating or optimizing new operations and extensions of the network. By separating the data storage of abstract networks from manipulation and modeling we have created a system where infrastructure modeling across various domains is facilitated.We introduce Hydra Platform, a Free Open Source Software designed for analysts and modelers to store, manage and share network topology and data. Hydra Platform is a Python library with a web service layer for remote applications, called Apps, to connect. Apps serve various functions including network or results visualization, data export (e.g. into a proprietary format) or model execution. This Client-Server architecture allows users to manipulate and share centrally stored data. XML templates allow a standardised description of the data structure required for storing network data such that it is compatible with specific models.Hydra Platform represents networks in an abstract way and is therefore not bound to a single modeling domain. It is the Apps that create domain-specific functionality. Using Apps researchers from different domains can incorporate different models within the same network enabling cross-disciplinary modeling while minimizing errors and streamlining data sharing. Separating the Python library from the web layer allows developers to natively expand the software or build web-based apps in other languages for remote functionality. Partner CH2M is developing a commercial user-interface for Hydra Platform however custom interfaces and visualization tools can be built. Hydra Platform is available on GitHub while Apps will be shared on a central repository.

  2. Data-driven planning of distributed energy resources amidst socio-technical complexities

    NASA Astrophysics Data System (ADS)

    Jain, Rishee K.; Qin, Junjie; Rajagopal, Ram

    2017-08-01

    New distributed energy resources (DER) are rapidly replacing centralized power generation due to their environmental, economic and resiliency benefits. Previous analyses of DER systems have been limited in their ability to account for socio-technical complexities, such as intermittent supply, heterogeneous demand and balance-of-system cost dynamics. Here we develop ReMatch, an interdisciplinary modelling framework, spanning engineering, consumer behaviour and data science, and apply it to 10,000 consumers in California, USA. Our results show that deploying DER would yield nearly a 50% reduction in the levelized cost of electricity (LCOE) over the status quo even after accounting for socio-technical complexities. We abstract a detailed matching of consumers to DER infrastructure from our results and discuss how this matching can facilitate the development of smart and targeted renewable energy policies, programmes and incentives. Our findings point to the large-scale economic and technical feasibility of DER and underscore the pertinent role DER can play in achieving sustainable energy goals.

  3. Architecture for autonomy

    NASA Astrophysics Data System (ADS)

    Broten, Gregory S.; Monckton, Simon P.; Collier, Jack; Giesbrecht, Jared

    2006-05-01

    In 2002 Defence R&D Canada changed research direction from pure tele-operated land vehicles to general autonomy for land, air, and sea craft. The unique constraints of the military environment coupled with the complexity of autonomous systems drove DRDC to carefully plan a research and development infrastructure that would provide state of the art tools without restricting research scope. DRDC's long term objectives for its autonomy program address disparate unmanned ground vehicle (UGV), unattended ground sensor (UGS), air (UAV), and subsea and surface (UUV and USV) vehicles operating together with minimal human oversight. Individually, these systems will range in complexity from simple reconnaissance mini-UAVs streaming video to sophisticated autonomous combat UGVs exploiting embedded and remote sensing. Together, these systems can provide low risk, long endurance, battlefield services assuming they can communicate and cooperate with manned and unmanned systems. A key enabling technology for this new research is a software architecture capable of meeting both DRDC's current and future requirements. DRDC built upon recent advances in the computing science field while developing its software architecture know as the Architecture for Autonomy (AFA). Although a well established practice in computing science, frameworks have only recently entered common use by unmanned vehicles. For industry and government, the complexity, cost, and time to re-implement stable systems often exceeds the perceived benefits of adopting a modern software infrastructure. Thus, most persevere with legacy software, adapting and modifying software when and wherever possible or necessary -- adopting strategic software frameworks only when no justifiable legacy exists. Conversely, academic programs with short one or two year projects frequently exploit strategic software frameworks but with little enduring impact. The open-source movement radically changes this picture. Academic frameworks, open to public scrutiny and modification, now rival commercial frameworks in both quality and economic impact. Further, industry now realizes that open source frameworks can reduce cost and risk of systems engineering. This paper describes the Architecture for Autonomy implemented by DRDC and how this architecture meets DRDC's current needs. It also presents an argument for why this architecture should also satisfy DRDC's future requirements as well.

  4. Online molecular image repository and analysis system: A multicenter collaborative open-source infrastructure for molecular imaging research and application.

    PubMed

    Rahman, Mahabubur; Watabe, Hiroshi

    2018-05-01

    Molecular imaging serves as an important tool for researchers and clinicians to visualize and investigate complex biochemical phenomena using specialized instruments; these instruments are either used individually or in combination with targeted imaging agents to obtain images related to specific diseases with high sensitivity, specificity, and signal-to-noise ratios. However, molecular imaging, which is a multidisciplinary research field, faces several challenges, including the integration of imaging informatics with bioinformatics and medical informatics, requirement of reliable and robust image analysis algorithms, effective quality control of imaging facilities, and those related to individualized disease mapping, data sharing, software architecture, and knowledge management. As a cost-effective and open-source approach to address these challenges related to molecular imaging, we develop a flexible, transparent, and secure infrastructure, named MIRA, which stands for Molecular Imaging Repository and Analysis, primarily using the Python programming language, and a MySQL relational database system deployed on a Linux server. MIRA is designed with a centralized image archiving infrastructure and information database so that a multicenter collaborative informatics platform can be built. The capability of dealing with metadata, image file format normalization, and storing and viewing different types of documents and multimedia files make MIRA considerably flexible. With features like logging, auditing, commenting, sharing, and searching, MIRA is useful as an Electronic Laboratory Notebook for effective knowledge management. In addition, the centralized approach for MIRA facilitates on-the-fly access to all its features remotely through any web browser. Furthermore, the open-source approach provides the opportunity for sustainable continued development. MIRA offers an infrastructure that can be used as cross-boundary collaborative MI research platform for the rapid achievement in cancer diagnosis and therapeutics. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. Vista-LA: Mapping methane-emitting infrastructure in the Los Angeles megacity

    NASA Astrophysics Data System (ADS)

    Carranza, Valerie; Rafiq, Talha; Frausto-Vicencio, Isis; Hopkins, Francesca M.; Verhulst, Kristal R.; Rao, Preeti; Duren, Riley M.; Miller, Charles E.

    2018-03-01

    Methane (CH4) is a potent greenhouse gas (GHG) and a critical target of climate mitigation efforts. However, actionable emission reduction efforts are complicated by large uncertainties in the methane budget on relevant scales. Here, we present Vista, a Geographic Information System (GIS)-based approach to map potential methane emissions sources in the South Coast Air Basin (SoCAB) that encompasses Los Angeles, an area with a dense, complex mixture of methane sources. The goal of this work is to provide a database that, together with atmospheric observations, improves methane emissions estimates in urban areas with complex infrastructure. We aggregated methane source location information into three sectors (energy, agriculture, and waste) following the frameworks used by the State of California GHG Inventory and the Intergovernmental Panel on Climate Change (IPCC) Guidelines for GHG Reporting. Geospatial modeling was applied to publicly available datasets to precisely geolocate facilities and infrastructure comprising major anthropogenic methane source sectors. The final database, Vista-Los Angeles (Vista-LA), is presented as maps of infrastructure known or expected to emit CH4. Vista-LA contains over 33 000 features concentrated on < 1 % of land area in the region. Currently, Vista-LA is used as a planning and analysis tool for atmospheric measurement surveys of methane sources, particularly for airborne remote sensing, and methane hotspot detection using regional observations. This study represents a first step towards developing an accurate, spatially resolved methane flux estimate for point sources in SoCAB, with the potential to address discrepancies between bottom-up and top-down methane emissions accounting in this region. The Vista-LA datasets and associated metadata are available from the Oak Ridge National Laboratory Distributed Active Archive Center for Biogeochemical Dynamics (ORNL DAAC; https://doi.org/10.3334/ORNLDAAC/1525).

  6. [International trade in health services and the medical industrial complex: implications for national health systems].

    PubMed

    Santos, Maria Angelica Borges dos; Passos, Sonia Regina Lambert

    2010-08-01

    Health services have increasingly proven to be an innovative sector, gaining prominence in the medical industrial complex through expansion to public and international markets. International trade can foster economic development and redirect the resources and infrastructure available for healthcare in different countries in favorable or unfavorable directions. Wherever private providers play a significant role in government-funded healthcare, GATS commitments may restrict health policy options in subscribing countries. Systematic information on the impacts of electronic health services, medical tourism, health workers' migration, and foreign direct investment is needed on a case-by-case basis to build evidence for informed decision-making, so as to maximize opportunities and minimize risks of GATS commitments.

  7. In Vitro Comparison of the Bond Strength between Ceramic Repair Systems and Ceramic Materials and Evaluation of the Wettability.

    PubMed

    Kocaağaoğlu, Hasan; Manav, Taha; Albayrak, Haydar

    2017-04-01

    When fracture of an all-ceramic restoration occurs, it can be necessary to repair without removing the restoration. Although there are many studies about the repair of metal-ceramic restorations, there are few about all-ceramic restorations. The aim of this study was to evaluate the shear bond strength between ceramic repair systems and esthetic core materials and to evaluate the wettability of all-ceramic core materials. Disk-like specimens (N = 90) made of three dental ceramic infrastructure materials (zirconia ceramic, alumina ceramic, glass ceramic) were polished with silicon carbide paper, prepared for bonding (abrasion with 30 μm diamond rotary cutting instrument). Thirty specimens of each infrastructure were obtained. Each infrastructure group was divided into three subgroups; they were bonded using 3 repair systems: Bisco Intraoral Repair Kit, Cimara & Cimara Zircon Repair System, and Clearfil Repair System. After 1200 thermocycles, shear bond strength was measured in a universal testing machine at a 0.5 mm/min crosshead speed. In addition, the contact angle values of the infrastructures after surface treatments were examined for wettability. Data were analyzed by using ANOVA and Tukey post hoc tests. Although there were no significant differences among the repair systems (p > 0.05) in the glass ceramic and zirconia groups, a significant difference was found among the repair systems in alumina infrastructure (p < 0.001). There were no statistically significant differences among the infrastructures (p > 0.05); however, a statistically significant difference was found among the repair systems (p < 0.05). No difference was found among the infrastructures and repair systems in terms of contact angle values. Cimara & Cimara Zircon Repair System had higher bond strength values than the other repair systems. Although no difference was found among the infrastructures and repair systems, contact wettability angle was decreased by surface treatments compared with polished surfaces. © 2015 by the American College of Prosthodontists.

  8. Communication Security for Control Systems in Smart Grid

    NASA Astrophysics Data System (ADS)

    Robles, Rosslin John; Kim, Tai-Hoon

    As an example of Control System, Supervisory Control and Data Acquisition systems can be relatively simple, such as one that monitors environmental conditions of a small office building, or incredibly complex, such as a system that monitors all the activity in a nuclear power plant or the activity of a municipal water system. SCADA systems are basically Process Control Systems, designed to automate systems such as traffic control, power grid management, waste processing etc. Connecting SCADA to the Internet can provide a lot of advantages in terms of control, data viewing and generation. SCADA infrastructures like electricity can also be a part of a Smart Grid. Connecting SCADA to a public network can bring a lot of security issues. To answer the security issues, a SCADA communication security solution is proposed.

  9. Multiobjective optimization of cluster-scale urban water systems investigating alternative water sources and level of decentralization

    NASA Astrophysics Data System (ADS)

    Newman, J. P.; Dandy, G. C.; Maier, H. R.

    2014-10-01

    In many regions, conventional water supplies are unable to meet projected consumer demand. Consequently, interest has arisen in integrated urban water systems, which involve the reclamation or harvesting of alternative, localized water sources. However, this makes the planning and design of water infrastructure more difficult, as multiple objectives need to be considered, water sources need to be selected from a number of alternatives, and end uses of these sources need to be specified. In addition, the scale at which each treatment, collection, and distribution network should operate needs to be investigated. In order to deal with this complexity, a framework for planning and designing water infrastructure taking into account integrated urban water management principles is presented in this paper and applied to a rural greenfield development. Various options for water supply, and the scale at which they operate were investigated in order to determine the life-cycle trade-offs between water savings, cost, and GHG emissions as calculated from models calibrated using Australian data. The decision space includes the choice of water sources, storage tanks, treatment facilities, and pipes for water conveyance. For each water system analyzed, infrastructure components were sized using multiobjective genetic algorithms. The results indicate that local water sources are competitive in terms of cost and GHG emissions, and can reduce demand on the potable system by as much as 54%. Economies of scale in treatment dominated the diseconomies of scale in collection and distribution of water. Therefore, water systems that connect large clusters of households tend to be more cost efficient and have lower GHG emissions. In addition, water systems that recycle wastewater tended to perform better than systems that captured roof-runoff. Through these results, the framework was shown to be effective at identifying near optimal trade-offs between competing objectives, thereby enabling informed decisions to be made when planning water systems for greenfield developments.

  10. Creating 21st-Century Laboratories and Classrooms for Improving Population Health: A Call to Action for Academic Medical Centers.

    PubMed

    DeVoe, Jennifer E; Likumahuwa-Ackman, Sonja; Shannon, Jackilen; Steiner Hayward, Elizabeth

    2017-04-01

    Academic medical centers (AMCs) in the United States built world-class infrastructure to successfully combat disease in the 20th century, which is inadequate for the complexity of sustaining and improving population health. AMCs must now build first-rate 21st-century infrastructure to connect combating disease and promoting health. This infrastructure must acknowledge the bio-psycho-social-environmental factors impacting health and will need to reach far beyond the AMC walls to foster community "laboratories" that support the "science of health," complementary to those supporting the "science of medicine"; cultivate community "classrooms" to stimulate learning and discovery in the places where people live, work, and play; and strengthen bridges between academic centers and these community laboratories and classrooms to facilitate bidirectional teaching, learning, innovation, and discovery.Private and public entities made deep financial investments that contributed to the AMC disease-centered approach to clinical care, education, and research in the 20th century. Many of these same funders now recognize the need to transform U.S. health care into a system that is accountable for population health and the need for a medical workforce equipped with the skills to measure and improve health. Innovative ideas about communities as centers of learning, the importance of social factors as major determinants of health, and the need for multidisciplinary perspectives to solve complex problems are not new; many are 20th-century ideas still waiting to be fully implemented. The window of opportunity is now. The authors articulate how AMCs must take bigger and bolder steps to become leaders in population health.

  11. Powering the Network: The Forgotten Infrastructure.

    ERIC Educational Resources Information Center

    Learn, Larry L., Ed.

    1995-01-01

    Discusses systems that power the telecommunications infrastructure. Highlights include power for central telephone company offices; private branch exchange systems; power interruptions and power irregularities; uninterruptible power systems; problems in the systems; and photovoltaic systems. (LRW)

  12. Sustainable infrastructure system modeling under uncertainties and dynamics

    NASA Astrophysics Data System (ADS)

    Huang, Yongxi

    Infrastructure systems support human activities in transportation, communication, water use, and energy supply. The dissertation research focuses on critical transportation infrastructure and renewable energy infrastructure systems. The goal of the research efforts is to improve the sustainability of the infrastructure systems, with an emphasis on economic viability, system reliability and robustness, and environmental impacts. The research efforts in critical transportation infrastructure concern the development of strategic robust resource allocation strategies in an uncertain decision-making environment, considering both uncertain service availability and accessibility. The study explores the performances of different modeling approaches (i.e., deterministic, stochastic programming, and robust optimization) to reflect various risk preferences. The models are evaluated in a case study of Singapore and results demonstrate that stochastic modeling methods in general offers more robust allocation strategies compared to deterministic approaches in achieving high coverage to critical infrastructures under risks. This general modeling framework can be applied to other emergency service applications, such as, locating medical emergency services. The development of renewable energy infrastructure system development aims to answer the following key research questions: (1) is the renewable energy an economically viable solution? (2) what are the energy distribution and infrastructure system requirements to support such energy supply systems in hedging against potential risks? (3) how does the energy system adapt the dynamics from evolving technology and societal needs in the transition into a renewable energy based society? The study of Renewable Energy System Planning with Risk Management incorporates risk management into its strategic planning of the supply chains. The physical design and operational management are integrated as a whole in seeking mitigations against the potential risks caused by feedstock seasonality and demand uncertainty. Facility spatiality, time variation of feedstock yields, and demand uncertainty are integrated into a two-stage stochastic programming (SP) framework. In the study of Transitional Energy System Modeling under Uncertainty, a multistage stochastic dynamic programming is established to optimize the process of building and operating fuel production facilities during the transition. Dynamics due to the evolving technologies and societal changes and uncertainty due to demand fluctuations are the major issues to be addressed.

  13. From multifunctionality to multiple ecosystem services? A conceptual framework for multifunctionality in green infrastructure planning for urban areas.

    PubMed

    Hansen, Rieke; Pauleit, Stephan

    2014-05-01

    Green infrastructure (GI) and ecosystem services (ES) are promoted as concepts that have potential to improve environmental planning in urban areas based on a more holistic understanding of the complex interrelations and dynamics of social-ecological systems. However, the scientific discourses around both concepts still lack application-oriented frameworks that consider such a holistic perspective and are suitable to mainstream GI and ES in planning practice. This literature review explores how multifunctionality as one important principle of GI planning can be operationalized by approaches developed and tested in ES research. Specifically, approaches developed in ES research can help to assess the integrity of GI networks, balance ES supply and demand, and consider trade-offs. A conceptual framework for the assessment of multifunctionality from a social-ecological perspective is proposed that can inform the design of planning processes and support stronger exchange between GI and ES research.

  14. clearScience: Infrastructure for Communicating Data-Intensive Science.

    PubMed

    Bot, Brian M; Burdick, David; Kellen, Michael; Huang, Erich S

    2013-01-01

    Progress in biomedical research requires effective scientific communication to one's peers and to the public. Current research routinely encompasses large datasets and complex analytic processes, and the constraints of traditional journal formats limit useful transmission of these elements. We are constructing a framework through which authors can not only provide the narrative of what was done, but the primary and derivative data, the source code, the compute environment, and web-accessible virtual machines. This infrastructure allows authors to "hand their machine"- prepopulated with libraries, data, and code-to those interested in reviewing or building off of their work. This project, "clearScience," seeks to provide an integrated system that accommodates the ad hoc nature of discovery in the data-intensive sciences and seamless transitions from working to reporting. We demonstrate that rather than merely describing the science being reported, one can deliver the science itself.

  15. Development of a Suite of Analytical Tools for Energy and Water Infrastructure Knowledge Discovery

    NASA Astrophysics Data System (ADS)

    Morton, A.; Piburn, J.; Stewart, R.; Chandola, V.

    2017-12-01

    Energy and water generation and delivery systems are inherently interconnected. With demand for energy growing, the energy sector is experiencing increasing competition for water. With increasing population and changing environmental, socioeconomic, and demographic scenarios, new technology and investment decisions must be made for optimized and sustainable energy-water resource management. This also requires novel scientific insights into the complex interdependencies of energy-water infrastructures across multiple space and time scales. To address this need, we've developed a suite of analytical tools to support an integrated data driven modeling, analysis, and visualization capability for understanding, designing, and developing efficient local and regional practices related to the energy-water nexus. This work reviews the analytical capabilities available along with a series of case studies designed to demonstrate the potential of these tools for illuminating energy-water nexus solutions and supporting strategic (federal) policy decisions.

  16. An integrated decision-making framework for transportation architectures: Application to aviation systems design

    NASA Astrophysics Data System (ADS)

    Lewe, Jung-Ho

    The National Transportation System (NTS) is undoubtedly a complex system-of-systems---a collection of diverse 'things' that evolve over time, organized at multiple levels, to achieve a range of possibly conflicting objectives, and never quite behaving as planned. The purpose of this research is to develop a virtual transportation architecture for the ultimate goal of formulating an integrated decision-making framework. The foundational endeavor begins with creating an abstraction of the NTS with the belief that a holistic frame of reference is required to properly study such a multi-disciplinary, trans-domain system. The culmination of the effort produces the Transportation Architecture Field (TAF) as a mental model of the NTS, in which the relationships between four basic entity groups are identified and articulated. This entity-centric abstraction framework underpins the construction of a virtual NTS couched in the form of an agent-based model. The transportation consumers and the service providers are identified as adaptive agents that apply a set of preprogrammed behavioral rules to achieve their respective goals. The transportation infrastructure and multitude of exogenous entities (disruptors and drivers) in the whole system can also be represented without resorting to an extremely complicated structure. The outcome is a flexible, scalable, computational model that allows for examination of numerous scenarios which involve the cascade of interrelated effects of aviation technology, infrastructure, and socioeconomic changes throughout the entire system.

  17. DXBC: a long distance wireless broadband communication system for coastal maritime surveillance applications

    NASA Astrophysics Data System (ADS)

    Vastianos, George E.; Argyreas, Nick D.; Xilouris, Chris K.; Thomopoulos, Stelios C. A.

    2015-05-01

    The field of Homeland Security focuses on the air, land, and sea borders surveillance in order to prevent illegal activities while facilitating lawful travel and trade. The achievement of this goal requires collaboration of complex decentralized systems and services, and transfer of huge amount of information between the remote surveillance areas and the command & control centers. It becomes obvious that the effectiveness of the provided security depends highly on the available communication capabilities between the interconnected areas. Although nowadays the broadband communication between remote places is presumed easy because of the extensive infrastructure inside residential areas, it becomes a real challenge when the required information should be acquired from locations where no infrastructure is available such as mountain or sea areas. The Integrated Systems Lab of NCSR Demokritos within the PERSEUS FP7- SEC-2011-261748 project has developed a wireless broadband telecommunication system that combines different communication channels from subGHz to microwave frequencies and provides secure IP connectivity between sea surveillance vessels and the Command and Control Centers (C3). The system was deployed in Fast Patrol Boats of the Hellenic Coast Guard that are used for maritime surveillance in sea boarders and tested successfully in two demonstration exercises for irregular migration and smuggling scenarios in the Aegean Archipelagos. This paper describes in detail the system architecture in terms of hardware and software and the evaluation measurements of the system communication capabilities.

  18. A framework for linking cybersecurity metrics to the modeling of macroeconomic interdependencies.

    PubMed

    Santos, Joost R; Haimes, Yacov Y; Lian, Chenyang

    2007-10-01

    Hierarchical decision making is a multidimensional process involving management of multiple objectives (with associated metrics and tradeoffs in terms of costs, benefits, and risks), which span various levels of a large-scale system. The nation is a hierarchical system as it consists multiple classes of decisionmakers and stakeholders ranging from national policymakers to operators of specific critical infrastructure subsystems. Critical infrastructures (e.g., transportation, telecommunications, power, banking, etc.) are highly complex and interconnected. These interconnections take the form of flows of information, shared security, and physical flows of commodities, among others. In recent years, economic and infrastructure sectors have become increasingly dependent on networked information systems for efficient operations and timely delivery of products and services. In order to ensure the stability, sustainability, and operability of our critical economic and infrastructure sectors, it is imperative to understand their inherent physical and economic linkages, in addition to their cyber interdependencies. An interdependency model based on a transformation of the Leontief input-output (I-O) model can be used for modeling: (1) the steady-state economic effects triggered by a consumption shift in a given sector (or set of sectors); and (2) the resulting ripple effects to other sectors. The inoperability metric is calculated for each sector; this is achieved by converting the economic impact (typically in monetary units) into a percentage value relative to the size of the sector. Disruptive events such as terrorist attacks, natural disasters, and large-scale accidents have historically shown cascading effects on both consumption and production. Hence, a dynamic model extension is necessary to demonstrate the interplay between combined demand and supply effects. The result is a foundational framework for modeling cybersecurity scenarios for the oil and gas sector. A hypothetical case study examines a cyber attack that causes a 5-week shortfall in the crude oil supply in the Gulf Coast area.

  19. SmartPort: A Platform for Sensor Data Monitoring in a Seaport Based on FIWARE

    PubMed Central

    Fernández, Pablo; Santana, José Miguel; Ortega, Sebastián; Trujillo, Agustín; Suárez, José Pablo; Domínguez, Conrado; Santana, Jaisiel; Sánchez, Alejandro

    2016-01-01

    Seaport monitoring and management is a significant research area, in which infrastructure automatically collects big data sets that lead the organization in its multiple activities. Thus, this problem is heavily related to the fields of data acquisition, transfer, storage, big data analysis and information visualization. Las Palmas de Gran Canaria port is a good example of how a seaport generates big data volumes through a network of sensors. They are placed on meteorological stations and maritime buoys, registering environmental parameters. Likewise, the Automatic Identification System (AIS) registers several dynamic parameters about the tracked vessels. However, such an amount of data is useless without a system that enables a meaningful visualization and helps make decisions. In this work, we present SmartPort, a platform that offers a distributed architecture for the collection of the port sensors’ data and a rich Internet application that allows the user to explore the geolocated data. The presented SmartPort tool is a representative, promising and inspiring approach to manage and develop a smart system. It covers a demanding need for big data analysis and visualization utilities for managing complex infrastructures, such as a seaport. PMID:27011192

  20. Evolution of the use of relational and NoSQL databases in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Barberis, D.

    2016-09-01

    The ATLAS experiment used for many years a large database infrastructure based on Oracle to store several different types of non-event data: time-dependent detector configuration and conditions data, calibrations and alignments, configurations of Grid sites, catalogues for data management tools, job records for distributed workload management tools, run and event metadata. The rapid development of "NoSQL" databases (structured storage services) in the last five years allowed an extended and complementary usage of traditional relational databases and new structured storage tools in order to improve the performance of existing applications and to extend their functionalities using the possibilities offered by the modern storage systems. The trend is towards using the best tool for each kind of data, separating for example the intrinsically relational metadata from payload storage, and records that are frequently updated and benefit from transactions from archived information. Access to all components has to be orchestrated by specialised services that run on front-end machines and shield the user from the complexity of data storage infrastructure. This paper describes this technology evolution in the ATLAS database infrastructure and presents a few examples of large database applications that benefit from it.

  1. The current crisis in emergency care and the impact on disaster preparedness.

    PubMed

    Cherry, Robert A; Trainer, Marcia

    2008-05-01

    The Homeland Security Act (HSA) of 2002 provided for the designation of a critical infrastructure protection program. This ultimately led to the designation of emergency services as a targeted critical infrastructure. In the context of an evolving crisis in hospital-based emergency care, the extent to which federal funding has addressed disaster preparedness will be examined. After 9/11, federal plans, procedures and benchmarks were mandated to assure a unified, comprehensive disaster response, ranging from local to federal activation of resources. Nevertheless, insufficient federal funding has contributed to a long-standing counter-trend which has eroded emergency medical care. The causes are complex and multifactorial, but they have converged to present a severely overburdened system that regularly exceeds emergency capacity and capabilities. This constant acute overcrowding, felt in communities all across the country, indicates a nation at risk. Federal funding has not sufficiently prioritized the improvements necessary for an emergency care infrastructure that is critical for an all hazards response to disaster and terrorist emergencies. Currently, the nation is unable to meet presidential preparedness mandates for emergency and disaster care. Federal funding strategies must therefore be re-prioritized and targeted in a way that reasonably and consistently follows need.

  2. Virtualization in network and servers infrastructure to support dynamic system reconfiguration in ALMA

    NASA Astrophysics Data System (ADS)

    Shen, Tzu-Chiang; Ovando, Nicolás.; Bartsch, Marcelo; Simmond, Max; Vélez, Gastón; Robles, Manuel; Soto, Rubén.; Ibsen, Jorge; Saldias, Christian

    2012-09-01

    ALMA is the first astronomical project being constructed and operated under industrial approach due to the huge amount of elements involved. In order to achieve the maximum through put during the engineering and scientific commissioning phase, several production lines have been established to work in parallel. This decision required modification in the original system architecture in which all the elements are controlled and operated within a unique Standard Test Environment (STE). The advance in the network industry and together with the maturity of virtualization paradigm allows us to provide a solution which can replicate the STE infrastructure without changing their network address definition. This is only possible with Virtual Routing and Forwarding (VRF) and Virtual LAN (VLAN) concepts. The solution allows dynamic reconfiguration of antennas and other hardware across the production lines with minimum time and zero human intervention in the cabling. We also push the virtualization even further, classical rack mount servers are being replaced and consolidated by blade servers. On top of them virtualized server are centrally administrated with VMWare ESX. Hardware costs and system administration effort will be reduced considerably. This mechanism has been established and operated successfully during the last two years. This experience gave us confident to propose a solution to divide the main operation array into subarrays using the same concept which will introduce huge flexibility and efficiency for ALMA operation and eventually may simplify the complexity of ALMA core observing software since there will be no need to deal with subarrays complexity at software level.

  3. Agent-based Modeling to Simulate the Diffusion of Water-Efficient Innovations and the Emergence of Urban Water Sustainability

    NASA Astrophysics Data System (ADS)

    Kanta, L.; Giacomoni, M.; Shafiee, M. E.; Berglund, E.

    2014-12-01

    The sustainability of water resources is threatened by urbanization, as increasing demands deplete water availability, and changes to the landscape alter runoff and the flow regime of receiving water bodies. Utility managers typically manage urban water resources through the use of centralized solutions, such as large reservoirs, which may be limited in their ability balance the needs of urbanization and ecological systems. Decentralized technologies, on the other hand, may improve the health of the water resources system and deliver urban water services. For example, low impact development technologies, such as rainwater harvesting, and water-efficient technologies, such as low-flow faucets and toilets, may be adopted by households to retain rainwater and reduce demands, offsetting the need for new centralized infrastructure. Decentralized technologies may create new complexities in infrastructure and water management, as decentralization depends on community behavior and participation beyond traditional water resources planning. Messages about water shortages and water quality from peers and the water utility managers can influence the adoption of new technologies. As a result, feedbacks between consumers and water resources emerge, creating a complex system. This research develops a framework to simulate the diffusion of water-efficient innovations and the sustainability of urban water resources, by coupling models of households in a community, hydrologic models of a water resources system, and a cellular automata model of land use change. Agent-based models are developed to simulate the land use and water demand decisions of individual households, and behavioral rules are encoded to simulate communication with other agents and adoption of decentralized technologies, using a model of the diffusion of innovation. The framework is applied for an illustrative case study to simulate water resources sustainability over a long-term planning horizon.

  4. PyMCT: A Very High Level Language Coupling Tool For Climate System Models

    NASA Astrophysics Data System (ADS)

    Tobis, M.; Pierrehumbert, R. T.; Steder, M.; Jacob, R. L.

    2006-12-01

    At the Climate Systems Center of the University of Chicago, we have been examining strategies for applying agile programming techniques to complex high-performance modeling experiments. While the "agile" development methodology differs from a conventional requirements process and its associated milestones, the process remain a formal one. It is distinguished by continuous improvement in functionality, large numbers of small releases, extensive and ongoing testing strategies, and a strong reliance on very high level languages (VHLL). Here we report on PyMCT, which we intend as a core element in a model ensemble control superstructure. PyMCT is a set of Python bindings for MCT, the Fortran-90 based Model Coupling Toolkit, which forms the infrastructure for the inter-component communication in the Community Climate System Model (CCSM). MCT provides a scalable model communication infrastructure. In order to take maximum advantage of agile software development methodologies, we exposed MCT functionality to Python, a prominent VHLL. We describe how the scalable architecture of MCT allows us to overcome the relatively weak runtime performance of Python, so that the performance of the combined system is not severely impacted. To demonstrate these advantages, we reimplemented the CCSM coupler in Python. While this alone offers no new functionality, it does provide a rigorous test of PyMCT functionality and performance. We reimplemented the CPL6 library, presenting an interesting case study of the comparison between conventional Fortran-90 programming and the higher abstraction level provided by a VHLL. The powerful abstractions provided by Python will allow much more complex experimental paradigms. In particular, we hope to build on the scriptability of our coupling strategy to enable systematic sensitivity tests. Our most ambitious objective is to combine our efforts with Bayesian inverse modeling techniques toward objective tuning at the highest level, across model architectures.

  5. SBSI: an extensible distributed software infrastructure for parameter estimation in systems biology

    PubMed Central

    Adams, Richard; Clark, Allan; Yamaguchi, Azusa; Hanlon, Neil; Tsorman, Nikos; Ali, Shakir; Lebedeva, Galina; Goltsov, Alexey; Sorokin, Anatoly; Akman, Ozgur E.; Troein, Carl; Millar, Andrew J.; Goryanin, Igor; Gilmore, Stephen

    2013-01-01

    Summary: Complex computational experiments in Systems Biology, such as fitting model parameters to experimental data, can be challenging to perform. Not only do they frequently require a high level of computational power, but the software needed to run the experiment needs to be usable by scientists with varying levels of computational expertise, and modellers need to be able to obtain up-to-date experimental data resources easily. We have developed a software suite, the Systems Biology Software Infrastructure (SBSI), to facilitate the parameter-fitting process. SBSI is a modular software suite composed of three major components: SBSINumerics, a high-performance library containing parallelized algorithms for performing parameter fitting; SBSIDispatcher, a middleware application to track experiments and submit jobs to back-end servers; and SBSIVisual, an extensible client application used to configure optimization experiments and view results. Furthermore, we have created a plugin infrastructure to enable project-specific modules to be easily installed. Plugin developers can take advantage of the existing user-interface and application framework to customize SBSI for their own uses, facilitated by SBSI’s use of standard data formats. Availability and implementation: All SBSI binaries and source-code are freely available from http://sourceforge.net/projects/sbsi under an Apache 2 open-source license. The server-side SBSINumerics runs on any Unix-based operating system; both SBSIVisual and SBSIDispatcher are written in Java and are platform independent, allowing use on Windows, Linux and Mac OS X. The SBSI project website at http://www.sbsi.ed.ac.uk provides documentation and tutorials. Contact: stg@inf.ed.ac.uk Supplementary information: Supplementary data are available at Bioinformatics online. PMID:23329415

  6. Design and implementation of a reliable and cost-effective cloud computing infrastructure: the INFN Napoli experience

    NASA Astrophysics Data System (ADS)

    Capone, V.; Esposito, R.; Pardi, S.; Taurino, F.; Tortone, G.

    2012-12-01

    Over the last few years we have seen an increasing number of services and applications needed to manage and maintain cloud computing facilities. This is particularly true for computing in high energy physics, which often requires complex configurations and distributed infrastructures. In this scenario a cost effective rationalization and consolidation strategy is the key to success in terms of scalability and reliability. In this work we describe an IaaS (Infrastructure as a Service) cloud computing system, with high availability and redundancy features, which is currently in production at INFN-Naples and ATLAS Tier-2 data centre. The main goal we intended to achieve was a simplified method to manage our computing resources and deliver reliable user services, reusing existing hardware without incurring heavy costs. A combined usage of virtualization and clustering technologies allowed us to consolidate our services on a small number of physical machines, reducing electric power costs. As a result of our efforts we developed a complete solution for data and computing centres that can be easily replicated using commodity hardware. Our architecture consists of 2 main subsystems: a clustered storage solution, built on top of disk servers running GlusterFS file system, and a virtual machines execution environment. GlusterFS is a network file system able to perform parallel writes on multiple disk servers, providing this way live replication of data. High availability is also achieved via a network configuration using redundant switches and multiple paths between hypervisor hosts and disk servers. We also developed a set of management scripts to easily perform basic system administration tasks such as automatic deployment of new virtual machines, adaptive scheduling of virtual machines on hypervisor hosts, live migration and automated restart in case of hypervisor failures.

  7. Three-Dimensional Planetary Surface Tracking Based on a Simple Ultra-Wideband Impulse-Radio Infrastructure

    NASA Technical Reports Server (NTRS)

    Barton, Richard J.; Ni, David; Ngo, Phong

    2010-01-01

    Several prototype ultra-wideband (UWB) impulse-radio (IR) tracking systems are currently under development at NASA Johnson Space Center (JSC). These systems are being studied for use in tracking of Lunar/Mars rovers and astronauts during early exploration missions when satellite navigation systems (such as GPS) are not available. To date, the systems that have been designed and tested are intended only for two-dimensional location and tracking, but these designs can all be extended to three-dimensional tracking with only minor modifications and increases in complexity. In this presentation, we will briefly review the design and performance of two of the current 2-D systems: one designed specifically for short-range, extremely high-precision tracking (approximately 1-2 cm resolution) and the other designed specifically for much longer range tracking with less stringent precision requirements (1-2 m resolution). We will then discuss a new multi-purpose system design based on a simple UWB-IR architecture that can be deployed easily on a planetary surface to support arbitrary three-dimensional localization and tracking applications. We will discuss utilization of this system as an infrastructure to provide both short-range and long-range tracking and analyze the localization performance of the system in several different configurations. We will give theoretical performance bounds for some canonical system configurations and compare these performance bounds with both numerical simulations of the system as well as actual experimental system performance evaluations.

  8. Using the GlideinWMS System as a Common Resource Provisioning Layer in CMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Balcas, J.; Belforte, S.; Bockelman, B.

    2015-12-23

    CMS will require access to more than 125k processor cores for the beginning of Run 2 in 2015 to carry out its ambitious physics program with more and higher complexity events. During Run1 these resources were predominantly provided by a mix of grid sites and local batch resources. During the long shut down cloud infrastructures, diverse opportunistic resources and HPC supercomputing centers were made available to CMS, which further complicated the operations of the submission infrastructure. In this presentation we will discuss the CMS effort to adopt and deploy the glideinWMS system as a common resource provisioning layer to grid,more » cloud, local batch, and opportunistic resources and sites. We will address the challenges associated with integrating the various types of resources, the efficiency gains and simplifications associated with using a common resource provisioning layer, and discuss the solutions found. We will finish with an outlook of future plans for how CMS is moving forward on resource provisioning for more heterogenous architectures and services.« less

  9. A technological infrastructure to sustain Internetworked Enterprises

    NASA Astrophysics Data System (ADS)

    La Mattina, Ernesto; Savarino, Vincenzo; Vicari, Claudia; Storelli, Davide; Bianchini, Devis

    In the Web 3.0 scenario, where information and services are connected by means of their semantics, organizations can improve their competitive advantage by publishing their business and service descriptions. In this scenario, Semantic Peer to Peer (P2P) can play a key role in defining dynamic and highly reconfigurable infrastructures. Organizations can share knowledge and services, using this infrastructure to move towards value networks, an emerging organizational model characterized by fluid boundaries and complex relationships. This chapter collects and defines the technological requirements and architecture of a modular and multi-Layer Peer to Peer infrastructure for SOA-based applications. This technological infrastructure, based on the combination of Semantic Web and P2P technologies, is intended to sustain Internetworked Enterprise configurations, defining a distributed registry and enabling more expressive queries and efficient routing mechanisms. The following sections focus on the overall architecture, while describing the layers that form it.

  10. Defense strategies for asymmetric networked systems under composite utilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell

    We consider an infrastructure of networked systems with discrete components that can be reinforced at certain costs to guard against attacks. The communications network plays a critical, asymmetric role of providing the vital connectivity between the systems. We characterize the correlations within this infrastructure at two levels using (a) aggregate failure correlation function that specifies the infrastructure failure probability giventhe failure of an individual system or network, and (b) first order differential conditions on system survival probabilities that characterize component-level correlations. We formulate an infrastructure survival game between an attacker and a provider, who attacks and reinforces individual components, respectively.more » They use the composite utility functions composed of a survival probability term and a cost term, and the previously studiedsum-form and product-form utility functions are their special cases. At Nash Equilibrium, we derive expressions for individual system survival probabilities and the expected total number of operational components. We apply and discuss these estimates for a simplified model of distributed cloud computing infrastructure« less

  11. Developing an Integration Infrastructure for Distributed Engine Control Technologies

    NASA Technical Reports Server (NTRS)

    Culley, Dennis; Zinnecker, Alicia; Aretskin-Hariton, Eliot; Kratz, Jonathan

    2014-01-01

    Turbine engine control technology is poised to make the first revolutionary leap forward since the advent of full authority digital engine control in the mid-1980s. This change aims squarely at overcoming the physical constraints that have historically limited control system hardware on aero-engines to a federated architecture. Distributed control architecture allows complex analog interfaces existing between system elements and the control unit to be replaced by standardized digital interfaces. Embedded processing, enabled by high temperature electronics, provides for digitization of signals at the source and network communications resulting in a modular system at the hardware level. While this scheme simplifies the physical integration of the system, its complexity appears in other ways. In fact, integration now becomes a shared responsibility among suppliers and system integrators. While these are the most obvious changes, there are additional concerns about performance, reliability, and failure modes due to distributed architecture that warrant detailed study. This paper describes the development of a new facility intended to address the many challenges of the underlying technologies of distributed control. The facility is capable of performing both simulation and hardware studies ranging from component to system level complexity. Its modular and hierarchical structure allows the user to focus their interaction on specific areas of interest.

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klise, Katherine A.; Hart, David; Moriarty, Dylan Michael

    Drinking water systems face multiple challenges, including aging infrastructure, water quality concerns, uncertainty in supply and demand, natural disasters, environmental emergencies, and cyber and terrorist attacks. All of these have the potential to disrupt a large portion of a water system causing damage to infrastructure and outages to customers. Increasing resilience to these types of hazards is essential to improving water security. As one of the United States (US) sixteen critical infrastructure sectors, drinking water is a national priority. The National Infrastructure Advisory Council defined infrastructure resilience as “the ability to reduce the magnitude and/or duration of disruptive events. Themore » effectiveness of a resilient infrastructure or enterprise depends upon its ability to anticipate, absorb, adapt to, and/or rapidly recover from a potentially disruptive event”. Being able to predict how drinking water systems will perform during disruptive incidents and understanding how to best absorb, recover from, and more successfully adapt to such incidents can help enhance resilience.« less

  13. Personalized Infrastructure: Leveraging Behavioral Strategies for Future Mobility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duvall, Andrew L

    For decades, the transportation system has been built to position the personal automobile at the pinnacle of mobility options. This prominence is strongly reflected in individual and population behaviors, and supported by coevolved transportation policy, social norms, funding, and physical structures. Such has been the status quo for the living memory of the U.S. population. However, with the advent of emergent, technologically driven mobility options, the transportation system is in an era of rapid and disruptive change. No longer is transportation infrastructure an externality predominantly composed of physical elements; it is also now a personalized interface carried in the pocketsmore » of the majority of the population. Perceptions of personal mobility are evolving, in large part because of the proliferation of smartphone technology and the related Internet of Things (IoT), which will become increasingly essential within future transportation systems. With the emergence of personalized mobility infrastructure, many intervention approaches to influence transportation behavior do not adequately acknowledge the complexity of the social/digital environment within which transportation decisions are made. Transportation decisions are influenced by multiple facets, including costs and benefits in time and money, but also by sociocultural elements shaped by social norms and diffusion of ideas. Understanding of factors that lead to transportation behaviors can help to identify incentives and leverage points whereby alternative choices may be most accepted by individuals, and which, if well coordinated, may lead to improved transportation energy outcomes. How can change be initiated to shift away from the transportation status quo? Is it possible to use technologically delivered incentives to produce meaningful changes in transportation behavior? What types of incentives and at what perceived value is necessary to induce changes in behavior? As transportation agencies look toward an ever more complex mobility landscape, and with a quickly growing population, we look for answers to these questions as the core of developing strategies for the future of transportation. Using available data from emergent modes, and experiments conducted as part of an Advanced Research Projects Agency - Energy (ARPA-E) Traveler Response Architecture using Novel Signaling for Network Efficiency in Transportation (TRANSNET) project, we look at how the sharing economy and transportation mobility services have begun to radically alter transportation behavior, while operating in parallel with traditional transportation infrastructure. Emerging modes and practices are affecting car dependence and enabling multimodality. We weigh influences on travel behaviors, identify decision breakpoints where inelastic behavior becomes elastic, incentives, and societal leverage points.« less

  14. The development of Korea's new long-term care service infrastructure and its results: focusing on the market-friendly policy used for expansion of the numbers of service providers and personal care workers.

    PubMed

    Chon, Yongho

    2013-01-01

    One of the main reasons for reforming long-term care systems is a deficient existing service infrastructure for the elderly. This article provides an overview of why and how the Korean government expanded long-term care infrastructure through the introduction of a new compulsory insurance system, with a particular focus on the market-friendly policies used to expand the infrastructure. Then, the positive results of the expansion of the long-term care infrastructure and the challenges that have emerged are examined. Finally, it is argued that the Korean government should actively implement a range of practical policies and interventions within the new system.

  15. Cyberwarfare on the Electricity Infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murarka, N.; Ramesh, V.C.

    2000-03-20

    The report analyzes the possibility of cyberwarfare on the electricity infrastructure. The ongoing deregulation of the electricity industry makes the power grid all the more vulnerable to cyber attacks. The report models the power system information system components, models potential threats and protective measures. It therefore offers a framework for infrastructure protection.

  16. South Africa's School Infrastructure Performance Indicator System

    ERIC Educational Resources Information Center

    Gibberd, Jeremy

    2007-01-01

    While some South African schools have excellent infrastructure, others lack basic services such as water and sanitation. This article describes the school infrastructure performance indicator system (SIPIS) in South Africa. The project offers an approach that can address both the urgent provision of basic services as well as support the…

  17. 76 FR 20045 - The Ubs Group, a Division Of Ubs Ag, Also Known as Ubs Financial Services, Inc. and/or Ubs-Glb...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-11

    ... Known as Brinson Partners, Inc., Corporate Center Division; Group Technology Infrastructure Services... Division, Group Technology Infrastructure Services, Distributed Systems and Storage Group, Chicago... Infrastructure Services, Distributed Systems and Storage Group have their wages reported under a separate...

  18. The GEOSS solution for enabling data interoperability and integrative research.

    PubMed

    Nativi, Stefano; Mazzetti, Paolo; Craglia, Max; Pirrone, Nicola

    2014-03-01

    Global sustainability research requires an integrative research effort underpinned by digital infrastructures (systems) able to harness data and heterogeneous information across disciplines. Digital data and information sharing across systems and applications is achieved by implementing interoperability: a property of a product or system to work with other products or systems, present or future. There are at least three main interoperability challenges a digital infrastructure must address: technological, semantic, and organizational. In recent years, important international programs and initiatives are focusing on such an ambitious objective. This manuscript presents and combines the studies and the experiences carried out by three relevant projects, focusing on the heavy metal domain: Global Mercury Observation System, Global Earth Observation System of Systems (GEOSS), and INSPIRE. This research work recognized a valuable interoperability service bus (i.e., a set of standards models, interfaces, and good practices) proposed to characterize the integrative research cyber-infrastructure of the heavy metal research community. In the paper, the GEOSS common infrastructure is discussed implementing a multidisciplinary and participatory research infrastructure, introducing a possible roadmap for the heavy metal pollution research community to join GEOSS as a new Group on Earth Observation community of practice and develop a research infrastructure for carrying out integrative research in its specific domain.

  19. The Climate-G Portal: a Grid Enabled Scientifc Gateway for Climate Change

    NASA Astrophysics Data System (ADS)

    Fiore, Sandro; Negro, Alessandro; Aloisio, Giovanni

    2010-05-01

    Grid portals are web gateways aiming at concealing the underlying infrastructure through a pervasive, transparent, user-friendly, ubiquitous and seamless access to heterogeneous and geographical spread resources (i.e. storage, computational facilities, services, sensors, network, databases). Definitively they provide an enhanced problem-solving environment able to deal with modern, large scale scientific and engineering problems. Scientific gateways are able to introduce a revolution in the way scientists and researchers organize and carry out their activities. Access to distributed resources, complex workflow capabilities, and community-oriented functionalities are just some of the features that can be provided by such a web-based environment. In the context of the EGEE NA4 Earth Science Cluster, Climate-G is a distributed testbed focusing on climate change research topics. The Euro-Mediterranean Center for Climate Change (CMCC) is actively participating in the testbed providing the scientific gateway (Climate-G Portal) to access to the entire infrastructure. The Climate-G Portal has to face important and critical challenges as well as has to satisfy and address key requirements. In the following, the most relevant ones are presented and discussed. Transparency: the portal has to provide a transparent access to the underlying infrastructure preventing users from dealing with low level details and the complexity of a distributed grid environment. Security: users must be authenticated and authorized on the portal to access and exploit portal functionalities. A wide set of roles is needed to clearly assign the proper one to each user. The access to the computational grid must be completely secured, since the target infrastructure to run jobs is a production grid environment. A security infrastructure (based on X509v3 digital certificates) is strongly needed. Pervasivity and ubiquity: the access to the system must be pervasive and ubiquitous. This is easily true due to the nature of the needed web approach. Usability and simplicity: the portal has to provide simple, high level and user friendly interfaces to ease the access and exploitation of the entire system. Coexistence of general purpose and domain oriented services: along with general purpose services (file transfer, job submission, etc.), the portal has to provide domain based services and functionalities. Subsetting of data, visualization of 2D maps around a virtual globe, delivery of maps through OGC compliant interfaces (i.e. Web Map Service - WMS) are just some examples. Since april 2009, about 70 users (85% coming from the climate change community) got access to the portal. A key challenge of this work is the idea to provide users with an integrated working environment, that is a place where scientists can find huge amount of data, complete metadata support, a wide set of data access services, data visualization and analysis tools, easy access to the underlying grid infrastructure and advanced monitoring interfaces.

  20. The North American Energy System: Overview of the 3rd Chapter of SOCCR-2

    NASA Astrophysics Data System (ADS)

    Marcotullio, P. J.

    2016-12-01

    North America, including Canada, Mexico and the United States, has a large and complex energy system, which includes the extraction and conversion of primary energy sources and their storage, transmission, distribution and ultimate end use in the building, transportation and industrial sectors. The chapter overviews this system focusing on our understanding of the energy trends and system feedback dynamics, key drivers of change, and subsequent carbon emissions and the basis for carbon management. We also put the carbon emissions from the North American system in global context. Highlights include the changes to the system (sources, fuel mix, drivers, infrastructure, etc.,) over the past decade, and a review of scenarios that provide glimpses into future emissions levels and meeting the requirements for decarbonization in the medium and longer term.

  1. Miniaturization as a key factor to the development and application of advanced metrology systems

    NASA Astrophysics Data System (ADS)

    Furlong, Cosme; Dobrev, Ivo; Harrington, Ellery; Hefti, Peter; Khaleghi, Morteza

    2012-10-01

    Recent technological advances of miniaturization engineering are enabling the realization of components and systems with unprecedented capabilities. Such capabilities, which are significantly beneficial to scientific and engineering applications, are impacting the development and the application of optical metrology systems for investigations under complex boundary, loading, and operating conditions. In this paper, and overview of metrology systems that we are developing is presented. Systems are being developed and applied to high-speed and high-resolution measurements of shape and deformations under actual operating conditions for such applications as sustainability, health, medical diagnosis, security, and urban infrastructure. Systems take advantage of recent developments in light sources and modulators, detectors, microelectromechanical (MEMS) sensors and actuators, kinematic positioners, rapid prototyping fabrication technologies, as well as software engineering.

  2. Modeling a hierarchical structure of factors influencing exploitation policy for water distribution systems using ISM approach

    NASA Astrophysics Data System (ADS)

    Jasiulewicz-Kaczmarek, Małgorzata; Wyczółkowski, Ryszard; Gładysiak, Violetta

    2017-12-01

    Water distribution systems are one of the basic elements of contemporary technical infrastructure of urban and rural areas. It is a complex engineering system composed of transmission networks and auxiliary equipment (e.g. controllers, checkouts etc.), scattered territorially over a large area. From the water distribution system operation point of view, its basic features are: functional variability, resulting from the need to adjust the system to temporary fluctuations in demand for water and territorial dispersion. The main research questions are: What external factors should be taken into account when developing an effective water distribution policy? Does the size and nature of the water distribution system significantly affect the exploitation policy implemented? These questions have shaped the objectives of research and the method of research implementation.

  3. Challenges in implementing electronic hand hygiene monitoring systems.

    PubMed

    Conway, Laurie J

    2016-05-02

    Electronic hand hygiene (HH) monitoring systems offer the exciting prospect of a more precise, less biased measure of HH performance than direct observation. However, electronic systems are challenging to implement. Selecting a system that minimizes disruption to the physical infrastructure and to clinician workflow, and that fits with the organization's culture and budget, is challenging. Getting front-line workers' buy-in and addressing concerns about the accuracy of the system and how the data will be used are also difficult challenges. Finally, ensuring information from the system reaches front-line workers and is used by them to improve HH practice is a complex challenge. We describe these challenges in detail and suggests ways to overcome them. Copyright © 2016 Association for Professionals in Infection Control and Epidemiology, Inc. Published by Elsevier Inc. All rights reserved.

  4. 17 CFR 49.24 - System safeguards.

    Code of Federal Regulations, 2012 CFR

    2012-04-01

    ... and disaster recovery resources, including infrastructure and personnel, sufficient to enable it to... infrastructure and personnel such that: (i) Infrastructure sufficient to enable the swap data repository to meet... infrastructure the entity normally relies upon to conduct activities necessary to the reporting, recordkeeping...

  5. 17 CFR 49.24 - System safeguards.

    Code of Federal Regulations, 2013 CFR

    2013-04-01

    ... and disaster recovery resources, including infrastructure and personnel, sufficient to enable it to... infrastructure and personnel such that: (i) Infrastructure sufficient to enable the swap data repository to meet... infrastructure the entity normally relies upon to conduct activities necessary to the reporting, recordkeeping...

  6. 17 CFR 49.24 - System safeguards.

    Code of Federal Regulations, 2014 CFR

    2014-04-01

    ... and disaster recovery resources, including infrastructure and personnel, sufficient to enable it to... infrastructure and personnel such that: (i) Infrastructure sufficient to enable the swap data repository to meet... infrastructure the entity normally relies upon to conduct activities necessary to the reporting, recordkeeping...

  7. 75 FR 75611 - Critical Infrastructure Protection Month, 2010

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-03

    ... Part IV The President Proclamation 8607--Critical Infrastructure Protection Month, 2010..., 2010 Critical Infrastructure Protection Month, 2010 By the President of the United States of America A Proclamation During Critical Infrastructure Protection Month, we highlight the vast network of systems and...

  8. An atom is known by the company it keeps: Content, representation and pedagogy within the epistemic revolution of the complexity sciences

    NASA Astrophysics Data System (ADS)

    Blikstein, Paulo

    The goal of this dissertation is to explore relations between content, representation, and pedagogy, so as to understand the impact of the nascent field of complexity sciences on science, technology, engineering and mathematics (STEM) learning. Wilensky & Papert coined the term "structurations" to express the relationship between knowledge and its representational infrastructure. A change from one representational infrastructure to another they call a "restructuration." The complexity sciences have introduced a novel and powerful structuration: agent-based modeling. In contradistinction to traditional mathematical modeling, which relies on equational descriptions of macroscopic properties of systems, agent-based modeling focuses on a few archetypical micro-behaviors of "agents" to explain emergent macro-behaviors of the agent collective. Specifically, this dissertation is about a series of studies of undergraduate students' learning of materials science, in which two structurations are compared (equational and agent-based), consisting of both design research and empirical evaluation. I have designed MaterialSim, a constructionist suite of computer models, supporting materials and learning activities designed within the approach of agent-based modeling, and over four years conducted an empirical inves3 tigation of an undergraduate materials science course. The dissertation is comprised of three studies: Study 1 - diagnosis . I investigate current representational and pedagogical practices in engineering classrooms. Study 2 - laboratory studies. I investigate the cognition of students engaging in scientific inquiry through programming their own scientific models. Study 3 - classroom implementation. I investigate the characteristics, advantages, and trajectories of scientific content knowledge that is articulated in epistemic forms and representational infrastructures unique to complexity sciences, as well as the feasibility of the integration of constructionist, agent-based learning environments in engineering classrooms. Data sources include classroom observations, interviews, videotaped sessions of model-building, questionnaires, analysis of computer-generated logfiles, and quantitative and qualitative analysis of artifacts. Results shows that (1) current representational and pedagogical practices in engineering classrooms were not up to the challenge of the complex content being taught, (2) by building their own scientific models, students developed a deeper understanding of core scientific concepts, and learned how to better identify unifying principles and behaviors in materials science, and (3) programming computer models was feasible within a regular engineering classroom.

  9. Game-theoretic strategies for asymmetric networked systems

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rao, Nageswara S.; Ma, Chris Y. T.; Hausken, Kjell

    Abstract—We consider an infrastructure consisting of a network of systems each composed of discrete components that can be reinforced at a certain cost to guard against attacks. The network provides the vital connectivity between systems, and hence plays a critical, asymmetric role in the infrastructure operations. We characterize the system-level correlations using the aggregate failure correlation function that specifies the infrastructure failure probability given the failure of an individual system or network. The survival probabilities of systems and network satisfy first-order differential conditions that capture the component-level correlations. We formulate the problem of ensuring the infrastructure survival as a gamemore » between anattacker and a provider, using the sum-form and product-form utility functions, each composed of a survival probability term and a cost term. We derive Nash Equilibrium conditions which provide expressions for individual system survival probabilities, and also the expected capacity specified by the total number of operational components. These expressions differ only in a single term for the sum-form and product-form utilities, despite their significant differences.We apply these results to simplified models of distributed cloud computing infrastructures.« less

  10. Integrated Information Systems for Electronic Chemotherapy Medication Administration

    PubMed Central

    Levy, Mia A.; Giuse, Dario A.; Eck, Carol; Holder, Gwen; Lippard, Giles; Cartwright, Julia; Rudge, Nancy K.

    2011-01-01

    Introduction: Chemotherapy administration is a highly complex and distributed task in both the inpatient and outpatient infusion center settings. The American Society of Clinical Oncology and the Oncology Nursing Society (ASCO/ONS) have developed standards that specify procedures and documentation requirements for safe chemotherapy administration. Yet paper-based approaches to medication administration have several disadvantages and do not provide any decision support for patient safety checks. Electronic medication administration that includes bar coding technology may provide additional safety checks, enable consistent documentation structure, and have additional downstream benefits. Methods: We describe the specialized configuration of clinical informatics systems for electronic chemotherapy medication administration. The system integrates the patient registration system, the inpatient order entry system, the pharmacy information system, the nursing documentation system, and the electronic health record. Results: We describe the process of deploying this infrastructure in the adult and pediatric inpatient oncology, hematology, and bone marrow transplant wards at Vanderbilt University Medical Center. We have successfully adapted the system for the oncology-specific documentation requirements detailed in the ASCO/ONS guidelines for chemotherapy administration. However, several limitations remain with regard to recording the day of treatment and dose number. Conclusion: Overall, the configured systems facilitate compliance with the ASCO/ONS guidelines and improve the consistency of documentation and multidisciplinary team communication. Our success has prompted us to deploy this infrastructure in our outpatient chemotherapy infusion centers, a process that is currently underway and that will require a few unique considerations. PMID:22043185

  11. 76 FR 36137 - National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-06-21

    ... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... DEPARTMENT OF HOMELAND SECURITY [Docket No. DHS-2011-0034] National Infrastructure Advisory...

  12. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2014-01-01 2014-01-01 false Protected Critical Infrastructure Information...

  13. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2011-01-01 2011-01-01 false Protected Critical Infrastructure Information...

  14. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2010-01-01 2010-01-01 false Protected Critical Infrastructure Information...

  15. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2012-01-01 2012-01-01 false Protected Critical Infrastructure Information...

  16. 6 CFR 29.4 - Protected Critical Infrastructure Information Program administration.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...) Protected Critical Infrastructure Information Management System (PCIIMS). The PCII Program Manager shall... be known as the “Protected Critical Infrastructure Information Management System” (PCIIMS), to record... 6 Domestic Security 1 2013-01-01 2013-01-01 false Protected Critical Infrastructure Information...

  17. Clinical investigations for SUS, the Brazilian public health system.

    PubMed

    Paula, Ana Patrícia de; Giozza, Silvana Pereira; Pereira, Michelle Zanon; Boaventura, Patrícia Souza; Santos, Leonor Maria Pacheco; Sachetti, Camile Giaretta; Tamayo, César Omar Carranza; Kowalski, Clarissa Campos Guaragna; Elias, Flavia Tavares Silva; Serruya, Suzanne Jacob; Guimarães, Reinaldo

    2012-01-01

    Scientific and technological development is crucial for advancing the Brazilian health system and for promoting quality of life. The way in which the Brazilian Ministry of Health has supported clinical research to provide autonomy, self-sufficiency, competitiveness and innovation for the healthcare industrial production complex, in accordance with the National Policy on Science, Technology and Innovation in Healthcare, was analyzed. Descriptive investigation, based on secondary data, conducted at the Department of Science and Technology, Ministry of Health. The Ministry of Health's research management database, PesquisaSaúde, was analyzed from 2002 to 2009, using the key word "clinical research" in the fields "primary sub-agenda" or "secondary sub-agenda". The 368 projects retrieved were sorted into six categories: basic biomedical research, preclinical studies, expanded clinical research, clinical trials, infrastructure support and health technology assessment. From a structured review on "clinical research funding", results from selected countries are presented and discussed. The amount invested was R$ 140 million. The largest number of projects supported "basic biomedical research", while the highest amounts invested were in "clinical trials" and "infrastructure support". The southeastern region had the greatest proportion of projects and financial resources. In some respects, Brazil is ahead of other BRICS countries (Russia, India, China and South Africa), especially with regard to establishing a National Clinical Research Network. The Ministry of Health ensured investments to encourage clinical research in Brazil and contributed towards promoting cohesion between investigators, health policies and the healthcare industrial production complex.

  18. Analysis of the Chinese air route network as a complex network

    NASA Astrophysics Data System (ADS)

    Cai, Kai-Quan; Zhang, Jun; Du, Wen-Bo; Cao, Xian-Bin

    2012-02-01

    The air route network, which supports all the flight activities of the civil aviation, is the most fundamental infrastructure of air traffic management system. In this paper, we study the Chinese air route network (CARN) within the framework of complex networks. We find that CARN is a geographical network possessing exponential degree distribution, low clustering coefficient, large shortest path length and exponential spatial distance distribution that is obviously different from that of the Chinese airport network (CAN). Besides, via investigating the flight data from 2002 to 2010, we demonstrate that the topology structure of CARN is homogeneous, howbeit the distribution of flight flow on CARN is rather heterogeneous. In addition, the traffic on CARN keeps growing in an exponential form and the increasing speed of west China is remarkably larger than that of east China. Our work will be helpful to better understand Chinese air traffic systems.

  19. Cybersecurity in Hospitals: A Systematic, Organizational Perspective

    PubMed Central

    Kaiser, Jessica P

    2018-01-01

    Background Cybersecurity incidents are a growing threat to the health care industry in general and hospitals in particular. The health care industry has lagged behind other industries in protecting its main stakeholder (ie, patients), and now hospitals must invest considerable capital and effort in protecting their systems. However, this is easier said than done because hospitals are extraordinarily technology-saturated, complex organizations with high end point complexity, internal politics, and regulatory pressures. Objective The purpose of this study was to develop a systematic and organizational perspective for studying (1) the dynamics of cybersecurity capability development at hospitals and (2) how these internal organizational dynamics interact to form a system of hospital cybersecurity in the United States. Methods We conducted interviews with hospital chief information officers, chief information security officers, and health care cybersecurity experts; analyzed the interview data; and developed a system dynamics model that unravels the mechanisms by which hospitals build cybersecurity capabilities. We then use simulation analysis to examine how changes to variables within the model affect the likelihood of cyberattacks across both individual hospitals and a system of hospitals. Results We discuss several key mechanisms that hospitals use to reduce the likelihood of cybercriminal activity. The variable that most influences the risk of cyberattack in a hospital is end point complexity, followed by internal stakeholder alignment. Although resource availability is important in fueling efforts to close cybersecurity capability gaps, low levels of resources could be compensated for by setting a high target level of cybersecurity. Conclusions To enhance cybersecurity capabilities at hospitals, the main focus of chief information officers and chief information security officers should be on reducing end point complexity and improving internal stakeholder alignment. These strategies can solve cybersecurity problems more effectively than blindly pursuing more resources. On a macro level, the cyber vulnerability of a country’s hospital infrastructure is affected by the vulnerabilities of all individual hospitals. In this large system, reducing variation in resource availability makes the whole system less vulnerable—a few hospitals with low resources for cybersecurity threaten the entire infrastructure of health care. In other words, hospitals need to move forward together to make the industry less attractive to cybercriminals. Moreover, although compliance is essential, it does not equal security. Hospitals should set their target level of cybersecurity beyond the requirements of current regulations and policies. As of today, policies mostly address data privacy, not data security. Thus, policy makers need to introduce policies that not only raise the target level of cybersecurity capabilities but also reduce the variability in resource availability across the entire health care system. PMID:29807882

  20. Integration of structural health monitoring and asset management.

    DOT National Transportation Integrated Search

    2012-08-01

    This project investigated the feasibility and potential benefits of the integration of infrastructure monitoring systems into enterprise-scale transportation management systems. An infrastructure monitoring system designed for bridges was implemented...

  1. Minimal support technology and in situ resource utilization for risk management of planetary spaceflight missions

    NASA Astrophysics Data System (ADS)

    Murphy, K. L.; Rygalov, V. Ye.; Johnson, S. B.

    2009-04-01

    All artificial systems and components in space degrade at higher rates than on Earth, depending in part on environmental conditions, design approach, assembly technologies, and the materials used. This degradation involves not only the hardware and software systems but the humans that interact with those systems. All technological functions and systems can be expressed through functional dependence: [Function]˜[ERU]∗[RUIS]∗[ISR]/[DR];where [ERU]efficiency (rate) of environmental resource utilization[RUIS]resource utilization infrastructure[ISR]in situ resources[DR]degradation rateThe limited resources of spaceflight and open space for autonomous missions require a high reliability (maximum possible, approaching 100%) for system functioning and operation, and must minimize the rate of any system degradation. To date, only a continuous human presence with a system in the spaceflight environment can absolutely mitigate those degradations. This mitigation is based on environmental amelioration for both the technology systems, as repair of data and spare parts, and the humans, as exercise and psychological support. Such maintenance now requires huge infrastructures, including research and development complexes and management agencies, which currently cannot move beyond the Earth. When considering what is required to move manned spaceflight from near Earth stations to remote locations such as Mars, what are the minimal technologies and infrastructures necessary for autonomous restoration of a degrading system in space? In all of the known system factors of a mission to Mars that reduce the mass load, increase the reliability, and reduce the mission’s overall risk, the current common denominator is the use of undeveloped or untested technologies. None of the technologies required to significantly reduce the risk for critical systems are currently available at acceptable readiness levels. Long term interplanetary missions require that space programs produce a craft with all systems integrated so that they are of the highest reliability. Right now, with current technologies, we cannot guarantee this reliability for a crew of six for 1000 days to Mars and back. Investigation of the technologies to answer this need and a focus of resources and research on their advancement would significantly improve chances for a safe and successful mission.

  2. A systems framework for national assessment of climate risks to infrastructure.

    PubMed

    Dawson, Richard J; Thompson, David; Johns, Daniel; Wood, Ruth; Darch, Geoff; Chapman, Lee; Hughes, Paul N; Watson, Geoff V R; Paulson, Kevin; Bell, Sarah; Gosling, Simon N; Powrie, William; Hall, Jim W

    2018-06-13

    Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment.This article is part of the theme issue 'Advances in risk assessment for climate change adaptation policy'. © 2018 The Authors.

  3. A systems framework for national assessment of climate risks to infrastructure

    NASA Astrophysics Data System (ADS)

    Dawson, Richard J.; Thompson, David; Johns, Daniel; Wood, Ruth; Darch, Geoff; Chapman, Lee; Hughes, Paul N.; Watson, Geoff V. R.; Paulson, Kevin; Bell, Sarah; Gosling, Simon N.; Powrie, William; Hall, Jim W.

    2018-06-01

    Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment. This article is part of the theme issue `Advances in risk assessment for climate change adaptation policy'.

  4. A systems framework for national assessment of climate risks to infrastructure

    PubMed Central

    Thompson, David; Johns, Daniel; Darch, Geoff; Paulson, Kevin

    2018-01-01

    Extreme weather causes substantial adverse socio-economic impacts by damaging and disrupting the infrastructure services that underpin modern society. Globally, $2.5tn a year is spent on infrastructure which is typically designed to last decades, over which period projected changes in the climate will modify infrastructure performance. A systems approach has been developed to assess risks across all infrastructure sectors to guide national policy making and adaptation investment. The method analyses diverse evidence of climate risks and adaptation actions, to assess the urgency and extent of adaptation required. Application to the UK shows that despite recent adaptation efforts, risks to infrastructure outweigh opportunities. Flooding is the greatest risk to all infrastructure sectors: even if the Paris Agreement to limit global warming to 2°C is achieved, the number of users reliant on electricity infrastructure at risk of flooding would double, while a 4°C rise could triple UK flood damage. Other risks are significant, for example 5% and 20% of river catchments would be unable to meet water demand with 2°C and 4°C global warming respectively. Increased interdependence between infrastructure systems, especially from energy and information and communication technology (ICT), are amplifying risks, but adaptation action is limited by lack of clear responsibilities. A programme to build national capability is urgently required to improve infrastructure risk assessment. This article is part of the theme issue ‘Advances in risk assessment for climate change adaptation policy’. PMID:29712793

  5. Monitoring and analysis of data from complex systems

    NASA Technical Reports Server (NTRS)

    Dollman, Thomas; Webster, Kenneth

    1991-01-01

    Some of the methods, systems, and prototypes that have been tested for monitoring and analyzing the data from several spacecraft and vehicles at the Marshall Space Flight Center are introduced. For the Huntsville Operations Support Center (HOSC) infrastructure, the Marshall Integrated Support System (MISS) provides a migration path to the state-of-the-art workstation environment. Its modular design makes it possible to implement the system in stages on multiple platforms without the need for all components to be in place at once. The MISS provides a flexible, user-friendly environment for monitoring and controlling orbital payloads. In addition, new capabilities and technology may be incorporated into MISS with greater ease. The use of information systems technology in advanced prototype phases, as adjuncts to mainline activities, is used to evaluate new computational techniques for monitoring and analysis of complex systems. Much of the software described (specially, HSTORESIS (Hubble Space Telescope Operational Readiness Expert Safemode Investigation System), DRS (Device Reasoning Shell), DART (Design Alternatives Rational Tool), elements of the DRA (Document Retrieval Assistant), and software for the PPS (Peripheral Processing System) and the HSPP (High-Speed Peripheral Processor)) is available with supporting documentation, and may be applicable to other system monitoring and analysis applications.

  6. 77 FR 19300 - National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-03-30

    ... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... Group regarding the scope of the next phase of the Working Group's critical infrastructure resilience...

  7. Blue and green infrastructures implementation to solve stormwater management issues in a new urban development project - a modelling approach

    NASA Astrophysics Data System (ADS)

    Versini, Pierre-Antoine; Tchiguirinskaia, Ioulia; Schertzer, Daniel

    2016-04-01

    Concentrating buildings and socio-economic activities, urban areas are particularly vulnerable to hydrological risks. Modification in climate may intensify already existing issues concerning stormwater management (due to impervious area) and water supply (due to the increase of the population). In this context, water use efficiency and best water management practices are key-issues in the urban environment already stressed. Blue and green infrastructures are nature-based solutions that provide synergy of the blue and green systems to provide multifunctional solutions and multiple benefits: increased amenity, urban heat island improvement, biodiversity, reduced energy requirements... They are particularly efficient to reduce the potential impact of new and existing developments with respect to stormwater and/or water supply issues. The Multi-Hydro distributed rainfall-runoff model represents an adapted tool to manage the impacts of such infrastructures at the urban basin scale. It is a numerical platform that makes several models interact, each of them representing a specific portion of the water cycle in an urban environment: surface runoff and infiltration depending on a land use classification, sub-surface processes and sewer network drainage. Multi-Hydro is still being developed at the Ecole des Ponts (open access from https://hmco.enpc.fr/Tools-Training/Tools/Multi-Hydro.php) to take into account the wide complexity of urban environments. The latest advancements have made possible the representation of several blue and green infrastructures (green roof, basin, swale). Applied in a new urban development project located in the Paris region, Multi-Hydro has been used to simulate the impact of blue and green infrastructures implementation. It was particularly focused on their ability to fulfil regulation rules established by local stormwater managers in order to connect the parcel to the sewer network. The results show that a combination of several blue and green infrastructures, if they are widely implemented, could represent an efficient tool to ensure regulation rules at the parcel scale.

  8. Sustaining a Focus on Health Equity at the Centers for Disease Control and Prevention Through Organizational Structures and Functions.

    PubMed

    Dean, Hazel D; Roberts, George W; Bouye, Karen E; Green, Yvonne; McDonald, Marian

    2016-01-01

    The public health infrastructure required for achieving health equity is multidimensional and complex. The infrastructure should be responsive to current and emerging priorities and capable of providing the foundation for developing, planning, implementing, and evaluating health initiatives. This article discusses these infrastructure requirements by examining how they are operationalized in the organizational infrastructure for promoting health equity at the Centers for Disease Control and Prevention, utilizing the nation's premier public health agency as a lens. Examples from the history of the Centers for Disease Control and Prevention's work in health equity from its centers, institute, and offices are provided to identify those structures and functions that are critical to achieving health equity. Challenges and facilitators to sustaining a health equity organizational infrastructure, as gleaned from the Centers for Disease Control and Prevention's experience, are noted. Finally, we provide additional considerations for expanding and sustaining a health equity infrastructure, which the authors hope will serve as "food for thought" for practitioners in state, tribal, or local health departments, community-based organizations, or nongovernmental organizations striving to create or maintain an impactful infrastructure to achieve health equity.

  9. Managing a tier-2 computer centre with a private cloud infrastructure

    NASA Astrophysics Data System (ADS)

    Bagnasco, Stefano; Berzano, Dario; Brunetti, Riccardo; Lusso, Stefano; Vallero, Sara

    2014-06-01

    In a typical scientific computing centre, several applications coexist and share a single physical infrastructure. An underlying Private Cloud infrastructure eases the management and maintenance of such heterogeneous applications (such as multipurpose or application-specific batch farms, Grid sites, interactive data analysis facilities and others), allowing dynamic allocation resources to any application. Furthermore, the maintenance of large deployments of complex and rapidly evolving middleware and application software is eased by the use of virtual images and contextualization techniques. Such infrastructures are being deployed in some large centres (see e.g. the CERN Agile Infrastructure project), but with several open-source tools reaching maturity this is becoming viable also for smaller sites. In this contribution we describe the Private Cloud infrastructure at the INFN-Torino Computer Centre, that hosts a full-fledged WLCG Tier-2 centre, an Interactive Analysis Facility for the ALICE experiment at the CERN LHC and several smaller scientific computing applications. The private cloud building blocks include the OpenNebula software stack, the GlusterFS filesystem and the OpenWRT Linux distribution (used for network virtualization); a future integration into a federated higher-level infrastructure is made possible by exposing commonly used APIs like EC2 and OCCI.

  10. Integration of Mobil Satellite and Cellular Systems

    NASA Technical Reports Server (NTRS)

    Drucker, E. H.; Estabrook, P.; Pinck, D.; Ekroot, L.

    1993-01-01

    By integrating the ground based infrastructure component of a mobile satellite system with the infrastructure systems of terrestrial 800 MHz cellular service providers, a seamless network of universal coverage can be established.

  11. Big Data Analysis of Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Windmann, Stefan; Maier, Alexander; Niggemann, Oliver; Frey, Christian; Bernardi, Ansgar; Gu, Ying; Pfrommer, Holger; Steckel, Thilo; Krüger, Michael; Kraus, Robert

    2015-11-01

    The high complexity of manufacturing processes and the continuously growing amount of data lead to excessive demands on the users with respect to process monitoring, data analysis and fault detection. For these reasons, problems and faults are often detected too late, maintenance intervals are chosen too short and optimization potential for higher output and increased energy efficiency is not sufficiently used. A possibility to cope with these challenges is the development of self-learning assistance systems, which identify relevant relationships by observation of complex manufacturing processes so that failures, anomalies and need for optimization are automatically detected. The assistance system developed in the present work accomplishes data acquisition, process monitoring and anomaly detection in industrial and agricultural processes. The assistance system is evaluated in three application cases: Large distillation columns, agricultural harvesting processes and large-scale sorting plants. In this paper, the developed infrastructures for data acquisition in these application cases are described as well as the developed algorithms and initial evaluation results.

  12. Not-for-profits' role in a reformed system.

    PubMed

    Clinton, H R

    1994-06-01

    As head of the White House task force that helped to craft President Bill Clinton's healthcare reform proposal (the Health Security Act), First Lady Hillary Rodham Clinton demonstrated her determination that reform result in a system that has caring and service at its center. In an address a year ago at the Catholic Health Association assembly, she stressed the administration's goal of providing the security of healthcare coverage to everyone in the United States. Saying the current complex, disjointed system "fragments the care people receive," the First Lady applauded programs that reach out to underserved populations and strengthen the country's healthcare infrastructure. In this interview with Health Progress, Mrs. Clinton discusses tough issues in achieving the system she envisions and the role of Catholic healthcare organizations in a reformed system. Here are her remarks.

  13. Effect of infrastructure design on commons dilemmas in social-ecological system dynamics.

    PubMed

    Yu, David J; Qubbaj, Murad R; Muneepeerakul, Rachata; Anderies, John M; Aggarwal, Rimjhim M

    2015-10-27

    The use of shared infrastructure to direct natural processes for the benefit of humans has been a central feature of human social organization for millennia. Today, more than ever, people interact with one another and the environment through shared human-made infrastructure (the Internet, transportation, the energy grid, etc.). However, there has been relatively little work on how the design characteristics of shared infrastructure affect the dynamics of social-ecological systems (SESs) and the capacity of groups to solve social dilemmas associated with its provision. Developing such understanding is especially important in the context of global change where design criteria must consider how specific aspects of infrastructure affect the capacity of SESs to maintain vital functions in the face of shocks. Using small-scale irrigated agriculture (the most ancient and ubiquitous example of public infrastructure systems) as a model system, we show that two design features related to scale and the structure of benefit flows can induce fundamental changes in qualitative behavior, i.e., regime shifts. By relating the required maintenance threshold (a design feature related to infrastructure scale) to the incentives facing users under different regimes, our work also provides some general guidance on determinants of robustness of SESs under globalization-related stresses.

  14. The Influence of State Policies on Critical Infrastructure Resilience: An Approach for Analyzing Transportation and Capital Investment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wall, Thomas; Trail, Jessica; Gevondyan, Erna

    During times of crisis, communities and regions rely heavily on critical infrastructure systems to support their emergency management response and recovery activities. Therefore, the resilience of critical infrastructure systems to crises is a pivotal factor to a community’s overall resilience. Critical infrastructure resilience can be influenced by many factors, including State policies – which are not always uniform in their structure or application across the United States – were identified by the U.S. Department of Homeland Security as an area of particular interest with respect to their the influence on the resilience of critical infrastructure systems. This study focuses onmore » developing an analytical methodology to assess links between policy and resilience, and applies that methodology to critical infrastructure in the Transportation Systems Sector. Specifically, this study seeks to identify potentially influential linkages between State transportation capital funding policies and the resilience of bridges located on roadways that are under the management of public agencies. This study yielded notable methodological outcomes, including the general capability of the analytical methodology to yield – in the case of some States – significant results connecting State policies with critical infrastructure resilience, with the suggestion that further refinement of the methodology may be beneficial.« less

  15. Effect of infrastructure design on commons dilemmas in social−ecological system dynamics

    PubMed Central

    Yu, David J.; Qubbaj, Murad R.; Muneepeerakul, Rachata; Anderies, John M.; Aggarwal, Rimjhim M.

    2015-01-01

    The use of shared infrastructure to direct natural processes for the benefit of humans has been a central feature of human social organization for millennia. Today, more than ever, people interact with one another and the environment through shared human-made infrastructure (the Internet, transportation, the energy grid, etc.). However, there has been relatively little work on how the design characteristics of shared infrastructure affect the dynamics of social−ecological systems (SESs) and the capacity of groups to solve social dilemmas associated with its provision. Developing such understanding is especially important in the context of global change where design criteria must consider how specific aspects of infrastructure affect the capacity of SESs to maintain vital functions in the face of shocks. Using small-scale irrigated agriculture (the most ancient and ubiquitous example of public infrastructure systems) as a model system, we show that two design features related to scale and the structure of benefit flows can induce fundamental changes in qualitative behavior, i.e., regime shifts. By relating the required maintenance threshold (a design feature related to infrastructure scale) to the incentives facing users under different regimes, our work also provides some general guidance on determinants of robustness of SESs under globalization-related stresses. PMID:26460043

  16. Data Provenance Hybridization Supporting Extreme-Scale Scientific WorkflowApplications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elsethagen, Todd O.; Stephan, Eric G.; Raju, Bibi

    As high performance computing (HPC) infrastructures continue to grow in capability and complexity, so do the applications that they serve. HPC and distributed-area computing (DAC) (e.g. grid and cloud) users are looking increasingly toward workflow solutions to orchestrate their complex application coupling, pre- and post-processing needs To gain insight and a more quantitative understanding of a workflow’s performance our method includes not only the capture of traditional provenance information, but also the capture and integration of system environment metrics helping to give context and explanation for a workflow’s execution. In this paper, we describe IPPD’s provenance management solution (ProvEn) andmore » its hybrid data store combining both of these data provenance perspectives.« less

  17. Merging OLTP and OLAP - Back to the Future

    NASA Astrophysics Data System (ADS)

    Lehner, Wolfgang

    When the terms "Data Warehousing" and "Online Analytical Processing" were coined in the 1990s by Kimball, Codd, and others, there was an obvious need for separating data and workload for operational transactional-style processing and decision-making implying complex analytical queries over large and historic data sets. Large data warehouse infrastructures have been set up to cope with the special requirements of analytical query answering for multiple reasons: For example, analytical thinking heavily relies on predefined navigation paths to guide the user through the data set and to provide different views on different aggregation levels.Multi-dimensional queries exploiting hierarchically structured dimensions lead to complex star queries at a relational backend, which could hardly be handled by classical relational systems.

  18. Tele-Immersion: Preferred Infrastructure for Anatomy Instruction

    ERIC Educational Resources Information Center

    Silverstein, Jonathan C.; Ehrenfeld, Jesse M.; Croft, Darin A.; Dech, Fred W.; Small, Stephen; Cook, Sandy

    2006-01-01

    Understanding spatial relationships among anatomic structures is an essential skill for physicians. Traditional medical education--using books, lectures, physical models, and cadavers--may be insufficient for teaching complex anatomical relationships. This study was designed to measure whether teaching complex anatomy to medical students using…

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ehlen, Mark Andrew; Vugrin, Eric D.; Warren, Drake E.

    In recent years, the nation has recognized that critical infrastructure protection should consider not only the prevention of disruptive events, but also the processes that infrastructure systems undergo to maintain functionality following disruptions. This more comprehensive approach has been termed critical infrastructure resilience (CIR). Given the occurrence of a particular disruptive event, the resilience of a system to that event is the system's ability to efficiently reduce both the magnitude and duration of the deviation from targeted system performance levels. Sandia National Laboratories (Sandia) has developed a comprehensive resilience assessment framework for evaluating the resilience of infrastructure and economic systems.more » The framework includes a quantitative methodology that measures resilience costs that result from a disruption to infrastructure function. The framework also includes a qualitative analysis methodology that assesses system characteristics that affect resilience in order to provide insight and direction for potential improvements to resilience. This paper describes the resilience assessment framework. This paper further demonstrates the utility of the assessment framework through application to a hypothetical scenario involving the disruption of a petrochemical supply chain by a hurricane.« less

  20. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 31 Money and Finance:Treasury 3 2012-07-01 2012-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  1. 75 FR 81284 - National Protection and Programs Directorate; National Infrastructure Advisory Council Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Homeland Security with advice on the security of the critical infrastructure sectors and their information systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as... Directorate; National Infrastructure Advisory Council Meeting AGENCY: National Protection and Programs...

  2. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 31 Money and Finance:Treasury 3 2014-07-01 2014-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  3. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 31 Money and Finance:Treasury 3 2011-07-01 2011-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  4. 31 CFR 800.208 - Critical infrastructure.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 31 Money and Finance:Treasury 3 2013-07-01 2013-07-01 false Critical infrastructure. 800.208..., AND TAKEOVERS BY FOREIGN PERSONS Definitions § 800.208 Critical infrastructure. The term critical infrastructure means, in the context of a particular covered transaction, a system or asset, whether physical or...

  5. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed

    Hoffman, P; Kline, E; George, L; Price, K; Clark, M; Walasin, R

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian.

  6. Health care network communications infrastructure: an engineering design for the Military Health Service System.

    PubMed Central

    Hoffman, P.; Kline, E.; George, L.; Price, K.; Clark, M.; Walasin, R.

    1995-01-01

    The Military Health Service System (MHSS) provides health care for the Department of Defense (DOD). This system operates on an annual budget of $15 Billion, supports 127 medical treatment facilities (MTFs) and 500 clinics, and provides support to 8.7 million beneficiaries worldwide. To support these facilities and their patients, the MHSS uses more than 125 different networked automated medical systems. These systems rely on a heterogeneous telecommunications infrastructure for data communications. With the support of the Defense Medical Information Management (DMIM) Program Office, our goal was to identify the network requirements for DMIM migration and target systems and design a communications infrastructure to support all systems with an integrated network. This work used tools from Business Process Reengineering (BPR) and applied it to communications infrastructure design for the first time. The methodology and results are applicable to any health care enterprise, military or civilian. PMID:8563346

  7. Critical Infrastructure Vulnerability to Spatially Localized Failures with Applications to Chinese Railway System.

    PubMed

    Ouyang, Min; Tian, Hui; Wang, Zhenghua; Hong, Liu; Mao, Zijun

    2017-01-17

    This article studies a general type of initiating events in critical infrastructures, called spatially localized failures (SLFs), which are defined as the failure of a set of infrastructure components distributed in a spatially localized area due to damage sustained, while other components outside the area do not directly fail. These failures can be regarded as a special type of intentional attack, such as bomb or explosive assault, or a generalized modeling of the impact of localized natural hazards on large-scale systems. This article introduces three SLFs models: node centered SLFs, district-based SLFs, and circle-shaped SLFs, and proposes a SLFs-induced vulnerability analysis method from three aspects: identification of critical locations, comparisons of infrastructure vulnerability to random failures, topologically localized failures and SLFs, and quantification of infrastructure information value. The proposed SLFs-induced vulnerability analysis method is finally applied to the Chinese railway system and can be also easily adapted to analyze other critical infrastructures for valuable protection suggestions. © 2017 Society for Risk Analysis.

  8. Structural health monitoring of civil infrastructure.

    PubMed

    Brownjohn, J M W

    2007-02-15

    Structural health monitoring (SHM) is a term increasingly used in the last decade to describe a range of systems implemented on full-scale civil infrastructures and whose purposes are to assist and inform operators about continued 'fitness for purpose' of structures under gradual or sudden changes to their state, to learn about either or both of the load and response mechanisms. Arguably, various forms of SHM have been employed in civil infrastructure for at least half a century, but it is only in the last decade or two that computer-based systems are being designed for the purpose of assisting owners/operators of ageing infrastructure with timely information for their continued safe and economic operation. This paper describes the motivations for and recent history of SHM applications to various forms of civil infrastructure and provides case studies on specific types of structure. It ends with a discussion of the present state-of-the-art and future developments in terms of instrumentation, data acquisition, communication systems and data mining and presentation procedures for diagnosis of infrastructural 'health'.

  9. Critical Infrastructure Protection II, The International Federation for Information Processing, Volume 290.

    NASA Astrophysics Data System (ADS)

    Papa, Mauricio; Shenoi, Sujeet

    The information infrastructure -- comprising computers, embedded devices, networks and software systems -- is vital to day-to-day operations in every sector: information and telecommunications, banking and finance, energy, chemicals and hazardous materials, agriculture, food, water, public health, emergency services, transportation, postal and shipping, government and defense. Global business and industry, governments, indeed society itself, cannot function effectively if major components of the critical information infrastructure are degraded, disabled or destroyed. Critical Infrastructure Protection II describes original research results and innovative applications in the interdisciplinary field of critical infrastructure protection. Also, it highlights the importance of weaving science, technology and policy in crafting sophisticated, yet practical, solutions that will help secure information, computer and network assets in the various critical infrastructure sectors. Areas of coverage include: - Themes and Issues - Infrastructure Security - Control Systems Security - Security Strategies - Infrastructure Interdependencies - Infrastructure Modeling and Simulation This book is the second volume in the annual series produced by the International Federation for Information Processing (IFIP) Working Group 11.10 on Critical Infrastructure Protection, an international community of scientists, engineers, practitioners and policy makers dedicated to advancing research, development and implementation efforts focused on infrastructure protection. The book contains a selection of twenty edited papers from the Second Annual IFIP WG 11.10 International Conference on Critical Infrastructure Protection held at George Mason University, Arlington, Virginia, USA in the spring of 2008.

  10. A National contribution to the GEO Science and Technology roadmap: GIIDA Project

    NASA Astrophysics Data System (ADS)

    Nativi, Stefano; Mazzetti, Paolo; Guzzetti, Fausto; Oggioni, Alessandro; Pirrone, Nicola; Santolieri, Rosalia; Viola, Angelo; Tartari, Gianni; Santoro, Mattia

    2010-05-01

    The GIIDA (Gestione Integrata e Interoperativa dei Dati Ambientali) project is an initiative of the Italian National Research Council (CNR) launched in 2008 as an inter-departmental project, aiming to design and develop a multidisciplinary e-infrastructure (cyber-infrastructure) for the management, processing, and evaluation of Earth and Environmental resources -i.e. data, services, models, sensors, best practices. GIIDA has been contributing to the implementation of the GEO (Group of Earth Observation) Science and Technology (S&T) roadmap by: (a) linking relevant S&T communities to GEOSS (GEO System of Systems); (b) ensuring that GEOSS is built based on state-of-the-art science and technology. GIIDA co-ordinates the CNR's digital infrastructure development for Earth Observation resources sharing and cooperates with other national agencies and existing projects pursuing the same objective. For the CNR, GIIDA provides an interface to European and international interoperability programmes (e.g. INSPIRE, and GMES). It builds a national network for dialogue and resolution of issues at varying scientific and technical levels. To achieve such goals, GIIDA introduced a set of guidance principles: • To shift from a "traditional" data centric approach to a more advanced service-based solution for Earth System Science and Environmental information. • To shift the focus from Data to Information Spatial Infrastructures in order to support decision-making. • To be interoperable with analogous National (e.g. SINAnet, and the INSPIRE National Infrastructure) and international initiatives (e.g. INSPIRE, GMES, SEIS, and GEOSS). • To reinforce the Italian presence in the European and international programmes concerning digital infrastructures, geospatial information, and the Mega-Science approach. • To apply the National and International Information Technology (IT) standards for achieving multi-disciplinary interoperability in the Earth and Space Sciences (e.g. ISO, OGC, CEN, CNIPA) In keeping with GEOSS, GIIDA infrastructure adopts a System of Systems architectural approach in order to federate the existing systems managed by a set of recognized Thematic Areas (i.e. Risks, Biodiversity, Climate Change, Air Quality, Land and Water Quality, Ocean and Marine resources, Joint Research and Public Administration infrastructures). GIIDA system of systems will contribute to develop multidisciplinary teams studying the global Earth systems in order to address the needs coming from the GEO Societal Benefit Areas (SBAs). GIIDA issued a Call For Pilots receiving more than 20 high-level projects which are contributing to the GIIDA system development. A national-wide research environmental infrastructure must be interconnected with analogous digital infrastructures operated by other important stakeholders, such as public users and private companies. In fact, the long-term sustainability of a "System of Systems" requires synergies between all the involved stakeholders' domains: Users, Governance, Capacity provision, and Research. Therefore, in order to increase the effectiveness of the GIIDA contribution process to a national environmental e-infrastructure, collaborations were activated with relevant actors of the other stakeholders' domains at the national level (e.g. ISPRA SINAnet).

  11. Integrated Data Modeling and Simulation on the Joint Polar Satellite System Program

    NASA Technical Reports Server (NTRS)

    Roberts, Christopher J.; Boyce, Leslye; Smith, Gary; Li, Angela; Barrett, Larry

    2012-01-01

    The Joint Polar Satellite System is a modern, large-scale, complex, multi-mission aerospace program, and presents a variety of design, testing and operational challenges due to: (1) System Scope: multi-mission coordination, role, responsibility and accountability challenges stemming from porous/ill-defined system and organizational boundaries (including foreign policy interactions) (2) Degree of Concurrency: design, implementation, integration, verification and operation occurring simultaneously, at multiple scales in the system hierarchy (3) Multi-Decadal Lifecycle: technical obsolesce, reliability and sustainment concerns, including those related to organizational and industrial base. Additionally, these systems tend to become embedded in the broader societal infrastructure, resulting in new system stakeholders with perhaps different preferences (4) Barriers to Effective Communications: process and cultural issues that emerge due to geographic dispersion and as one spans boundaries including gov./contractor, NASA/Other USG, and international relationships.

  12. Design of Adaptive Policy Pathways under Deep Uncertainties

    NASA Astrophysics Data System (ADS)

    Babovic, Vladan

    2013-04-01

    The design of large-scale engineering and infrastructural systems today is growing in complexity. Designers need to consider sociotechnical uncertainties, intricacies, and processes in the long- term strategic deployment and operations of these systems. In this context, water and spatial management is increasingly challenged not only by climate-associated changes such as sea level rise and increased spatio-temporal variability of precipitation, but also by pressures due to population growth and particularly accelerating rate of urbanisation. Furthermore, high investment costs and long term-nature of water-related infrastructure projects requires long-term planning perspective, sometimes extending over many decades. Adaptation to such changes is not only determined by what is known or anticipated at present, but also by what will be experienced and learned as the future unfolds, as well as by policy responses to social and water events. As a result, a pathway emerges. Instead of responding to 'surprises' and making decisions on ad hoc basis, exploring adaptation pathways into the future provide indispensable support in water management decision-making. In this contribution, a structured approach for designing a dynamic adaptive policy based on the concepts of adaptive policy making and adaptation pathways is introduced. Such an approach provides flexibility which allows change over time in response to how the future unfolds, what is learned about the system, and changes in societal preferences. The introduced flexibility provides means for dealing with complexities of adaptation under deep uncertainties. It enables engineering systems to change in the face of uncertainty to reduce impacts from downside scenarios while capitalizing on upside opportunities. This contribution presents comprehensive framework for development and deployment of adaptive policy pathway framework, and demonstrates its performance under deep uncertainties on a case study related to urban water catchment in Singapore. Ingredients of this approach are: (a) transient scenarios (time series of various uncertain developments such as climate change, economic developments, societal changes), (b) a methodology for exploring many options and sequences of these options across different futures, and (c) a stepwise policy analysis. The strategy is applied on case of flexible deployment of novel, so-called Next Generation Infrastructure, and assessed in context of the proposed. Results of the study show that flexible design alternatives deliver much enhanced performance compared to systems optimized under deterministic forecasts of the future. The work also demonstrates that explicit incorporation of uncertainty and flexibility into decision-making process reduces capital expenditures while allowing decision makers to learn about system evolution throughout the lifetime of the project.

  13. Engineering healthcare as a service system.

    PubMed

    Tien, James M; Goldschmidt-Clermont, Pascal J

    2010-01-01

    Engineering has and will continue to have a critical impact on healthcare; the application of technology-based techniques to biological problems can be defined to be technobiology applications. This paper is primarily focused on applying the technobiology approach of systems engineering to the development of a healthcare service system that is both integrated and adaptive. In general, healthcare services are carried out with knowledge-intensive agents or components which work together as providers and consumers to create or co-produce value. Indeed, the engineering design of a healthcare system must recognize the fact that it is actually a complex integration of human-centered activities that is increasingly dependent on information technology and knowledge. Like any service system, healthcare can be considered to be a combination or recombination of three essential components - people (characterized by behaviors, values, knowledge, etc.), processes (characterized by collaboration, customization, etc.) and products (characterized by software, hardware, infrastructures, etc.). Thus, a healthcare system is an integrated and adaptive set of people, processes and products. It is, in essence, a system of systems which objectives are to enhance its efficiency (leading to greater interdependency) and effectiveness (leading to improved health). Integration occurs over the physical, temporal, organizational and functional dimensions, while adaptation occurs over the monitoring, feedback, cybernetic and learning dimensions. In sum, such service systems as healthcare are indeed complex, especially due to the uncertainties associated with the human-centered aspects of these systems. Moreover, the system complexities can only be dealt with methods that enhance system integration and adaptation.

  14. Toward a digital library strategy for a National Information Infrastructure

    NASA Technical Reports Server (NTRS)

    Coyne, Robert A.; Hulen, Harry

    1993-01-01

    Bills currently before the House and Senate would give support to the development of a National Information Infrastructure, in which digital libraries and storage systems would be an important part. A simple model is offered to show the relationship of storage systems, software, and standards to the overall information infrastructure. Some elements of a national strategy for digital libraries are proposed, based on the mission of the nonprofit National Storage System Foundation.

  15. Management advisory memorandum on National Airspace System infrastructure management system prototype, Federal Aviation Administration

    DOT National Transportation Integrated Search

    1997-03-01

    This is our Management Advisory Memorandum on the National Airspace : System (NAS) Infrastructure Management System (NIMS) prototype : project in the Federal Aviation Administration (FAA). Our review was : initiated in response to a hotline complaint...

  16. Railroad infrastructure trespassing detection systems research in Pittsford, New York

    DOT National Transportation Integrated Search

    2006-08-01

    The U.S. Department of Transportations Volpe National Transportation Systems Center, under the direction of the Federal Railroad Administration, conducted a 3-year demonstration of an automated prototype railroad infrastructure security system on ...

  17. BluePyOpt: Leveraging Open Source Software and Cloud Infrastructure to Optimise Model Parameters in Neuroscience.

    PubMed

    Van Geit, Werner; Gevaert, Michael; Chindemi, Giuseppe; Rössert, Christian; Courcol, Jean-Denis; Muller, Eilif B; Schürmann, Felix; Segev, Idan; Markram, Henry

    2016-01-01

    At many scales in neuroscience, appropriate mathematical models take the form of complex dynamical systems. Parameterizing such models to conform to the multitude of available experimental constraints is a global non-linear optimisation problem with a complex fitness landscape, requiring numerical techniques to find suitable approximate solutions. Stochastic optimisation approaches, such as evolutionary algorithms, have been shown to be effective, but often the setting up of such optimisations and the choice of a specific search algorithm and its parameters is non-trivial, requiring domain-specific expertise. Here we describe BluePyOpt, a Python package targeted at the broad neuroscience community to simplify this task. BluePyOpt is an extensible framework for data-driven model parameter optimisation that wraps and standardizes several existing open-source tools. It simplifies the task of creating and sharing these optimisations, and the associated techniques and knowledge. This is achieved by abstracting the optimisation and evaluation tasks into various reusable and flexible discrete elements according to established best-practices. Further, BluePyOpt provides methods for setting up both small- and large-scale optimisations on a variety of platforms, ranging from laptops to Linux clusters and cloud-based compute infrastructures. The versatility of the BluePyOpt framework is demonstrated by working through three representative neuroscience specific use cases.

  18. Information Technology Measurement and Testing Activities at NIST

    PubMed Central

    Hogan, Michael D.; Carnahan, Lisa J.; Carpenter, Robert J.; Flater, David W.; Fowler, James E.; Frechette, Simon P.; Gray, Martha M.; Johnson, L. Arnold; McCabe, R. Michael; Montgomery, Douglas; Radack, Shirley M.; Rosenthal, Robert; Shakarji, Craig M.

    2001-01-01

    Our high technology society continues to rely more and more upon sophisticated measurements, technical standards, and associated testing activities. This was true for the industrial society of the 20th century and remains true for the information society of the 21st century. Over the last half of the 20th century, information technology (IT) has been a powerful agent of change in almost every sector of the economy. The complexity and rapidly changing nature of IT have presented unique technical challenges to the National Institute of Standards and Technology (NIST) and to the scientific measurement community in developing a sound measurement and testing infrastructure for IT. This measurement and testing infrastructure for the important non-physical and non-chemical properties associated with complex IT systems is still in an early stage of development. This paper explains key terms and concepts of IT metrology, briefly reviews the history of the National Bureau of Standards/National Institute of Standards and Technology (NBS/NIST) in the field of IT, and reviews NIST’s current capabilities and work in measurement and testing for IT. It concludes with a look at what is likely to occur in the field of IT over the next ten years and what metrology roles NIST is likely to play. PMID:27500026

  19. Big data analytics for the Future Circular Collider reliability and availability studies

    NASA Astrophysics Data System (ADS)

    Begy, Volodimir; Apollonio, Andrea; Gutleber, Johannes; Martin-Marquez, Manuel; Niemi, Arto; Penttinen, Jussi-Pekka; Rogova, Elena; Romero-Marin, Antonio; Sollander, Peter

    2017-10-01

    Responding to the European Strategy for Particle Physics update 2013, the Future Circular Collider study explores scenarios of circular frontier colliders for the post-LHC era. One branch of the study assesses industrial approaches to model and simulate the reliability and availability of the entire particle collider complex based on the continuous monitoring of CERN’s accelerator complex operation. The modelling is based on an in-depth study of the CERN injector chain and LHC, and is carried out as a cooperative effort with the HL-LHC project. The work so far has revealed that a major challenge is obtaining accelerator monitoring and operational data with sufficient quality, to automate the data quality annotation and calculation of reliability distribution functions for systems, subsystems and components where needed. A flexible data management and analytics environment that permits integrating the heterogeneous data sources, the domain-specific data quality management algorithms and the reliability modelling and simulation suite is a key enabler to complete this accelerator operation study. This paper describes the Big Data infrastructure and analytics ecosystem that has been put in operation at CERN, serving as the foundation on which reliability and availability analysis and simulations can be built. This contribution focuses on data infrastructure and data management aspects and presents case studies chosen for its validation.

  20. Integrating complexity of social systems in natural hazards planning: An example from Caracas, Venezuela

    NASA Astrophysics Data System (ADS)

    Vranes, Kevin; Czuchlewski, Kristina R.

    In December 1999, days of heavy rain on steep slopes north of Caracas, Venezuela triggered massive mud and debris flows, killing tens of thousands. Partly in response to this disaster, a multidisciplinary team of urban planners and Earth scientists from Columbia University recently developed a framework plan for building disaster resilience into the Venezuelan capital region. After assessing the complex intersection of urban geography with severe seismic and hydrologic hazards, substantial recommendations were made to local and regional authorities on future hazards mitigation.Areas found most at risk in the Caracas region include the transportation and utility infrastructure and the friable building stock of squatter settlements. Recognizing realistic economic and socio-political constraints on implementing change, a prioritized list of goals and activities was constructed, and recommendations made along various time scales. Immediate disaster-avoidance goals (to be completed within 1 to 5 years) include strengthening critical infrastructure nodes, housing stock, and emergency services. More intermediate goals (5 to 10 years) focus on upgrading fragile housing units, creating detailed hazard maps across the city, and incorporating disaster education into cultural activities. Recommended activities for the long term (beyond 10 years) include creating a fully redundant transportation and water delivery network, establishing legitimate land title for squatters, and re-locating critical facilities currently in high-risk areas.

  1. Solid waste management complex site development plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Greager, T.M.

    1994-09-30

    The main purpose of this Solid Waste Management Complex Site Development Plan is to optimize the location of future solid waste treatment and storage facilities and the infrastructure required to support them. An overall site plan is recommended. Further, a series of layouts are included that depict site conditions as facilities are constructed at the SWMC site. In this respect the report serves not only as the siting basis for future projects, but provides siting guidance for Project W-112, as well. The plan is intended to function as a template for expected growth of the site over the next 30more » years so that future facilities and infrastructure will be properly integrated.« less

  2. Rising Sun Over Africa: Japan’s New Frontier for Military Normalization

    DTIC Science & Technology

    2016-06-01

    Party MLIT Ministry of Land, Infrastructure, Transport, and Tourism MOD Ministry of Defense MOFA Ministry of Foreign Affairs MSDF Maritime Self...primary go-between, the Ministry of Land, Infrastructure, Transport, and Tourism (MLIT).100 Even shortly after the passing of Japan’s Anti-Piracy Law...construction of its presidential palace, its main administration building, a national war memorial, a stadium, and two sports complexes. More

  3. Spatial network surrogates for disentangling complex system structure from spatial embedding of nodes

    NASA Astrophysics Data System (ADS)

    Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.

    2016-04-01

    Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.

  4. Towards a Multi-Mission, Airborne Science Data System Environment

    NASA Astrophysics Data System (ADS)

    Crichton, D. J.; Hardman, S.; Law, E.; Freeborn, D.; Kay-Im, E.; Lau, G.; Oswald, J.

    2011-12-01

    NASA earth science instruments are increasingly relying on airborne missions. However, traditionally, there has been limited common infrastructure support available to principal investigators in the area of science data systems. As a result, each investigator has been required to develop their own computing infrastructures for the science data system. Typically there is little software reuse and many projects lack sufficient resources to provide a robust infrastructure to capture, process, distribute and archive the observations acquired from airborne flights. At NASA's Jet Propulsion Laboratory (JPL), we have been developing a multi-mission data system infrastructure for airborne instruments called the Airborne Cloud Computing Environment (ACCE). ACCE encompasses the end-to-end lifecycle covering planning, provisioning of data system capabilities, and support for scientific analysis in order to improve the quality, cost effectiveness, and capabilities to enable new scientific discovery and research in earth observation. This includes improving data system interoperability across each instrument. A principal characteristic is being able to provide an agile infrastructure that is architected to allow for a variety of configurations of the infrastructure from locally installed compute and storage services to provisioning those services via the "cloud" from cloud computer vendors such as Amazon.com. Investigators often have different needs that require a flexible configuration. The data system infrastructure is built on the Apache's Object Oriented Data Technology (OODT) suite of components which has been used for a number of spaceborne missions and provides a rich set of open source software components and services for constructing science processing and data management systems. In 2010, a partnership was formed between the ACCE team and the Carbon in Arctic Reservoirs Vulnerability Experiment (CARVE) mission to support the data processing and data management needs. A principal goal is to provide support for the Fourier Transform Spectrometer (FTS) instrument which will produce over 700,000 soundings over the life of their three-year mission. The cost to purchase and operate a cluster-based system in order to generate Level 2 Full Physics products from this data was prohibitive. Through an evaluation of cloud computing solutions, Amazon's Elastic Compute Cloud (EC2) was selected for the CARVE deployment. As the ACCE infrastructure is developed and extended to form an infrastructure for airborne missions, the experience of working with CARVE has provided a number of lessons learned and has proven to be important in reinforcing the unique aspects of airborne missions and the importance of the ACCE infrastructure in developing a cost effective, flexible multi-mission capability that leverages emerging capabilities in cloud computing, workflow management, and distributed computing.

  5. Architecture and Methods for Substation SCADA Cybersecurity: Best Practices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Albunashee, Hamdi; Al Sarray, Muthanna; McCann, Roy

    There are over 3000 electricity providers in the United States, encompassing investor and publicly owned utilities as well as electric cooperatives. There has been ongoing trends to increasingly automate and provide remote control and monitoring of electric energy delivery systems. The deployment of computer network technologies has increased the efficiency and reliability of electric power infrastructure. However, the increased use of digital communications has also increased the vulnerability to malicious cyber attacks [1]. In 2004 the National Research Councils (National Academies) formed a committee of specialists to address these vulnerabilities and propose possible solutions with an objective to prioritize themore » R&D needs for developing countermeasures. The committee addressed many potential concerns in the electric power delivery system and classified them based upon different criteria and presented recommendations to minimize the gap between the academic research directions and the needs of the electric utility industry. The complexity and diversity of the electric power delivery system in the U.S. has opened many ports for attackers and intruders [1]. This complexity and diversity is attributed to the fact that power delivery system is a network of substations, transmission and distribution lines, sub-networks of controlling, sensing and monitoring units, and human operator involvement for running the system [1]. Accordingly, any incident such as the occurrence of a fault or disturbance in this complex network cannot be deferred and should be resolved within an order of milliseconds, otherwise there is risk of large-scale outages similar to the occurrences in India and the U.S. in 2003 [2]. There are three main vulnerabilities in supervisory control and data acquisition (SCADA) systems commonly identified—physical vulnerability, cyber vulnerability and personal vulnerability [1]. In terms of cyber threats, SCADA systems are the most critical elements in the electric power grid in the U.S. Unauthorized access to a SCADA system could enable/disable unexpected equipment (such as disable the protection system or a circuit breaker) which could cause large scale disruptions of electric power delivery. This paper provides an overview of power system SCADA technologies in transmission substations (Section 2) and summarizes the best practices for implementing a cyber security program. After introducing SCADA system operations in Section 2, a description of the security challenges for SCADA systems is presented in Section 3. In Section 4, NECRC Critical Infrastructure Protection standards CIP-002 through CIP-009 are summarized. An overview of industry best practices is presented in Section 5.« less

  6. Research data management support for large-scale, long-term, interdisciplinary collaborative research centers with a focus on environmental sciences

    NASA Astrophysics Data System (ADS)

    Curdt, C.; Hoffmeister, D.; Bareth, G.; Lang, U.

    2017-12-01

    Science conducted in collaborative, cross-institutional research projects, requires active sharing of research ideas, data, documents and further information in a well-managed, controlled and structured manner. Thus, it is important to establish corresponding infrastructures and services for the scientists. Regular project meetings and joint field campaigns support the exchange of research ideas. Technical infrastructures facilitate storage, documentation, exchange and re-use of data as results of scientific output. Additionally, also publications, conference contributions, reports, pictures etc. should be managed. Both, knowledge and data sharing is essential to create synergies. Within the coordinated programme `Collaborative Research Center' (CRC), the German Research Foundation offers funding to establish research data management (RDM) infrastructures and services. CRCs are large-scale, interdisciplinary, multi-institutional, long-term (up to 12 years), university-based research institutions (up to 25 sub-projects). These CRCs address complex and scientifically challenging research questions. This poster presents the RDM services and infrastructures that have been established for two CRCs, both focusing on environmental sciences. Since 2007, a RDM support infrastructure and associated services have been set up for the CRC/Transregio 32 (CRC/TR32) `Patterns in Soil-Vegetation-Atmosphere-Systems: Monitoring, Modelling and Data Assimilation' (www.tr32.de). The experiences gained have been used to arrange RDM services for the CRC1211 `Earth - Evolution at the Dry Limit' (www.crc1211.de), funded since 2016. In both projects scientists from various disciplines collect heterogeneous data at field campaigns or by modelling approaches. To manage the scientific output, the TR32DB data repository (www.tr32db.de) has been designed and implemented for the CRC/TR32. This system was transferred and adapted to the CRC1211 needs (www.crc1211db.uni-koeln.de) in 2016. Both repositories support secure and sustainable data storage, backup, documentation, publication with DOIs, search, download, statistics as well as web mapping features. Moreover, RDM consulting and support services as well as training sessions are carried out regularly.

  7. Standard requirements for GCP-compliant data management in multinational clinical trials.

    PubMed

    Ohmann, Christian; Kuchinke, Wolfgang; Canham, Steve; Lauritsen, Jens; Salas, Nader; Schade-Brittinger, Carmen; Wittenberg, Michael; McPherson, Gladys; McCourt, John; Gueyffier, Francois; Lorimer, Andrea; Torres, Ferràn

    2011-03-22

    A recent survey has shown that data management in clinical trials performed by academic trial units still faces many difficulties (e.g. heterogeneity of software products, deficits in quality management, limited human and financial resources and the complexity of running a local computer centre). Unfortunately, no specific, practical and open standard for both GCP-compliant data management and the underlying IT-infrastructure is available to improve the situation. For that reason the "Working Group on Data Centres" of the European Clinical Research Infrastructures Network (ECRIN) has developed a standard specifying the requirements for high quality GCP-compliant data management in multinational clinical trials. International, European and national regulations and guidelines relevant to GCP, data security and IT infrastructures, as well as ECRIN documents produced previously, were evaluated to provide a starting point for the development of standard requirements. The requirements were produced by expert consensus of the ECRIN Working group on Data Centres, using a structured and standardised process. The requirements were divided into two main parts: an IT part covering standards for the underlying IT infrastructure and computer systems in general, and a Data Management (DM) part covering requirements for data management applications in clinical trials. The standard developed includes 115 IT requirements, split into 15 separate sections, 107 DM requirements (in 12 sections) and 13 other requirements (2 sections). Sections IT01 to IT05 deal with the basic IT infrastructure while IT06 and IT07 cover validation and local software development. IT08 to IT015 concern the aspects of IT systems that directly support clinical trial management. Sections DM01 to DM03 cover the implementation of a specific clinical data management application, i.e. for a specific trial, whilst DM04 to DM12 address the data management of trials across the unit. Section IN01 is dedicated to international aspects and ST01 to the competence of a trials unit's staff. The standard is intended to provide an open and widely used set of requirements for GCP-compliant data management, particularly in academic trial units. It is the intention that ECRIN will use these requirements as the basis for the certification of ECRIN data centres.

  8. Risk and resilience in an uncertain world

    DOE PAGES

    Dale, Virginia H.; Jager, Henriette I.; Wolfe, Amy K.; ...

    2018-02-01

    We report that because the future is uncertain and to some extent unknowable, it is imperative that ecologists become involved in the discussion and planning of future infrastructure and protection from the effects of altered disturbance regimes. Research can test and demonstrate the benefits of protecting or proactively managing important features and places, and processes that enhance provisioning of ecosystem services such as flood control and fire mitigation. In conclusion, it is time to demonstrate how ecological science, when applied to human–environmental systems, can reduce risks and enhance resilience in a complex, changing world.

  9. Risk and resilience in an uncertain world

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dale, Virginia H.; Jager, Henriette I.; Wolfe, Amy K.

    We report that because the future is uncertain and to some extent unknowable, it is imperative that ecologists become involved in the discussion and planning of future infrastructure and protection from the effects of altered disturbance regimes. Research can test and demonstrate the benefits of protecting or proactively managing important features and places, and processes that enhance provisioning of ecosystem services such as flood control and fire mitigation. In conclusion, it is time to demonstrate how ecological science, when applied to human–environmental systems, can reduce risks and enhance resilience in a complex, changing world.

  10. Competitive Electricity Market Regulation in the United States: A Primer

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flores-Espino, Francisco; Tian, Tian; Chernyakhovskiy, Ilya

    The electricity system in the United States is a complex mechanism where different technologies, jurisdictions and regulatory designs interact. Today, two major models for electricity commercialization operate in the United States. One is the regulated monopoly model, in which vertically integrated electricity providers are regulated by state commissions. The other is the competitive model, in which power producers can openly access transmission infrastructure and participate in wholesale electricity markets. This paper describes the origins, evolution, and current status of the regulations that enable competitive markets in the United States.

  11. Peculiarities of solving the problems of modern logistics in high-rise construction and industrial production

    NASA Astrophysics Data System (ADS)

    Rubtsov, Anatoliy E.; Ushakova, Elena V.; Chirkova, Tamara V.

    2018-03-01

    Basing on the analysis of the enterprise (construction organization) structure and infrastructure of the entire logistics system in which this enterprise (construction organization) operates, this article proposes an approach to solve the problems of structural optimization and a set of calculation tasks, based on customer orders as well as on the required levels of insurance stocks, transit stocks and other types of stocks in the distribution network, modes of operation of the in-company transport and storage complex and a number of other factors.

  12. Windows Terminal Servers Orchestration

    NASA Astrophysics Data System (ADS)

    Bukowiec, Sebastian; Gaspar, Ricardo; Smith, Tim

    2017-10-01

    Windows Terminal Servers provide application gateways for various parts of the CERN accelerator complex, used by hundreds of CERN users every day. The combination of new tools such as Puppet, HAProxy and Microsoft System Center suite enable automation of provisioning workflows to provide a terminal server infrastructure that can scale up and down in an automated manner. The orchestration does not only reduce the time and effort necessary to deploy new instances, but also facilitates operations such as patching, analysis and recreation of compromised nodes as well as catering for workload peaks.

  13. The Ethics of the Posse Comitatus Act: How Law and Policy Affect U.S. Marine Corps Support to Law Enforcement

    DTIC Science & Technology

    2011-05-02

    everything. iii I. Introduction Domestic operational law regarding the use of military resources and capabilities is increasingly complex. An analysis...and Julie E. Cohen, Fair Use Infrastructure for Rights Management Systems, 15 Harv. J.L. & Tech. 41 (2001). 5 The term " law ," or " legal " in this...include the Navy in the PCA does not imply that Congress has approved ofthe use ofNavy 24 personnel to enforce civilian laws . United States v. Walden

  14. Future U.S. Security in the Caribbean: The Caribbean Basin Initiative and the Economics of Jamaica

    DTIC Science & Technology

    1985-03-01

    important part in its system. The Jamaican economy is a complex dynamic 14 KSKSSS W^^^M$MM^k^M^^iM^mk^%M^^ SmM ■nuCTHmrx«.M«WB«».SJUUa*UVaJI£A/U&.UIUIII...export markets due to worldwide recession, and a decline in tourism . The cumulative GNP of these nations is only 40 billion dollars annually...countries already have a well developed infrastructure for tourism , while others have enormous potential as convention sites. In both instances

  15. Toward patient-centered, personalized and personal decision support and knowledge management: a survey.

    PubMed

    Leong, T-Y

    2012-01-01

    This paper summarizes the recent trends and highlights the challenges and opportunities in decision support and knowledge management for patient-centered, personalized, and personal health care. The discussions are based on a broad survey of related references, focusing on the most recent publications. Major advances are examined in the areas of i) shared decision making paradigms, ii) continuity of care infrastructures and architectures, iii) human factors and system design approaches, iv) knowledge management innovations, and v) practical deployment and change considerations. Many important initiatives, projects, and plans with promising results have been identified. The common themes focus on supporting the individual patients who are playing an increasing central role in their own care decision processes. New collaborative decision making paradigms and information infrastructures are required to ensure effective continuity of care. Human factors and usability are crucial for the successful development and deployment of the relevant systems, tools, and aids. Advances in personalized medicine can be achieved through integrating genomic, phenotypic and other biological, individual, and population level information, and gaining useful insights from building and analyzing biological and other models at multiple levels of abstraction. Therefore, new Information and Communication Technologies and evaluation approaches are needed to effectively manage the scale and complexity of biomedical and health information, and adapt to the changing nature of clinical decision support. Recent research in decision support and knowledge management combines heterogeneous information and personal data to provide cost-effective, calibrated, personalized support in shared decision making at the point of care. Current and emerging efforts concentrate on developing or extending conventional paradigms, techniques, systems, and architectures for the new predictive, preemptive, and participatory health care model for patient-centered, personalized medicine. There is also an increasing emphasis on managing complexity with changing care models, processes, and settings.

  16. Low carbon technology performance vs infrastructure vulnerability: analysis through the local and global properties space.

    PubMed

    Dawson, David A; Purnell, Phil; Roelich, Katy; Busch, Jonathan; Steinberger, Julia K

    2014-11-04

    Renewable energy technologies, necessary for low-carbon infrastructure networks, are being adopted to help reduce fossil fuel dependence and meet carbon mitigation targets. The evolution of these technologies has progressed based on the enhancement of technology-specific performance criteria, without explicitly considering the wider system (global) impacts. This paper presents a methodology for simultaneously assessing local (technology) and global (infrastructure) performance, allowing key technological interventions to be evaluated with respect to their effect on the vulnerability of wider infrastructure systems. We use exposure of low carbon infrastructure to critical material supply disruption (criticality) to demonstrate the methodology. A series of local performance changes are analyzed; and by extension of this approach, a method for assessing the combined criticality of multiple materials for one specific technology is proposed. Via a case study of wind turbines at both the material (magnets) and technology (turbine generators) levels, we demonstrate that analysis of a given intervention at different levels can lead to differing conclusions regarding the effect on vulnerability. Infrastructure design decisions should take a systemic approach; without these multilevel considerations, strategic goals aimed to help meet low-carbon targets, that is, through long-term infrastructure transitions, could be significantly jeopardized.

  17. An autonomous structural health monitoring system for Waiau interchange.

    DOT National Transportation Integrated Search

    2013-03-01

    Bridge infrastructure is a critical element of the transportation system which makes maintaining its safety and : performance vital to a healthy society. However, the civil infrastructure systems in the United States are decaying : at an accelerated ...

  18. NAS infrastructure management system build 1.5 computer-human interface

    DOT National Transportation Integrated Search

    2001-01-01

    Human factors engineers from the National Airspace System (NAS) Human Factors Branch (ACT-530) of the Federal Aviation Administration William J. Hughes Technical Center conducted an evaluation of the NAS Infrastructure Management System (NIMS) Build ...

  19. Infrastructure Vulnerability Assessment Model (I-VAM).

    PubMed

    Ezell, Barry Charles

    2007-06-01

    Quantifying vulnerability to critical infrastructure has not been adequately addressed in the literature. Thus, the purpose of this article is to present a model that quantifies vulnerability. Vulnerability is defined as a measure of system susceptibility to threat scenarios. This article asserts that vulnerability is a condition of the system and it can be quantified using the Infrastructure Vulnerability Assessment Model (I-VAM). The model is presented and then applied to a medium-sized clean water system. The model requires subject matter experts (SMEs) to establish value functions and weights, and to assess protection measures of the system. Simulation is used to account for uncertainty in measurement, aggregate expert assessment, and to yield a vulnerability (Omega) density function. Results demonstrate that I-VAM is useful to decisionmakers who prefer quantification to qualitative treatment of vulnerability. I-VAM can be used to quantify vulnerability to other infrastructures, supervisory control and data acquisition systems (SCADA), and distributed control systems (DCS).

  20. ENES the European Network for Earth System modelling and its infrastructure projects IS-ENES

    NASA Astrophysics Data System (ADS)

    Guglielmo, Francesca; Joussaume, Sylvie; Parinet, Marie

    2016-04-01

    The scientific community working on climate modelling is organized within the European Network for Earth System modelling (ENES). In the past decade, several European university departments, research centres, meteorological services, computer centres, and industrial partners engaged in the creation of ENES with the purpose of working together and cooperating towards the further development of the network, by signing a Memorandum of Understanding. As of 2015, the consortium counts 47 partners. The climate modelling community, and thus ENES, faces challenges which are both science-driven, i.e. analysing of the full complexity of the Earth System to improve our understanding and prediction of climate changes, and have multi-faceted societal implications, as a better representation of climate change on regional scales leads to improved understanding and prediction of impacts and to the development and provision of climate services. ENES, promoting and endorsing projects and initiatives, helps in developing and evaluating of state-of-the-art climate and Earth system models, facilitates model inter-comparison studies, encourages exchanges of software and model results, and fosters the use of high performance computing facilities dedicated to high-resolution multi-model experiments. ENES brings together public and private partners, integrates countries underrepresented in climate modelling studies, and reaches out to different user communities, thus enhancing European expertise and competitiveness. In this need of sophisticated models, world-class, high-performance computers, and state-of-the-art software solutions to make efficient use of models, data and hardware, a key role is played by the constitution and maintenance of a solid infrastructure, developing and providing services to the different user communities. ENES has investigated the infrastructural needs and has received funding from the EU FP7 program for the IS-ENES (InfraStructure for ENES) phase I and II projects. We present here the case study of an existing network of institutions brought together toward common goals by a non-binding agreement, ENES, and of its two IS-ENES projects. These latter will be discussed in their double role as a means to provide and/or maintain the actual infrastructure (hardware, software, skilled human resources, services) to achieve ENES scientific goals -fulfilling the aims set in a strategy document-, but also to inform and provide to the network a structured way of working and of interacting with the extended community. The genesis and evolution of the network and the interaction network/projects will also be analysed in terms of long-term sustainability.

  1. Scada Malware, a Proof of Concept

    NASA Astrophysics Data System (ADS)

    Carcano, Andrea; Fovino, Igor Nai; Masera, Marcelo; Trombetta, Alberto

    Critical Infrastructures are nowadays exposed to new kind of threats. The cause of such threats is related to the large number of new vulnerabilities and architectural weaknesses introduced by the extensive use of ICT and Network technologies into such complex critical systems. Of particular interest are the set of vulnerabilities related to the class of communication protocols normally known as “SCADA” protocols, under which fall all the communication protocols used to remotely control the RTU devices of an industrial system. In this paper we present a proof of concept of the potential effects of a set of computer malware specifically designed and created in order to impact, by taking advantage of some vulnerabilities of the ModBUS protocol, on a typical Supervisory Control and Data Acquisition system.

  2. Increasing the resilience and security of the United States' power infrastructure

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Happenny, Sean F.

    2015-08-01

    The United States' power infrastructure is aging, underfunded, and vulnerable to cyber attack. Emerging smart grid technologies may take some of the burden off of existing systems and make the grid as a whole more efficient, reliable, and secure. The Pacific Northwest National Laboratory (PNNL) is funding research into several aspects of smart grid technology and grid security, creating a software simulation tool that will allow researchers to test power infrastructure control and distribution paradigms by utilizing different smart grid technologies to determine how the grid and these technologies react under different circumstances. Understanding how these systems behave in real-worldmore » conditions will lead to new ways to make our power infrastructure more resilient and secure. Demonstrating security in embedded systems is another research area PNNL is tackling. Many of the systems controlling the U.S. critical infrastructure, such as the power grid, lack integrated security and the aging networks protecting them are becoming easier to attack.« less

  3. Invisible transportation infrastructure technology to mitigate energy and environment.

    PubMed

    Hossain, Md Faruque

    2017-01-01

    Traditional transportation infrastructure built by heat trapping products and the transportation vehiles run by fossil fuel, both causing deadly climate change. Thus, a new technology of invisible Flying Transportation system has been proposed to mitigate energy and environmental crisis caused by traditional infrastructure system. Underground Maglev system has been modeled to be constructed for all transportation systems to run the vehicle smoothly just over two feet over the earth surface by propulsive and impulsive force at flying stage. A wind energy modeling has also been added to meet the vehicle's energy demand when it runs on a non-maglev area. Naturally, all maglev infrastructures network to be covered by evergreen herb except pedestrian walkways to absorb CO 2 , ambient heat, and moisture (vapor) from the surrounding environment to make it cool. The research revealed that the vehicle will not require any energy since it will run by superconducting electromagnetic force while it runs on a maglev infrastructure area and directed by wind energy while it runs on non-maglev area. The proposed maglev transportation infrastructure technology will indeed be an innovative discovery in modern engineering science which will reduce fossil fuel energy consumption and climate change dramatically.

  4. Sensor4PRI: A Sensor Platform for the Protection of Railway Infrastructures

    PubMed Central

    Cañete, Eduardo; Chen, Jaime; Díaz, Manuel; Llopis, Luis; Rubio, Bartolomé

    2015-01-01

    Wireless Sensor Networks constitute pervasive and distributed computing systems and are potentially one of the most important technologies of this century. They have been specifically identified as a good candidate to become an integral part of the protection of critical infrastructures. In this paper we focus on railway infrastructure protection and we present the details of a sensor platform designed to be integrated into a slab track system in order to carry out both installation and maintenance monitoring activities. In the installation phase, the platform helps operators to install the slab tracks in the right position. In the maintenance phase, the platform collects information about the structural health and behavior of the infrastructure when a train travels along it and relays the readings to a base station. The base station uses trains as data mules to upload the information to the internet. The use of a train as a data mule is especially suitable for collecting information from remote or inaccessible places which do not have a direct connection to the internet and require less network infrastructure. The overall aim of the system is to deploy a permanent economically viable monitoring system to improve the safety of railway infrastructures. PMID:25734648

  5. Measuring Systemic Impacts of Bike Infrastructure Projects

    DOT National Transportation Integrated Search

    2018-05-01

    This paper qualitatively identifies the impacts of bicycle infrastructure on all roadway users, including safety, operations, and travel route choice. Bicycle infrastructure includes shared lanes, conventional bike lanes, and separated bike lanes. Th...

  6. EPA NRMRL green Infrastructure research

    EPA Science Inventory

    Green Infrastructure is an engineering approach to wet weather flow management that uses infiltration, evapotranspiration, capture and reuse to better mimic the natural drainage processes than traditional gray systems. Green technologies supplement gray infrastructure to red...

  7. 75 FR 61160 - National Protection and Programs Directorate; National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-04

    ... systems. The NIAC will meet to address issues relevant to the protection of critical infrastructure as.... Deliberation: Optimization of Resources for Mitigating Infrastructure Disruptions VII. Discussion of Potential...

  8. Noise-tolerant inverse analysis models for nondestructive evaluation of transportation infrastructure systems using neural networks

    NASA Astrophysics Data System (ADS)

    Ceylan, Halil; Gopalakrishnan, Kasthurirangan; Birkan Bayrak, Mustafa; Guclu, Alper

    2013-09-01

    The need to rapidly and cost-effectively evaluate the present condition of pavement infrastructure is a critical issue concerning the deterioration of ageing transportation infrastructure all around the world. Nondestructive testing (NDT) and evaluation methods are well-suited for characterising materials and determining structural integrity of pavement systems. The falling weight deflectometer (FWD) is a NDT equipment used to assess the structural condition of highway and airfield pavement systems and to determine the moduli of pavement layers. This involves static or dynamic inverse analysis (referred to as backcalculation) of FWD deflection profiles in the pavement surface under a simulated truck load. The main objective of this study was to employ biologically inspired computational systems to develop robust pavement layer moduli backcalculation algorithms that can tolerate noise or inaccuracies in the FWD deflection data collected in the field. Artificial neural systems, also known as artificial neural networks (ANNs), are valuable computational intelligence tools that are increasingly being used to solve resource-intensive complex engineering problems. Unlike the linear elastic layered theory commonly used in pavement layer backcalculation, non-linear unbound aggregate base and subgrade soil response models were used in an axisymmetric finite element structural analysis programme to generate synthetic database for training and testing the ANN models. In order to develop more robust networks that can tolerate the noisy or inaccurate pavement deflection patterns in the NDT data, several network architectures were trained with varying levels of noise in them. The trained ANN models were capable of rapidly predicting the pavement layer moduli and critical pavement responses (tensile strains at the bottom of the asphalt concrete layer, compressive strains on top of the subgrade layer and the deviator stresses on top of the subgrade layer), and also pavement surface deflections with very low average errors comparable with those obtained directly from the finite element analyses.

  9. The Integration of CloudStack and OCCI/OpenNebula with DIRAC

    NASA Astrophysics Data System (ADS)

    Méndez Muñoz, Víctor; Fernández Albor, Víctor; Graciani Diaz, Ricardo; Casajús Ramo, Adriàn; Fernández Pena, Tomás; Merino Arévalo, Gonzalo; José Saborido Silva, Juan

    2012-12-01

    The increasing availability of Cloud resources is arising as a realistic alternative to the Grid as a paradigm for enabling scientific communities to access large distributed computing resources. The DIRAC framework for distributed computing is an easy way to efficiently access to resources from both systems. This paper explains the integration of DIRAC with two open-source Cloud Managers: OpenNebula (taking advantage of the OCCI standard) and CloudStack. These are computing tools to manage the complexity and heterogeneity of distributed data center infrastructures, allowing to create virtual clusters on demand, including public, private and hybrid clouds. This approach has required to develop an extension to the previous DIRAC Virtual Machine engine, which was developed for Amazon EC2, allowing the connection with these new cloud managers. In the OpenNebula case, the development has been based on the CernVM Virtual Software Appliance with appropriate contextualization, while in the case of CloudStack, the infrastructure has been kept more general, which permits other Virtual Machine sources and operating systems being used. In both cases, CernVM File System has been used to facilitate software distribution to the computing nodes. With the resulting infrastructure, the cloud resources are transparent to the users through a friendly interface, like the DIRAC Web Portal. The main purpose of this integration is to get a system that can manage cloud and grid resources at the same time. This particular feature pushes DIRAC to a new conceptual denomination as interware, integrating different middleware. Users from different communities do not need to care about the installation of the standard software that is available at the nodes, nor the operating system of the host machine which is transparent to the user. This paper presents an analysis of the overhead of the virtual layer, doing some tests to compare the proposed approach with the existing Grid solution. License Notice: Published under licence in Journal of Physics: Conference Series by IOP Publishing Ltd.

  10. Flexible Description and Adaptive Processing of Earth Observation Data through the BigEarth Platform

    NASA Astrophysics Data System (ADS)

    Gorgan, Dorian; Bacu, Victor; Stefanut, Teodor; Nandra, Cosmin; Mihon, Danut

    2016-04-01

    The Earth Observation data repositories extending periodically by several terabytes become a critical issue for organizations. The management of the storage capacity of such big datasets, accessing policy, data protection, searching, and complex processing require high costs that impose efficient solutions to balance the cost and value of data. Data can create value only when it is used, and the data protection has to be oriented toward allowing innovation that sometimes depends on creative people, which achieve unexpected valuable results through a flexible and adaptive manner. The users need to describe and experiment themselves different complex algorithms through analytics in order to valorize data. The analytics uses descriptive and predictive models to gain valuable knowledge and information from data analysis. Possible solutions for advanced processing of big Earth Observation data are given by the HPC platforms such as cloud. With platforms becoming more complex and heterogeneous, the developing of applications is even harder and the efficient mapping of these applications to a suitable and optimum platform, working on huge distributed data repositories, is challenging and complex as well, even by using specialized software services. From the user point of view, an optimum environment gives acceptable execution times, offers a high level of usability by hiding the complexity of computing infrastructure, and supports an open accessibility and control to application entities and functionality. The BigEarth platform [1] supports the entire flow of flexible description of processing by basic operators and adaptive execution over cloud infrastructure [2]. The basic modules of the pipeline such as the KEOPS [3] set of basic operators, the WorDeL language [4], the Planner for sequential and parallel processing, and the Executor through virtual machines, are detailed as the main components of the BigEarth platform [5]. The presentation exemplifies the development of some Earth Observation oriented applications based on flexible description of processing, and adaptive and portable execution over Cloud infrastructure. Main references for further information: [1] BigEarth project, http://cgis.utcluj.ro/projects/bigearth [2] Gorgan, D., "Flexible and Adaptive Processing of Earth Observation Data over High Performance Computation Architectures", International Conference and Exhibition Satellite 2015, August 17-19, Houston, Texas, USA. [3] Mihon, D., Bacu, V., Colceriu, V., Gorgan, D., "Modeling of Earth Observation Use Cases through the KEOPS System", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 455-460, (2015). [4] Nandra, C., Gorgan, D., "Workflow Description Language for Defining Big Earth Data Processing Tasks", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp. 461-468, (2015). [5] Bacu, V., Stefan, T., Gorgan, D., "Adaptive Processing of Earth Observation Data on Cloud Infrastructures Based on Workflow Description", Proceedings of the Intelligent Computer Communication and Processing (ICCP), IEEE-Press, pp.444-454, (2015).

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aderholdt, Ferrol; Caldwell, Blake A.; Hicks, Susan Elaine

    High performance computing environments are often used for a wide variety of workloads ranging from simulation, data transformation and analysis, and complex workflows to name just a few. These systems may process data at various security levels but in so doing are often enclaved at the highest security posture. This approach places significant restrictions on the users of the system even when processing data at a lower security level and exposes data at higher levels of confidentiality to a much broader population than otherwise necessary. The traditional approach of isolation, while effective in establishing security enclaves poses significant challenges formore » the use of shared infrastructure in HPC environments. This report details current state-of-the-art in reconfigurable network enclaving through Software Defined Networking (SDN) and Network Function Virtualization (NFV) and their applicability to secure enclaves in HPC environments. SDN and NFV methods are based on a solid foundation of system wide virtualization. The purpose of which is very straight forward, the system administrator can deploy networks that are more amenable to customer needs, and at the same time achieve increased scalability making it easier to increase overall capacity as needed without negatively affecting functionality. The network administration of both the server system and the virtual sub-systems is simplified allowing control of the infrastructure through well-defined APIs (Application Programming Interface). While SDN and NFV technologies offer significant promise in meeting these goals, they also provide the ability to address a significant component of the multi-tenant challenge in HPC environments, namely resource isolation. Traditional HPC systems are built upon scalable high-performance networking technologies designed to meet specific application requirements. Dynamic isolation of resources within these environments has remained difficult to achieve. SDN and NFV methodology provide us with relevant concepts and available open standards based APIs that isolate compute and storage resources within an otherwise common networking infrastructure. Additionally, the integration of the networking APIs within larger system frameworks such as OpenStack provide the tools necessary to establish isolated enclaves dynamically allowing the benefits of HPC while providing a controlled security structure surrounding these systems.« less

  12. Geological hazard monitoring system in Georgia

    NASA Astrophysics Data System (ADS)

    Gaprindashvili, George

    2017-04-01

    Georgia belongs to one of world's most complex mountainous regions according to the scale and frequency of Geological processes and damage caused to population, farmlands, and Infrastructure facilities. Geological hazards (landslide, debrisflow/mudflow, rockfall, erosion and etc.) are affecting many populated areas, agricultural fields, roads, oil and gas pipes, high-voltage electric power transmission towers, hydraulic structures, and tourist complexes. Landslides occur almost in all geomorphological zones, resulting in wide differentiation in the failure types and mechanisms and in the size-frequency distribution. In Georgia, geological hazards triggered by: 1. Activation of highly intense earthquakes; 2. Meteorological events provoking the disaster processes on the background of global climatic change; 3. Large-scale Human impact on the environment. The prediction and monitoring of Geological Hazards is a very wide theme, which involves different researchers from different spheres. Geological hazard monitoring is essential to prevent and mitigate these hazards. In past years in Georgia several monitoring system, such as Ground-based geodetic techniques, Debrisflow Early Warning System (EWS) were installed on high sensitive landslide and debrisflow areas. This work presents description of Geological hazard monitoring system in Georgia.

  13. NASA Information Technology Implementation Plan

    NASA Technical Reports Server (NTRS)

    2000-01-01

    NASA's Information Technology (IT) resources and IT support continue to be a growing and integral part of all NASA missions. Furthermore, the growing IT support requirements are becoming more complex and diverse. The following are a few examples of the growing complexity and diversity of NASA's IT environment. NASA is conducting basic IT research in the Intelligent Synthesis Environment (ISE) and Intelligent Systems (IS) Initiatives. IT security, infrastructure protection, and privacy of data are requiring more and more management attention and an increasing share of the NASA IT budget. Outsourcing of IT support is becoming a key element of NASA's IT strategy as exemplified by Outsourcing Desktop Initiative for NASA (ODIN) and the outsourcing of NASA Integrated Services Network (NISN) support. Finally, technology refresh is helping to provide improved support at lower cost. Recently the NASA Automated Data Processing (ADP) Consolidation Center (NACC) upgraded its bipolar technology computer systems with Complementary Metal Oxide Semiconductor (CMOS) technology systems. This NACC upgrade substantially reduced the hardware maintenance and software licensing costs, significantly increased system speed and capacity, and reduced customer processing costs by 11 percent.

  14. The challenge of developing ethical guidelines for a research infrastructure

    NASA Astrophysics Data System (ADS)

    Kutsch, Werner Leo

    2016-04-01

    The mission of the Integrated Carbon Observation System (ICOS RI) is to enable research to understand the greenhouse gas (GHG) budgets and perturbations. The ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and GHG emissions. Technological developments and implementations, related to GHGs, will be promoted by the linking of research, education and innovation. In order to provide this data ICOS RI is a distributed research infrastructure. The backbones of ICOS RI are the national measurement stations such as ICOS atmosphere, ecosystem and ocean stations. ICOS Central Facilities are the European level ICOS RI Centres, which have the specific tasks in collecting and processing the data and samples received from the national measurement networks. During the establishment of ICOS RI ethical guidelines were developed. These guidelines describe principles of ethics in the research activities that should be applied within ICOS RI. They should be acknowledged and followed by all researchers affiliated to ICOS RI and should be supported by all participating institutions. The presentation describes (1) the general challenge to develop ethical guidelines in a complex international infrastructure and (2) gives an overview about the content that includes different kinds of conflicts of interests, data ethics and social responsibility.

  15. The Current Crisis in Emergency Care and the Impact on Disaster Preparedness

    PubMed Central

    Cherry, Robert A; Trainer, Marcia

    2008-01-01

    Background The Homeland Security Act (HSA) of 2002 provided for the designation of a critical infrastructure protection program. This ultimately led to the designation of emergency services as a targeted critical infrastructure. In the context of an evolving crisis in hospital-based emergency care, the extent to which federal funding has addressed disaster preparedness will be examined. Discussion After 9/11, federal plans, procedures and benchmarks were mandated to assure a unified, comprehensive disaster response, ranging from local to federal activation of resources. Nevertheless, insufficient federal funding has contributed to a long-standing counter-trend which has eroded emergency medical care. The causes are complex and multifactorial, but they have converged to present a severely overburdened system that regularly exceeds emergency capacity and capabilities. This constant acute overcrowding, felt in communities all across the country, indicates a nation at risk. Federal funding has not sufficiently prioritized the improvements necessary for an emergency care infrastructure that is critical for an all hazards response to disaster and terrorist emergencies. Summary Currently, the nation is unable to meet presidential preparedness mandates for emergency and disaster care. Federal funding strategies must therefore be re-prioritized and targeted in a way that reasonably and consistently follows need. PMID:18452615

  16. Defining resilience within a risk-informed assessment framework

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coles, Garill A.; Unwin, Stephen D.; Holter, Gregory M.

    2011-08-01

    The concept of resilience is the subject of considerable discussion in academic, business, and governmental circles. The United States Department of Homeland Security for one has emphasised the need to consider resilience in safeguarding critical infrastructure and key resources. The concept of resilience is complex, multidimensional, and defined differently by different stakeholders. The authors contend that there is a benefit in moving from discussing resilience as an abstraction to defining resilience as a measurable characteristic of a system. This paper proposes defining resilience measures using elements of a traditional risk assessment framework to help clarify the concept of resilience andmore » as a way to provide non-traditional risk information. The authors show various, diverse dimensions of resilience can be quantitatively defined in a common risk assessment framework based on the concept of loss of service. This allows the comparison of options for improving the resilience of infrastructure and presents a means to perform cost-benefit analysis. This paper discusses definitions and key aspects of resilience, presents equations for the risk of loss of infrastructure function that incorporate four key aspects of resilience that could prevent or mitigate that loss, describes proposed resilience factor definitions based on those risk impacts, and provides an example that illustrates how resilience factors would be calculated using a hypothetical scenario.« less

  17. Comparing approaches for using climate projections in assessing water resources investments for systems with multiple stakeholder groups

    NASA Astrophysics Data System (ADS)

    Hurford, Anthony; Harou, Julien

    2015-04-01

    Climate change has challenged conventional methods of planning water resources infrastructure investment, relying on stationarity of time-series data. It is not clear how to best use projections of future climatic conditions. Many-objective simulation-optimisation and trade-off analysis using evolutionary algorithms has been proposed as an approach to addressing complex planning problems with multiple conflicting objectives. The search for promising assets and policies can be carried out across a range of climate projections, to identify the configurations of infrastructure investment shown by model simulation to be robust under diverse future conditions. Climate projections can be used in different ways within a simulation model to represent the range of possible future conditions and understand how optimal investments vary according to the different hydrological conditions. We compare two approaches, optimising over an ensemble of different 20-year flow and PET timeseries projections, and separately for individual future scenarios built synthetically from the original ensemble. Comparing trade-off curves and surfaces generated by the two approaches helps understand the limits and benefits of optimising under different sets of conditions. The comparison is made for the Tana Basin in Kenya, where climate change combined with multiple conflicting objectives of water management and infrastructure investment mean decision-making is particularly challenging.

  18. Future Visions of the Brahmaputra - Establishing Hydrologic Baseline and Water Resources Context

    NASA Astrophysics Data System (ADS)

    Ray, P. A.; Yang, Y. E.; Wi, S.; Brown, C. M.

    2013-12-01

    The Brahmaputra River Basin (China-India-Bhutan-Bangladesh) is on the verge of a transition from a largely free flowing and highly variable river to a basin of rapid investment and infrastructure development. This work demonstrates a knowledge platform for the basin that compiles available data, and develops hydrologic and water resources system models of the basin. A Variable Infiltration Capacity (VIC) model of the Brahmaputra basin supplies hydrologic information of major tributaries to a water resources system model, which routes runoff generated via the VIC model through water infrastructure, and accounts for water withdrawals for agriculture, hydropower generation, municipal demand, return flows and others human activities. The system model also simulates agricultural production and the economic value of water in its various uses, including municipal, agricultural, and hydropower. Furthermore, the modeling framework incorporates plausible climate change scenarios based on the latest projections of changes to contributing glaciers (upstream), as well as changes to monsoon behavior (downstream). Water resources projects proposed in the Brahmaputra basin are evaluated based on their distribution of benefits and costs in the absence of well-defined water entitlements, and relative to a complex regional water-energy-food nexus. Results of this project will provide a basis for water sharing negotiation among the four countries and inform trans-national water-energy policy making.

  19. CERN data services for LHC computing

    NASA Astrophysics Data System (ADS)

    Espinal, X.; Bocchi, E.; Chan, B.; Fiorot, A.; Iven, J.; Lo Presti, G.; Lopez, J.; Gonzalez, H.; Lamanna, M.; Mascetti, L.; Moscicki, J.; Pace, A.; Peters, A.; Ponce, S.; Rousseau, H.; van der Ster, D.

    2017-10-01

    Dependability, resilience, adaptability and efficiency. Growing requirements require tailoring storage services and novel solutions. Unprecedented volumes of data coming from the broad number of experiments at CERN need to be quickly available in a highly scalable way for large-scale processing and data distribution while in parallel they are routed to tape for long-term archival. These activities are critical for the success of HEP experiments. Nowadays we operate at high incoming throughput (14GB/s during 2015 LHC Pb-Pb run and 11PB in July 2016) and with concurrent complex production work-loads. In parallel our systems provide the platform for the continuous user and experiment driven work-loads for large-scale data analysis, including end-user access and sharing. The storage services at CERN cover the needs of our community: EOS and CASTOR as a large-scale storage; CERNBox for end-user access and sharing; Ceph as data back-end for the CERN OpenStack infrastructure, NFS services and S3 functionality; AFS for legacy distributed-file-system services. In this paper we will summarise the experience in supporting LHC experiments and the transition of our infrastructure from static monolithic systems to flexible components providing a more coherent environment with pluggable protocols, tuneable QoS, sharing capabilities and fine grained ACLs management while continuing to guarantee dependable and robust services.

  20. On-Site Fabrication Infrastructure to Enable Efficient Exploration and Utilization of Space

    NASA Technical Reports Server (NTRS)

    Howell, Joe T.; Fikes, John C.; McLemore, Carole A.; Good, James E.

    2008-01-01

    Unlike past one-at-a-time mission approaches, system-of-systems infrastructures will be needed to enable ambitious scenarios for sustainable future space exploration and utilization. So what do we do when we get to the moon for sustainable exploration. On-site fabrication infrastructure will be needed to support habitat structure development, tools and mechanical part fabrication, as well as repair and replacement of ground support and space mission hardware such as life support items, vehicle components and crew systems. The on-site fabrication infrastructure will need the In Situ Fabrication and Repair (ISFR) element, which is working in conjunction with the In Situ Resources Utilization (ISRU) element, to live off the land. The ISFR element has worked closely with the ISRU element in the past year to assess the ability of using lunar regolith as a viable feedstock for fabrication material. Preliminary work has shown promise and the ISFR Element will continue to concentrate on this activity. Fabrication capabilities have been furthered with the process certification effort that, when completed, will allow for space-qualified hardware to be manufactured. Materials being investigated include titanium and aluminum alloys as well as lunar regolith simulants with binders. This paper addresses the latest advancements made in the fabrication of infrastructures that support efficient, affordable, reliable infrastructures for both space exploration systems and logistics; infrastructures that allow sustained, affordable and highly effective operations on the Moon and beyond.

  1. Development of an Intelligent Digital Watershed to understand water-human interaction for a sustainable Agroeconomy in Midwest USA

    NASA Astrophysics Data System (ADS)

    Mishra, S. K.; Rapolu, U.; Ding, D.; Muste, M.; Bennett, D.; Schnoor, J. L.

    2011-12-01

    Human activity is intricately linked to the quality and quantity of water resources. Although many studies have examined water-human interaction, the complexity of such coupled systems is not well understood largely because of gaps in our knowledge of water-cycle processes which are heavily influenced by socio-economic drivers. Considerable research has been performed to develop an understanding of the impact of local land use decisions on field and catchment processes at an annual basis. Still less is known about the impact of economic and environmental outcomes on decision-making processes at the local and national level. Traditional geographic information management systems lack the ability to support the modeling and analysis of complex spatial processes. New frameworks are needed to track, query, and analyze the massive amounts of data generated by ensembles of simulations produced by multiple models that couple socioeconomic and natural system processes. On this context, we propose to develop an Intelligent Digital Watershed (IDW) which fuses emerging concepts of Digital Watershed (DW). DW is a comprehensive characterization of the eco hydrologic systems based on the best available digital data generated by measurements and simulations models. Prototype IDW in the form of a cyber infrastructure based engineered system will facilitate novel insights into human/environment interactions through multi-disciplinary research focused on watershed-related processes at multiple spatio-temporal scales. In ongoing effort, the prototype IDW is applied to Clear Creek watershed, an agricultural dominating catchment in Iowa, to understand water-human processes relevant to management decisions by farmers regarding agro ecosystems. This paper would also lay out the database design that stores metadata about simulation scenarios, scenario inputs and outputs, and connections among these elements- essentially the database. The paper describes the cyber infrastructure and workflows developed for connecting the IDW modeling tools: ABM, Data-Driven Modeling, and SWAT.

  2. 7 CFR 1717.851 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...

  3. 7 CFR 1717.851 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...

  4. 7 CFR 1717.851 - Definitions.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...

  5. 7 CFR 1717.851 - Definitions.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...

  6. 7 CFR 1717.851 - Definitions.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... distribution system means any system of community infrastructure whose primary function is the distribution of... communication system means any system of community infrastructure whose primary function is the provision of... primary function is the supplying of water and/or the collection and treatment of waste water and whose...

  7. Landlord project multi-year program plan, fiscal year 1999, WBS 1.5

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dallas, M.D.

    The MYWP technical baseline describes the work to be accomplished by the Project and the technical standards which govern that work. The mission of Landlord Project is to provide more maintenance replacement of general infrastructure facilities and systems to facilitate the Hanford Site cleanup mission. Also, once an infrastructure facility or system is no longer needed the Landlord Project transitions the facility to final closure/removal through excess, salvage or demolition. Landlord Project activities will be performed in an environmentally sound, safe, economical, prudent, and reliable manner. The Landlord Project consists of the following facilities systems: steam, water, liquid sanitary waste,more » electrical distribution, telecommunication, sanitary landfill, emergency services, general purpose offices, general purpose shops, general purpose warehouses, environmental supports facilities, roads, railroad, and the site land. The objectives for general infrastructure support are reflected in two specific areas, (1) Core Infrastructure Maintenance, and (2) Infrastructure Risk Mitigation.« less

  8. China national space remote sensing infrastructure and its application

    NASA Astrophysics Data System (ADS)

    Li, Ming

    2016-07-01

    Space Infrastructure is a space system that provides communication, navigation and remote sensing service for broad users. China National Space Remote Sensing Infrastructure includes remote sensing satellites, ground system and related systems. According to the principle of multiple-function on one satellite, multiple satellites in one constellation and collaboration between constellations, series of land observation, ocean observation and atmosphere observation satellites have been suggested to have high, middle and low resolution and fly on different orbits and with different means of payloads to achieve a high ability for global synthetically observation. With such an infrastructure, we can carry out the research on climate change, geophysics global surveying and mapping, water resources management, safety and emergency management, and so on. I This paper gives a detailed introduction about the planning of this infrastructure and its application in different area, especially the international cooperation potential in the so called One Belt and One Road space information corridor.

  9. An Open Computing Infrastructure that Facilitates Integrated Product and Process Development from a Decision-Based Perspective

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.

    1996-01-01

    Computer applications for design have evolved rapidly over the past several decades, and significant payoffs are being achieved by organizations through reductions in design cycle times. These applications are overwhelmed by the requirements imposed during complex, open engineering systems design. Organizations are faced with a number of different methodologies, numerous legacy disciplinary tools, and a very large amount of data. Yet they are also faced with few interdisciplinary tools for design collaboration or methods for achieving the revolutionary product designs required to maintain a competitive advantage in the future. These organizations are looking for a software infrastructure that integrates current corporate design practices with newer simulation and solution techniques. Such an infrastructure must be robust to changes in both corporate needs and enabling technologies. In addition, this infrastructure must be user-friendly, modular and scalable. This need is the motivation for the research described in this dissertation. The research is focused on the development of an open computing infrastructure that facilitates product and process design. In addition, this research explicitly deals with human interactions during design through a model that focuses on the role of a designer as that of decision-maker. The research perspective here is taken from that of design as a discipline with a focus on Decision-Based Design, Theory of Languages, Information Science, and Integration Technology. Given this background, a Model of IPPD is developed and implemented along the lines of a traditional experimental procedure: with the steps of establishing context, formalizing a theory, building an apparatus, conducting an experiment, reviewing results, and providing recommendations. Based on this Model, Design Processes and Specification can be explored in a structured and implementable architecture. An architecture for exploring design called DREAMS (Developing Robust Engineering Analysis Models and Specifications) has been developed which supports the activities of both meta-design and actual design execution. This is accomplished through a systematic process which is comprised of the stages of Formulation, Translation, and Evaluation. During this process, elements from a Design Specification are integrated into Design Processes. In addition, a software infrastructure was developed and is called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment). This represents a virtual apparatus in the Design Experiment conducted in this research. IMAGE is an innovative architecture because it explicitly supports design-related activities. This is accomplished through a GUI driven and Agent-based implementation of DREAMS. A HSCT design has been adopted from the Framework for Interdisciplinary Design Optimization (FIDO) and is implemented in IMAGE. This problem shows how Design Processes and Specification interact in a design system. In addition, the problem utilizes two different solution models concurrently: optimal and satisfying. The satisfying model allows for more design flexibility and allows a designer to maintain design freedom. As a result of following this experimental procedure, this infrastructure is an open system that it is robust to changes in both corporate needs and computer technologies. The development of this infrastructure leads to a number of significant intellectual contributions: 1) A new approach to implementing IPPD with the aid of a computer; 2) A formal Design Experiment; 3) A combined Process and Specification architecture that is language-based; 4) An infrastructure for exploring design; 5) An integration strategy for implementing computer resources; and 6) A seamless modeling language. The need for these contributions is emphasized by the demand by industry and government agencies for the development of these technologies.

  10. 75 FR 39266 - National Protection and Programs Directorate; National Infrastructure Advisory Council

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-08

    ... infrastructure sectors and their information systems. Pursuant to 41 CFR 102-3.150(b), this notice was published... Critical Infrastructure Resilience Goals VI. Working Group Status: Optimization of Resources for Mitigating...

  11. Intelligent Transportation Infrastructure Deployment Analysis System

    DOT National Transportation Integrated Search

    1997-01-01

    Much of the work on Intelligent Transportation Systems (ITS) to date has emphasized technologies, Standards/protocols, architecture, user services, core infrastructure requirements, and various other technical and institutional issues. ITS implementa...

  12. Transportation systems analyses. Volume 2: Technical/programmatics

    NASA Astrophysics Data System (ADS)

    1993-05-01

    The principal objective of this study is to accomplish a systems engineering assessment of the nation's space transportation infrastructure. This analysis addresses the necessary elements to perform man delivery and return, cargo transfer, cargo delivery, payload servicing, and the exploration of the Moon and Mars. Specific elements analyzed, but not limited to, include the Space Exploration Initiative (SEI), the National Launch System (NLS), the current expendable launch vehicle (ELV) fleet, ground facilities, the Space Station Freedom (SSF), and other civil, military and commercial payloads. The performance of this study entails maintaining a broad perspective on the large number of transportation elements that could potentially comprise the U.S. space infrastructure over the next several decades. To perform this systems evaluation, top-level trade studies are conducted to enhance our understanding of the relationships between elements of the infrastructure. This broad 'infrastructure-level perspective' permits the identification of preferred infrastructures. Sensitivity analyses are performed to assure the credibility and usefulness of study results. This report documents the three principal transportation systems analyses (TSA) efforts during the period 7 November 92 - 6 May 93. The analyses are as follows: Mixed-Fleet (STS/ELV) strategies for SSF resupply; Transportation Systems Data Book - overview; and Operations Cost Model - overview/introduction.

  13. Landslide hazards and systems analysis: A Central European perspective

    NASA Astrophysics Data System (ADS)

    Klose, Martin; Damm, Bodo; Kreuzer, Thomas

    2016-04-01

    Part of the problem with assessing landslide hazards is to understand the variable settings in which they occur. There is growing consensus that hazard assessments require integrated approaches that take account of the coupled human-environment system. Here we provide a synthesis of societal exposure and vulnerability to landslide hazards, review innovative approaches to hazard identification, and lay a focus on hazard assessment, while presenting the results of historical case studies and a landslide time series for Germany. The findings add to a growing body of literature that recognizes societal exposure and vulnerability as a complex system of hazard interactions that evolves over time as a function of social change and development. We therefore propose to expand hazard assessments by the framework and concepts of systems analysis (e.g., Liu et al., 2007) Results so far have been promising in ways that illustrate the importance of feedbacks, thresholds, surprises, and time lags in the evolution of landslide hazard and risk. In densely populated areas of Central Europe, landslides often occur in urbanized landscapes or on engineered slopes that had been transformed or created intentionally by human activity, sometimes even centuries ago. The example of Germany enables to correlate the causes and effects of recent landslides with the historical transition of urbanization to urban sprawl, ongoing demographic change, and some chronic problems of industrialized countries today, including ageing infrastructures or rising government debts. In large parts of rural Germany, the combination of ageing infrastructures, population loss, and increasing budget deficits starts to erode historical resilience gains, which brings especially small communities to a tipping point in their efforts to risk reduction. While struggling with budget deficits and demographic change, these communities are required to maintain ageing infrastructures that are particularly vulnerable to landslides. Along with a large number of small, but costly landslide events and widespread insidious damages, the interplay of these societal trends determines landslide hazard and risk in Germany or elsewhere in Central Europe (e.g., Houlihan, 1994; Klose et al., 2015). The case studies presented here help to better understand human-environment interactions in the hazard context. Although there has been substantial progress in assessing landslide hazards, integrated approaches with an interdisciplinary focus are still exceptional. The scope of historical datasets available for hazard assessments, however, covers the whole range of natural and social systems interacting with hazards, their influences on overall system vulnerability, and the feedbacks, time lags, and couplings among these systems. In combination with methods from the natural and social sciences, systems analysis supports hazard assessments across disciplinary boundaries to take a broader look at landslide hazards as is usually done. References Houlihan, B., 1994. Europe's ageing infrastructure: Politics, finance and the environment. Utilities Policy 4, 243-252. Liu, J., Dietz, T., Carpenter, S.R., Alberti, M., Folke, C., Moran, E., Pell, A.N., Deadman, P., Kratz, T., Lubchenco, J., Ostrom, E., Ouyang, Z., Provencher, W., Redman, C.L., Schneider, S.H., Taylor, W.W., 2007. Complexity of Coupled Human and Natural Systems. Science 317, 1513-1516. Klose, M., Damm, B., Maurischat, P., 2015. Landslide impacts in Germany: A historical and socioeconomic perspective. Landslides, doi:10.1007/s10346-015-0643-9.

  14. A Possible Approach for Addressing Neglected Human Factors Issues of Systems Engineering

    NASA Technical Reports Server (NTRS)

    Johnson, Christopher W.; Holloway, C. Michael

    2011-01-01

    The increasing complexity of safety-critical applications has led to the introduction of decision support tools in the transportation and process industries. Automation has also been introduced to support operator intervention in safety-critical applications. These innovations help reduce overall operator workload, and filter application data to maximize the finite cognitive and perceptual resources of system operators. However, these benefits do not come without a cost. Increased computational support for the end-users of safety-critical applications leads to increased reliance on engineers to monitor and maintain automated systems and decision support tools. This paper argues that by focussing on the end-users of complex applications, previous research has tended to neglect the demands that are being placed on systems engineers. The argument is illustrated through discussing three recent accidents. The paper concludes by presenting a possible strategy for building and using highly automated systems based on increased attention by management and regulators, improvements in competency and training for technical staff, sustained support for engineering team resource management, and the development of incident reporting systems for infrastructure failures. This paper represents preliminary work, about which we seek comments and suggestions.

  15. Stochastic Hybrid Systems Modeling and Middleware-enabled DDDAS for Next-generation US Air Force Systems

    DTIC Science & Technology

    2017-03-30

    experimental evaluations for hosting DDDAS-like applications in public cloud infrastructures . Finally, we report on ongoing work towards using the DDDAS...developed and their experimental evaluations for hosting DDDAS-like applications in public cloud infrastructures . Finally, we report on ongoing work towards...Dynamic resource management, model learning, simulation-based optimizations, cloud infrastructures for DDDAS applications. I. INTRODUCTION Critical cyber

  16. Real-time Identification System using Mobile Hand-held Devices: Mobile Biometrics Evaluation Framework

    DTIC Science & Technology

    2014-04-01

    must be done to determine current infrastructure and capabilities so that necessary updates and changes can be addressed up front. Mobile biometric...with existing satellite communications infrastructure . 20 PSTP 03-427BIOM 4 State of Mobile Biometric Device Market 4.1 Fingerprint...is a wireless information system highlighted by Real-time wireless data collection mobile device independence, wireless infrastructure independence

  17. Integrating Network Management for Cloud Computing Services

    DTIC Science & Technology

    2015-06-01

    abstraction and system design. In this dissertation, we make three major contributions. We rst propose to consolidate the tra c and infrastructure management...abstraction and system design. In this dissertation, we make three major contributions. We first propose to consolidate the traffic and infrastructure ...1.3.1 Safe Datacenter Traffic/ Infrastructure Management . . . . . . 9 1.3.2 End-host/Network Cooperative Traffic Management . . . . . . 10 1.3.3 Direct

  18. DREAMS and IMAGE: A Model and Computer Implementation for Concurrent, Life-Cycle Design of Complex Systems

    NASA Technical Reports Server (NTRS)

    Hale, Mark A.; Craig, James I.; Mistree, Farrokh; Schrage, Daniel P.

    1995-01-01

    Computing architectures are being assembled that extend concurrent engineering practices by providing more efficient execution and collaboration on distributed, heterogeneous computing networks. Built on the successes of initial architectures, requirements for a next-generation design computing infrastructure can be developed. These requirements concentrate on those needed by a designer in decision-making processes from product conception to recycling and can be categorized in two areas: design process and design information management. A designer both designs and executes design processes throughout design time to achieve better product and process capabilities while expanding fewer resources. In order to accomplish this, information, or more appropriately design knowledge, needs to be adequately managed during product and process decomposition as well as recomposition. A foundation has been laid that captures these requirements in a design architecture called DREAMS (Developing Robust Engineering Analysis Models and Specifications). In addition, a computing infrastructure, called IMAGE (Intelligent Multidisciplinary Aircraft Generation Environment), is being developed that satisfies design requirements defined in DREAMS and incorporates enabling computational technologies.

  19. Impact of Uncoordinated Plug-in Electric Vehicle Charging on Residential Power Demand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muratori, Matteo

    Electrification of transport offers opportunities to increase energy security, reduce carbon emissions, and improve local air quality. Plug-in electric vehicles (PEVs) are creating new connections between the transportation and electric sectors, and PEV charging will create opportunities and challenges in a system of growing complexity. Here, I use highly resolved models of residential power demand and PEV use to assess the impact of uncoordinated in-home PEV charging on residential power demand. While the increase in aggregate demand might be minimal even for high levels of PEV adoption, uncoordinated PEV charging could significantly change the shape of the aggregate residential demand,more » with impacts for electricity infrastructure, even at low adoption levels. Clustering effects in vehicle adoption at the local level might lead to high PEV concentrations even if overall adoption remains low, significantly increasing peak demand and requiring upgrades to the electricity distribution infrastructure. This effect is exacerbated when adopting higher in-home power charging.« less

  20. OpenSoC Fabric

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    2014-08-21

    Recent advancements in technology scaling have shown a trend towards greater integration with large-scale chips containing thousands of processors connected to memories and other I/O devices using non-trivial network topologies. Software simulation proves insufficient to study the tradeoffs in such complex systems due to slow execution time, whereas hardware RTL development is too time-consuming. We present OpenSoC Fabric, an on-chip network generation infrastructure which aims to provide a parameterizable and powerful on-chip network generator for evaluating future high performance computing architectures based on SoC technology. OpenSoC Fabric leverages a new hardware DSL, Chisel, which contains powerful abstractions provided by itsmore » base language, Scala, and generates both software (C++) and hardware (Verilog) models from a single code base. The OpenSoC Fabric2 infrastructure is modeled after existing state-of-the-art simulators, offers large and powerful collections of configuration options, and follows object-oriented design and functional programming to make functionality extension as easy as possible.« less

Top