Sample records for complex kohn variational

  1. Overset grid implementation of the complex Kohn variational method for electron-polyatomic molecule scattering

    NASA Astrophysics Data System (ADS)

    McCurdy, C. William; Lucchese, Robert L.; Greenman, Loren

    2017-04-01

    The complex Kohn variational method, which represents the continuum wave function in each channel using a combination of Gaussians and Bessel or Coulomb functions, has been successful in numerous applications to electron-polyatomic molecule scattering and molecular photoionization. The hybrid basis representation limits it to relatively low energies (< 50 eV) , requires an approximation to exchange matrix elements involving continuum functions, and hampers its coupling to modern electronic structure codes for the description of correlated target states. We describe a successful implementation of the method using completely adaptive overset grids to describe continuum functions, in which spherical subgrids are placed on every atomic center to complement a spherical master grid that describes the behavior at large distances. An accurate method for applying the free-particle Green's function on the grid eliminates the need to operate explicitly with the kinetic energy, enabling a rapidly convergent Arnoldi algorithm for solving linear equations on the grid, and no approximations to exchange operators are made. Results for electron scattering from several polyatomic molecules will be presented. Army Research Office, MURI, WN911NF-14-1-0383 and U. S. DOE DE-SC0012198 (at Texas A&M).

  2. Configurational forces in electronic structure calculations using Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Motamarri, Phani; Gavini, Vikram

    2018-04-01

    We derive the expressions for configurational forces in Kohn-Sham density functional theory, which correspond to the generalized variational force computed as the derivative of the Kohn-Sham energy functional with respect to the position of a material point x . These configurational forces that result from the inner variations of the Kohn-Sham energy functional provide a unified framework to compute atomic forces as well as stress tensor for geometry optimization. Importantly, owing to the variational nature of the formulation, these configurational forces inherently account for the Pulay corrections. The formulation presented in this work treats both pseudopotential and all-electron calculations in a single framework, and employs a local variational real-space formulation of Kohn-Sham density functional theory (DFT) expressed in terms of the nonorthogonal wave functions that is amenable to reduced-order scaling techniques. We demonstrate the accuracy and performance of the proposed configurational force approach on benchmark all-electron and pseudopotential calculations conducted using higher-order finite-element discretization. To this end, we examine the rates of convergence of the finite-element discretization in the computed forces and stresses for various materials systems, and, further, verify the accuracy from finite differencing the energy. Wherever applicable, we also compare the forces and stresses with those obtained from Kohn-Sham DFT calculations employing plane-wave basis (pseudopotential calculations) and Gaussian basis (all-electron calculations). Finally, we verify the accuracy of the forces on large materials systems involving a metallic aluminum nanocluster containing 666 atoms and an alkane chain containing 902 atoms, where the Kohn-Sham electronic ground state is computed using a reduced-order scaling subspace projection technique [P. Motamarri and V. Gavini, Phys. Rev. B 90, 115127 (2014), 10.1103/PhysRevB.90.115127].

  3. Complex Correlation Kohn-T Method of Calculating Total and Elastic Cross Sections. Part 1; Electron-Hydrogen Elastic Scattering

    NASA Technical Reports Server (NTRS)

    Bhatia, A. K.; Temkin, A.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We report on the first part of a study of electron-hydrogen scattering, using a method which allows for the ab initio calculation of total and elastic cross sections at higher energies. In its general form the method uses complex 'radial' correlation functions, in a (Kohn) T-matrix formalism. The titled method, abbreviated Complex Correlation Kohn T (CCKT) method, is reviewed, in the context of electron-hydrogen scattering, including the derivation of the equation for the (complex) scattering function, and the extraction of the scattering information from the latter. The calculation reported here is restricted to S-waves in the elastic region, where the correlation functions can be taken, without loss of generality, to be real. Phase shifts are calculated using Hylleraas-type correlation functions with up to 95 terms. Results are rigorous lower bounds; they are in general agreement with those of Schwartz, but they are more accurate and outside his error bounds at a couple of energies,

  4. Competition: Was Kohn Right?

    ERIC Educational Resources Information Center

    Shields, David Light; Bredemeier, Brenda Light

    2010-01-01

    Alfie Kohn made the case for competition being destructive to education. The truth may be that there are two separate ways to contest: true competition, which is a healthy desire to excel, and decompetition, which is the unhealthy desire merely to beat the opponent. Decompetition leads to the ills that Kohn enumerated. Educators should teach their…

  5. The Kohn Social Competence Scale and Kohn Symptom Checklist for the Preschool Child: A Follow-Up Report

    ERIC Educational Resources Information Center

    Kohn, Martin

    1977-01-01

    The paper focuses on two research instruments, the Kohn Social Competence Scale and the Kohn Symptom Checklist, designed to assess the behavior of children in a preschool setting as well as on two factor-analytically derived dimensions of social-emotional functioning which the instruments measure. (SBH)

  6. ELSI: A unified software interface for Kohn-Sham electronic structure solvers

    NASA Astrophysics Data System (ADS)

    Yu, Victor Wen-zhe; Corsetti, Fabiano; García, Alberto; Huhn, William P.; Jacquelin, Mathias; Jia, Weile; Lange, Björn; Lin, Lin; Lu, Jianfeng; Mi, Wenhui; Seifitokaldani, Ali; Vázquez-Mayagoitia, Álvaro; Yang, Chao; Yang, Haizhao; Blum, Volker

    2018-01-01

    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aims to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. Comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.

  7. The calculation of the contributions to low energy e+H2 scattering from sigma u+ and Pion u symmetries using the Kohn variational method

    NASA Technical Reports Server (NTRS)

    Armour, E. A. G.; Baker, D. J.; Plummer, M.

    1990-01-01

    Above incident energies of about 2 eV, the contribution to the total cross section in positron+H2 scattering from the sigma g+ symmetry is insufficient to account for the experimental value. Calculations carried out of the lowest partial waves of sigma u+ symmetry and Pion u symmetry using the Kohn variational method are described. The contributions to the total cross section from the two equivalent partial waves of Pion u symmetry significantly reduce the discrepancy with experiment up to incident energies of 4 to 5 eV. Comparisons are made with recent R-matrix calculations performed by Danby and Tennyson.

  8. Joachim kohn (1912-1987) and the origin of cellulose acetate electrophoresis.

    PubMed

    Rocco, Richard M

    2005-10-01

    The year 2006 marks the 50th anniversary of the discovery of cellulose acetate (CA) electrophoresis by Joachim Kohn, a pathologist at Queen Mary's Hospital in Roehampton, London. During a career in pathology that began in 1950 and spanned 37 years, Kohn published more than 50 papers in clinical laboratory medicine. He was the first to report the use of CA microbiology filters as solid supports for zone electrophoresis and the separation of hemoglobin phenotypes on CA membranes. Kohn also invented a new electrophoresis chamber and an 8-position stamp applicator especially for use with CA membranes. Beginning in 1957, Kohn pioneered the development of CA techniques for immunoelectrophoresis, counter immunoelectrophoresis, radial immunodiffusion, protein blotting, and immunofixation. He also designed a transport dressing for burn patients and was the first person to describe the use of an enzyme-based dipstick for measuring fingerstick blood glucose concentrations. This short review highlights Kohn's discovery of CA electrophoresis and his contributions to the development of this procedure.

  9. A multilevel correction adaptive finite element method for Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Hu, Guanghui; Xie, Hehu; Xu, Fei

    2018-02-01

    In this paper, an adaptive finite element method is proposed for solving Kohn-Sham equation with the multilevel correction technique. In the method, the Kohn-Sham equation is solved on a fixed and appropriately coarse mesh with the finite element method in which the finite element space is kept improving by solving the derived boundary value problems on a series of adaptively and successively refined meshes. A main feature of the method is that solving large scale Kohn-Sham system is avoided effectively, and solving the derived boundary value problems can be handled efficiently by classical methods such as the multigrid method. Hence, the significant acceleration can be obtained on solving Kohn-Sham equation with the proposed multilevel correction technique. The performance of the method is examined by a variety of numerical experiments.

  10. The Jost-Kohn inversion procedure

    NASA Technical Reports Server (NTRS)

    Prosser, R. T.

    1972-01-01

    Conditions are considered that must be imposed on a class of quantum mechanical problems to obtain reasonable results by the Jost-Kohn procedure. The discussion is restricted to problems in three space-dimensions without assuming any radial or other symmetry of the potential.

  11. Real-time adaptive finite element solution of time-dependent Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Bao, Gang; Hu, Guanghui; Liu, Di

    2015-01-01

    In our previous paper (Bao et al., 2012 [1]), a general framework of using adaptive finite element methods to solve the Kohn-Sham equation has been presented. This work is concerned with solving the time-dependent Kohn-Sham equations. The numerical methods are studied in the time domain, which can be employed to explain both the linear and the nonlinear effects. A Crank-Nicolson scheme and linear finite element space are employed for the temporal and spatial discretizations, respectively. To resolve the trouble regions in the time-dependent simulations, a heuristic error indicator is introduced for the mesh adaptive methods. An algebraic multigrid solver is developed to efficiently solve the complex-valued system derived from the semi-implicit scheme. A mask function is employed to remove or reduce the boundary reflection of the wavefunction. The effectiveness of our method is verified by numerical simulations for both linear and nonlinear phenomena, in which the effectiveness of the mesh adaptive methods is clearly demonstrated.

  12. Efficient construction of exchange and correlation potentials by inverting the Kohn-Sham equations.

    PubMed

    Kananenka, Alexei A; Kohut, Sviataslau V; Gaiduk, Alex P; Ryabinkin, Ilya G; Staroverov, Viktor N

    2013-08-21

    Given a set of canonical Kohn-Sham orbitals, orbital energies, and an external potential for a many-electron system, one can invert the Kohn-Sham equations in a single step to obtain the corresponding exchange-correlation potential, vXC(r). For orbitals and orbital energies that are solutions of the Kohn-Sham equations with a multiplicative vXC(r) this procedure recovers vXC(r) (in the basis set limit), but for eigenfunctions of a non-multiplicative one-electron operator it produces an orbital-averaged potential. In particular, substitution of Hartree-Fock orbitals and eigenvalues into the Kohn-Sham inversion formula is a fast way to compute the Slater potential. In the same way, we efficiently construct orbital-averaged exchange and correlation potentials for hybrid and kinetic-energy-density-dependent functionals. We also show how the Kohn-Sham inversion approach can be used to compute functional derivatives of explicit density functionals and to approximate functional derivatives of orbital-dependent functionals.

  13. Meet Alfie Kohn. Part Two.

    ERIC Educational Resources Information Center

    Swan, Deborah

    1997-01-01

    An interview with educator-author Alfie Kohn discusses student motivation and the need to move away from giving rewards, praise as a form of control, the importance of genuine encouragement that fosters intrinsic motivation and lifelong learning, and the role of mentors in supporting teachers who seek to change or improve traditional teaching…

  14. Kohn Anomaly and Phase Stability in Group VB Transition Metals

    DOE PAGES

    Landa, Alexander; Soderlind, Per; Naumov, Ivan; ...

    2018-03-26

    In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs), Cr is known for its nesting-induced spin density waves (SDWs). Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals—materials with relatively high superconducting critical temperatures. Thismore » article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (ξ00) in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.« less

  15. Kohn Anomaly and Phase Stability in Group VB Transition Metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landa, Alexander; Soderlind, Per; Naumov, Ivan

    In the periodic table, only a few pure metals exhibit lattice or magnetic instabilities associated with Fermi surface nesting, the classical examples being α-U and Cr. Whereas α-U displays a strong Kohn anomaly in the phonon spectrum that ultimately leads to the formation of charge density waves (CDWs), Cr is known for its nesting-induced spin density waves (SDWs). Recently, it has become clear that a pronounced Kohn anomaly and the corresponding softening in the elastic constants is also the key factor that controls structural transformations and mechanical properties in compressed group VB metals—materials with relatively high superconducting critical temperatures. Thismore » article reviews the current understanding of the structural and mechanical behavior of these metals under pressure with an introduction to the concept of the Kohn anomaly and how it is related to the important concept of Peierls instability. We review both experimental and theoretical results showing different manifestations of the Kohn anomaly in the transverse acoustic phonon mode TA (ξ00) in V, Nb, and Ta. Specifically, in V the anomaly triggers a structural transition to a rhombohedral phase, whereas in Nb and Ta it leads to an anomalous reduction in yield strength.« less

  16. [Alfred Kohn, professor of histology at German University in Prague].

    PubMed

    Nanka, O; Grim, M

    2008-01-01

    Prof. Kohn (1867-1959) was the head of the Institute of Histology at the Medical Faculty of German University in Prague for 26 years. In 2007 we commemorated his 140th birthday, and 2009 we will remember the 50th anniversary of his death. He entered the history of medicine by discovery of nature and origin of parathyroid glands and by pioneer research into chromaffin cells and sympathetic paraganglia. Kohn's papers on the pituitary, interstitial cells of testes, and ovaries are also related to endocrinology. All his studies are based on descriptive and comparative histological and embryological observations. Kohn was twice the dean of German Medical Faculty, and a member or honorary member of many important scientific societies. He was repeatedly nominated for Nobel Prize for physiology and medicine. For his Jewish origin he was expelled from Deutsche Gesellschaft der Wissenschaften und Künste für die Tschechoslowakische Republik in 1939 and transported to Terezin ghetto in 1943. After the war he lived in Prague. On the occasion of his 90th birthday he was elected honorary president of Anatomische Gesellschaft and awarded by the Czechoslovak Order of Labour. Alfred Kohn died in 1959. He was one of the outstanding personalities that Prague gave to the world of science.

  17. Time-dependent density functional theory beyond Kohn-Sham Slater determinants.

    PubMed

    Fuks, Johanna I; Nielsen, Søren E B; Ruggenthaler, Michael; Maitra, Neepa T

    2016-08-03

    When running time-dependent density functional theory (TDDFT) calculations for real-time simulations of non-equilibrium dynamics, the user has a choice of initial Kohn-Sham state, and typically a Slater determinant is used. We explore the impact of this choice on the exchange-correlation potential when the physical system begins in a 50 : 50 superposition of the ground and first-excited state of the system. We investigate the possibility of judiciously choosing a Kohn-Sham initial state that minimizes errors when adiabatic functionals are used. We find that if the Kohn-Sham state is chosen to have a configuration matching the one that dominates the interacting state, this can be achieved for a finite time duration for some but not all such choices. When the Kohn-Sham system does not begin in a Slater determinant, we further argue that the conventional splitting of the exchange-correlation potential into exchange and correlation parts has limited value, and instead propose a decomposition into a "single-particle" contribution that we denote v, and a remainder. The single-particle contribution can be readily computed as an explicit orbital-functional, reduces to exchange in the Slater determinant case, and offers an alternative to the adiabatic approximation as a starting point for TDDFT approximations.

  18. Bypassing the Kohn-Sham equations with machine learning.

    PubMed

    Brockherde, Felix; Vogt, Leslie; Li, Li; Tuckerman, Mark E; Burke, Kieron; Müller, Klaus-Robert

    2017-10-11

    Last year, at least 30,000 scientific papers used the Kohn-Sham scheme of density functional theory to solve electronic structure problems in a wide variety of scientific fields. Machine learning holds the promise of learning the energy functional via examples, bypassing the need to solve the Kohn-Sham equations. This should yield substantial savings in computer time, allowing larger systems and/or longer time-scales to be tackled, but attempts to machine-learn this functional have been limited by the need to find its derivative. The present work overcomes this difficulty by directly learning the density-potential and energy-density maps for test systems and various molecules. We perform the first molecular dynamics simulation with a machine-learned density functional on malonaldehyde and are able to capture the intramolecular proton transfer process. Learning density models now allows the construction of accurate density functionals for realistic molecular systems.Machine learning allows electronic structure calculations to access larger system sizes and, in dynamical simulations, longer time scales. Here, the authors perform such a simulation using a machine-learned density functional that avoids direct solution of the Kohn-Sham equations.

  19. Properties of Augmented Kohn-Sham Potential for Energy as Simple Sum of Orbital Energies.

    PubMed

    Zahariev, Federico; Levy, Mel

    2017-01-12

    A recent modification to the traditional Kohn-Sham method ( Levy , M. ; Zahariev , F. Phys. Rev. Lett. 2014 , 113 , 113002 ; Levy , M. ; Zahariev , F. Mol. Phys. 2016 , 114 , 1162 - 1164 ), which gives the ground-state energy as a direct sum of the occupied orbital energies, is discussed and its properties are numerically illustrated on representative atoms and ions. It is observed that current approximate density functionals tend to give surprisingly small errors for the highest occupied orbital energies that are obtained with the augmented potential. The appropriately shifted Kohn-Sham potential is the basic object within this direct-energy Kohn-Sham method and needs to be approximated. To facilitate approximations, several constraints to the augmented Kohn-Sham potential are presented.

  20. The trust-region self-consistent field method in Kohn-Sham density-functional theory.

    PubMed

    Thøgersen, Lea; Olsen, Jeppe; Köhn, Andreas; Jørgensen, Poul; Sałek, Paweł; Helgaker, Trygve

    2005-08-15

    The trust-region self-consistent field (TRSCF) method is extended to the optimization of the Kohn-Sham energy. In the TRSCF method, both the Roothaan-Hall step and the density-subspace minimization step are replaced by trust-region optimizations of local approximations to the Kohn-Sham energy, leading to a controlled, monotonic convergence towards the optimized energy. Previously the TRSCF method has been developed for optimization of the Hartree-Fock energy, which is a simple quadratic function in the density matrix. However, since the Kohn-Sham energy is a nonquadratic function of the density matrix, the local energy functions must be generalized for use with the Kohn-Sham model. Such a generalization, which contains the Hartree-Fock model as a special case, is presented here. For comparison, a rederivation of the popular direct inversion in the iterative subspace (DIIS) algorithm is performed, demonstrating that the DIIS method may be viewed as a quasi-Newton method, explaining its fast local convergence. In the global region the convergence behavior of DIIS is less predictable. The related energy DIIS technique is also discussed and shown to be inappropriate for the optimization of the Kohn-Sham energy.

  1. What's It All About, Alfie? A Parent/Educator's Response to Alfie Kohn.

    ERIC Educational Resources Information Center

    Rochester, J. Martin

    1998-01-01

    Rebuts Alfie Kohn's article "Only for My Kid: How Privileged Parents are Undermining School Reform" in the April 1998 "Kappan." Kohn expects the author to pay a fortune for a home in an affluent community so his kids can get violence-prevention training and sing "Kumbaya" in a mainstreamed classroom. Earning the right…

  2. Approximating the Shifted Hartree-Exchange-Correlation Potential in Direct Energy Kohn-Sham Theory.

    PubMed

    Sharpe, Daniel J; Levy, Mel; Tozer, David J

    2018-02-13

    Levy and Zahariev [Phys. Rev. Lett. 113 113002 (2014)] have proposed a new approach for performing density functional theory calculations, termed direct energy Kohn-Sham (DEKS) theory. In this approach, the electronic energy equals the sum of orbital energies, obtained from Kohn-Sham-like orbital equations involving a shifted Hartree-exchange-correlation potential, which must be approximated. In the present study, density scaling homogeneity considerations are used to facilitate DEKS calculations on a series of atoms and molecules, leading to three nonlocal approximations to the shifted potential. The first two rely on preliminary Kohn-Sham calculations using a standard generalized gradient approximation (GGA) exchange-correlation functional and the results illustrate the benefit of describing the dominant Hartree component of the shift exactly. A uniform electron gas analysis is used to eliminate the need for these preliminary Kohn-Sham calculations, leading to a potential with an unconventional form that yields encouraging results, providing strong motivation for further research in DEKS theory.

  3. Talks with Teachers: Clyde F. Kohn.

    ERIC Educational Resources Information Center

    Souza, Anthony R. de

    1984-01-01

    Kohn--a geographer who has taught at all educational levels and is a former president of the National Council for Geographic Education and the American Association of Geographers--talks about his family and schooling, cooperation between professional organizations, his role in the High School Geography Project, and his interest in enology. (RM)

  4. Ground-state densities from the Rayleigh-Ritz variation principle and from density-functional theory.

    PubMed

    Kvaal, Simen; Helgaker, Trygve

    2015-11-14

    The relationship between the densities of ground-state wave functions (i.e., the minimizers of the Rayleigh-Ritz variation principle) and the ground-state densities in density-functional theory (i.e., the minimizers of the Hohenberg-Kohn variation principle) is studied within the framework of convex conjugation, in a generic setting covering molecular systems, solid-state systems, and more. Having introduced admissible density functionals as functionals that produce the exact ground-state energy for a given external potential by minimizing over densities in the Hohenberg-Kohn variation principle, necessary and sufficient conditions on such functionals are established to ensure that the Rayleigh-Ritz ground-state densities and the Hohenberg-Kohn ground-state densities are identical. We apply the results to molecular systems in the Born-Oppenheimer approximation. For any given potential v ∈ L(3/2)(ℝ(3)) + L(∞)(ℝ(3)), we establish a one-to-one correspondence between the mixed ground-state densities of the Rayleigh-Ritz variation principle and the mixed ground-state densities of the Hohenberg-Kohn variation principle when the Lieb density-matrix constrained-search universal density functional is taken as the admissible functional. A similar one-to-one correspondence is established between the pure ground-state densities of the Rayleigh-Ritz variation principle and the pure ground-state densities obtained using the Hohenberg-Kohn variation principle with the Levy-Lieb pure-state constrained-search functional. In other words, all physical ground-state densities (pure or mixed) are recovered with these functionals and no false densities (i.e., minimizing densities that are not physical) exist. The importance of topology (i.e., choice of Banach space of densities and potentials) is emphasized and illustrated. The relevance of these results for current-density-functional theory is examined.

  5. A More Complex Analysis Is Needed.

    ERIC Educational Resources Information Center

    Lickona, Thomas

    1998-01-01

    Alfie Kohn's critique of character education in the February 1997 "Kappan" is constructive but not complex enough to provide guidance for the field. Except for briefly describing the Child Development Project, Kohn omits books and articles advocating a comprehensive approach to character education and does not fairly represent some…

  6. The Relation between Parental Values and Parenting Behavior: A Test of the Kohn Hypothesis.

    ERIC Educational Resources Information Center

    Luster, Tom; And Others

    1989-01-01

    Used data on 65 mother-infant dyads to test Kohn's hypothesis concerning the relation between values and parenting behavior. Findings support Kohn's hypothesis that parents who value self-direction would emphasize supportive function of parenting and parents who value conformity would emphasize their obligations to impose restraints. (Author/NB)

  7. Kohn's theorem in a superfluid Fermi gas with a Feshbach resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ohashi, Y.

    2004-12-01

    We investigate the dipole mode in a superfluid gas of Fermi atoms trapped in a harmonic potential. According to Kohn's theorem, the frequency of this collective mode is not affected by an interaction between the atoms and is always equal to the trap frequency. This remarkable property, however, does not necessarily hold in an approximate theory. We explicitly prove that the Hartree-Fock-Bogoliubov generalized random phase approximation (HFB-GRPA), including a coupling between fluctuations in the density and Cooper channels, is consistent with both Kohn's theorem as well as Goldstone's theorem. This proof can be immediately extended to the strong-coupling superfluid theorymore » developed by Nozieres and Schmitt-Rink (NSR), where the effect of superfluid fluctuations is included within the Gaussian level. As a result, the NSR-GRPA formalism can be used to study collective modes in the BCS-BEC crossover region in a manner which is consistent with Kohn's theorem. We also include the effect of a Feshbach resonance and a condensate of the associated molecular bound states. A detailed discussion is given of the unusual nature of the Kohn mode eigenfunctions in a Fermi superfluid, in the presence and absence of a Feshbach resonance. When the molecular bosons feel a different trap frequency from the Fermi atoms, the dipole frequency is shown to depend on the strength of effective interaction associated with the Feshbach resonance.« less

  8. Effective electronic-only Kohn-Sham equations for the muonic molecules.

    PubMed

    Rayka, Milad; Goli, Mohammad; Shahbazian, Shant

    2018-03-28

    A set of effective electronic-only Kohn-Sham (EKS) equations are derived for the muonic molecules (containing a positively charged muon), which are completely equivalent to the coupled electronic-muonic Kohn-Sham equations derived previously within the framework of the nuclear-electronic orbital density functional theory (NEO-DFT). The EKS equations contain effective non-coulombic external potentials depending on parameters describing the muon's vibration, which are optimized during the solution of the EKS equations making the muon's KS orbital reproducible. It is demonstrated that the EKS equations are derivable from a certain class of effective electronic Hamiltonians through applying the usual Hohenberg-Kohn theorems revealing a "duality" between the NEO-DFT and the effective electronic-only DFT methodologies. The EKS equations are computationally applied to a small set of muoniated organic radicals and it is demonstrated that a mean effective potential may be derived for this class of muonic species while an electronic basis set is also designed for the muon. These computational ingredients are then applied to muoniated ferrocenyl radicals, which had been previously detected experimentally through adding a muonium atom to ferrocene. In line with previous computational studies, from the six possible species, the staggered conformer, where the muon is attached to the exo position of the cyclopentadienyl ring, is deduced to be the most stable ferrocenyl radical.

  9. Kohn anomalies in momentum dependence of magnetic susceptibility of some three-dimensional systems

    NASA Astrophysics Data System (ADS)

    Stepanenko, A. A.; Volkova, D. O.; Igoshev, P. A.; Katanin, A. A.

    2017-11-01

    We study a question of the presence of Kohn points, yielding at low temperatures nonanalytic momentum dependence of magnetic susceptibility near its maximum, in electronic spectra of some threedimensional systems. In particular, we consider a one-band model on face-centered cubic lattice with hopping between the nearest and next-nearest neighbors, which models some aspects of the dispersion of ZrZn2, and the two-band model on body-centered cubic lattice, modeling the dispersion of chromium. For the former model, it is shown that Kohn points yielding maxima of susceptibility exist in a certain (sufficiently wide) region of electronic concentrations; the dependence of the wave vectors, corresponding to the maxima, on the chemical potential is investigated. For the two-band model, we show the existence of the lines of Kohn points, yielding maximum susceptibility, whose position agrees with the results of band structure calculations and experimental data on the wave vector of antiferromagnetism of chromium.

  10. Dissociation of diatomic molecules and the exact-exchange Kohn-Sham potential: the case of LiF

    NASA Astrophysics Data System (ADS)

    Makmal, Adi; Kuemmel, Stephan; Kronik, Leeor

    2011-03-01

    The incorrect fractional-charge dissociation of stretched diatomic molecules, predicted by semi-local exchange-correlation functionals, is revisited. This difficulty can be overcome with asymptotically correct non-local potential operators, but should also be absent in exact Kohn-Sham theory, where the potential is local. Here, we show, for the illustrative case of the LiF dimer, that the exact-exchange local Kohn-Sham potential, constructed within the Krieger, Li, and Iafrate (KLI) approximation, can lead to binding energy and charge dissociation curves that are qualitatively correct. This correct behavior is traced back to a characteristic ``step'' structure in the local exchange potential and its relation to the Kohn-Sham eigenvalues is analyzed.

  11. Gentlest ascent dynamics for calculating first excited state and exploring energy landscape of Kohn-Sham density functionals.

    PubMed

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2015-12-14

    We develop the gentlest ascent dynamics for Kohn-Sham density functional theory to search for the index-1 saddle points on the energy landscape of the Kohn-Sham density functionals. These stationary solutions correspond to excited states in the ground state functionals. As shown by various examples, the first excited states of many chemical systems are given by these index-1 saddle points. Our novel approach provides an alternative, more robust way to obtain these excited states, compared with the widely used ΔSCF approach. The method can be easily generalized to target higher index saddle points. Our results also reveal the physical interest and relevance of studying the Kohn-Sham energy landscape.

  12. Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors.

    PubMed

    Thierbach, Adrian; Neiss, Christian; Gallandi, Lukas; Marom, Noa; Körzdörfer, Thomas; Görling, Andreas

    2017-10-10

    An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [ Görling Phys. Rev. B 2015 , 91 , 245120 ] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a ΔSCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G 0 W 0 methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in

  13. Neural-network Kohn-Sham exchange-correlation potential and its out-of-training transferability

    NASA Astrophysics Data System (ADS)

    Nagai, Ryo; Akashi, Ryosuke; Sasaki, Shu; Tsuneyuki, Shinji

    2018-06-01

    We incorporate in the Kohn-Sham self-consistent equation a trained neural-network projection from the charge density distribution to the Hartree-exchange-correlation potential n → VHxc for a possible numerical approach to the exact Kohn-Sham scheme. The potential trained through a newly developed scheme enables us to evaluate the total energy without explicitly treating the formula of the exchange-correlation energy. With a case study of a simple model, we show that the well-trained neural-network VHxc achieves accuracy for the charge density and total energy out of the model parameter range used for the training, indicating that the property of the elusive ideal functional form of VHxc can approximately be encapsulated by the machine-learning construction. We also exemplify a factor that crucially limits the transferability—the boundary in the model parameter space where the number of the one-particle bound states changes—and see that this is cured by setting the training parameter range across that boundary. The training scheme and insights from the model study apply to more general systems, opening a novel path to numerically efficient Kohn-Sham potential.

  14. Elimination of Spurious Fractional Charges in Dissociating Molecules by Correcting the Shape of Approximate Kohn-Sham Potentials.

    PubMed

    Komsa, Darya N; Staroverov, Viktor N

    2016-11-08

    Standard density-functional approximations often incorrectly predict that heteronuclear diatomic molecules dissociate into fractionally charged atoms. We demonstrate that these spurious charges can be eliminated by adapting the shape-correction method for Kohn-Sham potentials that was originally introduced to improve Rydberg excitation energies [ Phys. Rev. Lett. 2012 , 108 , 253005 ]. Specifically, we show that if a suitably determined fraction of electron charge is added to or removed from a frontier Kohn-Sham orbital level, the approximate Kohn-Sham potential of a stretched molecule self-corrects by developing a semblance of step structure; if this potential is used to obtain the electron density of the neutral molecule, charge delocalization is blocked and spurious fractional charges disappear beyond a certain internuclear distance.

  15. The Compassion Our Children Deserve: An Interview with Alfie Kohn.

    ERIC Educational Resources Information Center

    Miller, Ron; Kohn, Alfie

    2000-01-01

    Alfie Kohn, former teacher and current educational theorist and writer, discusses his views on teaching, learning, and parenting. He addresses the problems of reward-based education, the negative effects of competition on learning, and capitalizing on the naturalness of altruistic behavior in humans. He stresses the importance of treating children…

  16. Generalization of the optimized-effective-potential model to include electron correlation: A variational derivation of the Sham-Schlueter equation for the exact exchange-correlation potential

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Casida, M.E.

    1995-03-01

    The now classic optimized-effective-potential (OEP) approach of Sharp and Horton [Phys Rev. 90, 317 (1953)] and Talman and Shadwick [Phys. Rev. A 14, 36 (1976)] seeks the local potential that is variationally optimized to best approximate the Hartree-Fock exchange operator. The resulting OEP can be identified as the exchange potential of Kohn-Sham density-functional theory. The present work generalizes this OEP approach to treat the correlated case, and shows that the Kohn-Sham exchange-correlation potential is the variationally best local approximation to the exchange-correlation self-energy. This provides a variational derivation of the equation for the exact exchange-correlation potential that was derived bymore » Sham and Schlueter using a density condition. Implications for an approximate physical interpretation of the Kohn-Sham orbitals are discussesd. A correlated generalization of the Sharp-Horton--Krieger-Li-Iafrate [Phys Lett. A 146, 256 (1990)] approximation of the exchange potential is introduced in the quasiparticle limit.« less

  17. Emergence of an Out-of-Plane Optical Phonon (ZO) Kohn Anomaly in Quasifreestanding Epitaxial Graphene.

    PubMed

    Politano, Antonio; de Juan, Fernando; Chiarello, Gennaro; Fertig, Herbert A

    2015-08-14

    In neutral graphene, two prominent cusps known as Kohn anomalies are found in the phonon dispersion of the highest optical phonon at q=Γ (LO branch) and q=K (TO branch), reflecting a significant electron-phonon coupling (EPC) to undoped Dirac electrons. In this work, high-resolution electron energy loss spectroscopy is used to measure the phonon dispersion around the Γ point in quasifreestanding graphene epitaxially grown on Pt(111). The Kohn anomaly for the LO phonon is observed at finite momentum q~2k_{F} from Γ, with a shape in excellent agreement with the theory and consistent with known values of the EPC and the Fermi level. More strikingly, we also observe a Kohn anomaly at the same momentum for the out-of-plane optical phonon (ZO) branch. This observation is the first direct evidence of the coupling of the ZO mode with Dirac electrons, which is forbidden for freestanding graphene but becomes allowed in the presence of a substrate. Moreover, we estimate the EPC to be even greater than that of the LO mode, making graphene on Pt(111) an optimal system to explore the effects of this new coupling in the electronic properties.

  18. Why Students Lose When "Tougher Standards" Win: A Conversation with Alfie Kohn.

    ERIC Educational Resources Information Center

    O'Neil, John; Tell, Carol

    1999-01-01

    Kohn believes the "tougher standards" movement is incompatible with personalized learning, excellence, and marginalized kids' interests. Horizontal standards that shift how teaching and learning happen in classrooms are terrific, but vertical standards using traditional pedagogy are macho and mindless. Kids need freedom to design their…

  19. A weighted anisotropic variant of the Caffarelli-Kohn-Nirenberg inequality and applications

    NASA Astrophysics Data System (ADS)

    Bahrouni, Anouar; Rădulescu, Vicenţiu D.; Repovš, Dušan D.

    2018-04-01

    We present a weighted version of the Caffarelli-Kohn-Nirenberg inequality in the framework of variable exponents. The combination of this inequality with a variant of the fountain theorem, yields the existence of infinitely many solutions for a class of non-homogeneous problems with Dirichlet boundary condition.

  20. On extending Kohn-Sham density functionals to systems with fractional number of electrons.

    PubMed

    Li, Chen; Lu, Jianfeng; Yang, Weitao

    2017-06-07

    We analyze four ways of formulating the Kohn-Sham (KS) density functionals with a fractional number of electrons, through extending the constrained search space from the Kohn-Sham and the generalized Kohn-Sham (GKS) non-interacting v-representable density domain for integer systems to four different sets of densities for fractional systems. In particular, these density sets are (I) ensemble interacting N-representable densities, (II) ensemble non-interacting N-representable densities, (III) non-interacting densities by the Janak construction, and (IV) non-interacting densities whose composing orbitals satisfy the Aufbau occupation principle. By proving the equivalence of the underlying first order reduced density matrices associated with these densities, we show that sets (I), (II), and (III) are equivalent, and all reduce to the Janak construction. Moreover, for functionals with the ensemble v-representable assumption at the minimizer, (III) reduces to (IV) and thus justifies the previous use of the Aufbau protocol within the (G)KS framework in the study of the ground state of fractional electron systems, as defined in the grand canonical ensemble at zero temperature. By further analyzing the Aufbau solution for different density functional approximations (DFAs) in the (G)KS scheme, we rigorously prove that there can be one and only one fractional occupation for the Hartree Fock functional, while there can be multiple fractional occupations for general DFAs in the presence of degeneracy. This has been confirmed by numerical calculations using the local density approximation as a representative of general DFAs. This work thus clarifies important issues on density functional theory calculations for fractional electron systems.

  1. Paradoxical Pathways: An Ethnographic Extension of Kohn's Findings on Class and Childrearing

    ERIC Educational Resources Information Center

    Weininger, Elliot B.; Lareau, Annette

    2009-01-01

    Stratification is a central issue in family research, yet relatively few studies highlight its impact on family processes. Drawing on in-depth interviews (N = 137) and observational data (N = 12), we extend Melvin Kohn's research on childrearing values by examining how parental commitments to self-direction and conformity are enacted in daily…

  2. Sex and Class Differences in Parent-Child Interaction: A Test of Kohn's Hypothesis

    ERIC Educational Resources Information Center

    Gecas, Viktor; Nye, F. Ivan

    1974-01-01

    This paper focuses on Melvin Kohn's suggestive hypothesis that white-collar parents stress the development of internal standards of conduct in their children while blue-collar parents are more likely to react on the basis of the consequences of the child's behavior. This hypothesis was supported. (Author)

  3. In search of the Hohenberg-Kohn theorem

    NASA Astrophysics Data System (ADS)

    Lammert, Paul E.

    2018-04-01

    The Hohenberg-Kohn theorem, a cornerstone of electronic density functional theory, concerns uniqueness of external potentials yielding given ground densities of an N -body system. The problem is rigorously explored in a universe of three-dimensional Kato-class potentials, with emphasis on trade-offs between conditions on the density and conditions on the potential sufficient to ensure uniqueness. Sufficient conditions range from none on potentials coupled with everywhere strict positivity of the density to none on the density coupled with something a little weaker than local 3 N /2 -power integrability of the potential on a connected full-measure set. A second theme is localizability, that is, the possibility of uniqueness over subsets of R3 under less stringent conditions.

  4. Kohn's theorem, Larmor's equivalence principle and the Newton-Hooke group

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gibbons, G.W., E-mail: gwg1@amtp.cam.ac.uk; Pope, C.N.; George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Texas A and M University, College Station, TX 77843-4242

    2011-07-15

    Highlights: > We show that non-relativistic electrons moving in a magnetic field with trapping potential admits as relativity group the Newton-Hooke group. > We use this fact to give a group theoretic interpretation of Kohn's theorem and to obtain the spectrum. > We obtain the lightlike lift of the system exhibiting showing it coincides with the Nappi-Witten spacetime. - Abstract: We consider non-relativistic electrons, each of the same charge to mass ratio, moving in an external magnetic field with an interaction potential depending only on the mutual separations, possibly confined by a harmonic trapping potential. We show that the systemmore » admits a 'relativity group' which is a one-parameter family of deformations of the standard Galilei group to the Newton-Hooke group which is a Wigner-Inoenue contraction of the de Sitter group. This allows a group-theoretic interpretation of Kohn's theorem and related results. Larmor's theorem is used to show that the one-parameter family of deformations are all isomorphic. We study the 'Eisenhart' or 'lightlike' lift of the system, exhibiting it as a pp-wave. In the planar case, the Eisenhart lift is the Brdicka-Eardley-Nappi-Witten pp-wave solution of Einstein-Maxwell theory, which may also be regarded as a bi-invariant metric on the Cangemi-Jackiw group.« less

  5. Extension of the Kohn-Sham formulation of density functional theory to finite temperature

    NASA Astrophysics Data System (ADS)

    Gonis, A.; Däne, M.

    2018-05-01

    Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. We show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T > 0. Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T = 0, we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T > 0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T = 0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T = 0 . The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined, the

  6. Extension of the Kohn-Sham formulation of density functional theory to finite temperature

    DOE PAGES

    Gonis, A.; Dane, M.

    2017-12-20

    Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. Here, we show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T>0.more » Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T>0 we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T>0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T=0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T>0. The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined

  7. Extension of the Kohn-Sham formulation of density functional theory to finite temperature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gonis, A.; Dane, M.

    Based on Mermin's extension of the Hohenberg and Kohn theorems to non-zero temperature, the Kohn-Sham formulation of density functional theory (KS-DFT) is generalized to finite temperature. Here, we show that present formulations are inconsistent with Mermin's functional containing expressions, in particular describing the Coulomb energy, that defy derivation and are even in violation of rules of logical inference. More; current methodology is in violation of fundamental laws of both quantum and classical mechanics. Based on this feature, we demonstrate the impossibility of extending the KS formalism to finite temperature through the self-consistent solutions of the single-particle Schrödinger equation of T>0.more » Guided by the form of Mermin's functional that depends on the eigenstates of a Hamiltonian, determined at T>0 we base our extension of KS-DFT on the determination of the excited states of a non-interacting system at the zero of temperature. The resulting formulation is consistent with that of Mermin constructing the free energy at T>0 in terms of the excited states of a non-interacting Hamiltonian (system) that, within the KS formalism, are described by Slater determinants. To determine the excited states at T=0 use is made of the extension of the Hohenberg and Kohn theorems to excited states presented in previous work applied here to a non-interacting collection of replicas of a non-interacting N-particle system, whose ground state density is taken to match that of K non-interacting replicas of an interacting N-particle system at T>0. The formalism allows for an ever denser population of the excitation spectrum of a Hamiltonian, within the KS approximation. The form of the auxiliary potential, (Kohn-Sham potential), is formally identical to that in the ground state formalism with the contribution of the Coulomb energy provided by the derivative of the Coulomb energy in all excited states taken into account. Once the excited states are determined

  8. Natural Allelic Variations in Highly Polyploidy Saccharum Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Jian; Yang, Xiping; Resende, Jr., Marcio F. R.

    Sugarcane ( Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designedmore » based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWAmem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. Furthermore, the target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.« less

  9. Natural Allelic Variations in Highly Polyploidy Saccharum Complex

    DOE PAGES

    Song, Jian; Yang, Xiping; Resende, Jr., Marcio F. R.; ...

    2016-06-08

    Sugarcane ( Saccharum spp.) is an important sugar and biofuel crop with high polyploid and complex genomes. The Saccharum complex, comprised of Saccharum genus and a few related genera, are important genetic resources for sugarcane breeding. A large amount of natural variation exists within the Saccharum complex. Though understanding their allelic variation has been challenging, it is critical to dissect allelic structure and to identify the alleles controlling important traits in sugarcane. To characterize natural variations in Saccharum complex, a target enrichment sequencing approach was used to assay 12 representative germplasm accessions. In total, 55,946 highly efficient probes were designedmore » based on the sorghum genome and sugarcane unigene set targeting a total of 6 Mb of the sugarcane genome. A pipeline specifically tailored for polyploid sequence variants and genotype calling was established. BWAmem and sorghum genome approved to be an acceptable aligner and reference for sugarcane target enrichment sequence analysis, respectively. Genetic variations including 1,166,066 non-redundant SNPs, 150,421 InDels, 919 gene copy number variations, and 1,257 gene presence/absence variations were detected. SNPs from three different callers (Samtools, Freebayes, and GATK) were compared and the validation rates were nearly 90%. Based on the SNP loci of each accession and their ploidy levels, 999,258 single dosage SNPs were identified and most loci were estimated as largely homozygotes. An average of 34,397 haplotype blocks for each accession was inferred. The highest divergence time among the Saccharum spp. was estimated as 1.2 million years ago (MYA). Saccharum spp. diverged from Erianthus and Sorghum approximately 5 and 6 MYA, respectively. Furthermore, the target enrichment sequencing approach provided an effective way to discover and catalog natural allelic variation in highly polyploid or heterozygous genomes.« less

  10. Efficient iterative method for solving the Dirac-Kohn-Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lin, Lin; Shao, Sihong; E, Weinan

    2012-11-06

    We present for the first time an efficient iterative method to directly solve the four-component Dirac-Kohn-Sham (DKS) density functional theory. Due to the existence of the negative energy continuum in the DKS operator, the existing iterative techniques for solving the Kohn-Sham systems cannot be efficiently applied to solve the DKS systems. The key component of our method is a novel filtering step (F) which acts as a preconditioner in the framework of the locally optimal block preconditioned conjugate gradient (LOBPCG) method. The resulting method, dubbed the LOBPCG-F method, is able to compute the desired eigenvalues and eigenvectors in the positive energy band without computing any state in the negative energy band. The LOBPCG-F method introduces mild extra cost compared to the standard LOBPCG method and can be easily implemented. We demonstrate our method in the pseudopotential framework with a planewave basis set which naturally satisfies the kinetic balance prescription. Numerical results for Ptmore » $$_{2}$$, Au$$_{2}$$, TlF, and Bi$$_{2}$$Se$$_{3}$$ indicate that the LOBPCG-F method is a robust and efficient method for investigating the relativistic effect in systems containing heavy elements.« less

  11. Influence of Kohn singularity on the occurrence scattering time in degenerate quantum collisional plasmas

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2017-10-01

    The influence of Kohn singularity on the occurrence scattering time for the electron-ion interaction is investigated in degenerate quantum collisional plasmas. The first-order eikonal analysis is used to obtain the scattering amplitude and the occurrence scattering time. The result shows that the Friedel oscillation due to the Kohn singularity suppresses the advance phenomena of occurrence scattering time in both forward and backward scattering domains. It is shown that the increase of plasmon energy would reduce the time advance for both forward and backward scattering domains. However, the increase of Fermi energy would enhance the phenomena of time advance. It is also found that the time advance with high collision frequency is larger than that with low collision frequency for the forward scattering domain and vice versa for the backward scattering domain. We have shown that the time advance is stronger in general for the forward scattering domain than that for the backward scattering domain.

  12. Dynamical basis sets for algebraic variational calculations in quantum-mechanical scattering theory

    NASA Technical Reports Server (NTRS)

    Sun, Yan; Kouri, Donald J.; Truhlar, Donald G.; Schwenke, David W.

    1990-01-01

    New basis sets are proposed for linear algebraic variational calculations of transition amplitudes in quantum-mechanical scattering problems. These basis sets are hybrids of those that yield the Kohn variational principle (KVP) and those that yield the generalized Newton variational principle (GNVP) when substituted in Schlessinger's stationary expression for the T operator. Trial calculations show that efficiencies almost as great as that of the GNVP and much greater than the KVP can be obtained, even for basis sets with the majority of the members independent of energy.

  13. Physical Meaning of Virtual Kohn-Sham Orbitals and Orbital Energies: An Ideal Basis for the Description of Molecular Excitations.

    PubMed

    van Meer, R; Gritsenko, O V; Baerends, E J

    2014-10-14

    In recent years, several benchmark studies on the performance of large sets of functionals in time-dependent density functional theory (TDDFT) calculations of excitation energies have been performed. The tested functionals do not approximate exact Kohn-Sham orbitals and orbital energies closely. We highlight the advantages of (close to) exact Kohn-Sham orbitals and orbital energies for a simple description, very often as just a single orbital-to-orbital transition, of molecular excitations. Benchmark calculations are performed for the statistical average of orbital potentials (SAOP) functional for the potential [J. Chem. Phys. 2000, 112, 1344; 2001, 114, 652], which approximates the true Kohn-Sham potential much better than LDA, GGA, mGGA, and hybrid potentials do. An accurate Kohn-Sham potential does not only perform satisfactorily for calculated vertical excitation energies of both valence and Rydberg transitions but also exhibits appealing properties of the KS orbitals including occupied orbital energies close to ionization energies, virtual-occupied orbital energy gaps very close to excitation energies, realistic shapes of virtual orbitals, leading to straightforward interpretation of most excitations as single orbital transitions. We stress that such advantages are completely lost in time-dependent Hartree-Fock and partly in hybrid approaches. Many excitations and excitation energies calculated with local density, generalized gradient, and hybrid functionals are spurious. There is, with an accurate KS, or even the LDA or GGA potentials, nothing problematic about the "band gap" in molecules: the HOMO-LUMO gap is close to the first excitation energy (the optical gap).

  14. The Relation between Parental Values and Parenting Behavior: A Test of the Kohn Hypothesis.

    ERIC Educational Resources Information Center

    Luster, Tom; Rhoades, Kelly

    To investigate how values influence parenting beliefs and practices, a test was made of Kohn's hypothesis that parents valuing self-direction emphasize the supportive function of parenting, while parents valuing conformity emphasize control of unsanctioned behaviors. Participating in the study were 65 mother-infant dyads. Infants ranged in age…

  15. "Fighting the Toxic Status Quo": Alfie Kohn on Standardized Tests and Teacher Education.

    ERIC Educational Resources Information Center

    Appleman, Deborah; Thompson, Micheal J.

    2002-01-01

    Considers how many teacher educators feel caught between the need to comply with state and federal laws governing the approval of their teacher education programs and the desire to resist what many feel to be another example of "testing gone wild." Presents a conversation with Alfie Kohn on high stakes tests for teachers and for students. (SG)

  16. Orbital-free extension to Kohn-Sham density functional theory equation of state calculations: Application to silicon dioxide

    DOE PAGES

    Sjostrom, Travis; Crockett, Scott

    2015-09-02

    The liquid regime equation of state of silicon dioxide SiO 2 is calculated via quantum molecular dynamics in the density range of 5 to 15 g/cc and with temperatures from 0.5 to 100 eV, including the α-quartz and stishovite phase Hugoniot curves. Below 8 eV calculations are based on Kohn-Sham density functional theory (DFT), and above 8 eV a new orbital-free DFT formulation, presented here, based on matching Kohn-Sham DFT calculations is employed. Recent experimental shock data are found to be in very good agreement with the current results. Finally both experimental and simulation data are used in constructing amore » new liquid regime equation of state table for SiO 2.« less

  17. Testing Kohn's self-reliance hypothesis among high school adolescents.

    PubMed

    Davis, R A

    1986-01-01

    Melvin Kohn and his associates have established that self-reliance promotes a sense of well-being (lower levels of fatalism) among adults. The present study attempts to test this proposition among adolescents. Instead of the usual job-related activities, however, it incorporates an alternative measure of self-reliance--high school curriculum assignment. Consistent with previous findings among adults, the results of this study show that self-reliance among adolescents also promotes a sense of well-being: students enrolled in tracks where close supervision is kept to a minimum and the exercise of initiative is emphasized tended to exhibit lower levels of fatalism. The implications of this finding for adolescents are discussed.

  18. Variationally consistent approximation scheme for charge transfer

    NASA Technical Reports Server (NTRS)

    Halpern, A. M.

    1978-01-01

    The author has developed a technique for testing various charge-transfer approximation schemes for consistency with the requirements of the Kohn variational principle for the amplitude to guarantee that the amplitude is correct to second order in the scattering wave functions. Applied to Born-type approximations for charge transfer it allows the selection of particular groups of first-, second-, and higher-Born-type terms that obey the consistency requirement, and hence yield more reliable approximation to the amplitude.

  19. Truly self-consistent solution of Kohn-Sham equations for extended systems with inhomogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Shul'man, A. Ya; Posvyanskii, D. V.

    2014-05-01

    The density functional approach in the Kohn-Sham approximation is widely used to study properties of many-electron systems. Due to the nonlinearity of the Kohn-Sham equations, the general self-consistent solution method for infinite systems involves iterations with alternate solutions of the Poisson and Schrödinger equations. One of problems with such an approach is that the charge distribution, updated by solving the Schrodinger equation, may be incompatible with the boundary conditions of the Poisson equation for Coulomb potential. The resulting instability or divergence manifests itself most appreciably in the case of infinitely extended systems because the corresponding boundary-value problem becomes singular. In this work the stable iterative scheme for solving the Kohn-Sham equations for infinite systems with inhomogeneous electron gas is described based on eliminating the long-range character of the Coulomb interaction, which causes the tight coupling of the charge distribution with the boundary conditions. This algorithm has been previously successfully implemented in the calculation of work function and surface energy of simple metals in the jellium model. Here it is used to calculate the energy spectrum of quasi-two-dimensional electron gas in the accumulation layer at the semiconductor surface n-InAs. The electrons in such a structure occupy states that belong to both discrete and continuous parts of the energy spectrum. This causes the problems of convergence in the usually used approaches, which do not exist in our case. Because of the narrow bandgap of InAs, it is necessary to take the nonparabolicity of the conduction band into account; this is done by means of a new effective mass method. The calculated quasi-two-dimensional energy bands correspond well to experimental data measured by the angle resolved photoelectron spectroscopy technique.

  20. The Effects of Occupational Conditions upon the Division of Household Labor: An Application of Kohn's Theory.

    ERIC Educational Resources Information Center

    Seccombe, Karen

    1986-01-01

    Tested Kohn's theory that people who work in highly supervised, routinized occupations are likely to value obedience and conformity in marital and parental relationships. Findings from 244 couples revealed that working conditions were not strong predictors of division of household labor. Concludes that nontraditional gender role values,…

  1. Smoothing of Transport Plans with Fixed Marginals and Rigorous Semiclassical Limit of the Hohenberg-Kohn Functional

    NASA Astrophysics Data System (ADS)

    Cotar, Codina; Friesecke, Gero; Klüppelberg, Claudia

    2018-06-01

    We prove rigorously that the exact N-electron Hohenberg-Kohn density functional converges in the strongly interacting limit to the strictly correlated electrons (SCE) functional, and that the absolute value squared of the associated constrained search wavefunction tends weakly in the sense of probability measures to a minimizer of the multi-marginal optimal transport problem with Coulomb cost associated to the SCE functional. This extends our previous work for N = 2 ( Cotar etal. in Commun Pure Appl Math 66:548-599, 2013). The correct limit problem has been derived in the physics literature by Seidl (Phys Rev A 60 4387-4395, 1999) and Seidl, Gorigiorgi and Savin (Phys Rev A 75:042511 1-12, 2007); in these papers the lack of a rigorous proofwas pointed out.We also give amathematical counterexample to this type of result, by replacing the constraint of given one-body density—an infinite dimensional quadratic expression in the wavefunction—by an infinite-dimensional quadratic expression in the wavefunction and its gradient. Connections with the Lawrentiev phenomenon in the calculus of variations are indicated.

  2. Stability conditions for exact-exchange Kohn-Sham methods and their relation to correlation energies from the adiabatic-connection fluctuation-dissipation theorem.

    PubMed

    Bleiziffer, Patrick; Schmidtel, Daniel; Görling, Andreas

    2014-11-28

    The occurrence of instabilities, in particular singlet-triplet and singlet-singlet instabilities, in the exact-exchange (EXX) Kohn-Sham method is investigated. Hessian matrices of the EXX electronic energy with respect to the expansion coefficients of the EXX effective Kohn-Sham potential in an auxiliary basis set are derived. The eigenvalues of these Hessian matrices determine whether or not instabilities are present. Similar as in the corresponding Hartree-Fock case instabilities in the EXX method are related to symmetry breaking of the Hamiltonian operator for the EXX orbitals. In the EXX methods symmetry breaking can easily be visualized by displaying the local multiplicative exchange potential. Examples (N2, O2, and the polyyne C10H2) for instabilities and symmetry breaking are discussed. The relation of the stability conditions for EXX methods to approaches calculating the Kohn-Sham correlation energy via the adiabatic-connection fluctuation-dissipation (ACFD) theorem is discussed. The existence or nonexistence of singlet-singlet instabilities in an EXX calculation is shown to indicate whether or not the frequency-integration in the evaluation of the correlation energy is singular in the EXX-ACFD method. This method calculates the Kohn-Sham correlation energy through the ACFD theorem theorem employing besides the Coulomb kernel also the full frequency-dependent exchange kernel and yields highly accurate electronic energies. For the case of singular frequency-integrands in the EXX-ACFD method a regularization is suggested. Finally, we present examples of molecular systems for which the self-consistent field procedure of the EXX as well as the Hartree-Fock method can converge to more than one local minimum depending on the initial conditions.

  3. From the Kohn-Sham band gap to the fundamental gap in solids. An integer electron approach.

    PubMed

    Baerends, E J

    2017-06-21

    It is often stated that the Kohn-Sham occupied-unoccupied gap in both molecules and solids is "wrong". We argue that this is not a correct statement. The KS theory does not allow to interpret the exact KS HOMO-LUMO gap as the fundamental gap (difference (I - A) of electron affinity (A) and ionization energy (I), twice the chemical hardness), from which it indeed differs, strongly in molecules and moderately in solids. The exact Kohn-Sham HOMO-LUMO gap in molecules is much below the fundamental gap and very close to the much smaller optical gap (first excitation energy), and LDA/GGA yield very similar gaps. In solids the situation is different: the excitation energy to delocalized excited states and the fundamental gap (I - A) are very similar, not so disparate as in molecules. Again the Kohn-Sham and LDA/GGA band gaps do not represent (I - A) but are significantly smaller. However, the special properties of an extended system like a solid make it very easy to calculate the fundamental gap from the ground state (neutral system) band structure calculations entirely within a density functional framework. The correction Δ from the KS gap to the fundamental gap originates from the response part v resp of the exchange-correlation potential and can be calculated very simply using an approximation to v resp . This affords a calculation of the fundamental gap at the same level of accuracy as other properties of crystals at little extra cost beyond the ground state bandstructure calculation. The method is based on integer electron systems, fractional electron systems (an ensemble of N- and (N + 1)-electron systems) and the derivative discontinuity are not invoked.

  4. Generalization of the Kohn-Sham system that can represent arbitrary one-electron density matrices

    DOE PAGES

    Hubertus J. J. van Dam

    2016-04-27

    Density functional theory is currently the most widely applied method in electronic structure theory. The Kohn-Sham method, based on a fictitious system of noninteracting particles, is the workhorse of the theory. The particular form of the Kohn-Sham wave function admits only idempotent one-electron density matrices whereas wave functions of correlated electrons in post-Hartree-Fock methods invariably have fractional occupation numbers. Here we show that by generalizing the orbital concept and introducing a suitable dot product as well as a probability density, a noninteracting system can be chosen that can represent the one-electron density matrix of any system, even one with fractionalmore » occupation numbers. This fictitious system ensures that the exact electron density is accessible within density functional theory. It can also serve as the basis for reduced density matrix functional theory. Moreover, to aid the analysis of the results the orbitals may be assigned energies from a mean-field Hamiltonian. This produces energy levels that are akin to Hartree-Fock orbital energies such that conventional analyses based on Koopmans' theorem are available. Lastly, this system is convenient in formalisms that depend on creation and annihilation operators as they are trivially applied to single-determinant wave functions.« less

  5. The Hartree product and the description of local and global quantities in atomic systems: A study within Kohn-Sham theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garza, Jorge; Nichols, Jeffrey A.; Dixon, David A.

    2000-01-15

    The Hartree product is analyzed in the context of Kohn-Sham theory. The differential equations that emerge from this theory are solved with the optimized effective potential using the Krieger, Li, and Iafrate approximation, in order to get a local potential as required by the ordinary Kohn-Sham procedure. Because the diagonal terms of the exact exchange energy are included in Hartree theory, it is self-interaction free and the exchange potential has the proper asymptotic behavior. We have examined the impact of this correct asymptotic behavior on local and global properties using this simple model to approximate the exchange energy. Local quantities,more » such as the exchange potential and the average local electrostatic potential are used to examine whether the shell structure in an atom is revealed by this theory. Global quantities, such as the highest occupied orbital energy (related to the ionization potential) and the exchange energy are also calculated. These quantities are contrasted with those obtained from calculations with the local density approximation, the generalized gradient approximation, and the self-interaction correction approach proposed by Perdew and Zunger. We conclude that the main characteristics in an atomic system are preserved with the Hartree theory. In particular, the behavior of the exchange potential obtained in this theory is similar to those obtained within other Kohn-Sham approximations. (c) 2000 American Institute of Physics.« less

  6. Charge transfer excitations from exact and approximate ensemble Kohn-Sham theory

    NASA Astrophysics Data System (ADS)

    Gould, Tim; Kronik, Leeor; Pittalis, Stefano

    2018-05-01

    By studying the lowest excitations of an exactly solvable one-dimensional soft-Coulomb molecular model, we show that components of Kohn-Sham ensembles can be used to describe charge transfer processes. Furthermore, we compute the approximate excitation energies obtained by using the exact ensemble densities in the recently formulated ensemble Hartree-exchange theory [T. Gould and S. Pittalis, Phys. Rev. Lett. 119, 243001 (2017)]. Remarkably, our results show that triplet excitations are accurately reproduced across a dissociation curve in all cases tested, even in systems where ground state energies are poor due to strong static correlations. Singlet excitations exhibit larger deviations from exact results but are still reproduced semi-quantitatively.

  7. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor-LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn.

    PubMed

    Giuliani, Cesidio; Saji, Motoyasu; Bucci, Ines; Napolitano, Giorgio

    2016-01-01

    Since the discovery 60 years ago of the "long-acting thyroid stimulator" by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves' disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves' disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves' disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR-rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves' disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided.

  8. Bioassays for TSH Receptor Autoantibodies, from FRTL-5 Cells to TSH Receptor–LH/CG Receptor Chimeras: The Contribution of Leonard D. Kohn

    PubMed Central

    Giuliani, Cesidio; Saji, Motoyasu; Bucci, Ines; Napolitano, Giorgio

    2016-01-01

    Since the discovery 60 years ago of the “long-acting thyroid stimulator” by Adams and Purves, great progress has been made in the detection of thyroid-stimulating hormone (TSH) receptor (TSHR) autoantibodies (TRAbs) in Graves’ disease. Today, commercial assays are available that can detect TRAbs with high accuracy and provide diagnostic and prognostic evaluation of patients with Graves’ disease. The present review focuses on the development of TRAbs bioassays, and particularly on the role that Leonard D. Kohn had in this. Indeed, 30 years ago, the Kohn group developed a bioassay based on the use of FRTL-5 cells that was characterized by high reproducibility, feasibility, and diagnostic accuracy. Using this FRTL-5 bioassay, Kohn and his colleagues were the first to develop monoclonal antibodies (moAbs) against the TSHR. Furthermore, they demonstrated the multifaceted functional nature of TRAbs in patients with Graves’ disease, with the identification of stimulating and blocking TRAbs, and even antibodies that activated pathways other than cAMP. After the cloning of the TSHR, the Kohn laboratory constructed human TSHR–rat luteinizing hormone/chorionic gonadotropin receptor chimeras. This paved the way to a new bioassay based on the use of non-thyroid cells transfected with the Mc4 chimera. The new Mc4 bioassay is characterized by high diagnostic and prognostic accuracy, greater than for other assays. The availability of a commercial kit based on the Mc4 chimera is spreading the use of this assay worldwide, indicating its benefits for these patients with Graves’ disease. This review also describes the main contributions made by other researchers in TSHR molecular biology and TRAbs assay, especially with the development of highly potent moAbs. A comparison of the diagnostic accuracies of the main TRAbs assays, as both immunoassays and bioassays, is also provided. PMID:27504107

  9. Variational treatment of electron-polyatomic-molecule scattering calculations using adaptive overset grids

    NASA Astrophysics Data System (ADS)

    Greenman, Loren; Lucchese, Robert R.; McCurdy, C. William

    2017-11-01

    The complex Kohn variational method for electron-polyatomic-molecule scattering is formulated using an overset-grid representation of the scattering wave function. The overset grid consists of a central grid and multiple dense atom-centered subgrids that allow the simultaneous spherical expansions of the wave function about multiple centers. Scattering boundary conditions are enforced by using a basis formed by the repeated application of the free-particle Green's function and potential Ĝ0+V ̂ on the overset grid in a Born-Arnoldi solution of the working equations. The theory is shown to be equivalent to a specific Padé approximant to the T matrix and has rapid convergence properties, in both the number of numerical basis functions employed and the number of partial waves employed in the spherical expansions. The method is demonstrated in calculations on methane and CF4 in the static-exchange approximation and compared in detail with calculations performed with the numerical Schwinger variational approach based on single-center expansions. An efficient procedure for operating with the free-particle Green's function and exchange operators (to which no approximation is made) is also described.

  10. Sex and Class Differences in Parent-Child Interaction: A Test of Kohn's Hypothesis. Scientific Paper No. 4181.

    ERIC Educational Resources Information Center

    Gecas, Viktor; Nye, F. Ivan

    This paper examines sex and class differences in the style and circumstances of parental discipline of the child. Specifically, we have focused on Melvin Kohn's suggestive hypothesis that white collar parents stress the development of internal standards of conduct in their children and thus are more likely to discipline the child on the basis of…

  11. SANS with contrast variation study of the bacteriorhodopsin-octyl glucoside complex

    NASA Astrophysics Data System (ADS)

    Mo, Yiming; Heller, William T.

    2010-11-01

    Membrane proteins (MPs), which play vital roles in trans-membrane trafficking and signalling between cells and their external environment, comprise a major fraction of the expressed proteomes of many organisms. MP production for biophysical characterization requires detergents for extracting MPs from their native membrane and to solubilize the MP in solution for purification and study. In a proper detergent solution, the detergent-associated MPs retain their native fold and oligomerization state, key requirements for biophysical characterization and crystallization. SANS with contrast variation was performed to characterize BR in complex with OG to better understand the MP-detergent complex. Contrast variation makes it possible to not only probe the conformation of the entire structure but also investigate the conformation of the polypeptide chain within the BR-OG complex. The BR-OG SANS contrast variation series is not consistent with a compact structure, such as a trimeric BR complex surrounded by a belt of detergent. The data strongly suggest that the protein is partially unfolded through its association with the detergent micelles.

  12. Deming's Quality: Our Last but Best Hope.

    ERIC Educational Resources Information Center

    Schenkat, Randy

    1993-01-01

    If educators endorse Alfie Kohn's surface message about Total Quality Management, they may miss opportunity to professionalize education. Deming's system of profound knowledge (interaction of theories of systems, knowledge, psychology, and variation) is a model for educated people grappling with life's complexities. Moreover, gaining community…

  13. Functional renormalization group and Kohn-Sham scheme in density functional theory

    NASA Astrophysics Data System (ADS)

    Liang, Haozhao; Niu, Yifei; Hatsuda, Tetsuo

    2018-04-01

    Deriving accurate energy density functional is one of the central problems in condensed matter physics, nuclear physics, and quantum chemistry. We propose a novel method to deduce the energy density functional by combining the idea of the functional renormalization group and the Kohn-Sham scheme in density functional theory. The key idea is to solve the renormalization group flow for the effective action decomposed into the mean-field part and the correlation part. Also, we propose a simple practical method to quantify the uncertainty associated with the truncation of the correlation part. By taking the φ4 theory in zero dimension as a benchmark, we demonstrate that our method shows extremely fast convergence to the exact result even for the highly strong coupling regime.

  14. Kohn-Sham approach to quantum electrodynamical density-functional theory: Exact time-dependent effective potentials in real space.

    PubMed

    Flick, Johannes; Ruggenthaler, Michael; Appel, Heiko; Rubio, Angel

    2015-12-15

    The density-functional approach to quantum electrodynamics extends traditional density-functional theory and opens the possibility to describe electron-photon interactions in terms of effective Kohn-Sham potentials. In this work, we numerically construct the exact electron-photon Kohn-Sham potentials for a prototype system that consists of a trapped electron coupled to a quantized electromagnetic mode in an optical high-Q cavity. Although the effective current that acts on the photons is known explicitly, the exact effective potential that describes the forces exerted by the photons on the electrons is obtained from a fixed-point inversion scheme. This procedure allows us to uncover important beyond-mean-field features of the effective potential that mark the breakdown of classical light-matter interactions. We observe peak and step structures in the effective potentials, which can be attributed solely to the quantum nature of light; i.e., they are real-space signatures of the photons. Our findings show how the ubiquitous dipole interaction with a classical electromagnetic field has to be modified in real space to take the quantum nature of the electromagnetic field fully into account.

  15. Validation and application of auxiliary density perturbation theory and non-iterative approximation to coupled-perturbed Kohn-Sham approach for calculation of dipole-quadrupole polarizability

    NASA Astrophysics Data System (ADS)

    Shedge, Sapana V.; Pal, Sourav; Köster, Andreas M.

    2011-07-01

    Recently, two non-iterative approaches have been proposed to calculate response properties within density functional theory (DFT). These approaches are auxiliary density perturbation theory (ADPT) and the non-iterative approach to the coupled-perturbed Kohn-Sham (NIA-CPKS) method. Though both methods are non-iterative, they use different techniques to obtain the perturbed Kohn-Sham matrix. In this Letter, for the first time, both of these two independent methods have been used for the calculation of dipole-quadrupole polarizabilities. To validate these methods, three tetrahedral molecules viz., P4,CH4 and adamantane (C10H16) have been used as examples. The comparison with MP2 and CCSD proves the reliability of the methodology.

  16. Quadratic response functions in the relativistic four-component Kohn-Sham approximation

    NASA Astrophysics Data System (ADS)

    Henriksson, Johan; Saue, Trond; Norman, Patrick

    2008-01-01

    A formulation and implementation of the quadratic response function in the adiabatic four-component Kohn-Sham approximation is presented. The noninteracting reference state is time-reversal symmetric and formed from Kramers pair spinors, and the energy density is gradient corrected. Example calculations are presented for the optical properties of disubstituted halobenzenes in their meta and ortho conformations. It is demonstrated that correlation and relativistic effects are not additive, and it is shown that relativity alone reduces the μβ¯-response signal by 62% and 75% for meta- and ortho-bromobenzene, respectively, and enhances the same response by 17% and 21% for meta- and ortho-iodobenzene, respectively. Of the employed functionals, CAM-B3LYP shows the best performance and gives hyperpolarizabilities β distinctly different from B3LYP.

  17. Far-infrared response of spherical quantum dots: Dielectric effects and the generalized Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Movilla, J. L.; Planelles, J.

    2007-05-01

    The influence of the dielectric environment on the far-infrared (FIR) absorption spectra of two-electron spherical quantum dots is theoretically studied. Effective mass and envelope function approaches with realistic steplike confining potentials are used. Special attention is paid to absorptions that are induced by the electron-electron interaction. High confining barriers make the FIR absorption coefficients almost independent of the quantum dot dielectric environment. Low barrier heights and strong dielectric mismatches preserve the strong fundamental (Kohn) mode but yield the cancellation of excited absorptions, thus monitoring dielectrically induced phase transitions from volume to surface states.

  18. Breakdown of lung framework and an increase in pores of Kohn as initial events of emphysema and a cause of reduction in diffusing capacity.

    PubMed

    Yoshikawa, Akira; Sato, Shuntaro; Tanaka, Tomonori; Hashisako, Mikiko; Kashima, Yukio; Tsuchiya, Tomoshi; Yamasaki, Naoya; Nagayasu, Takeshi; Yamamoto, Hiroshi; Fukuoka, Junya

    2016-01-01

    Pulmonary emphysema is the pathological prototype of chronic obstructive pulmonary disease and is also associated with other lung diseases. We considered that observation with different approaches may provide new insights for the pathogenesis of emphysema. We reviewed tissue blocks of the lungs of 25 cases with/without emphysema and applied a three-dimensional observation method to the blocks. Based on the three-dimensional characteristics of the alveolar structure, we considered one face of the alveolar polyhedron as a structural unit of alveoli and called it a framework unit (FU). We categorized FUs based on their morphological characteristics and counted their number to evaluate the destructive changes in alveoli. We also evaluated the number and the area of pores of Kohn in FUs. We performed linear regression analysis to estimate the effect of these data on pulmonary function tests. In multivariable regression analysis, a decrease in the number of FUs without an alveolar wall led to a significant decrease in the diffusing capacity of the lung for carbon monoxide (DLCO) and DLCO per unit alveolar volume, and an increase in the area of pores of Kohn had a significant effect on an increase in residual capacity. A breakdown in the lung framework and an increase in pores of Kohn are associated with a decrease in DLCO and DLCO per unit alveolar volume with/without emphysema.

  19. High-temperature electronic structure with the Korringa-Kohn-Rostoker Green's function method

    NASA Astrophysics Data System (ADS)

    Starrett, C. E.

    2018-05-01

    Modeling high-temperature (tens or hundreds of eV), dense plasmas is challenging due to the multitude of non-negligible physical effects including significant partial ionization and multisite effects. These effects cause the breakdown or intractability of common methods and approximations used at low temperatures, such as pseudopotentials or plane-wave basis sets. Here we explore the Korringa-Kohn-Rostoker Green's function method at these high-temperature conditions. The method is all electron, does not rely on pseudopotentials, and uses a spherical harmonic basis set, and so avoids the aforementioned limitations. It is found to be accurate for solid density aluminum and iron plasmas when compared to a plane-wave method at low temperature, while being able to access high temperatures.

  20. Effects of edge magnetism on the Kohn anomalies of zigzag graphene nanoribbons.

    PubMed

    Culchac, F J; Capaz, Rodrigo B

    2016-02-12

    The effects of edge magnetism on the Kohn anomaly (KA) of the G-band phonons of zigzag graphene nanoribbons (ZGNRs) are studied using a combination of the tight-binding and mean-field Hubbard models. We show that the opening of an energy gap, induced by magnetic ordering, significantly changes the KA effects, particularly for narrow ribbons in which the gap is larger than the phonon energy. Therefore, the G-band phonon frequency and lifetime are altered for a magnetically-ordered edge state with respect to an unpolarized edge state. The effects of temperature, ZGNR width, doping and transverse electric fields are systematically investigated. We propose using this effect to probe the magnetic order of edge states in graphene nanoribbons using Raman spectroscopy.

  1. Analysis of polarization in hydrogen bonded complexes: An asymptotic projection approach

    NASA Astrophysics Data System (ADS)

    Drici, Nedjoua

    2018-03-01

    The asymptotic projection technique is used to investigate the polarization effect that arises from the interaction between the relaxed, and frozen monomeric charge densities of a set of neutral and charged hydrogen bonded complexes. The AP technique based on the resolution of the original Kohn-Sham equations can give an acceptable qualitative description of the polarization effect in neutral complexes. The significant overlap of the electron densities, in charged and π-conjugated complexes, impose further development of a new functional, describing the coupling between constrained and non-constrained electron densities within the AP technique to provide an accurate representation of the polarization effect.

  2. Understanding band gaps of solids in generalized Kohn-Sham theory.

    PubMed

    Perdew, John P; Yang, Weitao; Burke, Kieron; Yang, Zenghui; Gross, Eberhard K U; Scheffler, Matthias; Scuseria, Gustavo E; Henderson, Thomas M; Zhang, Igor Ying; Ruzsinszky, Adrienn; Peng, Haowei; Sun, Jianwei; Trushin, Egor; Görling, Andreas

    2017-03-14

    The fundamental energy gap of a periodic solid distinguishes insulators from metals and characterizes low-energy single-electron excitations. However, the gap in the band structure of the exact multiplicative Kohn-Sham (KS) potential substantially underestimates the fundamental gap, a major limitation of KS density-functional theory. Here, we give a simple proof of a theorem: In generalized KS theory (GKS), the band gap of an extended system equals the fundamental gap for the approximate functional if the GKS potential operator is continuous and the density change is delocalized when an electron or hole is added. Our theorem explains how GKS band gaps from metageneralized gradient approximations (meta-GGAs) and hybrid functionals can be more realistic than those from GGAs or even from the exact KS potential. The theorem also follows from earlier work. The band edges in the GKS one-electron spectrum are also related to measurable energies. A linear chain of hydrogen molecules, solid aluminum arsenide, and solid argon provide numerical illustrations.

  3. Characterizing complex structural variation in germline and somatic genomes

    PubMed Central

    Quinlan, Aaron R.; Hall, Ira M.

    2011-01-01

    Genome structural variation (SV) is a major source of genetic diversity in mammals and a hallmark of cancer. While SV is typically defined by its canonical forms – duplication, deletion, insertion, inversion and translocation – recent breakpoint mapping studies have revealed a surprising number of “complex” variants that evade simple classification. Complex SVs are defined by clustered breakpoints that arose through a single mutation but cannot be explained by one simple end-joining or recombination event. Some complex variants exhibit profoundly complicated rearrangements between distinct loci from multiple chromosomes, while others involve more subtle alterations at a single locus. These diverse and unpredictable features present a challenge for SV mapping experiments. Here, we review current knowledge of complex SV in mammals, and outline techniques for identifying and characterizing complex variants using next-generation DNA sequencing. PMID:22094265

  4. Syntactic Complexity, Lexical Variation and Accuracy as a Function of Task Complexity and Proficiency Level in L2 Writing and Speaking

    ERIC Educational Resources Information Center

    Kuiken, Folkert; Vedder, Ineke

    2012-01-01

    The research project reported in this chapter consists of three studies in which syntactic complexity, lexical variation and fluency appear as dependent variables. The independent variables are task complexity and proficiency level, as the three studies investigate the effect of task complexity on the written and oral performance of L2 learners of…

  5. The child-rearing values of Asian and British parents and young people: an inter-ethnic and inter-generational comparison in the evaluation of Kohn's 13 qualities.

    PubMed

    Stopes-Roe, M; Cochrane, R

    1990-06-01

    As part of a larger survey concerned with attitudes and experiences of two generations of Asian-British and of native white British, respondents were asked to rate the three most desirable of Kohn's (1969) 13 values in child rearing. Sampling in urban areas with large Asian populations provided a total sample of relatively homogeneous socio-economic status; thus, the class comparisons which informed Kohn's original thesis were less relevant. Comparisons were made on the basis of generation and of ethnicity. It was found that Asians value conformity more and self-direction less than the British, and that this difference is considerably more pronounced in the older than in the younger generation. Extent of traditionalism in family processes was related to evaluations. For Asian young people only, extent of assimilation with British life was related to evaluation made.

  6. Exploration of near the origin and the asymptotic behaviors of the Kohn-Sham kinetic energy density for two-dimensional quantum dot systems with parabolic confinement

    NASA Astrophysics Data System (ADS)

    Jana, Subrata; Samal, Prasanjit

    2018-01-01

    The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ˜ρ/(r ) r2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.

  7. Exploration of near the origin and the asymptotic behaviors of the Kohn-Sham kinetic energy density for two-dimensional quantum dot systems with parabolic confinement.

    PubMed

    Jana, Subrata; Samal, Prasanjit

    2018-01-14

    The behaviors of the positive definite Kohn-Sham kinetic energy density near the origin and at the asymptotic region play a major role in designing meta-generalized gradient approximations (meta-GGAs) for exchange in low-dimensional quantum systems. It is shown that near the origin of the parabolic quantum dot, the Kohn-Sham kinetic energy differs from its von Weizsäcker counterpart due to the p orbital contributions, whereas in the asymptotic region, the difference between the above two kinetic energy densities goes as ∼ρ(r)r 2 . All these behaviors have been explored using the two-dimensional isotropic quantum harmonic oscillator as a test case. Several meta-GGA ingredients are then studied by making use of the above findings. Also, the asymptotic conditions for the exchange energy density and the potential at the meta-GGA level are proposed using the corresponding behaviors of the two kinetic energy densities.

  8. Individual Variation in the Late Positive Complex to Semantic Anomalies

    PubMed Central

    Kos, Miriam; van den Brink, Danielle; Hagoort, Peter

    2012-01-01

    It is well-known that, within ERP paradigms of sentence processing, semantically anomalous words elicit N400 effects. Less clear, however, is what happens after the N400. In some cases N400 effects are followed by Late Positive Complexes (LPC), whereas in other cases such effects are lacking. We investigated several factors which could affect the LPC, such as contextual constraint, inter-individual variation, and working memory. Seventy-two participants read sentences containing a semantic manipulation (Whipped cream tastes sweet/anxious and creamy). Neither contextual constraint nor working memory correlated with the LPC. Inter-individual variation played a substantial role in the elicitation of the LPC with about half of the participants showing a negative response and the other half showing an LPC. This individual variation correlated with a syntactic ERP as well as an alternative semantic manipulation. In conclusion, our results show that inter-individual variation plays a large role in the elicitation of the LPC and this may account for the diversity in LPC findings in language research. PMID:22973249

  9. Major histocompatibility complex variation in the endangered Przewalski's horse.

    PubMed Central

    Hedrick, P W; Parker, K M; Miller, E L; Miller, P S

    1999-01-01

    The major histocompatibility complex (MHC) is a fundamental part of the vertebrate immune system, and the high variability in many MHC genes is thought to play an essential role in recognition of parasites. The Przewalski's horse is extinct in the wild and all the living individuals descend from 13 founders, most of whom were captured around the turn of the century. One of the primary genetic concerns in endangered species is whether they have ample adaptive variation to respond to novel selective factors. In examining 14 Przewalski's horses that are broadly representative of the living animals, we found six different class II DRB major histocompatibility sequences. The sequences showed extensive nonsynonymous variation, concentrated in the putative antigen-binding sites, and little synonymous variation. Individuals had from two to four sequences as determined by single-stranded conformation polymorphism (SSCP) analysis. On the basis of the SSCP data, phylogenetic analysis of the nucleotide sequences, and segregation in a family group, we conclude that four of these sequences are from one gene (although one sequence codes for a nonfunctional allele because it contains a stop codon) and two other sequences are from another gene. The position of the stop codon is at the same amino-acid position as in a closely related sequence from the domestic horse. Because other organisms have extensive variation at homologous loci, the Przewalski's horse may have quite low variation in this important adaptive region. PMID:10430594

  10. The QTP family of consistent functionals and potentials in Kohn-Sham density functional theory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Yifan; Bartlett, Rodney J., E-mail: bartlett@qtp.ufl.edu

    This manuscript presents the second, consistent density functional in the QTP (Quantum Theory Project) family, that is, the CAM-QTP(01). It is a new range-separated exchange-correlation functional in which the non-local exchange contribution is 100% at large separation. It follows the same basic principles of this family that the Kohn-Sham eigenvalues of the occupied orbitals approximately equal the vertical ionization energies, which is not fulfilled by most of the traditional density functional methods. This new CAM-QTP(01) functional significantly improves the accuracy of the vertical excitation energies especially for the Rydberg states in the test set. It also reproduces many other propertiesmore » such as geometries, reaction barrier heights, and atomization energies.« less

  11. Evaluating Long-Term Complex Professional Development: Using a Variation of the Cohort Control Design

    ERIC Educational Resources Information Center

    Sample Mcmeeking, Laura B.; Cobb, R. Brian; Basile, Carole

    2010-01-01

    This paper introduces a variation on the post-test only cohort control design and addresses questions concerning both the methodological credibility and the practical utility of employing this design variation in evaluations of large-scale complex professional development programmes in mathematics education. The original design and design…

  12. Beyond Kohn-Sham Approximation: Hybrid Multistate Wave Function and Density Functional Theory.

    PubMed

    Gao, Jiali; Grofe, Adam; Ren, Haisheng; Bao, Peng

    2016-12-15

    A multistate density functional theory (MSDFT) is presented in which the energies and densities for the ground and excited states are treated on the same footing using multiconfigurational approaches. The method can be applied to systems with strong correlation and to correctly describe the dimensionality of the conical intersections between strongly coupled dissociative potential energy surfaces. A dynamic-then-static framework for treating electron correlation is developed to first incorporate dynamic correlation into contracted state functions through block-localized Kohn-Sham density functional theory (KSDFT), followed by diagonalization of the effective Hamiltonian to include static correlation. MSDFT can be regarded as a hybrid of wave function and density functional theory. The method is built on and makes use of the current approximate density functional developed in KSDFT, yet it retains its computational efficiency to treat strongly correlated systems that are problematic for KSDFT but too large for accurate WFT. The results presented in this work show that MSDFT can be applied to photochemical processes involving conical intersections.

  13. Energy decomposition analysis of single bonds within Kohn-Sham density functional theory.

    PubMed

    Levine, Daniel S; Head-Gordon, Martin

    2017-11-28

    An energy decomposition analysis (EDA) for single chemical bonds is presented within the framework of Kohn-Sham density functional theory based on spin projection equations that are exact within wave function theory. Chemical bond energies can then be understood in terms of stabilization caused by spin-coupling augmented by dispersion, polarization, and charge transfer in competition with destabilizing Pauli repulsions. The EDA reveals distinguishing features of chemical bonds ranging across nonpolar, polar, ionic, and charge-shift bonds. The effect of electron correlation is assessed by comparison with Hartree-Fock results. Substituent effects are illustrated by comparing the C-C bond in ethane against that in bis(diamantane), and dispersion stabilization in the latter is quantified. Finally, three metal-metal bonds in experimentally characterized compounds are examined: a [Formula: see text]-[Formula: see text] dimer, the [Formula: see text]-[Formula: see text] bond in dizincocene, and the Mn-Mn bond in dimanganese decacarbonyl.

  14. Gold-superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study.

    PubMed

    Rampino, Sergio; Storchi, Loriano; Belpassi, Leonardo

    2015-07-14

    The chemistry of superheavy elements (Z ≥ 104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gas Xe. Calculations were carried out for Au-E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au7- and Au20-E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au7 (planar) and Au20 (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au20-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis.

  15. Thermal Smearing of the Magneto-Kohn Anomaly for Dirac materials and comparison with the Two-dimensional electron Liquid

    NASA Astrophysics Data System (ADS)

    Dahal, Dipendra; Balassis, Antonios; Gumbs, Godfrey; Glasser, M. L.; graphene projects Collaboration

    We compute and compare the effects due to a uniform perpendicular magnetic field and the temperature on the static polarization functions for monolayer graphene (MLG) associated with the Dirac point with that for the two-dimensional electron liquid (2DEL). Previous results for the 2DEL are discussed and we point out a flaw in reported analytic derivation to exhibit the smearing of the Fermi surface for 2DEL. The relevance of our study to the Kohn anomaly in low-dimensional structures and the Friedel oscillations for the screening of the potential for a dilute distribution of impurities is reported.

  16. Prediction of core level binding energies in density functional theory: Rigorous definition of initial and final state contributions and implications on the physical meaning of Kohn-Sham energies.

    PubMed

    Pueyo Bellafont, Noèlia; Bagus, Paul S; Illas, Francesc

    2015-06-07

    A systematic study of the N(1s) core level binding energies (BE's) in a broad series of molecules is presented employing Hartree-Fock (HF) and the B3LYP, PBE0, and LC-BPBE density functional theory (DFT) based methods with a near HF basis set. The results show that all these methods give reasonably accurate BE's with B3LYP being slightly better than HF but with both PBE0 and LCBPBE being poorer than HF. A rigorous and general decomposition of core level binding energy values into initial and final state contributions to the BE's is proposed that can be used within either HF or DFT methods. The results show that Koopmans' theorem does not hold for the Kohn-Sham eigenvalues. Consequently, Kohn-Sham orbital energies of core orbitals do not provide estimates of the initial state contribution to core level BE's; hence, they cannot be used to decompose initial and final state contributions to BE's. However, when the initial state contribution to DFT BE's is properly defined, the decompositions of initial and final state contributions given by DFT, with several different functionals, are very similar to those obtained with HF. Furthermore, it is shown that the differences of Kohn-Sham orbital energies taken with respect to a common reference do follow the trend of the properly calculated initial state contributions. These conclusions are especially important for condensed phase systems where our results validate the use of band structure calculations to determine initial state contributions to BE shifts.

  17. Full Parallel Implementation of an All-Electron Four-Component Dirac-Kohn-Sham Program.

    PubMed

    Rampino, Sergio; Belpassi, Leonardo; Tarantelli, Francesco; Storchi, Loriano

    2014-09-09

    A full distributed-memory implementation of the Dirac-Kohn-Sham (DKS) module of the program BERTHA (Belpassi et al., Phys. Chem. Chem. Phys. 2011, 13, 12368-12394) is presented, where the self-consistent field (SCF) procedure is replicated on all the parallel processes, each process working on subsets of the global matrices. The key feature of the implementation is an efficient procedure for switching between two matrix distribution schemes, one (integral-driven) optimal for the parallel computation of the matrix elements and another (block-cyclic) optimal for the parallel linear algebra operations. This approach, making both CPU-time and memory scalable with the number of processors used, virtually overcomes at once both time and memory barriers associated with DKS calculations. Performance, portability, and numerical stability of the code are illustrated on the basis of test calculations on three gold clusters of increasing size, an organometallic compound, and a perovskite model. The calculations are performed on a Beowulf and a BlueGene/Q system.

  18. Asymptotic behavior of the Kohn-Sham exchange potential at a metal surface

    NASA Astrophysics Data System (ADS)

    Qian, Zhixin

    2012-03-01

    The asymptotic structure of the Kohn-Sham exchange potential vx(r) in the classically forbidden region of a metal surface is investigated, together with that of the Slater exchange potential VxS(r) and those of the approximate Krieger-Li-Iafrate VxKLI(r) and Harbola-Sahni Wx(r) exchange potentials. Particularly, the former is shown to have the form of vx(z→∞)=-αx/z with αx a constant dependent only of bulk electron density. The same result in previous work is thus confirmed; in the meanwhile, a controversy raised recently gets resolved. The structure of the exchange hole ρx(r,r') is examined, and the delocalization of it in the metal bulk when the electron is at large distance from the metal surface is demonstrated with analytical expressions. The asymptotic structures of vx(r), VxS(r), VxKLI(r), and Wx(r) at a slab metal surface are also investigated. Particularly, vx(z→∞)=-1/z in the slab case. The distinction, in this respect, between the semi-infinite and the slab metal surfaces is elucidated.

  19. Geographical genetic structuring and phenotypic variation in the Vellozia hirsuta (Velloziaceae) ochlospecies complex.

    PubMed

    Barbosa, Ariane R; Fiorini, Cecília F; Silva-Pereira, Viviane; Mello-Silva, Renato; Borba, Eduardo L

    2012-09-01

    Vellozia hirsuta forms a complex presenting wide morphological and anatomical variation, resulting in five specific names and 14 morpho-anatomical patterns occurring in disjunct populations. We carried out a phylogeographical study to investigate the existence of correlation among the genetic and morphological patterns within this complex, and to determine whether it is composed of various species or should be treated as an ochlospecies, a species having widely polymorphic and weakly polytypic complex variation, with morphological characteristics varying independently. We carried out phylogeographical analyses using cpDNA rpl32F-trnL intergenic region. We found 20 haplotypes in 23 populations sampled. The populations are genetically structured (Φ(ST) = 0.818) into four phylogeographical groups demonstrating geographical structuring but with no correlation with morpho-anatomical patterns. Our analyses do not support recognizing any of the species now synonymized under Vellozia hirsuta. The northern populations were the most genetically differentiated and could be considered a distinct taxon, as they are also morphologically different. It is recommended that Vellozia hirsuta be considered a single enormously variable species. The patterns of variation within V. hirsuta probably are related to climatic changes that occurred during the Pleistocene Epoch in tropical Brazil when reductions in forest cover favored the expansion of V. hirsuta populations into extensive lowland areas. The expansion of forest cover at the end of the glaciations would have again restricted the occurrence of campos rupestres vegetation to high elevations, which constitute the current centers of diversity of this species.

  20. A phenomenographic study of the ability to address complex socio-technical systems via variation theory

    NASA Astrophysics Data System (ADS)

    Mendoza Garcia, John A.

    Sometimes engineers fail when addressing the inherent complexity of socio-technical systems because they lack the ability to address the complexity of socio-technical systems. Teaching undergraduate engineering students how to address complex socio-technical systems, has been an educational endeavor at different levels ranging from kindergarten to post-graduate education. The literature presents different pedagogical strategies and content to reach this goal. However, there are no existing empirically-based assessments guided by a learning theory. This may be because at the same time explanations of how the skill is developed are scarce. My study bridges this gap, and I propose a developmental path for the ability to address the complex socio-technical systems via Variation Theory, and according to the conceptual framework provided by Variation Theory, my research question was "What are the various ways in which engineers address complex socio-technical systems?" I chose the research approach of phenomenography to answer my research question. I also chose to use a blended approach, Marton's approach for finding the dimensions of variation, and the developmental approach (Australian) for finding a hierarchical relationship between the dimensions. Accordingly, I recruited 25 participants with different levels of experience with addressing complex socio-technical systems and asked them all to address the same two tasks: A design of a system for a county, and a case study in a manufacturing firm. My outcome space is a nona-dimensional (nine) developmental path for the ability to address the complexity in socio-technical systems, and I propose 9 different ways of experiencing the complexity of a socio-technical system. The findings of this study suggest that the critical aspects that are needed to address the complexity of socio-technical systems are: being aware of the use of models, the ecosystem around, start recognizing different boundaries, being aware of time as a

  1. Kohn-Sham potentials from electron densities using a matrix representation within finite atomic orbital basis sets

    NASA Astrophysics Data System (ADS)

    Zhang, Xing; Carter, Emily A.

    2018-01-01

    We revisit the static response function-based Kohn-Sham (KS) inversion procedure for determining the KS effective potential that corresponds to a given target electron density within finite atomic orbital basis sets. Instead of expanding the potential in an auxiliary basis set, we directly update the potential in its matrix representation. Through numerical examples, we show that the reconstructed density rapidly converges to the target density. Preliminary results are presented to illustrate the possibility of obtaining a local potential in real space from the optimized potential in its matrix representation. We have further applied this matrix-based KS inversion approach to density functional embedding theory. A proof-of-concept study of a solvated proton transfer reaction demonstrates the method's promise.

  2. A density matrix-based method for the linear-scaling calculation of dynamic second- and third-order properties at the Hartree-Fock and Kohn-Sham density functional theory levels.

    PubMed

    Kussmann, Jörg; Ochsenfeld, Christian

    2007-11-28

    A density matrix-based time-dependent self-consistent field (D-TDSCF) method for the calculation of dynamic polarizabilities and first hyperpolarizabilities using the Hartree-Fock and Kohn-Sham density functional theory approaches is presented. The D-TDSCF method allows us to reduce the asymptotic scaling behavior of the computational effort from cubic to linear for systems with a nonvanishing band gap. The linear scaling is achieved by combining a density matrix-based reformulation of the TDSCF equations with linear-scaling schemes for the formation of Fock- or Kohn-Sham-type matrices. In our reformulation only potentially linear-scaling matrices enter the formulation and efficient sparse algebra routines can be employed. Furthermore, the corresponding formulas for the first hyperpolarizabilities are given in terms of zeroth- and first-order one-particle reduced density matrices according to Wigner's (2n+1) rule. The scaling behavior of our method is illustrated for first exemplary calculations with systems of up to 1011 atoms and 8899 basis functions.

  3. Genic Heterozygosity and Variation in Permanent Translocation Heterozygotes of the OENOTHERA BIENNIS Complex

    PubMed Central

    Levy, Morris; Levin, Donald A.

    1975-01-01

    Genic heterozygosity and variation were studied in the permanent translocation heterozygotes Oenothera biennis I, Oe. biennis II, Oe. biennis III, Oe. strigosa, Oe. parviflora I, Oe. parviflora II, and in the related bivalent formers Oe. argillicola and Oe. hookeri. From variation at 20 enzyme loci, we find that translocation heterozygosity for the entire chromosome complex is accompanied by only moderate levels of genic heterozygosity: 2.8% in Oe. strigosa, 9.5% in Oe. biennis and 14.9% in Oe. parviflora. Inbred garden strains of Oe. argillicola exhibited 8% heterozygosity; neither garden nor wild strains of Oe. hookeri displayed heterozygosity and only a single allozyme genotype was found. The mean number of alleles per locus is only 1.30 in Oe. strigosa, 1.40 in Oe. biennis, and 1.55 in Oe. parviflora, compared to 1.40 in Oe. argillicola. Clearly, the ability to accumulate and/or retain heterozygosity and variability has not been accompanied by extraordinary levels of either. Clinal variation is evident at some loci in each ring-former. A given translocation complex may vary geographically in its allozymic constitution. From gene frequencies, Oe. biennis I, II, and III, Oe. strigosa and Oe. hookeri are judged to be very closely related, whereas Oe. argillicola seems quite remote; Oe. parviflora is intermediate to the two phylads. Gene frequencies also suggest that Oe. argillicola diverged from the Euoenothera progenitor about 1,000,000 years ago, whereas most of the remaining evolution in the complex has occurred within the last 150,000 years. PMID:17248680

  4. Accurate Energies and Orbital Description in Semi-Local Kohn-Sham DFT

    NASA Astrophysics Data System (ADS)

    Lindmaa, Alexander; Kuemmel, Stephan; Armiento, Rickard

    2015-03-01

    We present our progress on a scheme in semi-local Kohn-Sham density-functional theory (KS-DFT) for improving the orbital description while still retaining the level of accuracy of the usual semi-local exchange-correlation (xc) functionals. DFT is a widely used tool for first-principles calculations of properties of materials. A given task normally requires a balance of accuracy and computational cost, which is well achieved with semi-local DFT. However, commonly used semi-local xc functionals have important shortcomings which often can be attributed to features of the corresponding xc potential. One shortcoming is an overly delocalized representation of localized orbitals. Recently a semi-local GGA-type xc functional was constructed to address these issues, however, it has the trade-off of lower accuracy of the total energy. We discuss the source of this error in terms of a surplus energy contribution in the functional that needs to be accounted for, and offer a remedy for this issue which formally stays within KS-DFT, and, which does not harshly increase the computational effort. The end result is a scheme that combines accurate total energies (e.g., relaxed geometries) with an improved orbital description (e.g., improved band structure).

  5. Gold–superheavy-element interaction in diatomics and cluster adducts: A combined four-component Dirac-Kohn-Sham/charge-displacement study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rampino, Sergio, E-mail: srampino@thch.unipg.it; Belpassi, Leonardo, E-mail: leonardo.belpassi@cnr.it; Storchi, Loriano

    The chemistry of superheavy elements (Z ≥ 104) is actively investigated in atom-at-a-time experiments of volatility through adsorption on gold surfaces. In this context, common guidelines for interpretation based on group trends in the periodic table should be used cautiously, because relativistic effects play a central role and may cause predictions to fall short. In this paper, we present an all-electron four-component Dirac-Kohn-Sham comparative study of the interaction of gold with Cn (Z = 112), Fl (Z = 114), and Uuo (Z = 118) versus their lighter homologues of the 6th period, Hg, Pb, and Rn plus the noble gasmore » Xe. Calculations were carried out for Au–E (E = Hg, Cn, Pb, Fl, Xe, Rn, Uuo), Au{sub 7}– and Au{sub 20}–E (E = Hg, Cn, Pb, Fl, Rn) complexes, where Au{sub 7} (planar) and Au{sub 20} (pyramidal) are experimentally determined clusters having structures of increasing complexity. Results are analysed both in terms of the energetics of the complexes and of the electron charge rearrangement accompanying their formation. In line with the available experimental data, Cn and more markedly Fl are found to be less reactive than their lighter homologues. On the contrary, Uuo is found to be more reactive than Rn and Xe. Cn forms the weakest bond with the gold atom, compared to Fl and Uuo. The reactivity of Fl decreases with increasing gold-fragment size more rapidly than that of Cn and, as a consequence, the order of the reactivity of these two elements is inverted upon reaching the Au{sub 20}-cluster adduct. Density difference maps between adducts and fragments reveal similarities in the behaviour of Cn and Xe, and in that of Uuo and the more reactive species Hg and Pb. These findings are given a quantitative ground via charge-displacement analysis.« less

  6. Seasonal variation of lipid-lowering effects of complex spa therapy.

    PubMed

    Strauss-Blasche, G; Ekmekcioglu, C; Leibetseder, V; Marktl, W

    2003-04-01

    It has been shown that spa therapy has a lipid-lowering effect. Also, seasonal variations in spa therapy effects have been found for some outcome measures. The aim of the present study is to investigate whether the lipid-lowering effects of spa therapy as a complex health intervention also are subject to seasonal variation. The effect of 3-week resident spa therapy at the Austrian spa Bad Tatzmannsdorf was studied in 395 patients with moderate musculoskeletal chronic pain over a time of 2 years. Spa therapy included balneotherapy, exercise therapy, and dietary measures. Total cholesterol (CHOL), HDL, LDL, triglycerides (TG), and the CHOL/HDL ratio were assessed at the beginning and end of therapy. Spa therapy was associated with a decrease of CHOL, HDL, and LDL (p < 0.001). TG and CHOL/HDL did not change. The decrease of lipids was smaller for older patients, females, and normal weight individuals. CHOL decrease showed a seasonal variation independent of weight loss (p = 0.04), being largest in fall (-6.1%) and smallest in spring (-2.4%). CHOL and CHOL/HDL for obese individuals showed the greatest decrease in winter (-10% for CHOL, -9% for CHOL/HDL ratio), whereas corresponding measures increased for normal-weight subjects. The lipid-lowering effect of spa therapy could be confirmed; it is partly moderated by season. The results suggest that the effect of some components of spa therapy such as exercise therapy, diet, and relaxation may be subject to seasonal variation. Copyright 2003 S. Karger GmbH, Freiburg

  7. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history.

    PubMed Central

    Yuhki, N; O'Brien, S J

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. We present here a quantitative analysis of restriction fragment length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations. Images PMID:1967831

  8. Novel Approaches to Spectral Properties of Correlated Electron Materials: From Generalized Kohn-Sham Theory to Screened Exchange Dynamical Mean Field Theory

    NASA Astrophysics Data System (ADS)

    Delange, Pascal; Backes, Steffen; van Roekeghem, Ambroise; Pourovskii, Leonid; Jiang, Hong; Biermann, Silke

    2018-04-01

    The most intriguing properties of emergent materials are typically consequences of highly correlated quantum states of their electronic degrees of freedom. Describing those materials from first principles remains a challenge for modern condensed matter theory. Here, we review, apply and discuss novel approaches to spectral properties of correlated electron materials, assessing current day predictive capabilities of electronic structure calculations. In particular, we focus on the recent Screened Exchange Dynamical Mean-Field Theory scheme and its relation to generalized Kohn-Sham Theory. These concepts are illustrated on the transition metal pnictide BaCo2As2 and elemental zinc and cadmium.

  9. Age-related variation in EEG complexity to photic stimulation: A multiscale entropy analysis

    PubMed Central

    Takahashi, Tetsuya; Cho, Raymond Y.; Murata, Tetsuhito; Mizuno, Tomoyuki; Kikuchi, Mitsuru; Mizukami, Kimiko; Kosaka, Hirotaka; Takahashi, Koichi; Wada, Yuji

    2010-01-01

    Objective This study was intended to examine variations in electroencephalographic (EEG) complexity in response to photic stimulation (PS) during aging to test the hypothesis that the aging process reduces physiologic complexity and functional responsiveness. Methods Multiscale entropy (MSE), an estimate of time-series signal complexity associated with long-range temporal correlation, is used as a recently proposed method for quantifying EEG complexity with multiple coarse-grained sequences. We recorded EEG in 13 healthy elderly subjects and 12 healthy young subjects during pre-PS and post-PS conditions and estimated their respective MSE values. Results For the pre-PS condition, no significant complexity difference was found between the groups. However, a significant MSE change (complexity increase) was found post-PS only in young subjects, thereby revealing a power-law scaling property, which means long-range temporal correlation. Conclusions Enhancement of long-range temporal correlation in young subjects after PS might reflect a cortical response to stimuli, which was absent in elderly subjects. These results are consistent with the general “loss of complexity/diminished functional response to stimuli” theory of aging. Significance Our findings demonstrate that application of MSE analysis to EEG is a powerful approach for studying age-related changes in brain function. PMID:19231279

  10. Quantum mechanical/molecular mechanical/continuum style solvation model: linear response theory, variational treatment, and nuclear gradients.

    PubMed

    Li, Hui

    2009-11-14

    Linear response and variational treatment are formulated for Hartree-Fock (HF) and Kohn-Sham density functional theory (DFT) methods and combined discrete-continuum solvation models that incorporate self-consistently induced dipoles and charges. Due to the variational treatment, analytic nuclear gradients can be evaluated efficiently for these discrete and continuum solvation models. The forces and torques on the induced point dipoles and point charges can be evaluated using simple electrostatic formulas as for permanent point dipoles and point charges, in accordance with the electrostatic nature of these methods. Implementation and tests using the effective fragment potential (EFP, a polarizable force field) method and the conductorlike polarizable continuum model (CPCM) show that the nuclear gradients are as accurate as those in the gas phase HF and DFT methods. Using B3LYP/EFP/CPCM and time-dependent-B3LYP/EFP/CPCM methods, acetone S(0)-->S(1) excitation in aqueous solution is studied. The results are close to those from full B3LYP/CPCM calculations.

  11. DNA variation of the mammalian major histocompatibility complex reflects genomic diversity and population history

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yuhki, Naoya; O'Brien, S.J.

    1990-01-01

    The major histocompatibility complex (MHC) is a multigene complex of tightly linked homologous genes that encode cell surface antigens that play a key role in immune regulation and response to foreign antigens. In most species, MHC gene products display extreme antigenic polymorphism, and their variability has been interpreted to reflect an adaptive strategy for accommodating rapidly evolving infectious agents that periodically afflict natural populations. Determination of the extent of MHC variation has been limited to populations in which skin grafting is feasible or for which serological reagents have been developed. The authors present here a quantitative analysis of restriction fragmentmore » length polymorphism of MHC class I genes in several mammalian species (cats, rodents, humans) known to have very different levels of genetic diversity based on functional MHC assays and on allozyme surveys. When homologous class I probes were employed, a notable concordance was observed between the extent of MHC restriction fragment variation and functional MHC variation detected by skin grafts or genome-wide diversity estimated by allozyme screens. These results confirm the genetically depauperate character of the African cheetah, Acinonyx jubatus, and the Asiatic lion, Panthera leo persica; further, they support the use of class I MHC molecular reagents in estimating the extent and character of genetic diversity in natural populations.« less

  12. Multi-path variational transition state theory for chemical reaction rates of complex polyatomic species: ethanol + OH reactions.

    PubMed

    Zheng, Jingjing; Truhlar, Donald G

    2012-01-01

    Complex molecules often have many structures (conformations) of the reactants and the transition states, and these structures may be connected by coupled-mode torsions and pseudorotations; some but not all structures may have hydrogen bonds in the transition state or reagents. A quantitative theory of the reaction rates of complex molecules must take account of these structures, their coupled-mode nature, their qualitatively different character, and the possibility of merging reaction paths at high temperature. We have recently developed a coupled-mode theory called multi-structural variational transition state theory (MS-VTST) and an extension, called multi-path variational transition state theory (MP-VTST), that includes a treatment of the differences in the multi-dimensional tunneling paths and their contributions to the reaction rate. The MP-VTST method was presented for unimolecular reactions in the original paper and has now been extended to bimolecular reactions. The MS-VTST and MP-VTST formulations of variational transition state theory include multi-faceted configuration-space dividing surfaces to define the variational transition state. They occupy an intermediate position between single-conformation variational transition state theory (VTST), which has been used successfully for small molecules, and ensemble-averaged variational transition state theory (EA-VTST), which has been used successfully for enzyme kinetics. The theories are illustrated and compared here by application to three thermal rate constants for reactions of ethanol with hydroxyl radical--reactions with 4, 6, and 14 saddle points.

  13. Formal expressions and corresponding expansions for the exact Kohn-Sham exchange potential

    NASA Astrophysics Data System (ADS)

    Bulat, Felipe A.; Levy, Mel

    2009-11-01

    Formal expressions and their corresponding expansions in terms of Kohn-Sham (KS) orbitals are deduced for the exchange potential vx(r) . After an alternative derivation of the basic optimized effective potential integrodifferential equations is given through a Hartree-Fock adiabatic connection perturbation theory, we present an exact infinite expansion for vx(r) that is particularly simple in structure. It contains the very same occupied-virtual quantities that appear in the well-known optimized effective potential integral equation, but in this new expression vx(r) is isolated on one side of the equation. An orbital-energy modified Slater potential is its leading term which gives encouraging numerical results. Along different lines, while the earlier Krieger-Li-Iafrate approximation truncates completely the necessary first-order perturbation orbitals, we observe that the improved localized Hartree-Fock (LHF) potential, or common energy denominator potential (CEDA), or effective local potential (ELP), incorporates the part of each first-order orbital that consists of the occupied KS orbitals. With this in mind, the exact correction to the LHF, CEDA, or ELP potential (they are all equivalent) is deduced and displayed in terms of the virtual portions of the first-order orbitals. We close by observing that the newly derived exact formal expressions and corresponding expansions apply as well for obtaining the correlation potential from an orbital-dependent correlation energy functional.

  14. Half-quadratic variational regularization methods for speckle-suppression and edge-enhancement in SAR complex image

    NASA Astrophysics Data System (ADS)

    Zhao, Xia; Wang, Guang-xin

    2008-12-01

    Synthetic aperture radar (SAR) is an active remote sensing sensor. It is a coherent imaging system, the speckle is its inherent default, which affects badly the interpretation and recognition of the SAR targets. Conventional methods of removing the speckle is studied usually in real SAR image, which reduce the edges of the images at the same time as depressing the speckle. Morever, Conventional methods lost the information about images phase. Removing the speckle and enhancing the target and edge simultaneously are still a puzzle. To suppress the spckle and enhance the targets and the edges simultaneously, a half-quadratic variational regularization method in complex SAR image is presented, which is based on the prior knowledge of the targets and the edge. Due to the non-quadratic and non- convex quality and the complexity of the cost function, a half-quadratic variational regularization variation is used to construct a new cost function,which is solved by alternate optimization. In the proposed scheme, the construction of the model, the solution of the model and the selection of the model peremeters are studied carefully. In the end, we validate the method using the real SAR data.Theoretic analysis and the experimental results illustrate the the feasibility of the proposed method. Further more, the proposed method can preserve the information about images phase.

  15. Morphological variations of papillary muscles in the mitral valve complex in human cadaveric hearts.

    PubMed

    Gunnal, Sandhya Arvind; Wabale, Rajendra Namdeo; Farooqui, Mujeebuddin Samsamuddin

    2013-01-01

    Papillary muscle rupture and dysfunction can lead to complications of prolapsed mitral valve and mitral regurgitation. Multiple operative procedures of the papillary muscles, such as resection, repositioning and realignment, are carried out to restore normal physiological function. Therefore, it is important to know both the variations and the normal anatomy of papillary muscles. This study was carried out on 116 human cadaveric hearts. The left ventricles were opened along the left border in order to view the papillary muscles. The number, shape, position and pattern of the papillary muscles were observed. In this series, the papillary muscles were mostly found in groups instead of in twos, as is described in standard textbooks. Four different shapes of papillary muscles were identified - conical, broad-apexed, pyramidal and fan-shaped. We also discovered various patterns of papillary muscles. No two mitral valve complexes have the same architectural arrangement. Each case seems to be unique. Therefore, it is important for scientists worldwide to study the variations in the mitral valve complex in order to ascertain the reason behind each specific architectural arrangement. This will enable cardiothoracic surgeons to tailor the surgical procedures according to the individual papillary muscle pattern.

  16. Power Series Approximation for the Correlation Kernel Leading to Kohn-Sham Methods Combining Accuracy, Computational Efficiency, and General Applicability

    NASA Astrophysics Data System (ADS)

    Erhard, Jannis; Bleiziffer, Patrick; Görling, Andreas

    2016-09-01

    A power series approximation for the correlation kernel of time-dependent density-functional theory is presented. Using this approximation in the adiabatic-connection fluctuation-dissipation (ACFD) theorem leads to a new family of Kohn-Sham methods. The new methods yield reaction energies and barriers of unprecedented accuracy and enable a treatment of static (strong) correlation with an accuracy of high-level multireference configuration interaction methods but are single-reference methods allowing for a black-box-like handling of static correlation. The new methods exhibit a better scaling of the computational effort with the system size than rivaling wave-function-based electronic structure methods. Moreover, the new methods do not suffer from the problem of singularities in response functions plaguing previous ACFD methods and therefore are applicable to any type of electronic system.

  17. MAJIQ-SPEL: Web-tool to interrogate classical and complex splicing variations from RNA-Seq data.

    PubMed

    Green, Christopher J; Gazzara, Matthew R; Barash, Yoseph

    2017-09-11

    Analysis of RNA sequencing (RNA-Seq) data have highlighted the fact that most genes undergo alternative splicing (AS) and that these patterns are tightly regulated. Many of these events are complex, resulting in numerous possible isoforms that quickly become difficult to visualize, interpret, and experimentally validate. To address these challenges we developed MAJIQ-SPEL, a web-tool that takes as input local splicing variations (LSVs) quantified from RNA-Seq data and provides users with visualization and quantification of gene isoforms associated with those. Importantly, MAJIQ-SPEL is able to handle both classical (binary) and complex, non-binary, splicing variations. Using a matching primer design algorithm it also suggests users possible primers for experimental validation by RT-PCR and displays those, along with the matching protein domains affected by the LSV, on UCSC Genome Browser for further downstream analysis. Program and code will be available at http://majiq.biociphers.org/majiq-spel. Supplementary data are available at Bioinformatics online. © The Author (2017). Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com

  18. Self-consistent predictor/corrector algorithms for stable and efficient integration of the time-dependent Kohn-Sham equation

    NASA Astrophysics Data System (ADS)

    Zhu, Ying; Herbert, John M.

    2018-01-01

    The "real time" formulation of time-dependent density functional theory (TDDFT) involves integration of the time-dependent Kohn-Sham (TDKS) equation in order to describe the time evolution of the electron density following a perturbation. This approach, which is complementary to the more traditional linear-response formulation of TDDFT, is more efficient for computation of broad-band spectra (including core-excited states) and for systems where the density of states is large. Integration of the TDKS equation is complicated by the time-dependent nature of the effective Hamiltonian, and we introduce several predictor/corrector algorithms to propagate the density matrix, one of which can be viewed as a self-consistent extension of the widely used modified-midpoint algorithm. The predictor/corrector algorithms facilitate larger time steps and are shown to be more efficient despite requiring more than one Fock build per time step, and furthermore can be used to detect a divergent simulation on-the-fly, which can then be halted or else the time step modified.

  19. SQDFT: Spectral Quadrature method for large-scale parallel O(N) Kohn-Sham calculations at high temperature

    NASA Astrophysics Data System (ADS)

    Suryanarayana, Phanish; Pratapa, Phanisri P.; Sharma, Abhiraj; Pask, John E.

    2018-03-01

    We present SQDFT: a large-scale parallel implementation of the Spectral Quadrature (SQ) method for O(N) Kohn-Sham Density Functional Theory (DFT) calculations at high temperature. Specifically, we develop an efficient and scalable finite-difference implementation of the infinite-cell Clenshaw-Curtis SQ approach, in which results for the infinite crystal are obtained by expressing quantities of interest as bilinear forms or sums of bilinear forms, that are then approximated by spatially localized Clenshaw-Curtis quadrature rules. We demonstrate the accuracy of SQDFT by showing systematic convergence of energies and atomic forces with respect to SQ parameters to reference diagonalization results, and convergence with discretization to established planewave results, for both metallic and insulating systems. We further demonstrate that SQDFT achieves excellent strong and weak parallel scaling on computer systems consisting of tens of thousands of processors, with near perfect O(N) scaling with system size and wall times as low as a few seconds per self-consistent field iteration. Finally, we verify the accuracy of SQDFT in large-scale quantum molecular dynamics simulations of aluminum at high temperature.

  20. Kohn-Sham Band Structure Benchmark Including Spin-Orbit Coupling for 2D and 3D Solids

    NASA Astrophysics Data System (ADS)

    Huhn, William; Blum, Volker

    2015-03-01

    Accurate electronic band structures serve as a primary indicator of the suitability of a material for a given application, e.g., as electronic or catalytic materials. Computed band structures, however, are subject to a host of approximations, some of which are more obvious (e.g., the treatment of the exchange-correlation of self-energy) and others less obvious (e.g., the treatment of core, semicore, or valence electrons, handling of relativistic effects, or the accuracy of the underlying basis set used). We here provide a set of accurate Kohn-Sham band structure benchmarks, using the numeric atom-centered all-electron electronic structure code FHI-aims combined with the ``traditional'' PBE functional and the hybrid HSE functional, to calculate core, valence, and low-lying conduction bands of a set of 2D and 3D materials. Benchmarks are provided with and without effects of spin-orbit coupling, using quasi-degenerate perturbation theory to predict spin-orbit splittings. This work is funded by Fritz-Haber-Institut der Max-Planck-Gesellschaft.

  1. The devil is in the detail: Quantifying vocal variation in a complex, multi-levelled, and rapidly evolving display.

    PubMed

    Garland, Ellen C; Rendell, Luke; Lilley, Matthew S; Poole, M Michael; Allen, Jenny; Noad, Michael J

    2017-07-01

    Identifying and quantifying variation in vocalizations is fundamental to advancing our understanding of processes such as speciation, sexual selection, and cultural evolution. The song of the humpback whale (Megaptera novaeangliae) presents an extreme example of complexity and cultural evolution. It is a long, hierarchically structured vocal display that undergoes constant evolutionary change. Obtaining robust metrics to quantify song variation at multiple scales (from a sound through to population variation across the seascape) is a substantial challenge. Here, the authors present a method to quantify song similarity at multiple levels within the hierarchy. To incorporate the complexity of these multiple levels, the calculation of similarity is weighted by measurements of sound units (lower levels within the display) to bridge the gap in information between upper and lower levels. Results demonstrate that the inclusion of weighting provides a more realistic and robust representation of song similarity at multiple levels within the display. This method permits robust quantification of cultural patterns and processes that will also contribute to the conservation management of endangered humpback whale populations, and is applicable to any hierarchically structured signal sequence.

  2. The microgeographical patterns of morphological and molecular variation of a mixed ploidy population in the species complex Actinidia chinensis.

    PubMed

    Liu, Yifei; Li, Dawei; Yan, Ling; Huang, Hongwen

    2015-01-01

    Polyploidy and hybridization are thought to have significant impacts on both the evolution and diversification of the genus Actinidia, but the structure and patterns of morphology and molecular diversity relating to ploidy variation of wild Actinidia plants remain much less understood. Here, we examine the distribution of morphological variation and ploidy levels along geographic and environmental variables of a large mixed-ploidy population of the A. chinensis species complex. We then characterize the extent of both genetic and epigenetic diversity and differentiation exhibited between individuals of different ploidy levels. Our results showed that while there are three ploidy levels in this population, hexaploids were constituted the majority (70.3%). Individuals with different ploidy levels were microgeographically structured in relation to elevation and extent of niche disturbance. The morphological characters examined revealed clear difference between diploids and hexaploids, however tetraploids exhibited intermediate forms. Both genetic and epigenetic diversity were high but the differentiation among cytotypes was weak, suggesting extensive gene flow and/or shared ancestral variation occurred in this population even across ploidy levels. Epigenetic variation was clearly correlated with changes in altitudes, a trend of continuous genetic variation and gradual increase of epigenomic heterogeneities of individuals was also observed. Our results show that complex interactions between the locally microgeographical environment, ploidy and gene flow impact A. chinensis genetic and epigenetic variation. We posit that an increase in ploidy does not broaden the species habitat range, but rather permits A. chinensis adaptation to specific niches.

  3. Propagators for the Time-Dependent Kohn-Sham Equations: Multistep, Runge-Kutta, Exponential Runge-Kutta, and Commutator Free Magnus Methods.

    PubMed

    Gómez Pueyo, Adrián; Marques, Miguel A L; Rubio, Angel; Castro, Alberto

    2018-05-09

    We examine various integration schemes for the time-dependent Kohn-Sham equations. Contrary to the time-dependent Schrödinger's equation, this set of equations is nonlinear, due to the dependence of the Hamiltonian on the electronic density. We discuss some of their exact properties, and in particular their symplectic structure. Four different families of propagators are considered, specifically the linear multistep, Runge-Kutta, exponential Runge-Kutta, and the commutator-free Magnus schemes. These have been chosen because they have been largely ignored in the past for time-dependent electronic structure calculations. The performance is analyzed in terms of cost-versus-accuracy. The clear winner, in terms of robustness, simplicity, and efficiency is a simplified version of a fourth-order commutator-free Magnus integrator. However, in some specific cases, other propagators, such as some implicit versions of the multistep methods, may be useful.

  4. Genetic constraints on wing pattern variation in Lycaeides butterflies: A case study on mapping complex, multifaceted traits in structured populations.

    PubMed

    Lucas, Lauren K; Nice, Chris C; Gompert, Zachariah

    2018-03-13

    Patterns of phenotypic variation within and among species can be shaped and constrained by trait genetic architecture. This is particularly true for complex traits, such as butterfly wing patterns, that consist of multiple elements. Understanding the genetics of complex trait variation across species boundaries is difficult, as it necessitates mapping in structured populations and can involve many loci with small or variable phenotypic effects. Here, we investigate the genetic architecture of complex wing pattern variation in Lycaeides butterflies as a case study of mapping multivariate traits in wild populations that include multiple nominal species or groups. We identify conserved modules of integrated wing pattern elements within populations and species. We show that trait covariances within modules have a genetic basis and thus represent genetic constraints that can channel evolution. Consistent with this, we find evidence that evolutionary changes in wing patterns among populations and species occur in the directions of genetic covariances within these groups. Thus, we show that genetic constraints affect patterns of biological diversity (wing pattern) in Lycaeides, and we provide an analytical template for similar work in other systems. © 2018 John Wiley & Sons Ltd.

  5. Interchannel coupling effects in the valence photoionization of SF{sub 6}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jose, J.; Lucchese, R. R., E-mail: lucchese@mail.chem.tamu.edu; Rescigno, T. N.

    2014-05-28

    The complex Kohn and polyatomic Schwinger variational techniques have been employed to illustrate the interchannel coupling correlation effects in the valence photoionization dynamics of SF{sub 6}. Partial photoionization cross sections and asymmetry parameters of six valence subshells (1t{sub 1g}, 5t{sub 1u}, 1t{sub 2u}, 3e{sub g}, 1t{sub 2g}, 4t{sub 1u}) are discussed in the framework of several theoretical and experimental studies. The complex Kohn results are in rather good agreement with experimental results, indicative of the fact that the interchannel coupling effects alter the photoionization dynamics significantly. We find that the dominant effect of interchannel coupling is to reduce the magnitudemore » of shape resonant cross sections near the threshold and to induce resonant features in other channels to which resonances are coupled. The long-standing issue concerning ordering of the valence orbitals is addressed and confirmed 4t{sub 1u}{sup 6}1t{sub 2g}{sup 6}3e{sub g}{sup 4}(5t{sub 1u}{sup 6}+1t{sub 2u}{sup 6}) 1t{sub 1g}{sup 6} as the most likely ordering.« less

  6. Climatic variation and the distribution of an amphibian polyploid complex

    USGS Publications Warehouse

    Otto, C.R.V.; Snodgrass, J.W.; Forester, D.C.; Mitchell, J.C.; Miller, R.W.

    2007-01-01

    1. The establishment of polyploid populations involves the persistence and growth of the polyploid in the presence of the progenitor species. Although there have been a number of animal polyploid species documented, relatively few inquiries have been made into the large-scale mechanisms of polyploid establishment in animal groups. Herein we investigate the influence of regional climatic conditions on the distributional patterns of a diploid-tetraploid species pair of gray treefrogs, Hyla chrysoscelis and H. versicolor (Anura: Hylidae) in the mid-Atlantic region of eastern North America. 2. Calling surveys at breeding sites were used to document the distribution of each species. Twelve climatic models and one elevation model were generated to predict climatic and elevation values for gray treefrog breeding sites. A canonical analysis of discriminants was used to describe relationships between climatic variables, elevation and the distribution of H. chrysoscelis and H. versicolor. 3. There was a strong correlation between several climatic variables, elevation and the distribution of the gray treefrog complex. Specifically, the tetraploid species almost exclusively occupied areas of higher elevation, where climatic conditions were relatively severe (colder, drier, greater annual variation). In contrast, the diploid species was restricted to lower elevations, where climatic conditions were warmer, wetter and exhibited less annual variation. 4. Clusters of syntopic sites were associated with areas of high variation in annual temperature and precipitation during the breeding season. 5. Our data suggest that large-scale climatic conditions have played a role in the establishment of the polyploid H. versicolor in at least some portions of its range. The occurrence of the polyploid and absence of the progenitor in colder, drier and more varied environments suggests the polyploid may posses a tolerance of severe environmental conditions that is not possessed by the diploid

  7. Inelastic light and electron scattering in parabolic quantum dots in magnetic field: Implications of generalized Kohn's theorem

    NASA Astrophysics Data System (ADS)

    Kushwaha, Manvir S.

    2016-03-01

    We investigate a one-component, quasi-zero-dimensional, quantum plasma exposed to a parabolic potential and an applied magnetic field in the symmetric gauge. If the size of such a system as can be realized in the semiconducting quantum dots is on the order of the de Broglie wavelength, the electronic and optical properties become highly tunable. Then the quantum size effects challenge the observation of many-particle phenomena such as the magneto-optical absorption, Raman intensity, and electron energy loss spectrum. An exact analytical solution of the problem leads us to infer that these many-particle phenomena are, in fact, dictated by the generalized Kohn's theorem in the long-wavelength limit. Maneuvering the confinement and/or the magnetic field furnishes the resonance energy capable of being explored with the FIR, Raman, or electron energy loss spectroscopy. This implies that either of these probes should be competent in observing the localized magnetoplasmons in the system. A deeper insight into the physics of quantum dots is paving the way for their implementation in diverse fields such as quantum computing and medical imaging.

  8. 2D Raman band splitting in graphene: Charge screening and lifting of the K-point Kohn anomaly.

    PubMed

    Wang, Xuanye; Christopher, Jason W; Swan, Anna K

    2017-10-19

    Pristine graphene encapsulated in hexagonal boron nitride has transport properties rivalling suspended graphene, while being protected from contamination and mechanical damage. For high quality devices, it is important to avoid and monitor accidental doping and charge fluctuations. The 2D Raman double peak in intrinsic graphene can be used to optically determine charge density, with decreasing peak split corresponding to increasing charge density. We find strong correlations between the 2D 1 and 2D 2 split vs 2D line widths, intensities, and peak positions. Charge density fluctuations can be measured with orders of magnitude higher precision than previously accomplished using the G-band shift with charge. The two 2D intrinsic peaks can be associated with the "inner" and "outer" Raman scattering processes, with the counterintuitive assignment of the phonon closer to the K point in the KM direction (outer process) as the higher energy peak. Even low charge screening lifts the phonon Kohn anomaly near the K point for graphene encapsulated in hBN, and shifts the dominant intensity from the lower to the higher energy peak.

  9. Theoretical study of dissociative recombination of Cl{sub 2}{sup +}

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang Mingwu; Graduate School of Chinese Academy of Sciences, Beijing 100039; Department of Physics, Stockholm University, S-106 91 Stockholm

    Theoretical studies of low-energy electron collisions with Cl{sub 2}{sup +} leading to direct dissociative recombination are presented. The relevant potential energy curves and autoionization widths are calculated by combining electron scattering calculations using the complex Kohn variational method with multireference configuration interaction structure calculations. The dynamics on the four lowest resonant states of all symmetries is studied by the solution of a driven Schroedinger equation. The thermal rate coefficient for dissociative recombination of Cl{sub 2}{sup +} is calculated and the influence on the thermal rate coefficient from vibrational excited target ions is investigated.

  10. Approximating the Helium Wavefunction in Positronium-Helium Scattering

    NASA Technical Reports Server (NTRS)

    DiRienzi, Joseph; Drachman, Richard J.

    2003-01-01

    In the Kohn variational treatment of the positronium- hydrogen scattering problem the scattering wave function is approximated by an expansion in some appropriate basis set, but the target and projectile wave functions are known exactly. In the positronium-helium case, however, a difficulty immediately arises in that the wave function of the helium target atom is not known exactly, and there are several ways to deal with the associated eigenvalue in formulating the variational scattering equations to be solved. In this work we will use the Kohn variational principle in the static exchange approximation to d e t e e the zero-energy scattering length for the Ps-He system, using a suite of approximate target functions. The results we obtain will be compared with each other and with corresponding values found by other approximation techniques.

  11. Exploiting the locality of periodic subsystem density-functional theory: efficient sampling of the Brillouin zone.

    PubMed

    Genova, Alessandro; Pavanello, Michele

    2015-12-16

    In order to approximately satisfy the Bloch theorem, simulations of complex materials involving periodic systems are made n(k) times more complex by the need to sample the first Brillouin zone at n(k) points. By combining ideas from Kohn-Sham density-functional theory (DFT) and orbital-free DFT, for which no sampling is needed due to the absence of waves, subsystem DFT offers an interesting middle ground capable of sizable theoretical speedups against Kohn-Sham DFT. By splitting the supersystem into interacting subsystems, and mapping their quantum problem onto separate auxiliary Kohn-Sham systems, subsystem DFT allows an optimal topical sampling of the Brillouin zone. We elucidate this concept with two proof of principle simulations: a water bilayer on Pt[1 1 1]; and a complex system relevant to catalysis-a thiophene molecule physisorbed on a molybdenum sulfide monolayer deposited on top of an α-alumina support. For the latter system, a speedup of 300% is achieved against the subsystem DTF reference by using an optimized Brillouin zone sampling (600% against KS-DFT).

  12. Band-structure calculations of noble-gas and alkali halide solids using accurate Kohn-Sham potentials with self-interaction correction

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Y.; Krieger, J.B.; Norman, M.R.

    1991-11-15

    The optimized-effective-potential (OEP) method and a method developed recently by Krieger, Li, and Iafrate (KLI) are applied to the band-structure calculations of noble-gas and alkali halide solids employing the self-interaction-corrected (SIC) local-spin-density (LSD) approximation for the exchange-correlation energy functional. The resulting band gaps from both calculations are found to be in fair agreement with the experimental values. The discrepancies are typically within a few percent with results that are nearly the same as those of previously published orbital-dependent multipotential SIC calculations, whereas the LSD results underestimate the band gaps by as much as 40%. As in the LSD---and it ismore » believed to be the case even for the exact Kohn-Sham potential---both the OEP and KLI predict valence-band widths which are narrower than those of experiment. In all cases, the KLI method yields essentially the same results as the OEP.« less

  13. Human cognitive ability is influenced by genetic variation in components of postsynaptic signalling complexes assembled by NMDA receptors and MAGUK proteins

    PubMed Central

    Hill, W D; Davies, G; van de Lagemaat, L N; Christoforou, A; Marioni, R E; Fernandes, C P D; Liewald, D C; Croning, M D R; Payton, A; Craig, L C A; Whalley, L J; Horan, M; Ollier, W; Hansell, N K; Wright, M J; Martin, N G; Montgomery, G W; Steen, V M; Le Hellard, S; Espeseth, T; Lundervold, A J; Reinvang, I; Starr, J M; Pendleton, N; Grant, S G N; Bates, T C; Deary, I J

    2014-01-01

    Differences in general cognitive ability (intelligence) account for approximately half of the variation in any large battery of cognitive tests and are predictive of important life events including health. Genome-wide analyses of common single-nucleotide polymorphisms indicate that they jointly tag between a quarter and a half of the variance in intelligence. However, no single polymorphism has been reliably associated with variation in intelligence. It remains possible that these many small effects might be aggregated in networks of functionally linked genes. Here, we tested a network of 1461 genes in the postsynaptic density and associated complexes for an enriched association with intelligence. These were ascertained in 3511 individuals (the Cognitive Ageing Genetics in England and Scotland (CAGES) consortium) phenotyped for general cognitive ability, fluid cognitive ability, crystallised cognitive ability, memory and speed of processing. By analysing the results of a genome wide association study (GWAS) using Gene Set Enrichment Analysis, a significant enrichment was found for fluid cognitive ability for the proteins found in the complexes of N-methyl-D-aspartate receptor complex; P=0.002. Replication was sought in two additional cohorts (N=670 and 2062). A meta-analytic P-value of 0.003 was found when these were combined with the CAGES consortium. The results suggest that genetic variation in the macromolecular machines formed by membrane-associated guanylate kinase (MAGUK) scaffold proteins and their interaction partners contributes to variation in intelligence. PMID:24399044

  14. Age- and gender-related regional variations of human brain cortical thickness, complexity, and gradient in the third decade.

    PubMed

    Creze, Maud; Versheure, Leslie; Besson, Pierre; Sauvage, Chloe; Leclerc, Xavier; Jissendi-Tchofo, Patrice

    2014-06-01

    Brain functional and cytoarchitectural maturation continue until adulthood, but little is known about the evolution of the regional pattern of cortical thickness (CT), complexity (CC), and intensity or gradient (CG) in young adults. We attempted to detect global and regional age- and gender-related variations of brain CT, CC, and CG, in 28 healthy young adults (19-33 years) using a three-dimensional T1 -weighted magnetic resonance imaging sequence and surface-based methods. Whole brain interindividual variations of CT and CG were similar to that in the literature. As a new finding, age- and gender-related variations significantly affected brain complexity (P < 0.01) on posterior cingulate and middle temporal cortices (age), and the fronto-orbital cortex (gender), all in the right hemisphere. Regions of interest analyses showed age and gender significant interaction (P < 0.05) on the temporopolar, inferior, and middle temporal-entorrhinal cortices bilaterally, as well as left inferior parietal. In addition, we found significant inverse correlations between CT and CC and between CT and CG over the whole brain and markedly in precentral and occipital areas. Our findings differ in details from previous reports and may correlate with late brain maturation and learning plasticity in young adults' brain in the third decade. Copyright © 2013 Wiley Periodicals, Inc.

  15. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Jia, Weile; Lin, Lin

    2017-10-01

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  16. Robust determination of the chemical potential in the pole expansion and selected inversion method for solving Kohn-Sham density functional theory.

    PubMed

    Jia, Weile; Lin, Lin

    2017-10-14

    Fermi operator expansion (FOE) methods are powerful alternatives to diagonalization type methods for solving Kohn-Sham density functional theory (KSDFT). One example is the pole expansion and selected inversion (PEXSI) method, which approximates the Fermi operator by rational matrix functions and reduces the computational complexity to at most quadratic scaling for solving KSDFT. Unlike diagonalization type methods, the chemical potential often cannot be directly read off from the result of a single step of evaluation of the Fermi operator. Hence multiple evaluations are needed to be sequentially performed to compute the chemical potential to ensure the correct number of electrons within a given tolerance. This hinders the performance of FOE methods in practice. In this paper, we develop an efficient and robust strategy to determine the chemical potential in the context of the PEXSI method. The main idea of the new method is not to find the exact chemical potential at each self-consistent-field (SCF) iteration but to dynamically and rigorously update the upper and lower bounds for the true chemical potential, so that the chemical potential reaches its convergence along the SCF iteration. Instead of evaluating the Fermi operator for multiple times sequentially, our method uses a two-level strategy that evaluates the Fermi operators in parallel. In the regime of full parallelization, the wall clock time of each SCF iteration is always close to the time for one single evaluation of the Fermi operator, even when the initial guess is far away from the converged solution. We demonstrate the effectiveness of the new method using examples with metallic and insulating characters, as well as results from ab initio molecular dynamics.

  17. Response of a hydrothermal system to magmatic heat inferred from temporal variations in the complex frequencies of long-period events at Kusatsu-Shirane Volcano, Japan

    USGS Publications Warehouse

    Nakano, M.; Kumagai, H.

    2005-01-01

    We investigate temporal variations in the complex frequencies (frequency and quality factor Q) of long-period (LP) events that occurred at Kusatsu-Shirane Volcano, central Japan. We analyze LP waveforms observed at this volcano in the period between 1988 and 1995, which covers a seismically active period between 1989 and 1993. Systematic temporal variations in the complex frequencies are observed in October-November 1989, July-October 1991, and September 1992-January 1993. We use acoustic properties of a crack filled with hydrothermal fluids to interpret the observed temporal variations in the complex frequencies. The temporal variations in October-November 1989 can be divided into two periods, which are explained by a gradual decrease and increase of a gas-volume fraction in a water-steam mixture in a crack, respectively. The temporal variations in July-October 1991 can be also divided into two periods. These variations in the first and second periods are similar to those observed in November 1989 and in September-November 1992, respectively, and are interpreted as drying of a water-steam mixture and misty gas in a crack, respectively. The repeated nature of the temporal variations observed in similar seasons between July and November suggests the existence of seasonality in the occurrence of LP events. This may be caused by a seasonally variable meteoritic water supply to a hydrothermal system, which may have been heated by the flux of volcanic gases from magma beneath this volcano. ?? 2005 Elsevier B.V. All rights reserved.

  18. Between-year variation in population sex ratio increases with complexity of the breeding system in Hymenoptera.

    PubMed

    Kümmerli, Rolf; Keller, Laurent

    2011-06-01

    While adaptive adjustment of sex ratio in the function of colony kin structure and food availability commonly occurs in social Hymenoptera, long-term studies have revealed substantial unexplained between-year variation in sex ratio at the population level. In order to identify factors that contribute to increased between-year variation in population sex ratio, we conducted a comparative analysis across 47 Hymenoptera species differing in their breeding system. We found that between-year variation in population sex ratio steadily increased as one moved from solitary species, to primitively eusocial species, to single-queen eusocial species, to multiple-queen eusocial species. Specifically, between-year variation in population sex ratio was low (6.6% of total possible variation) in solitary species, which is consistent with the view that in solitary species, sex ratio can vary only in response to fluctuations in ecological factors such as food availability. In contrast, we found significantly higher (19.5%) between-year variation in population sex ratio in multiple-queen eusocial species, which supports the view that in these species, sex ratio can also fluctuate in response to temporal changes in social factors such as queen number and queen-worker control over sex ratio, as well as factors influencing caste determination. The simultaneous adjustment of sex ratio in response to temporal fluctuations in ecological and social factors seems to preclude the existence of a single sex ratio optimum. The absence of such an optimum may reflect an additional cost associated with the evolution of complex breeding systems in Hymenoptera societies.

  19. Bioenergetics in human evolution and disease: implications for the origins of biological complexity and the missing genetic variation of common diseases.

    PubMed

    Wallace, Douglas C

    2013-07-19

    Two major inconsistencies exist in the current neo-Darwinian evolutionary theory that random chromosomal mutations acted on by natural selection generate new species. First, natural selection does not require the evolution of ever increasing complexity, yet this is the hallmark of biology. Second, human chromosomal DNA sequence variation is predominantly either neutral or deleterious and is insufficient to provide the variation required for speciation or for predilection to common diseases. Complexity is explained by the continuous flow of energy through the biosphere that drives the accumulation of nucleic acids and information. Information then encodes complex forms. In animals, energy flow is primarily mediated by mitochondria whose maternally inherited mitochondrial DNA (mtDNA) codes for key genes for energy metabolism. In mammals, the mtDNA has a very high mutation rate, but the deleterious mutations are removed by an ovarian selection system. Hence, new mutations that subtly alter energy metabolism are continuously introduced into the species, permitting adaptation to regional differences in energy environments. Therefore, the most phenotypically significant gene variants arise in the mtDNA, are regional, and permit animals to occupy peripheral energy environments where rarer nuclear DNA (nDNA) variants can accumulate, leading to speciation. The neutralist-selectionist debate is then a consequence of mammals having two different evolutionary strategies: a fast mtDNA strategy for intra-specific radiation and a slow nDNA strategy for speciation. Furthermore, the missing genetic variation for common human diseases is primarily mtDNA variation plus regional nDNA variants, both of which have been missed by large, inter-population association studies.

  20. Variation of High-Intensity Therapeutic Ultrasound (HITU) Pressure Field Characterization: Effects of Hydrophone Choice, Nonlinearity, Spatial Averaging and Complex Deconvolution.

    PubMed

    Liu, Yunbo; Wear, Keith A; Harris, Gerald R

    2017-10-01

    Reliable acoustic characterization is fundamental for patient safety and clinical efficacy during high-intensity therapeutic ultrasound (HITU) treatment. Technical challenges, such as measurement variation and signal analysis, still exist for HITU exposimetry using ultrasound hydrophones. In this work, four hydrophones were compared for pressure measurement: a robust needle hydrophone, a small polyvinylidene fluoride capsule hydrophone and two fiberoptic hydrophones. The focal waveform and beam distribution of a single-element HITU transducer (1.05 MHz and 3.3 MHz) were evaluated. Complex deconvolution between the hydrophone voltage signal and frequency-dependent complex sensitivity was performed to obtain pressure waveforms. Compressional pressure (p + ), rarefactional pressure (p - ) and focal beam distribution were compared up to 10.6/-6.0 MPa (p + /p - ) (1.05 MHz) and 20.65/-7.20 MPa (3.3 MHz). The effects of spatial averaging, local non-linear distortion, complex deconvolution and hydrophone damage thresholds were investigated. This study showed a variation of no better than 10%-15% among hydrophones during HITU pressure characterization. Published by Elsevier Inc.

  1. Accelerating large scale Kohn-Sham density functional theory calculations with semi-local functionals and hybrid functionals

    NASA Astrophysics Data System (ADS)

    Lin, Lin

    The computational cost of standard Kohn-Sham density functional theory (KSDFT) calculations scale cubically with respect to the system size, which limits its use in large scale applications. In recent years, we have developed an alternative procedure called the pole expansion and selected inversion (PEXSI) method. The PEXSI method solves KSDFT without solving any eigenvalue and eigenvector, and directly evaluates physical quantities including electron density, energy, atomic force, density of states, and local density of states. The overall algorithm scales as at most quadratically for all materials including insulators, semiconductors and the difficult metallic systems. The PEXSI method can be efficiently parallelized over 10,000 - 100,000 processors on high performance machines. The PEXSI method has been integrated into a number of community electronic structure software packages such as ATK, BigDFT, CP2K, DGDFT, FHI-aims and SIESTA, and has been used in a number of applications with 2D materials beyond 10,000 atoms. The PEXSI method works for LDA, GGA and meta-GGA functionals. The mathematical structure for hybrid functional KSDFT calculations is significantly different. I will also discuss recent progress on using adaptive compressed exchange method for accelerating hybrid functional calculations. DOE SciDAC Program, DOE CAMERA Program, LBNL LDRD, Sloan Fellowship.

  2. Outstanding performance of configuration interaction singles and doubles using exact exchange Kohn-Sham orbitals in real-space numerical grid method

    NASA Astrophysics Data System (ADS)

    Lim, Jaechang; Choi, Sunghwan; Kim, Jaewook; Kim, Woo Youn

    2016-12-01

    To assess the performance of multi-configuration methods using exact exchange Kohn-Sham (KS) orbitals, we implemented configuration interaction singles and doubles (CISD) in a real-space numerical grid code. We obtained KS orbitals with the exchange-only optimized effective potential under the Krieger-Li-Iafrate (KLI) approximation. Thanks to the distinctive features of KLI orbitals against Hartree-Fock (HF), such as bound virtual orbitals with compact shapes and orbital energy gaps similar to excitation energies; KLI-CISD for small molecules shows much faster convergence as a function of simulation box size and active space (i.e., the number of virtual orbitals) than HF-CISD. The former also gives more accurate excitation energies with a few dominant configurations than the latter, even with many more configurations. The systematic control of basis set errors is straightforward in grid bases. Therefore, grid-based multi-configuration methods using exact exchange KS orbitals provide a promising new way to make accurate electronic structure calculations.

  3. Simultaneous identification of the low-field-induced tiny variation of complex refractive index for anisotropic and opaque magnetic-fluid thin film by a stable heterodyne Mach-Zehnder interferometer.

    PubMed

    Hong, Chin-Yih; Chieh, Jen-Jie; Yang, Shieh-Yueh; Yang, Hong-Chang; Horng, Herng-Er

    2009-10-10

    We use a heterodyne Mach-Zehnder interferometer to simultaneously and simply measure the complex refractive index by only normal incidence on the specimen, instead of using a complicated measurement procedure or instrument that only measures the real or imaginary part of the complex refractive index. To study the tiny variation of the complex refractive index, the small complex refractive-index variation of a rare-concentration magnetic-fluid thin film, due to a weak field of less than 200 Oe, was processed by this interferometer. We also present the wavelength trend of the complex refractive index of magnetic fluids to verify the appearance of the slight change in a small wavelength range.

  4. Exact exchange potential evaluated from occupied Kohn-Sham and Hartree-Fock solutions

    NASA Astrophysics Data System (ADS)

    Cinal, M.; Holas, A.

    2011-06-01

    The reported algorithm determines the exact exchange potential vx in an iterative way using energy shifts (ESs) and orbital shifts (OSs) obtained with finite-difference formulas from the solutions (occupied orbitals and their energies) of the Hartree-Fock-like equation and the Kohn-Sham-like equation, the former used for the initial approximation to vx and the latter for increments of ES and OS due to subsequent changes of vx. Thus, the need for solution of the differential equations for OSs, used by Kümmel and Perdew [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.90.043004 90, 043004 (2003)], is bypassed. The iterated exchange potential, expressed in terms of ESs and OSs, is improved by modifying ESs at odd iteration steps and OSs at even steps. The modification formulas are related to the optimized-effective-potential equation (satisfied at convergence) written as the condition of vanishing density shift (DS). They are obtained, respectively, by enforcing its satisfaction through corrections to approximate OSs and by determining the optimal ESs that minimize the DS norm. The proposed method, successfully tested for several closed-(sub)shell atoms, from Be to Kr, within the density functional theory exchange-only approximation, proves highly efficient. The calculations using the pseudospectral method for representing orbitals give iterative sequences of approximate exchange potentials (starting with the Krieger-Li-Iafrate approximation) that rapidly approach the exact vx so that, for Ne, Ar, and Zn, the corresponding DS norm becomes less than 10-6 after 13, 13, and 9 iteration steps for a given electron density. In self-consistent density calculations, orbital energies of 10-4 hartree accuracy are obtained for these atoms after, respectively, 9, 12, and 12 density iteration steps, each involving just two steps of vx iteration, while the accuracy limit of 10-6 to 10-7 hartree is reached after 20 density iterations.

  5. Substantial variation in the acceptance of medically complex live kidney donors across US renal transplant centers

    PubMed Central

    Reese, PP; Feldman, HI; McBride, MA; Anderson, K; Asch, DA; Bloom, RD

    2008-01-01

    Concern exists about accepting live kidney donation from “medically complex donors” -those with risk factors for future kidney disease. This study’s aim was to examine variation in complex kidney donor use across United States (US) transplant centers. We conducted a retrospective cohort study of live kidney donors using Organ Procurement and Transplantation Network data. Donors with hypertension, obesity, or estimated glomerular filtration rate (eGFR) <60 ml/minute/1.73m2 were considered medically complex. Among 9319 donors, 2254 (24.2%) were complex: 1194 (12.8%) were obese, 956 (10.3%) hypertensive, and 392 (4.2%) had low eGFR. The mean proportion of medically complex donors at a center was 24% (range 0 – 65%.) In multivariate analysis, donor characteristics associated with medical complexity included spousal relationship to the recipient (OR 1.29, CI 1.06-1.56, p<0.01), low education (OR 1.19, CI 1.04-1.37, p=0.01), older age (OR 1.01 per year, CI 1.01-1.02, p<0.01), and non-US citizenship (OR 0.70, CI 0.51-0.97, p=0.01). Renal transplant centers with the highest transplant volume (OR 1.26, CI 1.02-1.57, p=0.03), and with a higher proportion of (living donation)/(all kidney transplants) (OR 1.97, CI 1.23-3.16, p<0.01) were more likely to use medically complex donors. Though controversial, the use of medically complex donors is widespread and varies widely across centers. PMID:18727695

  6. Variational approach to studying solitary waves in the nonlinear Schrödinger equation with complex potentials

    DOE PAGES

    Mertens, Franz G.; Cooper, Fred; Arevalo, Edward; ...

    2016-09-15

    Here in this paper, we discuss the behavior of solitary wave solutions of the nonlinear Schrödinger equation (NLSE) as they interact with complex potentials, using a four-parameter variational approximation based on a dissipation functional formulation of the dynamics. We concentrate on spatially periodic potentials with the periods of the real and imaginary part being either the same or different. Our results for the time evolution of the collective coordinates of our variational ansatz are in good agreement with direct numerical simulation of the NLSE. We compare our method with a collective coordinate approach of Kominis and give examples where themore » two methods give qualitatively different answers. In our variational approach, we are able to give analytic results for the small oscillation frequency of the solitary wave oscillating parameters which agree with the numerical solution of the collective coordinate equations. We also verify that instabilities set in when the slope dp(t)/dv(t) becomes negative when plotted parametrically as a function of time, where p(t) is the momentum of the solitary wave and v(t) the velocity.« less

  7. Variational approach to studying solitary waves in the nonlinear Schrödinger equation with complex potentials

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mertens, Franz G.; Cooper, Fred; Arevalo, Edward

    Here in this paper, we discuss the behavior of solitary wave solutions of the nonlinear Schrödinger equation (NLSE) as they interact with complex potentials, using a four-parameter variational approximation based on a dissipation functional formulation of the dynamics. We concentrate on spatially periodic potentials with the periods of the real and imaginary part being either the same or different. Our results for the time evolution of the collective coordinates of our variational ansatz are in good agreement with direct numerical simulation of the NLSE. We compare our method with a collective coordinate approach of Kominis and give examples where themore » two methods give qualitatively different answers. In our variational approach, we are able to give analytic results for the small oscillation frequency of the solitary wave oscillating parameters which agree with the numerical solution of the collective coordinate equations. We also verify that instabilities set in when the slope dp(t)/dv(t) becomes negative when plotted parametrically as a function of time, where p(t) is the momentum of the solitary wave and v(t) the velocity.« less

  8. MN15-L: A New Local Exchange-Correlation Functional for Kohn-Sham Density Functional Theory with Broad Accuracy for Atoms, Molecules, and Solids.

    PubMed

    Yu, Haoyu S; He, Xiao; Truhlar, Donald G

    2016-03-08

    Kohn-Sham density functional theory is widely used for applications of electronic structure theory in chemistry, materials science, and condensed-matter physics, but the accuracy depends on the quality of the exchange-correlation functional. Here, we present a new local exchange-correlation functional called MN15-L that predicts accurate results for a broad range of molecular and solid-state properties including main-group bond energies, transition metal bond energies, reaction barrier heights, noncovalent interactions, atomic excitation energies, ionization potentials, electron affinities, total atomic energies, hydrocarbon thermochemistry, and lattice constants of solids. The MN15-L functional has the same mathematical form as a previous meta-nonseparable gradient approximation exchange-correlation functional, MN12-L, but it is improved because we optimized it against a larger database, designated 2015A, and included smoothness restraints; the optimization has a much better representation of transition metals. The mean unsigned error on 422 chemical energies is 2.32 kcal/mol, which is the best among all tested functionals, with or without nonlocal exchange. The MN15-L functional also provides good results for test sets that are outside the training set. A key issue is that the functional is local (no nonlocal exchange or nonlocal correlation), which makes it relatively economical for treating large and complex systems and solids. Another key advantage is that medium-range correlation energy is built in so that one does not need to add damped dispersion by molecular mechanics in order to predict accurate noncovalent binding energies. We believe that the MN15-L functional should be useful for a wide variety of applications in chemistry, physics, materials science, and molecular biology.

  9. v-representability and density functional theory. [for nonrelativistic electrons in nondegenerate ground state

    NASA Technical Reports Server (NTRS)

    Kohn, W.

    1983-01-01

    It is shown that if n(r) is the discrete density on a lattice (enclosed in a finite box) associated with a nondegenerate ground state in an external potential v(r) (i.e., is 'v-representable'), then the density n(r) + mu(r), with m(r) arbitrary (apart from trivial constraints) and mu small enough, is also associated with a nondegenerate ground state in an external potential v'(r) near v(r); i.e., n(r) + m(r) is also v-representable. Implications for the Hohenberg-Kohn variational principle and the Kohn-Sham equations are discussed.

  10. Advances in biotechnology and linking outputs to variation in complex traits: Plant and Animal Genome meeting January 2012.

    PubMed

    Appels, R; Barrero, R; Bellgard, M

    2012-03-01

    The Plant and Animal Genome (PAG, held annually) meeting in January 2012 provided insights into the advances in plant, animal, and microbe genome studies particularly as they impact on our understanding of complex biological systems. The diverse areas of biology covered included the advances in technologies, variation in complex traits, genome change in evolution, and targeting phenotypic changes, across the broad spectrum of life forms. This overview aims to summarize the major advances in research areas presented in the plenary lectures and does not attempt to summarize the diverse research activities covered throughout the PAG in workshops, posters, presentations, and displays by suppliers of cutting-edge technologies.

  11. Spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data.

    PubMed

    Sayago, Ana; Asuero, Agustin G

    2006-09-14

    A bilogarithmic hyperbolic cosine method for the spectrophotometric evaluation of stability constants of 1:1 weak complexes from continuous variation data has been devised and applied to literature data. A weighting scheme, however, is necessary in order to take into account the transformation for linearization. The method may be considered a useful alternative to methods in which one variable is involved on both sides of the basic equation (i.e. Heller and Schwarzenbach, Likussar and Adsul and Ramanathan). Classical least squares lead in those instances to biased and approximate stability constants and limiting absorbance values. The advantages of the proposed method are: the method gives a clear indication of the existence of only one complex in solution, it is flexible enough to allow for weighting of measurements and the computation procedure yield the best value of logbeta11 and its limit of error. The agreement between the values obtained by applying the weighted hyperbolic cosine method and the non-linear regression (NLR) method is good, being in both cases the mean quadratic error at a minimum.

  12. Sulfide saturation history of the Stillwater Complex, Montana: chemostratigraphic variation in platinum group elements

    NASA Astrophysics Data System (ADS)

    Keays, Reid R.; Lightfoot, Peter C.; Hamlyn, Paul R.

    2012-01-01

    A platinum group element (PGE) investigation of a 5.3 km-thick stratigraphic section of the Stillwater Complex, Montana was undertaken to refine and test a geochemical technique to explore for platiniferous horizons in layered mafic/ultramafic complexes. PGE, Au, major, and trace elements were determined in 92 samples from outcrops along traverses in the Chrome Mountain and Contact Mountain areas in the western part of the Stillwater Complex where the J-M reef occurs ˜1,460 m above the floor of the intrusion. A further 29 samples from a drill hole cored in the immediate vicinity of the J-M reef were analyzed to detail compositional variations directly above and below the J-M reef. Below the J-M reef, background concentrations of Pt (10 ppb) and Pd (7 ppb) are features of peridotites with intermediate S concentrations (mostly 100-200 ppm) and rocks from the Bronzitite, Norite I, and Gabbronorite I zones (mostly <100 ppm S). A sustained increase in S abundance commences at the J-M reef and continues to increase and peaks in the center of the 600 m-thick middle banded series. Over this same interval, Pt, Pd, and Au are initially elevated and then decrease in the order Pd > Pt > Au. Within the middle and upper banded series, S abundances fluctuate considerably, but exhibit an overall upward increase. The behavior of these elements records periodic sulfide saturation during deposition of the Peridotite zone, followed by crystallization under sulfide-undersaturated conditions until saturation is achieved at the base of the J-M reef. Following formation of the reef, sulfide-saturated conditions persisted throughout the deposition of most of the remaining Lower Layered Series. This resulted in a pronounced impoverishment in PGE abundance in the remaining magma, a condition that continued throughout deposition of the remainder of a succession, which is characterized by very low Pt (1.5 ppb) and Pd (0.7 ppb) abundances. Because only unmineralized rock was selected for study

  13. Exact exchange potential evaluated from occupied Kohn-Sham and Hartree-Fock solutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cinal, M.; Holas, A.

    2011-06-15

    The reported algorithm determines the exact exchange potential v{sub x} in an iterative way using energy shifts (ESs) and orbital shifts (OSs) obtained with finite-difference formulas from the solutions (occupied orbitals and their energies) of the Hartree-Fock-like equation and the Kohn-Sham-like equation, the former used for the initial approximation to v{sub x} and the latter for increments of ES and OS due to subsequent changes of v{sub x}. Thus, the need for solution of the differential equations for OSs, used by Kuemmel and Perdew [Phys. Rev. Lett. 90, 043004 (2003)], is bypassed. The iterated exchange potential, expressed in terms ofmore » ESs and OSs, is improved by modifying ESs at odd iteration steps and OSs at even steps. The modification formulas are related to the optimized-effective-potential equation (satisfied at convergence) written as the condition of vanishing density shift (DS). They are obtained, respectively, by enforcing its satisfaction through corrections to approximate OSs and by determining the optimal ESs that minimize the DS norm. The proposed method, successfully tested for several closed-(sub)shell atoms, from Be to Kr, within the density functional theory exchange-only approximation, proves highly efficient. The calculations using the pseudospectral method for representing orbitals give iterative sequences of approximate exchange potentials (starting with the Krieger-Li-Iafrate approximation) that rapidly approach the exact v{sub x} so that, for Ne, Ar, and Zn, the corresponding DS norm becomes less than 10{sup -6} after 13, 13, and 9 iteration steps for a given electron density. In self-consistent density calculations, orbital energies of 10{sup -4} hartree accuracy are obtained for these atoms after, respectively, 9, 12, and 12 density iteration steps, each involving just two steps of v{sub x} iteration, while the accuracy limit of 10{sup -6} to 10{sup -7} hartree is reached after 20 density iterations.« less

  14. Complex Copy Number Variation of AMY1 does not Associate with Obesity in two East Asian Cohorts.

    PubMed

    Yong, Rita Y Y; Mustaffa, Su'Aidah B; Wasan, Pavandip S; Sheng, Liang; Marshall, Christian R; Scherer, Stephen W; Teo, Yik-Ying; Yap, Eric P H

    2016-07-01

    The human amylase gene locus at chromosome 1p21.1 is structurally complex. This region contains two pancreatic amylase genes, AMY2B, AMY2A, and a salivary gene AMY1. The AMY1 gene harbors extensive copy number variation (CNV), and recent studies have implicated this variation in adaptation to starch-rich diets and in association to obesity for European and Asian populations. In this study, we showed that by combining quantitative PCR and digital PCR, coupled with careful experimental design and calibration, we can improve the resolution of genotyping CNV with high copy numbers (CNs). In two East Asian populations of Chinese and Malay ethnicity studied, we observed a unique non-normal distribution of AMY1 diploid CN genotypes with even:odd CNs ratio of 4.5 (3.3-4.7), and an association between the common AMY2A CN = 2 genotype and odd CNs of AMY1, that could be explained by the underlying haplotypic structure. In two further case-control cohorts (n = 932 and 145, for Chinese and Malays, respectively), we did not observe the previously reported association between AMY1 and obesity or body mass index. Improved methods for accurately genotyping multiallelic CNV loci and understanding the haplotype complexity at the AMY1 locus are necessary for population genetics and association studies. © 2016 WILEY PERIODICALS, INC.

  15. Morphological assessment of the stylohyoid complex variations with cone beam computed tomography in a Turkish population.

    PubMed

    Buyuk, C; Gunduz, K; Avsever, H

    2018-01-01

    The aim of this investigation was to evaluate the length, thickness, sagittal and transverse angulations and the morphological variations of the stylohyoid complex (SHC), to assess their probable associations with age and gender, and to investigate the prevalence of it in a wide range of a Turkish sub-population by using cone beam computed tomography (CBCT). The CBCT images of the 1000 patients were evaluated retrospectively. The length, thickness, sagittal and transverse angulations, morphological variations and ossification degrees of SHC were evaluated on multiplanar reconstructions (MPR) adnd three-dimensional (3D) volume rendering (3DVR) images. The data were analysed statistically by using nonparametric tests, Pearson's correlation coefficient, Student's t test, c2 test and one-way ANOVA. Statistical significance was considered at p < 0.05. It was determined that 684 (34.2%) of all 2000 SHCs were elongated (> 35 mm). The mean sagittal angle value was measured to be 72.24° and the mean transverse angle value was 70.81°. Scalariform shape, elongated type and nodular calcification pattern have the highest mean age values between the morphological groups, respectively. Calcified outline was the most prevalent calcification pattern in males. There was no correlation between length and the calcification pattern groups while scalariform shape and pseudoarticular type were the longest variations. We observed that as the anterior sagittal angle gets wider, SHC tends to get longer. The most observed morphological variations were linear shape, elongated type and calcified outline pattern. Detailed studies on the classification will contribute to the literature. (Folia Morphol 2018; 77, 1: 79-89).

  16. Anatomical variations and sinusitis.

    PubMed

    Jorissen, M; Hermans, R; Bertrand, B; Eloy, P

    1997-01-01

    Paranasal sinus anatomy and variations have gained interest with the introduction of functional endoscopic sinus surgery and the concept of the ostiomeatal complex. Anatomical variations can be divided in structural abnormalities, (increased) pneumatization and supplementary openings. Most anatomical variations are equally found in control and sinusitis patients. The anatomical variations which are most commonly associated with sinus pathology are septal deviations, true conchae bullosae and supplementary maxillary ostia but the latter one only when recycling is present. The knowledge of anatomical variations is most important in the surgical management and specifically in the prevention of complications.

  17. Nuclear Pore Complexes: Global Conservation and Local Variation.

    PubMed

    Holzer, Guillaume; Antonin, Wolfram

    2018-06-04

    Nuclear pore complexes are the transport gates to the nucleus. Most proteins forming these huge complexes are evolutionarily conserved, as is the eightfold symmetry of these complexes. A new study reporting the structure of the yeast nuclear pore complex now shows striking differences from its human counterpart. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. Learned Vocal Variation Is Associated with Abrupt Cryptic Genetic Change in a Parrot Species Complex

    PubMed Central

    Ribot, Raoul F. H.; Buchanan, Katherine L.; Endler, John A.; Joseph, Leo; Bennett, Andrew T. D.; Berg, Mathew L.

    2012-01-01

    Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans), can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (Platycercus elegans) parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a ca 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position). The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow between

  19. Longitudinal Variation in Paleo-channel Complex Geometry and Associated Fill: Offshore South Carolina

    NASA Astrophysics Data System (ADS)

    Long, A. M.; Hill, J. C.

    2017-12-01

    In northeastern South Carolina, several shallow (<25 m deep) paleo-channel complexes have previously been interpreted as the result of the southward migration of the ancestral Pee Dee River system along the southern limb of the Cape Fear Arch since the Pliocene. These paleo-channel complexes can be traced 80 km across the continental shelf via Boomer and Chirp subbottom data. The Murrells Inlet paleo-channel complex is the most well imaged offshore; and this data coverage provides an opportunity for a detailed seismic stratigraphic interpretation and analysis of downstream variability. Initial observations from this case study indicate that inner shelf incisions, where bedrock is folded and faulted, tend to be shallow with numerous channels, while the incisions across the middle shelf appear to be deeper and contains larger, more sinuous channels that are cut into broadly tilted strata with a gentle south-southeastward dip. This suggests the geometry and spatial distribution of the incisions were a function of the inherited fabric of the underlying basement, which created local deflection and areas of aggradation and degradation. The inner shelf paleo-channel complex fill is dominated by fluvial cut and fill seismic facies, while the middle shelf contains a wide variety of seismic facies (i.e. transparent, layered, chaotic, etc). This overall longitudinal fill pattern is most likely due to each location's general proximity to base level. The variation in the cut and fill seismic facies may be driven by substantial changes in discharge, driven locally by the joining of another major river or by climatic changes in the drainage basin. There also appears to be preferential reoccupation of previously filled paleo-channels, as the basement in this region is Tertiary and Cretaceous carbonates and siliciclastic rocks that are more resistant to erosion. The most recent occupation in any given paleo-channel tends to be on the southern margin, which may imply tectonic

  20. Spatial and temporal variation at major histocompatibility complex class IIB genes in the endangered Blakiston's fish owl.

    PubMed

    Kohyama, Tetsuo I; Omote, Keita; Nishida, Chizuko; Takenaka, Takeshi; Saito, Keisuke; Fujimoto, Satoshi; Masuda, Ryuichi

    2015-01-01

    Quantifying intraspecific genetic variation in functionally important genes, such as those of the major histocompatibility complex (MHC), is important in the establishment of conservation plans for endangered species. The MHC genes play a crucial role in the vertebrate immune system and generally show high levels of diversity, which is likely due to pathogen-driven balancing selection. The endangered Blakiston's fish owl (Bubo blakistoni) has suffered marked population declines on Hokkaido Island, Japan, during the past several decades due to human-induced habitat loss and fragmentation. We investigated the spatial and temporal patterns of genetic diversity in MHC class IIβ genes in Blakiston's fish owl, using massively parallel pyrosequencing. We found that the Blakiston's fish owl genome contains at least eight MHC class IIβ loci, indicating recent gene duplications. An analysis of sequence polymorphism provided evidence that balancing selection acted in the past. The level of MHC variation, however, was low in the current fish owl populations in Hokkaido: only 19 alleles were identified from 174 individuals. We detected considerable spatial differences in MHC diversity among the geographically isolated populations. We also detected a decline of MHC diversity in some local populations during the past decades. Our study demonstrated that the current spatial patterns of MHC variation in Blakiston's fish owl populations have been shaped by loss of variation due to the decline and fragmentation of populations, and that the short-term effects of genetic drift have counteracted the long-term effects of balancing selection.

  1. Chemical data and variation diagrams of igneous rocks from the Timber Mountain-Oasis Valley Caldera Complex, southern Nevada

    USGS Publications Warehouse

    Quinlivan, W.D.; Byers, F.M.

    1977-01-01

    Silica variation diagrams presented here are based on 162 chemical analyses of tuffs, lavas, and intrusives, representative of volcanic centers of the Timber Mountain-Oasis Valley caldera complex and cogenetic rocks of the Silent Canyon ca1dera. Most of the volcanic units sampled are shown on the U.S. Geological Survey geologic map of the Timber Mountain caldera area (I-891) and are described in U.S. Geological Survey Professional Paper 919. Early effusives of the complex, although slightly altered, are probably chemically, and petrographically, more like the calc-alkalic Fraction Tuff (Miocene) of the northern Nellis Air Force Base Bombing and Gunnery Range to the north, whereas effusives of later Miocene age, such as the Paintbrush and Timber Mountain Tuffs, are alkali-calcic.

  2. Anatomic variation and orgasm: Could variations in anatomy explain differences in orgasmic success?

    PubMed

    Emhardt, E; Siegel, J; Hoffman, L

    2016-07-01

    Though the public consciousness is typically focused on factors such as psychology, penis size, and the presence of the "G-spot," there are other anatomical and neuro-anatomic differences that could play an equal, or more important, role in the frequency and intensity of orgasms. Discovering these variations could direct further medical or procedural management to improve sexual satisfaction. The aim of this study is to review the available literature of anatomical sexual variation and to explain why this variation may predispose some patients toward a particular sexual experience. In this review, we explored the available literature on sexual anatomy and neuro-anatomy. We used PubMed and OVID Medline for search terms, including orgasm, penile size variation, clitoral variation, Grafenberg spot, and benefits of orgasm. First we review the basic anatomy and innervation of the reproductive organs. Then we describe several anatomical variations that likely play a superior role to popular known variation (penis size, presence of g-spot, etc). For males, the delicate play between the parasympathetic and sympathetic nervous systems is vital to achieve orgasm. For females, the autonomic component is more complex. The clitoris is the primary anatomical feature for female orgasm, including its migration toward the anterior vaginal wall. In conclusions, orgasms are complex phenomena involving psychological, physiological, and anatomic variation. While these variations predispose people to certain sexual function, future research should explore how to surgically or medically alter these. Clin. Anat. 29:665-672, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.

  3. DNA Sequence Variation at the Period Locus within and among Species of the Drosophila Melanogaster Complex

    PubMed Central

    Kliman, R. M.; Hey, J.

    1993-01-01

    A 1.9-kilobase region of the period locus was sequenced in six individuals of Drosophila melanogaster and from six individuals of each of three sibling species: Drosophila simulans, Drosophila sechellia and Drosophila mauritiana. Extensive genealogical analysis of 174 polymorphic sites reveals a complex history. It appears that D. simulans, as a large population still segregating very old lineages, gave rise to the island species D. mauritiana and D. sechellia. Rather than considering these speciation events as having produced ``sister'' taxa, it seems more appropriate to consider D. simulans a parent species to D. sechellia and D. mauritiana. The order, in time, of these two phylogenetic events remains unclear. D. mauritiana supports a large number of polymorphisms, many of which are shared with D. simulans, and so appears to have begun and persisted as a large population. In contrast, D. sechellia has very little variation and seems to have experienced a severe population bottleneck. Alternatively, the low variation in D. sechellia could be due to recent directional selection and genetic hitchhiking at or near the per locus. PMID:8436278

  4. Multiconfiguration Pair-Density Functional Theory Outperforms Kohn-Sham Density Functional Theory and Multireference Perturbation Theory for Ground-State and Excited-State Charge Transfer.

    PubMed

    Ghosh, Soumen; Sonnenberger, Andrew L; Hoyer, Chad E; Truhlar, Donald G; Gagliardi, Laura

    2015-08-11

    The correct description of charge transfer in ground and excited states is very important for molecular interactions, photochemistry, electrochemistry, and charge transport, but it is very challenging for Kohn-Sham (KS) density functional theory (DFT). KS-DFT exchange-correlation functionals without nonlocal exchange fail to describe both ground- and excited-state charge transfer properly. We have recently proposed a theory called multiconfiguration pair-density functional theory (MC-PDFT), which is based on a combination of multiconfiguration wave function theory with a new type of density functional called an on-top density functional. Here we have used MC-PDFT to study challenging ground- and excited-state charge-transfer processes by using on-top density functionals obtained by translating KS exchange-correlation functionals. For ground-state charge transfer, MC-PDFT performs better than either the PBE exchange-correlation functional or CASPT2 wave function theory. For excited-state charge transfer, MC-PDFT (unlike KS-DFT) shows qualitatively correct behavior at long-range with great improvement in predicted excitation energies.

  5. Unexpected Actinyl Cation-Directed Structural Variation in Neptunyl(VI) A-Type Tri-lacunary Heteropolyoxotungstate Complexes

    DOE PAGES

    Berg, John M.; Gaunt, Andrew J.; May, Iain; ...

    2015-04-22

    A-type tri-lacunary heteropolyoxotungstate anions (e.g., [PW 9O 34] 9-, [AsW 9O 34] 9-, [SiW 9O 34] 10- and [GeW 9O 34] 10-) are multi-dentate oxygen donor ligands that readily form sandwich complexes with actinyl cations ({UO 2} 2+, {NpO 2} +, {NpO 2} 2+ & {PuO 2} 2+) in near neutral/slightly alkaline aqueous solutions. Two or three actinyl cations are sandwiched between two trilacunary anions, with additional cations (Na +, K + or NH 4 +) also often held within the cluster. Studies thus far have indicated that it is these additional +I cations, rather than the specific actinylmore » cation, that direct the structural variation in the complexes formed. We now report the structural characterization of the neptunyl (VI) cluster complex (NH 4) 13 [Na(NpO 2) 2(A-α- PW 9O 34) 2]·12H 2O. The anion in this complex, [Na(NpO 2) 2(PW 9O 34) 2] 13-, contains one Na + cation and two {NpO 2} 2+ cations held between two [PW 9O 34] 9- anions – with an additional partial occupancy NH 4 + or {NpO 2} 2+ cation also present. In the analogous uranium (VI) system, under similar reaction conditions that includes an excess of NH 4Cl in the parent solution, it was previously shown that [(NH 4) 2(U VIO 2) 2(A-PW 9O 34) 2] 12- is the dominant species in both solution and the crystallized salt. Spectroscopic studies provide further proof of differences in the observed chemistry for the {NpO 2} 2+/[PW 9O 34] 9- and {UO 2} 2+/[PW 9O 34] 9- systems, both in solution and in solid state complexes crystallized from comparable salt solutions. The work revealed that varying the actinide element (Np vs. U) can indeed measurably impact structure and complex stability in the cluster chemistry of actinyl (VI) cations with A-type tri-lacunary heteropolyoxotungstate anions.« less

  6. Canine parvovirus enteritis, canine distemper, and major histocompatibility complex genetic variation in Mexican wolves.

    PubMed

    Hedrick, Philip W; Lee, Rhonda N; Buchanan, Colleen

    2003-10-01

    The endangered Mexican wolf (Canis lupus baileyi) was recently reintroduced into Arizona and New Mexico (USA). In 1999 and 2000, pups from three litters that were part of the reintroduction program died of either canine parvovirus or canine distemper. Overall, half (seven of 14) of the pups died of either canine parvovirus or canine distemper. The parents and their litters were analyzed for variation at the class II major histocompatibility complex (MHC) gene DRB1. Similar MHC genes are related to disease resistance in other species. All six of the surviving pups genotyped for the MHC gene were heterozygous while five of the pups that died were heterozygous and one was homozygous. Resistance to pathogens is an important aspect of the management and long-term survival of endangered taxa, such as the Mexican wolf.

  7. On the calculation of charge transfer transitions with standard density functionals using constrained variational density functional theory.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo

    2010-08-21

    It is well known that time-dependent density functional theory (TD-DFT) based on standard gradient corrected functionals affords both a quantitative and qualitative incorrect picture of charge transfer transitions between two spatially separated regions. It is shown here that the well known failure can be traced back to the use of linear response theory. Further, it is demonstrated that the inclusion of higher order terms readily affords a qualitatively correct picture even for simple functionals based on the local density approximation. The inclusion of these terms is done within the framework of a newly developed variational approach to excitation energies called constrained variational density functional theory (CV-DFT). To second order [CV(2)-DFT] this theory is identical to adiabatic TD-DFT within the Tamm-Dancoff approximation. With inclusion of fourth order corrections [CV(4)-DFT] it affords a qualitative correct description of charge transfer transitions. It is finally demonstrated that the relaxation of the ground state Kohn-Sham orbitals to first order in response to the change in density on excitation together with CV(4)-DFT affords charge transfer excitations in good agreement with experiment. The new relaxed theory is termed R-CV(4)-DFT. The relaxed scheme represents an effective way in which to introduce double replacements into the description of single electron excitations, something that would otherwise require a frequency dependent kernel.

  8. Spin densities from subsystem density-functional theory: Assessment and application to a photosynthetic reaction center complex model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Solovyeva, Alisa; Technical University Braunschweig, Institute for Physical and Theoretical Chemistry, Hans-Sommer-Str. 10, 38106 Braunschweig; Pavanello, Michele

    2012-05-21

    Subsystem density-functional theory (DFT) is a powerful and efficient alternative to Kohn-Sham DFT for large systems composed of several weakly interacting subunits. Here, we provide a systematic investigation of the spin-density distributions obtained in subsystem DFT calculations for radicals in explicit environments. This includes a small radical in a solvent shell, a {pi}-stacked guanine-thymine radical cation, and a benchmark application to a model for the special pair radical cation, which is a dimer of bacteriochlorophyll pigments, from the photosynthetic reaction center of purple bacteria. We investigate the differences in the spin densities resulting from subsystem DFT and Kohn-Sham DFT calculations.more » In these comparisons, we focus on the problem of overdelocalization of spin densities due to the self-interaction error in DFT. It is demonstrated that subsystem DFT can reduce this problem, while it still allows to describe spin-polarization effects crossing the boundaries of the subsystems. In practical calculations of spin densities for radicals in a given environment, it may thus be a pragmatic alternative to Kohn-Sham DFT calculations. In our calculation on the special pair radical cation, we show that the coordinating histidine residues reduce the spin-density asymmetry between the two halves of this system, while inclusion of a larger binding pocket model increases this asymmetry. The unidirectional energy transfer in photosynthetic reaction centers is related to the asymmetry introduced by the protein environment.« less

  9. Direct mapping between exchange potentials of Hartree-Fock and Kohn-Sham schemes as origin of orbital proximity

    NASA Astrophysics Data System (ADS)

    Cinal, M.

    2010-01-01

    It is found that for closed-l-shell atoms, the exact local exchange potential vx(r) calculated in the exchange-only Kohn-Sham (KS) scheme of the density functional theory (DFT) is very well represented within the region of every atomic shell by each of the suitably shifted potentials obtained with the nonlocal Fock exchange operator for the individual Hartree-Fock (HF) orbitals belonging to this shell. This newly revealed property is not related to the well-known steplike shell structure in the response part of vx(r), but it results from specific relations satisfied by the HF orbital exchange potentials. These relations explain the outstanding proximity of the occupied HF and exchange-only KS orbitals as well as the high quality of the Krieger-Li-Iafrate and localized HF (or, equivalently, common-energy-denominator) approximations to the DFT exchange potential vx(r). Another highly accurate representation of vx(r) is given by the continuous piecewise function built of shell-specific exchange potentials, each defined as the weighted average of the shifted orbital exchange potentials corresponding to a given shell. The constant shifts added to the HF orbital exchange potentials, to map them onto vx(r), are nearly equal to the differences between the energies of the corresponding KS and HF orbitals. It is discussed why these differences are positive and grow when the respective orbital energies become lower for inner orbitals.

  10. Multiconfiguration Pair-Density Functional Theory Predicts Spin-State Ordering in Iron Complexes with the Same Accuracy as Complete Active Space Second-Order Perturbation Theory at a Significantly Reduced Computational Cost.

    PubMed

    Wilbraham, Liam; Verma, Pragya; Truhlar, Donald G; Gagliardi, Laura; Ciofini, Ilaria

    2017-05-04

    The spin-state orderings in nine Fe(II) and Fe(III) complexes with ligands of diverse ligand-field strength were investigated with multiconfiguration pair-density functional theory (MC-PDFT). The performance of this method was compared to that of complete active space second-order perturbation theory (CASPT2) and Kohn-Sham density functional theory. We also investigated the dependence of CASPT2 and MC-PDFT results on the size of the active-space. MC-PDFT reproduces the CASPT2 spin-state ordering, the dependence on the ligand field strength, and the dependence on active space at a computational cost that is significantly reduced as compared to CASPT2.

  11. Major QTLs for critical photoperiod and vernalization underlie extensive variation in flowering in the Mimulus guttatus species complex.

    PubMed

    Friedman, Jannice; Willis, John H

    2013-07-01

    Species with extensive ranges experience highly variable environments with respect to temperature, light and soil moisture. Synchronizing the transition from vegetative to floral growth is important to employ favorable conditions for reproduction. Optimal timing of this transition might be different for semelparous annual plants and iteroparous perennial plants. We studied variation in the critical photoperiod necessary for floral induction and the requirement for a period of cold-chilling (vernalization) in 46 populations of annuals and perennials in the Mimulus guttatus species complex. We then examined critical photoperiod and vernalization QTLs in growth chambers using F(2) progeny from annual and perennial parents that differed in their requirements for flowering. We identify extensive variation in critical photoperiod, with most annual populations requiring substantially shorter day lengths to initiate flowering than perennial populations. We discover a novel type of vernalization requirement in perennial populations that is contingent on plants experiencing short days first. QTL analyses identify two large-effect QTLs which influence critical photoperiod. In two separate vernalization experiments we discover each set of crosses contain different large-effect QTLs for vernalization. Mimulus guttatus harbors extensive variation in critical photoperiod and vernalization that may be a consequence of local adaptation. © 2013 The Authors. New Phytologist © 2013 New Phytologist Trust.

  12. Simplified model to describe the dissociative recombination of linear polyatomic ions of astrophysical interest

    NASA Astrophysics Data System (ADS)

    Douguet, N.; Fonseca dos Santos, S.; Kokoouline, V.; Orel, A. E.

    2015-01-01

    We present results of a theoretical study on dissociative recombination of the HCNH+, HCO+ and N2H+ linear polyatomic ions at low energies using a simple theoretical model. In the present study, the indirect mechanism for recombination proceeds through the capture of the incoming electron in excited vibrational Rydberg states attached to the degenerate transverse modes of the linear ions. The strength of the non-adiabatic coupling responsible for dissociative recombination is determined directly from the near-threshold scattering matrix obtained numerically using the complex Kohn variational method. The final cross sections for the process are compared with available experimental data. It is demonstrated that at low collision energies, the major contribution to the dissociative recombination cross section is due to the indirect mechanism.

  13. A simple scheme for magnetic balance in four-component relativistic Kohn-Sham calculations of nuclear magnetic resonance shielding constants in a Gaussian basis.

    PubMed

    Olejniczak, Małgorzata; Bast, Radovan; Saue, Trond; Pecul, Magdalena

    2012-01-07

    We report the implementation of nuclear magnetic resonance (NMR) shielding tensors within the four-component relativistic Kohn-Sham density functional theory including non-collinear spin magnetization and employing London atomic orbitals to ensure gauge origin independent results, together with a new and efficient scheme for assuring correct balance between the large and small components of a molecular four-component spinor in the presence of an external magnetic field (simple magnetic balance). To test our formalism we have carried out calculations of NMR shielding tensors for the HX series (X = F, Cl, Br, I, At), the Xe atom, and the Xe dimer. The advantage of simple magnetic balance scheme combined with the use of London atomic orbitals is the fast convergence of results (when compared with restricted kinetic balance) and elimination of linear dependencies in the basis set (when compared to unrestricted kinetic balance). The effect of including spin magnetization in the description of NMR shielding tensor has been found important for hydrogen atoms in heavy HX molecules, causing an increase of isotropic values of 10%, but negligible for heavy atoms.

  14. Tailoring the physical properties of Ni-based single-phase equiatomic alloys by modifying the chemical complexity

    DOE PAGES

    Jin, Ke; Sales, Brian C.; Stocks, George Malcolm; ...

    2016-02-01

    We discovered that equiatomic alloys (e.g. high entropy alloys) have recently attracted considerable interest due to their exceptional properties, which might be closely related to their extreme disorder induced by the chemical complexity. To understand the effects of chemical complexity on their fundamental physical properties, a family of (eight) Ni-based, face-center-cubic (FCC), equiatomic alloys, extending from elemental Ni to quinary high entropy alloys, has been synthesized, and their electrical, thermal, and magnetic properties are systematically investigated in the range of 4–300 K by combining experiments with ab initio Korring-Kohn-Rostoker coherent-potential-approximation (KKR-CPA) calculations. The scattering of electrons is significantly increased duemore » to the chemical (especially magnetic) disorder. It has weak correlation with the number of elements but strongly depends on the type of elements. Thermal conductivities of the alloys are largely lower than pure metals, primarily because the high electrical resistivity suppresses the electronic thermal conductivity. Moreover, the temperature dependence of the electrical and thermal transport properties is further discussed, and the magnetization of five alloys containing three or more elements is measured in magnetic fields up to 4 T.« less

  15. On the Nature of Syntactic Variation: Evidence from Complex Predicates and Complex Word-Formation.

    ERIC Educational Resources Information Center

    Snyder, William

    2001-01-01

    Provides evidence from child language acquisition and comparative syntax for existence of a syntactic parameter in the classical sense of Chomsky (1981), with simultaneous effects on syntactic argument structure. Implications are that syntax is subject to points of substantive parametric variation as envisioned in Chomsky, and the time course of…

  16. Quantum dynamics in continuum for proton transport II: Variational solvent-solute interface.

    PubMed

    Chen, Duan; Chen, Zhan; Wei, Guo-Wei

    2012-01-01

    Proton transport plays an important role in biological energy transduction and sensory systems. Therefore, it has attracted much attention in biological science and biomedical engineering in the past few decades. The present work proposes a multiscale/multiphysics model for the understanding of the molecular mechanism of proton transport in transmembrane proteins involving continuum, atomic, and quantum descriptions, assisted with the evolution, formation, and visualization of membrane channel surfaces. We describe proton dynamics quantum mechanically via a new density functional theory based on the Boltzmann statistics, while implicitly model numerous solvent molecules as a dielectric continuum to reduce the number of degrees of freedom. The density of all other ions in the solvent is assumed to obey the Boltzmann distribution in a dynamic manner. The impact of protein molecular structure and its charge polarization on the proton transport is considered explicitly at the atomic scale. A variational solute-solvent interface is designed to separate the explicit molecule and implicit solvent regions. We formulate a total free-energy functional to put proton kinetic and potential energies, the free energy of all other ions, and the polar and nonpolar energies of the whole system on an equal footing. The variational principle is employed to derive coupled governing equations for the proton transport system. Generalized Laplace-Beltrami equation, generalized Poisson-Boltzmann equation, and generalized Kohn-Sham equation are obtained from the present variational framework. The variational solvent-solute interface is generated and visualized to facilitate the multiscale discrete/continuum/quantum descriptions. Theoretical formulations for the proton density and conductance are constructed based on fundamental laws of physics. A number of mathematical algorithms, including the Dirichlet-to-Neumann mapping, matched interface and boundary method, Gummel iteration, and Krylov

  17. Energy variational analysis of ions in water and channels: Field theory for primitive models of complex ionic fluids

    PubMed Central

    Eisenberg, Bob; Hyon, YunKyong; Liu, Chun

    2010-01-01

    Ionic solutions are mixtures of interacting anions and cations. They hardly resemble dilute gases of uncharged noninteracting point particles described in elementary textbooks. Biological and electrochemical solutions have many components that interact strongly as they flow in concentrated environments near electrodes, ion channels, or active sites of enzymes. Interactions in concentrated environments help determine the characteristic properties of electrodes, enzymes, and ion channels. Flows are driven by a combination of electrical and chemical potentials that depend on the charges, concentrations, and sizes of all ions, not just the same type of ion. We use a variational method EnVarA (energy variational analysis) that combines Hamilton’s least action and Rayleigh’s dissipation principles to create a variational field theory that includes flow, friction, and complex structure with physical boundary conditions. EnVarA optimizes both the action integral functional of classical mechanics and the dissipation functional. These functionals can include entropy and dissipation as well as potential energy. The stationary point of the action is determined with respect to the trajectory of particles. The stationary point of the dissipation is determined with respect to rate functions (such as velocity). Both variations are written in one Eulerian (laboratory) framework. In variational analysis, an “extra layer” of mathematics is used to derive partial differential equations. Energies and dissipations of different components are combined in EnVarA and Euler–Lagrange equations are then derived. These partial differential equations are the unique consequence of the contributions of individual components. The form and parameters of the partial differential equations are determined by algebra without additional physical content or assumptions. The partial differential equations of mixtures automatically combine physical properties of individual (unmixed) components

  18. Jackknife Estimation of Sampling Variance of Ratio Estimators in Complex Samples: Bias and the Coefficient of Variation. Research Report. ETS RR-06-19

    ERIC Educational Resources Information Center

    Oranje, Andreas

    2006-01-01

    A multitude of methods has been proposed to estimate the sampling variance of ratio estimates in complex samples (Wolter, 1985). Hansen and Tepping (1985) studied some of those variance estimators and found that a high coefficient of variation (CV) of the denominator of a ratio estimate is indicative of a biased estimate of the standard error of a…

  19. Estimating variation in stomatal frequency at intra-individual, intra-site, and inter-taxonomic levels in populations of the Leonardoxa africana (Fabaceae) complex over environmental gradients in Cameroon

    NASA Astrophysics Data System (ADS)

    Finsinger, Walter; Dos Santos, Thibaut; McKey, Doyle

    2013-07-01

    Variation of stomatal frequency (stomatal density and stomatal index) includes genetically-based, potentially-adaptive variation, and variation due to phenotypic plasticity, the degree of which may be fundamental to the ability to maintain high water-use efficiency and thus to deal with environmental change. We analysed stomatal frequency and morphology (pore length, pore width) in leaves from several individuals from nine populations of four sub-species of the Leonardoxa africana complex. The dataset represents a hierarchical sampling wherein factors are nested within each level (leaves in individuals, individuals in sites, etc.), allowing estimation of the contribution of different levels to overall variation, using variance-component analysis. SI showed significant variation among sites ("site" is largely confounded with "sub-species"), being highest in the sub-species localized in the highest-elevation site. However, most of the observed variance was accounted for at intra-site and intra-individual levels. This variance could reflect great phenotypic plasticity, presumably in response to highly local variation in micro-environmental conditions.

  20. VARIATION AND EVOLUTION OF BREEDING SYSTEMS IN THE TURNERA ULMIFOLIA L. COMPLEX (TURNERACEAE).

    PubMed

    Barrett, Spencer C H; Shore, Joel S

    1987-03-01

    The evolutionary and functional relationships among breeding systems and floral morphology were investigated in the Turnera ulmifolia complex. Predictions of a model of breeding system evolution among distylous and homostylous varieties were tested. Chromosome counts of 73 accessions revealed an association between breeding system and chromosome number. Diploid and tetraploid populations of five taxonomic varieties are distylous and self-incompatible, whereas hexaploid populations of three varieties are homostylous and self-compatible. The latter occur at different margins of the geographical range of the complex. Crossing studies and analyses of pollen and ovule fertility in F 1 's revealed that the three homostylous varieties are intersterile. To test the prediction that, homostylous varieties are long homostyles that have originated by crossing over within the distyly supergene, a crossing program was undertaken among distylous and homostylous plants. Residual incompatibility was observed in styles and pollen of each homostylous variety with patterns consistent with predictions of the cross-over model. The intersterility of hexaploid varieties suggests that long homostyly has arisen on at least three occasions in the complex by recombination within the supergene controlling distyly. Deviation from expected compatibility behavior occurs in populations of var. angustifolia that have the longest styles. These phenotypes displayed the greatest separation between anthers and stigmas (herkogamy) and set little seed in crosses with long- or short-styled plants. This suggests that they are derived from long homostyles with shorter length styles. It is proposed that selection for increased outcrossing has favored the evolution of herkogamy in long homostyles. Estimates of outcrossing rate in a distylous population using allozyme markers confirmed that dimorphic incompatibility enforces complete outcrossing. Significant genetic variation for floral traits likely to

  1. Fault geometric complexity and how it may cause temporal slip-rate variation within an interacting fault system

    NASA Astrophysics Data System (ADS)

    Zielke, Olaf; Arrowsmith, Ramon

    2010-05-01

    Slip-rates along individual faults may differ as a function of measurement time scale. Short-term slip-rates may be higher than the long term rate and vice versa. For example, vertical slip-rates along the Wasatch Fault, Utah are 1.7+/-0.5 mm/yr since 6ka, <0.6 mm/yr since 130ka, and 0.5-0.7 mm/yr since 10Ma (Friedrich et al., 2003). Following conventional earthquake recurrence models like the characteristic earthquake model, this observation implies that the driving strain accumulation rates may have changed over the respective time scales as well. While potential explanations for such slip-rate variations may be found for example in the reorganization of plate tectonic motion or mantle flow dynamics, causing changes in the crustal velocity field over long spatial wavelengths, no single geophysical explanation exists. Temporal changes in earthquake rate (i.e., event clustering) due to elastic interactions within a complex fault system may present an alternative explanation that requires neither variations in strain accumulation rate or nor changes in fault constitutive behavior for frictional sliding. In the presented study, we explore this scenario and investigate how fault geometric complexity, fault segmentation and fault (segment) interaction affect the seismic behavior and slip-rate along individual faults while keeping tectonic stressing-rate and frictional behavior constant in time. For that, we used FIMozFric--a physics-based numerical earthquake simulator, based on Okada's (1992) formulations for internal displacements and strains due to shear and tensile faults in a half-space. Faults are divided into a large number of equal-sized fault patches which communicate via elastic interaction, allowing implementation of geometrically complex, non-planar faults. Each patch has assigned a static and dynamic friction coefficient. The difference between those values is a function of depth--corresponding to the temperature-dependence of velocity-weakening that is

  2. Local variation and parallel evolution: morphological and genetic diversity across a species complex of neotropical crater lake cichlid fishes

    PubMed Central

    Elmer, Kathryn R.; Kusche, Henrik; Lehtonen, Topi K.; Meyer, Axel

    2010-01-01

    The polychromatic and trophically polymorphic Midas cichlid fish species complex (Amphilophus cf. citrinellus) is an excellent model system for studying the mechanisms of speciation and patterns of phenotypic diversification in allopatry and in sympatry. Here, we first review research to date on the species complex and the geological history of its habitat. We analyse body shape variation from all currently described species in the complex, sampled from six crater lakes (maximally 1.2–23.9 kyr old) and both great lakes in Nicaragua. We find that Midas cichlid populations in each lake have their own characteristic body shape. In lakes with multiple sympatric species of Midas cichlid, each species has a distinct body shape. Across the species complex, most body shape change relates to body depth, head, snout and mouth shape and caudal peduncle length. There is independent parallel evolution of an elongate limnetic species in at least two crater lakes. Mitochondrial genetic diversity is higher in crater lakes with multiple species. Midas cichlid species richness increases with the size and age of the crater lakes, though no such relationship exists for the other syntopic fishes. We suggest that crater lake Midas cichlids follow the predicted pattern of an adaptive radiation, with early divergence of each crater lake colonization, followed by intralacustrine diversification and speciation by ecological adaptation and sexual selection. PMID:20439280

  3. Complex Variation in Measures of General Intelligence and Cognitive Change

    PubMed Central

    Rowe, Suzanne J.; Rowlatt, Amy; Davies, Gail; Harris, Sarah E.; Porteous, David J.; Liewald, David C.; McNeill, Geraldine; Starr, John M.

    2013-01-01

    Combining information from multiple SNPs may capture a greater amount of genetic variation than from the sum of individual SNP effects and help identifying missing heritability. Regions may capture variation from multiple common variants of small effect, multiple rare variants or a combination of both. We describe regional heritability mapping of human cognition. Measures of crystallised (gc) and fluid intelligence (gf) in late adulthood (64–79 years) were available for 1806 individuals genotyped for 549,692 autosomal single nucleotide polymorphisms (SNPs). The same individuals were tested at age 11, enabling us the rare opportunity to measure cognitive change across most of their lifespan. 547,750 SNPs ranked by position are divided into 10, 908 overlapping regions of 101 SNPs to estimate the genetic variance each region explains, an approach that resembles classical linkage methods. We also estimate the genetic variation explained by individual autosomes and by SNPs within genes. Empirical significance thresholds are estimated separately for each trait from whole genome scans of 500 permutated data sets. The 5% significance threshold for the likelihood ratio test of a single region ranged from 17–17.5 for the three traits. This is the equivalent to nominal significance under the expectation of a chi-squared distribution (between 1df and 0) of P<1.44×10−5. These thresholds indicate that the distribution of the likelihood ratio test from this type of variance component analysis should be estimated empirically. Furthermore, we show that estimates of variation explained by these regions can be grossly overestimated. After applying permutation thresholds, a region for gf on chromosome 5 spanning the PRRC1 gene is significant at a genome-wide 10% empirical threshold. Analysis of gene methylation on the temporal cortex provides support for the association of PRRC1 and fluid intelligence (P = 0.004), and provides a prime candidate gene for high throughput

  4. A comprehensive custom panel design for routine hereditary cancer testing: preserving control, improving diagnostics and revealing a complex variation landscape.

    PubMed

    Castellanos, Elisabeth; Gel, Bernat; Rosas, Inma; Tornero, Eva; Santín, Sheila; Pluvinet, Raquel; Velasco, Juan; Sumoy, Lauro; Del Valle, Jesús; Perucho, Manuel; Blanco, Ignacio; Navarro, Matilde; Brunet, Joan; Pineda, Marta; Feliubadaló, Lidia; Capellá, Gabi; Lázaro, Conxi; Serra, Eduard

    2017-01-04

    We wanted to implement an NGS strategy to globally analyze hereditary cancer with diagnostic quality while retaining the same degree of understanding and control we had in pre-NGS strategies. To do this, we developed the I2HCP panel, a custom bait library covering 122 hereditary cancer genes. We improved bait design, tested different NGS platforms and created a clinically driven custom data analysis pipeline. The I2HCP panel was developed using a training set of hereditary colorectal cancer, hereditary breast and ovarian cancer and neurofibromatosis patients and reached an accuracy, analytical sensitivity and specificity greater than 99%, which was maintained in a validation set. I2HCP changed our diagnostic approach, involving clinicians and a genetic diagnostics team from panel design to reporting. The new strategy improved diagnostic sensitivity, solved uncertain clinical diagnoses and identified mutations in new genes. We assessed the genetic variation in the complete set of hereditary cancer genes, revealing a complex variation landscape that coexists with the disease-causing mutation. We developed, validated and implemented a custom NGS-based strategy for hereditary cancer diagnostics that improved our previous workflows. Additionally, the existence of a rich genetic variation in hereditary cancer genes favors the use of this panel to investigate their role in cancer risk.

  5. Delocalization error and "functional tuning" in Kohn-Sham calculations of molecular properties.

    PubMed

    Autschbach, Jochen; Srebro, Monika

    2014-08-19

    Kohn-Sham theory (KST) is the "workhorse" of numerical quantum chemistry. This is particularly true for first-principles calculations of ground- and excited-state properties for larger systems, including electronic spectra, electronic dynamic and static linear and higher order response properties (including nonlinear optical (NLO) properties), conformational or dynamic averaging of spectra and response properties, or properties that are affected by the coupling of electron and nuclear motion. This Account explores the sometimes dramatic impact of the delocalization error (DE) and possible benefits from the use of long-range corrections (LC) and "tuning" of functionals in KST calculations of molecular ground-state and response properties. Tuning refers to a nonempirical molecule-specific determination of adjustable parameters in functionals to satisfy known exact conditions, for instance, that the energy of the highest occupied molecular orbital (HOMO) should be equal to the negative vertical ionization potential (IP) or that the energy as a function of fractional electron numbers should afford straight-line segments. The presentation is given from the viewpoint of a chemist interested in computations of a variety of molecular optical and spectroscopic properties and of a theoretician developing methods for computing such properties with KST. In recent years, the use of LC functionals, functional tuning, and quantifying the DE explicitly have provided valuable insight regarding the performance of KST for molecular properties. We discuss a number of different molecular properties, with examples from recent studies from our laboratory and related literature. The selected properties probe different aspects of molecular electronic structure. Electric field gradients and hyperfine coupling constants can be exquisitely sensitive to the DE because it affects the ground-state electron density and spin density distributions. For π-conjugated molecules, it is shown how the

  6. Visual Complexity in Orthographic Learning: Modeling Learning across Writing System Variations

    ERIC Educational Resources Information Center

    Chang, Li-Yun; Plaut, David C.; Perfetti, Charles A.

    2016-01-01

    The visual complexity of orthographies varies across writing systems. Prior research has shown that complexity strongly influences the initial stage of reading development: the perceptual learning of grapheme forms. This study presents a computational simulation that examines the degree to which visual complexity leads to grapheme learning…

  7. Structure of complexes between aluminum chloride and other chlorides, 2: Alkali-(chloroaluminates). Gaseous complexes

    NASA Technical Reports Server (NTRS)

    Hargittai, M.

    1980-01-01

    The structural chemistry of complexes between aluminum chloride and other metal chlorides is important both for practice and theory. Condensed-phase as well as vapor-phase complexes are of interest. Structural information on such complexes is reviewed. The first emphasis is given to the molten state because of its practical importance. Aluminum chloride forms volatile complexes with other metal chlorides and these vapor-phase complexes are dealt with in the second part. Finally, the variations in molecular shape and geometrical parameters are summarized.

  8. Local Fitting of the Kohn-Sham Density in a Gaussian and Plane Waves Scheme for Large-Scale Density Functional Theory Simulations.

    PubMed

    Golze, Dorothea; Iannuzzi, Marcella; Hutter, Jürg

    2017-05-09

    A local resolution-of-the-identity (LRI) approach is introduced in combination with the Gaussian and plane waves (GPW) scheme to enable large-scale Kohn-Sham density functional theory calculations. In GPW, the computational bottleneck is typically the description of the total charge density on real-space grids. Introducing the LRI approximation, the linear scaling of the GPW approach with respect to system size is retained, while the prefactor for the grid operations is reduced. The density fitting is an O(N) scaling process implemented by approximating the atomic pair densities by an expansion in one-center fit functions. The computational cost for the grid-based operations becomes negligible in LRIGPW. The self-consistent field iteration is up to 30 times faster for periodic systems dependent on the symmetry of the simulation cell and on the density of grid points. However, due to the overhead introduced by the local density fitting, single point calculations and complete molecular dynamics steps, including the calculation of the forces, are effectively accelerated by up to a factor of ∼10. The accuracy of LRIGPW is assessed for different systems and properties, showing that total energies, reaction energies, intramolecular and intermolecular structure parameters are well reproduced. LRIGPW yields also high quality results for extended condensed phase systems such as liquid water, ice XV, and molecular crystals.

  9. Seasonal variations in erodibility and sediment transport potential in a mesotidal channel-flat complex, Willapa Bay, WA

    NASA Astrophysics Data System (ADS)

    Wiberg, Patricia L.; Law, Brent A.; Wheatcroft, Robert A.; Milligan, Timothy G.; Hill, Paul S.

    2013-06-01

    Measurements of erodibility, porosity and sediment size were made three times over the course of a year at sites within a muddy, mesotidal flat-channel complex in southern Willapa Bay, WA, to examine spatial and seasonal variations in sediment properties and transport potential. Average critical shear stress profiles, the metric we used for erodibility, were quantified using a power-law fit to cumulative eroded mass vs. shear stress for the flats and channel. Laboratory erosion measurements of deposits made from slurries of flat and channel sediment were used to quantify erodibility over consolidation time scales ranging from 6 to 96h. Erodibility of the tidal flats was consistently low, with spatial variability comparable to seasonal variability despite seasonal changes in biological activity. In contrast, channel-bed erodibility underwent large seasonal variations, with mobile sediment present in the channel thalweg during winter that was absent in the spring and summer, when channel-bed erodibility was low and comparable to that of the tidal flats. Sediment on the northern (left) channel flank was mobile in summer and winter, whereas sediment on the southern flank was not. Seasonal changes in channel-bed erodibility are sufficient to produce order-of-magnitude changes in suspended sediment concentrations during peak tidal flows. Porosity just below the sediment surface was the best predictor of erodibility in our study area.

  10. Performance of the Effective Core Potentials of Ca, Hg and Pb in Complexes with Ligands Containing N and O Donor Atoms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ramirez, Jose Z.; Vargas, Rubicelia; Garza, Jorge

    This paper presents a systematic study of the performance of the relativistic effective core potentials (RECPs) proposed by Stoll-Preuss, Christiansen-Ermler and Hay-Wadt for Ca2+, Hg2+ and Pb2+. The RECPs performance is studied when these cations are combined with ethylene glycol, 2-aminoethanol and ethylenediamine to form bidentate complexes. First, the description of the bidentate ligands is analyzed with the Kohn-Sham method by using SVWN, BLYP and B3LYP exchange-correlation functionals and they are compared with the Moeller-Plesset perturbation theory (MP2), for all these methods the TZVP basis set was used. We found that the BLYP exchange-correlation functional gives similar results that thosemore » obtained by the B3LYP and MP2 methods. Thus, the bidentate metal complexes were studied with the BLYP method combined with the RECPs. In order to compare RECPs performance, all the systems considered in this work were studied with the relativistic all-electron Douglas-Kroll (DK3) method. We observed that the Christiansen-Ermler RECPs give the best energetic and geometrical description for Ca and Hg complexes when compared with the all-electron method. For Pb complexes the spin-orbit interaction and Basis Set Superposition error must be taken into account in the RECP. In general, the trend showed in the complexation energies with the all-electron method is followed by the complexation energies computed with all the pseudopotential tested in this work. Battelle operates PNNL for the USDOE.« less

  11. Variations in recollection: the effects of complexity on source recognition.

    PubMed

    Parks, Colleen M; Murray, Linda J; Elfman, Kane; Yonelinas, Andrew P

    2011-07-01

    Whether recollection is a threshold or signal detection process is highly controversial, and the controversy has centered in part on the shape of receiver operating characteristics (ROCs) and z-transformed ROCs (zROCs). U-shaped zROCs observed in tests thought to rely heavily on recollection, such as source memory tests, have provided evidence in favor of the threshold assumption, but zROCs are not always as U-shaped as threshold theory predicts. Source zROCs have been shown to become more linear when the contribution of familiarity to source discriminations is increased, and this may account for the existing results. However, another way in which source zROCs may become more linear is if the recollection threshold begins to break down and recollection becomes more graded and Gaussian. We tested the "graded recollection" account in the current study. We found that increasing stimulus complexity (i.e., changing from single words to sentences) or increasing source complexity (i.e., changing the sources from audio to videos of speakers) resulted in flatter source zROCs. In addition, conditions expected to reduce recollection (i.e., divided attention and amnesia) had comparable effects on source memory in simple and complex conditions, suggesting that differences between simple and complex conditions were due to differences in the nature of recollection, rather than differences in the utility of familiarity. The results suggest that under conditions of high complexity, recollection can appear more graded, and it can produce curved ROCs. The results have implications for measurement models and for current theories of recognition memory.

  12. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain

    PubMed Central

    2014-01-01

    Background Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. Methods We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. Results During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Conclusions Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling. PMID:24735818

  13. Saturation sampling for spatial variation in multiple air pollutants across an inversion-prone metropolitan area of complex terrain.

    PubMed

    Shmool, Jessie Lc; Michanowicz, Drew R; Cambal, Leah; Tunno, Brett; Howell, Jeffery; Gillooly, Sara; Roper, Courtney; Tripathy, Sheila; Chubb, Lauren G; Eisl, Holger M; Gorczynski, John E; Holguin, Fernando E; Shields, Kyra Naumoff; Clougherty, Jane E

    2014-04-16

    Characterizing intra-urban variation in air quality is important for epidemiological investigation of health outcomes and disparities. To date, however, few studies have been designed to capture spatial variation during select hours of the day, or to examine the roles of meteorology and complex terrain in shaping intra-urban exposure gradients. We designed a spatial saturation monitoring study to target local air pollution sources, and to understand the role of topography and temperature inversions on fine-scale pollution variation by systematically allocating sampling locations across gradients in key local emissions sources (vehicle traffic, industrial facilities) and topography (elevation) in the Pittsburgh area. Street-level integrated samples of fine particulate matter (PM2.5), black carbon (BC), nitrogen dioxide (NO2), sulfur dioxide (SO2), and ozone (O3) were collected during morning rush and probable inversion hours (6-11 AM), during summer and winter. We hypothesized that pollution concentrations would be: 1) higher under inversion conditions, 2) exacerbated in lower-elevation areas, and 3) vary by season. During July - August 2011 and January - March 2012, we observed wide spatial and seasonal variability in pollution concentrations, exceeding the range measured at regulatory monitors. We identified elevated concentrations of multiple pollutants at lower-elevation sites, and a positive association between inversion frequency and NO2 concentration. We examined temporal adjustment methods for deriving seasonal concentration estimates, and found that the appropriate reference temporal trend differs between pollutants. Our time-stratified spatial saturation approach found some evidence for modification of inversion-concentration relationships by topography, and provided useful insights for refining and interpreting GIS-based pollution source indicators for Land Use Regression modeling.

  14. Genome Variation Map: a data repository of genome variations in BIG Data Center.

    PubMed

    Song, Shuhui; Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang; Zhang, Zhang

    2018-01-04

    The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. © The Author(s) 2017. Published by Oxford University Press on behalf of Nucleic Acids Research.

  15. Genome Variation Map: a data repository of genome variations in BIG Data Center

    PubMed Central

    Tian, Dongmei; Li, Cuiping; Tang, Bixia; Dong, Lili; Xiao, Jingfa; Bao, Yiming; Zhao, Wenming; He, Hang

    2018-01-01

    Abstract The Genome Variation Map (GVM; http://bigd.big.ac.cn/gvm/) is a public data repository of genome variations. As a core resource in the BIG Data Center, Beijing Institute of Genomics, Chinese Academy of Sciences, GVM dedicates to collect, integrate and visualize genome variations for a wide range of species, accepts submissions of different types of genome variations from all over the world and provides free open access to all publicly available data in support of worldwide research activities. Unlike existing related databases, GVM features integration of a large number of genome variations for a broad diversity of species including human, cultivated plants and domesticated animals. Specifically, the current implementation of GVM not only houses a total of ∼4.9 billion variants for 19 species including chicken, dog, goat, human, poplar, rice and tomato, but also incorporates 8669 individual genotypes and 13 262 manually curated high-quality genotype-to-phenotype associations for non-human species. In addition, GVM provides friendly intuitive web interfaces for data submission, browse, search and visualization. Collectively, GVM serves as an important resource for archiving genomic variation data, helpful for better understanding population genetic diversity and deciphering complex mechanisms associated with different phenotypes. PMID:29069473

  16. alpha-Lactalbumin species variation, HAMLET formation, and tumor cell death.

    PubMed

    Pettersson, Jenny; Mossberg, Ann-Kristin; Svanborg, Catharina

    2006-06-23

    HAMLET (human alpha-lactalbumin made lethal to tumor cells) is a tumoricidal complex of apo alpha-lactalbumin and oleic acid, formed in casein after low pH treatment of human milk. This study examined if HAMLET-like complexes are present in casein from different species and if isolated alpha-lactalbumin from those species can form such complexes with oleic acid. Casein from human, bovine, equine, and porcine milk was separated by ion exchange chromatography and active complexes were only found in human casein. This was not explained by alpha-lactalbumin sequence variation, as purified bovine, equine, porcine, and caprine alpha-lactalbumins formed complexes with oleic acid with biological activity similar to HAMLET. We conclude that structural variation of alpha-lactalbumins does not preclude the formation of HAMLET-like complexes and that natural HAMLET formation in casein was unique to human milk, which also showed the highest oleic acid content.

  17. Quantification of extracellular levels of corticosterone in the basolateral amygdaloid complex of freely-moving rats: a dialysis study of circadian variation and stress-induced modulation.

    PubMed

    Bouchez, Gaëlle; Millan, Mark J; Rivet, Jean-Michel; Billiras, Rodolphe; Boulanger, Raphaël; Gobert, Alain

    2012-05-03

    Corticosterone influences emotion and cognition via actions in a diversity of corticolimbic structures, including the amygdala. Since extracellular levels of corticosterone in brain have rarely been studied, we characterized a specific and sensitive enzymatic immunoassay for microdialysis quantification of corticosterone in the basolateral amygdaloid complex of freely-moving rats. Corticosterone levels showed marked diurnal variation with an evening (dark phase) peak and stable, low levels during the day (light phase). The "anxiogenic agents", FG7142 (20 mg/kg) and yohimbine (10 mg/kg), and an environmental stressor, 15-min forced-swim, induced marked and sustained (1-3 h) increases in dialysis levels of corticosterone in basolateral amygdaloid complex. They likewise increased dialysis levels of dopamine and noradrenaline, but not serotonin and GABA. As compared to basal corticosterone levels of ~200-300 pg/ml, the elevation provoked by forced-swim was ca. 20-fold and this increase was abolished by adrenalectomy. Interestingly, stress-induced rises of corticosterone levels in basolateral amygdaloid complex were abrogated by combined but not separate administration of the corticotrophin releasing factor(1) (CRF(1)) receptor antagonist, CP154,526, and the vasopressin(1b) (V(1b)) receptor antagonist, SSR149,415. Underpinning their specificity, they did not block forced-swim-induced elevations in dopamine and noradrenaline. In conclusion, extracellular levels of corticosterone in the basolateral amygdaloid complex display marked diurnal variation. Further, they are markedly elevated by acute stressors, the effects of which are mediated (in contrast to concomitant elevations in levels of monoamines) by co-joint recruitment of CRF(1) and V(1b) receptors. Copyright © 2012 Elsevier B.V. All rights reserved.

  18. Because difficulty is not the same for everyone: the impact of complexity in working memory is associated with cannabinoid 1 receptor genetic variation in young adults.

    PubMed

    Ruiz-Contreras, Alejandra E; Román-López, Talía V; Caballero-Sánchez, Ulises; Rosas-Escobar, Cintia B; Ortega-Mora, E Ivett; Barrera-Tlapa, Miguel A; Romero-Hidalgo, Sandra; Carrillo-Sánchez, Karol; Hernández-Morales, Salvador; Vadillo-Ortega, Felipe; González-Barrios, Juan Antonio; Méndez-Díaz, Mónica; Prospéro-García, Oscar

    2017-03-01

    Individual differences in working memory ability are mainly revealed when a demanding challenge is imposed. Here, we have associated cannabinoid 1 (CB1) receptor genetic variation rs2180619 (AA, AG, GG), which is located in a potential CNR1 regulatory sequence, with performance in working memory. Two-hundred and nine Mexican-mestizo healthy young participants (89 women, 120 men, mean age: 23.26 years, SD = 2.85) were challenged to solve a medium (2-back) vs. a high (3-back) difficulty N-back tasks. All subjects responded as expected, performance was better with the medium than the high demand task version, but no differences were found among genotypes while performing each working memory (WM) task. However, the cost of the level of complexity in N-back paradigm was double for GG subjects than for AA subjects. It is noteworthy that an additive-dosage allele relation was found for G allele in terms of cost of level of complexity. These genetic variation results support that the endocannabinoid system, evaluated by rs2180619 polymorphism, is involved in WM ability in humans.

  19. Derivation of the RPA (Random Phase Approximation) Equation of ATDDFT (Adiabatic Time Dependent Density Functional Ground State Response Theory) from an Excited State Variational Approach Based on the Ground State Functional.

    PubMed

    Ziegler, Tom; Krykunov, Mykhaylo; Autschbach, Jochen

    2014-09-09

    The random phase approximation (RPA) equation of adiabatic time dependent density functional ground state response theory (ATDDFT) has been used extensively in studies of excited states. It extracts information about excited states from frequency dependent ground state response properties and avoids, thus, in an elegant way, direct Kohn-Sham calculations on excited states in accordance with the status of DFT as a ground state theory. Thus, excitation energies can be found as resonance poles of frequency dependent ground state polarizability from the eigenvalues of the RPA equation. ATDDFT is approximate in that it makes use of a frequency independent energy kernel derived from the ground state functional. It is shown in this study that one can derive the RPA equation of ATDDFT from a purely variational approach in which stationary states above the ground state are located using our constricted variational DFT (CV-DFT) method and the ground state functional. Thus, locating stationary states above the ground state due to one-electron excitations with a ground state functional is completely equivalent to solving the RPA equation of TDDFT employing the same functional. The present study is an extension of a previous work in which we demonstrated the equivalence between ATDDFT and CV-DFT within the Tamm-Dancoff approximation.

  20. Read clouds uncover variation in complex regions of the human genome

    PubMed Central

    Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E.; West, Robert; Sidow, Arend; Batzoglou, Serafim

    2015-01-01

    Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. PMID:26286554

  1. Read clouds uncover variation in complex regions of the human genome.

    PubMed

    Bishara, Alex; Liu, Yuling; Weng, Ziming; Kashef-Haghighi, Dorna; Newburger, Daniel E; West, Robert; Sidow, Arend; Batzoglou, Serafim

    2015-10-01

    Although an increasing amount of human genetic variation is being identified and recorded, determining variants within repeated sequences of the human genome remains a challenge. Most population and genome-wide association studies have therefore been unable to consider variation in these regions. Core to the problem is the lack of a sequencing technology that produces reads with sufficient length and accuracy to enable unique mapping. Here, we present a novel methodology of using read clouds, obtained by accurate short-read sequencing of DNA derived from long fragment libraries, to confidently align short reads within repeat regions and enable accurate variant discovery. Our novel algorithm, Random Field Aligner (RFA), captures the relationships among the short reads governed by the long read process via a Markov Random Field. We utilized a modified version of the Illumina TruSeq synthetic long-read protocol, which yielded shallow-sequenced read clouds. We test RFA through extensive simulations and apply it to discover variants on the NA12878 human sample, for which shallow TruSeq read cloud sequencing data are available, and on an invasive breast carcinoma genome that we sequenced using the same method. We demonstrate that RFA facilitates accurate recovery of variation in 155 Mb of the human genome, including 94% of 67 Mb of segmental duplication sequence and 96% of 11 Mb of transcribed sequence, that are currently hidden from short-read technologies. © 2015 Bishara et al.; Published by Cold Spring Harbor Laboratory Press.

  2. Complexity and dynamics of topological and community structure in complex networks

    NASA Astrophysics Data System (ADS)

    Berec, Vesna

    2017-07-01

    Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system's modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters - communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system's collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.

  3. Mining sequence variations in representative polyploid sugarcane germplasm accessions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Xiping; Song, Jian; You, Qian

    Sugarcane (Saccharum spp.) is one of the most important economic crops because of its high sugar production and biofuel potential. Due to the high polyploid level and complex genome of sugarcane, it has been a huge challenge to investigate genomic sequence variations, which are critical for identifying alleles contributing to important agronomic traits. In order to mine the genetic variations in sugarcane, genotyping by sequencing (GBS), was used to genotype 14 representative Saccharum complex accessions. GBS is a method to generate a large number of markers, enabled by next generation sequencing (NGS) and the genome complexity reduction using restriction enzymes.more » To use GBS for high throughput genotyping highly polyploid sugarcane, the GBS analysis pipelines in 14 Saccharum complex accessions were established by evaluating different alignment methods, sequence variants callers, and sequence depth for single nucleotide polymorphism (SNP) filtering. By using the established pipeline, a total of 76,251 non-redundant SNPs, 5642 InDels, 6380 presence/absence variants (PAVs), and 826 copy number variations (CNVs) were detected among the 14 accessions. In addition, non-reference based universal network enabled analysis kit and Stacks de novo called 34,353 and 109,043 SNPs, respectively. In the 14 accessions, the percentages of single dose SNPs ranged from 38.3% to 62.3% with an average of 49.6%, much more than the portions of multiple dosage SNPs. Concordantly called SNPs were used to evaluate the phylogenetic relationship among the 14 accessions. The results showed that the divergence time between the Erianthus genus and the Saccharum genus was more than 10 million years ago (MYA). The Saccharum species separated from their common ancestors ranging from 0.19 to 1.65 MYA. The GBS pipelines including the reference sequences, alignment methods, sequence variant callers, and sequence depth were recommended and discussed for the Saccharum complex and other related

  4. Mining sequence variations in representative polyploid sugarcane germplasm accessions

    DOE PAGES

    Yang, Xiping; Song, Jian; You, Qian; ...

    2017-08-09

    Sugarcane (Saccharum spp.) is one of the most important economic crops because of its high sugar production and biofuel potential. Due to the high polyploid level and complex genome of sugarcane, it has been a huge challenge to investigate genomic sequence variations, which are critical for identifying alleles contributing to important agronomic traits. In order to mine the genetic variations in sugarcane, genotyping by sequencing (GBS), was used to genotype 14 representative Saccharum complex accessions. GBS is a method to generate a large number of markers, enabled by next generation sequencing (NGS) and the genome complexity reduction using restriction enzymes.more » To use GBS for high throughput genotyping highly polyploid sugarcane, the GBS analysis pipelines in 14 Saccharum complex accessions were established by evaluating different alignment methods, sequence variants callers, and sequence depth for single nucleotide polymorphism (SNP) filtering. By using the established pipeline, a total of 76,251 non-redundant SNPs, 5642 InDels, 6380 presence/absence variants (PAVs), and 826 copy number variations (CNVs) were detected among the 14 accessions. In addition, non-reference based universal network enabled analysis kit and Stacks de novo called 34,353 and 109,043 SNPs, respectively. In the 14 accessions, the percentages of single dose SNPs ranged from 38.3% to 62.3% with an average of 49.6%, much more than the portions of multiple dosage SNPs. Concordantly called SNPs were used to evaluate the phylogenetic relationship among the 14 accessions. The results showed that the divergence time between the Erianthus genus and the Saccharum genus was more than 10 million years ago (MYA). The Saccharum species separated from their common ancestors ranging from 0.19 to 1.65 MYA. The GBS pipelines including the reference sequences, alignment methods, sequence variant callers, and sequence depth were recommended and discussed for the Saccharum complex and other related

  5. FROG - Fingerprinting Genomic Variation Ontology

    PubMed Central

    Bhardwaj, Anshu

    2015-01-01

    Genetic variations play a crucial role in differential phenotypic outcomes. Given the complexity in establishing this correlation and the enormous data available today, it is imperative to design machine-readable, efficient methods to store, label, search and analyze this data. A semantic approach, FROG: “FingeRprinting Ontology of Genomic variations” is implemented to label variation data, based on its location, function and interactions. FROG has six levels to describe the variation annotation, namely, chromosome, DNA, RNA, protein, variations and interactions. Each level is a conceptual aggregation of logically connected attributes each of which comprises of various properties for the variant. For example, in chromosome level, one of the attributes is location of variation and which has two properties, allosomes or autosomes. Another attribute is variation kind which has four properties, namely, indel, deletion, insertion, substitution. Likewise, there are 48 attributes and 278 properties to capture the variation annotation across six levels. Each property is then assigned a bit score which in turn leads to generation of a binary fingerprint based on the combination of these properties (mostly taken from existing variation ontologies). FROG is a novel and unique method designed for the purpose of labeling the entire variation data generated till date for efficient storage, search and analysis. A web-based platform is designed as a test case for users to navigate sample datasets and generate fingerprints. The platform is available at http://ab-openlab.csir.res.in/frog. PMID:26244889

  6. ELSI: A unified software interface for Kohn–Sham electronic structure solvers

    DOE PAGES

    Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto; ...

    2017-09-15

    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less

  7. Linear-scaling implementation of molecular response theory in self-consistent field electronic-structure theory.

    PubMed

    Coriani, Sonia; Høst, Stinne; Jansík, Branislav; Thøgersen, Lea; Olsen, Jeppe; Jørgensen, Poul; Reine, Simen; Pawłowski, Filip; Helgaker, Trygve; Sałek, Paweł

    2007-04-21

    A linear-scaling implementation of Hartree-Fock and Kohn-Sham self-consistent field theories for the calculation of frequency-dependent molecular response properties and excitation energies is presented, based on a nonredundant exponential parametrization of the one-electron density matrix in the atomic-orbital basis, avoiding the use of canonical orbitals. The response equations are solved iteratively, by an atomic-orbital subspace method equivalent to that of molecular-orbital theory. Important features of the subspace method are the use of paired trial vectors (to preserve the algebraic structure of the response equations), a nondiagonal preconditioner (for rapid convergence), and the generation of good initial guesses (for robust solution). As a result, the performance of the iterative method is the same as in canonical molecular-orbital theory, with five to ten iterations needed for convergence. As in traditional direct Hartree-Fock and Kohn-Sham theories, the calculations are dominated by the construction of the effective Fock/Kohn-Sham matrix, once in each iteration. Linear complexity is achieved by using sparse-matrix algebra, as illustrated in calculations of excitation energies and frequency-dependent polarizabilities of polyalanine peptides containing up to 1400 atoms.

  8. ELSI: A unified software interface for Kohn–Sham electronic structure solvers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yu, Victor Wen-zhe; Corsetti, Fabiano; Garcia, Alberto

    Solving the electronic structure from a generalized or standard eigenproblem is often the bottleneck in large scale calculations based on Kohn-Sham density-functional theory. This problem must be addressed by essentially all current electronic structure codes, based on similar matrix expressions, and by high-performance computation. We here present a unified software interface, ELSI, to access different strategies that address the Kohn-Sham eigenvalue problem. Currently supported algorithms include the dense generalized eigensolver library ELPA, the orbital minimization method implemented in libOMM, and the pole expansion and selected inversion (PEXSI) approach with lower computational complexity for semilocal density functionals. The ELSI interface aimsmore » to simplify the implementation and optimal use of the different strategies, by offering (a) a unified software framework designed for the electronic structure solvers in Kohn-Sham density-functional theory; (b) reasonable default parameters for a chosen solver; (c) automatic conversion between input and internal working matrix formats, and in the future (d) recommendation of the optimal solver depending on the specific problem. As a result, comparative benchmarks are shown for system sizes up to 11,520 atoms (172,800 basis functions) on distributed memory supercomputing architectures.« less

  9. Patterned variation in prehistoric chiefdoms

    PubMed Central

    Drennan, Robert D.; Peterson, Christian E.

    2006-01-01

    Comparative study of early complex societies (chiefdoms) conjures visions of a cultural evolutionary emphasis on similarities and societal typology. Variation within the group has not been as systematically examined but offers an even more productive avenue of approach to fundamental principles of organization and change. Three widely separated trajectories of early chiefdom development are compared here: the Valley of Oaxaca (Mexico), the Alto Magdalena (Colombia), and Northeast China. Archaeological data from all three regions are analyzed with the same tools to reveal variation in human activities, relationships, and interactions as these change in the emergence of chiefly communities. Patterning in this variation suggests the operation of underlying general principles, which are offered as hypotheses that merit further investigation and evaluation in comparative study of a much larger number of cases. PMID:16473941

  10. Multistate Lempel-Ziv (MLZ) index interpretation as a measure of amplitude and complexity changes.

    PubMed

    Sarlabous, Leonardo; Torres, Abel; Fiz, Jose A; Gea, Joaquim; Galdiz, Juan B; Jane, Raimon

    2009-01-01

    The Lempel-Ziv complexity (LZ) has been widely used to evaluate the randomness of finite sequences. In general, the LZ complexity has been used to determine the complexity grade present in biomedical signals. The LZ complexity is not able to discern between signals with different amplitude variations and similar random components. On the other hand, amplitude parameters, as the root mean square (RMS), are not able to discern between signals with similar power distributions and different random components. In this work, we present a novel method to quantify amplitude and complexity variations in biomedical signals by means of the computation of the LZ coefficient using more than two quantification states, and with thresholds fixed and independent of the dynamic range or standard deviation of the analyzed signal: the Multistate Lempel-Ziv (MLZ) index. Our results indicate that MLZ index with few quantification levels only evaluate the complexity changes of the signal, with high number of levels, the amplitude variations, and with an intermediate number of levels informs about both amplitude and complexity variations. The study performed in diaphragmatic mechanomyographic signals shows that the amplitude variations of this signal are more correlated with the respiratory effort than the complexity variations. Furthermore, it has been observed that the MLZ index with high number of levels practically is not affected by the existence of impulsive, sinusoidal, constant and Gaussian noises compared with the RMS amplitude parameter.

  11. Advanced complex trait analysis.

    PubMed

    Gray, A; Stewart, I; Tenesa, A

    2012-12-01

    The Genome-wide Complex Trait Analysis (GCTA) software package can quantify the contribution of genetic variation to phenotypic variation for complex traits. However, as those datasets of interest continue to increase in size, GCTA becomes increasingly computationally prohibitive. We present an adapted version, Advanced Complex Trait Analysis (ACTA), demonstrating dramatically improved performance. We restructure the genetic relationship matrix (GRM) estimation phase of the code and introduce the highly optimized parallel Basic Linear Algebra Subprograms (BLAS) library combined with manual parallelization and optimization. We introduce the Linear Algebra PACKage (LAPACK) library into the restricted maximum likelihood (REML) analysis stage. For a test case with 8999 individuals and 279,435 single nucleotide polymorphisms (SNPs), we reduce the total runtime, using a compute node with two multi-core Intel Nehalem CPUs, from ∼17 h to ∼11 min. The source code is fully available under the GNU Public License, along with Linux binaries. For more information see http://www.epcc.ed.ac.uk/software-products/acta. a.gray@ed.ac.uk Supplementary data are available at Bioinformatics online.

  12. Molecular frame photoelectron angular distributions for core ionization of ethane, carbon tetrafluoride and 1,1-difluoroethylene

    DOE PAGES

    Menssen, A.; Trevisan, C. S.; Schöffler, M. S.; ...

    2016-02-15

    Molecular frame photoelectron angular distributions (MFPADs) are measured in this paper in electron–ion momentum imaging experiments and compared with complex Kohn variational calculations for carbon K-shell ionization of carbon tetrafluoride (CF 4), ethane (C 2H 6) and 1,1-difluoroethylene (C 2H 2F 2). While in ethane the polarization averaged MFPADs show a tendency at low energies for the photoelectron to be emitted in the directions of the bonds, the opposite effect is seen in CF 4. A combination of these behaviors is seen in difluoroethylene where ionization from the two carbons can be distinguished experimentally because of their different K-shell ionizationmore » potentials. Excellent agreement is found between experiment and simple static-exchange or coupled two-channel theoretical calculations. Finally, however, simple electrostatics do not provide an adequate explanation of the suggestively simple angular distributions at low electron ejection energies.« less

  13. 76 FR 66314 - Lower Mississippi River Waterway Safety Advisory Committee

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-26

    ... Kohn as soon as possible. To facilitate public participation, we are inviting public comment on the... FURTHER INFORMATION CONTACT: Lieutenant Marcie Kohn, Assistant Designated Federal Officer of the Lower Mississippi River Waterway Safety Advisory Committee, telephone 504-365-2281 or e-mail at Marcie.L.Kohn@uscg...

  14. Temporal Variation in Single-Cell Power-Law Rheology Spans the Ensemble Variation of Cell Population.

    PubMed

    Cai, PingGen; Takahashi, Ryosuke; Kuribayashi-Shigetomi, Kaori; Subagyo, Agus; Sueoka, Kazuhisa; Maloney, John M; Van Vliet, Krystyn J; Okajima, Takaharu

    2017-08-08

    Changes in the cytoskeletal organization within cells can be characterized by large spatial and temporal variations in rheological properties of the cell (e.g., the complex shear modulus G ∗ ). Although the ensemble variation in G ∗ of single cells has been elucidated, the detailed temporal variation of G ∗ remains unknown. In this study, we investigated how the rheological properties of individual fibroblast cells change under a spatially confined environment in which the cell translational motion is highly restricted and the whole cell shape remains unchanged. The temporal evolution of single-cell rheology was probed at the same measurement location within the cell, using atomic force microscopy-based oscillatory deformation. The measurements reveal that the temporal variation in the power-law rheology of cells is quantitatively consistent with the ensemble variation, indicating that the cell system satisfies an ergodic hypothesis in which the temporal statistics are identical to the ensemble statistics. The autocorrelation of G ∗ implies that the cell mechanical state evolves in the ensemble of possible states with a characteristic timescale. Copyright © 2017 Biophysical Society. Published by Elsevier Inc. All rights reserved.

  15. The Complexity of One-Step Equations

    ERIC Educational Resources Information Center

    Ngu, Bing

    2014-01-01

    An analysis of one-step equations from a cognitive load theory perspective uncovers variation within one-step equations. The complexity of one-step equations arises from the element interactivity across the operational and relational lines. The higher the number of operational and relational lines, the greater the complexity of the equations.…

  16. Secular Variations of Soil CO2 Efflux at Santa Ana-Izalco-Coatepeque Volcanic Complex, El Salvador, Central America

    NASA Astrophysics Data System (ADS)

    Olmos, R.; Barahona, F.; Cartagena, R.; Soriano, T.; Salazar, J.; Hernandez, P.; Perez, N.; Lopez, D.

    2002-12-01

    The Santa Ana-Izalco-Coatepeque volcanic complex (2,365 m elevation), located 40 Km west of San Salvador, consists of the Coatepeque collapse caldera (a 6.5 x 10.5 Km elliptical depression), the Santa Ana and Izalco stratovolcanoes, as well as numerous cinder cones and explosion craters. The summit of the Santa Ana volcano contains an acid lake where hot springs, gas bubbling and intense fumarolic emissions occur. A volcanic plume, usually driven by the NE trades, may be seen rising up to 500 m from the summit crater of the Santa Ana volcano. The goal of this study is to provide a multidisciplinary approach for the volcanic surveillance by means of performing geochemical continuous monitoring of diffuse CO2 emission rate in addition to seismic monitoring. Temporal variations of soil CO2 efflux measured at Cerro Pacho dome, Coatepeque caldera, by means of the accumulation chamber method and using a CO2 efflux continuous monitoring station developed by WEST Systems (Italy). From May 2001 till May 2002, CO2 efflux ranged from 4.3 to 327 gm-2d-1, with a median value of 98 and a quartile range of 26 gm-2d-1. Two distinct diffuse CO2 degassing periods have been observed: (1) an increasing trend from May to July 2001, and (2) a stationary period from November 2001 to May 2002. The increasing-trend period may be due to the anomalous plume degassing at the Santa Ana volcano during 2001 and soon after the January and February 2001 earthquakes. Temporal variations of CO2 efllux during the second period seem to be coupled with those of barometric pressure and wind speed at different time scales, though most of the variance is contained at diurnal and semi-diurnal frequencies. These observations can help to explain the existence of a persistent behavior (Hurst exponent, H=0.934 +/- 0.0039) within the diffuse CO2 degassing phenomena. However, further observations are in progress to understand the long-term memory of diffuse CO2 degassing at the Santa Ana volcanic complex.

  17. Optical spectrum variations of IL Cep A

    NASA Astrophysics Data System (ADS)

    Ismailov, N. Z.; Khalilov, O. V.; Bakhaddinova, G. R.

    2016-02-01

    The results of many-year uniform spectroscopic observations of the Herbig Ae/Be star IL Cep A are presented. Its Hα line has either a single or a barely resolved two-component emission profile. The H β emission line is clearly divided into two components with a deep central absorption. Smooth variations of the observed parameters of individual spectral lines over nine years are observed. The He I λ5876 Å line has a complex absorption profile, probably with superposed emission components. The NaI D1, D2 doublet exhibits weak changes due to variations in the circumstellar envelope. The variations observed in the stellar spectrum can be explained by either binarity or variations of the magnetic field in the stellar disk. Difficulties associated with both these possibilities are discussed.

  18. Climate impact on spreading of airborne infectious diseases. Complex network based modeling of climate influences on influenza like illnesses

    NASA Astrophysics Data System (ADS)

    Brenner, Frank; Marwan, Norbert; Hoffmann, Peter

    2017-06-01

    In this study we combined a wide range of data sets to simulate the outbreak of an airborne infectious disease that is directly transmitted from human to human. The basis is a complex network whose structures are inspired by global air traffic data (from openflights.org) containing information about airports, airport locations, direct flight connections and airplane types. Disease spreading inside every node is realized with a Susceptible-Exposed-Infected-Recovered (SEIR) compartmental model. Disease transmission rates in our model are depending on the climate environment and therefore vary in time and from node to node. To implement the correlation between water vapor pressure and influenza transmission rate [J. Shaman, M. Kohn, Proc. Natl. Acad. Sci. 106, 3243 (2009)], we use global available climate reanalysis data (WATCH-Forcing-Data-ERA-Interim, WFDEI). During our sensitivity analysis we found that disease spreading dynamics are strongly depending on network properties, the climatic environment of the epidemic outbreak location, and the season during the year in which the outbreak is happening.

  19. Toward Failure Modeling In Complex Dynamic Systems: Impact of Design and Manufacturing Variations

    NASA Technical Reports Server (NTRS)

    Tumer, Irem Y.; McAdams, Daniel A.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    When designing vehicle vibration monitoring systems for aerospace devices, it is common to use well-established models of vibration features to determine whether failures or defects exist. Most of the algorithms used for failure detection rely on these models to detect significant changes during a flight environment. In actual practice, however, most vehicle vibration monitoring systems are corrupted by high rates of false alarms and missed detections. Research conducted at the NASA Ames Research Center has determined that a major reason for the high rates of false alarms and missed detections is the numerous sources of statistical variations that are not taken into account in the. modeling assumptions. In this paper, we address one such source of variations, namely, those caused during the design and manufacturing of rotating machinery components that make up aerospace systems. We present a novel way of modeling the vibration response by including design variations via probabilistic methods. The results demonstrate initial feasibility of the method, showing great promise in developing a general methodology for designing more accurate aerospace vehicle vibration monitoring systems.

  20. Towards the blackbox computation of magnetic exchange coupling parameters in polynuclear transition-metal complexes: theory, implementation, and application.

    PubMed

    Phillips, Jordan J; Peralta, Juan E

    2013-05-07

    We present a method for calculating magnetic coupling parameters from a single spin-configuration via analytic derivatives of the electronic energy with respect to the local spin direction. This method does not introduce new approximations beyond those found in the Heisenberg-Dirac Hamiltonian and a standard Kohn-Sham Density Functional Theory calculation, and in the limit of an ideal Heisenberg system it reproduces the coupling as determined from spin-projected energy-differences. Our method employs a generalized perturbative approach to constrained density functional theory, where exact expressions for the energy to second order in the constraints are obtained by analytic derivatives from coupled-perturbed theory. When the relative angle between magnetization vectors of metal atoms enters as a constraint, this allows us to calculate all the magnetic exchange couplings of a system from derivatives with respect to local spin directions from the high-spin configuration. Because of the favorable computational scaling of our method with respect to the number of spin-centers, as compared to the broken-symmetry energy-differences approach, this opens the possibility for the blackbox exploration of magnetic properties in large polynuclear transition-metal complexes. In this work we outline the motivation, theory, and implementation of this method, and present results for several model systems and transition-metal complexes with a variety of density functional approximations and Hartree-Fock.

  1. 77 FR 29254 - Safety Zones, Large Cruise Ships; Lower Mississippi River, Southwest Pass Sea Buoy to Mile Marker...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-17

    ... have questions on this proposed rule, call or email Lieutenant Commander (LCDR) Marcie L. Kohn, Sector New Orleans, Coast Guard; telephone 504-365-2281, email Marcie.L.Kohn@uscg.mil . If you have questions... request special assistance at the public meeting, contact LCDR Marcie L. Kohn at the telephone number or...

  2. Structure-activity relationships in cytotoxic Au(I)/Au(III) complexes derived from 2-(2'-pyridyl)benzimidazole.

    PubMed

    Maiore, Laura; Aragoni, Maria Carla; Deiana, Carlo; Cinellu, Maria Agostina; Isaia, Francesco; Lippolis, Vito; Pintus, Anna; Serratrice, Maria; Arca, Massimiliano

    2014-04-21

    Gold(I) and gold(III) complexes derived from 2-(2'-pyridyl)benzimidazole (pbiH) were proven to be a promising class of in vitro antitumor agents against A2780 human ovarian cancer cells. In this paper, a comparative electrochemical, UV-vis absorption, and emission spectroscopic investigation is reported on pbiH, the two mononuclear Au(III) complexes [(pbi)AuX2] (X = Cl (1), AcO (2)), the four mononuclear Au(I) derivatives [(pbiH)AuCl] (3), [(pbiH)Au(PPh3)]PF6 ((4(+))(PF6(-))), [(pbi)Au(PPh3)] (5), and [(pbi)Au(TPA)] (6), the three mixed-valence Au(III)/Au(I) complexes [(μ-pbi)Au2Cl3] (7), [(Ph3P)Au(μ-pbi)AuX2]PF6 (X = Cl ((8(+))(PF6(-))), AcO ((9(+))(PF6(-)))), and the binuclear Au(I)-Au(I) compound [(μ-pbi)Au2(PPh3)2]PF6 ((10(+))(PF6(-))). All complexes feature irreversible reduction processes related to the Au(III)/Au(I) or Au(I)/Au(0) processes and peculiar luminescent emission at about 360-370 nm in CH2Cl2, with quantum yields that are remarkably lower ((0.7-14.5) × 10(-2)) in comparison to that determined for the free pbiH ligand (31.5 × 10(-2)) in the same solvent. The spectroscopic and electrochemical properties of all complexes were interpreted on the grounds of time-dependent PBE0/DFT calculations carried out both in the gas phase and in CH2Cl2 implicitly considered within the IEF-PCM SCRF approach. The electronic structure of the complexes, and in particular the energy and composition of the Kohn-Sham LUMOs, can be related to the antiproliferative properties against the A2780 ovarian carcinoma cell line, providing sound quantitative structure-activity relationships and shedding a light on the role played by the global charge and nature of ancillary ligands in the effectiveness of Au-based antitumor drugs.

  3. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits.

    PubMed

    Yadav, Anupama; Dhole, Kaustubh; Sinha, Himanshu

    2016-12-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets.

  4. Differential Regulation of Cryptic Genetic Variation Shapes the Genetic Interactome Underlying Complex Traits

    PubMed Central

    Yadav, Anupama; Dhole, Kaustubh

    2016-01-01

    Cryptic genetic variation (CGV) refers to genetic variants whose effects are buffered in most conditions but manifest phenotypically upon specific genetic and environmental perturbations. Despite having a central role in adaptation, contribution of CGV to regulation of quantitative traits is unclear. Instead, a relatively simplistic architecture of additive genetic loci is known to regulate phenotypic variation in most traits. In this paper, we investigate the regulation of CGV and its implication on the genetic architecture of quantitative traits at a genome-wide level. We use a previously published dataset of biparental recombinant population of Saccharomyces cerevisiae phenotyped in 34 diverse environments to perform single locus, two-locus, and covariance mapping. We identify loci that have independent additive effects as well as those which regulate the phenotypic manifestation of other genetic variants (variance QTL). We find that whereas additive genetic variance is predominant, a higher order genetic interaction network regulates variation in certain environments. Despite containing pleiotropic loci, with effects across environments, these genetic networks are highly environment specific. CGV is buffered under most allelic combinations of these networks and perturbed only in rare combinations resulting in high phenotypic variance. The presence of such environment specific genetic networks is the underlying cause of abundant gene–environment interactions. We demonstrate that overlaying identified molecular networks on such genetic networks can identify potential candidate genes and underlying mechanisms regulating phenotypic variation. Such an integrated approach applied to human disease datasets has the potential to improve the ability to predict disease predisposition and identify specific therapeutic targets. PMID:28172852

  5. Computational methods to predict railcar response to track cross-level variations

    DOT National Transportation Integrated Search

    1976-09-01

    The rocking response of railroad freight cars to track cross-level variations is studied using: (1) a reduced complexity digital simulation model, and (2) a quasi-linear describing function analysis. The reduced complexity digital simulation model em...

  6. 76 FR 60076 - Lower Mississippi River Waterway Safety Advisory Committee; Vacancies

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-28

    ... (504) 365-2281; or by faxing (504) 365-2287; or by e-mailing to Marcie.L.Kohn@uscg.mil . This notice is... CONTACT: LCDR Marcie Kohn, Alternate Designated Federal Officer (ADFO) of the Lower Mississippi River....Kohn@uscg.mil . SUPPLEMENTARY INFORMATION: On March 11, 2011, the Coast Guard published a request in...

  7. Density-functional expansion methods: evaluation of LDA, GGA, and meta-GGA functionals and different integral approximations.

    PubMed

    Giese, Timothy J; York, Darrin M

    2010-12-28

    We extend the Kohn-Sham potential energy expansion (VE) to include variations of the kinetic energy density and use the VE formulation with a 6-31G* basis to perform a "Jacob's ladder" comparison of small molecule properties using density functionals classified as being either LDA, GGA, or meta-GGA. We show that the VE reproduces standard Kohn-Sham DFT results well if all integrals are performed without further approximation, and there is no substantial improvement in using meta-GGA functionals relative to GGA functionals. The advantages of using GGA versus LDA functionals becomes apparent when modeling hydrogen bonds. We furthermore examine the effect of using integral approximations to compute the zeroth-order energy and first-order matrix elements, and the results suggest that the origin of the short-range repulsive potential within self-consistent charge density-functional tight-binding methods mainly arises from the approximations made to the first-order matrix elements.

  8. Defining the diverse spectrum of inversions, complex structural variation, and chromothripsis in the morbid human genome.

    PubMed

    Collins, Ryan L; Brand, Harrison; Redin, Claire E; Hanscom, Carrie; Antolik, Caroline; Stone, Matthew R; Glessner, Joseph T; Mason, Tamara; Pregno, Giulia; Dorrani, Naghmeh; Mandrile, Giorgia; Giachino, Daniela; Perrin, Danielle; Walsh, Cole; Cipicchio, Michelle; Costello, Maura; Stortchevoi, Alexei; An, Joon-Yong; Currall, Benjamin B; Seabra, Catarina M; Ragavendran, Ashok; Margolin, Lauren; Martinez-Agosto, Julian A; Lucente, Diane; Levy, Brynn; Sanders, Stephan J; Wapner, Ronald J; Quintero-Rivera, Fabiola; Kloosterman, Wigard; Talkowski, Michael E

    2017-03-06

    Structural variation (SV) influences genome organization and contributes to human disease. However, the complete mutational spectrum of SV has not been routinely captured in disease association studies. We sequenced 689 participants with autism spectrum disorder (ASD) and other developmental abnormalities to construct a genome-wide map of large SV. Using long-insert jumping libraries at 105X mean physical coverage and linked-read whole-genome sequencing from 10X Genomics, we document seven major SV classes at ~5 kb SV resolution. Our results encompass 11,735 distinct large SV sites, 38.1% of which are novel and 16.8% of which are balanced or complex. We characterize 16 recurrent subclasses of complex SV (cxSV), revealing that: (1) cxSV are larger and rarer than canonical SV; (2) each genome harbors 14 large cxSV on average; (3) 84.4% of large cxSVs involve inversion; and (4) most large cxSV (93.8%) have not been delineated in previous studies. Rare SVs are more likely to disrupt coding and regulatory non-coding loci, particularly when truncating constrained and disease-associated genes. We also identify multiple cases of catastrophic chromosomal rearrangements known as chromoanagenesis, including somatic chromoanasynthesis, and extreme balanced germline chromothripsis events involving up to 65 breakpoints and 60.6 Mb across four chromosomes, further defining rare categories of extreme cxSV. These data provide a foundational map of large SV in the morbid human genome and demonstrate a previously underappreciated abundance and diversity of cxSV that should be considered in genomic studies of human disease.

  9. Variations in the rotation of the earth

    NASA Astrophysics Data System (ADS)

    Carter, W. E.; Robertson, D. S.; Pettey, J. E.; Tapley, B. D.; Schutz, B. E.; Eanes, R. J.; Miao, L.

    Variations in the earth's rotation (UTI) and length of day have been tracked at the submillisecond level by astronomical radio interferometry and laser ranging to the LAGEOS satellite. Three years of regular measurements reveal complex patterns of variations including UTI fluctuations as large as 5 milliseconds in a few weeks. Comparison of the observed changes in length of day with variations in the global atmospheric angular momentum indicates that the dominant cause of changes in the earth's spin rate, on time scales from a week to several years, is the exchange of angular momentum between the atmosphere and the mantle. The unusually intense El Nino of 1982-1983 was marked by a strong peak in the length of day.

  10. The effects of historical fragmentation on major histocompatibility complex class II β and microsatellite variation in the Aegean island reptile, Podarcis erhardii.

    PubMed

    Santonastaso, Trent; Lighten, Jackie; van Oosterhout, Cock; Jones, Kenneth L; Foufopoulos, Johannes; Anthony, Nicola M

    2017-07-01

    The major histocompatibility complex (MHC) plays a key role in disease resistance and is the most polymorphic gene region in vertebrates. Although habitat fragmentation is predicted to lead to a loss in MHC variation through drift, the impact of other evolutionary forces may counter this effect. Here we assess the impact of selection, drift, migration, and recombination on MHC class II and microsatellite variability in 14 island populations of the Aegean wall lizard Podarcis erhardii . Lizards were sampled from islands within the Cyclades (Greece) formed by rising sea levels as the last glacial maximum approximately 20,000 before present. Bathymetric data were used to determine the area and age of each island, allowing us to infer the corresponding magnitude and timing of genetic bottlenecks associated with island formation. Both MHC and microsatellite variation were positively associated with island area, supporting the hypothesis that drift governs neutral and adaptive variation in this system. However, MHC but not microsatellite variability declined significantly with island age. This discrepancy is likely due to the fact that microsatellites attain mutation-drift equilibrium more rapidly than MHC. Although we detected signals of balancing selection, recombination and migration, the effects of these evolutionary processes appeared negligible relative to drift. This study demonstrates how land bridge islands can provide novel insights into the impact of historical fragmentation on genetic diversity as well as help disentangle the effects of different evolutionary forces on neutral and adaptive diversity.

  11. Genetic Variation in Cardiomyopathy and Cardiovascular Disorders.

    PubMed

    McNally, Elizabeth M; Puckelwartz, Megan J

    2015-01-01

    With the wider deployment of massively-parallel, next-generation sequencing, it is now possible to survey human genome data for research and clinical purposes. The reduced cost of producing short-read sequencing has now shifted the burden to data analysis. Analysis of genome sequencing remains challenged by the complexity of the human genome, including redundancy and the repetitive nature of genome elements and the large amount of variation in individual genomes. Public databases of human genome sequences greatly facilitate interpretation of common and rare genetic variation, although linking database sequence information to detailed clinical information is limited by privacy and practical issues. Genetic variation is a rich source of knowledge for cardiovascular disease because many, if not all, cardiovascular disorders are highly heritable. The role of rare genetic variation in predicting risk and complications of cardiovascular diseases has been well established for hypertrophic and dilated cardiomyopathy, where the number of genes that are linked to these disorders is growing. Bolstered by family data, where genetic variants segregate with disease, rare variation can be linked to specific genetic variation that offers profound diagnostic information. Understanding genetic variation in cardiomyopathy is likely to help stratify forms of heart failure and guide therapy. Ultimately, genetic variation may be amenable to gene correction and gene editing strategies.

  12. Diversification in the South American Pampas: the genetic and morphological variation of the widespread Petunia axillaris complex (Solanaceae).

    PubMed

    Turchetto, Caroline; Fagundes, Nelson J R; Segatto, Ana L A; Kuhlemeier, Cris; Solís Neffa, Viviana G; Speranza, Pablo R; Bonatto, Sandro L; Freitas, Loreta B

    2014-02-01

    Understanding the spatiotemporal distribution of genetic variation and the ways in which this distribution is connected to the ecological context of natural populations is fundamental for understanding the nature and mode of intraspecific and, ultimately, interspecific differentiation. The Petunia axillaris complex is endemic to the grasslands of southern South America and includes three subspecies: P. a. axillaris, P. a. parodii and P. a. subandina. These subspecies are traditionally delimited based on both geography and floral morphology, although the latter is highly variable. Here, we determined the patterns of genetic (nuclear and cpDNA), morphological and ecological (bioclimatic) variation of a large number of P. axillaris populations and found that they are mostly coincident with subspecies delimitation. The nuclear data suggest that the subspecies are likely independent evolutionary units, and their morphological differences may be associated with local adaptations to diverse climatic and/or edaphic conditions and population isolation. The demographic dynamics over time estimated by skyline plot analyses showed different patterns for each subspecies in the last 100 000 years, which is compatible with a divergence time between 35 000 and 107 000 years ago between P. a. axillaris and P. a. parodii, as estimated with the IMa program. Coalescent simulation tests using Approximate Bayesian Computation do not support previous suggestions of extensive gene flow between P. a. axillaris and P. a. parodii in their contact zone. © 2013 John Wiley & Sons Ltd.

  13. Body size and allometric variation in facial shape in children.

    PubMed

    Larson, Jacinda R; Manyama, Mange F; Cole, Joanne B; Gonzalez, Paula N; Percival, Christopher J; Liberton, Denise K; Ferrara, Tracey M; Riccardi, Sheri L; Kimwaga, Emmanuel A; Mathayo, Joshua; Spitzmacher, Jared A; Rolian, Campbell; Jamniczky, Heather A; Weinberg, Seth M; Roseman, Charles C; Klein, Ophir; Lukowiak, Ken; Spritz, Richard A; Hallgrimsson, Benedikt

    2018-02-01

    Morphological integration, or the tendency for covariation, is commonly seen in complex traits such as the human face. The effects of growth on shape, or allometry, represent a ubiquitous but poorly understood axis of integration. We address the question of to what extent age and measures of size converge on a single pattern of allometry for human facial shape. Our study is based on two large cross-sectional cohorts of children, one from Tanzania and the other from the United States (N = 7,173). We employ 3D facial imaging and geometric morphometrics to relate facial shape to age and anthropometric measures. The two populations differ significantly in facial shape, but the magnitude of this difference is small relative to the variation within each group. Allometric variation for facial shape is similar in both populations, representing a small but significant proportion of total variation in facial shape. Different measures of size are associated with overlapping but statistically distinct aspects of shape variation. Only half of the size-related variation in facial shape can be explained by the first principal component of four size measures and age while the remainder associates distinctly with individual measures. Allometric variation in the human face is complex and should not be regarded as a singular effect. This finding has important implications for how size is treated in studies of human facial shape and for the developmental basis for allometric variation more generally. © 2017 Wiley Periodicals, Inc.

  14. Medically Complex Home Care and Caregiver Strain

    ERIC Educational Resources Information Center

    Moorman, Sara M.; Macdonald, Cameron

    2013-01-01

    Purpose of the study: To examine (a) whether the content of caregiving tasks (i.e., nursing vs. personal care) contributes to variation in caregivers' strain and (b) whether the level of complexity of nursing tasks contributes to variation in strain among caregivers providing help with such tasks. Design and methods: The data came from the Cash…

  15. The ribosomes of Drosophila. II. Studies on intraspecific variation.

    PubMed

    Berger, E M; Weber, L

    1974-12-01

    Electrophoretic comparisons of 40S and 55S ribosomal subunit proteins from 18 strains of Drosophila melanogaster revealed the virtual absence of allelic variation. More detailed two-dimensional studies on the large subunit proteins in 6 of the strains demonstrated additional complexity but still no interstrain variation. The significance of these results is discussed with respect to present estimates of genic heterozygosity in natural populations.

  16. The scattering of low energy positrons by helium

    NASA Technical Reports Server (NTRS)

    Humberston, J. W.

    1973-01-01

    Kohn's variational method is used to calculate the positron-helium scattering length and low energy S-wave phase shifts for a quite realistic Hylleraas type of helium function containing an electron-electron correlation term. The zero energy wavefunction is used to calculate the value of the annihilation rate parameter Z sub eff. All the results are significantly different from those for Drachman's helium model B, but are in better agreement with the available experimental data.

  17. Complex systems and the technology of variability analysis

    PubMed Central

    Seely, Andrew JE; Macklem, Peter T

    2004-01-01

    Characteristic patterns of variation over time, namely rhythms, represent a defining feature of complex systems, one that is synonymous with life. Despite the intrinsic dynamic, interdependent and nonlinear relationships of their parts, complex biological systems exhibit robust systemic stability. Applied to critical care, it is the systemic properties of the host response to a physiological insult that manifest as health or illness and determine outcome in our patients. Variability analysis provides a novel technology with which to evaluate the overall properties of a complex system. This review highlights the means by which we scientifically measure variation, including analyses of overall variation (time domain analysis, frequency distribution, spectral power), frequency contribution (spectral analysis), scale invariant (fractal) behaviour (detrended fluctuation and power law analysis) and regularity (approximate and multiscale entropy). Each technique is presented with a definition, interpretation, clinical application, advantages, limitations and summary of its calculation. The ubiquitous association between altered variability and illness is highlighted, followed by an analysis of how variability analysis may significantly improve prognostication of severity of illness and guide therapeutic intervention in critically ill patients. PMID:15566580

  18. Adaptive local basis set for Kohn-Sham density functional theory in a discontinuous Galerkin framework II: Force, vibration, and molecular dynamics calculations

    NASA Astrophysics Data System (ADS)

    Zhang, Gaigong; Lin, Lin; Hu, Wei; Yang, Chao; Pask, John E.

    2017-04-01

    Recently, we have proposed the adaptive local basis set for electronic structure calculations based on Kohn-Sham density functional theory in a pseudopotential framework. The adaptive local basis set is efficient and systematically improvable for total energy calculations. In this paper, we present the calculation of atomic forces, which can be used for a range of applications such as geometry optimization and molecular dynamics simulation. We demonstrate that, under mild assumptions, the computation of atomic forces can scale nearly linearly with the number of atoms in the system using the adaptive local basis set. We quantify the accuracy of the Hellmann-Feynman forces for a range of physical systems, benchmarked against converged planewave calculations, and find that the adaptive local basis set is efficient for both force and energy calculations, requiring at most a few tens of basis functions per atom to attain accuracies required in practice. Since the adaptive local basis set has implicit dependence on atomic positions, Pulay forces are in general nonzero. However, we find that the Pulay force is numerically small and systematically decreasing with increasing basis completeness, so that the Hellmann-Feynman force is sufficient for basis sizes of a few tens of basis functions per atom. We verify the accuracy of the computed forces in static calculations of quasi-1D and 3D disordered Si systems, vibration calculation of a quasi-1D Si system, and molecular dynamics calculations of H2 and liquid Al-Si alloy systems, where we show systematic convergence to benchmark planewave results and results from the literature.

  19. Origins of cryptic variation in the Ediacaran-Fortunian rhyolitic ignimbrites of the Saldanha Bay Volcanic Complex, Western Cape, South Africa

    NASA Astrophysics Data System (ADS)

    Clemens, J. D.; Stevens, G.; Frei, D.; Joseph, C. S. A.

    2017-12-01

    The Saldanha eruption centre, on the West Coast of South Africa, consists of 542 Ma, intracaldera, S-type, rhyolite ignimbrites divided into the basal Saldanha Ignimbrite and the partly overlying Jacob's Bay Ignimbrite. Depleted-mantle Nd model ages suggest magma sources younger than the Early Mesoproterozoic, and located within the Neoproterozoic Malmesbury Group and Swartland complex metasedimentary and metavolcanic rocks that form the regional basement. The Sr isotope systematics suggest that the dominant source rocks were metavolcaniclastic rocks and metagreywackes, and that the magmas formed from separate batches extracted from the same heterogeneous source. No apparent magma mixing trends relate the Saldanha to the Jacob's Bay Ignimbrites, or either of these to the magmas that formed the Plankiesbaai or Tsaarsbank Ignimbrites in the neighbouring Postberg eruption centre. The magmas were extracted from their source rocks carrying small but significant proportions of peritectic and restitic accessory minerals. Variations in the content of this entrained crystal cargo were responsible for most of the chemical variations in the magmas. Although we cannot construct a cogent crystal fractionation model to relate these groups of magmas, at least some crystal fractionation occurred, as an overlay on the primary signal due to peritectic assemblage entrainment (PAE). Thus, the causes of the cryptic chemical variation among the ignimbrite magmas of the Saldanha centre are variable, but dominated by the compositions of the parent melts and PAE. The preservation of clear, source-inherited chemical signatures, in individual samples, calls into question the common interpretation of silicic calderas as having been formed in large magma reservoirs, with magma compositions shaped by magma mingling, mixing, and fractional crystallization. The Saldanha rocks suggest a more intimate connection between source and erupted magma, and perhaps indicate that silicic magmas are too

  20. Structural and functional impacts of copy number variations on the cattle genome

    USDA-ARS?s Scientific Manuscript database

    Although there have been significant advances in resolving the pattern and nature of single nucleotide polymorphisms (SNPs), similar realizations for larger, more complex forms of genetic variation have just emerged. Several recent publications reveal that copy number variations (CNVs) are common an...

  1. Does plant architectural complexity increase with increasing habitat complexity? A test with a pioneer shrub in the Brazilian Cerrado.

    PubMed

    Silveira, F A O; Oliveira, E G

    2013-05-01

    Understanding variation in plant traits in heterogeneous habitats is important to predict responses to changing environments, but trait-environment associations are poorly known along ecological gradients. We tested the hypothesis that plant architectural complexity increases with habitat complexity along a soil fertility gradient in a Cerrado (Neotropical savanna) area in southeastern Brazil. Plant architecture and productivity (estimated as the total number of healthy infructescences) of Miconia albicans (SW.) Triana were examined in three types of vegetation which together form a natural gradient of increasing soil fertility, tree density and canopy cover: grasslands (campo sujo, CS), shrublands (cerrado sensu strico, CE) and woodlands (cerradão, CD). As expected, plants growing at the CS were shorter and had a lower branching pattern, whereas plants at the CD were the tallest. Unexpectedly, however, CD plants did not show higher architectural complexity compared to CE plants. Higher architectural similarity between CE and CD plants compared to similarity between CS and CE plants suggests reduced expression of functional architectural traits under shade. Plants growing at the CE produced more quaternary shoots, leading to a larger number of infructescences. This higher plant productivity in CE indicates that trait variation in ecological gradients is more complex than previously thought. Nematode-induced galls accounted for fruit destruction in 76.5% infructescences across physiognomies, but percentage of attack was poorly related to architectural variables. Our data suggest shade-induced limitation in M. albicans architecture, and point to complex phenotypic variation in heterogeneous habitats in Neotropical savannas.

  2. Feedforward object-vision models only tolerate small image variations compared to human

    PubMed Central

    Ghodrati, Masoud; Farzmahdi, Amirhossein; Rajaei, Karim; Ebrahimpour, Reza; Khaligh-Razavi, Seyed-Mahdi

    2014-01-01

    Invariant object recognition is a remarkable ability of primates' visual system that its underlying mechanism has constantly been under intense investigations. Computational modeling is a valuable tool toward understanding the processes involved in invariant object recognition. Although recent computational models have shown outstanding performances on challenging image databases, they fail to perform well in image categorization under more complex image variations. Studies have shown that making sparse representation of objects by extracting more informative visual features through a feedforward sweep can lead to higher recognition performances. Here, however, we show that when the complexity of image variations is high, even this approach results in poor performance compared to humans. To assess the performance of models and humans in invariant object recognition tasks, we built a parametrically controlled image database consisting of several object categories varied in different dimensions and levels, rendered from 3D planes. Comparing the performance of several object recognition models with human observers shows that only in low-level image variations the models perform similar to humans in categorization tasks. Furthermore, the results of our behavioral experiments demonstrate that, even under difficult experimental conditions (i.e., briefly presented masked stimuli with complex image variations), human observers performed outstandingly well, suggesting that the models are still far from resembling humans in invariant object recognition. Taken together, we suggest that learning sparse informative visual features, although desirable, is not a complete solution for future progresses in object-vision modeling. We show that this approach is not of significant help in solving the computational crux of object recognition (i.e., invariant object recognition) when the identity-preserving image variations become more complex. PMID:25100986

  3. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus.

    PubMed

    Peris, David; Langdon, Quinn K; Moriarty, Ryan V; Sylvester, Kayla; Bontrager, Martin; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R; Libkind, Diego; Hittinger, Chris Todd

    2016-07-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.

  4. Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Peris, David; Langdon, Quinn K.; Moriarty, Ryan V.

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike alestyle beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains tomore » each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. Furthermore, we conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.« less

  5. Complex Ancestries of Lager-Brewing Hybrids Were Shaped by Standing Variation in the Wild Yeast Saccharomyces eubayanus

    PubMed Central

    Sylvester, Kayla; Charron, Guillaume; Leducq, Jean-Baptiste; Landry, Christian R.; Libkind, Diego; Hittinger, Chris Todd

    2016-01-01

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike ale-style beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains to each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. We conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes. PMID:27385107

  6. Complex ancestries of lager-brewing hybrids were shaped by standing variation in the wild yeast Saccharomyces eubayanus

    DOE PAGES

    Peris, David; Langdon, Quinn K.; Moriarty, Ryan V.; ...

    2016-07-06

    Lager-style beers constitute the vast majority of the beer market, and yet, the genetic origin of the yeast strains that brew them has been shrouded in mystery and controversy. Unlike alestyle beers, which are generally brewed with Saccharomyces cerevisiae, lagers are brewed at colder temperatures with allopolyploid hybrids of Saccharomyces eubayanus x S. cerevisiae. Since the discovery of S. eubayanus in 2011, additional strains have been isolated from South America, North America, Australasia, and Asia, but only interspecies hybrids have been isolated in Europe. Here, using genome sequence data, we examine the relationships of these wild S. eubayanus strains tomore » each other and to domesticated lager strains. Our results support the existence of a relatively low-diversity (π = 0.00197) lineage of S. eubayanus whose distribution stretches across the Holarctic ecozone and includes wild isolates from Tibet, new wild isolates from North America, and the S. eubayanus parents of lager yeasts. This Holarctic lineage is closely related to a population with higher diversity (π = 0.00275) that has been found primarily in South America but includes some widely distributed isolates. A second diverse South American population (π = 0.00354) and two early-diverging Asian subspecies are more distantly related. We further show that no single wild strain from the Holarctic lineage is the sole closest relative of lager yeasts. Instead, different parts of the genome portray different phylogenetic signals and ancestry, likely due to outcrossing and incomplete lineage sorting. Indeed, standing genetic variation within this wild Holarctic lineage of S. eubayanus is responsible for genetic variation still segregating among modern lager-brewing hybrids. Furthermore, we conclude that the relationships among wild strains of S. eubayanus and their domesticated hybrids reflect complex biogeographical and genetic processes.« less

  7. A review of the compositional variation of amphiboles in alkaline plutonic complexes

    NASA Astrophysics Data System (ADS)

    Mitchell, Roger H.

    1990-12-01

    Compositional data for amphiboles occurring in alkaline plutonic complexes are reviewed and a standard procedure for plotting these data in an isometric prism is proposed. The main compositional trend found in both oversaturated and undersaturated complexes of either miascitic or peralkaline affinity is referred to as the primary magmatic trend. Amphiboles range in composition from magnesian hastingsitic hornblende and ferro-edenitic hornblende through katophorite to ferro-richterite and arfvedsonite. Individual complexes differ with respect to the amphibole {Mg}/{Fe} and {Si}/{Al} ratio and the extent of Na-enrichment. Extensive or limited ranges in the composition of amphiboles may occur in a given complex. A subtrend found only in oversaturated complexes is from ferro-edenitic hornblende to ferro-actinolite. This trend termed the ferro-actinolitic subtrend is found only in low temperature non-peralkaline residua. Some aluminous nepheline syenites and associated alkali gabbros contain amphiboles which range in composition from kaersutite through ferroan pargasitic hornblende to hastingsite. This trend termed the primary miascitic magmatic trend is is one of decreasing {Mg}/{Fe}, at essentially constant {Si}/{Al} and Ca content. Na-enrichment does not occur. Amphiboles formed by reactions of preexisting phases with hydrothermal or deuteric fluids are termed the late stage reaction assemblage. Amphibole compositional trends from calcic through sodic-calcic to sodic amphiboles reflect decreasing temperature and oxygen fugacity at or below the QFM oxygen buffer. The compositional trends are of use in determining petrogenetic relationships between apparently consanguineous syenites.

  8. VarioML framework for comprehensive variation data representation and exchange.

    PubMed

    Byrne, Myles; Fokkema, Ivo Fac; Lancaster, Owen; Adamusiak, Tomasz; Ahonen-Bishopp, Anni; Atlan, David; Béroud, Christophe; Cornell, Michael; Dalgleish, Raymond; Devereau, Andrew; Patrinos, George P; Swertz, Morris A; Taschner, Peter Em; Thorisson, Gudmundur A; Vihinen, Mauno; Brookes, Anthony J; Muilu, Juha

    2012-10-03

    Sharing of data about variation and the associated phenotypes is a critical need, yet variant information can be arbitrarily complex, making a single standard vocabulary elusive and re-formatting difficult. Complex standards have proven too time-consuming to implement. The GEN2PHEN project addressed these difficulties by developing a comprehensive data model for capturing biomedical observations, Observ-OM, and building the VarioML format around it. VarioML pairs a simplified open specification for describing variants, with a toolkit for adapting the specification into one's own research workflow. Straightforward variant data can be captured, federated, and exchanged with no overhead; more complex data can be described, without loss of compatibility. The open specification enables push-button submission to gene variant databases (LSDBs) e.g., the Leiden Open Variation Database, using the Cafe Variome data publishing service, while VarioML bidirectionally transforms data between XML and web-application code formats, opening up new possibilities for open source web applications building on shared data. A Java implementation toolkit makes VarioML easily integrated into biomedical applications. VarioML is designed primarily for LSDB data submission and transfer scenarios, but can also be used as a standard variation data format for JSON and XML document databases and user interface components. VarioML is a set of tools and practices improving the availability, quality, and comprehensibility of human variation information. It enables researchers, diagnostic laboratories, and clinics to share that information with ease, clarity, and without ambiguity.

  9. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    NASA Astrophysics Data System (ADS)

    Giraldo, Mario A.; Bosch, David; Madden, Marguerite; Usery, Lynn; Kvien, Craig

    2008-08-01

    SummaryThis research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar

  10. Landscape complexity and soil moisture variation in south Georgia, USA, for remote sensing applications

    USGS Publications Warehouse

    Giraldo, M.A.; Bosch, D.; Madden, M.; Usery, L.; Kvien, Craig

    2008-01-01

    This research addressed the temporal and spatial variation of soil moisture (SM) in a heterogeneous landscape. The research objective was to investigate soil moisture variation in eight homogeneous 30 by 30 m plots, similar to the pixel size of a Landsat Thematic Mapper (TM) or Enhanced Thematic Mapper plus (ETM+) image. The plots were adjacent to eight stations of an in situ soil moisture network operated by the United States Department of Agriculture-Agriculture Research Service USDA-ARS in Tifton, GA. We also studied five adjacent agricultural fields to examine the effect of different landuses/land covers (LULC) (grass, orchard, peanuts, cotton and bare soil) on the temporal and spatial variation of soil moisture. Soil moisture field data were collected on eight occasions throughout 2005 and January 2006 to establish comparisons within and among eight homogeneous plots. Consistently throughout time, analysis of variance (ANOVA) showed high variation in the soil moisture behavior among the plots and high homogeneity in the soil moisture behavior within them. A precipitation analysis for the eight sampling dates throughout the year 2005 showed similar rainfall conditions for the eight study plots. Therefore, soil moisture variation among locations was explained by in situ local conditions. Temporal stability geostatistical analysis showed that soil moisture has high temporal stability within the small plots and that a single point reading can be used to monitor soil moisture status for the plot within a maximum 3% volume/volume (v/v) soil moisture variation. Similarly, t-statistic analysis showed that soil moisture status in the upper soil layer changes within 24 h. We found statistical differences in the soil moisture between the different LULC in the agricultural fields as well as statistical differences between these fields and the adjacent 30 by 30 m plots. From this analysis, it was demonstrated that spatial proximity is not enough to produce similar soil

  11. Human structural variation: mechanisms of chromosome rearrangements

    PubMed Central

    Weckselblatt, Brooke; Rudd, M. Katharine

    2015-01-01

    Chromosome structural variation (SV) is a normal part of variation in the human genome, but some classes of SV can cause neurodevelopmental disorders. Analysis of the DNA sequence at SV breakpoints can reveal mutational mechanisms and risk factors for chromosome rearrangement. Large-scale SV breakpoint studies have become possible recently owing to advances in next-generation sequencing (NGS) including whole-genome sequencing (WGS). These findings have shed light on complex forms of SV such as triplications, inverted duplications, insertional translocations, and chromothripsis. Sequence-level breakpoint data resolve SV structure and determine how genes are disrupted, fused, and/or misregulated by breakpoints. Recent improvements in breakpoint sequencing have also revealed non-allelic homologous recombination (NAHR) between paralogous long interspersed nuclear element (LINE) or human endogenous retrovirus (HERV) repeats as a cause of deletions, duplications, and translocations. This review covers the genomic organization of simple and complex constitutional SVs, as well as the molecular mechanisms of their formation. PMID:26209074

  12. Determinants of Hospital Casemix Complexity

    PubMed Central

    Becker, Edmund R.; Steinwald, Bruce

    1981-01-01

    Using the Commission on Professional and Hospital Activities' Resource Need Index as a measure of casemix complexity, this paper examines the relative contributions of teaching commitment and other hospital characteristics, hospital service and insurer distributions, and area characteristics to variations in casemix complexity. The empirical estimates indicate that all three types of independent variables have a substantial influence. These results are discussed in light of recent casemix research as well as current policy implications. PMID:6799430

  13. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation.

    PubMed

    Chernia, Zelig; Tsori, Yoav

    2018-03-14

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  14. Complexation reactions in pyridine and 2,6-dimethylpyridine-water system: The quantum-chemical description and the path to liquid phase separation

    NASA Astrophysics Data System (ADS)

    Chernia, Zelig; Tsori, Yoav

    2018-03-01

    Phase separation in substituted pyridines in water is usually described as an interplay between temperature-driven breakage of hydrogen bonds and the associating interaction of the van der Waals force. In previous quantum-chemical studies, the strength of hydrogen bonding between one water and one pyridine molecules (the 1:1 complex) was assigned a pivotal role. It was accepted that the disassembly of the 1:1 complex at a critical temperature leads to phase separation and formation of the miscibility gap. Yet, for over two decades, notable empirical data and theoretical arguments were presented against that view, thus revealing the need in a revised quantum-mechanical description. In the present study, pyridine-water and 2,6-dimethylpyridine-water systems at different complexation stages are calculated using high level Kohn-Sham theory. The hydrophobic-hydrophilic properties are accounted for by the polarizable continuum solvation model. Inclusion of solvation in free energy of formation calculations reveals that 1:1 complexes are abundant in the organically rich solvents but higher level oligomers (i.e., 2:1 dimers with two pyridines and one water molecule) are the only feasible stable products in the more polar media. At the critical temperature, the dissolution of the external hydrogen bonds between the 2:1 dimer and the surrounding water molecules induces the demixing process. The 1:1 complex acts as a precursor in the formation of the dimers but is not directly involved in the demixing mechanism. The existence of the miscibility gap in one pyridine-water system and the lack of it in another is explained by the ability of the former to maintain stable dimerization. Free energy of formation of several reaction paths producing the 2:1 dimers is calculated and critically analyzed.

  15. Macrophytes shape trophic niche variation among generalist fishes.

    PubMed

    Vejříková, Ivana; Eloranta, Antti P; Vejřík, Lukáš; Šmejkal, Marek; Čech, Martin; Sajdlová, Zuzana; Frouzová, Jaroslava; Kiljunen, Mikko; Peterka, Jiří

    2017-01-01

    Generalist species commonly have a fundamental role in ecosystems as they can integrate spatially distinct habitats and food-web compartments, as well as control the composition, abundance and behavior of organisms at different trophic levels. Generalist populations typically consist of specialized individuals, but the potential for and hence degree of individual niche variation can be largely determined by habitat complexity. We compared individual niche variation within three generalist fishes between two comparable lakes in the Czech Republic differing in macrophyte cover, i.e. macrophyte-rich Milada and macrophyte-poor Most. We tested the hypothesis that large individual niche variation among generalist fishes is facilitated by the presence of macrophytes, which provides niches and predation shelter for fish and their prey items. Based on results from stable nitrogen (δ15N) and carbon (δ13C) isotopic mixing models, perch (Perca fluviatilis L.) and rudd (Scardinius erythrophthalmus (L.)) showed larger individual variation (i.e., variance) in trophic position in Milada as compared to Most, whereas no significant between-lake differences were observed for roach (Rutilus rutilus (L.)). Contrary to our hypothesis, all the three species showed significantly lower individual variation in the relative reliance on littoral food resources in Milada than in Most. Rudd relied significantly more whereas perch and roach relied less on littoral food resources in Milada than in Most, likely due to prevalent herbivory by rudd and prevalent zooplanktivory by perch and roach in the macrophyte-rich Milada as compared to macrophyte-poor Most. Our study demonstrates how the succession of macrophyte vegetation, via its effects on the physical and biological complexity of the littoral zone and on the availability of small prey fish and zooplankton, can strongly influence individual niche variation among generalist fishes with different ontogenetic trajectories, and hence the overall

  16. Exact differential equation for the density and ionization energy of a many-particle system

    NASA Technical Reports Server (NTRS)

    Levy, M.; Perdew, J. P.; Sahni, V.

    1984-01-01

    The present investigation is concerned with relations studied by Hohenberg and Kohn (1964) and Kohn and Sham (1965). The properties of a ground-state many-electron system are determined by the electron density. The correct differential equation for the density, as dictated by density-functional theory, is presented. It is found that the ground-state density n of a many-electron system obeys a Schroedinger-like differential equation which may be solved by standard Kohn-Sham programs. Results are connected to the traditional exact Kohn-Sham theory. It is pointed out that the results of the current investigations are readily extended to spin-density functional theory.

  17. The filial piety complex: variations on the Oedipus theme in Chinese literature and culture.

    PubMed

    Gu, Ming Dong

    2006-01-01

    The Oedipus complex is central to Western tradition, but not to Chinese culture. Occurrence of oedipal themes in Chinese literature is almost negligible. This phenomenon seems to support a contra-Freud claim: that a theory of European origin, the Oedipus complex, is not universal to human experience in non-Western cultures. However, this article suggests that powerful moral repression may cause the Oedipus complex to undergo structural transformations in some cultures. Through studying a sample of Chinese literary and film representations, the author argues that the Oedipus complex in Chinese culture has been transformed into a filial piety complex. Some conceptual issues are considered from a cross-cultural perspective.

  18. Duplication and population dynamics shape historic patterns of selection and genetic variation at the major histocompatibility complex in rodents

    PubMed Central

    Winternitz, Jamie C; Wares, John P

    2013-01-01

    Genetic variation at the major histocompatibility complex (MHC) is vitally important for wildlife populations to respond to pathogen threats. As natural populations can fluctuate greatly in size, a key issue concerns how population cycles and bottlenecks that could reduce genetic diversity will influence MHC genes. Using 454 sequencing, we characterized genetic diversity at the DRB Class II locus in montane voles (Microtus montanus), a North American rodent that regularly undergoes high-amplitude fluctuations in population size. We tested for evidence of historic balancing selection, recombination, and gene duplication to identify mechanisms maintaining allelic diversity. Counter to our expectations, we found strong evidence of purifying selection acting on the DRB locus in montane voles. We speculate that the interplay between population fluctuations and gene duplication might be responsible for the weak evidence of historic balancing selection and strong evidence of purifying selection detected. To further explore this idea, we conducted a phylogenetically controlled comparative analysis across 16 rodent species with varying demographic histories and MHC duplication events (based on the maximum number of alleles detected per individual). On the basis of phylogenetic generalized linear model-averaging, we found evidence that the estimated number of duplicated loci was positively related to allelic diversity and, surprisingly, to the strength of purifying selection at the DRB locus. Our analyses also revealed that species that had undergone population bottlenecks had lower allelic richness than stable species. This study highlights the need to consider demographic history and genetic structure alongside patterns of natural selection to understand resulting patterns of genetic variation at the MHC. PMID:23789067

  19. Time Average Field and Secular Variations of Pleistocene to Recent Lava Flows From the Ruiz-Tolima Volcanic Complex (Colombia)

    NASA Astrophysics Data System (ADS)

    Mejia, V.; Sánchez-Duque, A.; Opdyke, N. D.; Huang, K.; Rosales, A.

    2009-05-01

    Thirty three Pleistocene to recent lava flows from the Ruiz-Tolima Volcanic Complex (Colombian Andes) have been sampled for time average field (TAF) and paleosecular variation studies. A total of 10 cores were drilled per flow (site) and stepwise AF demagnetization has been carried out. After principal component analysis and mean-site direction calculations, 29 sites (25 and 4 with normal and reverse polarity, respectively), with α95 < 5.5° were selected for further calculations. The overall mean direction among the sites (D = 1.8°, I = 6.3°, α95 = 5.6°) closely fits (at the 95% confidence level) the expected paleomagnetic direction (at the area of study) of a geomagnetic field composed primarily by a geocentric axial dipole with 5% axial quadrupole component (I = 5.72°), but also coincides with a simple GAD model. VGP scatter (13°) is similar to that expected from Model G (12.8°).

  20. Geochemistry and petrogenesis of the Laramie anorthosite complex, Wyoming

    USGS Publications Warehouse

    Fountain, J.C.; Hodge, D.S.; Allan, Hills F.

    1981-01-01

    A geochemical investigation of the Laramie anorthosite complex determined that monsonite associated with the complex are characterized by positive Eu anomalies and display a regular variation in composition with distance from the monzonite/county rock contact. Anorthositic rocks have major and trace element abundance typical of similar complexes. The internal variations in the monzonite were produced by in situ fractionation and contamination. The data indicate that anorthosite and monzonite cannot be comagmatic. It is proposed that the anorthosite and monzonite of the complex evolved from two distinct magmas, and that two stages of anatectic melting contributed to the evolution of the monzonite. An initial stage of partial melting was induced by intrusion of a gabbroic anorthosite magma into the lower crust; a second partial melting event occurred after emplacement where heat from the intrusions melted country rocks resulting in extensive contamination ofthe monzonite. ?? 1981.

  1. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization.

    PubMed

    Turchin, Peter; Currie, Thomas E; Whitehouse, Harvey; François, Pieter; Feeney, Kevin; Mullins, Daniel; Hoyer, Daniel; Collins, Christina; Grohmann, Stephanie; Savage, Patrick; Mendel-Gleason, Gavin; Turner, Edward; Dupeyron, Agathe; Cioni, Enrico; Reddish, Jenny; Levine, Jill; Jordan, Greine; Brandl, Eva; Williams, Alice; Cesaretti, Rudolf; Krueger, Marta; Ceccarelli, Alessandro; Figliulo-Rosswurm, Joe; Tuan, Po-Ju; Peregrine, Peter; Marciniak, Arkadiusz; Preiser-Kapeller, Johannes; Kradin, Nikolay; Korotayev, Andrey; Palmisano, Alessio; Baker, David; Bidmead, Julye; Bol, Peter; Christian, David; Cook, Connie; Covey, Alan; Feinman, Gary; Júlíusson, Árni Daníel; Kristinsson, Axel; Miksic, John; Mostern, Ruth; Petrie, Cameron; Rudiak-Gould, Peter; Ter Haar, Barend; Wallace, Vesna; Mair, Victor; Xie, Liye; Baines, John; Bridges, Elizabeth; Manning, Joseph; Lockhart, Bruce; Bogaard, Amy; Spencer, Charles

    2018-01-09

    Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as "Seshat: Global History Databank." We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history. Copyright © 2018 the Author(s). Published by PNAS.

  2. Quantitative historical analysis uncovers a single dimension of complexity that structures global variation in human social organization

    PubMed Central

    Turchin, Peter; Currie, Thomas E.; Whitehouse, Harvey; François, Pieter; Feeney, Kevin; Mullins, Daniel; Hoyer, Daniel; Collins, Christina; Grohmann, Stephanie; Mendel-Gleason, Gavin; Turner, Edward; Dupeyron, Agathe; Cioni, Enrico; Reddish, Jenny; Levine, Jill; Jordan, Greine; Brandl, Eva; Williams, Alice; Cesaretti, Rudolf; Krueger, Marta; Ceccarelli, Alessandro; Figliulo-Rosswurm, Joe; Tuan, Po-Ju; Peregrine, Peter; Marciniak, Arkadiusz; Preiser-Kapeller, Johannes; Kradin, Nikolay; Korotayev, Andrey; Palmisano, Alessio; Baker, David; Bidmead, Julye; Bol, Peter; Christian, David; Cook, Connie; Covey, Alan; Feinman, Gary; Júlíusson, Árni Daníel; Kristinsson, Axel; Miksic, John; Mostern, Ruth; Petrie, Cameron; Rudiak-Gould, Peter; ter Haar, Barend; Wallace, Vesna; Mair, Victor; Xie, Liye; Baines, John; Bridges, Elizabeth; Manning, Joseph; Lockhart, Bruce; Bogaard, Amy; Spencer, Charles

    2018-01-01

    Do human societies from around the world exhibit similarities in the way that they are structured, and show commonalities in the ways that they have evolved? These are long-standing questions that have proven difficult to answer. To test between competing hypotheses, we constructed a massive repository of historical and archaeological information known as “Seshat: Global History Databank.” We systematically coded data on 414 societies from 30 regions around the world spanning the last 10,000 years. We were able to capture information on 51 variables reflecting nine characteristics of human societies, such as social scale, economy, features of governance, and information systems. Our analyses revealed that these different characteristics show strong relationships with each other and that a single principal component captures around three-quarters of the observed variation. Furthermore, we found that different characteristics of social complexity are highly predictable across different world regions. These results suggest that key aspects of social organization are functionally related and do indeed coevolve in predictable ways. Our findings highlight the power of the sciences and humanities working together to rigorously test hypotheses about general rules that may have shaped human history. PMID:29269395

  3. Perspectives on Complexity, Its Definition and Applications in the Field

    ERIC Educational Resources Information Center

    Koopmans, Matthijs

    2017-01-01

    There is considerable variation in the dynamical literature in how the term "complexity" is used. While there have been several attempts to describe from an educational perspective what complexity encompasses, the term is frequently used without an explicit definition. To forge a shared understanding of what complexity means, the purpose…

  4. Variation in MHC class II B genes in marbled murrelets: implications for delineating conservation units

    Treesearch

    C. Vásquez-Carrillo; V. Friesen; L. Hall; M.Z. Peery

    2013-01-01

    Conserving genetic variation is critical for maintaining the evolutionary potential and viability of a species. Genetic studies seeking to delineate conservation units, however, typically focus on characterizing neutral genetic variation and may not identify populations harboring local adaptations. Here, variation at two major histocompatibility complex (MHC) class II...

  5. VarioML framework for comprehensive variation data representation and exchange

    PubMed Central

    2012-01-01

    Background Sharing of data about variation and the associated phenotypes is a critical need, yet variant information can be arbitrarily complex, making a single standard vocabulary elusive and re-formatting difficult. Complex standards have proven too time-consuming to implement. Results The GEN2PHEN project addressed these difficulties by developing a comprehensive data model for capturing biomedical observations, Observ-OM, and building the VarioML format around it. VarioML pairs a simplified open specification for describing variants, with a toolkit for adapting the specification into one's own research workflow. Straightforward variant data can be captured, federated, and exchanged with no overhead; more complex data can be described, without loss of compatibility. The open specification enables push-button submission to gene variant databases (LSDBs) e.g., the Leiden Open Variation Database, using the Cafe Variome data publishing service, while VarioML bidirectionally transforms data between XML and web-application code formats, opening up new possibilities for open source web applications building on shared data. A Java implementation toolkit makes VarioML easily integrated into biomedical applications. VarioML is designed primarily for LSDB data submission and transfer scenarios, but can also be used as a standard variation data format for JSON and XML document databases and user interface components. Conclusions VarioML is a set of tools and practices improving the availability, quality, and comprehensibility of human variation information. It enables researchers, diagnostic laboratories, and clinics to share that information with ease, clarity, and without ambiguity. PMID:23031277

  6. Exchange potential from the common energy denominator approximation for the Kohn-Sham Green's function: Application to (hyper)polarizabilities of molecular chains

    NASA Astrophysics Data System (ADS)

    Grüning, M.; Gritsenko, O. V.; Baerends, E. J.

    2002-04-01

    An approximate Kohn-Sham (KS) exchange potential vxσCEDA is developed, based on the common energy denominator approximation (CEDA) for the static orbital Green's function, which preserves the essential structure of the density response function. vxσCEDA is an explicit functional of the occupied KS orbitals, which has the Slater vSσ and response vrespσCEDA potentials as its components. The latter exhibits the characteristic step structure with "diagonal" contributions from the orbital densities |ψiσ|2, as well as "off-diagonal" ones from the occupied-occupied orbital products ψiσψj(≠1)σ*. Comparison of the results of atomic and molecular ground-state CEDA calculations with those of the Krieger-Li-Iafrate (KLI), exact exchange (EXX), and Hartree-Fock (HF) methods show, that both KLI and CEDA potentials can be considered as very good analytical "closure approximations" to the exact KS exchange potential. The total CEDA and KLI energies nearly coincide with the EXX ones and the corresponding orbital energies ɛiσ are rather close to each other for the light atoms and small molecules considered. The CEDA, KLI, EXX-ɛiσ values provide the qualitatively correct order of ionizations and they give an estimate of VIPs comparable to that of the HF Koopmans' theorem. However, the additional off-diagonal orbital structure of vxσCEDA appears to be essential for the calculated response properties of molecular chains. KLI already considerably improves the calculated (hyper)polarizabilities of the prototype hydrogen chains Hn over local density approximation (LDA) and standard generalized gradient approximations (GGAs), while the CEDA results are definitely an improvement over the KLI ones. The reasons of this success are the specific orbital structures of the CEDA and KLI response potentials, which produce in an external field an ultranonlocal field-counteracting exchange potential.

  7. The Viability Of Moral Dissent By The Military

    DTIC Science & Technology

    2015-12-01

    consideration of moral resignation, claiming such concerns came at the expense of “far more pressing questions.”33 Richard Kohn took a blunt but rather more...productive stance. While acknowledging the fact that resignation directly assaults civilian authority, Kohn admitted the possibility of “truly 12...guidance, Kohn suggested principled resignation must be done as quietly as possible in order to offer at least some protection to civilian control of

  8. Corallite skeletal morphological variation in Hawaiian Porites lobata

    NASA Astrophysics Data System (ADS)

    Tisthammer, Kaho H.; Richmond, Robert H.

    2018-06-01

    Due to their high morphological plasticity and complex evolutionary history, the species boundaries of many reef-building corals are poorly understood. The skeletal structures of corals have traditionally been used for species identification, but these structures can be highly variable, and currently we lack knowledge regarding the extent of morphological variation within species. Porites species are notorious for their taxonomic difficulties, both morphologically and genetically, and currently there are several unresolved species complexes in the Pacific. Despite its ubiquitous presence and broad use in coral research, Porites lobata belongs to one such unresolved species complex. To understand the degree of intraspecific variation in skeletal morphology, 120 corallites from the Hawaiian P. lobata were examined. A subset of samples from two genetically differentiated populations from contrasting high- and low-stress environments in Maunalua Bay, Hawaii, were then quantitatively analyzed using multivariate morphometrics. Our observations revealed high intraspecific variation in corallite morphology, as well as significant morphological differences between the two populations of P. lobata. Additionally, significant correlation was found between the morphological and genetic distances calculated from approximately 18,000 loci generated from restriction site-associated DNA sequencing. The unique morphological characters observed from the genetically differentiated population under environmental stress suggest that these characters may have adaptive values, but how such traits relate to fitness and how much plasticity they can exhibit remain to be determined by future studies. Relatively simple morphometric analyses used in our study can be useful in clarifying the existing ambiguity in skeletal architecture, thus contributing to resolving species issues in corals.

  9. Analysis of Local Variations in Free Field Seismic Ground Motion.

    DTIC Science & Technology

    1981-01-01

    analysis) can conveniently account for material damping through the introduction of complex moduli into the equations of motion. This method can...determined, and the total response is obtained by superposition. This technique, however, can not properly account for the spatial variation of damping...2.9. Most available data only consider the variation of shear modulus and damping ratio with shear strain amplitude. In principle , two moduli and two

  10. Genetics of the dentofacial variation in human malocclusion

    PubMed Central

    Moreno Uribe, L. M.; Miller, S. F.

    2015-01-01

    Malocclusions affect individuals worldwide, resulting in compromised function and esthetics. Understanding the etiological factors contributing to the variation in dentofacial morphology associated with malocclusions is the key to develop novel treatment approaches. Advances in dentofacial phenotyping, which is the comprehensive characterization of hard and soft tissue variation in the craniofacial complex, together with the acquisition of large-scale genomic data have started to unravel genetic mechanisms underlying facial variation. Knowledge on the genetics of human malocclusion is limited even though results attained thus far are encouraging, with promising opportunities for future research. This review summarizes the most common dentofacial variations associated with malocclusions and reviews the current knowledge of the roles of genes in the development of malocclusions. Lastly, this review will describe ways to advance malocclusion research, following examples from the expanding fields of phenomics and genomic medicine, which aim to better patient outcomes. PMID:25865537

  11. Host genetic variation impacts microbiome composition across human body sites.

    PubMed

    Blekhman, Ran; Goodrich, Julia K; Huang, Katherine; Sun, Qi; Bukowski, Robert; Bell, Jordana T; Spector, Timothy D; Keinan, Alon; Ley, Ruth E; Gevers, Dirk; Clark, Andrew G

    2015-09-15

    The composition of bacteria in and on the human body varies widely across human individuals, and has been associated with multiple health conditions. While microbial communities are influenced by environmental factors, some degree of genetic influence of the host on the microbiome is also expected. This study is part of an expanding effort to comprehensively profile the interactions between human genetic variation and the composition of this microbial ecosystem on a genome- and microbiome-wide scale. Here, we jointly analyze the composition of the human microbiome and host genetic variation. By mining the shotgun metagenomic data from the Human Microbiome Project for host DNA reads, we gathered information on host genetic variation for 93 individuals for whom bacterial abundance data are also available. Using this dataset, we identify significant associations between host genetic variation and microbiome composition in 10 of the 15 body sites tested. These associations are driven by host genetic variation in immunity-related pathways, and are especially enriched in host genes that have been previously associated with microbiome-related complex diseases, such as inflammatory bowel disease and obesity-related disorders. Lastly, we show that host genomic regions associated with the microbiome have high levels of genetic differentiation among human populations, possibly indicating host genomic adaptation to environment-specific microbiomes. Our results highlight the role of host genetic variation in shaping the composition of the human microbiome, and provide a starting point toward understanding the complex interaction between human genetics and the microbiome in the context of human evolution and disease.

  12. Multiconfiguration pair-density functional theory: barrier heights and main group and transition metal energetics.

    PubMed

    Carlson, Rebecca K; Li Manni, Giovanni; Sonnenberger, Andrew L; Truhlar, Donald G; Gagliardi, Laura

    2015-01-13

    Kohn-Sham density functional theory, resting on the representation of the electronic density and kinetic energy by a single Slater determinant, has revolutionized chemistry, but for open-shell systems, the Kohn-Sham Slater determinant has the wrong symmetry properties as compared to an accurate wave function. We have recently proposed a theory, called multiconfiguration pair-density functional theory (MC-PDFT), in which the electronic kinetic energy and classical Coulomb energy are calculated from a multiconfiguration wave function with the correct symmetry properties, and the rest of the energy is calculated from a density functional, called the on-top density functional, that depends on the density and the on-top pair density calculated from this wave function. We also proposed a simple way to approximate the on-top density functional by translation of Kohn-Sham exchange-correlation functionals. The method is much less expensive than other post-SCF methods for calculating the dynamical correlation energy starting with a multiconfiguration self-consistent-field wave function as the reference wave function, and initial tests of the theory were quite encouraging. Here, we provide a broader test of the theory by applying it to bond energies of main-group molecules and transition metal complexes, barrier heights and reaction energies for diverse chemical reactions, proton affinities, and the water dimerization energy. Averaged over 56 data points, the mean unsigned error is 3.2 kcal/mol for MC-PDFT, as compared to 6.9 kcal/mol for Kohn-Sham theory with a comparable density functional. MC-PDFT is more accurate on average than complete active space second-order perturbation theory (CASPT2) for main-group small-molecule bond energies, alkyl bond dissociation energies, transition-metal-ligand bond energies, proton affinities, and the water dimerization energy.

  13. An experimental trip to the Calculus of Variations

    NASA Astrophysics Data System (ADS)

    Arroyo, Josu

    2008-04-01

    This paper presents a collection of experiments in the Calculus of Variations. The implementation of the Gradient Descent algorithm built on cubic-splines acting as "numerically friendly" elementary functions, give us ways to solve variational problems by constructing the solution. It wins a pragmatic point of view: one gets solutions sometimes as fast as possible, sometimes as close as possible to the true solutions. The balance speed/precision is not always easy to achieve. Starting from the most well-known, classic or historical formulation of a variational problem, section 2 describes briefly the bridge between theoretical and computational formulations. The next sections show the results of several kind of experiments; from the most basics, as those about geodesics, to the most complex, as those about vesicles.

  14. A DFT and ab initio benchmarking study of metal-alkane interactions and the activation of carbon-hydrogen bonds.

    PubMed

    Flener-Lovitt, Charity; Woon, David E; Dunning, Thom H; Girolami, Gregory S

    2010-02-04

    Density functional theory and ab initio methods have been used to calculate the structures and energies of minima and transition states for the reactions of methane coordinated to a transition metal. The reactions studied are reversible C-H bond activation of the coordinated methane ligand to form a transition metal methyl hydride complex and dissociation of the coordinated methane ligand. The reaction sequence can be summarized as L(x)M(CH(3))H <==> L(x)M(CH(4)) <==> L(x)M + CH(4), where L(x)M is the osmium-containing fragment (C(5)H(5))Os(R(2)PCH(2)PR(2))(+) and R is H or CH(3). Three-center metal-carbon-hydrogen interactions play an important role in this system. Both basis sets and functionals have been benchmarked in this work, including new correlation consistent basis sets for a third transition series element, osmium. Double zeta quality correlation consistent basis sets yield energies close to those from calculations with quadruple-zeta basis sets, with variations that are smaller than the differences between functionals. The energies of important species on the potential energy surface, calculated by using 10 DFT functionals, are compared both to experimental values and to CCSD(T) single point calculations. Kohn-Sham natural bond orbital descriptions are used to understand the differences between functionals. Older functionals favor electrostatic interactions over weak donor-acceptor interactions and, therefore, are not particularly well suited for describing systems--such as sigma-complexes--in which the latter are dominant. Newer kinetic and dispersion-corrected functionals such as MPW1K and M05-2X provide significantly better descriptions of the bonding interactions, as judged by their ability to predict energies closer to CCSD(T) values. Kohn-Sham and natural bond orbitals are used to differentiate between bonding descriptions. Our evaluations of these basis sets and DFT functionals lead us to recommend the use of dispersion corrected functionals in

  15. Complex mountain terrain and disturbance history drive variation in forest aboveground live carbon density in the western Oregon Cascades, USA

    PubMed Central

    Zald, Harold S.J.; Spies, Thomas A.; Seidl, Rupert; Pabst, Robert J.; Olsen, Keith A.; Steel, E. Ashley

    2016-01-01

    Forest carbon (C) density varies tremendously across space due to the inherent heterogeneity of forest ecosystems. Variation of forest C density is especially pronounced in mountainous terrain, where environmental gradients are compressed and vary at multiple spatial scales. Additionally, the influence of environmental gradients may vary with forest age and developmental stage, an important consideration as forest landscapes often have a diversity of stand ages from past management and other disturbance agents. Quantifying forest C density and its underlying environmental determinants in mountain terrain has remained challenging because many available data sources lack the spatial grain and ecological resolution needed at both stand and landscape scales. The objective of this study was to determine if environmental factors influencing aboveground live carbon (ALC) density differed between young versus old forests. We integrated aerial light detection and ranging (lidar) data with 702 field plots to map forest ALC density at a grain of 25 m across the H.J. Andrews Experimental Forest, a 6369 ha watershed in the Cascade Mountains of Oregon, USA. We used linear regressions, random forest ensemble learning (RF) and sequential autoregressive modeling (SAR) to reveal how mapped forest ALC density was related to climate, topography, soils, and past disturbance history (timber harvesting and wildfires). ALC increased with stand age in young managed forests, with much greater variation of ALC in relation to years since wildfire in old unmanaged forests. Timber harvesting was the most important driver of ALC across the entire watershed, despite occurring on only 23% of the landscape. More variation in forest ALC density was explained in models of young managed forests than in models of old unmanaged forests. Besides stand age, ALC density in young managed forests was driven by factors influencing site productivity, whereas variation in ALC density in old unmanaged forests

  16. Hedgehog signaling mediates adaptive variation in a dynamic functional system in the cichlid feeding apparatus.

    PubMed

    Hu, Yinan; Albertson, R Craig

    2014-06-10

    Adaptive variation in the craniofacial skeleton is a key component of resource specialization and habitat divergence in vertebrates, but the proximate genetic mechanisms that underlie complex patterns of craniofacial variation are largely unknown. Here we demonstrate that the Hedgehog (Hh) signaling pathway mediates widespread variation across a complex functional system that affects the kinematics of lower jaw depression--the opercular four-bar linkage apparatus--among Lake Malawi cichlids. By using a combined quantitative trait locus mapping and population genetics approach, we show that allelic variation in the Hh receptor, ptch1, affects the development of distinct bony elements in the head that represent two of three movable links in this functional system. The evolutionarily derived allele is found in species that feed from the water column, and is associated with shifts in anatomy that translate to a four-bar system capable of faster jaw rotation. Alternatively, the ancestral allele is found in species that feed on attached algae, and is associated with the development of a four-bar system that predicts slower jaw movement. Experimental manipulation of the Hh pathway during cichlid development recapitulates functionally salient natural variation in craniofacial geometry. In all, these results significantly extend our understanding of the mechanisms that fine-tune the craniofacial skeletal complex during adaptation to new foraging niches.

  17. Complex pattern of variation in neurocranial ontogeny revealed by CT-scanning.

    PubMed

    Anzelmo, Marisol; Ventrice, Fernando; Kelmansky, Diana; Sardi, Marina

    2018-05-01

    The neurocranium of hominid species has been largely studied with reference to the midsagittal plane, with variations being attributed to brain evolution. By contrast, there is limited information on variation in non-midsagittal regions, which are the points of insertion of muscles and bony structures related to mastication. This work aims to analyze ontogenetic changes and sexual dimorphism (SD) in midsagittal and non-midsagittal neurocranial structures from a contemporary human sample comprising 138 computed tomography (CT) cranial images of individuals ranging from infants to adults. Morphology of the vault and the base was assessed by registering landmarks and semilandmarks, which were analyzed by geometric morphometrics, and the endocranial volume (EV). The results of regressions and Kruskal-Wallis test indicate that the major size and shape changes in both midsagittal and non-midsagittal regions occur during infancy and juvenility; shape changes are also associated with an increase in EV. The size of the midsagittal vault, the shape of the non-midsagittal vault and the size of the base show an extension of ontogenetic trajectories. Sexes show similar changes in shape but different changes in size. We conclude that brain growth appears to be an important factor influencing the morphology of the neurocranium, at least during infancy and childhood. Subsequent changes may be attributed to osteogenic activity and the differential growth of the brain lobes. Masticatory-related bony structures and muscles may not be strong enough factors to induce independent modifications in non-midsagittal structures. The small influence of the cranial muscles would explain why the human neurocranium is a quite integrated structure.

  18. Automated mask and wafer defect classification using a novel method for generalized CD variation measurements

    NASA Astrophysics Data System (ADS)

    Verechagin, V.; Kris, R.; Schwarzband, I.; Milstein, A.; Cohen, B.; Shkalim, A.; Levy, S.; Price, D.; Bal, E.

    2018-03-01

    Over the years, mask and wafers defects dispositioning has become an increasingly challenging and time consuming task. With design rules getting smaller, OPC getting complex and scanner illumination taking on free-form shapes - the probability of a user to perform accurate and repeatable classification of defects detected by mask inspection tools into pass/fail bins is reducing. The critical challenging of mask defect metrology for small nodes ( < 30 nm) was reviewed in [1]. While Critical Dimension (CD) variation measurement is still the method of choice for determining a mask defect future impact on wafer, the high complexity of OPCs combined with high variability in pattern shapes poses a challenge for any automated CD variation measurement method. In this study, a novel approach for measurement generalization is presented. CD variation assessment performance is evaluated on multiple different complex shape patterns, and is benchmarked against an existing qualified measurement methodology.

  19. Complex earthquake rupture and local tsunamis

    USGS Publications Warehouse

    Geist, E.L.

    2002-01-01

    In contrast to far-field tsunami amplitudes that are fairly well predicted by the seismic moment of subduction zone earthquakes, there exists significant variation in the scaling of local tsunami amplitude with respect to seismic moment. From a global catalog of tsunami runup observations this variability is greatest for the most frequently occuring tsunamigenic subduction zone earthquakes in the magnitude range of 7 < Mw < 8.5. Variability in local tsunami runup scaling can be ascribed to tsunami source parameters that are independent of seismic moment: variations in the water depth in the source region, the combination of higher slip and lower shear modulus at shallow depth, and rupture complexity in the form of heterogeneous slip distribution patterns. The focus of this study is on the effect that rupture complexity has on the local tsunami wave field. A wide range of slip distribution patterns are generated using a stochastic, self-affine source model that is consistent with the falloff of far-field seismic displacement spectra at high frequencies. The synthetic slip distributions generated by the stochastic source model are discretized and the vertical displacement fields from point source elastic dislocation expressions are superimposed to compute the coseismic vertical displacement field. For shallow subduction zone earthquakes it is demonstrated that self-affine irregularities of the slip distribution result in significant variations in local tsunami amplitude. The effects of rupture complexity are less pronounced for earthquakes at greater depth or along faults with steep dip angles. For a test region along the Pacific coast of central Mexico, peak nearshore tsunami amplitude is calculated for a large number (N = 100) of synthetic slip distribution patterns, all with identical seismic moment (Mw = 8.1). Analysis of the results indicates that for earthquakes of a fixed location, geometry, and seismic moment, peak nearshore tsunami amplitude can vary by a

  20. Population and allelic variation of A-to-I RNA editing in human transcriptomes.

    PubMed

    Park, Eddie; Guo, Jiguang; Shen, Shihao; Demirdjian, Levon; Wu, Ying Nian; Lin, Lan; Xing, Yi

    2017-07-28

    A-to-I RNA editing is an important step in RNA processing in which specific adenosines in some RNA molecules are post-transcriptionally modified to inosines. RNA editing has emerged as a widespread mechanism for generating transcriptome diversity. However, there remain significant knowledge gaps about the variation and function of RNA editing. In order to determine the influence of genetic variation on A-to-I RNA editing, we integrate genomic and transcriptomic data from 445 human lymphoblastoid cell lines by combining an RNA editing QTL (edQTL) analysis with an allele-specific RNA editing (ASED) analysis. We identify 1054 RNA editing events associated with cis genetic polymorphisms. Additionally, we find that a subset of these polymorphisms is linked to genome-wide association study signals of complex traits or diseases. Finally, compared to random cis polymorphisms, polymorphisms associated with RNA editing variation are located closer spatially to their respective editing sites and have a more pronounced impact on RNA secondary structure. Our study reveals widespread cis variation in RNA editing among genetically distinct individuals and sheds light on possible phenotypic consequences of such variation on complex traits and diseases.

  1. Assessing the complex architecture of polygenic traits in diverged yeast populations.

    PubMed

    Cubillos, Francisco A; Billi, Eleonora; Zörgö, Enikö; Parts, Leopold; Fargier, Patrick; Omholt, Stig; Blomberg, Anders; Warringer, Jonas; Louis, Edward J; Liti, Gianni

    2011-04-01

    Phenotypic variation arising from populations adapting to different niches has a complex underlying genetic architecture. A major challenge in modern biology is to identify the causative variants driving phenotypic variation. Recently, the baker's yeast, Saccharomyces cerevisiae has emerged as a powerful model for dissecting complex traits. However, past studies using a laboratory strain were unable to reveal the complete architecture of polygenic traits. Here, we present a linkage study using 576 recombinant strains obtained from crosses of isolates representative of the major lineages. The meiotic recombinational landscape appears largely conserved between populations; however, strain-specific hotspots were also detected. Quantitative measurements of growth in 23 distinct ecologically relevant environments show that our recombinant population recapitulates most of the standing phenotypic variation described in the species. Linkage analysis detected an average of 6.3 distinct QTLs for each condition tested in all crosses, explaining on average 39% of the phenotypic variation. The QTLs detected are not constrained to a small number of loci, and the majority are specific to a single cross-combination and to a specific environment. Moreover, crosses between strains of similar phenotypes generate greater variation in the offspring, suggesting the presence of many antagonistic alleles and epistatic interactions. We found that subtelomeric regions play a key role in defining individual quantitative variation, emphasizing the importance of the adaptive nature of these regions in natural populations. This set of recombinant strains is a powerful tool for investigating the complex architecture of polygenic traits. © 2011 Blackwell Publishing Ltd.

  2. Prediction and characterization of an Mg-Al intermetallic compound with potentially improved ductility via orbital-free and Kohn-Sham density functional theory

    NASA Astrophysics Data System (ADS)

    Zhuang, Houlong L.; Chen, Mohan; Carter, Emily A.

    2017-10-01

    Magnesium-aluminum (Mg-Al) intermetallic compounds that form as precipitates can significantly influence the mechanical properties of Mg-Al alloys. A computational evaluation of known and unknown Mg-Al intermetallic compounds could help design new Mg-Al alloy microstructures with optimal properties. Here, we employ the cluster-expansion method with energies efficiently calculated with orbital-free density functional theory (OFDFT) and predict a new, metastable intermetallic compound Mg3Al with a D019 hexagonal structure that is slightly more stable than an alternative L12 cubic structure. We apply Kohn-Sham DFT (KSDFT) to accurately evaluate various metastability criteria for D019 and L12 Mg3Al, including Born’s criterion and phonon dispersion. We show that both Mg3Al crystalline phases satisfy the metastability criteria and hence should be at least metastable. We further compare ductility metrics for D019 and L12 Mg3Al to that of hexagonal-close-packed Mg by computing Pugh’s ratio and generalized stacking fault energies. The ductility is predicted to follow the order: D019 Mg3Al > L12 Mg3Al > Mg, based on the highest Pugh’s ratio and the lowest unstable stacking and twinning fault energies of D019 Mg3Al compared to that of Mg. We also predict a very low antiphase boundary energy for Mg3Al and therefore expect D019 Mg3Al to be beneficial for improving the ductility of Mg-rich Mg-Al alloys. A computational design of Mg-Al alloy microstructures may become possible by combining the strengths of both OFDFT and KSDFT, i.e., the efficiency of the former and the accuracy of the latter, as demonstrated here.

  3. Self-interaction corrections applied to Mg-porphyrin, C60, and pentacene molecules

    NASA Astrophysics Data System (ADS)

    Pederson, Mark R.; Baruah, Tunna; Kao, Der-you; Basurto, Luis

    2016-04-01

    We have applied a recently developed method to incorporate the self-interaction correction through Fermi orbitals to Mg-porphyrin, C60, and pentacene molecules. The Fermi-Löwdin orbitals are localized and unitarily invariant to the Kohn-Sham orbitals from which they are constructed. The self-interaction-corrected energy is obtained variationally leading to an optimum set of Fermi-Löwdin orbitals (orthonormalized Fermi orbitals) that gives the minimum energy. A Fermi orbital, by definition, is dependent on a certain point which is referred to as the descriptor position. The degree to which the initial choice of descriptor positions influences the variational approach to the minimum and the complexity of the energy landscape as a function of Fermi-orbital descriptors is examined in detail for Mg-porphyrin. The applications presented here also demonstrate that the method can be applied to larger molecular systems containing a few hundred electrons. The atomization energy of the C60 molecule within the Fermi-Löwdin-orbital self-interaction-correction approach is significantly improved compared to local density approximation in the Perdew-Wang 92 functional and generalized gradient approximation of Perdew-Burke-Ernzerhof functionals. The eigenvalues of the highest occupied molecular orbitals show qualitative improvement.

  4. 77 FR 50686 - Notice of Approval of Title V Operating Permit for Peabody Western Coal Company (Navajo Nation...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-08-22

    ... Street, San Francisco, CA 94105. To arrange for viewing of these documents call Roger Kohn at (415) 972-3973. FOR FURTHER INFORMATION CONTACT: Roger Kohn, Air Division Permits Office, U.S. Environmental...

  5. Characterization of Native Protein Complexes and Protein Isoform Variation Using Size-fractionation-based Quantitative Proteomics*

    PubMed Central

    Kirkwood, Kathryn J.; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I.

    2013-01-01

    Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community. PMID:24043423

  6. Characterization of native protein complexes and protein isoform variation using size-fractionation-based quantitative proteomics.

    PubMed

    Kirkwood, Kathryn J; Ahmad, Yasmeen; Larance, Mark; Lamond, Angus I

    2013-12-01

    Proteins form a diverse array of complexes that mediate cellular function and regulation. A largely unexplored feature of such protein complexes is the selective participation of specific protein isoforms and/or post-translationally modified forms. In this study, we combined native size-exclusion chromatography (SEC) with high-throughput proteomic analysis to characterize soluble protein complexes isolated from human osteosarcoma (U2OS) cells. Using this approach, we have identified over 71,500 peptides and 1,600 phosphosites, corresponding to over 8,000 proteins, distributed across 40 SEC fractions. This represents >50% of the predicted U2OS cell proteome, identified with a mean peptide sequence coverage of 27% per protein. Three biological replicates were performed, allowing statistical evaluation of the data and demonstrating a high degree of reproducibility in the SEC fractionation procedure. Specific proteins were detected interacting with multiple independent complexes, as typified by the separation of distinct complexes for the MRFAP1-MORF4L1-MRGBP interaction network. The data also revealed protein isoforms and post-translational modifications that selectively associated with distinct subsets of protein complexes. Surprisingly, there was clear enrichment for specific Gene Ontology terms associated with differential size classes of protein complexes. This study demonstrates that combined SEC/MS analysis can be used for the system-wide annotation of protein complexes and to predict potential isoform-specific interactions. All of these SEC data on the native separation of protein complexes have been integrated within the Encyclopedia of Proteome Dynamics, an online, multidimensional data-sharing resource available to the community.

  7. Insights From Genomics Into Spatial and Temporal Variation in Batrachochytrium dendrobatidis.

    PubMed

    Byrne, A Q; Voyles, J; Rios-Sotelo, G; Rosenblum, E B

    2016-01-01

    Advances in genetics and genomics have provided new tools for the study of emerging infectious diseases. Researchers can now move quickly from simple hypotheses to complex explanations for pathogen origin, spread, and mechanisms of virulence. Here we focus on the application of genomics to understanding the biology of the fungal pathogen Batrachochytrium dendrobatidis (Bd), a novel and deadly pathogen of amphibians. We provide a brief history of the system, then focus on key insights into Bd variation garnered from genomics approaches, and finally, highlight new frontiers for future discoveries. Genomic tools have revealed unexpected complexity and variation in the Bd system suggesting that the history and biology of emerging pathogens may not be as simple as they initially seem. Copyright © 2016 Elsevier Inc. All rights reserved.

  8. Introgression from Domestic Goat Generated Variation at the Major Histocompatibility Complex of Alpine Ibex

    PubMed Central

    Grossen, Christine; Keller, Lukas; Biebach, Iris; Croll, Daniel

    2014-01-01

    The major histocompatibility complex (MHC) is a crucial component of the vertebrate immune system and shows extremely high levels of genetic polymorphism. The extraordinary genetic variation is thought to be ancient polymorphisms maintained by balancing selection. However, introgression from related species was recently proposed as an additional mechanism. Here we provide evidence for introgression at the MHC in Alpine ibex (Capra ibex ibex). At a usually very polymorphic MHC exon involved in pathogen recognition (DRB exon 2), Alpine ibex carried only two alleles. We found that one of these DRB alleles is identical to a DRB allele of domestic goats (Capra aegagrus hircus). We sequenced 2489 bp of the coding and non-coding regions of the DRB gene and found that Alpine ibex homozygous for the goat-type DRB exon 2 allele showed nearly identical sequences (99.8%) to a breed of domestic goats. Using Sanger and RAD sequencing, microsatellite and SNP chip data, we show that the chromosomal region containing the goat-type DRB allele has a signature of recent introgression in Alpine ibex. A region of approximately 750 kb including the DRB locus showed high rates of heterozygosity in individuals carrying one copy of the goat-type DRB allele. These individuals shared SNP alleles both with domestic goats and other Alpine ibex. In a survey of four Alpine ibex populations, we found that the region surrounding the DRB allele shows strong linkage disequilibria, strong sequence clustering and low diversity among haplotypes carrying the goat-type allele. Introgression at the MHC is likely adaptive and introgression critically increased MHC DRB diversity in the genetically impoverished Alpine ibex. Our finding contradicts the long-standing view that genetic variability at the MHC is solely a consequence of ancient trans-species polymorphism. Introgression is likely an underappreciated source of genetic diversity at the MHC and other loci under balancing selection. PMID:24945814

  9. Genetic variation in adaptability and pleiotropy in budding yeast

    PubMed Central

    Mitchell, James Kameron; Bloom, Joshua S; Kruglyak, Leonid

    2017-01-01

    Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation. PMID:28826486

  10. Genetic variation in adaptability and pleiotropy in budding yeast.

    PubMed

    Jerison, Elizabeth R; Kryazhimskiy, Sergey; Mitchell, James Kameron; Bloom, Joshua S; Kruglyak, Leonid; Desai, Michael M

    2017-08-17

    Evolution can favor organisms that are more adaptable, provided that genetic variation in adaptability exists. Here, we quantify this variation among 230 offspring of a cross between diverged yeast strains. We measure the adaptability of each offspring genotype, defined as its average rate of adaptation in a specific environmental condition, and analyze the heritability, predictability, and genetic basis of this trait. We find that initial genotype strongly affects adaptability and can alter the genetic basis of future evolution. Initial genotype also affects the pleiotropic consequences of adaptation for fitness in a different environment. This genetic variation in adaptability and pleiotropy is largely determined by initial fitness, according to a rule of declining adaptability with increasing initial fitness, but several individual QTLs also have a significant idiosyncratic role. Our results demonstrate that both adaptability and pleiotropy are complex traits, with extensive heritable differences arising from naturally occurring variation.

  11. Structural genomic variations and Parkinson's disease.

    PubMed

    Bandrés-Ciga, Sara; Ruz, Clara; Barrero, Francisco J; Escamilla-Sevilla, Francisco; Pelegrina, Javier; Vives, Francisco; Duran, Raquel

    2017-10-01

    Parkinson's disease (PD) is the second most common neurodegenerative disease, whose prevalence is projected to be between 8.7 and 9.3 million by 2030. Until about 20 years ago, PD was considered to be the textbook example of a "non-genetic" disorder. Nowadays, PD is generally considered a multifactorial disorder that arises from the combination and complex interaction of genes and environmental factors. To date, a total of 7 genes including SNCA, LRRK2, PARK2, DJ-1, PINK 1, VPS35 and ATP13A2 have been seen to cause unequivocally Mendelian PD. Also, variants with incomplete penetrance in the genes LRRK2 and GBA are considered to be strong risk factors for PD worldwide. Although genetic studies have provided valuable insights into the pathogenic mechanisms underlying PD, the role of structural variation in PD has been understudied in comparison with other genomic variations. Structural genomic variations might substantially account for such genetic substrates yet to be discovered. The present review aims to provide an overview of the structural genomic variants implicated in the pathogenesis of PD.

  12. Modeling wildfire incident complexity dynamics.

    PubMed

    Thompson, Matthew P

    2013-01-01

    Wildfire management in the United States and elsewhere is challenged by substantial uncertainty regarding the location and timing of fire events, the socioeconomic and ecological consequences of these events, and the costs of suppression. Escalating U.S. Forest Service suppression expenditures is of particular concern at a time of fiscal austerity as swelling fire management budgets lead to decreases for non-fire programs, and as the likelihood of disruptive within-season borrowing potentially increases. Thus there is a strong interest in better understanding factors influencing suppression decisions and in turn their influence on suppression costs. As a step in that direction, this paper presents a probabilistic analysis of geographic and temporal variation in incident management team response to wildfires. The specific focus is incident complexity dynamics through time for fires managed by the U.S. Forest Service. The modeling framework is based on the recognition that large wildfire management entails recurrent decisions across time in response to changing conditions, which can be represented as a stochastic dynamic system. Daily incident complexity dynamics are modeled according to a first-order Markov chain, with containment represented as an absorbing state. A statistically significant difference in complexity dynamics between Forest Service Regions is demonstrated. Incident complexity probability transition matrices and expected times until containment are presented at national and regional levels. Results of this analysis can help improve understanding of geographic variation in incident management and associated cost structures, and can be incorporated into future analyses examining the economic efficiency of wildfire management.

  13. The fractal based analysis of human face and DNA variations during aging.

    PubMed

    Namazi, Hamidreza; Akrami, Amin; Hussaini, Jamal; Silva, Osmar N; Wong, Albert; Kulish, Vladimir V

    2017-01-16

    Human DNA is the main unit that shapes human characteristics and features such as behavior. Thus, it is expected that changes in DNA (DNA mutation) influence human characteristics and features. Face is one of the human features which is unique and also dependent on his gen. In this paper, for the first time we analyze the variations of human DNA and face simultaneously. We do this job by analyzing the fractal dimension of DNA walk and face during human aging. The results of this study show the human DNA and face get more complex by aging. These complexities are mapped on fractal exponents of DNA walk and human face. The method discussed in this paper can be further developed in order to investigate the direct influence of DNA mutation on the face variations during aging, and accordingly making a model between human face fractality and the complexity of DNA walk.

  14. Genome size evolution at the speciation level: the cryptic species complex Brachionus plicatilis (Rotifera).

    PubMed

    Stelzer, Claus-Peter; Riss, Simone; Stadler, Peter

    2011-04-07

    Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels--within and among genealogical species--and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex.

  15. Polarization variations in installed fibers and their influence on quantum key distribution systems.

    PubMed

    Ding, Yu-Yang; Chen, Hua; Wang, Shuang; He, De-Yong; Yin, Zhen-Qiang; Chen, Wei; Zhou, Zheng; Guo, Guang-Can; Han, Zheng-Fu

    2017-10-30

    Polarization variations in the installed fibers are complex and volatile, and would severely affect the performances of polarization-sensitive quantum key distribution (QKD) systems. Based on the recorded data about polarization variations of different installed fibers, we establish an analytical methodology to quantitatively evaluate the influence of polarization variations on polarization-sensitive QKD systems. Using the increased quantum bit error rate induced by polarization variations as a key criteria, we propose two parameters - polarization drift time and required tracking speed - to characterize polarization variations. For field buried and aerial fibers with different length, we quantitatively evaluate the influence of polarization variations, and also provide requirements and suggestions for polarization basis alignment modules of QKD systems deployed in different kind of fibers.

  16. Higher Education Earnings Premium: Value, Variation, and Trends

    ERIC Educational Resources Information Center

    Baum, Sandy

    2014-01-01

    Much of the current skepticism about the financial payoff of higher education emerges from recent media focus on young college graduates struggling to enter a weak labor market. This brief highlights some of the complexities underlying discussions of the return to the investment in postsecondary education and describes some of the variation in…

  17. A Longitudinal Study of Complexity, Accuracy and Fluency Variation in Second Language Development

    ERIC Educational Resources Information Center

    Ferraris, Stefania

    2012-01-01

    This chapter presents the results of a study on interlanguage variation. The production of four L2 learners of Italian, tested four times at yearly intervals while engaged in four oral tasks, is compared to that of two native speakers, and analysed with quantitative CAF measures. Thus, time, task type, nativeness, as well as group vs. individual…

  18. Density scaling for multiplets

    NASA Astrophysics Data System (ADS)

    Nagy, Á.

    2011-02-01

    Generalized Kohn-Sham equations are presented for lowest-lying multiplets. The way of treating non-integer particle numbers is coupled with an earlier method of the author. The fundamental quantity of the theory is the subspace density. The Kohn-Sham equations are similar to the conventional Kohn-Sham equations. The difference is that the subspace density is used instead of the density and the Kohn-Sham potential is different for different subspaces. The exchange-correlation functional is studied using density scaling. It is shown that there exists a value of the scaling factor ζ for which the correlation energy disappears. Generalized OPM and Krieger-Li-Iafrate (KLI) methods incorporating correlation are presented. The ζKLI method, being as simple as the original KLI method, is proposed for multiplets.

  19. Statistical Analysis of Variation in the Human Plasma Proteome

    DOE PAGES

    Corzett, Todd H.; Fodor, Imola K.; Choi, Megan W.; ...

    2010-01-01

    Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where onemore » human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.« less

  20. Statistical analysis of variation in the human plasma proteome.

    PubMed

    Corzett, Todd H; Fodor, Imola K; Choi, Megan W; Walsworth, Vicki L; Turteltaub, Kenneth W; McCutchen-Maloney, Sandra L; Chromy, Brett A

    2010-01-01

    Quantifying the variation in the human plasma proteome is an essential prerequisite for disease-specific biomarker detection. We report here on the longitudinal and individual variation in human plasma characterized by two-dimensional difference gel electrophoresis (2-D DIGE) using plasma samples from eleven healthy subjects collected three times over a two week period. Fixed-effects modeling was used to remove dye and gel variability. Mixed-effects modeling was then used to quantitate the sources of proteomic variation. The subject-to-subject variation represented the largest variance component, while the time-within-subject variation was comparable to the experimental variation found in a previous technical variability study where one human plasma sample was processed eight times in parallel and each was then analyzed by 2-D DIGE in triplicate. Here, 21 protein spots had larger than 50% CV, suggesting that these proteins may not be appropriate as biomarkers and should be carefully scrutinized in future studies. Seventy-eight protein spots showing differential protein levels between different individuals or individual collections were identified by mass spectrometry and further characterized using hierarchical clustering. The results present a first step toward understanding the complexity of longitudinal and individual variation in the human plasma proteome, and provide a baseline for improved biomarker discovery.

  1. Layered intrusions of the Duluth Complex, Minnesota, USA

    USGS Publications Warehouse

    Miller, J.D.; Ripley, E.M.; ,

    1996-01-01

    The Duluth Complex and associated subvolcanic intrusions comprise a large (5000 km2) intrusive complex in northeastern Minnesota that was emplaced into comagmatic volcanics during the development of the 1.1 Ga Midcontinent rift in North America. In addition to anorthositic and felsic intrusions, the Duluth Complex is composed of many individual mafic layered intrusions of tholeiitic affinity. The cumulate stratigraphies and cryptic variations of six of the better exposed and better studied intrusions are described here to demonstrate the variability in their cumulus mineral paragenesis.

  2. Position-dependent effective masses in semiconductor theory. II

    NASA Technical Reports Server (NTRS)

    Von Roos, O.; Mavromatis, H.

    1985-01-01

    A compound semiconductor possessing a slowly varying position-dependent chemical composition is considered. An effective-mass equation governing the dynamics of electron (or hole) motion using the Kohn-Luttinger representation and canonical transformations is derived. It is shown that, as long as the variation in chemical composition may be treated as a perturbation, the effective masses become constant, position-independent quantities. The effective-mass equation derived here is identical to the effective-mass equation derived previously by von Roos (1983), using a Wannier representation.

  3. Understanding variation in human fertility: what can we learn from evolutionary demography?

    PubMed

    Sear, Rebecca; Lawson, David W; Kaplan, Hillard; Shenk, Mary K

    2016-04-19

    Decades of research on human fertility has presented a clear picture of how fertility varies, including its dramatic decline over the last two centuries in most parts of the world. Why fertility varies, both between and within populations, is not nearly so well understood. Fertility is a complex phenomenon, partly physiologically and partly behaviourally determined, thus an interdisciplinary approach is required to understand it. Evolutionary demographers have focused on human fertility since the 1980s. The first wave of evolutionary demographic research made major theoretical and empirical advances, investigating variation in fertility primarily in terms of fitness maximization. Research focused particularly on variation within high-fertility populations and small-scale subsistence societies and also yielded a number of hypotheses for why fitness maximization seems to break down as fertility declines during the demographic transition. A second wave of evolutionary demography research on fertility is now underway, paying much more attention to the cultural and psychological mechanisms underpinning fertility. It is also engaging with the complex, multi-causal nature of fertility variation, and with understanding fertility in complex modern and transitioning societies. Here, we summarize the history of evolutionary demographic work on human fertility, describe the current state of the field, and suggest future directions. © 2016 The Author(s).

  4. Understanding variation in human fertility: what can we learn from evolutionary demography?

    PubMed Central

    Sear, Rebecca; Lawson, David W.; Kaplan, Hillard

    2016-01-01

    Decades of research on human fertility has presented a clear picture of how fertility varies, including its dramatic decline over the last two centuries in most parts of the world. Why fertility varies, both between and within populations, is not nearly so well understood. Fertility is a complex phenomenon, partly physiologically and partly behaviourally determined, thus an interdisciplinary approach is required to understand it. Evolutionary demographers have focused on human fertility since the 1980s. The first wave of evolutionary demographic research made major theoretical and empirical advances, investigating variation in fertility primarily in terms of fitness maximization. Research focused particularly on variation within high-fertility populations and small-scale subsistence societies and also yielded a number of hypotheses for why fitness maximization seems to break down as fertility declines during the demographic transition. A second wave of evolutionary demography research on fertility is now underway, paying much more attention to the cultural and psychological mechanisms underpinning fertility. It is also engaging with the complex, multi-causal nature of fertility variation, and with understanding fertility in complex modern and transitioning societies. Here, we summarize the history of evolutionary demographic work on human fertility, describe the current state of the field, and suggest future directions. PMID:27022071

  5. Regional isolation in the Balkan region: an analysis of craniofacial variation.

    PubMed

    Ross, Ann H

    2004-05-01

    Biological variation is investigated among contemporary Croatians, Bosnians, American whites, and other multitemporal Balkan populations (World War II Croatians, Macedonians, and Greeks) via multivariate statistics and distance measures of the craniofacial complex. This study demonstrates that there is considerable variation among groups of European ancestry. Bosnians and Croatians who are thought to be relatively homogenous and historically to originate from the same Slav ancestry show local variations. While environmental plasticity has been used to explain cranial changes among human groups, it does not adequately explain the variation observed between Bosnians and Croatians. It is an oversimplification to exclusively attribute the vast range of variability observed among local as well as geographic populations to environmental adaptations. Copyright 2003 Wiley-Liss, Inc.

  6. Variation of M···H-C Interactions in Square-Planar Complexes of Nickel(II), Palladium(II), and Platinum(II) Probed by Luminescence Spectroscopy and X-ray Diffraction at Variable Pressure.

    PubMed

    Poirier, Stéphanie; Lynn, Hudson; Reber, Christian; Tailleur, Elodie; Marchivie, Mathieu; Guionneau, Philippe; Probert, Michael R

    2018-06-12

    Luminescence spectra of isoelectronic square-planar d 8 complexes with 3d, 4d, and 5d metal centers show d-d luminescence with an energetic order different from that of the spectrochemical series, indicating that additional structural effects, such as different ligand-metal-ligand angles, are important factors. Variable-pressure luminescence spectra of square-planar nickel(II), palladium(II), and platinum(II) complexes with dimethyldithiocarbamate ({CH 3 } 2 DTC) ligands and their deuterated analogues show unexpected variations of the shifts of their maxima. High-resolution crystal structures and crystal structures at variable pressure for [Pt{(CH 3 ) 2 DTC} 2 ] indicate that intermolecular M···H-C interactions are at the origin of these different shifts.

  7. Observations of Transient ISS Floating Potential Variations During High Voltage Solar Array Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda N.; Pour, Maria Z. A.; Swenson, Charles; Nishikawa, Ken-ichi; Krause, Linda Habash

    2016-01-01

    The International Space Station (ISS) continues to be a world-class space research laboratory after over 15 years of operations, and it has proven to be a fantastic resource for observing spacecraft floating potential variations related to high voltage solar array operations in Low Earth Orbit (LEO). Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS floating potential are obtained from the Floating Potential Measurement Unit (FPMU). In particular, rapid variations in ISS floating potential during solar array operations on time scales of tens of milliseconds can be recorded due to the 128 Hz sample rate of the Floating Potential Probe (FPP) pro- viding interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting transient floating potential variations with mission operations. These complex variations are not reproduced by current models and require further study to understand the underlying physical processes. In this paper we present some of the floating potential transients observed over the past few years along with the relevant space environment parameters and solar array operations data.

  8. Investigating the Conceptual Variation of Major Physics Textbooks

    NASA Astrophysics Data System (ADS)

    Stewart, John; Campbell, Richard; Clanton, Jessica

    2008-04-01

    The conceptual problem content of the electricity and magnetism chapters of seven major physics textbooks was investigated. The textbooks presented a total of 1600 conceptual electricity and magnetism problems. The solution to each problem was decomposed into its fundamental reasoning steps. These fundamental steps are, then, used to quantify the distribution of conceptual content among the set of topics common to the texts. The variation of the distribution of conceptual coverage within each text is studied. The variation between the major groupings of the textbooks (conceptual, algebra-based, and calculus-based) is also studied. A measure of the conceptual complexity of the problems in each text is presented.

  9. Variations of the attachment of the superior head of human lateral pterygoid muscle.

    PubMed

    Antonopoulou, Maria; Iatrou, Ioannis; Paraschos, Alexandros; Anagnostopoulou, Sophia

    2013-09-01

    The superior head of the lateral pterygoid muscle (LPM), is closely related to the temporomandibular joint (TMJ) and plays a role in the aetiology of temporomandibular disorders. Increased activity of this muscle has been implicated in the anterior displacement of the TMJ disc. However, there is uncertainty about the manner of the LPM attachment to the disc-condyle complex. The aim of this study was to investigate the exact anatomy of the attachment of the superior head of the LPM (SLPM) to the disc-condyle complex of the TMJ. Thirty-six TMJs were examined - both sides of 18 Greek cadavers (eight males and 10 females, mean age 79.6 years). Examination of the attachment of the SLPM was undertaken viewed under the dissecting microscope. Variation in the attachment of the SLPM was categorized into three types: in type I, the SLPM inserted into the condyle and the disc-capsule complex (55.5%). In type II, the SLPM only inserted into the condyle (27.8%). In type III, the SLPM inserted purely into the disc-capsule complex (16.7%). This study demonstrates that there are three different attachment types of the SLPM to the disc-condyle complex. The type III variation could be involved in the TMJ pathology. The knowledge of the variations of the SLPM attachment could be useful for precise surgical and pharmaceutical approaches. Copyright © 2012 European Association for Cranio-Maxillo-Facial Surgery. Published by Elsevier Ltd. All rights reserved.

  10. Reply to Kohn

    ERIC Educational Resources Information Center

    Wright, James D.; Wright, Sonia R.

    1976-01-01

    Argues that their paper is almost entirely programmatic: It attempts to indicate roughly how much we can expect to know about parental values for children once we know all there is to know about their relationship to social class; how much more might be known if similar efforts were expended on other factors; and what lines of inquiry these…

  11. 76 FR 18384 - Withdrawal of Regulations Related to Validity and Priority of Federal Tax Lien

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-04-04

    ... filed on or after April 4, 2011. FOR FURTHER INFORMATION CONTACT: Debra A. Kohn at (202) 622-3600 (not a.... Drafting Information The principal author of these regulations is Debra A. Kohn of the Office of the...

  12. Covariant symplectic structure of the complex Monge-Ampère equation

    NASA Astrophysics Data System (ADS)

    Nutku, Y.

    2000-04-01

    The complex Monge-Ampère equation is invariant under arbitrary holomorphic changes of the independent variables with unit Jacobian. We present its variational formulation where the action remains invariant under this infinite group. The new Lagrangian enables us to obtain the first symplectic 2-form for the complex Monge-Ampère equation in the framework of the covariant Witten-Zuckerman approach to symplectic structure. We base our considerations on a reformulation of the Witten-Zuckerman theory in terms of holomorphic differential forms. The first closed and conserved Witten-Zuckerman symplectic 2-form for the complex Monge-Ampère equation is obtained in arbitrary dimension and for all cases elliptic, hyperbolic and homogeneous. The connection of the complex Monge-Ampère equation with Ricci-flat Kähler geometry suggests the use of the Hilbert action principle as an alternative variational formulation. However, we point out that Hilbert's Lagrangian is a divergence for Kähler metrics and serves as a topological invariant rather than yielding the Euclideanized Einstein field equations. Nevertheless, since the Witten-Zuckerman theory employs only the boundary terms in the first variation of the action, Hilbert's Lagrangian can be used to obtain the second Witten-Zuckerman symplectic 2-form. This symplectic 2-form vanishes on shell, thus defining a Lagrangian submanifold. In its derivation the connection of the second symplectic 2-form with the complex Monge-Ampère equation is indirect but we show that it satisfies all the properties required of a symplectic 2-form for the complex elliptic, or hyperbolic Monge-Ampère equation when the dimension of the complex manifold is 3 or higher. The complex Monge-Ampère equation admits covariant bisymplectic structure for complex dimension 3, or higher. However, in the physically interesting case of n=2 we have only one symplectic 2-form. The extension of these results to the case of complex Monge

  13. Rapid Assessment Of The Fundamental Property Variation Of Wood

    Treesearch

    Chi-Leung So; Leslie H. Groom; Timothy G. Rials; Rebecca Snell; Stephen S. Kelley; Robert Meglen

    2002-01-01

    Abstract - Genetic variation, site conditions, silvicultural treatments, seasonal effects, and their complex interaction are all vitally-important factors accounting for the variability and quality of the raw material produced - wood. Quality can be measured in several ways that generally influence the end use. The most desirable measure is the...

  14. General and craniofacial development are complex adaptive processes influenced by diversity.

    PubMed

    Brook, A H; O'Donnell, M Brook; Hone, A; Hart, E; Hughes, T E; Smith, R N; Townsend, G C

    2014-06-01

    Complex systems are present in such diverse areas as social systems, economies, ecosystems and biology and, therefore, are highly relevant to dental research, education and practice. A Complex Adaptive System in biological development is a dynamic process in which, from interacting components at a lower level, higher level phenomena and structures emerge. Diversity makes substantial contributions to the performance of complex adaptive systems. It enhances the robustness of the process, allowing multiple responses to external stimuli as well as internal changes. From diversity comes variation in outcome and the possibility of major change; outliers in the distribution enhance the tipping points. The development of the dentition is a valuable, accessible model with extensive and reliable databases for investigating the role of complex adaptive systems in craniofacial and general development. The general characteristics of such systems are seen during tooth development: self-organization; bottom-up emergence; multitasking; self-adaptation; variation; tipping points; critical phases; and robustness. Dental findings are compatible with the Random Network Model, the Threshold Model and also with the Scale Free Network Model which has a Power Law distribution. In addition, dental development shows the characteristics of Modularity and Clustering to form Hierarchical Networks. The interactions between the genes (nodes) demonstrate Small World phenomena, Subgraph Motifs and Gene Regulatory Networks. Genetic mechanisms are involved in the creation and evolution of variation during development. The genetic factors interact with epigenetic and environmental factors at the molecular level and form complex networks within the cells. From these interactions emerge the higher level tissues, tooth germs and mineralized teeth. Approaching development in this way allows investigation of why there can be variations in phenotypes from identical genotypes; the phenotype is the outcome

  15. The Chameleonic Nature of Platinum(II) Imidazopyridine Complexes.

    PubMed

    Pinter, Piermaria; Pittkowski, Rebecca; Soellner, Johannes; Strassner, Thomas

    2017-10-12

    The synthesis and characterization of cyclometalated C^C* platinum(II) complexes with unique photophysical properties, aggregation induced enhancement of the quantum yields with a simultaneous decrease of phosphorescence lifetimes, is reported. Additionally, a change of emission color is induced by variation of the excitation wavelength. The aggregation behavior of these complexes is controlled by the steric demand of the substituents. The photophysical properties of these complexes are investigated through emission-excitation matrix analysis (EEM). The monomeric complexes are excellent room temperature phosphorescent blue emitters with emission maxima below 470 nm and quantum yields of up to 93 %. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  16. Variations in task constraints shape emergent performance outcomes and complexity levels in balancing.

    PubMed

    Caballero Sánchez, Carla; Barbado Murillo, David; Davids, Keith; Moreno Hernández, Francisco J

    2016-06-01

    This study investigated the extent to which specific interacting constraints of performance might increase or decrease the emergent complexity in a movement system, and whether this could affect the relationship between observed movement variability and the central nervous system's capacity to adapt to perturbations during balancing. Fifty-two healthy volunteers performed eight trials where different performance constraints were manipulated: task difficulty (three levels) and visual biofeedback conditions (with and without the center of pressure (COP) displacement and a target displayed). Balance performance was assessed using COP-based measures: mean velocity magnitude (MVM) and bivariate variable error (BVE). To assess the complexity of COP, fuzzy entropy (FE) and detrended fluctuation analysis (DFA) were computed. ANOVAs showed that MVM and BVE increased when task difficulty increased. During biofeedback conditions, individuals showed higher MVM but lower BVE at the easiest level of task difficulty. Overall, higher FE and lower DFA values were observed when biofeedback was available. On the other hand, FE reduced and DFA increased as difficulty level increased, in the presence of biofeedback. However, when biofeedback was not available, the opposite trend in FE and DFA values was observed. Regardless of changes to task constraints and the variable investigated, balance performance was positively related to complexity in every condition. Data revealed how specificity of task constraints can result in an increase or decrease in complexity emerging in a neurobiological system during balance performance.

  17. A variational principle for compressible fluid mechanics: Discussion of the multi-dimensional theory

    NASA Technical Reports Server (NTRS)

    Prozan, R. J.

    1982-01-01

    The variational principle for compressible fluid mechanics previously introduced is extended to two dimensional flow. The analysis is stable, exactly conservative, adaptable to coarse or fine grids, and very fast. Solutions for two dimensional problems are included. The excellent behavior and results lend further credence to the variational concept and its applicability to the numerical analysis of complex flow fields.

  18. Complexity, adaptations and variations in the secondary insemination system of female Dermanyssina mites (Acari: Anactinothrichida: Gamasida): the case of Afrocypholaelaps africana.

    PubMed

    Di Palma, A; Seeman, O D; Alberti, G

    2017-07-01

    Gamasine mites, mainly of the taxon Dermanyssina, possess a secondarily evolved insemination system (sperm access system), of which there are two, generally recognized, structurally different types, the laelapid- and the phytoseiid-type. The ultrastructure of the female sperm access system in Afrocypholaelaps africana is described. It consists of paired insemination pores, opening between the bases of legs three and four, and paired cuticle-lined tubules that converge into a large, sack-like spermatheca, remarkably cuticle-lined as well. The entire spermatheca and part of the tubules are embedded in a peculiar syncytial tissue where numerous sperm cells are present. The general organization of this insemination system is of the laelapid-type. However, it presents striking structural differences, compared with the systems described in Varroa destructor and Hattena cometis, the other gamasine mites having a laelapid-type system studied ultrastructurally until now. The functional morphology, complexity and variations of the sperm access system in Dermanyssina are discussed and correlated with the evolutionary biology of the group.

  19. Genome size evolution at the speciation level: The cryptic species complex Brachionus plicatilis (Rotifera)

    PubMed Central

    2011-01-01

    Background Studies on genome size variation in animals are rarely done at lower taxonomic levels, e.g., slightly above/below the species level. Yet, such variation might provide important clues on the tempo and mode of genome size evolution. In this study we used the flow-cytometry method to study the evolution of genome size in the rotifer Brachionus plicatilis, a cryptic species complex consisting of at least 14 closely related species. Results We found an unexpectedly high variation in this species complex, with genome sizes ranging approximately seven-fold (haploid '1C' genome sizes: 0.056-0.416 pg). Most of this variation (67%) could be ascribed to the major clades of the species complex, i.e. clades that are well separated according to most species definitions. However, we also found substantial variation (32%) at lower taxonomic levels - within and among genealogical species - and, interestingly, among species pairs that are not completely reproductively isolated. In one genealogical species, called B. 'Austria', we found greatly enlarged genome sizes that could roughly be approximated as multiples of the genomes of its closest relatives, which suggests that whole-genome duplications have occurred early during separation of this lineage. Overall, genome size was significantly correlated to egg size and body size, even though the latter became non-significant after controlling for phylogenetic non-independence. Conclusions Our study suggests that substantial genome size variation can build up early during speciation, potentially even among isolated populations. An alternative, but not mutually exclusive interpretation might be that reproductive isolation tends to build up unusually slow in this species complex. PMID:21473744

  20. Visual Complexity and Pictorial Memory: A Fifteen Year Research Perspective.

    ERIC Educational Resources Information Center

    Berry, Louis H.

    For 15 years an ongoing research project at the University of Pittsburgh has focused on the effects of variations in visual complexity and color on the storage and retrieval of visual information by learners. Research has shown that visual materials facilitate instruction, but has not fully delineated the interactions of visual complexity and…

  1. Variational multiscale models for charge transport.

    PubMed

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  2. Variational multiscale models for charge transport

    PubMed Central

    Wei, Guo-Wei; Zheng, Qiong; Chen, Zhan; Xia, Kelin

    2012-01-01

    This work presents a few variational multiscale models for charge transport in complex physical, chemical and biological systems and engineering devices, such as fuel cells, solar cells, battery cells, nanofluidics, transistors and ion channels. An essential ingredient of the present models, introduced in an earlier paper (Bulletin of Mathematical Biology, 72, 1562-1622, 2010), is the use of differential geometry theory of surfaces as a natural means to geometrically separate the macroscopic domain from the microscopic domain, meanwhile, dynamically couple discrete and continuum descriptions. Our main strategy is to construct the total energy functional of a charge transport system to encompass the polar and nonpolar free energies of solvation, and chemical potential related energy. By using the Euler-Lagrange variation, coupled Laplace-Beltrami and Poisson-Nernst-Planck (LB-PNP) equations are derived. The solution of the LB-PNP equations leads to the minimization of the total free energy, and explicit profiles of electrostatic potential and densities of charge species. To further reduce the computational complexity, the Boltzmann distribution obtained from the Poisson-Boltzmann (PB) equation is utilized to represent the densities of certain charge species so as to avoid the computationally expensive solution of some Nernst-Planck (NP) equations. Consequently, the coupled Laplace-Beltrami and Poisson-Boltzmann-Nernst-Planck (LB-PBNP) equations are proposed for charge transport in heterogeneous systems. A major emphasis of the present formulation is the consistency between equilibrium LB-PB theory and non-equilibrium LB-PNP theory at equilibrium. Another major emphasis is the capability of the reduced LB-PBNP model to fully recover the prediction of the LB-PNP model at non-equilibrium settings. To account for the fluid impact on the charge transport, we derive coupled Laplace-Beltrami, Poisson-Nernst-Planck and Navier-Stokes equations from the variational principle

  3. How complexity science can inform scale-up and spread in health care: understanding the role of self-organization in variation across local contexts.

    PubMed

    Lanham, Holly Jordan; Leykum, Luci K; Taylor, Barbara S; McCannon, C Joseph; Lindberg, Curt; Lester, Richard T

    2013-09-01

    Health care systems struggle to scale-up and spread effective practices across diverse settings. Failures in scale-up and spread (SUS) are often attributed to a lack of consideration for variation in local contexts among different health care delivery settings. We argue that SUS occurs within complex systems and that self-organization plays an important role in the success, or failure, of SUS. Self-organization is a process whereby local interactions give rise to patterns of organizing. These patterns may be stable or unstable, and they evolve over time. Self-organization is a major contributor to local variations across health care delivery settings. Thus, better understanding of self-organization in the context of SUS is needed. We re-examine two cases of successful SUS: 1) the application of a mobile phone short message service intervention to improve adherence to medications during HIV treatment scale up in resource-limited settings, and 2) MRSA prevention in hospital inpatient settings in the United States. Based on insights from these cases, we discuss the role of interdependencies and sensemaking in leveraging self-organization in SUS initiatives. We argue that self-organization, while not completely controllable, can be influenced, and that improving interdependencies and sensemaking among SUS stakeholders is a strategy for facilitating self-organization processes that increase the probability of spreading effective practices across diverse settings. Published by Elsevier Ltd.

  4. Systems Genetics as a Tool to Identify Master Genetic Regulators in Complex Disease.

    PubMed

    Moreno-Moral, Aida; Pesce, Francesco; Behmoaras, Jacques; Petretto, Enrico

    2017-01-01

    Systems genetics stems from systems biology and similarly employs integrative modeling approaches to describe the perturbations and phenotypic effects observed in a complex system. However, in the case of systems genetics the main source of perturbation is naturally occurring genetic variation, which can be analyzed at the systems-level to explain the observed variation in phenotypic traits. In contrast with conventional single-variant association approaches, the success of systems genetics has been in the identification of gene networks and molecular pathways that underlie complex disease. In addition, systems genetics has proven useful in the discovery of master trans-acting genetic regulators of functional networks and pathways, which in many cases revealed unexpected gene targets for disease. Here we detail the central components of a fully integrated systems genetics approach to complex disease, starting from assessment of genetic and gene expression variation, linking DNA sequence variation to mRNA (expression QTL mapping), gene regulatory network analysis and mapping the genetic control of regulatory networks. By summarizing a few illustrative (and successful) examples, we highlight how different data-modeling strategies can be effectively integrated in a systems genetics study.

  5. Examination of Clock and Adcyap1 gene variation in a neotropical migratory passerine

    PubMed Central

    Bridge, Eli S.; Ross, Jeremy D.; Shipley, J. Ryan; Kelly, Jeffrey F.

    2018-01-01

    Complex behavioral traits, such as those making up a migratory phenotype, are regulated by multiple environmental factors and multiple genes. We investigated possible relationships between microsatellite variation at two candidate genes implicated in the control of migratory behavior, Clock and Adcyap1, and several aspects of migratory life-history and evolutionary divergence in the Painted Bunting (Passerina ciris), a species that shows wide variation in migratory and molting strategies across a disjunct distribution. We focused on Clock and Adcyap1 microsatellite variation across three Painted Bunting populations in Oklahoma, Louisiana, and North Carolina, and for the Oklahoma breeding population we used published migration tracking data on adult males to explore phenotypic variation in individual migratory behavior. We found no correlation between microsatellite allele size within either Clock and Adcyap1 relative to the initiation or duration of fall migration in adult males breeding in Oklahoma. We also show the lack of significant correlations with aspects of the migratory phenotype for the Louisiana population. Our research highlights the limitations of studying microsatellite allelic mutations that are of undetermined functional influence relative to complex behavioral phenotypes. PMID:29324772

  6. Partitioning of genetic variation between regulatory and coding gene segments: the predominance of software variation in genes encoding introvert proteins.

    PubMed

    Mitchison, A

    1997-01-01

    In considering genetic variation in eukaryotes, a fundamental distinction can be made between variation in regulatory (software) and coding (hardware) gene segments. For quantitative traits the bulk of variation, particularly that near the population mean, appears to reside in regulatory segments. The main exceptions to this rule concern proteins which handle extrinsic substances, here termed extrovert proteins. The immune system includes an unusually large proportion of this exceptional category, but even so its chief source of variation may well be polymorphism in regulatory gene segments. The main evidence for this view emerges from genome scanning for quantitative trait loci (QTL), which in the case of the immune system points to a major contribution of pro-inflammatory cytokine genes. Further support comes from sequencing of major histocompatibility complex (Mhc) class II promoters, where a high level of polymorphism has been detected. These Mhc promoters appear to act, in part at least, by gating the back-signal from T cells into antigen-presenting cells. Both these forms of polymorphism are likely to be sustained by the need for flexibility in the immune response. Future work on promoter polymorphism is likely to benefit from the input from genome informatics.

  7. Unified studies of the structure changes and the nuclear reactions in {sup 10}Be

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Makoto

    2006-08-14

    The {alpha}+6He low-energy reactions and the structural changes of 10Be in the microscopic {alpha}+{alpha}+N+N model are studied by the generalized two-center cluster model with the Kohn-Hulthen-Kato variation method. It is found that, in the inelastic scattering to the {alpha}+{sup 6}He(2{sub 1}{sup +}) channel, characteristic enhancements are expected as the results of the parity-dependent non-adiabatic dynamics. The reaction mechanism in breakup of 10Be into the {alpha}+6He continuum is also discussed.

  8. Landscape community genomics: understanding eco-evolutionary processes in complex environments

    USGS Publications Warehouse

    Hand, Brian K.; Lowe, Winsor H.; Kovach, Ryan P.; Muhlfeld, Clint C.; Luikart, Gordon

    2015-01-01

    Extrinsic factors influencing evolutionary processes are often categorically lumped into interactions that are environmentally (e.g., climate, landscape) or community-driven, with little consideration of the overlap or influence of one on the other. However, genomic variation is strongly influenced by complex and dynamic interactions between environmental and community effects. Failure to consider both effects on evolutionary dynamics simultaneously can lead to incomplete, spurious, or erroneous conclusions about the mechanisms driving genomic variation. We highlight the need for a landscape community genomics (LCG) framework to help to motivate and challenge scientists in diverse fields to consider a more holistic, interdisciplinary perspective on the genomic evolution of multi-species communities in complex environments.

  9. Period Variations for the Cepheid VZ Cyg

    NASA Astrophysics Data System (ADS)

    Sirorattanakul, Krittanon; Engle, Scott; Pepper, Joshua; Wells, Mark; Laney, Clifton D.; Rodriguez, Joseph E.; Stassun, Keivan G.

    2017-12-01

    The Cepheid Period-Luminosity law is a key rung on the extragalactic distance ladder. However, numerous Cepheids are known to undergo period variations. Monitoring, refining, and understanding these period variations allows us to better determine the parameters of the Cepheids themselves and of the instability strip in which they reside, and to test models of stellar evolution. VZ Cyg, a classical Cepheid pulsating at ˜4.864 days, has been observed for over 100 years. Combining data from literature observations, the Kilodegree Extremely Little Telescope (KELT) transit survey, and new targeted observations with the Robotically Controlled Telescope (RCT) at Kitt Peak, we find a period change rate of dP/dt = -0.0642 ± 0.0018 s yr-1. However, when only the recent observations are examined, we find a much higher period change rate of dP/dt = -0.0923 ± 0.0110 s yr-1. This higher rate could be due to an apparent long-term (P ≈ 26.5 years) cyclic period variation. The possible interpretations of this single Cepheid’s complex period variations underscore both the need to regularly monitor pulsating variables and the important benefits that photometric surveys such as KELT can have on the field. Further monitoring of this interesting example of Cepheid variability is recommended to confirm and better understand the possible cyclic period variations. Further, Cepheid timing analyses are necessary to fully understand their current behaviors and parameters, as well as their evolutionary histories.

  10. Molecular Darwinism: The Contingency of Spontaneous Genetic Variation

    PubMed Central

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions. PMID:21979160

  11. Molecular Darwinism: the contingency of spontaneous genetic variation.

    PubMed

    Arber, Werner

    2011-01-01

    The availability of spontaneously occurring genetic variants is an important driving force of biological evolution. Largely thanks to experimental investigations by microbial geneticists, we know today that several different molecular mechanisms contribute to the overall genetic variations. These mechanisms can be assigned to three natural strategies to generate genetic variants: 1) local sequence changes, 2) intragenomic reshuffling of DNA segments, and 3) acquisition of a segment of foreign DNA. In these processes, specific gene products are involved in cooperation with different nongenetic elements. Some genetic variations occur fully at random along the DNA filaments, others rather with a statistical reproducibility, although at many possible sites. We have to be aware that evolution in natural ecosystems is of higher complexity than under most laboratory conditions, not at least in view of symbiotic associations and the occurrence of horizontal gene transfer. The encountered contingency of genetic variation can possibly best ensure a long-term persistence of life under steadily changing living conditions.

  12. Maternal age generates phenotypic variation in C. elegans

    PubMed Central

    Hidalgo-Carcedo, Cristina; Lehner, Ben

    2017-01-01

    Genetically identical individuals growing in the same environment often show substantial phenotypic variation within populations of organisms as diverse as bacteria1, nematodes2, rodents3 and humans4. With some exceptions5, the causes are poorly understood. We show here that isogenic Caenorhabditis elegans nematodes vary in their size at hatching, speed of development, growth rate, starvation resistance, fecundity, and also in the rate of development of their germline relative to that of somatic tissues. Surprisingly, we show that the primary cause of this variation is the age of an individual’s mother, with young mothers producing progeny impaired for many traits. We identify age-dependent changes in maternal provisioning of a lipoprotein complex (vitellogenin) to embryos as the molecular mechanism underlying variation in multiple traits throughout the life of an animal. The production of sub-optimal progeny by young mothers likely reflects a trade-off between the competing fitness traits of a short generation time and progeny survival and fecundity. PMID:29186117

  13. Brain modularity across the theropod-bird transition: testing the influence of flight on neuroanatomical variation.

    PubMed

    Balanoff, Amy M; Smaers, Jeroen B; Turner, Alan H

    2016-08-01

    Living birds constitute the only vertebrate group whose brain volume relative to body size approaches the uniquely expanded values expressed by mammals. The broad suite of complex behaviors exhibited by crown-group birds, including sociality, vocal learning, parental care, and flying, suggests the origins of their encephalization was likely driven by a mosaic of selective pressures. If true, the historical pattern of brain expansion may be more complex than either a gradual expansion, as proposed by early studies of the avian brain, or a sudden expansion correlating with the appearance of flight. The origins of modern avian neuroanatomy are obscured by the more than 100 million years of evolution along their phylogenetic stem (from the origin of the modern radiation in the Middle Jurassic to the split from crocodile-line archosaurs). Here we use phylogenetic comparative approaches to explore which evolutionary scenarios best explain variation in measured volumes of digitally partitioned endocasts of modern birds and their non-avian ancestors. Our analyses suggest that variation in the relative volumes of the endocranium and cerebrum explain most of the structural variation in this lineage. Generalized multi-regime Ornstein-Uhlenbeck (OU) models suggest that powered flight does not appear to be a driver of observed variation, reinforcing the hypothesis that the deep history of the avian brain is complex, with nuances still to be discovered. © 2015 Anatomical Society.

  14. VarDetect: a nucleotide sequence variation exploratory tool

    PubMed Central

    Ngamphiw, Chumpol; Kulawonganunchai, Supasak; Assawamakin, Anunchai; Jenwitheesuk, Ekachai; Tongsima, Sissades

    2008-01-01

    Background Single nucleotide polymorphisms (SNPs) are the most commonly studied units of genetic variation. The discovery of such variation may help to identify causative gene mutations in monogenic diseases and SNPs associated with predisposing genes in complex diseases. Accurate detection of SNPs requires software that can correctly interpret chromatogram signals to nucleotides. Results We present VarDetect, a stand-alone nucleotide variation exploratory tool that automatically detects nucleotide variation from fluorescence based chromatogram traces. Accurate SNP base-calling is achieved using pre-calculated peak content ratios, and is enhanced by rules which account for common sequence reading artifacts. The proposed software tool is benchmarked against four other well-known SNP discovery software tools (PolyPhred, novoSNP, Genalys and Mutation Surveyor) using fluorescence based chromatograms from 15 human genes. These chromatograms were obtained from sequencing 16 two-pooled DNA samples; a total of 32 individual DNA samples. In this comparison of automatic SNP detection tools, VarDetect achieved the highest detection efficiency. Availability VarDetect is compatible with most major operating systems such as Microsoft Windows, Linux, and Mac OSX. The current version of VarDetect is freely available at . PMID:19091032

  15. Heterochrony underpins natural variation in Cardamine hirsuta leaf form

    PubMed Central

    Cartolano, Maria; Pieper, Bjorn; Lempe, Janne; Tattersall, Alex; Huijser, Peter; Tresch, Achim; Darrah, Peter R.; Hay, Angela; Tsiantis, Miltos

    2015-01-01

    A key problem in biology is whether the same processes underlie morphological variation between and within species. Here, by using plant leaves as an example, we show that the causes of diversity at these two evolutionary scales can be divergent. Some species like the model plant Arabidopsis thaliana have simple leaves, whereas others like the A. thaliana relative Cardamine hirsuta bear complex leaves comprising leaflets. Previous work has shown that these interspecific differences result mostly from variation in local tissue growth and patterning. Now, by cloning and characterizing a quantitative trait locus (QTL) for C. hirsuta leaf shape, we find that a different process, age-dependent progression of leaf form, underlies variation in this trait within species. This QTL effect is caused by cis-regulatory variation in the floral repressor ChFLC, such that genotypes with low-expressing ChFLC alleles show both early flowering and accelerated age-dependent changes in leaf form, including faster leaflet production. We provide evidence that this mechanism coordinates leaf development with reproductive timing and may help to optimize resource allocation to the next generation. PMID:26243877

  16. Effects of Angular Variation on Split D Differential Eddy Current Probe Response (Postprint)

    DTIC Science & Technology

    2016-02-10

    AFRL-RX-WP-JA-2016-0327 EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT) Ryan D...March 2014 – 22 September 2015 4. TITLE AND SUBTITLE EFFECTS OF ANGULAR VARIATION ON SPLIT D DIFFERENTIAL EDDY CURRENT PROBE RESPONSE (POSTPRINT...last few years have seen increased levels of complexity added to push the state-of-the-art modeling software used in eddy current NDE today. The added

  17. Spatio-temporal variation in parasite communities maintains diversity at the major histocompatibility complex class IIβ in the endangered Rio Grande silvery minnow.

    PubMed

    Osborne, Megan J; Pilger, Tyler J; Lusk, Joel D; Turner, Thomas F

    2017-01-01

    Climate change will strongly impact aquatic ecosystems particularly in arid and semi-arid regions. Fish-parasite interactions will also be affected by predicted altered flow and temperature regimes, and other environmental stressors. Hence, identifying environmental and genetic factors associated with maintaining diversity at immune genes is critical for understanding species' adaptive capacity. Here, we combine genetic (MHC class IIβ and microsatellites), parasitological and ecological data to explore the relationship between these factors in the remnant wild Rio Grande silvery minnow (Hybognathus amarus) population, an endangered species found in the southwestern United States. Infections with multiple parasites on the gills were observed and there was spatio-temporal variation in parasite communities and patterns of infection among individuals. Despite its highly endangered status and chronically low genetic effective size, Rio Grande silvery minnow had high allelic diversity at MHC class IIβ with more alleles recognized at the presumptive DAB1 locus compared to the DAB3 locus. We identified significant associations between specific parasites and MHC alleles against a backdrop of generalist parasite prevalence. We also found that individuals with higher individual neutral heterozygosity and higher amino acid divergence between MHC alleles had lower parasite abundance and diversity. Taken together, these results suggest a role for fluctuating selection imposed by spatio-temporal variation in pathogen communities and divergent allele advantage in maintenance of high MHC polymorphism. Understanding the complex interaction of habitat, pathogens and immunity in protected species will require integrated experimental, genetic and field studies. © 2016 John Wiley & Sons Ltd.

  18. In Silico Detection of Sequence Variations Modifying Transcriptional Regulation

    PubMed Central

    Andersen, Malin C; Engström, Pär G; Lithwick, Stuart; Arenillas, David; Eriksson, Per; Lenhard, Boris; Wasserman, Wyeth W; Odeberg, Jacob

    2008-01-01

    Identification of functional genetic variation associated with increased susceptibility to complex diseases can elucidate genes and underlying biochemical mechanisms linked to disease onset and progression. For genes linked to genetic diseases, most identified causal mutations alter an encoded protein sequence. Technological advances for measuring RNA abundance suggest that a significant number of undiscovered causal mutations may alter the regulation of gene transcription. However, it remains a challenge to separate causal genetic variations from linked neutral variations. Here we present an in silico driven approach to identify possible genetic variation in regulatory sequences. The approach combines phylogenetic footprinting and transcription factor binding site prediction to identify variation in candidate cis-regulatory elements. The bioinformatics approach has been tested on a set of SNPs that are reported to have a regulatory function, as well as background SNPs. In the absence of additional information about an analyzed gene, the poor specificity of binding site prediction is prohibitive to its application. However, when additional data is available that can give guidance on which transcription factor is involved in the regulation of the gene, the in silico binding site prediction improves the selection of candidate regulatory polymorphisms for further analyses. The bioinformatics software generated for the analysis has been implemented as a Web-based application system entitled RAVEN (regulatory analysis of variation in enhancers). The RAVEN system is available at http://www.cisreg.ca for all researchers interested in the detection and characterization of regulatory sequence variation. PMID:18208319

  19. High-order harmonic generation in solid slabs beyond the single-active-electron approximation

    NASA Astrophysics Data System (ADS)

    Hansen, Kenneth K.; Deffge, Tobias; Bauer, Dieter

    2017-11-01

    High-harmonic generation by a laser-driven solid slab is simulated using time-dependent density functional theory. Multiple harmonic plateaus up to very high harmonic orders are observed already at surprisingly low field strengths. The full all-electron harmonic spectra are, in general, very different from those of any individual Kohn-Sham orbital. Freezing the Kohn-Sham potential instead is found to be a good approximation for the laser intensities and harmonic orders considered. The origins of the plateau cutoffs are explained in terms of band gaps that can be reached by Kohn-Sham electrons and holes moving through the band structure.

  20. Dissection of complex adult traits in a mouse synthetic population.

    PubMed

    Burke, David T; Kozloff, Kenneth M; Chen, Shu; West, Joshua L; Wilkowski, Jodi M; Goldstein, Steven A; Miller, Richard A; Galecki, Andrzej T

    2012-08-01

    Finding the causative genetic variations that underlie complex adult traits is a significant experimental challenge. The unbiased search strategy of genome-wide association (GWAS) has been used extensively in recent human population studies. These efforts, however, typically find only a minor fraction of the genetic loci that are predicted to affect variation. As an experimental model for the analysis of adult polygenic traits, we measured a mouse population for multiple phenotypes and conducted a genome-wide search for effector loci. Complex adult phenotypes, related to body size and bone structure, were measured as component phenotypes, and each subphenotype was associated with a genomic spectrum of candidate effector loci. The strategy successfully detected several loci for the phenotypes, at genome-wide significance, using a single, modest-sized population (N = 505). The effector loci each explain 2%-10% of the measured trait variation and, taken together, the loci can account for over 25% of a trait's total population variation. A replicate population (N = 378) was used to confirm initially observed loci for one trait (femur length), and, when the two groups were merged, the combined population demonstrated increased power to detect loci. In contrast to human population studies, our mouse genome-wide searches find loci that individually explain a larger fraction of the observed variation. Also, the additive effects of our detected mouse loci more closely match the predicted genetic component of variation. The genetic loci discovered are logical candidates for components of the genetic networks having evolutionary conservation with human biology.

  1. Multiple origins of elytral reticulation modifications in the west palearctic Agabus bipustulatus complex (coleoptera, dytiscidae).

    PubMed

    Drotz, Marcus K; Brodin, Tomas; Nilsson, Anders N

    2010-02-03

    The Agabus bipustulatus complex includes one of Europe's most widely distributed and common diving beetles. This complex, which is known for its large morphological variation, has a complex demographic and altitudinal variation in elytral reticulation. The various depth of the reticulation imprint, both in smaller and larger meshes, results in both mat and shiny individuals, as well as intermediate forms. The West Palearctic lowland is inhabited by a sexually dimorphic form, with shiny males and mat females. In mountain regions, shiny individuals of both sexes are found intermixed with mat individuals or in pure populations in central and southern areas, whereas pure populations of mat individuals are exclusively found in the northern region at high altitude. Sexual selection is proposed as a driving force in shaping this variation. However, the occurrence of different types of reticulation in both sexes and disjunct geographical distribution patterns suggest an additional function of the reticulation. Here we investigate the phylogeographical history, genetic structure and reticulation variation of several named forms within the Agabus bipustulatus complex including A. nevadensis. The molecular analyses recognised several well-supported clades within the complex. Several of the named forms had two or more independent origins. Few south European populations were uniform in reticulation patterns, and the males were found to display large variation. Reticulation diversity and population genetic variability were clearly correlated to altitude, but no genetic differences were detected among populations with mixed or homogenous forms. Observed reduction in secondary reticulation in female and increased variance in male at high altitude in South Europe may be explained by the occurrence of an additional selective force, beside sexual selection. The combined effect of these selective processes is here demonstrated in an extreme case to generate isolation barriers between

  2. Genetic variation in Toll-like receptors and disease susceptibility.

    PubMed

    Netea, Mihai G; Wijmenga, Cisca; O'Neill, Luke A J

    2012-05-18

    Toll-like receptors (TLRs) are key initiators of the innate immune response and promote adaptive immunity. Much has been learned about the role of TLRs in human immunity from studies linking TLR genetic variation with disease. First, monogenic disorders associated with complete deficiency in certain TLR pathways, such as MyD88-IRAK4 or TLR3-Unc93b-TRIF-TRAF3, have demonstrated the specific roles of these pathways in host defense against pyogenic bacteria and herpesviruses, respectively. Second, common polymorphisms in genes encoding several TLRs and associated genes have been associated with both infectious and autoimmune diseases. The study of genetic variation in TLRs in various populations combined with information on infection has demonstrated complex interaction between genetic variation in TLRs and environmental factors. This interaction explains the differences in the effect of TLR polymorphisms on susceptibility to infection and autoimmune disease in various populations.

  3. How Not To Discuss Character Education.

    ERIC Educational Resources Information Center

    Etzioni, Amitai

    1998-01-01

    In his February 1977 article in "Kappan," Alfie Kohn criticizes nearly everyone involved in character education, asserting that the values taught in American classrooms are based on the "ideological legs of behaviorism, conservatism, and religion." Kohn should partake of humility, a commonly taught virtue. Fair treatment for…

  4. Antivirion Effects of Streptovaricin Complex Against Friend Virus

    PubMed Central

    Horoszewicz, Julius S.; Leong, Susan S.; Byrd, Daniel M.; Carter, William A.

    1974-01-01

    The in vitro antivirion activities of five different streptovaricin complex lots against the polycythemic strain of the Friend virus were evaluated. The assay system was based on the inhibition of the Friend virus-induced spleen foci. The virus inactivation process was shown to be susceptible to variation in temperature, pH, and time. The antivirion activity and the acute toxicity for mice, as well as the optical properties of these streptovaricin complexes, do not co-vary; this suggests that their biological activities are not associated with a single molecular structure. In addition, the antivirion activity of the five preparations of streptovaricin complex differs about 30-fold, indicating that this activity does not reside in a major component of the complex. PMID:15825311

  5. Synthesis, characterization and antioxidant activity copper-quercetin complex.

    PubMed

    Bukhari, S Birjees; Memon, Shahabuddin; Mahroof-Tahir, M; Bhanger, M I

    2009-01-01

    Quercetin (3,3',4',5,7-pentahydroxyflavone) one of the most abundant dietary flavonoids, has been investigated in the presence of Cu(II) in methanol. The spectroscopic studies (UV-vis, (1)H NMR and IR) were useful to assess the relevant interaction of Quercetin with Cu(II) ions, the chelation sites and dependence of the complex structure from the metal/ligand ratio. A 1:2 (L:M) complex was indicated by Job's method of continuous variation, which was applied to ascertain the stoichiometric composition of the complex. The antioxidant activities of the compounds were evaluated by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. The complexed flavonoid was much more effective free radical scavengers than the free flavonoids.

  6. Synthesis, characterization and antioxidant activity copper-quercetin complex

    NASA Astrophysics Data System (ADS)

    Bukhari, S. Birjees; Memon, Shahabuddin; Mahroof-Tahir, M.; Bhanger, M. I.

    2009-01-01

    Quercetin (3,3',4',5,7-pentahydroxyflavone) one of the most abundant dietary flavonoids, has been investigated in the presence of Cu(II) in methanol. The spectroscopic studies (UV-vis, 1H NMR and IR) were useful to assess the relevant interaction of Quercetin with Cu(II) ions, the chelation sites and dependence of the complex structure from the metal/ligand ratio. A 1:2 (L:M) complex was indicated by Job's method of continuous variation, which was applied to ascertain the stoichiometric composition of the complex. The antioxidant activities of the compounds were evaluated by using the 1,1-diphenyl-2-picrylhydrazyl (DPPH) radical scavenging method. The complexed flavonoid was much more effective free radical scavengers than the free flavonoids.

  7. Complexity quantification of dense array EEG using sample entropy analysis.

    PubMed

    Ramanand, Pravitha; Nampoori, V P N; Sreenivasan, R

    2004-09-01

    In this paper, a time series complexity analysis of dense array electroencephalogram signals is carried out using the recently introduced Sample Entropy (SampEn) measure. This statistic quantifies the regularity in signals recorded from systems that can vary from the purely deterministic to purely stochastic realm. The present analysis is conducted with an objective of gaining insight into complexity variations related to changing brain dynamics for EEG recorded from the three cases of passive, eyes closed condition, a mental arithmetic task and the same mental task carried out after a physical exertion task. It is observed that the statistic is a robust quantifier of complexity suited for short physiological signals such as the EEG and it points to the specific brain regions that exhibit lowered complexity during the mental task state as compared to a passive, relaxed state. In the case of mental tasks carried out before and after the performance of a physical exercise, the statistic can detect the variations brought in by the intermediate fatigue inducing exercise period. This enhances its utility in detecting subtle changes in the brain state that can find wider scope for applications in EEG based brain studies.

  8. SANS contrast variation study of magnetoferritin structure at various iron loading

    NASA Astrophysics Data System (ADS)

    Melnikova, Lucia; Petrenko, Viktor I.; Avdeev, Mikhail V.; Ivankov, Oleksandr I.; Bulavin, Leonid A.; Garamus, Vasil M.; Almásy, László; Mitroova, Zuzana; Kopcansky, Peter

    2015-03-01

    Magnetoferritin, a synthetic derivate of iron storage protein - ferritin, has been synthesized with different iron oxide loading values. Small-angle neutron scattering experiments were applied to study the structure of magnetoferritin solutions using contrast variation method by varying the light to heavy water ratio of the solvent. Higher iron loading leads to increase of the neutron scattering length density of magnetoferritin and also to the increase of the polydispersity of complexes. The formation of the magnetic core and the variation of the protein shell structure upon iron loading are concluded.

  9. Application of satellite data in variational analysis for global cyclonic systems

    NASA Technical Reports Server (NTRS)

    Achtemeier, G. L.

    1987-01-01

    The research goal was a variational data assimilation method that incorporates as dynamical constraints, the primitive equations for a moist, convectively unstable atmosphere and the radiative transfer equation. Variables to be adjusted include the three-dimensional vector wind, height, temperature, and moisture from rawinsonde data, and cloud-wind vectors, moisture, and radiance from satellite data. This presents a formidable mathematical problem. In order to facilitate thorough analysis of each of the model components, four variational models that divide the problem naturally according to increasing complexity are defined. Each model is summarized.

  10. Mini-review: Strategies for Variation and Evolution of Bacterial Antigens

    PubMed Central

    Foley, Janet

    2015-01-01

    Across the eubacteria, antigenic variation has emerged as a strategy to evade host immunity. However, phenotypic variation in some of these antigens also allows the bacteria to exploit variable host niches as well. The specific mechanisms are not shared-derived characters although there is considerable convergent evolution and numerous commonalities reflecting considerations of natural selection and biochemical restraints. Unlike in viruses, mechanisms of antigenic variation in most bacteria involve larger DNA movement such as gene conversion or DNA rearrangement, although some antigens vary due to point mutations or modified transcriptional regulation. The convergent evolution that promotes antigenic variation integrates various evolutionary forces: these include mutations underlying variant production; drift which could remove alleles especially early in infection or during life history phases in arthropod vectors (when the bacterial population size goes through a bottleneck); selection not only for any particular variant but also for the mechanism for the production of variants (i.e., selection for mutability); and overcoming negative selection against variant production. This review highlights the complexities of drivers of antigenic variation, in particular extending evaluation beyond the commonly cited theory of immune evasion. A deeper understanding of the diversity of purpose and mechanisms of antigenic variation in bacteria will contribute to greater insight into bacterial pathogenesis, ecology and coevolution with hosts. PMID:26288700

  11. Heterogeneity of Purkinje cell simple spike-complex spike interactions: zebrin- and non-zebrin-related variations.

    PubMed

    Tang, Tianyu; Xiao, Jianqiang; Suh, Colleen Y; Burroughs, Amelia; Cerminara, Nadia L; Jia, Linjia; Marshall, Sarah P; Wise, Andrew K; Apps, Richard; Sugihara, Izumi; Lang, Eric J

    2017-08-01

    Cerebellar Purkinje cells (PCs) generate two types of action potentials, simple and complex spikes. Although they are generated by distinct mechanisms, interactions between the two spike types exist. Zebrin staining produces alternating positive and negative stripes of PCs across most of the cerebellar cortex. Thus, here we compared simple spike-complex spike interactions both within and across zebrin populations. Simple spike activity undergoes a complex modulation preceding and following a complex spike. The amplitudes of the pre- and post-complex spike modulation phases were correlated across PCs. On average, the modulation was larger for PCs in zebrin positive regions. Correlations between aspects of the complex spike waveform and simple spike activity were found, some of which varied between zebrin positive and negative PCs. The implications of the results are discussed with regard to hypotheses that complex spikes are triggered by rises in simple spike activity for either motor learning or homeostatic functions. Purkinje cells (PCs) generate two types of action potentials, called simple and complex spikes (SSs and CSs). We first investigated the CS-associated modulation of SS activity and its relationship to the zebrin status of the PC. The modulation pattern consisted of a pre-CS rise in SS activity, and then, following the CS, a pause, a rebound, and finally a late inhibition of SS activity for both zebrin positive (Z+) and negative (Z-) cells, though the amplitudes of the phases were larger in Z+ cells. Moreover, the amplitudes of the pre-CS rise with the late inhibitory phase of the modulation were correlated across PCs. In contrast, correlations between modulation phases across CSs of individual PCs were generally weak. Next, the relationship between CS spikelets and SS activity was investigated. The number of spikelets/CS correlated with the average SS firing rate only for Z+ cells. In contrast, correlations across CSs between spikelet numbers and the

  12. A Variational Formalism for the Radiative Transfer Equation and a Geostrophic, Hydrostatic Atmosphere: Prelude to Model 3

    NASA Technical Reports Server (NTRS)

    Achtemeier, Gary L.

    1991-01-01

    The second step in development of MODEL III is summarized. It combines the four radiative transfer equations of the first step with the equations for a geostrophic and hydrostatic atmosphere. This step is intended to bring radiance into a three dimensional balance with wind, height, and temperature. The use of the geostrophic approximation in place of the full set of primitive equations allows for an easier evaluation of how the inclusion of the radiative transfer equation increases the complexity of the variational equations. Seven different variational formulations were developed for geostrophic, hydrostatic, and radiative transfer equations. The first derivation was too complex to yield solutions that were physically meaningful. For the remaining six derivations, the variational method gave the same physical interpretation (the observed brightness temperatures could provide no meaningful input to a geostrophic, hydrostatic balance) at least through the problem solving methodology used in these studies. The variational method is presented and the Euler-Lagrange equations rederived for the geostrophic, hydrostatic, and radiative transfer equations.

  13. Variation in functional responses to water stress and differentiation between natural allopolyploid populations in the Brachypodium distachyon species complex.

    PubMed

    Martínez, Luisa M; Fernández-Ocaña, Ana; Rey, Pedro J; Salido, Teresa; Amil-Ruiz, Francisco; Manzaneda, Antonio J

    2018-06-08

    Some polyploid species show enhanced physiological tolerance to drought compared with their progenitors. However, very few studies have examined the consistency of physiological drought response between genetically differentiated natural polyploid populations, which is key to evaluation of the importance of adaptive evolution after polyploidization in those systems where drought exerts a selective pressure. A comparative functional approach was used to investigate differentiation of drought-tolerance-related traits in the Brachypodium species complex, a model system for grass polyploid adaptive speciation and functional genomics that comprises three closely related annual species: the two diploid parents, B. distachyon and B. stacei, and the allotetraploid derived from them, B. hybridum. Differentiation of drought-tolerance-related traits between ten genetically distinct B. hybridum populations and its ecological correlates was further analysed. The functional drought response is overall well differentiated between Brachypodium species. Brachypodium hybridum allotetraploids showed a transgressive expression pattern in leaf phytohormone content in response to drought. In contrast, other B. hybridum physiological traits correlated to B. stacei ones. Particularly, proline and water content were the traits that best discriminated these species from B. distachyon under drought. After polyploid formation and/or colonization, B. hybridum populations have adaptively diverged physiologically and genetically in response to variations in aridity.

  14. FUNCTIONAL IMPLICATION OF MAJOR HISTOCOMPATIBILITY (MH) VARIATION USING AN ESTUARINE FISH POPULATION

    EPA Science Inventory

    Recently, there has been a dramatic expansion of studies of major histocompatibility complex (MHC) variation aimed at discovering functional differences in immunity across wild populations of diverse vertebrate species. Some species with relatively low genetic diversity or under ...

  15. Complex I-complex II ratio strongly differs in various organs of Arabidopsis thaliana.

    PubMed

    Peters, Katrin; Niessen, Markus; Peterhänsel, Christoph; Späth, Bettina; Hölzle, Angela; Binder, Stefan; Marchfelder, Anita; Braun, Hans-Peter

    2012-06-01

    In most studies, amounts of protein complexes of the oxidative phosphorylation (OXPHOS) system in different organs or tissues are quantified on the basis of isolated mitochondrial fractions. However, yield of mitochondrial isolations might differ with respect to tissue type due to varying efficiencies of cell disruption during organelle isolation procedures or due to tissue-specific properties of organelles. Here we report an immunological investigation on the ratio of the OXPHOS complexes in different tissues of Arabidopsis thaliana which is based on total protein fractions isolated from five Arabidopsis organs (leaves, stems, flowers, roots and seeds) and from callus. Antibodies were generated against one surface exposed subunit of each of the five OXPHOS complexes and used for systematic immunoblotting experiments. Amounts of all complexes are highest in flowers (likewise with respect to organ fresh weight or total protein content of the flower fraction). Relative amounts of protein complexes in all other fractions were determined with respect to their amounts in flowers. Our investigation reveals high relative amounts of complex I in green organs (leaves and stems) but much lower amounts in non-green organs (roots, callus tissue). In contrast, complex II only is represented by low relative amounts in green organs but by significantly higher amounts in non-green organs, especially in seeds. In fact, the complex I-complex II ratio differs by factor 37 between callus and leaf, indicating drastic differences in electron entry into the respiratory chain in these two fractions. Variation in amounts concerning complexes III, IV and V was less pronounced in different Arabidopsis tissues (quantification of complex V in leaves was not meaningful due to a cross-reaction of the antibody with the chloroplast form of this enzyme). Analyses were complemented by in gel activity measurements for the protein complexes of the OXPHOS system and comparative 2D blue native/SDS PAGE

  16. Studies of a new hybrid taxon in the Artemisia tridentata (Asteraceae: Anthemideae) complex

    Treesearch

    Heather D. Garrison; Leila M. Shultz; E. Durant McArthur

    2013-01-01

    Members of the Artemisia tridentata complex (ASTERACEAE: Anthemideae: Artemisia subgen. Tridentatae) have adapted to changing environmental conditions through geographic migration, introgression, and hybridization. These processes have resulted in morphologic and genetic variation. A presumed hybrid ("Bonneville" big sagebrush) of the complex occurs in the...

  17. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex combination of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. In this paper we provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  18. Correlation of ISS Electric Potential Variations with Mission Operations

    NASA Technical Reports Server (NTRS)

    Willis, Emily M.; Minow, Joseph I.; Parker, Linda Neergaard

    2014-01-01

    Spacecraft charging on the International Space Station (ISS) is caused by a complex mix of the low Earth orbit plasma environment, space weather events, operations of the high voltage solar arrays, and changes in the ISS configuration and orbit parameters. Measurements of the ionospheric electron density and temperature along the ISS orbit and variations in the ISS electric potential are obtained from the Floating Potential Measurement Unit (FPMU) suite of four plasma instruments (two Langmuir probes, a Floating Potential Probe, and a Plasma Impedance Probe) on the ISS. These instruments provide a unique capability for monitoring the response of the ISS electric potential to variations in the space environment, changes in vehicle configuration, and operational solar array power manipulation. In particular, rapid variations in ISS potential during solar array operations on time scales of tens of milliseconds can be monitored due to the 128 Hz sample rate of the Floating Potential Probe providing an interesting insight into high voltage solar array interaction with the space plasma environment. Comparing the FPMU data with the ISS operations timeline and solar array data provides a means for correlating some of the more complex and interesting ISS electric potential variations with mission operations. In addition, recent extensions and improvements to the ISS data downlink capabilities have allowed more operating time for the FPMU than ever before. The FPMU was operated for over 200 days in 2013 resulting in the largest data set ever recorded in a single year for the ISS. This presentation will provide examples of a number of the more interesting ISS charging events observed during the 2013 operations including examples of rapid charging events due to solar array power operations, auroral charging events, and other charging behavior related to ISS mission operations.

  19. Variation tolerant SoC design

    NASA Astrophysics Data System (ADS)

    Kozhikkottu, Vivek J.

    performance distribution. This task is particularly complex and challenging due to the inter-dependencies between components' execution, indirect effects of shared resources, and interactions between multiple system-level "execution paths". We argue that accurate variation-aware performance analysis requires Monte-Carlo based repeated system execution. Our proposed analysis framework leverages emulation to significantly speedup performance analysis without sacrificing the generality and accuracy achieved by Monte-Carlo based simulations. Our experiments show performance improvements of around 60x compared to state-of-the-art hardware-software co-simulation tools and also underscore the framework's potential to enable variation-aware design and exploration at the system level. Our second contribution addresses the problem of designing variation-tolerant SoCs using recovery based design, a popular circuit design paradigm that addresses variations by eliminating guard-bands and operating circuits at close to "zero margins" while detecting and recovering from timing errors. While previous efforts have demonstrated the potential benefits of recovery based design, we identify several challenges that need to be addressed in order to apply this technique to SoCs. We present a systematic design framework to apply recovery based design at the system level. We propose to partition SoCs into "recovery islands", wherein each recovery island consists of one or more SoC components that can recover independent of the rest of the SoC. We present a variation-aware design methodology that partitions a given SoC into recovery islands and computes the optimal operating points for each island, taking into account the various trade-offs involved. Our experiments demonstrate that the proposed design framework achieves an average of 32% energy savings over conventional worst-case designs, with negligible losses in performance. The third contribution of this thesis introduces disproportionate

  20. Adapting Total Quality Doesn't Mean "Turning Learning into a Business."

    ERIC Educational Resources Information Center

    Schmoker, Mike; Wilson, Richard B.

    1993-01-01

    Although Alfie Kohn is a first-rate thinker, his article in the same "Educational Leadership" issue confuses adopting Total Quality Management methods with intelligently adapting them. Kohn wrestles too hard with the "worker/student" metaphor and wrongly disparages Deming's emphasis on data and performance. Schools can definitely benefit from…

  1. Neurodevelopmental Variation as a Framework for Thinking about the Twice Exceptional

    ERIC Educational Resources Information Center

    Gilger, Jeffrey W.; Hynd, George W.

    2008-01-01

    Developmental exceptionalities span the range of learning abilities and encompass children with both learning disorders and learning gifts. The purpose of this article is to stimulate thinking about these exceptionalities, particularly the complexities and variations within and across people. Investigators tend to view learning disabilities or…

  2. Phenotyping the quality of complex medium components by simple online-monitored shake flask experiments.

    PubMed

    Diederichs, Sylvia; Korona, Anna; Staaden, Antje; Kroutil, Wolfgang; Honda, Kohsuke; Ohtake, Hisao; Büchs, Jochen

    2014-11-07

    Media containing yeast extracts and other complex raw materials are widely used for the cultivation of microorganisms. However, variations in the specific nutrient composition can occur, due to differences in the complex raw material ingredients and in the production of these components. These lot-to-lot variations can affect growth rate, product yield and product quality in laboratory investigations and biopharmaceutical production processes. In the FDA's Process Analytical Technology (PAT) initiative, the control and assessment of the quality of critical raw materials is one key aspect to maintain product quality and consistency. In this study, the Respiration Activity Monitoring System (RAMOS) was used to evaluate the impact of different yeast extracts and commercial complex auto-induction medium lots on metabolic activity and product yield of four recombinant Escherichia coli variants encoding different enzymes. Under non-induced conditions, the oxygen transfer rate (OTR) of E. coli was not affected by a variation of the supplemented yeast extract lot. The comparison of E. coli cultivations under induced conditions exhibited tremendous differences in OTR profiles and volumetric activity for all investigated yeast extract lots of different suppliers as well as lots of the same supplier independent of the E. coli variant. Cultivation in the commercial auto-induction medium lots revealed the same reproducible variations. In cultivations with parallel offline analysis, the highest volumetric activity was found at different cultivation times. Only by online monitoring of the cultures, a distinct cultivation phase (e.g. glycerol depletion) could be detected and chosen for comparable and reproducible offline analysis of the yield of functional product. This work proves that cultivations conducted in complex media may be prone to significant variation in final product quality and quantity if the quality of the raw material for medium preparation is not thoroughly

  3. Finite Temperature Densities via the S-Function Method with Application to Electron Screening in Plasmas

    NASA Astrophysics Data System (ADS)

    Watrous, Mitchell James

    1997-12-01

    A new approach to the Green's-function method for the calculation of equilibrium densities within the finite temperature, Kohn-Sham formulation of density functional theory is presented, which extends the method to all temperatures. The contour of integration in the complex energy plane is chosen such that the density is given by a sum of Green's function differences evaluated at the Matsubara frequencies, rather than by the calculation and summation of Kohn-Sham single-particle wave functions. The Green's functions are written in terms of their spectral representation and are calculated as the solutions of their defining differential equations. These differential equations are boundary value problems as opposed to the standard eigenvalue problems. For large values of the complex energy, the differential equations are further simplified from second to first-order by writing the Green's functions in terms of logarithmic derivatives. An asymptotic expression for the Green's functions is derived, which allows the sum over Matsubara poles to be approximated. The method is applied to the screening of nuclei by electrons in finite temperature plasmas. To demonstrate the method's utility, and to illustrate its advantages, the results of previous wave function type calculations for protons and neon nuclei are reproduced. The method is also used to formulate a new screening model for fusion reactions in the solar core, and the predicted reaction rate enhancements factors are compared with existing models.

  4. Variationally Optimized Free-Energy Flooding for Rate Calculation.

    PubMed

    McCarty, James; Valsson, Omar; Tiwary, Pratyush; Parrinello, Michele

    2015-08-14

    We propose a new method to obtain kinetic properties of infrequent events from molecular dynamics simulation. The procedure employs a recently introduced variational approach [Valsson and Parrinello, Phys. Rev. Lett. 113, 090601 (2014)] to construct a bias potential as a function of several collective variables that is designed to flood the associated free energy surface up to a predefined level. The resulting bias potential effectively accelerates transitions between metastable free energy minima while ensuring bias-free transition states, thus allowing accurate kinetic rates to be obtained. We test the method on a few illustrative systems for which we obtain an order of magnitude improvement in efficiency relative to previous approaches and several orders of magnitude relative to unbiased molecular dynamics. We expect an even larger improvement in more complex systems. This and the ability of the variational approach to deal efficiently with a large number of collective variables will greatly enhance the scope of these calculations. This work is a vindication of the potential that the variational principle has if applied in innovative ways.

  5. Variational Approach to Enhanced Sampling and Free Energy Calculations

    NASA Astrophysics Data System (ADS)

    Valsson, Omar; Parrinello, Michele

    2014-08-01

    The ability of widely used sampling methods, such as molecular dynamics or Monte Carlo simulations, to explore complex free energy landscapes is severely hampered by the presence of kinetic bottlenecks. A large number of solutions have been proposed to alleviate this problem. Many are based on the introduction of a bias potential which is a function of a small number of collective variables. However constructing such a bias is not simple. Here we introduce a functional of the bias potential and an associated variational principle. The bias that minimizes the functional relates in a simple way to the free energy surface. This variational principle can be turned into a practical, efficient, and flexible sampling method. A number of numerical examples are presented which include the determination of a three-dimensional free energy surface. We argue that, beside being numerically advantageous, our variational approach provides a convenient and novel standpoint for looking at the sampling problem.

  6. Variations of trends of indicators describing complex systems: Change of scaling precursory to extreme events

    NASA Astrophysics Data System (ADS)

    Keilis-Borok, V. I.; Soloviev, A. A.

    2010-09-01

    Socioeconomic and natural complex systems persistently generate extreme events also known as disasters, crises, or critical transitions. Here we analyze patterns of background activity preceding extreme events in four complex systems: economic recessions, surges in homicides in a megacity, magnetic storms, and strong earthquakes. We use as a starting point the indicators describing the system's behavior and identify changes in an indicator's trend. Those changes constitute our background events (BEs). We demonstrate a premonitory pattern common to all four systems considered: relatively large magnitude BEs become more frequent before extreme event. A premonitory change of scaling has been found in various models and observations. Here we demonstrate this change in scaling of uniformly defined BEs in four real complex systems, their enormous differences notwithstanding.

  7. Don't Spoil the Promise of Cooperative Learning: Response to Slavin.

    ERIC Educational Resources Information Center

    Kohn, Alfie

    1991-01-01

    Responding to Slavin's critique of Kohn's article (in the same "Educational Leadership" issue) condemning cooperative rewards, Kohn slams Slavin's faulty research interpretations. Slavin may be correct that few non-reward-based classrooms exist in the U.S., but this hardly demonstrates that the best alternative to bribing individuals is to bribe…

  8. Teaching beyond Modernism and Postmodernism

    ERIC Educational Resources Information Center

    Kohn, Sheldon S.

    2008-01-01

    High school teacher Sheldon S. Kohn probes the conflicting dynamics that occur for educators who try to provide students with appropriate tools for thinking and living in a postmodernist, intellectual world, yet who must teach in antiquated school systems that support modernist philosophies and hierarchical practices. Kohn imagines students and…

  9. The First Test: Madison’s Strategy, The Constitution, and the War of 1812

    DTIC Science & Technology

    2010-06-01

    20-21. 15 Kohn, Eagle and Sword, 48. 16 Kohn, Eagle and Sword, 52, 41. 18 2. Not able to support war 3. Not able to prevent internal sedition ...economic depression in the 1810s to British commercial restrictions. While Congressional speeches did address Indian hostilities, the more dominant theme

  10. The coordination- and photochemistry of copper(i) complexes: variation of N^N ligands from imidazole to tetrazole.

    PubMed

    Bergmann, Larissa; Braun, Carolin; Nieger, Martin; Bräse, Stefan

    2018-01-02

    The prediction of coordination modes is of high importance when structure-property relationships are discussed. Herein, the coordination chemistry of copper(i) with pyridine-amines with a varying number of coordinating N-atoms, namely pyridine-benzimidazole, -triazole and -tetrazole, or their deprotonated analogues, and different phosphines was systematically studied and the photoluminescence properties of all synthesized complexes examined and related to DFT data. Each complex was characterized by single-crystal X-ray analysis and elemental analysis, and a set of prediction rules derived for the coordination chemistry of copper(i) with these ligands. A mononuclear cationic coordination motif was found for PPh 3 or DPEPhos with all N^N ligands, which exhibits blue to green luminescence of MLCT character d(Cu) → π*(pyridine-amine ligand) with quantum yields up to 46%. With the deprotonated N^N ligands, mononuclear neutral complexes were only expected with DPEPhos. The emission's nature of this complex type is strongly dependent on the electronic effects of the N^N ligand and was characterized as (ML + IL)CT transition. In contrast to the high quantum yields up to 78% for the tetrazolate complexes (as reported before), the triazolate and imidazolate based complexes show much lower emission efficiencies below 10%. Besides the mononuclear copper(i) complexes, cluster-type complexes were obtained, which show moderate luminescence in the blue to green region of the visible spectrum (469-505 nm).

  11. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length

    PubMed Central

    Cook, Daniel E.; Zdraljevic, Stefan; Tanny, Robyn E.; Seo, Beomseok; Riccardi, David D.; Noble, Luke M.; Rockman, Matthew V.; Alkema, Mark J.; Braendle, Christian; Kammenga, Jan E.; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C.

    2016-01-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. PMID:27449056

  12. The Genetic Basis of Natural Variation in Caenorhabditis elegans Telomere Length.

    PubMed

    Cook, Daniel E; Zdraljevic, Stefan; Tanny, Robyn E; Seo, Beomseok; Riccardi, David D; Noble, Luke M; Rockman, Matthew V; Alkema, Mark J; Braendle, Christian; Kammenga, Jan E; Wang, John; Kruglyak, Leonid; Félix, Marie-Anne; Lee, Junho; Andersen, Erik C

    2016-09-01

    Telomeres are involved in the maintenance of chromosomes and the prevention of genome instability. Despite this central importance, significant variation in telomere length has been observed in a variety of organisms. The genetic determinants of telomere-length variation and their effects on organismal fitness are largely unexplored. Here, we describe natural variation in telomere length across the Caenorhabditis elegans species. We identify a large-effect variant that contributes to differences in telomere length. The variant alters the conserved oligonucleotide/oligosaccharide-binding fold of protection of telomeres 2 (POT-2), a homolog of a human telomere-capping shelterin complex subunit. Mutations within this domain likely reduce the ability of POT-2 to bind telomeric DNA, thereby increasing telomere length. We find that telomere-length variation does not correlate with offspring production or longevity in C. elegans wild isolates, suggesting that naturally long telomeres play a limited role in modifying fitness phenotypes in C. elegans. Copyright © 2016 by the Genetics Society of America.

  13. Finite-temperature time-dependent variation with multiple Davydov states

    NASA Astrophysics Data System (ADS)

    Wang, Lu; Fujihashi, Yuta; Chen, Lipeng; Zhao, Yang

    2017-03-01

    The Dirac-Frenkel time-dependent variational approach with Davydov Ansätze is a sophisticated, yet efficient technique to obtain an accurate solution to many-body Schrödinger equations for energy and charge transfer dynamics in molecular aggregates and light-harvesting complexes. We extend this variational approach to finite temperature dynamics of the spin-boson model by adopting a Monte Carlo importance sampling method. In order to demonstrate the applicability of this approach, we compare calculated real-time quantum dynamics of the spin-boson model with that from numerically exact iterative quasiadiabatic propagator path integral (QUAPI) technique. The comparison shows that our variational approach with the single Davydov Ansätze is in excellent agreement with the QUAPI method at high temperatures, while the two differ at low temperatures. Accuracy in dynamics calculations employing a multitude of Davydov trial states is found to improve substantially over the single Davydov Ansatz, especially at low temperatures. At a moderate computational cost, our variational approach with the multiple Davydov Ansatz is shown to provide accurate spin-boson dynamics over a wide range of temperatures and bath spectral densities.

  14. Theoretical studies for the rates and kinetic isotope effects of the excited-state double proton transfer in the 1:1 7-azaindole:H2O complex using variational transition state theory including multidimensional tunneling.

    PubMed

    Duong, My Phu Thi; Kim, Yongho

    2010-03-18

    Variational transition state theory calculations including multidimensional tunneling (VTST/MT) for excited-state tautomerization in the 1:1 7-azaindole:H(2)O complex were performed. Electronic structures and energies for reactant, product, transition state, and potential energy curves along the reaction coordinate were computed at the CASSCF(10,9)/6-31G(d,p) level of theory. The potential energies were corrected by second-order multireference perturbation theory to take the dynamic electron correlation into consideration. The final potential energy curves along the reaction coordinate were generated at the MRPT2//CASSCF(10,9)/6-31G(d,p) level. Two protons in the excited-state tautomerization are transferred concertedly, albeit asynchronously. The position of the variational transition state is very different from the conventional transition state, and is highly dependent on isotopic substitution. Rate constants were calculated using VTST/MT, and were on the order of 10(-6) s(-1) at room temperature. The HH/DD kinetic isotope effects are consistent with experimental observations; consideration of both tunneling and variational effects was essential to predict the experimental values correctly.

  15. Testing Limits on Matte Surface Color Perception in Three-Dimensional Scenes with Complex Light Fields

    PubMed Central

    Doerschner, K.; Boyaci, H.; Maloney, L. T.

    2007-01-01

    We investigated limits on the human visual system’s ability to discount directional variation in complex lights field when estimating Lambertian surface color. Directional variation in the light field was represented in the frequency domain using spherical harmonics. The bidirectional reflectance distribution function of a Lambertian surface acts as a low-pass filter on directional variation in the light field. Consequently, the visual system needs to discount only the low-pass component of the incident light corresponding to the first nine terms of a spherical harmonics expansion (Basri & Jacobs, 2001; Ramamoorthi & Hanrahan, 2001) to accurately estimate surface color. We test experimentally whether the visual system discounts directional variation in the light field up to this physical limit. Our results are consistent with the claim that the visual system can compensate for all of the complexity in the light field that affects the appearance of Lambertian surfaces. PMID:18053846

  16. Black Women's Intersectional Complexities: The Impact on Leadership

    ERIC Educational Resources Information Center

    Curtis, Sharon

    2017-01-01

    Recent educational literature has produced a plethora of gendered experiences encountered by women working towards leadership positions in education. Gender plays a complex role that shapes the relationship between perceived ideals of womanhood and leadership. This paper focuses on the variations in leadership and management distributed in the…

  17. Nuthatches eavesdrop on variations in heterospecific chickadee mobbing alarm calls.

    PubMed

    Templeton, Christopher N; Greene, Erick

    2007-03-27

    Many animals recognize the alarm calls produced by other species, but the amount of information they glean from these eavesdropped signals is unknown. We previously showed that black-capped chickadees (Poecile atricapillus) have a sophisticated alarm call system in which they encode complex information about the size and risk of potential predators in variations of a single type of mobbing alarm call. Here we show experimentally that red-breasted nuthatches (Sitta canadensis) respond appropriately to subtle variations of these heterospecific "chick-a-dee" alarm calls, thereby evidencing that they have gained important information about potential predators in their environment. This study demonstrates a previously unsuspected level of discrimination in intertaxon eavesdropping.

  18. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis

    PubMed Central

    Zhou, Kaixin; Donnelly, Louise; Yang, Jian; Li, Miaoxin; Deshmukh, Harshal; Van Zuydam, Natalie; Ahlqvist, Emma; Spencer, Chris C; Groop, Leif; Morris, Andrew D; Colhoun, Helen M; Sham, Pak C; McCarthy, Mark I; Palmer, Colin N A; Pearson, Ewan R

    2014-01-01

    Summary Background Metformin is a first-line oral agent used in the treatment of type 2 diabetes, but glycaemic response to this drug is highly variable. Understanding the genetic contribution to metformin response might increase the possibility of personalising metformin treatment. We aimed to establish the heritability of glycaemic response to metformin using the genome-wide complex trait analysis (GCTA) method. Methods In this GCTA study, we obtained data about HbA1c concentrations before and during metformin treatment from patients in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) study, which includes a cohort of patients with type 2 diabetes and is linked to comprehensive clinical databases and genome-wide association study data. We applied the GCTA method to estimate heritability for four definitions of glycaemic response to metformin: absolute reduction in HbA1c; proportional reduction in HbA1c; adjusted reduction in HbA1c; and whether or not the target on-treatment HbA1c of less than 7% (53 mmol/mol) was achieved, with adjustment for baseline HbA1c and known clinical covariates. Chromosome-wise heritability estimation was used to obtain further information about the genetic architecture. Findings 5386 individuals were included in the final dataset, of whom 2085 had enough clinical data to define glycaemic response to metformin. The heritability of glycaemic response to metformin varied by response phenotype, with a heritability of 34% (95% CI 1–68; p=0·022) for the absolute reduction in HbA1c, adjusted for pretreatment HbA1c. Chromosome-wise heritability estimates suggest that the genetic contribution is probably from individual variants scattered across the genome, which each have a small to moderate effect, rather than from a few loci that each have a large effect. Interpretation Glycaemic response to metformin is heritable, thus glycaemic response to metformin is, in part, intrinsic to individual biological variation

  19. Heritability of variation in glycaemic response to metformin: a genome-wide complex trait analysis.

    PubMed

    Zhou, Kaixin; Donnelly, Louise; Yang, Jian; Li, Miaoxin; Deshmukh, Harshal; Van Zuydam, Natalie; Ahlqvist, Emma; Spencer, Chris C; Groop, Leif; Morris, Andrew D; Colhoun, Helen M; Sham, Pak C; McCarthy, Mark I; Palmer, Colin N A; Pearson, Ewan R

    2014-06-01

    Metformin is a first-line oral agent used in the treatment of type 2 diabetes, but glycaemic response to this drug is highly variable. Understanding the genetic contribution to metformin response might increase the possibility of personalising metformin treatment. We aimed to establish the heritability of glycaemic response to metformin using the genome-wide complex trait analysis (GCTA) method. In this GCTA study, we obtained data about HbA1c concentrations before and during metformin treatment from patients in the Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) study, which includes a cohort of patients with type 2 diabetes and is linked to comprehensive clinical databases and genome-wide association study data. We applied the GCTA method to estimate heritability for four definitions of glycaemic response to metformin: absolute reduction in HbA1c; proportional reduction in HbA1c; adjusted reduction in HbA1c; and whether or not the target on-treatment HbA1c of less than 7% (53 mmol/mol) was achieved, with adjustment for baseline HbA1c and known clinical covariates. Chromosome-wise heritability estimation was used to obtain further information about the genetic architecture. 5386 individuals were included in the final dataset, of whom 2085 had enough clinical data to define glycaemic response to metformin. The heritability of glycaemic response to metformin varied by response phenotype, with a heritability of 34% (95% CI 1-68; p=0·022) for the absolute reduction in HbA1c, adjusted for pretreatment HbA1c. Chromosome-wise heritability estimates suggest that the genetic contribution is probably from individual variants scattered across the genome, which each have a small to moderate effect, rather than from a few loci that each have a large effect. Glycaemic response to metformin is heritable, thus glycaemic response to metformin is, in part, intrinsic to individual biological variation. Further genetic analysis might enable us to make better

  20. From genome-wide to candidate gene: an investigation of variation at the major histocompatibility complex in common bottlenose dolphins exposed to harmful algal blooms.

    PubMed

    Cammen, Kristina M; Wilcox, Lynsey A; Rosel, Patricia E; Wells, Randall S; Read, Andrew J

    2015-02-01

    The role the major histocompatibility complex (MHC) plays in response to exposure to environmental toxins is relatively poorly understood, particularly in comparison to its well-described role in pathogen immunity. We investigated associations between MHC diversity and resistance to brevetoxins in common bottlenose dolphins (Tursiops truncatus). A previous genome-wide association study investigating an apparent difference in harmful algal bloom (HAB) resistance among dolphin populations in the Gulf of Mexico identified genetic variation associated with survival in close genomic proximity to multiple MHC class II loci. Here, we characterized genetic variation at DQA, DQB, DRA, and DRB loci in dolphins from central-west Florida and the Florida Panhandle, including dolphins that died during HABs and dolphins presumed to have survived HAB exposure. We found that DRB and DQB exhibited patterns of genetic differentiation among geographic regions that differed from neutral microsatellite loci. In addition, genetic differentiation at DRB across multiple pairwise comparisons of live and dead dolphins was greater than differentiation observed at neutral loci. Our findings at these MHC loci did not approach the strength of association with survival previously described for a nearby genetic variant. However, the results provide evidence that selective pressures at the MHC vary among dolphin populations that differ in the frequency of HAB exposure and that the overall composition of DRB variants differs between dolphin survivors and non-survivors of HABs. These results may suggest a potential role of MHC diversity in variable survival of bottlenose dolphins exposed to HABs.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lindgren, Ingvar; Salomonson, Sten

    The locality theorem in density-functional theory (DFT) states that the functional derivative of the Hohenberg-Kohn universal functional can be expressed as a local multiplicative potential function, and this is the basis of DFT and of the successful Kohn-Sham model. Nesbet has in several papers [Phys. Rev. A 58, R12 (1998); ibid.65, 010502 (2001); Adv. Quant. Chem, 43, 1 (2003)] claimed that this theorem is in conflict with fundamental quantum physics, and as a consequence that the Hohenberg-Kohn theory cannot be generally valid. We have commented upon these works [Comment, Phys. Rev. A 67, 056501 (2003)] and recently extended the argumentsmore » [Adv. Quantum Chem. 43, 95 (2003)]. We have shown that there is no such conflict and that the locality theorem is inherently exact. In the present work we have furthermore verified this numerically by constructing a local Kohn-Sham potential for the 1s2s{sup 3}S state of helium that generates the many-body electron density and shown that the corresponding 2s Kohn-Sham orbital eigenvalue agrees with the ionization energy to nine digits. Similar result is obtained with the Hartree-Fock density. Therefore, in addition to verifying the locality theorem, this result also confirms the so-called ionization-potential theorem.« less

  2. Association of parameter, software, and hardware variation with large-scale behavior across 57,000 climate models

    PubMed Central

    Knight, Christopher G.; Knight, Sylvia H. E.; Massey, Neil; Aina, Tolu; Christensen, Carl; Frame, Dave J.; Kettleborough, Jamie A.; Martin, Andrew; Pascoe, Stephen; Sanderson, Ben; Stainforth, David A.; Allen, Myles R.

    2007-01-01

    In complex spatial models, as used to predict the climate response to greenhouse gas emissions, parameter variation within plausible bounds has major effects on model behavior of interest. Here, we present an unprecedentedly large ensemble of >57,000 climate model runs in which 10 parameters, initial conditions, hardware, and software used to run the model all have been varied. We relate information about the model runs to large-scale model behavior (equilibrium sensitivity of global mean temperature to a doubling of carbon dioxide). We demonstrate that effects of parameter, hardware, and software variation are detectable, complex, and interacting. However, we find most of the effects of parameter variation are caused by a small subset of parameters. Notably, the entrainment coefficient in clouds is associated with 30% of the variation seen in climate sensitivity, although both low and high values can give high climate sensitivity. We demonstrate that the effect of hardware and software is small relative to the effect of parameter variation and, over the wide range of systems tested, may be treated as equivalent to that caused by changes in initial conditions. We discuss the significance of these results in relation to the design and interpretation of climate modeling experiments and large-scale modeling more generally. PMID:17640921

  3. Variations of the sciatic nerve anatomy and blood supply in the gluteal region: a review of the literature.

    PubMed

    Kanawati, Andrew James

    2014-11-01

    Variations of the sciatic nerve anatomy and blood supply are complex and largely not dealt with in common anatomy texts. Variations of the sciatic nerve anatomy can be divided into the height of division of its branches, relation of the branches to the piriformis muscle, and its blood supply. These variations should be well known to any surgeon operating in this anatomical region. It is unknown whether these variations increase the risk of surgical injury and consequent morbidity. This paper will review the current knowledge regarding anatomical variations of the sciatic nerve and its blood supply. © 2014 Royal Australasian College of Surgeons.

  4. The Effect of Pressure and Temperature on Separation of Free Gadolinium(III) From Gd-DTPA Complex by Nanofiltration-Complexation Method

    NASA Astrophysics Data System (ADS)

    Rahayu, Iman; Anggraeni, Anni; Ukun, MSS; Bahti, Husein H.

    2017-05-01

    Nowdays, the utilization of rare earth elements has been carried out widely in industry and medicine, one of them is gadolinium in Gd-DTPA complex is used as a contrast agent in a magnetic resonance imaging (MRI) diagnostic to increase the visual contrast between normal tissue and diseased. Although the stability of a given complex may be high enough, the complexation step couldnot have been completed, so there is possible to gadolinium(III) in the complex compound. Therefore, the function of that compounds should be dangerous because of the toxicity of gadolinium(III) in human body. So, it is necessarry to separate free gadolinium(III) from Gd-DTPA complex by nanofiltration-complexation. The method of this study is complexing of Gd2O3 with DTPA ligand by reflux and separation of Gd-DTPA complex from gadolinium(III) with a nanofiltration membrane on the variation of pressures(2, 3, 4, 5, 6 bars) and temperature (25, 30, 35, 40 °C) and determined the flux and rejection. The results of this study are the higher of pressures and temperatures, permeation flux are increasing and ion rejections are decreasing and gave the free gadolinium(III) rejection until 86.26%.

  5. Keeping in Character: A Time-Tested Solution.

    ERIC Educational Resources Information Center

    Benninga, Jaques S.; Wynne, Edward A.

    1998-01-01

    Refutes Alfie Kohn's criticisms of modern character education programs in the February 1997 "Kappan." The basic structure of true "for character" education relies on an approach relevant for students of all ages, has been time-tested over 2,500 years, has broad public support, and has a valid research base. Kohn advocates…

  6. Conditions of Life and Parental Values.

    ERIC Educational Resources Information Center

    Burns, Ailsa; And Others

    Kohn's work on the relationship between social class and parental values was expanded by searching for value dimensions other than Kohn's self-direction/conformity construct and by investigating three aspects of social structure: immigrant status, quality of neighborhood, and housing type. Data were collected from parents of 305 9- to 11-year-old…

  7. Gastrointestinal Motility Variation and Implications for Plasma Level Variation: Oral Drug Products.

    PubMed

    Talattof, Arjang; Price, Judy C; Amidon, Gordon L

    2016-02-01

    The oral route of administration is still by far the most ubiquitous method of drug delivery. Development in this area still faces many challenges due to the complexity and inhomogeneity of the gastrointestinal environment. In particular, dosing unpredictably relative to motility phase means the gastrointestinal environment is a random variable within a defined range. Here, we present a mass balance analysis that captures this variation and highlights the effects of gastrointestinal motility, exploring what impacts it ultimately has on plasma levels and the relationship to bioequivalence for high solubility products with both high and low permeability (BCS I and III). Motility-dependent compartmental absorption and transit (MDCAT) mechanistic analysis is developed to describe the underlying fasted state cyclical motility and how the contents of the gastrointestinal tract are propelled.

  8. Chimeric Protein Complexes in Hybrid Species Generate Novel Phenotypes

    PubMed Central

    Piatkowska, Elzbieta M.; Naseeb, Samina; Knight, David; Delneri, Daniela

    2013-01-01

    Hybridization between species is an important mechanism for the origin of novel lineages and adaptation to new environments. Increased allelic variation and modification of the transcriptional network are the two recognized forces currently deemed to be responsible for the phenotypic properties seen in hybrids. However, since the majority of the biological functions in a cell are carried out by protein complexes, inter-specific protein assemblies therefore represent another important source of natural variation upon which evolutionary forces can act. Here we studied the composition of six protein complexes in two different Saccharomyces “sensu stricto” hybrids, to understand whether chimeric interactions can be freely formed in the cell in spite of species-specific co-evolutionary forces, and whether the different types of complexes cause a change in hybrid fitness. The protein assemblies were isolated from the hybrids via affinity chromatography and identified via mass spectrometry. We found evidence of spontaneous chimericity for four of the six protein assemblies tested and we showed that different types of complexes can cause a variety of phenotypes in selected environments. In the case of TRP2/TRP3 complex, the effect of such chimeric formation resulted in the fitness advantage of the hybrid in an environment lacking tryptophan, while only one type of parental combination of the MBF complex allowed the hybrid to grow under respiratory conditions. These phenotypes were dependent on both genetic and environmental backgrounds. This study provides empirical evidence that chimeric protein complexes can freely assemble in cells and reveals a new mechanism to generate phenotypic novelty and plasticity in hybrids to complement the genomic innovation resulting from gene duplication. The ability to exchange orthologous members has also important implications for the adaptation and subsequent genome evolution of the hybrids in terms of pattern of gene loss. PMID

  9. {alpha}+{sup 6,8}He resonant scattering and exotic structures in {sup 10,12}Be

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ito, Makoto; Itagaki, Naoyuki

    2008-05-21

    The {alpha}+{sup 6}He low-energy reactions and the structural changes of {sup 10}Be in the microscopic {alpha}+{alpha}+2N model are studied by the generalized two-center cluster model with the Kohn-Hulthen-Kato variation method. It is found that, in the inelastic scattering to the {alpha}+{sup 6}He(2{sub 1}{sup +}) channel, characteristic enhancements are expected as the results of the parity-dependent non-adiabatic dynamics. The similar method is applied to the resonant scattering of {alpha}+{sup 8}He, and the coupling with the compound configurations of {alpha}+{alpha}+4N are discussed.

  10. Genetic diversity is related to climatic variation and vulnerability in threatened bull trout

    USGS Publications Warehouse

    Kovach, Ryan; Muhlfeld, Clint C.; Wade, Alisa A.; Hand, Brian K.; Whited, Diane C.; DeHaan, Patrick W.; Al-Chokhachy, Robert K.; Luikart, Gordon

    2015-01-01

    Understanding how climatic variation influences ecological and evolutionary processes is crucial for informed conservation decision-making. Nevertheless, few studies have measured how climatic variation influences genetic diversity within populations or how genetic diversity is distributed across space relative to future climatic stress. Here, we tested whether patterns of genetic diversity (allelic richness) were related to climatic variation and habitat features in 130 bull trout (Salvelinus confluentus) populations from 24 watersheds (i.e., ~4–7th order river subbasins) across the Columbia River Basin, USA. We then determined whether bull trout genetic diversity was related to climate vulnerability at the watershed scale, which we quantified on the basis of exposure to future climatic conditions (projected scenarios for the 2040s) and existing habitat complexity. We found a strong gradient in genetic diversity in bull trout populations across the Columbia River Basin, where populations located in the most upstream headwater areas had the greatest genetic diversity. After accounting for spatial patterns with linear mixed models, allelic richness in bull trout populations was positively related to habitat patch size and complexity, and negatively related to maximum summer temperature and the frequency of winter flooding. These relationships strongly suggest that climatic variation influences evolutionary processes in this threatened species and that genetic diversity will likely decrease due to future climate change. Vulnerability at a watershed scale was negatively correlated with average genetic diversity (r = −0.77;P < 0.001); watersheds containing populations with lower average genetic diversity generally had the lowest habitat complexity, warmest stream temperatures, and greatest frequency of winter flooding. Together, these findings have important conservation implications for bull trout and other imperiled species. Genetic diversity is already

  11. Representational Complexity and Memory Retrieval in Language Comprehension

    ERIC Educational Resources Information Center

    Hofmeister, Philip

    2011-01-01

    Mental representations formed from words or phrases may vary considerably in their feature-based complexity. Modern theories of retrieval in sentence comprehension do not indicate how this variation and the role of encoding processes should influence memory performance. Here, memory retrieval in language comprehension is shown to be influenced by…

  12. A multi-perspective view of genetic variation in Cameroon.

    PubMed

    Coia, V; Brisighelli, F; Donati, F; Pascali, V; Boschi, I; Luiselli, D; Battaggia, C; Batini, C; Taglioli, L; Cruciani, F; Paoli, G; Capelli, C; Spedini, G; Destro-Bisol, G

    2009-11-01

    In this study, we report the genetic variation of autosomal and Y-chromosomal microsatellites in a large Cameroon population dataset (a total of 11 populations) and jointly analyze novel and previous genetic data (mitochondrial DNA and protein coding loci) taking geographic and cultural factors into consideration. The complex pattern of genetic variation of Cameroon can in part be described by contrasting two geographic areas (corresponding to the northern and southern part of the country), which differ substantially in environmental, biological, and cultural aspects. Northern Cameroon populations show a greater within- and among-group diversity, a finding that reflects the complex migratory patterns and the linguistic heterogeneity of this area. A striking reduction of Y-chromosomal genetic diversity was observed in some populations of the northern part of the country (Podokwo and Uldeme), a result that seems to be related to their demographic history rather than to sampling issues. By exploring patterns of genetic, geographic, and linguistic variation, we detect a preferential correlation between genetics and geography for mtDNA. This finding could reflect a female matrimonial mobility that is less constrained by linguistic factors than in males. Finally, we apply the island model to mitochondrial and Y-chromosomal data and obtain a female-to-male migration Nnu ratio that was more than double in the northern part of the country. The combined effect of the propensity to inter-populational admixture of females, favored by cultural contacts, and of genetic drift acting on Y-chromosomal diversity could account for the peculiar genetic pattern observed in northern Cameroon.

  13. The determination of the in situ structure by nuclear spin contrast variation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stuhrmann, H.B.; Nierhaus, K.H.

    1994-12-31

    Polarized neutron scattering from polarized nuclear spins in hydrogenous substances opens a new way of contrast variation. The enhanced contrast due to proton spin polarization was used for the in situ structure determination of tRNA of the functional complex of the E.coli ribosome.

  14. Morphological Variation in the Adult Hard Palate and Posterior Pharyngeal Wall

    PubMed Central

    Lammert, Adam; Proctor, Michael; Narayanan, Shrikanth

    2013-01-01

    Purpose Adult human vocal tracts display considerable morphological variation across individuals, but the nature and extent of this variation has not been extensively studied for many vocal tract structures. There exists a need to analyze morphological variation and, even more basically, to develop a methodology for morphological analysis of the vocal tract. Such analysis will facilitate fundamental characterization of the speech production system, with broad implications from modeling to explaining inter-speaker variability. Method A data-driven methodology to automatically analyze the extent and variety of morphological variation is proposed and applied to a diverse subject pool of 36 adults. Analysis is focused on two key aspects of vocal tract structure: the midsagittal shape of the hard palate and the posterior pharyngeal wall. Result Palatal morphology varies widely in its degree of concavity, but also in anteriority and sharpness. Pharyngeal wall morphology, by contrast, varies mostly in terms of concavity alone. The distribution of morphological characteristics is complex, and analysis suggests that certain variations may be categorical in nature. Conclusion Major modes of morphological variation are identified, including their relative magnitude, distribution and categorical nature. Implications of these findings for speech articulation strategies and speech acoustics are discussed. PMID:23690566

  15. Total variation regularization for seismic waveform inversion using an adaptive primal dual hybrid gradient method

    NASA Astrophysics Data System (ADS)

    Yong, Peng; Liao, Wenyuan; Huang, Jianping; Li, Zhenchuan

    2018-04-01

    Full waveform inversion is an effective tool for recovering the properties of the Earth from seismograms. However, it suffers from local minima caused mainly by the limited accuracy of the starting model and the lack of a low-frequency component in the seismic data. Because of the high velocity contrast between salt and sediment, the relation between the waveform and velocity perturbation is strongly nonlinear. Therefore, salt inversion can easily get trapped in the local minima. Since the velocity of salt is nearly constant, we can make the most of this characteristic with total variation regularization to mitigate the local minima. In this paper, we develop an adaptive primal dual hybrid gradient method to implement total variation regularization by projecting the solution onto a total variation norm constrained convex set, through which the total variation norm constraint is satisfied at every model iteration. The smooth background velocities are first inverted and the perturbations are gradually obtained by successively relaxing the total variation norm constraints. Numerical experiment of the projection of the BP model onto the intersection of the total variation norm and box constraints has demonstrated the accuracy and efficiency of our adaptive primal dual hybrid gradient method. A workflow is designed to recover complex salt structures in the BP 2004 model and the 2D SEG/EAGE salt model, starting from a linear gradient model without using low-frequency data below 3 Hz. The salt inversion processes demonstrate that wavefield reconstruction inversion with a total variation norm and box constraints is able to overcome local minima and inverts the complex salt velocity layer by layer.

  16. The genome revolution and its role in understanding complex diseases.

    PubMed

    Hofker, Marten H; Fu, Jingyuan; Wijmenga, Cisca

    2014-10-01

    The completion of the human genome sequence in 2003 clearly marked the beginning of a new era for biomedical research. It spurred technological progress that was unprecedented in the life sciences, including the development of high-throughput technologies to detect genetic variation and gene expression. The study of genetics has become "big data science". One of the current goals of genetic research is to use genomic information to further our understanding of common complex diseases. An essential first step made towards this goal was by the identification of thousands of single nucleotide polymorphisms showing robust association with hundreds of different traits and diseases. As insight into common genetic variation has expanded enormously and the technology to identify more rare variation has become available, we can utilize these advances to gain a better understanding of disease etiology. This will lead to developments in personalized medicine and P4 healthcare. Here, we review some of the historical events and perspectives before and after the completion of the human genome sequence. We also describe the success of large-scale genetic association studies and how these are expected to yield more insight into complex disorders. We show how we can now combine gene-oriented research and systems-based approaches to develop more complex models to help explain the etiology of common diseases. This article is part of a Special Issue entitled: From Genome to Function. Copyright © 2014 Elsevier B.V. All rights reserved.

  17. Micro-scale environmental variation amplifies physiological variation among individual mussels.

    PubMed

    Jimenez, Ana Gabriela; Jayawardene, Sarah; Alves, Shaina; Dallmer, Jeremiah; Dowd, W Wesley

    2015-12-07

    The contributions of temporal and spatial environmental variation to physiological variation remain poorly resolved. Rocky intertidal zone populations are subjected to thermal variation over the tidal cycle, superimposed with micro-scale variation in individuals' body temperatures. Using the sea mussel (Mytilus californianus), we assessed the consequences of this micro-scale environmental variation for physiological variation among individuals, first by examining the latter in field-acclimatized animals, second by abolishing micro-scale environmental variation via common garden acclimation, and third by restoring this variation using a reciprocal outplant approach. Common garden acclimation reduced the magnitude of variation in tissue-level antioxidant capacities by approximately 30% among mussels from a wave-protected (warm) site, but it had no effect on antioxidant variation among mussels from a wave-exposed (cool) site. The field-acclimatized level of antioxidant variation was restored only when protected-site mussels were outplanted to a high, thermally stressful site. Variation in organismal oxygen consumption rates reflected antioxidant patterns, decreasing dramatically among protected-site mussels after common gardening. These results suggest a highly plastic relationship between individuals' genotypes and their physiological phenotypes that depends on recent environmental experience. Corresponding context-dependent changes in the physiological mean-variance relationships within populations complicate prediction of responses to shifts in environmental variability that are anticipated with global change. © 2015 The Author(s).

  18. And the Beat Goes on......

    ERIC Educational Resources Information Center

    Ogden, William R.

    2008-01-01

    A recent article (Kohn, 2006) rekindled interest in a paper begun years earlier but never completed. Stimulated by Alfie Kohn's observations concerning the misuse or even abuse of research in the educational community, the author looks back over a lengthy career in academe and laments that the discipline of education is still on the outside…

  19. Errors and Allegations about Research on Homework

    ERIC Educational Resources Information Center

    Marzano, Robert J.; Pickering, Debra J.

    2007-01-01

    This article provides a response to Kohn's article entitled "Abusing Research: The Study of Homework and Other Examples" that appeared in the September 2006 issue of the "Kappan." There Kohn asserted that many of those who conduct research on homework and report on that research misrepresent research findings. He specifically mentioned a set of…

  20. Automated Construction of Molecular Active Spaces from Atomic Valence Orbitals.

    PubMed

    Sayfutyarova, Elvira R; Sun, Qiming; Chan, Garnet Kin-Lic; Knizia, Gerald

    2017-09-12

    We introduce the atomic valence active space (AVAS), a simple and well-defined automated technique for constructing active orbital spaces for use in multiconfiguration and multireference (MR) electronic structure calculations. Concretely, the technique constructs active molecular orbitals capable of describing all relevant electronic configurations emerging from a targeted set of atomic valence orbitals (e.g., the metal d orbitals in a coordination complex). This is achieved via a linear transformation of the occupied and unoccupied orbital spaces from an easily obtainable single-reference wave function (such as from a Hartree-Fock or Kohn-Sham calculations) based on projectors to targeted atomic valence orbitals. We discuss the premises, theory, and implementation of the idea, and several of its variations are tested. To investigate the performance and accuracy, we calculate the excitation energies for various transition-metal complexes in typical application scenarios. Additionally, we follow the homolytic bond breaking process of a Fenton reaction along its reaction coordinate. While the described AVAS technique is not a universal solution to the active space problem, its premises are fulfilled in many application scenarios of transition-metal chemistry and bond dissociation processes. In these cases the technique makes MR calculations easier to execute, easier to reproduce by any user, and simplifies the determination of the appropriate size of the active space required for accurate results.

  1. A stochastic-geometric model of soil variation in Pleistocene patterned ground

    NASA Astrophysics Data System (ADS)

    Lark, Murray; Meerschman, Eef; Van Meirvenne, Marc

    2013-04-01

    In this paper we examine the spatial variability of soil in parent material with complex spatial structure which arises from complex non-linear geomorphic processes. We show that this variability can be better-modelled by a stochastic-geometric model than by a standard Gaussian random field. The benefits of the new model are seen in the reproduction of features of the target variable which influence processes like water movement and pollutant dispersal. Complex non-linear processes in the soil give rise to properties with non-Gaussian distributions. Even under a transformation to approximate marginal normality, such variables may have a more complex spatial structure than the Gaussian random field model of geostatistics can accommodate. In particular the extent to which extreme values of the variable are connected in spatially coherent regions may be misrepresented. As a result, for example, geostatistical simulation generally fails to reproduce the pathways for preferential flow in an environment where coarse infill of former fluvial channels or coarse alluvium of braided streams creates pathways for rapid movement of water. Multiple point geostatistics has been developed to deal with this problem. Multiple point methods proceed by sampling from a set of training images which can be assumed to reproduce the non-Gaussian behaviour of the target variable. The challenge is to identify appropriate sources of such images. In this paper we consider a mode of soil variation in which the soil varies continuously, exhibiting short-range lateral trends induced by local effects of the factors of soil formation which vary across the region of interest in an unpredictable way. The trends in soil variation are therefore only apparent locally, and the soil variation at regional scale appears random. We propose a stochastic-geometric model for this mode of soil variation called the Continuous Local Trend (CLT) model. We consider a case study of soil formed in relict patterned

  2. Algorithms, complexity, and the sciences

    PubMed Central

    Papadimitriou, Christos

    2014-01-01

    Algorithms, perhaps together with Moore’s law, compose the engine of the information technology revolution, whereas complexity—the antithesis of algorithms—is one of the deepest realms of mathematical investigation. After introducing the basic concepts of algorithms and complexity, and the fundamental complexity classes P (polynomial time) and NP (nondeterministic polynomial time, or search problems), we discuss briefly the P vs. NP problem. We then focus on certain classes between P and NP which capture important phenomena in the social and life sciences, namely the Nash equlibrium and other equilibria in economics and game theory, and certain processes in population genetics and evolution. Finally, an algorithm known as multiplicative weights update (MWU) provides an algorithmic interpretation of the evolution of allele frequencies in a population under sex and weak selection. All three of these equivalences are rife with domain-specific implications: The concept of Nash equilibrium may be less universal—and therefore less compelling—than has been presumed; selection on gene interactions may entail the maintenance of genetic variation for longer periods than selection on single alleles predicts; whereas MWU can be shown to maximize, for each gene, a convex combination of the gene’s cumulative fitness in the population and the entropy of the allele distribution, an insight that may be pertinent to the maintenance of variation in evolution. PMID:25349382

  3. Course 4: Density Functional Theory, Methods, Techniques, and Applications

    NASA Astrophysics Data System (ADS)

    Chrétien, S.; Salahub, D. R.

    Contents 1 Introduction 2 Density functional theory 2.1 Hohenberg and Kohn theorems 2.2 Levy's constrained search 2.3 Kohn-Sham method 3 Density matrices and pair correlation functions 4 Adiabatic connection or coupling strength integration 5 Comparing and constrasting KS-DFT and HF-CI 6 Preparing new functionals 7 Approximate exchange and correlation functionals 7.1 The Local Spin Density Approximation (LSDA) 7.2 Gradient Expansion Approximation (GEA) 7.3 Generalized Gradient Approximation (GGA) 7.4 meta-Generalized Gradient Approximation (meta-GGA) 7.5 Hybrid functionals 7.6 The Optimized Effective Potential method (OEP) 7.7 Comparison between various approximate functionals 8 LAP correlation functional 9 Solving the Kohn-Sham equations 9.1 The Kohn-Sham orbitals 9.2 Coulomb potential 9.3 Exchange-correlation potential 9.4 Core potential 9.5 Other choices and sources of error 9.6 Functionality 10 Applications 10.1 Ab initio molecular dynamics for an alanine dipeptide model 10.2 Transition metal clusters: The ecstasy, and the agony... 10.3 The conversion of acetylene to benzene on Fe clusters 11 Conclusions

  4. Maize HapMap2 identifies extant variation from a genome in flux

    USDA-ARS?s Scientific Manuscript database

    The maize genome is the largest, most diverse and complex plant genome sequenced to date. Using high-throughput sequencing to access genetic variation and a population genetics model to score the polymorphisms, we characterize and unite the diversity of the world’s key breeding germplasm, wild rela...

  5. Ornament Complexity Is Correlated with Sexual Selection: (A Comment on Raia et al., "Cope's Rule and the Universal Scaling Law of Ornament Complexity").

    PubMed

    Holman, Luke; Bro-Jørgensen, Jakob

    2016-08-01

    Raia et al. propose that the evolution of the shape and complexity of animal ornaments (e.g., deer antlers) can be explained by interspecific variation in body size and is not influenced by sexual selection. They claim to show that ornament complexity is related to body size by an 0.25-power law and argue that this finding precludes a role for sexual selection in the evolution of ornament complexity. However, their study does not test alternative hypotheses and mismeasures antler shape allometry by omitting much of the published data. We show that an index of sexual selection (sexual size dimorphism) is positively correlated with size-corrected antler complexity and that the allometric slope of complexity is substantially greater than 0.25, contra Raia et al. We conclude that sexual selection and physical constraints both affect the evolution of antler shape.

  6. VARIATIONS OF THE 10 mum SILICATE FEATURES IN THE ACTIVELY ACCRETING T TAURI STARS: DG Tau AND XZ Tau

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bary, Jeffrey S.; Leisenring, Jarron M.; Skrutskie, Michael F., E-mail: jbary@colgate.ed, E-mail: jml2u@virginia.ed, E-mail: mfs4n@virginia.ed

    2009-11-20

    Using the Infrared Spectrograph aboard the Spitzer Space Telescope, we observed multiple epochs of 11 actively accreting T Tauri stars in the nearby Taurus-Auriga star-forming region. In total, 88 low-resolution mid-infrared spectra were collected over 1.5 years in Cycles 2 and 3. The results of this multi-epoch survey show that the 10 mum silicate complex in the spectra of two sources-DG Tau and XZ Tau-undergoes significant variations with the silicate feature growing both weaker and stronger over month- and year-long timescales. Shorter timescale variations on day- to week-long timescales were not detected within the measured flux errors. The time resolutionmore » coverage of this data set is inadequate for determining if the variations are periodic. Pure emission compositional models of the silicate complex in each epoch of the DG Tau and XZ Tau spectra provide poor fits to the observed silicate features. These results agree with those of previous groups that attempted to fit only single-epoch observations of these sources. Simple two-temperature, two-slab models with similar compositions successfully reproduce the observed variations in the silicate features. These models hint at a self-absorption origin of the diminution of the silicate complex instead of a compositional change in the population of emitting dust grains. We discuss several scenarios for producing such variability including disk shadowing, vertical mixing, variations in disk heating, and disk wind events associated with accretion outbursts.« less

  7. Mapping and phasing of structural variation in patient genomes using nanopore sequencing.

    PubMed

    Cretu Stancu, Mircea; van Roosmalen, Markus J; Renkens, Ivo; Nieboer, Marleen M; Middelkamp, Sjors; de Ligt, Joep; Pregno, Giulia; Giachino, Daniela; Mandrile, Giorgia; Espejo Valle-Inclan, Jose; Korzelius, Jerome; de Bruijn, Ewart; Cuppen, Edwin; Talkowski, Michael E; Marschall, Tobias; de Ridder, Jeroen; Kloosterman, Wigard P

    2017-11-06

    Despite improvements in genomics technology, the detection of structural variants (SVs) from short-read sequencing still poses challenges, particularly for complex variation. Here we analyse the genomes of two patients with congenital abnormalities using the MinION nanopore sequencer and a novel computational pipeline-NanoSV. We demonstrate that nanopore long reads are superior to short reads with regard to detection of de novo chromothripsis rearrangements. The long reads also enable efficient phasing of genetic variations, which we leveraged to determine the parental origin of all de novo chromothripsis breakpoints and to resolve the structure of these complex rearrangements. Additionally, genome-wide surveillance of inherited SVs reveals novel variants, missed in short-read data sets, a large proportion of which are retrotransposon insertions. We provide a first exploration of patient genome sequencing with a nanopore sequencer and demonstrate the value of long-read sequencing in mapping and phasing of SVs for both clinical and research applications.

  8. Nuthatches eavesdrop on variations in heterospecific chickadee mobbing alarm calls

    PubMed Central

    Templeton, Christopher N.; Greene, Erick

    2007-01-01

    Many animals recognize the alarm calls produced by other species, but the amount of information they glean from these eavesdropped signals is unknown. We previously showed that black-capped chickadees (Poecile atricapillus) have a sophisticated alarm call system in which they encode complex information about the size and risk of potential predators in variations of a single type of mobbing alarm call. Here we show experimentally that red-breasted nuthatches (Sitta canadensis) respond appropriately to subtle variations of these heterospecific “chick-a-dee” alarm calls, thereby evidencing that they have gained important information about potential predators in their environment. This study demonstrates a previously unsuspected level of discrimination in intertaxon eavesdropping. PMID:17372225

  9. The macroevolution of size and complexity in insect male genitalia

    PubMed Central

    Rudoy, Andrey

    2016-01-01

    The evolution of insect male genitalia has received much attention, but there is still a lack of data on the macroevolutionary origin of its extraordinary variation. We used a calibrated molecular phylogeny of 71 of the 150 known species of the beetle genus Limnebius to study the evolution of the size and complexity of the male genitalia in its two subgenera, Bilimneus, with small species with simple genitalia, and Limnebius s.str., with a much larger variation in size and complexity. We reconstructed ancestral values of complexity (perimeter and fractal dimension of the aedeagus) and genital and body size with Bayesian methods. Complexity evolved more in agreement with a Brownian model, although with evidence of weak directional selection to a decrease or increase in complexity in the two subgenera respectively, as measured with an excess of branches with negative or positive change. On the contrary, aedeagus size, the variable with the highest rates of evolution, had a lower phylogenetic signal, without significant differences between the two subgenera in the average change of the individual branches of the tree. Aedeagus size also had a lower correlation with time and no evidence of directional selection. Rather than to directional selection, it thus seems that the higher diversity of the male genitalia in Limnebius s.str. is mostly due to the larger variance of the phenotypic change in the individual branches of the tree for all measured variables. PMID:27114865

  10. Are Observed Variations of Topography of The '660' Influenced By Lateral Variations of An Underlying Interface ?

    NASA Astrophysics Data System (ADS)

    Castillo, J.; Mocquet, A.; Vacher, P.; Sotin, C.

    Most global studies of lateral variations of topography of the '660' have been per- formed so far with long-period data. This presentation assess the seismic signature of this region when studied with broadband data in the frequency range 0.1-1 Hz. When sampled with P-to-s converted phases, this region shows a complex pattern, associat- ing 3 interfaces at the average depths of 600, 650 and 715 km. First results indicate that lateral topography variations of the '650' fit previous observations by long-period data (Gu et al., 1998), except in some subduction zones, especially in East Asia, where vari- ation trends appear to behave in an opposite way. In such regions, better correlations are found with the behaviour of the '715'. We propose that the seismic signature of long-period waves generated at the bottom of the transition zone may be influenced by both interfaces. Because of the lateral variations of their thickness and velocity jump as a function of thermal context, the signature of one interface could prevail against the other. The transformation of garnet into perovskite, and dissociation of ringwood- ite are tested as possible candidates for the '715' and '650', respectively (Vacher et al., 1998), using available thermoelastic data. Synthetic modelling of converted phases on the velocity profiles computed in different thermal contexts can explain our broadband observations. References : Gu et al., EPSL, 157, 57-67, 1998 ; Vacher et al., PEPI, 106, 275-298, 1998.

  11. Interpolymer complexation: comparisons of bulk and interfacial structures.

    PubMed

    Cattoz, Beatrice; de Vos, Wiebe M; Cosgrove, Terence; Crossman, Martin; Espidel, Youssef; Prescott, Stuart W

    2015-04-14

    The interactions between the strong polyelectrolyte sodium poly(styrenesulfonate), NaPSS, and the neutral polymer poly(vinylpyrrolidone), PVP, were investigated in bulk and at the silica/solution interface using a combination of diffusion nuclear magnetic resonance spectroscopy (NMR), small-angle neutron scattering (SANS), solvent relaxation NMR, and ellipsometry. We show for the first time that complex formation occurs between NaPSS and PVP in solution; the complexes formed were shown not to be influenced by pH variation, whereas increasing the ionic strength increases the complexation of NaPSS but does not influence the PVP directly. The complexes formed contained a large proportion of NaPSS. Study of these interactions at the silica interface demonstrated that complexes also form at the nanoparticle interface where PVP is added in the system prior to NaPSS. For a constant PVP concentration and varying NaPSS concentration, the system remains stable until NaPSS is added in excess, which leads to depletion flocculation. Surface complex formation using the layer-by-layer technique was also reported at a planar silica interface.

  12. Self-organization and complexity in historical landscape patterns

    Treesearch

    Janine Bolliger; Julien C. Sprott; David J. Mladenoff

    2003-01-01

    Self-organization describes the evolution process of complex structures where systems emerge spontaneously, driven internally by variations of the system itself. Self-organization to the critical state is manifested by scale-free behavior across many orders of magnitude (Bak et al. 1987, Bak 1996, Sole et a1. 1999). Spatial scale-free behavior implies fractal...

  13. COMPLEX EVOLUTION OF BILE SALTS IN BIRDS

    PubMed Central

    Hagey, Lee R.; Vidal, Nicolas; Hofmann, Alan F.; Krasowski, Matthew D.

    2010-01-01

    Bile salts are the major end-metabolites of cholesterol and are important in lipid digestion and shaping of the gut microflora. There have been limited studies of bile-salt variation in birds. The purpose of our study was to determine bile-salt variation among birds and relate this variation to current avian phylogenies and hypotheses on the evolution of bile salt pathways. We determined the biliary bile-salt composition of 405 phylogenetically diverse bird species, including 7 paleognath species. Bile salt profiles were generally stable within bird families. Complex bile-salt profiles were more common in omnivores and herbivores than in carnivores. The structural variation of bile salts in birds is extensive and comparable to that seen in surveys of bile salts in reptiles and mammals. Birds produce many of the bile salts found throughout nonavian vertebrates and some previously uncharacterized bile salts. One difference between birds and other vertebrates is extensive hydroxylation of carbon-16 of bile salts in bird species. Comparison of our data set of bird bile salts with that of other vertebrates, especially reptiles, allowed us to infer evolutionary changes in the bile salt synthetic pathway. PMID:21113274

  14. Natural genetic variation in Arabidopsis thaliana defense metabolism genes modulates field fitness.

    PubMed

    Kerwin, Rachel; Feusier, Julie; Corwin, Jason; Rubin, Matthew; Lin, Catherine; Muok, Alise; Larson, Brandon; Li, Baohua; Joseph, Bindu; Francisco, Marta; Copeland, Daniel; Weinig, Cynthia; Kliebenstein, Daniel J

    2015-04-13

    Natural populations persist in complex environments, where biotic stressors, such as pathogen and insect communities, fluctuate temporally and spatially. These shifting biotic pressures generate heterogeneous selective forces that can maintain standing natural variation within a species. To directly test if genes containing causal variation for the Arabidopsis thaliana defensive compounds, glucosinolates (GSL) control field fitness and are therefore subject to natural selection, we conducted a multi-year field trial using lines that vary in only specific causal genes. Interestingly, we found that variation in these naturally polymorphic GSL genes affected fitness in each of our environments but the pattern fluctuated such that highly fit genotypes in one trial displayed lower fitness in another and that no GSL genotype or genotypes consistently out-performed the others. This was true both across locations and within the same location across years. These results indicate that environmental heterogeneity may contribute to the maintenance of GSL variation observed within Arabidopsis thaliana.

  15. GEMINI: Integrative Exploration of Genetic Variation and Genome Annotations

    PubMed Central

    Paila, Umadevi; Chapman, Brad A.; Kirchner, Rory; Quinlan, Aaron R.

    2013-01-01

    Modern DNA sequencing technologies enable geneticists to rapidly identify genetic variation among many human genomes. However, isolating the minority of variants underlying disease remains an important, yet formidable challenge for medical genetics. We have developed GEMINI (GEnome MINIng), a flexible software package for exploring all forms of human genetic variation. Unlike existing tools, GEMINI integrates genetic variation with a diverse and adaptable set of genome annotations (e.g., dbSNP, ENCODE, UCSC, ClinVar, KEGG) into a unified database to facilitate interpretation and data exploration. Whereas other methods provide an inflexible set of variant filters or prioritization methods, GEMINI allows researchers to compose complex queries based on sample genotypes, inheritance patterns, and both pre-installed and custom genome annotations. GEMINI also provides methods for ad hoc queries and data exploration, a simple programming interface for custom analyses that leverage the underlying database, and both command line and graphical tools for common analyses. We demonstrate GEMINI's utility for exploring variation in personal genomes and family based genetic studies, and illustrate its ability to scale to studies involving thousands of human samples. GEMINI is designed for reproducibility and flexibility and our goal is to provide researchers with a standard framework for medical genomics. PMID:23874191

  16. IMPLICATIONS OF INTER-HABITAT VARIATION FOR MONITORING GREAT RIVER ECOSYSTEMS: EMAP-UMR EXPERIENCE

    EPA Science Inventory

    Great River ecosystems (GREs) are complex mosaics of habitats that vary at multiple scales. GRE monitoring designs can capture some but not all of this variation. Each discrete habitat, however defined, must either be sampled as a separate strata or "resource population", combine...

  17. Effective aperture of X-ray compound refractive lenses.

    PubMed

    Kohn, V G

    2017-05-01

    A new definition of the effective aperture of the X-ray compound refractive lens (CRL) is proposed. Both linear (one-dimensional) and circular (two-dimensional) CRLs are considered. It is shown that for a strongly absorbing CRL the real aperture does not influence the focusing properties and the effective aperture is determined by absorption. However, there are three ways to determine the effective aperture in terms of transparent CRLs. In the papers by Kohn [(2002). JETP Lett. 76, 600-603; (2003). J. Exp. Theor. Phys. 97, 204-215; (2009). J. Surface Investig. 3, 358-364; (2012). J. Synchrotron Rad. 19, 84-92; Kohn et al. (2003). Opt. Commun. 216, 247-260; (2003). J. Phys. IV Fr, 104, 217-220], the FWHM of the X-ray beam intensity just behind the CRL was used. In the papers by Lengeler et al. [(1999). J. Synchrotron Rad. 6, 1153-1167; (1998). J. Appl. Phys. 84, 5855-5861], the maximum intensity value at the focus was used. Numerically, these two definitions differ by 50%. The new definition is based on the integral intensity of the beam behind the CRL over the real aperture. The integral intensity is the most physical value and is independent of distance. The new definition gives a value that is greater than that of the Kohn definition by 6% and less than that of the Lengeler definition by 41%. A new approximation for the aperture function of a two-dimensional CRL is proposed which allows one to calculate the two-dimensional CRL through the one-dimensional CRL and to obtain an analytical solution for a complex system of many CRLs.

  18. Formation of negative ions in the interstellar medium by dissociative electron attachment to the H2CN molecule

    NASA Astrophysics Data System (ADS)

    Kokoouline, Viatcheslav; Fonseca Dos Santos, Samantha; Douguet, Nicolas; Orel, Ann

    2013-05-01

    The methylene amidogen radical (H2CN) was first discovered, in 1962 by Cochran et al ., and since then it has received considerable attention from both experimentalists and theoreticians. It is considered an important intermediate in the combustion of nitramine propellants and proposed to play a role in extraterrestrial atmospheres. It was detected in interstellar clouds in 1994, and its dissociative electron attachment (DEA) process may be responsible for the formation of the CN- and the H- negative ions: e-+H2CN --> CN- + H2; e-+H2CN --> H- + HCN. We report here the results of our ab initio quantum chemical studies of the geometrical and electronic structure of the methylene amidogen and and its negative ion H2CN- in the theoretical of DEA in H2CN. The scattering calculations are carried out using the complex Kohn variational method. The nuclear dynamics, including dissociation, will later be treated using the MCTDH code with a three-dimensional potential energy surface, in which the distance of CN is kept frozen. This work is supported by the DOE Office of Basic Energy Science and the National Science Foundation, Grant No's PHY-11-60611 and PHY-10-68785.

  19. Laplace transform homotopy perturbation method for the approximation of variational problems.

    PubMed

    Filobello-Nino, U; Vazquez-Leal, H; Rashidi, M M; Sedighi, H M; Perez-Sesma, A; Sandoval-Hernandez, M; Sarmiento-Reyes, A; Contreras-Hernandez, A D; Pereyra-Diaz, D; Hoyos-Reyes, C; Jimenez-Fernandez, V M; Huerta-Chua, J; Castro-Gonzalez, F; Laguna-Camacho, J R

    2016-01-01

    This article proposes the application of Laplace Transform-Homotopy Perturbation Method and some of its modifications in order to find analytical approximate solutions for the linear and nonlinear differential equations which arise from some variational problems. As case study we will solve four ordinary differential equations, and we will show that the proposed solutions have good accuracy, even we will obtain an exact solution. In the sequel, we will see that the square residual error for the approximate solutions, belongs to the interval [0.001918936920, 0.06334882582], which confirms the accuracy of the proposed methods, taking into account the complexity and difficulty of variational problems.

  20. Anatomical variations of uncinate process observed in chronic sinusitis.

    PubMed

    Tuli, Isha Preet; Sengupta, Subhabrata; Munjal, Sudeep; Kesari, Santosh Prasad; Chakraborty, Suvamoy

    2013-04-01

    Chronic Sinusitis, an extremely persistent illness, is surgically best treated by Functional Endoscopic Sinus Surgery. The ostiomeatal complex is the main area targeted and within it uncinate process is the first anatomical structure encountered. The significance of anatomical variations concerning age and sex of uncinate process in chronic sinusitis were evaluated. A prospective study on 50 patients of chronic sinusitis (100 uncinate processes) was done. The results were tabulated and analyzed using Statistical Package for Social Science (SPSS) 16.0. Type I superior attachment of uncinate process (67 %) was the most common variety in all ages and both sexes and a statistically significant relationship between Type I superior attachment of uncinate process and sex was found (p < 0.05). The typical uncinate process was most common (70 %) followed by medial deviation of the uncinate (24 %). This difference in occurrence was significant with respect to both age and sex (p < 0.05). Anatomical variations of uncinate process are not responsible for causing chronic sinusitis. Mere presence of these variations of uncinate is not an indication for FESS.

  1. Complexation between sodium dodecyl sulfate and amphoteric polyurethane nanoparticles.

    PubMed

    Qiao, Yong; Zhang, Shifeng; Lin, Ouya; Deng, Liandong; Dong, Anjie

    2007-09-27

    The complexation between negatively charged sodium dodecyl sulfate (SDS) and positively charged amphoteric polyurethane (APU) self-assembled nanoparticles (NPs) containing nonionic hydrophobic segments is studied by dynamic light scattering, pyrene fluorescent probing, zeta-potential, and transmission electron microscopy (TEM) in the present paper. With increasing the mol ratio of SDS to the positive charges on the surface of APU NPs, the aqueous solution of APU NPs presents precipitation at pH 2, around stoichiometric SDS concentration, and then the precipitate dissociates with excess SDS to form more stable nanoparticles of ionomer complexes. Three stages of the complexation process are clearly shown by the pyrene I1/I3 variation of the complex systems, which only depends on the ratio of SDS/APU, and demonstrate that the process is dominated by electrostatic attraction and hydrophobic aggregation.

  2. Quantum Mechanical Simulations of Complex Nanostructures for Photovoltaic Applications

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wu, Zhigang

    A quantitative understanding of the electronic excitations in nanostructures, especially complex nanostructures, is crucial for making new-generation photovoltaic (PV) cells based on nanotechnology, which have high efficiency and low cost. Yet current quantum mechanical simulation methods are either computationally too expensive or not accurate and reliable enough, hindering the rational design of the nanoscale PV cells. The PI seeks to develop new methodologies to overcome the challenges in this very difficult and long-lasting problem, pushing the field forward so that electronic excitations can be accurately predicted for systems involving thousands of atoms. The primary objective of this project is tomore » develop new approaches for electronic excitation calculations that are more accurate than traditional density functional theory (DFT) and are applicable to systems larger than what current beyond-DFT methods can treat. In this proposal, the PI will first address the excited-state problem within the DFT framework to obtain quasiparticle energies from both Kohn-Sham (KS) eigenvalues and orbitals; and the electron-hole binding energy will be computed based on screened Coulomb interaction of corresponding DFT orbitals. The accuracy of these approaches will be examined against many-body methods of GW/BSE and quantum Monte Carlo (QMC). The PI will also work on improving the accuracy and efficiency of the GW/BSE and QMC methods in electronic excitation computations by using better KS orbitals obtained from orbital-dependent DFT as inputs. Then an extended QMC database of ground- and excited-state properties will be developed, and this will be spot checked and supplemented with data from GW/BSE calculations. The investigation will subsequently focus on the development of an improved exchange-correlation (XC) density functional beyond the current generalized gradient approximation (GGA) level of parameterization, with parameters fitted to the QMC database. This will

  3. Fundamental Frequency Variation of Neonatal Spontaneous Crying Predicts Language Acquisition in Preterm and Term Infants.

    PubMed

    Shinya, Yuta; Kawai, Masahiko; Niwa, Fusako; Imafuku, Masahiro; Myowa, Masako

    2017-01-01

    Spontaneous cries of infants exhibit rich melodic features (i.e., time variation of fundamental frequency [ F 0 ]) even during the neonatal period, and the development of these characteristics might provide an essential base for later expressive prosody in language. However, little is known about the melodic features of spontaneous cries in preterm infants, who have a higher risk of later language-related problems. Thus, the present study investigated how preterm birth influenced melodic features of spontaneous crying at term-equivalent age as well as how these melodic features related to language outcomes at 18 months of corrected age in preterm and term infants. At term, moderate-to-late preterm (MLP) infants showed spontaneous cries with significantly higher F 0 variation and melody complexity than term infants, while there were no significant differences between very preterm (VP) and term infants. Furthermore, larger F 0 variation within cry series at term was significantly related to better language and cognitive outcomes, particularly expressive language skills, at 18 months. On the other hand, no other melodic features at term predicted any developmental outcomes at 18 months. The present results suggest that the additional postnatal vocal experience of MLP preterm infants increased F 0 variation and the complexity of spontaneous cries at term. Additionally, the increases in F 0 variation may partly reflect the development of voluntary vocal control, which, in turn, contributes to expressive language in infancy.

  4. Scalable Methods for Electronic Excitations and Optical Responses of Nanostructures: Mathematics to Algorithms to Observables

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carter, Emily A

    2013-02-02

    Kohn-Sham density functional theory (DFT) is a powerful, well-established tool for the study of condensed phase electronic structure. However, there are still a number of situations where its applicability is limited. The basic theme of our research is the development of first principles electronic structure approaches for condensed matter that goes beyond what can currently be done with standard implementations ofKohn-Sham DFT. Our efforts to this end have focused on two classes or' methods. The first addresses the well-lmown inability of DFT to handle strong, many-body electron correlation effects. Our approach is a DFT -based embedding theory, to treat localizedmore » features (e.g. impurity, adsorbate, vacancy, etc.) embedded in a periodic, metallic crystal. A description for the embedded region is provided by explicitly correlated, ab initio wave function methods. DFT, as a fo1n1ally ground state theory, does not give a good description of excited states; an additional feature of our approach is the ability to obtain excitations localized in this region. We apply our method to a first-principles study of the adsorption of a single magnetic Co ada tom on non-magnetic Cu( 111 ), a known Kondo system whose behavior is governed by strong electron correlation. The second class of methods that we are developing is an orbital-free density functional theory (OFDFT), which addresses the speed limitations ofKohn-Sham DFT. OFDFT is a powerful, O(N) scaling method for electronic structure calculations. Unlike Kohn-Sham DFT, OFDFT goes back to the original Hohenberg-Kohn idea of directly optimizing an energy functional which is an explicit functional of the density, without invoking an orbital description. This eliminates the need to manipulate orbitals, which leads to O(N{sup 3}) scaling in the Kahn-Sham approach. The speed of OFDFT allows direct electronic structure calculations on large systems on the order of thousands to tens of thousands of atoms, an expensive feat

  5. Complexation of buffer constituents with neutral complexation agents: part I. Impact on common buffer properties.

    PubMed

    Riesová, Martina; Svobodová, Jana; Tošner, Zdeněk; Beneš, Martin; Tesařová, Eva; Gaš, Bohuslav

    2013-09-17

    The complexation of buffer constituents with the complexation agent present in the solution can very significantly influence the buffer properties, such as pH, ionic strength, or conductivity. These parameters are often crucial for selection of the separation conditions in capillary electrophoresis or high-pressure liquid chromatography (HPLC) and can significantly affect results of separation, particularly for capillary electrophoresis as shown in Part II of this paper series (Beneš, M.; Riesová, M.; Svobodová, J.; Tesařová, E.; Dubský, P.; Gaš, B. Anal. Chem. 2013, DOI: 10.1021/ac401381d). In this paper, the impact of complexation of buffer constituents with a neutral complexation agent is demonstrated theoretically as well as experimentally for the model buffer system composed of benzoic acid/LiOH or common buffers (e.g., CHES/LiOH, TAPS/LiOH, Tricine/LiOH, MOPS/LiOH, MES/LiOH, and acetic acid/LiOH). Cyclodextrins as common chiral selectors were used as model complexation agents. We were not only able to demonstrate substantial changes of pH but also to predict the general complexation characteristics of selected compounds. Because of the zwitterion character of the common buffer constituents, their charged forms complex stronger with cyclodextrins than the neutral ones do. This was fully proven by NMR measurements. Additionally complexation constants of both forms of selected compounds were determined by NMR and affinity capillary electrophoresis with a very good agreement of obtained values. These data were advantageously used for the theoretical descriptions of variations in pH, depending on the composition and concentration of the buffer. Theoretical predictions were shown to be a useful tool for deriving some general rules and laws for complexing systems.

  6. Building blocks of a fish head: Developmental and variational modularity in a complex system.

    PubMed

    Lehoux, Caroline; Cloutier, Richard

    2015-11-01

    Evolution of the vertebrate skull is developmentally constrained by the interactions among its anatomical systems, such as the dermatocranium and the sensory system. The interaction between the dermal bones and lateral line canals has been debated for decades but their morphological integration has never been tested. An ontogenetic series of 97 juvenile and adult Amia calva (Actinopterygii) was used to describe the patterning and modularity of sensory lateral line canals and their integration with supporting cranial bones. Developmental modules were tested for the otic canal and supratemporal commissure by computing correlations in the branching sequence of groups of pores. Landmarks were digitized on 25 specimens to test a priori hypotheses of variational and developmental modularity at the level of canals and dermal bones. Branching sequence suggests a specific patterning supported by significant positive correlations in the sequence of appearance of branches between bilateral sides. Differences in patterning between the otic canal and the supratemporal commissure and tests of modularity with geometric morphometrics suggest that both canals form distinct modules. The integration between bones and canals was insufficient to detect a module. However, both components were not independent. Groups of pores tended to disappear without affecting other groups of pores suggesting that they are quasi-independent units acting as modules. This study provides evidence of a hierarchical organization for the modular sensory system that could explain variation of pattern of canals among species and their association with dermal bones. © 2015 Wiley Periodicals, Inc.

  7. CONAN: copy number variation analysis software for genome-wide association studies

    PubMed Central

    2010-01-01

    Background Genome-wide association studies (GWAS) based on single nucleotide polymorphisms (SNPs) revolutionized our perception of the genetic regulation of complex traits and diseases. Copy number variations (CNVs) promise to shed additional light on the genetic basis of monogenic as well as complex diseases and phenotypes. Indeed, the number of detected associations between CNVs and certain phenotypes are constantly increasing. However, while several software packages support the determination of CNVs from SNP chip data, the downstream statistical inference of CNV-phenotype associations is still subject to complicated and inefficient in-house solutions, thus strongly limiting the performance of GWAS based on CNVs. Results CONAN is a freely available client-server software solution which provides an intuitive graphical user interface for categorizing, analyzing and associating CNVs with phenotypes. Moreover, CONAN assists the evaluation process by visualizing detected associations via Manhattan plots in order to enable a rapid identification of genome-wide significant CNV regions. Various file formats including the information on CNVs in population samples are supported as input data. Conclusions CONAN facilitates the performance of GWAS based on CNVs and the visual analysis of calculated results. CONAN provides a rapid, valid and straightforward software solution to identify genetic variation underlying the 'missing' heritability for complex traits that remains unexplained by recent GWAS. The freely available software can be downloaded at http://genepi-conan.i-med.ac.at. PMID:20546565

  8. Complexes of Nitrocellulose with Cupric Chloride,

    DTIC Science & Technology

    1985-11-01

    4 Z I Vm 04 N-C-11 0soa -~~~ ii a Lid US 1 U C. U . i .ci OC S 0V- C C C 0 d i 0 41 v . 0i C u -s4 0- C .4 ~ tw aM 0i u U-JU I CU- w4 05 a.- ow US...la formation *d’un complexe et de la fraction pond&rale de CC par rapport A la NC, X , dltermin~ s au point de saturation. Le PCC est caractfristique de...59 s - 1. 3.5 Effect of X on the Rate of Complex Formation The variation of the ratio (ki/kf) with X is shown in Fig. 4 for sample 11 at C - 59 s

  9. Environmental Sensing of Expert Knowledge in a Computational Evolution System for Complex Problem Solving in Human Genetics

    NASA Astrophysics Data System (ADS)

    Greene, Casey S.; Hill, Douglas P.; Moore, Jason H.

    The relationship between interindividual variation in our genomes and variation in our susceptibility to common diseases is expected to be complex with multiple interacting genetic factors. A central goal of human genetics is to identify which DNA sequence variations predict disease risk in human populations. Our success in this endeavour will depend critically on the development and implementation of computational intelligence methods that are able to embrace, rather than ignore, the complexity of the genotype to phenotype relationship. To this end, we have developed a computational evolution system (CES) to discover genetic models of disease susceptibility involving complex relationships between DNA sequence variations. The CES approach is hierarchically organized and is capable of evolving operators of any arbitrary complexity. The ability to evolve operators distinguishes this approach from artificial evolution approaches using fixed operators such as mutation and recombination. Our previous studies have shown that a CES that can utilize expert knowledge about the problem in evolved operators significantly outperforms a CES unable to use this knowledge. This environmental sensing of external sources of biological or statistical knowledge is important when the search space is both rugged and large as in the genetic analysis of complex diseases. We show here that the CES is also capable of evolving operators which exploit one of several sources of expert knowledge to solve the problem. This is important for both the discovery of highly fit genetic models and because the particular source of expert knowledge used by evolved operators may provide additional information about the problem itself. This study brings us a step closer to a CES that can solve complex problems in human genetics in addition to discovering genetic models of disease.

  10. Small- and Large-Effect Quantitative Trait Locus Interactions Underlie Variation in Yeast Sporulation Efficiency

    PubMed Central

    Lorenz, Kim; Cohen, Barak A.

    2012-01-01

    Quantitative trait loci (QTL) with small effects on phenotypic variation can be difficult to detect and analyze. Because of this a large fraction of the genetic architecture of many complex traits is not well understood. Here we use sporulation efficiency in Saccharomyces cerevisiae as a model complex trait to identify and study small-effect QTL. In crosses where the large-effect quantitative trait nucleotides (QTN) have been genetically fixed we identify small-effect QTL that explain approximately half of the remaining variation not explained by the major effects. We find that small-effect QTL are often physically linked to large-effect QTL and that there are extensive genetic interactions between small- and large-effect QTL. A more complete understanding of quantitative traits will require a better understanding of the numbers, effect sizes, and genetic interactions of small-effect QTL. PMID:22942125

  11. Complex Adaptive System Models and the Genetic Analysis of Plasma HDL-Cholesterol Concentration

    PubMed Central

    Rea, Thomas J.; Brown, Christine M.; Sing, Charles F.

    2006-01-01

    Despite remarkable advances in diagnosis and therapy, ischemic heart disease (IHD) remains a leading cause of morbidity and mortality in industrialized countries. Recent efforts to estimate the influence of genetic variation on IHD risk have focused on predicting individual plasma high-density lipoprotein cholesterol (HDL-C) concentration. Plasma HDL-C concentration (mg/dl), a quantitative risk factor for IHD, has a complex multifactorial etiology that involves the actions of many genes. Single gene variations may be necessary but are not individually sufficient to predict a statistically significant increase in risk of disease. The complexity of phenotype-genotype-environment relationships involved in determining plasma HDL-C concentration has challenged commonly held assumptions about genetic causation and has led to the question of which combination of variations, in which subset of genes, in which environmental strata of a particular population significantly improves our ability to predict high or low risk phenotypes. We document the limitations of inferences from genetic research based on commonly accepted biological models, consider how evidence for real-world dynamical interactions between HDL-C determinants challenges the simplifying assumptions implicit in traditional linear statistical genetic models, and conclude by considering research options for evaluating the utility of genetic information in predicting traits with complex etiologies. PMID:17146134

  12. Christmas tree worms of Indo-Pacific coral reefs: untangling the Spirobranchus corniculatus (Grube, 1862) complex

    NASA Astrophysics Data System (ADS)

    Willette, Demian A.; Iñiguez, Abril R.; Kupriyanova, Elena K.; Starger, Craig J.; Varman, Tristan; Toha, Abdul Hamid; Maralit, Benedict A.; Barber, Paul H.

    2015-09-01

    Christmas tree worm is the common name of a group of colorful serpulid polychaetes from the genus Spirobranchus that are symbionts of hermatypic corals. As is increasingly common with reef-associated organisms, Spirobranchus is arranged as a complex of species with overlapping geographic ranges. Current species delimitations based largely on opercular morphology are problematic because of high intraspecific variation. Here, a multi-gene phylogeny of the Spirobranchus corniculatus complex, which tentatively includes S. corniculatus, S. cruciger, and S. gaymardi, sampled from the Coral Triangle, Australia, and Fiji, was reconstructed to test whether the complex includes three genetically distinct lineages identifiable by their opercula. Maximum-likelihood analyses of nuclear and mitochondrial markers revealed a single, monophyletic clade for the S. corniculatus complex. Furthermore, the genetic and morphological variation observed is not geographically based, indicating that the former S. corniculatus complex of three morphospecies is a single, morphologically variable species across the Central Indo-Pacific. Resolving the taxonomy of S. corniculatus presents novel opportunities to utilize this tentative bio-indicator species for monitoring reef health.

  13. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli

    PubMed Central

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-01-01

    Individual genetic variation affects gene expression in response to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness QTLs; reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant acts as an activator of the antiviral response; using RNAi, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli. PMID:23503680

  14. Deciphering molecular circuits from genetic variation underlying transcriptional responsiveness to stimuli.

    PubMed

    Gat-Viks, Irit; Chevrier, Nicolas; Wilentzik, Roni; Eisenhaure, Thomas; Raychowdhury, Raktima; Steuerman, Yael; Shalek, Alex K; Hacohen, Nir; Amit, Ido; Regev, Aviv

    2013-04-01

    Individual genetic variation affects gene responsiveness to stimuli, often by influencing complex molecular circuits. Here we combine genomic and intermediate-scale transcriptional profiling with computational methods to identify variants that affect the responsiveness of genes to stimuli (responsiveness quantitative trait loci or reQTLs) and to position these variants in molecular circuit diagrams. We apply this approach to study variation in transcriptional responsiveness to pathogen components in dendritic cells from recombinant inbred mouse strains. We identify reQTLs that correlate with particular stimuli and position them in known pathways. For example, in response to a virus-like stimulus, a trans-acting variant responds as an activator of the antiviral response; using RNA interference, we identify Rgs16 as the likely causal gene. Our approach charts an experimental and analytic path to decipher the mechanisms underlying genetic variation in circuits that control responses to stimuli.

  15. Beyond Punnett Squares: Student Word Association and Explanations of Phenotypic Variation through an Integrative Quantitative Genetics Unit Investigating Anthocyanin Inheritance and Expression in "Brassica rapa" Fast Plants

    ERIC Educational Resources Information Center

    Batzli, Janet M.; Smith, Amber R.; Williams, Paul H.; McGee, Seth A.; Dosa, Katalin; Pfammatter, Jesse

    2014-01-01

    Genetics instruction in introductory biology is often confined to Mendelian genetics and avoids the complexities of variation in quantitative traits. Given the driving question "What determines variation in phenotype (Pv)? (Pv=Genotypic variation Gv + environmental variation Ev)," we developed a 4-wk unit for an inquiry-based laboratory…

  16. Nature, Nurture and Evolution of Intra-Species Variation in Mosquito Arbovirus Transmission Competence

    PubMed Central

    Tabachnick, Walter J.

    2013-01-01

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission. PMID:23343982

  17. Nature, nurture and evolution of intra-species variation in mosquito arbovirus transmission competence.

    PubMed

    Tabachnick, Walter J

    2013-01-11

    Mosquitoes vary in their competence or ability to transmit arthropod-borne viruses (arboviruses). Many arboviruses cause disease in humans and animals. Identifying the environmental and genetic causes of variation in mosquito competence for arboviruses is one of the great challenges in public health. Progress identifying genetic (nature) and environmental (nurture) factors influencing mosquito competence for arboviruses is reviewed. There is great complexity in the various traits that comprise mosquito competence. The complex interactions between environmental and genetic factors controlling these traits and the factors shaping variation in Nature are largely unknown. The norms of reaction of specific genes influencing competence, their distributions in natural populations and the effects of genetic polymorphism on phenotypic variation need to be determined. Mechanisms influencing competence are not likely due to natural selection because of the direct effects of the arbovirus on mosquito fitness. More likely the traits for mosquito competence for arboviruses are the effects of adaptations for other functions of these competence mechanisms. Determining these other functions is essential to understand the evolution and distributions of competence for arboviruses. This information is needed to assess risk from mosquito-borne disease, predict new mosquito-arbovirus systems, and provide novel strategies to mitigate mosquito-borne arbovirus transmission.

  18. The Genetic Architecture of Complex Traits in Teosinte (Zea mays ssp. parviglumis): New Evidence from Association Mapping

    USDA-ARS?s Scientific Manuscript database

    Our previous association analyses showed that variation at major regulatory genes contributes to standing variation for complex traits in Balsas teosinte, the progenitor of maize. This study expands our previous association mapping effort in teosinte by testing 123 markers in 52 candidate genes for ...

  19. Genetic variation in isolates of the Fusarium incarnatum-equiseti species complex recovered from cereals

    USDA-ARS?s Scientific Manuscript database

    The Fusarium incarnatum-equiseti species complex (FIESC) includes mycotoxigenic species associated with several diseases of cereals and other crops. These species are considered moderately aggressive and are reported to produce multiple mycotoxins, including beauvericin, zearalenone, equisetin, fusa...

  20. Morphological variation in Echinorhynchus truttae Schrank, 1788 and the Echinorhynchus bothniensis Zdzitowiecki & Valtonen, 1987 species complex from freshwater fishes of northern Europe

    PubMed Central

    2013-01-01

    Abstract Echinorhynchus truttae and the Echinorhynchus bothniensis species complex are common parasites of salmoniform and other fishes in northern Europe. Echinorhynchus bothniensis and its sibling species Echinorhynchus 'bothniensis' are thought to be closely related to the Nearctic Echinorhynchus leidyi Van Cleave, 1924 based on morphological similarity and common usage of a mysid intermediate host. This study provides the first analysis of morphological and meristic variation in Echinorhynchus truttae and expands our knowledge of anatomical variability in the Echinorhynchus bothniensis group. Morphological variability in Echinorhynchus truttae was found to be far greater than previously reported, with part of the variance attributable to sexual dimorphism. Echinorhynchus truttae, the two species of the Echinorhynchus bothniensis group and Echinorhynchus leidyi displayed considerable interspecific overlap in the ranges of all conventional morphological characters. However, Proboscis profiler, a tool for detecting acanthocephalan morphotypes using multivariate analysis of hook morphometrics, successfully separated Echinorhynchus truttae from the other taxa. The Echinorhynchus bothniensis species group could not be reliably distinguished from Echinorhynchus leidyi (or each other), providing further evidence of the affinity of these taxa. Observations on the distribution of Echinorhynchus truttae in its definitive host population are also reported. PMID:24723769

  1. Structural variations in terbium(III) complexes with 1,3-adamantanedicarboxylate and diverse co-ligands

    NASA Astrophysics Data System (ADS)

    Thuéry, Pierre

    2015-07-01

    Terbium nitrate was reacted with 1,3-adamantanedicarboxylic acid (LH2) under solvo-hydrothermal conditions with either N,N-dimethylformamide (DMF) or N,N-dimethylacetamide (DMA) as organic solvents. Hydrolysation of the latter co-solvents resulted in the formation of formate or acetate ions, which are present as co-ligands in the 1D coordination polymer [Tb(L)(HCOO)(H2O)2] (1) and the 2D assembly [Tb(L)(CH3COO)(H2O)] (2). The increase in dimensionality in the latter arises from the higher connectivity provided by acetate versus formate, the L2- ligand being bis-chelating in both cases. The complex [Tb2(L)3(H2O)5][Tb2(L)3(H2O)4]·3H2O (3), another 1D species, crystallizes alongside crystals of 2. Further addition of cucurbit[6]uril (CB6), with DMF as co-solvent, gave the two complexes [Tb2(L)2(CB6)(H2O)6](NO3)2·6H2O (4) and [H2NMe2]2[Tb(L)(HCOO)2]2·CB6·3H2O (5). Complex 4 crystallizes as a 3D framework in which Tb(L)+ chains are connected by tetradentate CB6 molecules, while 5 unites a carboxylate-bridged anionic 2D planar assembly and layers of CB6 molecules with counter-cations held at both portals.

  2. Fractal based complexity measure and variation in force during sustained isometric muscle contraction: effect of aging.

    PubMed

    Arjunan, Sridhar P; Kumar, Dinesh K; Bastos, Teodiano

    2012-01-01

    This study has investigated the effect of age on the fractal based complexity measure of muscle activity and variance in the force of isometric muscle contraction. Surface electromyogram (sEMG) and force of muscle contraction were recorded from 40 healthy subjects categorized into: Group 1: Young - age range 20-30; 10 Males and 10 Females, Group 2: Old - age range 55-70; 10 Males and 10 Females during isometric exercise at Maximum Voluntary contraction (MVC). The results show that there is a reduction in the complexity of surface electromyogram (sEMG) associated with aging. The results demonstrate that there is an increase in the coefficient of variance (CoV) of the force of muscle contraction and a decrease in complexity of sEMG for the Old age group when compared with the Young age group.

  3. Differential response of continental stock complexes of Atlantic salmon (Salmo salar) to the Atlantic Multidecadal Oscillation

    NASA Astrophysics Data System (ADS)

    Friedland, Kevin D.; Shank, Burton V.; Todd, Christopher D.; McGinnity, Philip; Nye, Janet A.

    2014-05-01

    Atlantic salmon, Salmo salar, in the North Atlantic are managed as a set of population complexes distributed in North America and Europe. In recent years, these complexes have experienced reduced marine survival and many populations within the complexes are at risk, especially those at the southern ends of the species amphi-Atlantic range. Atlantic salmon is an anadromous fish dividing its life history between residence in freshwater and the marine environment. The freshwater portion of the life history includes spawning and the rearing of juveniles where in-river production has tended to be relatively stable, whereas the first year at sea, termed the post-smolt year, is characterized by more variable rates of mortality. Although their habitats are widely separated geographically along the North Atlantic seaboards, strong recruitment coherence exists between North American and European stock complexes. This recruitment coherence is correlated with ocean temperature variation associated with the Atlantic Multidecadal Oscillation (AMO). The North Atlantic Oscillation (NAO) appears to be relatively unimportant as a driver of salmon abundance. The mechanism determining the link between AMO-related thermal variation and abundance appears to differ fundamentally for the two continental stock groupings. Whereas ocean climate variability during the first springtime months of juvenile salmon migration to sea appears to be important to the survival of North American stocks, summer climate variation appears to be central to adult recruitment variation for European stocks. This contrast in seasonal effects appears to be related to the varying roles of predation pressure and size-related mortality on the continental stock complexes. The anticipated warming due to global climate change will impose thermal conditions on salmon populations outside historical context and challenge the ability of many populations to persist.

  4. Bounds on complex polarizabilities and a new perspective on scattering by a lossy inclusion

    NASA Astrophysics Data System (ADS)

    Milton, Graeme W.

    2017-09-01

    Here, we obtain explicit formulas for bounds on the complex electrical polarizability at a given frequency of an inclusion with known volume that follow directly from the quasistatic bounds of Bergman and Milton on the effective complex dielectric constant of a two-phase medium. We also describe how analogous bounds on the orientationally averaged bulk and shear polarizabilities at a given frequency can be obtained from bounds on the effective complex bulk and shear moduli of a two-phase medium obtained by Milton, Gibiansky, and Berryman, using the quasistatic variational principles of Cherkaev and Gibiansky. We also show how the polarizability problem and the acoustic scattering problem can both be reformulated in an abstract setting as "Y problems." In the acoustic scattering context, to avoid explicit introduction of the Sommerfeld radiation condition, we introduce auxiliary fields at infinity and an appropriate "constitutive law" there, which forces the Sommerfeld radiation condition to hold. As a consequence, we obtain minimization variational principles for acoustic scattering that can be used to obtain bounds on the complex backwards scattering amplitude. Some explicit elementary bounds are given.

  5. Genetic variations in the Dravidian population of South West coast of India: Implications in designing case-control studies.

    PubMed

    D'Cunha, Anitha; Pandit, Lekha; Malli, Chaithra

    2017-06-01

    Indian data have been largely missing from genome-wide databases that provide information on genetic variations in different populations. This hinders association studies for complex disorders in India. This study was aimed to determine whether the complex genetic structure and endogamy among Indians could potentially influence the design of case-control studies for autoimmune disorders in the south Indian population. A total of 12 single nucleotide variations (SNVs) related to genes associated with autoimmune disorders were genotyped in 370 healthy individuals belonging to six different caste groups in southern India. Allele frequencies were estimated; genetic divergence and phylogenetic relationship within the various caste groups and other HapMap populations were ascertained. Allele frequencies for all genotyped SNVs did not vary significantly among the different groups studied. Wright's FSTwas 0.001 per cent among study population and 0.38 per cent when compared with Gujarati in Houston (GIH) population on HapMap data. The analysis of molecular variance results showed a 97 per cent variation attributable to differences within the study population and <1 per cent variation due to differences between castes. Phylogenetic analysis showed a separation of Dravidian population from other HapMap populations and particularly from GIH population. Despite the complex genetic origins of the Indian population, our study indicated a low level of genetic differentiation among Dravidian language-speaking people of south India. Case-control studies of association among Dravidians of south India may not require stratification based on language and caste.

  6. COMPLEX RUTHENIUM ACIDO-NITROS COMPOUNDS (in Russian)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zvyagintsev, O.E.; Starostin, S.M.

    1961-06-01

    The chemical nature of the water in the complex ruthenium acidonitroso compounds is studied by measuring certain acid properties, reactions, and behaviors of the compounds in aqueous solution. The dependence of molecular electrical conductivity on time and dilution, variations of specific electroconductivity, the optical density, and the light absorption of the compounds at 200 to 800 m mu wave range were investigated and the dissociation constants were calculated. (R.V.J.)

  7. Ordered defect compounds in CuInSe{sub 2} for photovoltaic solar cell application

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sato, K.; Katayama-Yoshida, H.

    2014-02-21

    Due to the complete compensation, defect complex (2V{sub Cu}+In{sub Cu}), namely two Cu vacancies and In located at Cu site, is stable in CuInSe{sub 2} (CIS). It is known that the series of ordered defect compounds (ODC) are constracted by ordering the defect complex. Based on the total energy calcalation by using the Korringa-Kohn-Rostoker coherent potential approxiamtion (KKR-CPA) method, we discuss phase separation of the CIS with the defect complexes into ODC and CIS. Since the band alignment between ODC and CIS is calculated to be type 2, effective electron-hole separation at the interface between ODC and CIS can bemore » expected. This causes the enhancement of conversion efficiency of CIS-based solar cell materials.« less

  8. Variation in soil carbon dioxide efflux at two spatial scales in a topographically complex boreal forest

    USGS Publications Warehouse

    Kelsey, Katharine C.; Wickland, Kimberly P.; Striegl, Robert G.; Neff, Jason C.

    2012-01-01

    Carbon dynamics of high-latitude regions are an important and highly uncertain component of global carbon budgets, and efforts to constrain estimates of soil-atmosphere carbon exchange in these regions are contingent on accurate representations of spatial and temporal variability in carbon fluxes. This study explores spatial and temporal variability in soilatmosphere carbon dynamics at both fine and coarse spatial scales in a high-elevation, permafrost-dominated boreal black spruce forest. We evaluate the importance of landscape-level investigations of soil-atmosphere carbon dynamics by characterizing seasonal trends in soil-atmosphere carbon exchange, describing soil temperature-moisture-respiration relations, and quantifying temporal and spatial variability at two spatial scales: the plot scale (0–5 m) and the landscape scale (500–1000 m). Plot-scale spatial variability (average variation on a given measurement day) in soil CO2 efflux ranged from a coefficient of variation (CV) of 0.25 to 0.69, and plot-scale temporal variability (average variation of plots across measurement days) in efflux ranged from a CV of 0.19 to 0.36. Landscape-scale spatial and temporal variability in efflux was represented by a CV of 0.40 and 0.31, respectively, indicating that plot-scale spatial variability in soil respiration is as great as landscape-scale spatial variability at this site. While soil respiration was related to soil temperature at both the plot- and landscape scale, landscape-level descriptions of soil moisture were necessary to define soil respiration-moisture relations. Soil moisture variability was also integral to explaining temporal variability in soil respiration. Our results have important implications for research efforts in high-latitude regions where remote study sites make landscape-scale field campaigns challenging.

  9. Laser beam complex amplitude measurement by phase diversity.

    PubMed

    Védrenne, Nicolas; Mugnier, Laurent M; Michau, Vincent; Velluet, Marie-Thérèse; Bierent, Rudolph

    2014-02-24

    The control of the optical quality of a laser beam requires a complex amplitude measurement able to deal with strong modulus variations and potentially highly perturbed wavefronts. The method proposed here consists in an extension of phase diversity to complex amplitude measurements that is effective for highly perturbed beams. Named camelot for Complex Amplitude MEasurement by a Likelihood Optimization Tool, it relies on the acquisition and processing of few images of the beam section taken along the optical path. The complex amplitude of the beam is retrieved from the images by the minimization of a Maximum a Posteriori error metric between the images and a model of the beam propagation. The analytical formalism of the method and its experimental validation are presented. The modulus of the beam is compared to a measurement of the beam profile, the phase of the beam is compared to a conventional phase diversity estimate. The precision of the experimental measurements is investigated by numerical simulations.

  10. A Stochastic-Variational Model for Soft Mumford-Shah Segmentation

    PubMed Central

    2006-01-01

    In contemporary image and vision analysis, stochastic approaches demonstrate great flexibility in representing and modeling complex phenomena, while variational-PDE methods gain enormous computational advantages over Monte Carlo or other stochastic algorithms. In combination, the two can lead to much more powerful novel models and efficient algorithms. In the current work, we propose a stochastic-variational model for soft (or fuzzy) Mumford-Shah segmentation of mixture image patterns. Unlike the classical hard Mumford-Shah segmentation, the new model allows each pixel to belong to each image pattern with some probability. Soft segmentation could lead to hard segmentation, and hence is more general. The modeling procedure, mathematical analysis on the existence of optimal solutions, and computational implementation of the new model are explored in detail, and numerical examples of both synthetic and natural images are presented. PMID:23165059

  11. Redox electrodeposition polymers: adaptation of the redox potential of polymer-bound Os complexes for bioanalytical applications.

    PubMed

    Guschin, Dmitrii A; Castillo, John; Dimcheva, Nina; Schuhmann, Wolfgang

    2010-10-01

    The design of polymers carrying suitable ligands for coordinating Os complexes in ligand exchange reactions against labile chloro ligands is a strategy for the synthesis of redox polymers with bound Os centers which exhibit a wide variation in their redox potential. This strategy is applied to polymers with an additional variation of the properties of the polymer backbone with respect to pH-dependent solubility, monomer composition, hydrophilicity etc. A library of Os-complex-modified electrodeposition polymers was synthesized and initially tested with respect to their electron-transfer ability in combination with enzymes such as glucose oxidase, cellobiose dehydrogenase, and PQQ-dependent glucose dehydrogenase entrapped during the pH-induced deposition process. The different polymer-bound Os complexes in a library containing 50 different redox polymers allowed the statistical evaluation of the impact of an individual ligand to the overall redox potential of an Os complex. Using a simple linear regression algorithm prediction of the redox potential of Os complexes becomes feasible. Thus, a redox polymer can now be designed to optimally interact in electron-transfer reactions with a selected enzyme.

  12. Plasmonic bio-sensing for the Fenna-Matthews-Olson complex

    NASA Astrophysics Data System (ADS)

    Chen, Guang-Yin; Lambert, Neill; Shih, Yen-An; Liu, Meng-Han; Chen, Yueh-Nan; Nori, Franco

    2017-01-01

    We study theoretically the bio-sensing capabilities of metal nanowire surface plasmons. As a specific example, we couple the nanowire to specific sites (bacteriochlorophyll) of the Fenna-Matthews-Olson (FMO) photosynthetic pigment protein complex. In this hybrid system, we find that when certain sites of the FMO complex are subject to either the suppression of inter-site transitions or are entirely disconnected from the complex, the resulting variations in the excitation transfer rates through the complex can be monitored through the corresponding changes in the scattering spectra of the incident nanowire surface plasmons. We also find that these changes can be further enhanced by changing the ratio of plasmon-site couplings. The change of the Fano lineshape in the scattering spectra further reveals that “site 5” in the FMO complex plays a distinct role from other sites. Our results provide a feasible way, using single photons, to detect mutation-induced, or bleaching-induced, local defects or modifications of the FMO complex, and allows access to both the local and global properties of the excitation transfer in such systems.

  13. Application of Koopmans' theorem for density functional theory to full valence-band photoemission spectroscopy modeling.

    PubMed

    Li, Tsung-Lung; Lu, Wen-Cai

    2015-10-05

    In this work, Koopmans' theorem for Kohn-Sham density functional theory (KS-DFT) is applied to the photoemission spectra (PES) modeling over the entire valence-band. To examine the validity of this application, a PES modeling scheme is developed to facilitate a full valence-band comparison of theoretical PES spectra with experiments. The PES model incorporates the variations of electron ionization cross-sections over atomic orbitals and a linear dispersion of spectral broadening widths. KS-DFT simulations of pristine rubrene (5,6,11,12-tetraphenyltetracene) and potassium-rubrene complex are performed, and the simulation results are used as the input to the PES models. Two conclusions are reached. First, decompositions of the theoretical total spectra show that the dissociated electron of the potassium mainly remains on the backbone and has little effect on the electronic structures of phenyl side groups. This and other electronic-structure results deduced from the spectral decompositions have been qualitatively obtained with the anionic approximation to potassium-rubrene complexes. The qualitative validity of the anionic approximation is thus verified. Second, comparison of the theoretical PES with the experiments shows that the full-scale simulations combined with the PES modeling methods greatly enhance the agreement on spectral shapes over the anionic approximation. This agreement of the theoretical PES spectra with the experiments over the full valence-band can be regarded, to some extent, as a collective validation of the application of Koopmans' theorem for KS-DFT to valence-band PES, at least, for this hydrocarbon and its alkali-adsorbed complex. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. A molecular signaling approach to linking intraspecific variation and macro-evolutionary patterns.

    PubMed

    Swanson, Eli M; Snell-Rood, Emilie C

    2014-11-01

    Macro-evolutionary comparisons are a valued tool in evolutionary biology. Nevertheless, our understanding of how systems involved in molecular signaling change in concert with phenotypic diversification has lagged. We argue that integrating our understanding of the evolution of molecular signaling systems with phylogenetic comparative methods is an important step toward understanding the processes linking variation among individuals with variation among species. Focusing mostly on the endocrine system, we discuss how the complexity and mechanistic nature of molecular signaling systems may influence the application and interpretation of macro-evolutionary comparisons. We also detail five hypotheses concerning the role that physiological mechanisms can play in shaping macro-evolutionary patterns, and discuss ways in which these hypotheses could influence phenotypic diversification. Finally, we review a series of tools able to analyze the complexity of physiological systems and the way they change in concert with the phenotypes for which they coordinate development. © The Author 2014. Published by Oxford University Press on behalf of the Society for Integrative and Comparative Biology. All rights reserved. For permissions please email: journals.permissions@oup.com.

  15. Complex multifractal nature in Mycobacterium tuberculosis genome

    PubMed Central

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-01-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences. PMID:28440326

  16. Complex multifractal nature in Mycobacterium tuberculosis genome

    NASA Astrophysics Data System (ADS)

    Mandal, Saurav; Roychowdhury, Tanmoy; Chirom, Keilash; Bhattacharya, Alok; Brojen Singh, R. K.

    2017-04-01

    The mutifractal and long range correlation (C(r)) properties of strings, such as nucleotide sequence can be a useful parameter for identification of underlying patterns and variations. In this study C(r) and multifractal singularity function f(α) have been used to study variations in the genomes of a pathogenic bacteria Mycobacterium tuberculosis. Genomic sequences of M. tuberculosis isolates displayed significant variations in C(r) and f(α) reflecting inherent differences in sequences among isolates. M. tuberculosis isolates can be categorised into different subgroups based on sensitivity to drugs, these are DS (drug sensitive isolates), MDR (multi-drug resistant isolates) and XDR (extremely drug resistant isolates). C(r) follows significantly different scaling rules in different subgroups of isolates, but all the isolates follow one parameter scaling law. The richness in complexity of each subgroup can be quantified by the measures of multifractal parameters displaying a pattern in which XDR isolates have highest value and lowest for drug sensitive isolates. Therefore C(r) and multifractal functions can be useful parameters for analysis of genomic sequences.

  17. Gaussian basis functions for highly oscillatory scattering wavefunctions

    NASA Astrophysics Data System (ADS)

    Mant, B. P.; Law, M. M.

    2018-04-01

    We have applied a basis set of distributed Gaussian functions within the S-matrix version of the Kohn variational method to scattering problems involving deep potential energy wells. The Gaussian positions and widths are tailored to the potential using the procedure of Bačić and Light (1986 J. Chem. Phys. 85 4594) which has previously been applied to bound-state problems. The placement procedure is shown to be very efficient and gives scattering wavefunctions and observables in agreement with direct numerical solutions. We demonstrate the basis function placement method with applications to hydrogen atom–hydrogen atom scattering and antihydrogen atom–hydrogen atom scattering.

  18. Self-consistent-field KKR-CPA calculations in the atomic-sphere approximations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singh, P.P. Gonis, A.; de Fontaine, D.

    1991-12-03

    We present a formulation of the Korringa-Kohn-Rostoker coherent potential approximation (KKR-CPA) for the treatment of substitutionally disordered alloys within the KKR atomic-sphere approximations (ASA). This KKR-ASA-CPA represents the first step toward the implementation of a full cell potential CPA, and combines the accuracy of the KKR-CPA method with the flexibility of treating complex crystal structures. The accuracy of this approach has been tested by comparing the self-consistent-field (SCF) KKR-ASA-CPA calculations of Cu-Pd alloys with experimental results and previous SCF-KKR-CPA calculations.

  19. Terrace width variations in complex Mercurian craters and the transient strength of cratered Mercurian and lunar crust

    NASA Technical Reports Server (NTRS)

    Leith, Andrew C.; Mckinnon, William B.

    1991-01-01

    The effective cohesion of the cratered region during crater collapse is determined via the widths of slump terraces of complex craters. Terrace widths are measured for complex craters on Mercury; these generally increase outward toward the rim for a given crater, and the width of the outermost major terrace is generally an increasing function of crater diameter. The terrace widths on Mercury and a gravity-driven slump model are used to estimate the strength of the cratered region immediately after impact (about 1-2 MPa). A comparison with the previous study of lunar complex craters by Pearce and Melosh (1986) indicates that the transient strength of cratered Mercurian crust is no greater than that of the moon. The strength estimates vary only slightly with the geometric model used to restore the outermost major terrace to its precollapse configuration and are consistent with independent strength estimates from the simple-to-complex crater depth/diameter transition.

  20. A note on anomalous band-gap variations in semiconductors with temperature

    NASA Astrophysics Data System (ADS)

    Chakraborty, P. K.; Mondal, B. N.

    2018-03-01

    An attempt is made to theoretically study the band-gap variations (ΔEg) in semiconductors with temperature following the works, did by Fan and O'Donnell et al. based on thermodynamic functions. The semiconductor band-gap reflects the bonding energy. An increase in temperature changes the chemical bondings, and electrons are promoted from valence band to conduction band. In their analyses, they made several approximations with respect to temperature and other fitting parameters leading to real values of band-gap variations with linear temperature dependences. In the present communication, we have tried to re-analyse the works, specially did by Fan, and derived an analytical model for ΔEg(T). Because, it was based on the second-order perturbation technique of thermodynamic functions. Our analyses are made without any approximations with respect to temperatures and other fitting parameters mentioned in the text, leading to a complex functions followed by an oscillating nature of the variations of ΔEg. In support of the existence of the oscillating energy band-gap variations with temperature in a semiconductor, possible physical explanations are provided to justify the experimental observation for various materials.

  1. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.

    PubMed

    Daunizeau, J; Friston, K J; Kiebel, S J

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  2. Systematic documentation and analysis of human genetic variation in hemoglobinopathies using the microattribution approach.

    PubMed

    Giardine, Belinda; Borg, Joseph; Higgs, Douglas R; Peterson, Kenneth R; Philipsen, Sjaak; Maglott, Donna; Singleton, Belinda K; Anstee, David J; Basak, A Nazli; Clark, Barnaby; Costa, Flavia C; Faustino, Paula; Fedosyuk, Halyna; Felice, Alex E; Francina, Alain; Galanello, Renzo; Gallivan, Monica V E; Georgitsi, Marianthi; Gibbons, Richard J; Giordano, Piero C; Harteveld, Cornelis L; Hoyer, James D; Jarvis, Martin; Joly, Philippe; Kanavakis, Emmanuel; Kollia, Panagoula; Menzel, Stephan; Miller, Webb; Moradkhani, Kamran; Old, John; Papachatzopoulou, Adamantia; Papadakis, Manoussos N; Papadopoulos, Petros; Pavlovic, Sonja; Perseu, Lucia; Radmilovic, Milena; Riemer, Cathy; Satta, Stefania; Schrijver, Iris; Stojiljkovic, Maja; Thein, Swee Lay; Traeger-Synodinos, Jan; Tully, Ray; Wada, Takahito; Waye, John S; Wiemann, Claudia; Zukic, Branka; Chui, David H K; Wajcman, Henri; Hardison, Ross C; Patrinos, George P

    2011-03-20

    We developed a series of interrelated locus-specific databases to store all published and unpublished genetic variation related to hemoglobinopathies and thalassemia and implemented microattribution to encourage submission of unpublished observations of genetic variation to these public repositories. A total of 1,941 unique genetic variants in 37 genes, encoding globins and other erythroid proteins, are currently documented in these databases, with reciprocal attribution of microcitations to data contributors. Our project provides the first example of implementing microattribution to incentivise submission of all known genetic variation in a defined system. It has demonstrably increased the reporting of human variants, leading to a comprehensive online resource for systematically describing human genetic variation in the globin genes and other genes contributing to hemoglobinopathies and thalassemias. The principles established here will serve as a model for other systems and for the analysis of other common and/or complex human genetic diseases.

  3. Longitudinal Variations in the Variability of Spread F Occurrence

    NASA Astrophysics Data System (ADS)

    Groves, K. M.; Bridgwood, C.; Carrano, C. S.

    2017-12-01

    The complex dynamics of the equatorial ionosphere have attracted the interest and attention of researchers for many decades. The relatively local processes that give rise to large meridional gradients have been well documented and the associated terminology has entered the common lexicon of ionospheric research (e.g., fountain effect, equatorial anomaly, bubbles, Spread F). Zonal variations have also been noted, principally at the level of determining longitudinal differences in seasonal activity patterns. Due to a historical lack of high resolution ground-based observations at low latitudes, the primary source of data for such analyses has been space-based observations from satellites such as ROCSAT, DMSP, C/NOFS that measure in situ electron density variations. An important longitudinal variation in electron density structure associated with non-migrating diurnal tides was discovered by Immel et al. in 2006 using data from the FUV sensor aboard the NASA IMAGE satellite. These satellite observations have been very helpful in identifying the structural characteristics of the equatorial ionosphere and the occurrence of Spread F, but they provide little insight into variations in scintillation features and potential differences in bubble development characteristics. Moreover space-based studies tend towards the statistics of occurrence frequency over periods of weeks to months. A recent analysis of daily spread F occurrence as determined by low latitude VHF scintillation activity shows that statistical results that are consistent with previous space-based observations, but the level of variability in the occurrence data show marked variations with longitude. For example, the American sector shows very low in-season variability while the African and Asian sectors exhibit true day-to-day variability regardless of seasonal variations. The results have significant implications for space weather as they suggest that long-term forecasts of equatorial scintillation may be

  4. Some Fundamental Issues in Ground-State Density Functional Theory: A Guide for the Perplexed.

    PubMed

    Perdew, John P; Ruzsinszky, Adrienn; Constantin, Lucian A; Sun, Jianwei; Csonka, Gábor I

    2009-04-14

    Some fundamental issues in ground-state density functional theory are discussed without equations: (1) The standard Hohenberg-Kohn and Kohn-Sham theorems were proven for a Hamiltonian that is not quite exact for real atoms, molecules, and solids. (2) The density functional for the exchange-correlation energy, which must be approximated, arises from the tendency of electrons to avoid one another as they move through the electron density. (3) In the absence of a magnetic field, either spin densities or total electron density can be used, although the former choice is better for approximations. (4) "Spin contamination" of the determinant of Kohn-Sham orbitals for an open-shell system is not wrong but right. (5) Only to the extent that symmetries of the interacting wave function are reflected in the spin densities should those symmetries be respected by the Kohn-Sham noninteracting or determinantal wave function. Functionals below the highest level of approximations should however sometimes break even those symmetries, for good physical reasons. (6) Simple and commonly used semilocal (lower-level) approximations for the exchange-correlation energy as a functional of the density can be accurate for closed systems near equilibrium and yet fail for open systems of fluctuating electron number. (7) The exact Kohn-Sham noninteracting state need not be a single determinant, but common approximations can fail when it is not. (8) Over an open system of fluctuating electron number, connected to another such system by stretched bonds, semilocal approximations make the exchange-correlation energy and hole-density sum rule too negative. (9) The gap in the exact Kohn-Sham band structure of a crystal underestimates the real fundamental gap but may approximate the first exciton energy in the large-gap limit. (10) Density functional theory is not really a mean-field theory, although it looks like one. The exact functional includes strong correlation, and semilocal approximations often

  5. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  6. The African Genome Variation Project shapes medical genetics in Africa

    NASA Astrophysics Data System (ADS)

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O.; Choudhury, Ananyo; Ritchie, Graham R. S.; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N.; Young, Elizabeth H.; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P.; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A.; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S.

    2015-01-01

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  7. Panoptes: web-based exploration of large scale genome variation data.

    PubMed

    Vauterin, Paul; Jeffery, Ben; Miles, Alistair; Amato, Roberto; Hart, Lee; Wright, Ian; Kwiatkowski, Dominic

    2017-10-15

    The size and complexity of modern large-scale genome variation studies demand novel approaches for exploring and sharing the data. In order to unlock the potential of these data for a broad audience of scientists with various areas of expertise, a unified exploration framework is required that is accessible, coherent and user-friendly. Panoptes is an open-source software framework for collaborative visual exploration of large-scale genome variation data and associated metadata in a web browser. It relies on technology choices that allow it to operate in near real-time on very large datasets. It can be used to browse rich, hybrid content in a coherent way, and offers interactive visual analytics approaches to assist the exploration. We illustrate its application using genome variation data of Anopheles gambiae, Plasmodium falciparum and Plasmodium vivax. Freely available at https://github.com/cggh/panoptes, under the GNU Affero General Public License. paul.vauterin@gmail.com. © The Author 2017. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  8. The African Genome Variation Project shapes medical genetics in Africa.

    PubMed

    Gurdasani, Deepti; Carstensen, Tommy; Tekola-Ayele, Fasil; Pagani, Luca; Tachmazidou, Ioanna; Hatzikotoulas, Konstantinos; Karthikeyan, Savita; Iles, Louise; Pollard, Martin O; Choudhury, Ananyo; Ritchie, Graham R S; Xue, Yali; Asimit, Jennifer; Nsubuga, Rebecca N; Young, Elizabeth H; Pomilla, Cristina; Kivinen, Katja; Rockett, Kirk; Kamali, Anatoli; Doumatey, Ayo P; Asiki, Gershim; Seeley, Janet; Sisay-Joof, Fatoumatta; Jallow, Muminatou; Tollman, Stephen; Mekonnen, Ephrem; Ekong, Rosemary; Oljira, Tamiru; Bradman, Neil; Bojang, Kalifa; Ramsay, Michele; Adeyemo, Adebowale; Bekele, Endashaw; Motala, Ayesha; Norris, Shane A; Pirie, Fraser; Kaleebu, Pontiano; Kwiatkowski, Dominic; Tyler-Smith, Chris; Rotimi, Charles; Zeggini, Eleftheria; Sandhu, Manjinder S

    2015-01-15

    Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.

  9. Genetic Variation of North American Triatomines (Insecta: Hemiptera: Reduviidae): Initial Divergence between Species and Populations of Chagas Disease Vector

    PubMed Central

    Espinoza, Bertha; Martínez-Ibarra, Jose Alejandro; Villalobos, Guiehdani; De La Torre, Patricia; Laclette, Juan Pedro; Martínez-Hernández, Fernando

    2013-01-01

    The triatomines vectors of Trypanosoma cruzi are principal factors in acquiring Chagas disease. For this reason, increased knowledge of domestic transmission of T. cruzi and control of its insect vectors is necessary. To contribute to genetic knowledge of North America Triatominae species, we studied genetic variations and conducted phylogenetic analysis of different triatomines species of epidemiologic importance. Our analysis showed high genetic variations between different geographic populations of Triatoma mexicana, Meccus longipennis, M. mazzottii, M. picturatus, and T. dimidiata species, suggested initial divergence, hybridation, or classifications problems. In contrast, T. gerstaeckeri, T. bolivari, and M. pallidipennis populations showed few genetics variations. Analysis using cytochrome B and internal transcribed spacer 2 gene sequences indicated that T. bolivari is closely related to the Rubrofasciata complex and not to T. dimidiata. Triatoma brailovskyi and T. gerstaeckeri showed a close relationship with Dimidiata and Phyllosoma complexes. PMID:23249692

  10. High Resolution Directional Variation And Time Variation Of Sporadic Meteors

    NASA Astrophysics Data System (ADS)

    Campbell-Brown, Margaret

    2007-10-01

    The directional dependence of the flux and orbits of sporadic meteoroids is of great importance to understanding the origin and nature of this population of small solar system bodies. The Canadian Meteor Orbit Radar (CMOR) has recorded over 5 million meteoroid orbits from 2002 to the present. This dataset, larger than any previously available, makes it possible to study the sporadic meteor distribution at much greater spatial resolution than previously possible. The rates of meteor orbits with radiants occurring in two degree bins over the whole sky have been calculated from five years of data. The rates have been corrected for observing biases, such as initial trail radius and the collecting area for each radiant, and weighted to a constant limiting mass and a constant limiting energy. The variation of the rates with solar longitude is also examined. The directional variation of geocentric speed, semimajor axis, eccentricity, inclination and other orbital parameters has been calculated, as have the collision probabilities of each meteoroid with the Earth, and the average collisional lifetime for the observed meteoroids. The majority of meteoroids in the mass range observed by CMOR originate in the helion and antihelion sporadic sources. In addition to the north and south apex sources and the north toroidal source, the CMOR data shows a ring of radiants approximately 55 degrees from the apex, with a significant depletion of radiants immediately inside the ring. The depletion of radiants appears to be caused by removal of meteoroids through collisions, as the collisional lifetimes of meteoroids inside the ring are significantly shorter than those observed outside the ring. Further study of the sporadic meteoroid distribution may reveal whether the complex is in a steady state, and the approximate number and orbital characteristics of the parent bodies. Thanks to the NASA MSFC MEO Office.

  11. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories.

    PubMed

    Borg, Asa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-10-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance.

  12. Variation in MHC genotypes in two populations of house sparrow (Passer domesticus) with different population histories

    PubMed Central

    Borg, Åsa Alexandra; Pedersen, Sindre Andre; Jensen, Henrik; Westerdahl, Helena

    2011-01-01

    Small populations are likely to have a low genetic ability for disease resistance due to loss of genetic variation through inbreeding and genetic drift. In vertebrates, the highest genetic diversity of the immune system is located at genes within the major histocompatibility complex (MHC). Interestingly, parasite-mediated selection is thought to potentially maintain variation at MHC loci even in populations that are monomorphic at other loci. Therefore, general loss of genetic variation in the genome may not necessarily be associated with low variation at MHC loci. We evaluated inter- and intrapopulation variation in MHC genotypes between an inbred (Aldra) and a relatively outbred population (Hestmannøy) of house sparrows (Passer domesticus) in a metapopulation at Helgeland, Norway. Genomic (gDNA) and transcribed (cDNA) alleles of functional MHC class I and IIB loci, along with neutral noncoding microsatellite markers, were analyzed to obtain relevant estimates of genetic variation. We found lower allelic richness in microsatellites in the inbred population, but high genetic variation in MHC class I and IIB loci in both populations. This suggests that also the inbred population could be under balancing selection to maintain genetic variation for pathogen resistance. PMID:22393491

  13. Variation in brain anatomy in frogs and its possible bearing on their locomotor ecology.

    PubMed

    Manzano, Adriana S; Herrel, Anthony; Fabre, Anne-Claire; Abdala, Virginia

    2017-07-01

    Despite the long-standing interest in the evolution of the brain, relatively little is known about variation in brain anatomy in frogs. Yet, frogs are ecologically diverse and, as such, variation in brain anatomy linked to differences in lifestyle or locomotor behavior can be expected. Here we present a comparative morphological study focusing on the macro- and micro-anatomy of the six regions of the brain and its choroid plexus: the olfactory bulbs, the telencephalon, the diencephalon, the mesencephalon, the rhombencephalon, and the cerebellum. We also report on the comparative anatomy of the plexus brachialis responsible for the innervation of the forelimbs. It is commonly thought that amphibians have a simplified brain organization, associated with their supposedly limited behavioral complexity and reduced motor skills. We compare frogs with different ecologies that also use their limbs in different contexts and for other functions. Our results show that brain morphology is more complex and more variable than typically assumed. Moreover, variation in brain morphology among species appears related to locomotor behavior as suggested by our quantitative analyses. Thus we propose that brain morphology may be related to the locomotor mode, at least in the frogs included in our analysis. © 2017 Anatomical Society.

  14. Realization of Complex Onsets by Pediatric Users of Cochlear Implants

    ERIC Educational Resources Information Center

    Chin, Steven B.

    2006-01-01

    This study examined variations in English complex onset realizations by children who use cochlear implants. Data consisted of 227 productions of two-segment onset clusters from 12 children. In general, onset cluster realizations of children with cochlear implants did not differ markedly from those reported for children with normal hearing: null…

  15. Make It Short and Easy: Username Complexity Determines Trustworthiness Above and Beyond Objective Reputation

    PubMed Central

    Silva, Rita R.; Chrobot, Nina; Newman, Eryn; Schwarz, Norbert; Topolinski, Sascha

    2017-01-01

    Can the mere name of a seller determine his trustworthiness in the eye of the consumer? In 10 studies (total N = 608) we explored username complexity and trustworthiness of eBay seller profiles. Name complexity was manipulated through variations in username pronounceability and length. These dimensions had strong, independent effects on trustworthiness, with sellers with easy-to-pronounce or short usernames being rated as more trustworthy than sellers with difficult-to-pronounce or long usernames, respectively. Both effects were repeatedly found even when objective information about seller reputation was available. We hypothesized the effect of name complexity on trustworthiness to be based on the experience of high vs. low processing fluency, with little awareness of the underlying process. Supporting this, participants could not correct for the impact of username complexity when explicitly asked to do so. Three alternative explanations based on attributions of the variations in name complexity to seller origin (ingroup vs. outgroup), username generation method (seller personal choice vs. computer algorithm) and age of the eBay profiles (10 years vs. 1 year) were tested and ruled out. Finally, we show that manipulating the ease of reading product descriptions instead of the sellers’ names also impacts the trust ascribed to the sellers. PMID:29312062

  16. “They Have to Adapt to Learn”: Surgeons’ Perspectives on the Role of Procedural Variation in Surgical Education

    PubMed Central

    Apramian, Tavis; Cristancho, Sayra; Watling, Chris; Ott, Michael; Lingard, Lorelei

    2017-01-01

    OBJECTIVE Clinical research increasingly acknowledges the existence of significant procedural variation in surgical practice. This study explored surgeons’ perspectives regarding the influence of intersurgeon procedural variation on the teaching and learning of surgical residents. DESIGN AND SETTING This qualitative study used a grounded theory-based analysis of observational and interview data. Observational data were collected in 3 tertiary care teaching hospitals in Ontario, Canada. Semistructured interviews explored potential procedural variations arising during the observations and prompts from an iteratively refined guide. Ongoing data analysis refined the theoretical framework and informed data collection strategies, as prescribed by the iterative nature of grounded theory research. PARTICIPANTS Our sample included 99 hours of observation across 45 cases with 14 surgeons. Semistructured, audio-recorded interviews (n = 14) occurred immediately following observational periods. RESULTS Surgeons endorsed the use of intersurgeon procedural variations to teach residents about adapting to the complexity of surgical practice and the norms of surgical culture. Surgeons suggested that residents’ efforts to identify thresholds of principle and preference are crucial to professional development. Principles that emerged from the study included the following: (1) knowing what comes next, (2) choosing the right plane, (3) handling tissue appropriately, (4) recognizing the abnormal, and (5) making safe progress. Surgeons suggested that learning to follow these principles while maintaining key aspects of surgical culture, like autonomy and individuality, are important social processes in surgical education. CONCLUSIONS Acknowledging intersurgeon variation has important implications for curriculum development and workplace-based assessment in surgical education. Adapting to intersurgeon procedural variations may foster versatility in surgical residents. However, the

  17. Functional implications of Major Histocompatibility (MH) variation using estuarine fish populations.

    PubMed

    Cohen, Sarah; Tirindelli, Joëlle; Gomez-Chiarri, Marta; Nacci, Diane

    2006-12-01

    Recently, there has been a dramatic expansion of studies of major histocompatibility complex (MHC) variation aimed at discovering functional differences in immunity across wild populations of diverse vertebrate species. Some species with relatively low genetic diversity or under strong directional selection by pathogens have revealed fascinating cases of MHC allelic disease linkage. More generally in genetically diverse species, however, these linkages may be hard to find. In this paper, we review approaches for assessing functional variation in MHC and discuss their potential use for discovering smaller-scale intraspecific spatial and temporal patterns of MHC variation. Then, we describe and illustrate an approach using the structural model to produce a population composite of variation in antigen-binding regions by mapping population-specific substitutions onto functional regions of the molecule. We are producing models of variation in major histocompatibility (MH) loci for populations of non-migratory fish (killifish, Fundulus heteroclitus) resident at sites that vary dramatically in environmental quality. We discuss the goal of relating MH population variation to functional differences in disease susceptibility such as those inferred by observations of parasitic infection and direct measurement of bacterial challenges in the laboratory. Our study has focused on relatively well-studied killifish populations, including those resident in a highly disturbed, chemically contaminated estuary and nearby less contaminated sites. Population-specific genetic changes at MHC antigen-binding loci are described, and evidence relevant to functional implications of these changes is reviewed. Population-specific patterns of variation in antigen-binding regions in combination with a range of assessments of immune function will provide a powerful new approach to reveal functional changes in MHC.

  18. Explorations in Regional Variation: A Variational Pragmatic Perspective

    ERIC Educational Resources Information Center

    Barron, Anne

    2015-01-01

    The present article introduces the Special Issue entitled "A Variational Pragmatic Approach to Regional Variation in Language," a collection of papers which celebrates the work of Klaus P. Schneider (Rheinische Friedrich-Wilhelms-Universität Bonn, Germany) on the occasion of his 60th birthday.

  19. Atmospheric Flux Computations in Complex Terrain

    NASA Technical Reports Server (NTRS)

    Smith, Paul L.; Kopp, Fred J.; Orville, Harold D.

    2000-01-01

    The greatest challenges in applying atmospheric water budget expressions are in determining the divergence and evapotranspiration terms. The evapotranspiration problem is ubiquitous, and critical issues of spatial and temporal resolution commonly arise in establishing the divergence term. In complex terrain, further difficulties crop up in using typical data on atmospheric profiles of water vapor and wind to estimate the divergence term. Those difficulties are the subject of this paper; considerations related to topographic variations both along and normal to the flow direction are treated.

  20. A Study of Students' Reasoning about Probabilistic Causality: Implications for Understanding Complex Systems and for Instructional Design

    ERIC Educational Resources Information Center

    Grotzer, Tina A.; Solis, S. Lynneth; Tutwiler, M. Shane; Cuzzolino, Megan Powell

    2017-01-01

    Understanding complex systems requires reasoning about causal relationships that behave or appear to behave probabilistically. Features such as distributed agency, large spatial scales, and time delays obscure co-variation relationships and complex interactions can result in non-deterministic relationships between causes and effects that are best…

  1. Genetic mapping of variation in dauer larvae development in growing populations of Caenorhabditis elegans.

    PubMed

    Green, J W M; Snoek, L B; Kammenga, J E; Harvey, S C

    2013-10-01

    In the nematode Caenorhabditis elegans, the appropriate induction of dauer larvae development within growing populations is likely to be a primary determinant of genotypic fitness. The underlying genetic architecture of natural genetic variation in dauer formation has, however, not been thoroughly investigated. Here, we report extensive natural genetic variation in dauer larvae development within growing populations across multiple wild isolates. Moreover, bin mapping of introgression lines (ILs) derived from the genetically divergent isolates N2 and CB4856 reveals 10 quantitative trait loci (QTLs) affecting dauer formation. Comparison of individual ILs to N2 identifies an additional eight QTLs, and sequential IL analysis reveals six more QTLs. Our results also show that a behavioural, laboratory-derived, mutation controlled by the neuropeptide Y receptor homolog npr-1 can affect dauer larvae development in growing populations. These findings illustrate the complex genetic architecture of variation in dauer larvae formation in C. elegans and may help to understand how the control of variation in dauer larvae development has evolved.

  2. Clinal variation or validation of a subspecies? A case study of the Graptemys nigrinoda complex (Testudines: Emydidae)

    USGS Publications Warehouse

    Ennen, Joshua R.; Kalis, Marley E.; Patterson, Adam L.; Kreiser, Brian R.; Lovich, Jeffrey E.; Godwin, James; Qualls, Carl P.

    2014-01-01

    Widely distributed species often display intraspecific morphological variation due to the abiotic and biotic gradients experienced across their ranges. Historically, in many vertebrate taxa, such as birds and reptiles, these morphological differences within a species were used to delimit subspecies. Graptemys nigrinoda is an aquatic turtle species endemic to the Mobile Bay Basin. Colour pattern and morphological variability were used to describe a subspecies (G. n. delticola) from the lower reaches of the system, although it and the nominate subspecies also reportedly intergrade over a large portion of the range. Other researchers have suggested that these morphological differences merely reflect clinal variation. Our molecular data (mtDNA) did not support the existence of the subspecies, as the haplotypes were differentiated by only a few base pairs and one haplotype was shared between the putative subspecies. While there were significant morphological and pattern differences among putative specimens of G. n. nigrinoda, G. n. delticola and G. n. nigrinoda × delticola, these differences probably represent clinal variation as they were also related to environmental variables [i.e. cumulative drainage area and drainage (categorical)]. Specimens occupying slow-current, high-turbidity river reaches (e.g. the Tensaw River) exhibited greater relative carapace heights and more dark pigmentation, while specimens occupying fast-current, clearer rivers (e.g. the upper Alabama, Cahaba and Tallapoosa rivers) exhibited lower carapace heights and more yellow pigmentation. Given the absence of clear molecular and morphological differences that are related to drainage characteristics, we suggest that there is not sufficient evidence for the recognition of G. n. delticola as a distinct subspecies.

  3. A simple genetic architecture underlies morphological variation in dogs.

    PubMed

    Boyko, Adam R; Quignon, Pascale; Li, Lin; Schoenebeck, Jeffrey J; Degenhardt, Jeremiah D; Lohmueller, Kirk E; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G; vonHoldt, Bridgett M; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G; Castelhano, Marta; Mosher, Dana S; Sutter, Nathan B; Johnson, Gary S; Novembre, John; Hubisz, Melissa J; Siepel, Adam; Wayne, Robert K; Bustamante, Carlos D; Ostrander, Elaine A

    2010-08-10

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (< or = 3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species.

  4. A Simple Genetic Architecture Underlies Morphological Variation in Dogs

    PubMed Central

    Schoenebeck, Jeffrey J.; Degenhardt, Jeremiah D.; Lohmueller, Kirk E.; Zhao, Keyan; Brisbin, Abra; Parker, Heidi G.; vonHoldt, Bridgett M.; Cargill, Michele; Auton, Adam; Reynolds, Andy; Elkahloun, Abdel G.; Castelhano, Marta; Mosher, Dana S.; Sutter, Nathan B.; Johnson, Gary S.; Novembre, John; Hubisz, Melissa J.; Siepel, Adam; Wayne, Robert K.; Bustamante, Carlos D.; Ostrander, Elaine A.

    2010-01-01

    Domestic dogs exhibit tremendous phenotypic diversity, including a greater variation in body size than any other terrestrial mammal. Here, we generate a high density map of canine genetic variation by genotyping 915 dogs from 80 domestic dog breeds, 83 wild canids, and 10 outbred African shelter dogs across 60,968 single-nucleotide polymorphisms (SNPs). Coupling this genomic resource with external measurements from breed standards and individuals as well as skeletal measurements from museum specimens, we identify 51 regions of the dog genome associated with phenotypic variation among breeds in 57 traits. The complex traits include average breed body size and external body dimensions and cranial, dental, and long bone shape and size with and without allometric scaling. In contrast to the results from association mapping of quantitative traits in humans and domesticated plants, we find that across dog breeds, a small number of quantitative trait loci (≤3) explain the majority of phenotypic variation for most of the traits we studied. In addition, many genomic regions show signatures of recent selection, with most of the highly differentiated regions being associated with breed-defining traits such as body size, coat characteristics, and ear floppiness. Our results demonstrate the efficacy of mapping multiple traits in the domestic dog using a database of genotyped individuals and highlight the important role human-directed selection has played in altering the genetic architecture of key traits in this important species. PMID:20711490

  5. Variationally optimal selection of slow coordinates and reaction coordinates in macromolecular systems

    NASA Astrophysics Data System (ADS)

    Noe, Frank

    To efficiently simulate and generate understanding from simulations of complex macromolecular systems, the concept of slow collective coordinates or reaction coordinates is of fundamental importance. Here we will introduce variational approaches to approximate the slow coordinates and the reaction coordinates between selected end-states given MD simulations of the macromolecular system and a (possibly large) basis set of candidate coordinates. We will then discuss how to select physically intuitive order paremeters that are good surrogates of this variationally optimal result. These result can be used in order to construct Markov state models or other models of the stationary and kinetics properties, in order to parametrize low-dimensional / coarse-grained model of the dynamics. Deutsche Forschungsgemeinschaft, European Research Council.

  6. Diversity of bile salts in fish and amphibians: evolution of a complex biochemical pathway.

    PubMed

    Hagey, Lee R; Møller, Peter R; Hofmann, Alan F; Krasowski, Matthew D

    2010-01-01

    Bile salts are the major end metabolites of cholesterol and are also important in lipid and protein digestion, as well as shaping of the gut microflora. Previous studies had demonstrated variation of bile salt structures across vertebrate species. We greatly extend prior surveys of bile salt variation in fish and amphibians, particularly in analysis of the biliary bile salts of Agnatha and Chondrichthyes. While there is significant structural variation of bile salts across all fish orders, bile salt profiles are generally stable within orders of fish and do not correlate with differences in diet. This large data set allowed us to infer evolutionary changes in the bile salt synthetic pathway. The hypothesized ancestral bile salt synthetic pathway, likely exemplified in extant hagfish, is simpler and much shorter than the pathway of most teleost fish and terrestrial vertebrates. Thus, the bile salt synthetic pathway has become longer and more complex throughout vertebrate evolution. Analysis of the evolution of bile salt synthetic pathways provides a rich model system for the molecular evolution of a complex biochemical pathway in vertebrates.

  7. A reexamination of the North American Crepis agamic complex and comparison with the findings of Babcock and Stebbins' classic biosystematic monograph.

    PubMed

    Sears, Christopher J; Whitton, Jeannette

    2016-07-01

    Babcock and Stebbins coined the term agamic complex in their 1938 monograph of the North American Crepis agamic complex. Despite the historical role that this complex holds in the evolutionary literature, it has not been reexamined in over 75 years. We present a thorough reevaluation of the complex to test hypotheses proposed by Babcock and Stebbins about its origins and spread, the relationships of diploids, and the nature and origins of polyploids. We used flow cytometry to infer ploidy of roughly 600 samples spanning the morphological and taxonomic diversity of the complex and a phylogenetic analysis of plastid DNA variation to infer maternal relationships among diploids and to infer maternal origins of polyploids. We identified populations of all seven recognized diploids plus one new lineage. Phylogenetic analysis of plastid DNA variation in diploids revealed a well-resolved, but moderately supported phylogeny, with evidence for monophyly of the North America Crepis agamic complex and no evidence of widespread homoploid hybridization. Polyploids showed evidence of multiple origins and a pattern of frequent local co-occurrence consistent with repeated colonization of suitable sites. Our findings agree broadly with the distribution and variation of ploidy within and among species described by Babcock and Stebbins. One key difference is finding support for monophyly of North American species, and refuting their hypothesis of polyphyly. Our results provide an explicit phylogenetic framework for further study of this classic agamic complex. © 2016 Botanical Society of America.

  8. Humeral torsion revisited: a functional and ontogenetic model for populational variation.

    PubMed

    Cowgill, Libby W

    2007-12-01

    Anthropological interest in humeral torsion has a long history, and several functional explanations for observed variation in the orientation of the humeral head have been proposed. Recent clinical studies have revived this topic by linking patterns of humeral torsion to habitual activities such as overhand throwing. However, the precise functional implications and ontogenetic history of humeral torsion remain unclear. This study examines the ontogeny of humeral torsion in a large sample of primarily immature remains from six different skeletal collections (n = 407). The results of this research confirm that humeral torsion displays consistent developmental variation within all populations of growing children; neonates display relatively posteriorly oriented humeral heads, and the level of torsion declines steadily into adulthood. As in adults, variation in the angle of humeral torsion in immature individuals varies by population, and these differences arise early in development. However, when examined in the context of the developing muscles of the shoulder complex, it becomes apparent that variation in the angle of humeral torsion is not necessarily related to specific habitual activities. Variability in this feature is more likely caused by a generalized functional imbalance between muscles of medial and lateral rotation that can be produced by a wide variety of upper limb activity patterns during growth. (c) 2007 Wiley-Liss, Inc.

  9. Correlated time-variation of bulk microstructure and rheology in asphalt binders.

    PubMed

    Ramm, A; Sakib, N; Bhasin, A; Downer, M C

    2018-05-22

    We use near-infrared dark-field optical microscopy to probe isothermal time variation of the volume fraction of naturally-occurring, subsurface microstructures in PG 64-22 asphalt binders at temperature T=30∘C, following a rapid heating (cooling) increment |ΔT|=20∘C from initial temperature T0=10∘C(50∘C). We compare these microstructure variations with isothermal time variations of the magnitude |G30∗(t)| of the bulk complex shear modulus measured for identical sample conditions with a Dynamic Shear Rheometer. The main findings are: (1) Microstructure volume fraction (inferred from intensity I(t) of near-infrared optical scatter) and |G∗(t)| both continue to change appreciably long after measurable changes of binder temperature cease. Moreover, delayed time variations in I(t) and |G∗(t)| (2) correlate closely with each other; (3) evolve on three distinct time scales - several minutes, ∼1 h, >1 day; (4) depend on binder aging; (5) are more pronounced after a cooling step (ΔT=-20∘C) than after a heating step (ΔT=+20∘C); and (6) account for hysteresis in I(t) and |G∗(t)| curves observed during heating-cooling cycles. © 2018 The Authors Journal of Microscopy © 2018 Royal Microscopical Society.

  10. "They Have to Adapt to Learn": Surgeons' Perspectives on the Role of Procedural Variation in Surgical Education.

    PubMed

    Apramian, Tavis; Cristancho, Sayra; Watling, Chris; Ott, Michael; Lingard, Lorelei

    2016-01-01

    Clinical research increasingly acknowledges the existence of significant procedural variation in surgical practice. This study explored surgeons' perspectives regarding the influence of intersurgeon procedural variation on the teaching and learning of surgical residents. This qualitative study used a grounded theory-based analysis of observational and interview data. Observational data were collected in 3 tertiary care teaching hospitals in Ontario, Canada. Semistructured interviews explored potential procedural variations arising during the observations and prompts from an iteratively refined guide. Ongoing data analysis refined the theoretical framework and informed data collection strategies, as prescribed by the iterative nature of grounded theory research. Our sample included 99 hours of observation across 45 cases with 14 surgeons. Semistructured, audio-recorded interviews (n = 14) occurred immediately following observational periods. Surgeons endorsed the use of intersurgeon procedural variations to teach residents about adapting to the complexity of surgical practice and the norms of surgical culture. Surgeons suggested that residents' efforts to identify thresholds of principle and preference are crucial to professional development. Principles that emerged from the study included the following: (1) knowing what comes next, (2) choosing the right plane, (3) handling tissue appropriately, (4) recognizing the abnormal, and (5) making safe progress. Surgeons suggested that learning to follow these principles while maintaining key aspects of surgical culture, like autonomy and individuality, are important social processes in surgical education. Acknowledging intersurgeon variation has important implications for curriculum development and workplace-based assessment in surgical education. Adapting to intersurgeon procedural variations may foster versatility in surgical residents. However, the existence of procedural variations and their active use in surgeons

  11. Individualistic sensitivities and exposure to climate change explain variation in species’ distribution and abundance changes

    PubMed Central

    Palmer, Georgina; Hill, Jane K.; Brereton, Tom M.; Brooks, David R.; Chapman, Jason W.; Fox, Richard; Oliver, Tom H.; Thomas, Chris D.

    2015-01-01

    The responses of animals and plants to recent climate change vary greatly from species to species, but attempts to understand this variation have met with limited success. This has led to concerns that predictions of responses are inherently uncertain because of the complexity of interacting drivers and biotic interactions. However, we show for an exemplar group of 155 Lepidoptera species that about 60% of the variation among species in their abundance trends over the past four decades can be explained by species-specific exposure and sensitivity to climate change. Distribution changes were less well predicted, but nonetheless, up to 53% of the variation was explained. We found that species vary in their overall sensitivity to climate and respond to different components of the climate despite ostensibly experiencing the same climate changes. Hence, species have undergone different levels of population “forcing” (exposure), driving variation among species in their national-scale abundance and distribution trends. We conclude that variation in species’ responses to recent climate change may be more predictable than previously recognized. PMID:26601276

  12. Tailoring Spin Textures in Complex Oxide Micromagnets

    DOE PAGES

    Lee, Michael S.; Wynn, Thomas A.; Folven, Erik; ...

    2016-09-12

    Engineered topological spin textures with submicron dimensions in magnetic materials have emerged in recent years as the building blocks for various spin-based memory devices. Examples of these magnetic configurations include magnetic skyrmions, vortices, and domain walls. Here in this paper, we show the ability to control and characterize the evolution of spin textures in complex oxide micromagnets as a function of temperature through the delicate balance of fundamental materials parameters, micromagnet geometries, and epitaxial strain. These results demonstrate that in order to fully describe the observed spin textures, it is necessary to account for the spatial variation of the magneticmore » parameters within the micromagnet. This study provides the framework to accurately characterize such structures, leading to efficient design of spin-based memory devices based on complex oxide thin films.« less

  13. Hidden Genetic Variation in LCA9-Associated Congenital Blindness Explained by 5'UTR Mutations and Copy-Number Variations of NMNAT1.

    PubMed

    Coppieters, Frauke; Todeschini, Anne Laure; Fujimaki, Takuro; Baert, Annelot; De Bruyne, Marieke; Van Cauwenbergh, Caroline; Verdin, Hannah; Bauwens, Miriam; Ongenaert, Maté; Kondo, Mineo; Meire, Françoise; Murakami, Akira; Veitia, Reiner A; Leroy, Bart P; De Baere, Elfride

    2015-12-01

    Leber congenital amaurosis (LCA) is a severe autosomal-recessive retinal dystrophy leading to congenital blindness. A recently identified LCA gene is NMNAT1, located in the LCA9 locus. Although most mutations in blindness genes are coding variations, there is accumulating evidence for hidden noncoding defects or structural variations (SVs). The starting point of this study was an LCA9-associated consanguineous family in which no coding mutations were found in the LCA9 region. Exploring the untranslated regions of NMNAT1 revealed a novel homozygous 5'UTR variant, c.-70A>T. Moreover, an adjacent 5'UTR variant, c.-69C>T, was identified in a second consanguineous family displaying a similar phenotype. Both 5'UTR variants resulted in decreased NMNAT1 mRNA abundance in patients' lymphocytes, and caused decreased luciferase activity in human retinal pigment epithelial RPE-1 cells. Second, we unraveled pseudohomozygosity of a coding NMNAT1 mutation in two unrelated LCA patients by the identification of two distinct heterozygous partial NMNAT1 deletions. Molecular characterization of the breakpoint junctions revealed a complex Alu-rich genomic architecture. Our study uncovered hidden genetic variation in NMNAT1-associated LCA and emphasized a shift from coding to noncoding regulatory mutations and repeat-mediated SVs in the molecular pathogenesis of heterogeneous recessive disorders such as hereditary blindness. © 2015 The Authors. **Human Mutation published by Wiley Periodicals, Inc.

  14. Dissecting the genetics of complex traits using summary association statistics.

    PubMed

    Pasaniuc, Bogdan; Price, Alkes L

    2017-02-01

    During the past decade, genome-wide association studies (GWAS) have been used to successfully identify tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyse summary association statistics. Here, we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases.

  15. Dissecting the genetics of complex traits using summary association statistics

    PubMed Central

    Pasaniuc, Bogdan; Price, Alkes L.

    2017-01-01

    During the past decade, genome-wide association studies (GWAS) have successfully identified tens of thousands of genetic variants associated with complex traits and diseases. These studies have produced extensive repositories of genetic variation and trait measurements across large numbers of individuals, providing tremendous opportunities for further analyses. However, privacy concerns and other logistical considerations often limit access to individual-level genetic data, motivating the development of methods that analyze summary association statistics. Here we review recent progress on statistical methods that leverage summary association data to gain insights into the genetic basis of complex traits and diseases. PMID:27840428

  16. Genome-Wide Copy Number Variation Association Analyses for Age at Menarche

    PubMed Central

    Li, Jian; Pan, Rong; Shen, Hui; Tian, Qing; Zhou, Yu; Liu, Yong-Jun

    2012-01-01

    Context: Menarche is a significant physiological event for women. Age at menarche (AAM) is a heritable trait associated with many common female diseases. The genetic basis and the mechanism for AAM are largely unknown. Copy number variation (CNV) is a common type of genetic variation underlying human complex traits. The importance of CNV to AAM variation is unclear. Objective: The objective of the study was to identify CNV important to AAM variation. Design: We performed the first genome-wide CNV study of AAM in 1654 Caucasian females using Affymetrix human single-nucleotide polymorphism 6.0 array. We also replicated our findings in another Chinese cohort containing 752 women. Results: We identified a CNV, variation_38399, in the 2q14.2 region, for association with AAM (P = 1.03 × 10−3). The CNV has two variants (one copy and two copy), with a mean AAM of 14.00 yr and 12.90 yr, respectively. Interestingly, in a Chinese sample containing 752 women, this CNV has been replicated both with a marginally significant P = 0.090 and with a same direction of effect (a lower copy number for a later AAM). The CNV is located approximately 75 kb upstream of the diazepam binding inhibitor (DBI), a gene known to regulate estrogen levels, a key factor for menarche. Conclusion: Our findings for the first time identified a novel CNV and suggested the DBI-mediated endocrinological pathway as a potential mechanism for AAM regulation. PMID:22904172

  17. Stable isotopic variation in tropical forest plants for applications in primatology.

    PubMed

    Blumenthal, Scott A; Rothman, Jessica M; Chritz, Kendra L; Cerling, Thure E

    2016-10-01

    Stable isotope analysis is a promising tool for investigating primate ecology although nuanced ecological applications remain challenging, in part due to the complex nature of isotopic variability in plant-animal systems. The aim of this study is to investigate sources of carbon and nitrogen isotopic variation at the base of primate food webs that reflect aspects of primate ecology. The majority of primates inhabit tropical forest ecosystems, which are dominated by C3 vegetation. We used stable isotope ratios in plants from Kibale National Park, Uganda, a well-studied closed-canopy tropical forest, to investigate sources of isotopic variation among C3 plants related to canopy stratification, leaf age, and plant part. Unpredictably, our results demonstrate that vertical stratification within the canopy does not explain carbon or nitrogen isotopic variation in leaves. Leaf age can be a significant source of isotopic variation, although the direction and magnitude of this difference is not consistent across tree species. Some plant parts are clearly differentiated in carbon and nitrogen isotopic composition, particularly leaves compared to non-photosynthetic parts such as reproductive parts and woody stem parts. Overall, variation in the isotopic composition of floral communities, plant species, and plant parts demonstrates that stable isotope studies must include analysis of local plant species and parts consumed by the primates under study from within the study area. Am. J. Primatol. 78:1041-1054, 2016. © 2015 Wiley Periodicals, Inc. © 2015 Wiley Periodicals, Inc.

  18. Anatomic variations in intrahepatic bile ducts in a north Indian population.

    PubMed

    Sharma, Vijay; Saraswat, Vivek Anand; Baijal, Sanjay Saran; Choudhuri, Gourdas

    2008-07-01

    In the present study, we described the anatomical variations in the branching patterns of intrahepatic bile ducts (IHD) and determined the frequency of each variation in north Indian patients. There are no data from India. The study group consisted of 253 consecutive patients (131 women) undergoing endoscopic retrograde cholangiograms for different indications. Anatomical variations in IHD were classified according to the branching pattern of the right anterior segmental duct (RASD) and the right posterior segmental duct (RPSD), presence or absence of first-order branch of left hepatic duct (LHD) and of an accessory hepatic duct. Anatomy of the IHD was typical in 52.9% of cases (n = 134), showing triple confluence in 11.46% (n = 29), anomalous drainage of the RPSD into the LHD in 18.2% (n = 46), anomalous drainage of the RPSD into the common hepatic duct (CHD) in 7.1% (n = 18), drainage of the right hepatic duct (RHD) into the cystic duct 0.4% (n = 1), presence of an accessory duct leading to the CHD or RHD in 4.7% (n = 12), individual drainage of the LHD into the RHD or CHD in 2.4% (n = 6), and unclassified or complex variations in 2.7% (n = 7). None had anomalous drainage of RPSD into the cystic duct. The branching pattern of IHD was atypical in 47% patients. The two most common variations were drainage of the RPSD into the LHD (18.2%) and triple confluence of the RASD, RPSD, and LHD (11.5%).

  19. Genetics and variation

    Treesearch

    John R. Jones; Norbert V. DeByle

    1985-01-01

    The broad genotypic variability in quaking aspen (Populus tremuloides Michx.), that results in equally broad phenotypic variability among clones is important to the ecology and management of this species. This chapter considers principles of aspen genetics and variation, variation in aspen over its range, and local variation among clones. For a more...

  20. Quantitative gene-gene and gene-environment mapping for leaf shape variation using tree-based models

    USDA-ARS?s Scientific Manuscript database

    Leaf shape traits have long been a focus of many disciplines, but searching for complex genetic and environmental interactive mechanisms regulating leaf shape variation has not yet been well developed. The question of the respective roles of gene and environment and how they interplay to modulate l...