Social calls provide novel insights into the evolution of vocal learning
Sewall, Kendra B.; Young, Anna M.; Wright, Timothy F.
2016-01-01
Learned song is among the best-studied models of animal communication. In oscine songbirds, where learned song is most prevalent, it is used primarily for intrasexual selection and mate attraction. Learning of a different class of vocal signals, known as contact calls, is found in a diverse array of species, where they are used to mediate social interactions among individuals. We argue that call learning provides a taxonomically rich system for studying testable hypotheses for the evolutionary origins of vocal learning. We describe and critically evaluate four nonmutually exclusive hypotheses for the origin and current function of vocal learning of calls, which propose that call learning (1) improves auditory detection and recognition, (2) signals local knowledge, (3) signals group membership, or (4) allows for the encoding of more complex social information. We propose approaches to testing these four hypotheses but emphasize that all of them share the idea that social living, not sexual selection, is a central driver of vocal learning. Finally, we identify future areas for research on call learning that could provide new perspectives on the origins and mechanisms of vocal learning in both animals and humans. PMID:28163325
Learned Vocal Variation Is Associated with Abrupt Cryptic Genetic Change in a Parrot Species Complex
Ribot, Raoul F. H.; Buchanan, Katherine L.; Endler, John A.; Joseph, Leo; Bennett, Andrew T. D.; Berg, Mathew L.
2012-01-01
Contact zones between subspecies or closely related species offer valuable insights into speciation processes. A typical feature of such zones is the presence of clinal variation in multiple traits. The nature of these traits and the concordance among clines are expected to influence whether and how quickly speciation will proceed. Learned signals, such as vocalizations in species having vocal learning (e.g. humans, many birds, bats and cetaceans), can exhibit rapid change and may accelerate reproductive isolation between populations. Therefore, particularly strong concordance among clines in learned signals and population genetic structure may be expected, even among continuous populations in the early stages of speciation. However, empirical evidence for this pattern is often limited because differences in vocalisations between populations are driven by habitat differences or have evolved in allopatry. We tested for this pattern in a unique system where we may be able to separate effects of habitat and evolutionary history. We studied geographic variation in the vocalizations of the crimson rosella (Platycercus elegans) parrot species complex. Parrots are well known for their life-long vocal learning and cognitive abilities. We analysed contact calls across a ca 1300 km transect encompassing populations that differed in neutral genetic markers and plumage colour. We found steep clinal changes in two acoustic variables (fundamental frequency and peak frequency position). The positions of the two clines in vocal traits were concordant with a steep cline in microsatellite-based genetic variation, but were discordant with the steep clines in mtDNA, plumage and habitat. Our study provides new evidence that vocal variation, in a species with vocal learning, can coincide with areas of restricted gene flow across geographically continuous populations. Our results suggest that traits that evolve culturally can be strongly associated with reduced gene flow between populations, and therefore may promote speciation, even in the absence of other barriers. PMID:23227179
Benichov, Jonathan I; Globerson, Eitan; Tchernichovski, Ofer
2016-01-01
Humans and oscine songbirds share the rare capacity for vocal learning. Songbirds have the ability to acquire songs and calls of various rhythms through imitation. In several species, birds can even coordinate the timing of their vocalizations with other individuals in duets that are synchronized with millisecond-accuracy. It is not known, however, if songbirds can perceive rhythms holistically nor if they are capable of spontaneous entrainment to complex rhythms, in a manner similar to humans. Here we review emerging evidence from studies of rhythm generation and vocal coordination across songbirds and humans. In particular, recently developed experimental methods have revealed neural mechanisms underlying the temporal structure of song and have allowed us to test birds' abilities to predict the timing of rhythmic social signals. Surprisingly, zebra finches can readily learn to anticipate the calls of a "vocal robot" partner and alter the timing of their answers to avoid jamming, even in reference to complex rhythmic patterns. This capacity resembles, to some extent, human predictive motor response to an external beat. In songbirds, this is driven, at least in part, by the forebrain song system, which controls song timing and is essential for vocal learning. Building upon previous evidence for spontaneous entrainment in human and non-human vocal learners, we propose a comparative framework for future studies aimed at identifying shared mechanism of rhythm production and perception across songbirds and humans.
Vocal copying of individually distinctive signature whistles in bottlenose dolphins
King, Stephanie L.; Sayigh, Laela S.; Wells, Randall S.; Fellner, Wendi; Janik, Vincent M.
2013-01-01
Vocal learning is relatively common in birds but less so in mammals. Sexual selection and individual or group recognition have been identified as major forces in its evolution. While important in the development of vocal displays, vocal learning also allows signal copying in social interactions. Such copying can function in addressing or labelling selected conspecifics. Most examples of addressing in non-humans come from bird song, where matching occurs in an aggressive context. However, in other animals, addressing with learned signals is very much an affiliative signal. We studied the function of vocal copying in a mammal that shows vocal learning as well as complex cognitive and social behaviour, the bottlenose dolphin (Tursiops truncatus). Copying occurred almost exclusively between close associates such as mother–calf pairs and male alliances during separation and was not followed by aggression. All copies were clearly recognizable as such because copiers consistently modified some acoustic parameters of a signal when copying it. We found no evidence for the use of copying in aggression or deception. This use of vocal copying is similar to its use in human language, where the maintenance of social bonds appears to be more important than the immediate defence of resources. PMID:23427174
Acoustic signatures of sound source-tract coupling.
Arneodo, Ezequiel M; Perl, Yonatan Sanz; Mindlin, Gabriel B
2011-04-01
Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced "frequency jumps," enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments. ©2011 American Physical Society
Acoustic signatures of sound source-tract coupling
Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Mindlin, Gabriel B.
2014-01-01
Birdsong is a complex behavior, which results from the interaction between a nervous system and a biomechanical peripheral device. While much has been learned about how complex sounds are generated in the vocal organ, little has been learned about the signature on the vocalizations of the nonlinear effects introduced by the acoustic interactions between a sound source and the vocal tract. The variety of morphologies among bird species makes birdsong a most suitable model to study phenomena associated to the production of complex vocalizations. Inspired by the sound production mechanisms of songbirds, in this work we study a mathematical model of a vocal organ, in which a simple sound source interacts with a tract, leading to a delay differential equation. We explore the system numerically, and by taking it to the weakly nonlinear limit, we are able to examine its periodic solutions analytically. By these means we are able to explore the dynamics of oscillatory solutions of a sound source-tract coupled system, which are qualitatively different from those of a sound source-filter model of a vocal organ. Nonlinear features of the solutions are proposed as the underlying mechanisms of observed phenomena in birdsong, such as unilaterally produced “frequency jumps,” enhancement of resonances, and the shift of the fundamental frequency observed in heliox experiments. PMID:21599213
Convergent Differential Regulation of Parvalbumin in the Brains of Vocal Learners
Hara, Erina; Rivas, Miriam V.; Ward, James M.; Okanoya, Kazuo; Jarvis, Erich D.
2012-01-01
Spoken language and learned song are complex communication behaviors found in only a few species, including humans and three groups of distantly related birds – songbirds, parrots, and hummingbirds. Despite their large phylogenetic distances, these vocal learners show convergent behaviors and associated brain pathways for vocal communication. However, it is not clear whether this behavioral and anatomical convergence is associated with molecular convergence. Here we used oligo microarrays to screen for genes differentially regulated in brain nuclei necessary for producing learned vocalizations relative to adjacent brain areas that control other behaviors in avian vocal learners versus vocal non-learners. A top candidate gene in our screen was a calcium-binding protein, parvalbumin (PV). In situ hybridization verification revealed that PV was expressed significantly higher throughout the song motor pathway, including brainstem vocal motor neurons relative to the surrounding brain regions of all distantly related avian vocal learners. This differential expression was specific to PV and vocal learners, as it was not found in avian vocal non-learners nor for control genes in learners and non-learners. Similar to the vocal learning birds, higher PV up-regulation was found in the brainstem tongue motor neurons used for speech production in humans relative to a non-human primate, macaques. These results suggest repeated convergent evolution of differential PV up-regulation in the brains of vocal learners separated by more than 65–300 million years from a common ancestor and that the specialized behaviors of learned song and speech may require extra calcium buffering and signaling. PMID:22238614
Vocal Generalization Depends on Gesture Identity and Sequence
Sober, Samuel J.
2014-01-01
Generalization, the brain's ability to transfer motor learning from one context to another, occurs in a wide range of complex behaviors. However, the rules of generalization in vocal behavior are poorly understood, and it is unknown how vocal learning generalizes across an animal's entire repertoire of natural vocalizations and sequences. Here, we asked whether generalization occurs in a nonhuman vocal learner and quantified its properties. We hypothesized that adaptive error correction of a vocal gesture produced in one sequence would generalize to the same gesture produced in other sequences. To test our hypothesis, we manipulated the fundamental frequency (pitch) of auditory feedback in Bengalese finches (Lonchura striata var. domestica) to create sensory errors during vocal gestures (song syllables) produced in particular sequences. As hypothesized, error-corrective learning on pitch-shifted vocal gestures generalized to the same gestures produced in other sequential contexts. Surprisingly, generalization magnitude depended strongly on sequential distance from the pitch-shifted syllables, with greater adaptation for gestures produced near to the pitch-shifted syllable. A further unexpected result was that nonshifted syllables changed their pitch in the direction opposite from the shifted syllables. This apparently antiadaptive pattern of generalization could not be explained by correlations between generalization and the acoustic similarity to the pitch-shifted syllable. These findings therefore suggest that generalization depends on the type of vocal gesture and its sequential context relative to other gestures and may reflect an advantageous strategy for vocal learning and maintenance. PMID:24741046
Convergent transcriptional specializations in the brains of humans and song-learning birds
Pfenning, Andreas R.; Hara, Erina; Whitney, Osceola; Rivas, Miriam V.; Wang, Rui; Roulhac, Petra L.; Howard, Jason T.; Wirthlin, Morgan; Lovell, Peter V.; Ganapathy, Ganeshkumar; Mouncastle, Jacquelyn; Moseley, M. Arthur; Thompson, J. Will; Soderblom, Erik J.; Iriki, Atsushi; Kato, Masaki; Gilbert, M. Thomas P.; Zhang, Guojie; Bakken, Trygve; Bongaarts, Angie; Bernard, Amy; Lein, Ed; Mello, Claudio V.; Hartemink, Alexander J.; Jarvis, Erich D.
2015-01-01
Song-learning birds and humans share independently evolved similarities in brain pathways for vocal learning that are essential for song and speech and are not found in most other species. Comparisons of brain transcriptomes of song-learning birds and humans relative to vocal nonlearners identified convergent gene expression specializations in specific song and speech brain regions of avian vocal learners and humans. The strongest shared profiles relate bird motor and striatal song-learning nuclei, respectively, with human laryngeal motor cortex and parts of the striatum that control speech production and learning. Most of the associated genes function in motor control and brain connectivity. Thus, convergent behavior and neural connectivity for a complex trait are associated with convergent specialized expression of multiple genes. PMID:25504733
Audio-vocal interaction in single neurons of the monkey ventrolateral prefrontal cortex.
Hage, Steffen R; Nieder, Andreas
2015-05-06
Complex audio-vocal integration systems depend on a strong interconnection between the auditory and the vocal motor system. To gain cognitive control over audio-vocal interaction during vocal motor control, the PFC needs to be involved. Neurons in the ventrolateral PFC (VLPFC) have been shown to separately encode the sensory perceptions and motor production of vocalizations. It is unknown, however, whether single neurons in the PFC reflect audio-vocal interactions. We therefore recorded single-unit activity in the VLPFC of rhesus monkeys (Macaca mulatta) while they produced vocalizations on command or passively listened to monkey calls. We found that 12% of randomly selected neurons in VLPFC modulated their discharge rate in response to acoustic stimulation with species-specific calls. Almost three-fourths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of vocalization. Based on these audio-vocal interactions, the VLPFC might be well positioned to combine higher order auditory processing with cognitive control of the vocal motor output. Such audio-vocal integration processes in the VLPFC might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2015 the authors 0270-6474/15/357030-11$15.00/0.
Neural coding of syntactic structure in learned vocalizations in the songbird.
Fujimoto, Hisataka; Hasegawa, Taku; Watanabe, Dai
2011-07-06
Although vocal signals including human languages are composed of a finite number of acoustic elements, complex and diverse vocal patterns can be created from combinations of these elements, linked together by syntactic rules. To enable such syntactic vocal behaviors, neural systems must extract the sequence patterns from auditory information and establish syntactic rules to generate motor commands for vocal organs. However, the neural basis of syntactic processing of learned vocal signals remains largely unknown. Here we report that the basal ganglia projecting premotor neurons (HVC(X) neurons) in Bengalese finches represent syntactic rules that generate variable song sequences. When vocalizing an alternative transition segment between song elements called syllables, sparse burst spikes of HVC(X) neurons code the identity of a specific syllable type or a specific transition direction among the alternative trajectories. When vocalizing a variable repetition sequence of the same syllable, HVC(X) neurons not only signal the initiation and termination of the repetition sequence but also indicate the progress and state-of-completeness of the repetition. These different types of syntactic information are frequently integrated within the activity of single HVC(X) neurons, suggesting that syntactic attributes of the individual neurons are not programmed as a basic cellular subtype in advance but acquired in the course of vocal learning and maturation. Furthermore, some auditory-vocal mirroring type HVC(X) neurons display transition selectivity in the auditory phase, much as they do in the vocal phase, suggesting that these songbirds may extract syntactic rules from auditory experience and apply them to form their own vocal behaviors.
Discussion: Changes in Vocal Production and Auditory Perception after Hair Cell Regeneration.
ERIC Educational Resources Information Center
Ryals, Brenda M.; Dooling, Robert J.
2000-01-01
A bird study found that with sufficient time and training after hair cell and hearing loss and hair cell regeneration, the mature avian auditory system can accommodate input from a newly regenerated periphery sufficiently to allow for recognition of previously familiar vocalizations and the learning of new complex acoustic classifications.…
Chabout, Jonathan; Sarkar, Abhra; Patel, Sheel R; Radden, Taylor; Dunson, David B; Fisher, Simon E; Jarvis, Erich D
2016-01-01
Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans.
Chabout, Jonathan; Sarkar, Abhra; Patel, Sheel R.; Radden, Taylor; Dunson, David B.; Fisher, Simon E.; Jarvis, Erich D.
2016-01-01
Development of proficient spoken language skills is disrupted by mutations of the FOXP2 transcription factor. A heterozygous missense mutation in the KE family causes speech apraxia, involving difficulty producing words with complex learned sequences of syllables. Manipulations in songbirds have helped to elucidate the role of this gene in vocal learning, but findings in non-human mammals have been limited or inconclusive. Here, we performed a systematic study of ultrasonic vocalizations (USVs) of adult male mice carrying the KE family mutation. Using novel statistical tools, we found that Foxp2 heterozygous mice did not have detectable changes in USV syllable acoustic structure, but produced shorter sequences and did not shift to more complex syntax in social contexts where wildtype animals did. Heterozygous mice also displayed a shift in the position of their rudimentary laryngeal motor cortex (LMC) layer-5 neurons. Our findings indicate that although mouse USVs are mostly innate, the underlying contributions of FoxP2 to sequencing of vocalizations are conserved with humans. PMID:27812326
Rodenas-Cuadrado, Pedro M; Mengede, Janine; Baas, Laura; Devanna, Paolo; Schmid, Tobias A; Yartsev, Michael; Firzlaff, Uwe; Vernes, Sonja C
2018-06-01
Genes including FOXP2, FOXP1, and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language-related circuitry in the brain. Although speech and language are unique to humans a comparative approach is possible by addressing language-relevant traits in animal systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalizations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language-relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1, and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult P. discolor bat, which showed low levels of FoxP2 expression in the cortex that contrasted with patterns found in rodents and nonhuman primates. We created an online, open-access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language-related genes in complex vocal-motor and vocal learning behaviors in a mammalian model system. © 2018 The Authors The Journal of Comparative Neurology Published by Wiley Periodicals, Inc.
Cook, Peter; Rouse, Andrew; Wilson, Margaret; Reichmuth, Colleen
2013-11-01
Is the ability to entrain motor activity to a rhythmic auditory stimulus, that is "keep a beat," dependent on neural adaptations supporting vocal mimicry? That is the premise of the vocal learning and synchronization hypothesis, recently advanced to explain the basis of this behavior (A. Patel, 2006, Musical Rhythm, Linguistic Rhythm, and Human Evolution, Music Perception, 24, 99-104). Prior to the current study, only vocal mimics, including humans, cockatoos, and budgerigars, have been shown to be capable of motoric entrainment. Here we demonstrate that a less vocally flexible animal, a California sea lion (Zalophus californianus), can learn to entrain head bobbing to an auditory rhythm meeting three criteria: a behavioral response that does not reproduce the stimulus; performance transfer to a range of novel tempos; and entrainment to complex, musical stimuli. These findings show that the capacity for entrainment of movement to rhythmic sounds does not depend on a capacity for vocal mimicry, and may be more widespread in the animal kingdom than previously hypothesized.
Social interaction shapes babbling: Testing parallels between birdsong and speech
NASA Astrophysics Data System (ADS)
Goldstein, Michael H.; King, Andrew P.; West, Meredith J.
2003-06-01
Birdsong is considered a model of human speech development at behavioral and neural levels. Few direct tests of the proposed analogs exist, however. Here we test a mechanism of phonological development in human infants that is based on social shaping, a selective learning process first documented in songbirds. By manipulating mothers' reactions to their 8-month-old infants' vocalizations, we demonstrate that phonological features of babbling are sensitive to nonimitative social stimulation. Contingent, but not noncontingent, maternal behavior facilitates more complex and mature vocal behavior. Changes in vocalizations persist after the manipulation. The data show that human infants use social feedback, facilitating immediate transitions in vocal behavior. Social interaction creates rapid shifts to developmentally more advanced sounds. These transitions mirror the normal development of speech, supporting the predictions of the avian social shaping model. These data provide strong support for a parallel in function between vocal precursors of songbirds and infants. Because imitation is usually considered the mechanism for vocal learning in both taxa, the findings introduce social shaping as a general process underlying the development of speech and song.
Auditory and audio-vocal responses of single neurons in the monkey ventral premotor cortex.
Hage, Steffen R
2018-03-20
Monkey vocalization is a complex behavioral pattern, which is flexibly used in audio-vocal communication. A recently proposed dual neural network model suggests that cognitive control might be involved in this behavior, originating from a frontal cortical network in the prefrontal cortex and mediated via projections from the rostral portion of the ventral premotor cortex (PMvr) and motor cortex to the primary vocal motor network in the brainstem. For the rapid adjustment of vocal output to external acoustic events, strong interconnections between vocal motor and auditory sites are needed, which are present at cortical and subcortical levels. However, the role of the PMvr in audio-vocal integration processes remains unclear. In the present study, single neurons in the PMvr were recorded in rhesus monkeys (Macaca mulatta) while volitionally producing vocalizations in a visual detection task or passively listening to monkey vocalizations. Ten percent of randomly selected neurons in the PMvr modulated their discharge rate in response to acoustic stimulation with species-specific calls. More than four-fifths of these auditory neurons showed an additional modulation of their discharge rates either before and/or during the monkeys' motor production of the vocalization. Based on these audio-vocal interactions, the PMvr might be well positioned to mediate higher order auditory processing with cognitive control of the vocal motor output to the primary vocal motor network. Such audio-vocal integration processes in the premotor cortex might constitute a precursor for the evolution of complex learned audio-vocal integration systems, ultimately giving rise to human speech. Copyright © 2018 Elsevier B.V. All rights reserved.
Rodenas‐Cuadrado, Pedro M.; Mengede, Janine; Baas, Laura; Devanna, Paolo; Schmid, Tobias A.; Yartsev, Michael; Firzlaff, Uwe
2018-01-01
Abstract Genes including FOXP2, FOXP1, and CNTNAP2, have been implicated in human speech and language phenotypes, pointing to a role in the development of normal language‐related circuitry in the brain. Although speech and language are unique to humans a comparative approach is possible by addressing language‐relevant traits in animal systems. One such trait, vocal learning, represents an essential component of human spoken language, and is shared by cetaceans, pinnipeds, elephants, some birds and bats. Given their vocal learning abilities, gregarious nature, and reliance on vocalizations for social communication and navigation, bats represent an intriguing mammalian system in which to explore language‐relevant genes. We used immunohistochemistry to detail the distribution of FoxP2, FoxP1, and Cntnap2 proteins, accompanied by detailed cytoarchitectural histology in the brains of two vocal learning bat species; Phyllostomus discolor and Rousettus aegyptiacus. We show widespread expression of these genes, similar to what has been previously observed in other species, including humans. A striking difference was observed in the adult P. discolor bat, which showed low levels of FoxP2 expression in the cortex that contrasted with patterns found in rodents and nonhuman primates. We created an online, open‐access database within which all data can be browsed, searched, and high resolution images viewed to single cell resolution. The data presented herein reveal regions of interest in the bat brain and provide new opportunities to address the role of these language‐related genes in complex vocal‐motor and vocal learning behaviors in a mammalian model system. PMID:29297931
Development of neural responsivity to vocal sounds in higher level auditory cortex of songbirds
Miller-Sims, Vanessa C.
2014-01-01
Like humans, songbirds learn vocal sounds from “tutors” during a sensitive period of development. Vocal learning in songbirds therefore provides a powerful model system for investigating neural mechanisms by which memories of learned vocal sounds are stored. This study examined whether NCM (caudo-medial nidopallium), a region of higher level auditory cortex in songbirds, serves as a locus where a neural memory of tutor sounds is acquired during early stages of vocal learning. NCM neurons respond well to complex auditory stimuli, and evoked activity in many NCM neurons habituates such that the response to a stimulus that is heard repeatedly decreases to approximately one-half its original level (stimulus-specific adaptation). The rate of neural habituation serves as an index of familiarity, being low for familiar sounds, but high for novel sounds. We found that response strength across different song stimuli was higher in NCM neurons of adult zebra finches than in juveniles, and that only adult NCM responded selectively to tutor song. The rate of habituation across both tutor song and novel conspecific songs was lower in adult than in juvenile NCM, indicating higher familiarity and a more persistent response to song stimuli in adults. In juvenile birds that have memorized tutor vocal sounds, neural habituation was higher for tutor song than for a familiar conspecific song. This unexpected result suggests that the response to tutor song in NCM at this age may be subject to top-down influences that maintain the tutor song as a salient stimulus, despite its high level of familiarity. PMID:24694936
Vocal learning in elephants: neural bases and adaptive context
Stoeger, Angela S; Manger, Paul
2014-01-01
In the last decade clear evidence has accumulated that elephants are capable of vocal production learning. Examples of vocal imitation are documented in African (Loxodonta africana) and Asian (Elephas maximus) elephants, but little is known about the function of vocal learning within the natural communication systems of either species. We are also just starting to identify the neural basis of elephant vocalizations. The African elephant diencephalon and brainstem possess specializations related to aspects of neural information processing in the motor system (affecting the timing and learning of trunk movements) and the auditory and vocalization system. Comparative interdisciplinary (from behavioral to neuroanatomical) studies are strongly warranted to increase our understanding of both vocal learning and vocal behavior in elephants. PMID:25062469
Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.
Tsoi, Shuk C; Aiya, Utsav V; Wasner, Kobi D; Phan, Mimi L; Pytte, Carolyn L; Vicario, David S
2014-01-01
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals.
Wasner, Kobi D.; Phan, Mimi L.; Pytte, Carolyn L.; Vicario, David S.
2014-01-01
Many brain regions exhibit lateral differences in structure and function, and also incorporate new neurons in adulthood, thought to function in learning and in the formation of new memories. However, the contribution of new neurons to hemispheric differences in processing is unknown. The present study combines cellular, behavioral, and physiological methods to address whether 1) new neuron incorporation differs between the brain hemispheres, and 2) the degree to which hemispheric lateralization of new neurons correlates with behavioral and physiological measures of learning and memory. The songbird provides a model system for assessing the contribution of new neurons to hemispheric specialization because songbird brain areas for vocal processing are functionally lateralized and receive a continuous influx of new neurons in adulthood. In adult male zebra finches, we quantified new neurons in the caudomedial nidopallium (NCM), a forebrain area involved in discrimination and memory for the complex vocalizations of individual conspecifics. We assessed song learning and recorded neural responses to song in NCM. We found significantly more new neurons labeled in left than in right NCM; moreover, the degree of asymmetry in new neuron numbers was correlated with the quality of song learning and strength of neuronal memory for recently heard songs. In birds with experimentally impaired song quality, the hemispheric difference in new neurons was diminished. These results suggest that new neurons may contribute to an allocation of function between the hemispheres that underlies the learning and processing of complex signals. PMID:25251077
Piristine, Hande C; Choetso, Tenzin; Gobes, Sharon M H
2016-11-01
Sensory feedback is essential for acquiring and maintaining complex motor behaviors, including birdsong. In zebra finches, auditory feedback reaches the song control circuits primarily through the nucleus interfacialis nidopalii (Nif), which provides excitatory input to HVC (proper name)-a premotor region essential for the production of learned vocalizations. Despite being one of the major inputs to the song control pathway, the role of Nif in generating vocalizations is not well understood. To address this, we transiently inactivated Nif in late juvenile zebra finches. Upon Nif inactivation (in both hemispheres or on one side only), birds went from singing stereotyped zebra finch song to uttering highly variable and unstructured vocalizations resembling sub-song, an early juvenile song form driven by a basal ganglia circuit. Simultaneously inactivating Nif and LMAN (lateral magnocellular nucleus of the anterior nidopallium), the output nucleus of a basal ganglia circuit, inhibited song production altogether. These results suggest that Nif is required for generating the premotor drive for song. Permanent Nif lesions, in contrast, have only transient effects on vocal production, with song recovering within a day. The sensorimotor nucleus Nif thus produces a premotor drive to the motor pathway that is acutely required for generating learned vocalizations, but once permanently removed, the song system can compensate for its absence. © 2016 Wiley Periodicals, Inc. Develop Neurobiol 76: 1213-1225, 2016. © 2016 Wiley Periodicals, Inc.
Arriaga, Gustavo; Zhou, Eric P.; Jarvis, Erich D.
2012-01-01
Humans and song-learning birds communicate acoustically using learned vocalizations. The characteristic features of this social communication behavior include vocal control by forebrain motor areas, a direct cortical projection to brainstem vocal motor neurons, and dependence on auditory feedback to develop and maintain learned vocalizations. These features have so far not been found in closely related primate and avian species that do not learn vocalizations. Male mice produce courtship ultrasonic vocalizations with acoustic features similar to songs of song-learning birds. However, it is assumed that mice lack a forebrain system for vocal modification and that their ultrasonic vocalizations are innate. Here we investigated the mouse song system and discovered that it includes a motor cortex region active during singing, that projects directly to brainstem vocal motor neurons and is necessary for keeping song more stereotyped and on pitch. We also discovered that male mice depend on auditory feedback to maintain some ultrasonic song features, and that sub-strains with differences in their songs can match each other's pitch when cross-housed under competitive social conditions. We conclude that male mice have some limited vocal modification abilities with at least some neuroanatomical features thought to be unique to humans and song-learning birds. To explain our findings, we propose a continuum hypothesis of vocal learning. PMID:23071596
Horita, Haruhito; Kobayashi, Masahiko; Liu, Wan-chun; Oka, Kotaro; Jarvis, Erich D.; Wada, Kazuhiro
2012-01-01
Mechanisms for the evolution of convergent behavioral traits are largely unknown. Vocal learning is one such trait that evolved multiple times and is necessary in humans for the acquisition of spoken language. Among birds, vocal learning is evolved in songbirds, parrots, and hummingbirds. Each time similar forebrain song nuclei specialized for vocal learning and production have evolved. This finding led to the hypothesis that the behavioral and neuroanatomical convergences for vocal learning could be associated with molecular convergence. We previously found that the neural activity-induced gene dual specificity phosphatase 1 (dusp1) was up-regulated in non-vocal circuits, specifically in sensory-input neurons of the thalamus and telencephalon; however, dusp1 was not up-regulated in higher order sensory neurons or motor circuits. Here we show that song motor nuclei are an exception to this pattern. The song nuclei of species from all known vocal learning avian lineages showed motor-driven up-regulation of dusp1 expression induced by singing. There was no detectable motor-driven dusp1 expression throughout the rest of the forebrain after non-vocal motor performance. This pattern contrasts with expression of the commonly studied activity-induced gene egr1, which shows motor-driven expression in song nuclei induced by singing, but also motor-driven expression in adjacent brain regions after non-vocal motor behaviors. In the vocal non-learning avian species, we found no detectable vocalizing-driven dusp1 expression in the forebrain. These findings suggest that independent evolutions of neural systems for vocal learning were accompanied by selection for specialized motor-driven expression of the dusp1 gene in those circuits. This specialized expression of dusp1 could potentially lead to differential regulation of dusp1-modulated molecular cascades in vocal learning circuits. PMID:22876306
Neural Representation of a Target Auditory Memory in a Cortico-Basal Ganglia Pathway
Bottjer, Sarah W.
2013-01-01
Vocal learning in songbirds, like speech acquisition in humans, entails a period of sensorimotor integration during which vocalizations are evaluated via auditory feedback and progressively refined to achieve an imitation of memorized vocal sounds. This process requires the brain to compare feedback of current vocal behavior to a memory of target vocal sounds. We report the discovery of two distinct populations of neurons in a cortico-basal ganglia circuit of juvenile songbirds (zebra finches, Taeniopygia guttata) during vocal learning: (1) one in which neurons are selectively tuned to memorized sounds and (2) another in which neurons are selectively tuned to self-produced vocalizations. These results suggest that neurons tuned to learned vocal sounds encode a memory of those target sounds, whereas neurons tuned to self-produced vocalizations encode a representation of current vocal sounds. The presence of neurons tuned to memorized sounds is limited to early stages of sensorimotor integration: after learning, the incidence of neurons encoding memorized vocal sounds was greatly diminished. In contrast to this circuit, neurons known to drive vocal behavior through a parallel cortico-basal ganglia pathway show little selective tuning until late in learning. One interpretation of these data is that representations of current and target vocal sounds in the shell circuit are used to compare ongoing patterns of vocal feedback to memorized sounds, whereas the parallel core circuit has a motor-related role in learning. Such a functional subdivision is similar to mammalian cortico-basal ganglia pathways in which associative-limbic circuits mediate goal-directed responses, whereas sensorimotor circuits support motor aspects of learning. PMID:24005299
Learning while Babbling: Prelinguistic Object-Directed Vocalizations Indicate a Readiness to Learn
ERIC Educational Resources Information Center
Goldstein, Michael H.; Schwade, Jennifer; Briesch, Jacquelyn; Syal, Supriya
2010-01-01
Two studies illustrate the functional significance of a new category of prelinguistic vocalizing--object-directed vocalizations (ODVs)--and show that these sounds are connected to learning about words and objects. Experiment 1 tested 12-month-old infants' perceptual learning of objects that elicited ODVs. Fourteen infants' vocalizations were…
From imitation to meaning: circuit plasticity and the acquisition of a conventionalized semantics
García, Ricardo R.; Zamorano, Francisco; Aboitiz, Francisco
2014-01-01
The capacity for language is arguably the most remarkable innovation of the human brain. A relatively recent interpretation prescribes that part of the language-related circuits were co-opted from circuitry involved in hand control—the mirror neuron system (MNS), involved both in the perception and in the execution of voluntary grasping actions. A less radical view is that in early humans, communication was opportunistic and multimodal, using signs, vocalizations or whatever means available to transmit social information. However, one point that is not yet clear under either perspective is how learned communication acquired a semantic property thereby allowing us to name objects and eventually describe our surrounding environment. Here we suggest a scenario involving both manual gestures and learned vocalizations that led to the development of a primitive form of conventionalized reference. This proposal is based on comparative evidence gathered from other species and on neurolinguistic evidence in humans, which points to a crucial role for vocal learning in the early development of language. Firstly, the capacity to direct the attention of others to a common object may have been crucial for developing a consensual referential system. Pointing, which is a ritualized grasping gesture, may have been crucial to this end. Vocalizations also served to generate joint attention among conversants, especially when combined with gaze direction. Another contributing element was the development of pantomimic actions resembling events or animals. In conjunction with this mimicry, the development of plastic neural circuits that support complex, learned vocalizations was probably a significant factor in the evolution of conventionalized semantics in our species. Thus, vocal imitations of sounds, as in onomatopoeias (words whose sound resembles their meaning), are possibly supported by mirror system circuits, and may have been relevant in the acquisition of early meanings. PMID:25152726
Motor Tics, Tourette Syndrome, and Learning Disabilities.
ERIC Educational Resources Information Center
Lerer, Robert J.
1987-01-01
Complex motor tics associated with vocal tics indicate a high likelihood of Tourette syndrome; children with this syndrome may also have learning disabilities and attentional disorders. Individuals may be treated with stimulant drugs which may precipitate or exacerbate tics. Pharmacotherapy is available for management of tics and attentional…
Dopaminergic Contributions to Vocal Learning
Hoffmann, Lukas A.; Saravanan, Varun; Wood, Alynda N.; He, Li
2016-01-01
Although the brain relies on auditory information to calibrate vocal behavior, the neural substrates of vocal learning remain unclear. Here we demonstrate that lesions of the dopaminergic inputs to a basal ganglia nucleus in a songbird species (Bengalese finches, Lonchura striata var. domestica) greatly reduced the magnitude of vocal learning driven by disruptive auditory feedback in a negative reinforcement task. These lesions produced no measureable effects on the quality of vocal performance or the amount of song produced. Our results suggest that dopaminergic inputs to the basal ganglia selectively mediate reinforcement-driven vocal plasticity. In contrast, dopaminergic lesions produced no measurable effects on the birds' ability to restore song acoustics to baseline following the cessation of reinforcement training, suggesting that different forms of vocal plasticity may use different neural mechanisms. SIGNIFICANCE STATEMENT During skill learning, the brain relies on sensory feedback to improve motor performance. However, the neural basis of sensorimotor learning is poorly understood. Here, we investigate the role of the neurotransmitter dopamine in regulating vocal learning in the Bengalese finch, a songbird with an extremely precise singing behavior that can nevertheless be reshaped dramatically by auditory feedback. Our findings show that reduction of dopamine inputs to a region of the songbird basal ganglia greatly impairs vocal learning but has no detectable effect on vocal performance. These results suggest a specific role for dopamine in regulating vocal plasticity. PMID:26888928
Tyack, Peter L
2008-08-01
The classic evidence for vocal production learning involves imitation of novel, often anthropogenic sounds. Among mammals, this has been reported for dolphins, elephants, harbor seals, and humans. A broader taxonomic distribution has been reported for vocal convergence, where the acoustic properties of calls from different individuals converge when they are housed together in captivity or form social bonds in the wild. Vocal convergence has been demonstrated for animals as diverse as songbirds, parakeets, hummingbirds, bats, elephants, cetaceans, and primates. For most species, call convergence is thought to reflect a group-distinctive identifier, with shared calls reflecting and strengthening social bonds. A ubiquitous function for vocal production learning that is starting to receive attention involves modifying signals to improve communication in a noisy channel. Pooling data on vocal imitation, vocal convergence, and compensation for noise suggests a wider taxonomic distribution of vocal production learning among mammals than has been generally appreciated. The wide taxonomic distribution of this evidence for vocal production learning suggests that perhaps more of the neural underpinnings for vocal production learning are in place in mammals than is usually recognized. (c) 2008 APA, all rights reserved
Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B.
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. PMID:22761555
Neural FoxP2 and FoxP1 expression in the budgerigar, an avian species with adult vocal learning.
Hara, Erina; Perez, Jemima M; Whitney, Osceola; Chen, Qianqian; White, Stephanie A; Wright, Timothy F
2015-04-15
Vocal learning underlies acquisition of both language in humans and vocal signals in some avian taxa. These bird groups and humans exhibit convergent developmental phases and associated brain pathways for vocal communication. The transcription factor FoxP2 plays critical roles in vocal learning in humans and songbirds. Another member of the forkhead box gene family, FoxP1 also shows high expression in brain areas involved in vocal learning and production. Here, we investigate FoxP2 and FoxP1 mRNA and protein in adult male budgerigars (Melopsittacus undulatus), a parrot species that exhibits vocal learning as both juveniles and adults. To examine these molecules in adult vocal learners, we compared their expression patterns in the budgerigar striatal nucleus involved in vocal learning, magnocellular nucleus of the medial striatum (MMSt), across birds with different vocal states, such as vocalizing to a female (directed), vocalizing alone (undirected), and non-vocalizing. We found that both FoxP2 mRNA and protein expressions were consistently lower in MMSt than in the adjacent striatum regardless of the vocal states, whereas previous work has shown that songbirds exhibit down-regulation in the homologous region, Area X, only after singing alone. In contrast, FoxP1 levels were high in MMSt compared to the adjacent striatum in all groups. Taken together these results strengthen the general hypothesis that FoxP2 and FoxP1 have specialized expression in vocal nuclei across a range of taxa, and suggest that the adult vocal plasticity seen in budgerigars may be a product of persistent down-regulation of FoxP2 in MMSt. Copyright © 2015 Elsevier B.V. All rights reserved.
Neural FoxP2 and FoxP1 expression in the budgerigar, an avian species with adult vocal learning
Hara, Erina; Perez, Jemima M.; Whitney, Osceola; Chen, Qianqian; White, Stephanie A.; Wright, Timothy F.
2015-01-01
Vocal learning underlies acquisition of both language in humans and vocal signals in some avian taxa. These bird groups and humans exhibit convergent developmental phases and associated brain pathways for vocal communication. The transcription factor FoxP2 plays critical roles in vocal learning in humans and songbirds. Another member of the forkhead box gene family, FoxP1 also shows high expression in brain areas involved in vocal learning and production. Here, we investigate FoxP2 and FoxP1 mRNA and protein in adult male budgerigars (Melopsittacus undulatus), a parrot species that exhibits vocal learning as both juveniles and adults. To examine these molecules in adult vocal learners, we compared their expression patterns in the budgerigar striatal nucleus involved in vocal learning, magnocellular nucleus of the medial striatum (MMSt), across birds with different vocal states, such as vocalizing to a female (directed), vocalizing alone (undirected), and non-vocalizing. We found that both FoxP2 mRNA and protein expressions were consistently lower in MMSt than in the adjacent striatum regardless of the vocal states, whereas previous work has shown that songbirds exhibit downregulation in the homologous region, Area X, only after singing alone. In contrast, FoxP1 levels were high in MMSt compared to the adjacent striatum in all groups. Taken together these results strengthen the general hypothesis that FoxP2 and FoxP1 have specialized expression in vocal nuclei across a range of taxa, and suggest that the adult vocal plasticity seen in budgerigars may be a product of persistent down-regulation of FoxP2 in MMSt. PMID:25601574
Mechanisms underlying the social enhancement of vocal learning in songbirds.
Chen, Yining; Matheson, Laura E; Sakata, Jon T
2016-06-14
Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor's songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning.
Mechanisms underlying the social enhancement of vocal learning in songbirds
Chen, Yining; Matheson, Laura E.; Sakata, Jon T.
2016-01-01
Social processes profoundly influence speech and language acquisition. Despite the importance of social influences, little is known about how social interactions modulate vocal learning. Like humans, songbirds learn their vocalizations during development, and they provide an excellent opportunity to reveal mechanisms of social influences on vocal learning. Using yoked experimental designs, we demonstrate that social interactions with adult tutors for as little as 1 d significantly enhanced vocal learning. Social influences on attention to song seemed central to the social enhancement of learning because socially tutored birds were more attentive to the tutor’s songs than passively tutored birds, and because variation in attentiveness and in the social modulation of attention significantly predicted variation in vocal learning. Attention to song was influenced by both the nature and amount of tutor song: Pupils paid more attention to songs that tutors directed at them and to tutors that produced fewer songs. Tutors altered their song structure when directing songs at pupils in a manner that resembled how humans alter their vocalizations when speaking to infants, that was distinct from how tutors changed their songs when singing to females, and that could influence attention and learning. Furthermore, social interactions that rapidly enhanced learning increased the activity of noradrenergic and dopaminergic midbrain neurons. These data highlight striking parallels between humans and songbirds in the social modulation of vocal learning and suggest that social influences on attention and midbrain circuitry could represent shared mechanisms underlying the social modulation of vocal learning. PMID:27247385
Core and Shell Song Systems Unique to the Parrot Brain
Chakraborty, Mukta; Walløe, Solveig; Nedergaard, Signe; Fridel, Emma E.; Dabelsteen, Torben; Pakkenberg, Bente; Bertelsen, Mads F.; Dorrestein, Gerry M.; Brauth, Steven E.; Durand, Sarah E.; Jarvis, Erich D.
2015-01-01
The ability to imitate complex sounds is rare, and among birds has been found only in parrots, songbirds, and hummingbirds. Parrots exhibit the most advanced vocal mimicry among non-human animals. A few studies have noted differences in connectivity, brain position and shape in the vocal learning systems of parrots relative to songbirds and hummingbirds. However, only one parrot species, the budgerigar, has been examined and no differences in the presence of song system structures were found with other avian vocal learners. Motivated by questions of whether there are important differences in the vocal systems of parrots relative to other vocal learners, we used specialized constitutive gene expression, singing-driven gene expression, and neural connectivity tracing experiments to further characterize the song system of budgerigars and/or other parrots. We found that the parrot brain uniquely contains a song system within a song system. The parrot “core” song system is similar to the song systems of songbirds and hummingbirds, whereas the “shell” song system is unique to parrots. The core with only rudimentary shell regions were found in the New Zealand kea, representing one of the only living species at a basal divergence with all other parrots, implying that parrots evolved vocal learning systems at least 29 million years ago. Relative size differences in the core and shell regions occur among species, which we suggest could be related to species differences in vocal and cognitive abilities. PMID:26107173
Identification of a motor to auditory pathway important for vocal learning
Roberts, Todd F.; Hisey, Erin; Tanaka, Masashi; Kearney, Matthew; Chattree, Gaurav; Yang, Cindy F.; Shah, Nirao M.; Mooney, Richard
2017-01-01
Summary Learning to vocalize depends on the ability to adaptively modify the temporal and spectral features of vocal elements. Neurons that convey motor-related signals to the auditory system are theorized to facilitate vocal learning, but the identity and function of such neurons remain unknown. Here we identify a previously unknown neuron type in the songbird brain that transmits vocal motor signals to the auditory cortex. Genetically ablating these neurons in juveniles disrupted their ability to imitate features of an adult tutor’s song. Ablating these neurons in adults had little effect on previously learned songs, but interfered with their ability to adaptively modify the duration of vocal elements and largely prevented the degradation of song’s temporal features normally caused by deafening. These findings identify a motor to auditory circuit essential to vocal imitation and to the adaptive modification of vocal timing. PMID:28504672
Musser, Whitney B; Bowles, Ann E; Grebner, Dawn M; Crance, Jessica L
2014-10-01
Limited previous evidence suggests that killer whales (Orcinus orca) are capable of vocal production learning. However, vocal contextual learning has not been studied, nor the factors promoting learning. Vocalizations were collected from three killer whales with a history of exposure to bottlenose dolphins (Tursiops truncatus) and compared with data from seven killer whales held with conspecifics and nine bottlenose dolphins. The three whales' repertoires were distinguishable by a higher proportion of click trains and whistles. Time-domain features of click trains were intermediate between those of whales held with conspecifics and dolphins. These differences provided evidence for contextual learning. One killer whale spontaneously learned to produce artificial chirps taught to dolphins; acoustic features fell within the range of inter-individual differences among the dolphins. This whale also produced whistles similar to a stereotyped whistle produced by one dolphin. Thus, results provide further support for vocal production learning and show that killer whales are capable of contextual learning. That killer whales produce similar repertoires when associated with another species suggests substantial vocal plasticity and motivation for vocal conformity with social associates.
Hamaguchi, Kosuke; Mooney, Richard
2012-01-01
Complex brain functions, such as the capacity to learn and modulate vocal sequences, depend on activity propagation in highly distributed neural networks. To explore the synaptic basis of activity propagation in such networks, we made dual in vivo intracellular recordings in anesthetized zebra finches from the input (nucleus HVC) and output (lateral magnocellular nucleus of the anterior nidopallium (LMAN)) neurons of a songbird cortico-basal ganglia (BG) pathway necessary to the learning and modulation of vocal motor sequences. These recordings reveal evidence of bidirectional interactions, rather than only feedforward propagation of activity from HVC to LMAN, as had been previously supposed. A combination of dual and triple recording configurations and pharmacological manipulations was used to map out circuitry by which activity propagates from LMAN to HVC. These experiments indicate that activity travels to HVC through at least two independent ipsilateral pathways, one of which involves fast signaling through a midbrain dopaminergic cell group, reminiscent of recurrent mesocortical loops described in mammals. We then used in vivo pharmacological manipulations to establish that augmented LMAN activity is sufficient to restore high levels of sequence variability in adult birds, suggesting that recurrent interactions through highly distributed forebrain – midbrain pathways can modulate learned vocal sequences. PMID:22915110
A Brain for Speech. Evolutionary Continuity in Primate and Human Auditory-Vocal Processing
Aboitiz, Francisco
2018-01-01
In this review article, I propose a continuous evolution from the auditory-vocal apparatus and its mechanisms of neural control in non-human primates, to the peripheral organs and the neural control of human speech. Although there is an overall conservatism both in peripheral systems and in central neural circuits, a few changes were critical for the expansion of vocal plasticity and the elaboration of proto-speech in early humans. Two of the most relevant changes were the acquisition of direct cortical control of the vocal fold musculature and the consolidation of an auditory-vocal articulatory circuit, encompassing auditory areas in the temporoparietal junction and prefrontal and motor areas in the frontal cortex. This articulatory loop, also referred to as the phonological loop, enhanced vocal working memory capacity, enabling early humans to learn increasingly complex utterances. The auditory-vocal circuit became progressively coupled to multimodal systems conveying information about objects and events, which gradually led to the acquisition of modern speech. Gestural communication accompanies the development of vocal communication since very early in human evolution, and although both systems co-evolved tightly in the beginning, at some point speech became the main channel of communication. PMID:29636657
The sensorimotor and social sides of the architecture of speech.
Pezzulo, Giovanni; Barca, Laura; D'Ausilio, Alessando
2014-12-01
Speech is a complex skill to master. In addition to sophisticated phono-articulatory abilities, speech acquisition requires neuronal systems configured for vocal learning, with adaptable sensorimotor maps that couple heard speech sounds with motor programs for speech production; imitation and self-imitation mechanisms that can train the sensorimotor maps to reproduce heard speech sounds; and a "pedagogical" learning environment that supports tutor learning.
Mouse vocal communication system: are ultrasounds learned or innate?
Arriaga, Gustavo; Jarvis, Erich D.
2013-01-01
Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production. Here we discuss the available data to assess whether male mouse song behavior and the supporting brain circuits resemble those of known vocal non-learning or vocal learning species. Recent neurobiology studies have demonstrated that the mouse USV brain system includes motor cortex and striatal regions, and that the vocal motor cortex sends a direct sparse projection to the brainstem vocal motor nucleus ambiguous, a projection thought be unique to humans among mammals. Recent behavioral studies have reported opposing conclusions on mouse vocal plasticity, including vocal ontogeny changes in USVs over early development that might not be explained by innate maturation processes, evidence for and against a role for auditory feedback in developing and maintaining normal mouse USVs, and evidence for and against limited vocal imitation of song pitch. To reconcile these findings, we suggest that the trait of vocal learning may not be dichotomous but encompass a broad set of behavioral and neural traits we call the continuum hypothesis, and that mice possess some of the traits associated with a capacity for limited vocal learning. PMID:23295209
Early experience shapes vocal neural coding and perception in songbirds
Woolley, Sarah M. N.
2012-01-01
Songbirds, like humans, are highly accomplished vocal learners. The many parallels between speech and birdsong and conserved features of mammalian and avian auditory systems have led to the emergence of the songbird as a model system for studying the perceptual mechanisms of vocal communication. Laboratory research on songbirds allows the careful control of early life experience and high-resolution analysis of brain function during vocal learning, production and perception. Here, I review what songbird studies have revealed about the role of early experience in the development of vocal behavior, auditory perception and the processing of learned vocalizations by auditory neurons. The findings of these studies suggest general principles for how exposure to vocalizations during development and into adulthood influences the perception of learned vocal signals. PMID:22711657
Behavior-Linked FoxP2 Regulation Enables Zebra Finch Vocal Learning
Heston, Jonathan B.
2015-01-01
Mutations in the FOXP2 transcription factor cause an inherited speech and language disorder, but how FoxP2 contributes to learning of these vocal communication signals remains unclear. FoxP2 is enriched in corticostriatal circuits of both human and songbird brains. Experimental knockdown of this enrichment in song control neurons of the zebra finch basal ganglia impairs tutor song imitation, indicating that adequate FoxP2 levels are necessary for normal vocal learning. In unmanipulated birds, vocal practice acutely downregulates FoxP2, leading to increased vocal variability and dynamic regulation of FoxP2 target genes. To determine whether this behavioral regulation is important for song learning, here, we used viral-driven overexpression of FoxP2 to counteract its downregulation. This manipulation disrupted the acute effects of song practice on vocal variability and caused inaccurate song imitation. Together, these findings indicate that dynamic behavior-linked regulation of FoxP2, rather than absolute levels, is critical for vocal learning. PMID:25698728
A hypothesis on a role of oxytocin in the social mechanisms of speech and vocal learning.
Theofanopoulou, Constantina; Boeckx, Cedric; Jarvis, Erich D
2017-08-30
Language acquisition in humans and song learning in songbirds naturally happen as a social learning experience, providing an excellent opportunity to reveal social motivation and reward mechanisms that boost sensorimotor learning. Our knowledge about the molecules and circuits that control these social mechanisms for vocal learning and language is limited. Here we propose a hypothesis of a role for oxytocin (OT) in the social motivation and evolution of vocal learning and language. Building upon existing evidence, we suggest specific neural pathways and mechanisms through which OT might modulate vocal learning circuits in specific developmental stages. © 2017 The Authors.
A hypothesis on a role of oxytocin in the social mechanisms of speech and vocal learning
Jarvis, Erich D.
2017-01-01
Language acquisition in humans and song learning in songbirds naturally happen as a social learning experience, providing an excellent opportunity to reveal social motivation and reward mechanisms that boost sensorimotor learning. Our knowledge about the molecules and circuits that control these social mechanisms for vocal learning and language is limited. Here we propose a hypothesis of a role for oxytocin (OT) in the social motivation and evolution of vocal learning and language. Building upon existing evidence, we suggest specific neural pathways and mechanisms through which OT might modulate vocal learning circuits in specific developmental stages. PMID:28835557
Translating birdsong: songbirds as a model for basic and applied medical research.
Brainard, Michael S; Doupe, Allison J
2013-07-08
Songbirds, long of interest to basic neuroscience, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning and, more specifically, resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production but that has strong similarities to mammalian brain pathways. The combination of highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both in normal states and in disease. Here we highlight (a) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and (b) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair.
Translating Birdsong: Songbirds as a model for basic and applied medical research
2014-01-01
Songbirds, long of interest to basic neuroscientists, have great potential as a model system for translational neuroscience. Songbirds learn their complex vocal behavior in a manner that exemplifies general processes of perceptual and motor skill learning, and more specifically resembles human speech learning. Song is subserved by circuitry that is specialized for vocal learning and production, but that has strong similarities to mammalian brain pathways. The combination of a highly quantifiable behavior and discrete neural substrates facilitates understanding links between brain and behavior, both normally and in disease. Here we highlight 1) behavioral and mechanistic parallels between birdsong and aspects of speech and social communication, including insights into mirror neurons, the function of auditory feedback, and genes underlying social communication disorders, and 2) contributions of songbirds to understanding cortical-basal ganglia circuit function and dysfunction, including the possibility of harnessing adult neurogenesis for brain repair. PMID:23750515
Birds, primates, and spoken language origins: behavioral phenotypes and neurobiological substrates
Petkov, Christopher I.; Jarvis, Erich D.
2012-01-01
Vocal learners such as humans and songbirds can learn to produce elaborate patterns of structurally organized vocalizations, whereas many other vertebrates such as non-human primates and most other bird groups either cannot or do so to a very limited degree. To explain the similarities among humans and vocal-learning birds and the differences with other species, various theories have been proposed. One set of theories are motor theories, which underscore the role of the motor system as an evolutionary substrate for vocal production learning. For instance, the motor theory of speech and song perception proposes enhanced auditory perceptual learning of speech in humans and song in birds, which suggests a considerable level of neurobiological specialization. Another, a motor theory of vocal learning origin, proposes that the brain pathways that control the learning and production of song and speech were derived from adjacent motor brain pathways. Another set of theories are cognitive theories, which address the interface between cognition and the auditory-vocal domains to support language learning in humans. Here we critically review the behavioral and neurobiological evidence for parallels and differences between the so-called vocal learners and vocal non-learners in the context of motor and cognitive theories. In doing so, we note that behaviorally vocal-production learning abilities are more distributed than categorical, as are the auditory-learning abilities of animals. We propose testable hypotheses on the extent of the specializations and cross-species correspondences suggested by motor and cognitive theories. We believe that determining how spoken language evolved is likely to become clearer with concerted efforts in testing comparative data from many non-human animal species. PMID:22912615
Tchernichovski, Ofer; Marcus, Gary
2014-01-01
Studies of vocal learning in songbirds typically focus on the acquisition of sensory templates for song imitation and on the consequent process of matching song production to templates. However, functional vocal development also requires the capacity to adaptively diverge from sensory templates, and to flexibly assemble vocal units. Examples of adaptive divergence include the corrective imitation of abnormal songs, and the decreased tendency to copy overabundant syllables. Such frequency-dependent effects might mirror tradeoffs between the assimilation of group identity (culture) while establishing individual and flexibly expressive songs. Intriguingly, although the requirements for vocal plasticity vary across songbirds, and more so between birdsong and language, the capacity to flexibly assemble vocal sounds develops in a similar, stepwise manner across species. Therefore, universal features of vocal learning go well beyond the capacity to imitate. PMID:25005823
Campbell's monkeys concatenate vocalizations into context-specific call sequences
Ouattara, Karim; Lemasson, Alban; Zuberbühler, Klaus
2009-01-01
Primate vocal behavior is often considered irrelevant in modeling human language evolution, mainly because of the caller's limited vocal control and apparent lack of intentional signaling. Here, we present the results of a long-term study on Campbell's monkeys, which has revealed an unrivaled degree of vocal complexity. Adult males produced six different loud call types, which they combined into various sequences in highly context-specific ways. We found stereotyped sequences that were strongly associated with cohesion and travel, falling trees, neighboring groups, nonpredatory animals, unspecific predatory threat, and specific predator classes. Within the responses to predators, we found that crowned eagles triggered four and leopards three different sequences, depending on how the caller learned about their presence. Callers followed a number of principles when concatenating sequences, such as nonrandom transition probabilities of call types, addition of specific calls into an existing sequence to form a different one, or recombination of two sequences to form a third one. We conclude that these primates have overcome some of the constraints of limited vocal control by combinatorial organization. As the different sequences were so tightly linked to specific external events, the Campbell's monkey call system may be the most complex example of ‘proto-syntax’ in animal communication known to date. PMID:20007377
Complex coevolution of wing, tail, and vocal sounds of courting male bee hummingbirds.
Clark, Christopher J; McGuire, Jimmy A; Bonaccorso, Elisa; Berv, Jacob S; Prum, Richard O
2018-03-01
Phenotypic characters with a complex physical basis may have a correspondingly complex evolutionary history. Males in the "bee" hummingbird clade court females with sound from tail-feathers, which flutter during display dives. On a phylogeny of 35 species, flutter sound frequency evolves as a gradual, continuous character on most branches. But on at least six internal branches fall two types of major, saltational changes: mode of flutter changes, or the feather that is the sound source changes, causing frequency to jump from one discrete value to another. In addition to their tail "instruments," males also court females with sound from their syrinx and wing feathers, and may transfer or switch instruments over evolutionary time. In support of this, we found a negative phylogenetic correlation between presence of wing trills and singing. We hypothesize this transference occurs because wing trills and vocal songs serve similar functions and are thus redundant. There are also three independent origins of self-convergence of multiple signals, in which the same species produces both a vocal (sung) frequency sweep, and a highly similar nonvocal sound. Moreover, production of vocal, learned song has been lost repeatedly. Male bee hummingbirds court females with a diverse, coevolving array of acoustic traits. © 2018 The Author(s). Evolution © 2018 The Society for the Study of Evolution.
Riede, Tobias; Goller, Franz
2010-10-01
Song production in songbirds is a model system for studying learned vocal behavior. As in humans, bird phonation involves three main motor systems (respiration, vocal organ and vocal tract). The avian respiratory mechanism uses pressure regulation in air sacs to ventilate a rigid lung. In songbirds sound is generated with two independently controlled sound sources, which reside in a uniquely avian vocal organ, the syrinx. However, the physical sound generation mechanism in the syrinx shows strong analogies to that in the human larynx, such that both can be characterized as myoelastic-aerodynamic sound sources. Similarities include active adduction and abduction, oscillating tissue masses which modulate flow rate through the organ and a layered structure of the oscillating tissue masses giving rise to complex viscoelastic properties. Differences in the functional morphology of the sound producing system between birds and humans require specific motor control patterns. The songbird vocal apparatus is adapted for high speed, suggesting that temporal patterns and fast modulation of sound features are important in acoustic communication. Rapid respiratory patterns determine the coarse temporal structure of song and maintain gas exchange even during very long songs. The respiratory system also contributes to the fine control of airflow. Muscular control of the vocal organ regulates airflow and acoustic features. The upper vocal tract of birds filters the sounds generated in the syrinx, and filter properties are actively adjusted. Nonlinear source-filter interactions may also play a role. The unique morphology and biomechanical system for sound production in birds presents an interesting model for exploring parallels in control mechanisms that give rise to highly convergent physical patterns of sound generation. More comparative work should provide a rich source for our understanding of the evolution of complex sound producing systems. Copyright © 2009 Elsevier Inc. All rights reserved.
Behavior-linked FoxP2 regulation enables zebra finch vocal learning.
Heston, Jonathan B; White, Stephanie A
2015-02-18
Mutations in the FOXP2 transcription factor cause an inherited speech and language disorder, but how FoxP2 contributes to learning of these vocal communication signals remains unclear. FoxP2 is enriched in corticostriatal circuits of both human and songbird brains. Experimental knockdown of this enrichment in song control neurons of the zebra finch basal ganglia impairs tutor song imitation, indicating that adequate FoxP2 levels are necessary for normal vocal learning. In unmanipulated birds, vocal practice acutely downregulates FoxP2, leading to increased vocal variability and dynamic regulation of FoxP2 target genes. To determine whether this behavioral regulation is important for song learning, here, we used viral-driven overexpression of FoxP2 to counteract its downregulation. This manipulation disrupted the acute effects of song practice on vocal variability and caused inaccurate song imitation. Together, these findings indicate that dynamic behavior-linked regulation of FoxP2, rather than absolute levels, is critical for vocal learning. Copyright © 2015 the authors 0270-6474/15/352885-10$15.00/0.
A Neural Code That Is Isometric to Vocal Output and Correlates with Its Sensory Consequences
Vyssotski, Alexei L.; Stepien, Anna E.; Keller, Georg B.; Hahnloser, Richard H. R.
2016-01-01
What cortical inputs are provided to motor control areas while they drive complex learned behaviors? We study this question in the nucleus interface of the nidopallium (NIf), which is required for normal birdsong production and provides the main source of auditory input to HVC, the driver of adult song. In juvenile and adult zebra finches, we find that spikes in NIf projection neurons precede vocalizations by several tens of milliseconds and are insensitive to distortions of auditory feedback. We identify a local isometry between NIf output and vocalizations: quasi-identical notes produced in different syllables are preceded by highly similar NIf spike patterns. NIf multiunit firing during song precedes responses in auditory cortical neurons by about 50 ms, revealing delayed congruence between NIf spiking and a neural representation of auditory feedback. Our findings suggest that NIf codes for imminent acoustic events within vocal performance. PMID:27723764
Differential Expression of Glutamate Receptors in Avian Neural Pathways for Learned Vocalization
WADA, KAZUHIRO; SAKAGUCHI, HIRONOBU; JARVIS, ERICH D.; HAGIWARA, MASATOSHI
2008-01-01
Learned vocalization, the substrate for human language, is a rare trait. It is found in three distantly related groups of birds—parrots, hummingbirds, and songbirds. These three groups contain cerebral vocal nuclei for learned vocalization not found in their more closely related vocal nonlearning relatives. Here, we cloned 21 receptor subunits/subtypes of all four glutamate receptor families (AMPA, kainate, NMDA, and metabotropic) and examined their expression in vocal nuclei of songbirds. We also examined expression of a subset of these receptors in vocal nuclei of hummingbirds and parrots, as well as in the brains of dove species as examples of close vocal nonlearning relatives. Among the 21 subunits/subtypes, 19 showed higher and/or lower prominent differential expression in songbird vocal nuclei relative to the surrounding brain subdivisions in which the vocal nuclei are located. This included relatively lower levels of all four AMPA subunits in lMAN, strikingly higher levels of the kainite subunit GluR5 in the robust nucleus of the arcopallium (RA), higher and lower levels respectively of the NMDA subunits NR2A and NR2B in most vocal nuclei and lower levels of the metabotropic group I subtypes (mGluR1 and -5) in most vocal nuclei and the group II subtype (mGluR2), showing a unique expression pattern of very low levels in RA and very high levels in HVC. The splice variants of AMPA subunits showed further differential expression in vocal nuclei. Some of the receptor subunits/subtypes also showed differential expression in hummingbird and parrot vocal nuclei. The magnitude of differential expression in vocal nuclei of all three vocal learners was unique compared with the smaller magnitude of differences found for nonvocal areas of vocal learners and vocal nonlearners. Our results suggest that evolution of vocal learning was accompanied by differential expression of a conserved gene family for synaptic transmission and plasticity in vocal nuclei. They also suggest that neural activity and signal transduction in vocal nuclei of vocal learners will be different relative to the surrounding brain areas. PMID:15236466
Goldstein, Michael H.; Schwade, Jennifer A.; Bornstein, Marc H.
2014-01-01
The early noncry vocalizations of infants are salient social signals. Caregivers spontaneously respond to 30-50% of these sounds, and their responsiveness to infants' prelinguistic noncry vocalizations facilitates the development of phonology and speech. Have infants learned that their vocalizations influence the behavior of social partners? If infants have learned the contingency between their vocalizing and the social responses of others, they should show an extinction burst when the contingency is removed, increasing their rate of noncry vocalizing then decreasing. Thirty-eight 5-month-olds were tested in the still-face paradigm, during which they engaged in a 2-min still-face interaction with an unfamiliar adult. When the adult assumed a still face, infants showed an extinction burst. This pattern of infant vocalizations suggests that 5-month-olds have learned the social efficacy of their vocalizations on caregivers' behavior. Furthermore, the magnitude of 5-month infants' extinction bursts predicted their language comprehension at 13 months. PMID:19489893
Prespeech motor learning in a neural network using reinforcement☆
Warlaumont, Anne S.; Westermann, Gert; Buder, Eugene H.; Oller, D. Kimbrough
2012-01-01
Vocal motor development in infancy provides a crucial foundation for language development. Some significant early accomplishments include learning to control the process of phonation (the production of sound at the larynx) and learning to produce the sounds of one’s language. Previous work has shown that social reinforcement shapes the kinds of vocalizations infants produce. We present a neural network model that provides an account of how vocal learning may be guided by reinforcement. The model consists of a self-organizing map that outputs to muscles of a realistic vocalization synthesizer. Vocalizations are spontaneously produced by the network. If a vocalization meets certain acoustic criteria, it is reinforced, and the weights are updated to make similar muscle activations increasingly likely to recur. We ran simulations of the model under various reinforcement criteria and tested the types of vocalizations it produced after learning in the differ-ent conditions. When reinforcement was contingent on the production of phonated (i.e. voiced) sounds, the network’s post learning productions were almost always phonated, whereas when reinforcement was not contingent on phonation, the network’s post-learning productions were almost always not phonated. When reinforcement was contingent on both phonation and proximity to English vowels as opposed to Korean vowels, the model’s post-learning productions were more likely to resemble the English vowels and vice versa. PMID:23275137
Prespeech motor learning in a neural network using reinforcement.
Warlaumont, Anne S; Westermann, Gert; Buder, Eugene H; Oller, D Kimbrough
2013-02-01
Vocal motor development in infancy provides a crucial foundation for language development. Some significant early accomplishments include learning to control the process of phonation (the production of sound at the larynx) and learning to produce the sounds of one's language. Previous work has shown that social reinforcement shapes the kinds of vocalizations infants produce. We present a neural network model that provides an account of how vocal learning may be guided by reinforcement. The model consists of a self-organizing map that outputs to muscles of a realistic vocalization synthesizer. Vocalizations are spontaneously produced by the network. If a vocalization meets certain acoustic criteria, it is reinforced, and the weights are updated to make similar muscle activations increasingly likely to recur. We ran simulations of the model under various reinforcement criteria and tested the types of vocalizations it produced after learning in the different conditions. When reinforcement was contingent on the production of phonated (i.e. voiced) sounds, the network's post-learning productions were almost always phonated, whereas when reinforcement was not contingent on phonation, the network's post-learning productions were almost always not phonated. When reinforcement was contingent on both phonation and proximity to English vowels as opposed to Korean vowels, the model's post-learning productions were more likely to resemble the English vowels and vice versa. Copyright © 2012 Elsevier Ltd. All rights reserved.
2014-01-01
Background Whether listening to background music enhances verbal learning performance is still a matter of dispute. In this study we investigated the influence of vocal and instrumental background music on verbal learning. Methods 226 subjects were randomly assigned to one of five groups (one control group and 4 experimental groups). All participants were exposed to a verbal learning task. One group served as control group while the 4 further groups served as experimental groups. The control group learned without background music while the 4 experimental groups were exposed to vocal or instrumental musical pieces during learning with different subjective intensity and valence. Thus, we employed 4 music listening conditions (vocal music with high intensity: VOC_HIGH, vocal music with low intensity: VOC_LOW, instrumental music with high intensity: INST_HIGH, instrumental music with low intensity: INST_LOW) and one control condition (CONT) during which the subjects learned the word lists. Since it turned out that the high and low intensity groups did not differ in terms of the rated intensity during the main experiment these groups were lumped together. Thus, we worked with 3 groups: one control group and two groups, which were exposed to background music (vocal and instrumental) during verbal learning. As dependent variable, the number of learned words was used. Here we measured immediate recall during five learning sessions (recall 1 – recall 5) and delayed recall for 15 minutes (recall 6) and 14 days (recall 7) after the last learning session. Results Verbal learning improved during the first 5 recall sessions without any strong difference between the control and experimental groups. Also the delayed recalls were similar for the three groups. There was only a trend for attenuated verbal learning for the group passively listened to vocals. This learning attenuation diminished during the following learning sessions. Conclusions The exposure to vocal or instrumental background music during encoding did not influence verbal learning. We suggest that the participants are easily able to cope with this background stimulation by ignoring this information channel in order to focus on the verbal learning task. PMID:24670048
A robotic voice simulator and the interactive training for hearing-impaired people.
Sawada, Hideyuki; Kitani, Mitsuki; Hayashi, Yasumori
2008-01-01
A talking and singing robot which adaptively learns the vocalization skill by means of an auditory feedback learning algorithm is being developed. The robot consists of motor-controlled vocal organs such as vocal cords, a vocal tract and a nasal cavity to generate a natural voice imitating a human vocalization. In this study, the robot is applied to the training system of speech articulation for the hearing-impaired, because the robot is able to reproduce their vocalization and to teach them how it is to be improved to generate clear speech. The paper briefly introduces the mechanical construction of the robot and how it autonomously acquires the vocalization skill in the auditory feedback learning by listening to human speech. Then the training system is described, together with the evaluation of the speech training by auditory impaired people.
Early life manipulations of vasopressin-family peptides alter vocal learning.
Baran, Nicole M; Peck, Samantha C; Kim, Tabitha H; Goldstein, Michael H; Adkins-Regan, Elizabeth
2017-07-26
Vocal learning from social partners is crucial for the successful development of communication in a wide range of species. Social interactions organize attention and enhance motivation to learn species-typical behaviour. However, the neurobiological mechanisms connecting social motivation and vocal learning are unknown. Using zebra finches ( Taeniopygia guttata ), a ubiquitous model for vocal learning, we show that manipulations of nonapeptide hormones in the vasopressin family (arginine vasotocin, AVT) early in development can promote or disrupt both song and social motivation. Young male zebra finches, like human infants, are socially gregarious and require interactive feedback from adult tutors to learn mature vocal forms. To investigate the role of social motivational mechanisms in song learning, in two studies, we injected hatchling males with AVT or Manning compound (MC, a nonapeptide receptor antagonist) on days 2-8 post-hatching and recorded song at maturity. In both studies, MC males produced a worse match to tutor song than controls. In study 2, which experimentally controlled for tutor and genetic factors, AVT males also learned song significantly better compared with controls. Furthermore, song similarity correlated with several measures of social motivation throughout development. These findings provide the first evidence that nonapeptides are critical to the development of vocal learning. © 2017 The Author(s).
Flight calls signal group and individual identity but not kinship in a cooperatively breeding bird.
Keen, Sara C; Meliza, C Daniel; Rubenstein, Dustin R
2013-11-01
In many complex societies, intricate communication and recognition systems may evolve to help support both direct and indirect benefits of group membership. In cooperatively breeding species where groups typically comprise relatives, both learned and innate vocal signals may serve as reliable cues for kin recognition. Here, we investigated vocal communication in the plural cooperatively breeding superb starling, Lamprotornis superbus , where flight calls-short, stereotyped vocalizations used when approaching conspecifics-may communicate kin relationships, group membership, and/or individual identity. We found that flight calls were most similar within individual repertoires but were also more similar within groups than within the larger population. Although starlings responded differently to playback of calls from their own versus other neighboring and distant social groups, call similarity was uncorrelated with genetic relatedness. Additionally, immigrant females showed similar patterns to birds born in the study population. Together, these results suggest that flight calls are learned signals that reflect social association but may also carry a signal of individuality. Flight calls, therefore, provide a reliable recognition mechanism for groups and may also be used to recognize individuals. In complex societies comprising related and unrelated individuals, signaling individuality and group association, rather than kinship, may be a route to cooperation.
Day, Nancy F; Kimball, Todd Haswell; Aamodt, Caitlin M; Heston, Jonathan B; Hilliard, Austin T; Xiao, Xinshu; White, Stephanie A
2018-01-01
Human speech is one of the few examples of vocal learning among mammals yet ~half of avian species exhibit this ability. Its neurogenetic basis is largely unknown beyond a shared requirement for FoxP2 in both humans and zebra finches. We manipulated FoxP2 isoforms in Area X, a song-specific region of the avian striatopallidum analogous to human anterior striatum, during a critical period for song development. We delineate, for the first time, unique contributions of each isoform to vocal learning. Weighted gene coexpression network analysis of RNA-seq data revealed gene modules correlated to singing, learning, or vocal variability. Coexpression related to singing was found in juvenile and adult Area X whereas coexpression correlated to learning was unique to juveniles. The confluence of learning and singing coexpression in juvenile Area X may underscore molecular processes that drive vocal learning in young zebra finches and, by analogy, humans. PMID:29360038
ERIC Educational Resources Information Center
Pepperberg, Irene M.
2010-01-01
This chapter briefly reviews what is known-and what remains to be understood--about Grey parrot vocal learning. I review Greys' physical capacities--issues of auditory perception and production--then discuss how these capacities are used in vocal learning and can be recruited for referential communication with humans. I discuss cross-species…
ERIC Educational Resources Information Center
Hsu, Chia-Fang
2012-01-01
This study investigated the influence of teacher vocal qualities and confirmation behaviors on student learning. Students (N = 197) enrolled in nonnative English-speaking teachers' classes completed a battery of instruments. Results indicated that both vocal qualities and confirmation behaviors were negatively related to receiver apprehension,…
ERIC Educational Resources Information Center
Warren, Steven F.; Gilkerson, Jill; Richards, Jeffrey A.; Oller, D. Kimbrough; Xu, Dongxin; Yapanel, Umit; Gray, Sharmistha
2010-01-01
The study compared the vocal production and language learning environments of 26 young children with autism spectrum disorder (ASD) to 78 typically developing children using measures derived from automated vocal analysis. A digital language processor and audio-processing algorithms measured the amount of adult words to children and the amount of…
Pasch, Bret; Abbasi, Mustafa Z; Wilson, Macey; Zhao, Daniel; Searle, Jeremy B; Webster, Michael S; Rice, Aaron N
2016-04-01
Nutritional stress can have lasting impacts on the development of traits involved in vocal production. Cross-fostering experiments are often used to examine the propensity for vocal learning in a variety of taxa, but few studies assess the influence of malnourishment that can occur as a byproduct of this technique. In this study, we reciprocally cross-fostered sister taxa of voluble grasshopper mice (genus Onychomys) to explore their propensity for vocal learning. Vocalizations of Onychomys leucogaster did not differ between control and cross-fostered animals, but cross-fostered Onychomys arenicola produced vocalizations that were higher in frequency in a direction away from tutors. These same animals exhibited a transient reduction in body mass early in development, indicative of malnutrition. Our findings simultaneously refute vocal learning and support the developmental stress hypothesis to highlight the importance of early ontogeny on the production of vocalizations later in life. Copyright © 2016 Elsevier Inc. All rights reserved.
Animal models of speech and vocal communication deficits associated with psychiatric disorders
Konopka, Genevieve; Roberts, Todd F.
2015-01-01
Disruptions in speech, language and vocal communication are hallmarks of several neuropsychiatric disorders, most notably autism spectrum disorders. Historically, the use of animal models to dissect molecular pathways and connect them to behavioral endophenotypes in cognitive disorders has proven to be an effective approach for developing and testing disease-relevant therapeutics. The unique aspects of human language when compared to vocal behaviors in other animals make such an approach potentially more challenging. However, the study of vocal learning in species with analogous brain circuits to humans may provide entry points for understanding this human-specific phenotype and diseases. Here, we review animal models of vocal learning and vocal communication, and specifically link phenotypes of psychiatric disorders to relevant model systems. Evolutionary constraints in the organization of neural circuits and synaptic plasticity result in similarities in the brain mechanisms for vocal learning and vocal communication. Comparative approaches and careful consideration of the behavioral limitations among different animal models can provide critical avenues for dissecting the molecular pathways underlying cognitive disorders that disrupt speech, language and vocal communication. PMID:26232298
Auditory–vocal mirroring in songbirds
Mooney, Richard
2014-01-01
Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory–vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory–vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory–vocal mirroring in the songbird's brain. PMID:24778375
Auditory-vocal mirroring in songbirds.
Mooney, Richard
2014-01-01
Mirror neurons are theorized to serve as a neural substrate for spoken language in humans, but the existence and functions of auditory-vocal mirror neurons in the human brain remain largely matters of speculation. Songbirds resemble humans in their capacity for vocal learning and depend on their learned songs to facilitate courtship and individual recognition. Recent neurophysiological studies have detected putative auditory-vocal mirror neurons in a sensorimotor region of the songbird's brain that plays an important role in expressive and receptive aspects of vocal communication. This review discusses the auditory and motor-related properties of these cells, considers their potential role on song learning and communication in relation to classical studies of birdsong, and points to the circuit and developmental mechanisms that may give rise to auditory-vocal mirroring in the songbird's brain.
Warren, Steven F; Gilkerson, Jill; Richards, Jeffrey A; Oller, D Kimbrough; Xu, Dongxin; Yapanel, Umit; Gray, Sharmistha
2010-05-01
The study compared the vocal production and language learning environments of 26 young children with autism spectrum disorder (ASD) to 78 typically developing children using measures derived from automated vocal analysis. A digital language processor and audio-processing algorithms measured the amount of adult words to children and the amount of vocalizations they produced during 12-h recording periods in their natural environments. The results indicated significant differences between typically developing children and children with ASD in the characteristics of conversations, the number of conversational turns, and in child vocalizations that correlated with parent measures of various child characteristics. Automated measurement of the language learning environment of young children with ASD reveals important differences from the environments experienced by typically developing children.
A Bird’s Eye View of Human Language Evolution
Berwick, Robert C.; Beckers, Gabriël J. L.; Okanoya, Kazuo; Bolhuis, Johan J.
2012-01-01
Comparative studies of linguistic faculties in animals pose an evolutionary paradox: language involves certain perceptual and motor abilities, but it is not clear that this serves as more than an input–output channel for the externalization of language proper. Strikingly, the capability for auditory–vocal learning is not shared with our closest relatives, the apes, but is present in such remotely related groups as songbirds and marine mammals. There is increasing evidence for behavioral, neural, and genetic similarities between speech acquisition and birdsong learning. At the same time, researchers have applied formal linguistic analysis to the vocalizations of both primates and songbirds. What have all these studies taught us about the evolution of language? Is the comparative study of an apparently species-specific trait like language feasible? We argue that comparative analysis remains an important method for the evolutionary reconstruction and causal analysis of the mechanisms underlying language. On the one hand, common descent has been important in the evolution of the brain, such that avian and mammalian brains may be largely homologous, particularly in the case of brain regions involved in auditory perception, vocalization, and auditory memory. On the other hand, there has been convergent evolution of the capacity for auditory–vocal learning, and possibly for structuring of external vocalizations, such that apes lack the abilities that are shared between songbirds and humans. However, significant limitations to this comparative analysis remain. While all birdsong may be classified in terms of a particularly simple kind of concatenation system, the regular languages, there is no compelling evidence to date that birdsong matches the characteristic syntactic complexity of human language, arising from the composition of smaller forms like words and phrases into larger ones. PMID:22518103
ERIC Educational Resources Information Center
de Groot, Annette M. B.; Smedinga, Hilde E.
2014-01-01
Participants learned foreign vocabulary by means of the paired-associates learning procedure in three conditions: (a) in silence, (b) with vocal music with lyrics in a familiar language playing in the background, or (c) with vocal music with lyrics in an unfamiliar language playing in the background. The vocabulary to learn varied in concreteness…
Effects of Voice Harmonic Complexity on ERP Responses to Pitch-Shifted Auditory Feedback
Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R.
2011-01-01
Objective The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Methods Event-related potentials (ERPs) were recorded in response to +200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. Results During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. Conclusions These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. Significance This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. PMID:21719346
Changes in the neural control of a complex motor sequence during learning
Otchy, Timothy M.; Goldberg, Jesse H.; Aronov, Dmitriy; Fee, Michale S.
2011-01-01
The acquisition of complex motor sequences often proceeds through trial-and-error learning, requiring the deliberate exploration of motor actions and the concomitant evaluation of the resulting performance. Songbirds learn their song in this manner, producing highly variable vocalizations as juveniles. As the song improves, vocal variability is gradually reduced until it is all but eliminated in adult birds. In the present study we examine how the motor program underlying such a complex motor behavior evolves during learning by recording from the robust nucleus of the arcopallium (RA), a motor cortex analog brain region. In young birds, neurons in RA exhibited highly variable firing patterns that throughout development became more precise, sparse, and bursty. We further explored how the developing motor program in RA is shaped by its two main inputs: LMAN, the output nucleus of a basal ganglia-forebrain circuit, and HVC, a premotor nucleus. Pharmacological inactivation of LMAN during singing made the song-aligned firing patterns of RA neurons adultlike in their stereotypy without dramatically affecting the spike statistics or the overall firing patterns. Removing the input from HVC, on the other hand, resulted in a complete loss of stereotypy of both the song and the underlying motor program. Thus our results show that a basal ganglia-forebrain circuit drives motor exploration required for trial-and-error learning by adding variability to the developing motor program. As learning proceeds and the motor circuits mature, the relative contribution of LMAN is reduced, allowing the premotor input from HVC to drive an increasingly stereotyped song. PMID:21543758
Winograd, Claudia; Ceman, Stephanie
2012-01-01
Fragile X syndrome (FXS) is the most common cause of inherited intellectual disability and presents with markedly atypical speech-language, likely due to impaired vocal learning. Although current models have been useful for studies of some aspects of FXS, zebra finch is the only tractable lab model for vocal learning. The neural circuits for vocal learning in the zebra finch have clear relationships to the pathways in the human brain that may be affected in FXS. Further, finch vocal learning may be quantified using software designed specifically for this purpose. Knockdown of the zebra finch FMR1 gene may ultimately enable novel tests of therapies that are modality-specific, using drugs or even social strategies, to ameliorate deficits in vocal development and function. In this chapter, we describe the utility of the zebra finch model and present a hypothesis for the role of FMRP in the developing neural circuitry for vocalization.
Saranathan, Vinodkumar; Hamilton, Deborah; Powell, George V N; Kroodsma, Donald E; Prum, Richard O
2007-09-01
Vocal learning is thought to have evolved in three clades of birds (parrots, hummingbirds, and oscine passerines), and three clades of mammals (whales, bats, and primates). Behavioural data indicate that, unlike other suboscine passerines, the three-wattled bellbird Procnias tricarunculata (Cotingidae) is capable of vocal learning. Procnias tricarunculata shows conspicuous vocal ontogeny, striking geographical variation in song, and rapid temporal change in song within a population. Deprivation studies of vocal development in P. tricarunculata are impractical. Here, we report evidence from mitochondrial DNA sequences and nuclear microsatellite loci that genetic variation within and among the four allopatric breeding populations of P. tricarunculata is not congruent with variation in vocal behaviour. Sequences of the mitochondrial DNA control region document extensive haplotype sharing among localities and song types, and no phylogenetic resolution of geographical populations or behavioural groups. The vocally differentiated, allopatric breeding populations of P. tricarunculata are only weakly genetically differentiated populations, and are not distinct taxa. Mitochondrial DNA and microsatellite variation show small (2.9% and 13.5%, respectively) but significant correlation with geographical distance, but no significant residual variation by song type. Estimates of the strength of selection that would be needed to maintain the observed geographical pattern in vocal differentiation if songs were genetically based are unreasonably high, further discrediting the hypothesis of a genetic origin of vocal variation. These data support a fourth, phylogenetically independent origin of avian vocal learning in Procnias. Geographical variations in P. tricarunculata vocal behaviour are likely culturally evolved dialects.
ERIC Educational Resources Information Center
Fisher, Ramona A.; Collins, Edward C.
Tourette Syndrome is conceptualized as a neurobehavioral disorder, with behavioral aspects that are sometimes difficult for teachers to understand and deal with. The disorder has five layers of complexity: (1) observable multiple motor, vocal, and cognitive tics and sensory involvement; (2) Attention Deficit Hyperactivity Disorder; (3)…
Scheerer, N E; Jacobson, D S; Jones, J A
2016-02-09
Auditory feedback plays an important role in the acquisition of fluent speech; however, this role may change once speech is acquired and individuals no longer experience persistent developmental changes to the brain and vocal tract. For this reason, we investigated whether the role of auditory feedback in sensorimotor learning differs across children and adult speakers. Participants produced vocalizations while they heard their vocal pitch predictably or unpredictably shifted downward one semitone. The participants' vocal pitches were measured at the beginning of each vocalization, before auditory feedback was available, to assess the extent to which the deviant auditory feedback modified subsequent speech motor commands. Sensorimotor learning was observed in both children and adults, with participants' initial vocal pitch increasing following trials where they were exposed to predictable, but not unpredictable, frequency-altered feedback. Participants' vocal pitch was also measured across each vocalization, to index the extent to which the deviant auditory feedback was used to modify ongoing vocalizations. While both children and adults were found to increase their vocal pitch following predictable and unpredictable changes to their auditory feedback, adults produced larger compensatory responses. The results of the current study demonstrate that both children and adults rapidly integrate information derived from their auditory feedback to modify subsequent speech motor commands. However, these results also demonstrate that children and adults differ in their ability to use auditory feedback to generate compensatory vocal responses during ongoing vocalization. Since vocal variability also differed across the children and adult groups, these results also suggest that compensatory vocal responses to frequency-altered feedback manipulations initiated at vocalization onset may be modulated by vocal variability. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.
Effects of voice harmonic complexity on ERP responses to pitch-shifted auditory feedback.
Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R
2011-12-01
The present study investigated the neural mechanisms of voice pitch control for different levels of harmonic complexity in the auditory feedback. Event-related potentials (ERPs) were recorded in response to+200 cents pitch perturbations in the auditory feedback of self-produced natural human vocalizations, complex and pure tone stimuli during active vocalization and passive listening conditions. During active vocal production, ERP amplitudes were largest in response to pitch shifts in the natural voice, moderately large for non-voice complex stimuli and smallest for the pure tones. However, during passive listening, neural responses were equally large for pitch shifts in voice and non-voice complex stimuli but still larger than that for pure tones. These findings suggest that pitch change detection is facilitated for spectrally rich sounds such as natural human voice and non-voice complex stimuli compared with pure tones. Vocalization-induced increase in neural responses for voice feedback suggests that sensory processing of naturally-produced complex sounds such as human voice is enhanced by means of motor-driven mechanisms (e.g. efference copies) during vocal production. This enhancement may enable the audio-vocal system to more effectively detect and correct for vocal errors in the feedback of natural human vocalizations to maintain an intended vocal output for speaking. Copyright © 2011 International Federation of Clinical Neurophysiology. Published by Elsevier Ireland Ltd. All rights reserved.
The Vocal Repertoire of Adult and Neonate Giant Otters (Pteronura brasiliensis)
Mumm, Christina A. S.; Knörnschild, Mirjam
2014-01-01
Animals use vocalizations to exchange information about external events, their own physical or motivational state, or about individuality and social affiliation. Infant babbling can enhance the development of the full adult vocal repertoire by providing ample opportunity for practice. Giant otters are very social and frequently vocalizing animals. They live in highly cohesive groups, generally including a reproductive pair and their offspring born in different years. This basic social structure may vary in the degree of relatedness of the group members. Individuals engage in shared group activities and different social roles and thus, the social organization of giant otters provides a basis for complex and long-term individual relationships. We recorded and analysed the vocalizations of adult and neonate giant otters from wild and captive groups. We classified the adult vocalizations according to their acoustic structure, and described their main behavioural context. Additionally, we present the first description of vocalizations uttered in babbling bouts of new born giant otters. We expected to find 1) a sophisticated vocal repertoire that would reflect the species’ complex social organisation, 2) that giant otter vocalizations have a clear relationship between signal structure and function, and 3) that the vocal repertoire of new born giant otters would comprise age-specific vocalizations as well as precursors of the adult repertoire. We found a vocal repertoire with 22 distinct vocalization types produced by adults and 11 vocalization types within the babbling bouts of the neonates. A comparison within the otter subfamily suggests a relation between vocal and social complexity, with the giant otters being the socially and vocally most complex species. PMID:25391142
Heterospecific discrimination of Poecile vocalizations by zebra finches (Taeniopygia guttata).
Guillette, Lauren M; Hoeschele, Marisa; Hahn, Allison H; Sturdy, Christopher B
2013-08-01
Previous perceptual research with black-capped and mountain chickadees has demonstrated that the D note of the namesake chick-a-dee call controlled species-based discrimination compared to other note types in this call. In the current experiment, we sought to determine whether discrimination performance of the chickadees was controlled by stimulus-specific properties or due to learning through experience. To accomplish this, we tested zebra finches, a songbird species that is distantly related to chickadees, and also unfamiliar with black-capped and mountain chickadee vocalizations, on the same species-based discrimination on which black-capped and mountain chickadees were previously trained. We found that zebra finches learned the discrimination in the fewest number of trials with the D note, compared to other note types (i.e., the A, B, and C notes). In addition, we compared the current results to earlier work and found that zebra finches learned the discrimination in fewer trials compared to black-capped chickadees, and, across all species, males learned the discrimination in fewer trials than females. We discuss the roles that acoustic complexity and learning play in classification of the three species of songbirds tested. More generally, these results point to the benefits derived from testing members of each sex in species that vary in their natural history, vocal output, and phylogenetic relatedness as a means to uncover the mechanisms underlying acoustic communication. (PsycINFO Database Record (c) 2013 APA, all rights reserved).
Cortical inter-hemispheric circuits for multimodal vocal learning in songbirds.
Paterson, Amy K; Bottjer, Sarah W
2017-10-15
Vocal learning in songbirds and humans is strongly influenced by social interactions based on sensory inputs from several modalities. Songbird vocal learning is mediated by cortico-basal ganglia circuits that include the SHELL region of lateral magnocellular nucleus of the anterior nidopallium (LMAN), but little is known concerning neural pathways that could integrate multimodal sensory information with SHELL circuitry. In addition, cortical pathways that mediate the precise coordination between hemispheres required for song production have been little studied. In order to identify candidate mechanisms for multimodal sensory integration and bilateral coordination for vocal learning in zebra finches, we investigated the anatomical organization of two regions that receive input from SHELL: the dorsal caudolateral nidopallium (dNCL SHELL ) and a region within the ventral arcopallium (Av). Anterograde and retrograde tracing experiments revealed a topographically organized inter-hemispheric circuit: SHELL and dNCL SHELL , as well as adjacent nidopallial areas, send axonal projections to ipsilateral Av; Av in turn projects to contralateral SHELL, dNCL SHELL , and regions of nidopallium adjacent to each. Av on each side also projects directly to contralateral Av. dNCL SHELL and Av each integrate inputs from ipsilateral SHELL with inputs from sensory regions in surrounding nidopallium, suggesting that they function to integrate multimodal sensory information with song-related responses within LMAN-SHELL during vocal learning. Av projections share this integrated information from the ipsilateral hemisphere with contralateral sensory and song-learning regions. Our results suggest that the inter-hemispheric pathway through Av may function to integrate multimodal sensory feedback with vocal-learning circuitry and coordinate bilateral vocal behavior. © 2017 Wiley Periodicals, Inc.
Soderstrom, Ken; Wilson, Ashley R
2013-11-01
Zebra finch song is a learned behavior dependent upon successful progress through a sensitive period of late-postnatal development. This learning is associated with maturation of distinct brain nuclei and the fiber tract interconnections between them. We have previously found remarkably distinct and dense CB1 cannabinoid receptor expression within many of these song control brain regions, implying a normal role for endocannabinoid signaling in vocal learning. Activation of CB1 receptors via daily treatments with exogenous agonist during sensorimotor stages of song learning (but not in adulthood) results in persistent alteration of song patterns. Now we are working to understand physiological changes responsible for this cannabinoid-altered vocal learning. We have found that song-altering developmental treatments are associated with changes in expression of endocannabinoid signaling elements, including CB1 receptors and the principal CNS endogenous agonist, 2-AG. Within CNS, 2-AG is produced largely through activity of the α isoform of the enzyme diacylglycerol lipase (DAGLα). To better appreciate the role of 2-AG production in normal vocal development we have determined the spatial distribution of DAGLα expression within zebra finch CNS during vocal development. Early during vocal development at 25 days, DAGLα staining is typically light and of fibroid processes. Staining peaks late in the sensorimotor stage of song learning at 75 days and is characterized by fiber, neuropil and some staining of both small and large cell somata. Results provide insight to the normal role for endocannabinoid signaling in the maturation of brain regions responsible for song learning and vocal-motor output, and suggest mechanisms by which exogenous cannabinoid exposure alters acquisition of this form of vocal communication. Copyright © 2013 Elsevier B.V. All rights reserved.
Vocal learning, prosody, and basal ganglia: don't underestimate their complexity.
Ravignani, Andrea; Martins, Mauricio; Fitch, W Tecumseh
2014-12-01
Ackermann et al.'s arguments in the target article need sharpening and rethinking at both mechanistic and evolutionary levels. First, the authors' evolutionary arguments are inconsistent with recent evidence concerning nonhuman animal rhythmic abilities. Second, prosodic intonation conveys much more complex linguistic information than mere emotional expression. Finally, human adults' basal ganglia have a considerably wider role in speech modulation than Ackermann et al. surmise.
Vocal exploration is locally regulated during song learning
Ravbar, Primoz; Parra, Lucas C.; Lipkind, Dina; Tchernichovski, Ofer
2012-01-01
Exploratory variability is essential for sensory-motor learning, but it is not known how and at what time scales it is regulated. We manipulated song learning in zebra finches to experimentally control the requirements for vocal exploration in different parts of their song. We first trained birds to perform a one-syllable song, and once they mastered it we added a new syllable to the song model. Remarkably, when practicing the modified song, birds rapidly alternated between high and low acoustic variability to confine vocal exploration to the newly added syllable. Further, even within syllables, acoustic variability changed independently across song elements that were only milliseconds apart. Analysis of the entire vocal output during learning revealed that the variability of each song element decreased as it approached the target, correlating with momentary local distance from the target and less so with the overall distance. We conclude that vocal error is computed locally in sub-syllabic time scales and that song elements can be learned and crystalized independently. Songbirds have dedicated brain circuitry for vocal babbling in the anterior forebrain pathway (AFP), which generates exploratory song patterns that drive premotor neurons at the song nucleus RA (robust nucleus of the arcopallium). We hypothesize that either AFP adjusts the gain of vocal exploration in fine time scales, or that the sensitivity of RA premotor neurons to AFP/HVC inputs varies across song elements. PMID:22399765
Bjørgesaeter, Anders; Ugland, Karl Inne; Bjørge, Arne
2004-10-01
The male harbor seal (Phoca vitulina) produces broadband nonharmonic vocalizations underwater during the breeding season. In total, 120 vocalizations from six colonies were analyzed to provide a description of the acoustic structure and for the presence of geographic variation. The complex harbor seal vocalizations may be described by how the frequency bandwidth varies over time. An algorithm that identifies the boundaries between noise and signal from digital spectrograms was developed in order to extract a frequency bandwidth contour. The contours were used as inputs for multivariate analysis. The vocalizations' sound types (e.g., pulsed sound, whistle, and broadband nonharmonic sound) were determined by comparing the vocalizations' spectrographic representations with sound waves produced by known sound sources. Comparison between colonies revealed differences in the frequency contours, as well as some geographical variation in use of sound types. The vocal differences may reflect a limited exchange of individuals between the six colonies due to long distances and strong site fidelity. Geographically different vocal repertoires have potential for identifying discrete breeding colonies of harbor seals, but more information is needed on the nature and extent of early movements of young, the degree of learning, and the stability of the vocal repertoire. A characteristic feature of many vocalizations in this study was the presence of tonal-like introductory phrases that fit into the categories pulsed sound and whistles. The functions of these phrases are unknown but may be important in distance perception and localization of the sound source. The potential behavioral consequences of the observed variability may be indicative of adaptations to different environmental properties influencing determination of distance and direction and plausible different male mating tactics.
Rehearsal Effects in Adult Word Learning
ERIC Educational Resources Information Center
Kaushanskaya, Margarita; Yoo, Jeewon
2011-01-01
The goal of this research was to examine the effects of phonological familiarity and rehearsal method (vocal vs. subvocal) on novel word learning. In Experiment 1, English-speaking adults learned phonologically familiar novel words that followed English phonological structure. Participants learned half the words via vocal rehearsal (saying the…
Primate feedstock for the evolution of consonants.
Lameira, Adriano R; Maddieson, Ian; Zuberbühler, Klaus
2014-02-01
The evolution of speech remains an elusive scientific problem. A widespread notion is that vocal learning, underlined by vocal-fold control, is a key prerequisite for speech evolution. Although present in birds and non-primate mammals, vocal learning is ostensibly absent in non-human primates. Here we argue that the main road to speech evolution has been through controlling the supralaryngeal vocal tract, for which we find evidence for evolutionary continuity within the great apes. Copyright © 2013 Elsevier Ltd. All rights reserved.
2018-01-01
Human vocal development is dependent on learning by imitation through social feedback between infants and caregivers. Recent studies have revealed that vocal development is also influenced by parental feedback in marmoset monkeys, suggesting vocal learning mechanisms in nonhuman primates. Marmoset infants that experience more contingent vocal feedback than their littermates develop vocalizations more rapidly, and infant marmosets with limited parental interaction exhibit immature vocal behavior beyond infancy. However, it is yet unclear whether direct parental interaction is an obligate requirement for proper vocal development because all monkeys in the aforementioned studies were able to produce the adult call repertoire after infancy. Using quantitative measures to compare distinct call parameters and vocal sequence structure, we show that social interaction has a direct impact not only on the maturation of the vocal behavior but also on acoustic call structures during vocal development. Monkeys with limited parental interaction during development show systematic differences in call entropy, a measure for maturity, compared with their normally raised siblings. In addition, different call types were occasionally uttered in motif-like sequences similar to those exhibited by vocal learners, such as birds and humans, in early vocal development. These results indicate that a lack of parental interaction leads to long-term disturbances in the acoustic structure of marmoset vocalizations, suggesting an imperative role for social interaction in proper primate vocal development. PMID:29651461
Gultekin, Yasemin B; Hage, Steffen R
2018-04-01
Human vocal development is dependent on learning by imitation through social feedback between infants and caregivers. Recent studies have revealed that vocal development is also influenced by parental feedback in marmoset monkeys, suggesting vocal learning mechanisms in nonhuman primates. Marmoset infants that experience more contingent vocal feedback than their littermates develop vocalizations more rapidly, and infant marmosets with limited parental interaction exhibit immature vocal behavior beyond infancy. However, it is yet unclear whether direct parental interaction is an obligate requirement for proper vocal development because all monkeys in the aforementioned studies were able to produce the adult call repertoire after infancy. Using quantitative measures to compare distinct call parameters and vocal sequence structure, we show that social interaction has a direct impact not only on the maturation of the vocal behavior but also on acoustic call structures during vocal development. Monkeys with limited parental interaction during development show systematic differences in call entropy, a measure for maturity, compared with their normally raised siblings. In addition, different call types were occasionally uttered in motif-like sequences similar to those exhibited by vocal learners, such as birds and humans, in early vocal development. These results indicate that a lack of parental interaction leads to long-term disturbances in the acoustic structure of marmoset vocalizations, suggesting an imperative role for social interaction in proper primate vocal development.
Killer whales are capable of vocal learning
Foote, Andrew D; Griffin, Rachael M; Howitt, David; Larsson, Lisa; Miller, Patrick J.O; Rus Hoelzel, A
2006-01-01
The production learning of vocalizations by manipulation of the sound production organs to alter the physical structure of sound has been demonstrated in only a few mammals. In this natural experiment, we document the vocal behaviour of two juvenile killer whales, Orcinus orca, separated from their natal pods, which are the only cases of dispersal seen during the three decades of observation of their populations. We find mimicry of California sea lion (Zalophus californianus) barks, demonstrating the vocal production learning ability for one of the calves. We also find differences in call usage (compared to the natal pod) that may reflect the absence of a repertoire model from tutors or some unknown effect related to isolation or context. PMID:17148275
Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar
Whitney, Osceola; Voyles, Tawni; Hara, Erina; Chen, Qianqian; White, Stephanie A.; Wright, Timothy F.
2014-01-01
The forkhead domain FOXP2 and FOXP1 transcription factors are implicated in several cognitive disorders with language deficits, notably autism, and thus play a central role in learned vocal motor behavior in humans. Although a similar role for FoxP2 and FoxP1 is proposed for other vertebrate species, including songbirds, the neurodevelopmental expression of these genes are unknown in a species with lifelong vocal learning abilities. Like humans, budgerigars (Melopsittacus undulatus) learn new vocalizations throughout their entire lifetime. Like songbirds, budgerigars have distinct brain nuclei for vocal learning, which include the magnocellular nucleus of the medial striatum (MMSt), a basal ganglia region that is considered developmentally and functionally analogous to Area X in songbirds. Here we used in situ hybridization and immunohistochemistry to investigate FoxP2 and FoxP1 expression in the MMSt of juvenile and adult budgerigars. We found FoxP2 mRNA and protein expression levels in the MMSt that were lower than the surrounding striatum throughout development and adulthood. In contrast, FoxP1 mRNA and protein had an elevated MMSt/striatum expression ratio as birds matured, regardless of their sex. These results show that life-long vocal plasticity in budgerigars is associated with persistent low-level FoxP2 expression in the budgerigar MMSt, and suggests the possibility that FoxP1 plays an organizational role in the neurodevelopment of vocal motor circuitry. Thus, developmental regulation of the FoxP2 and FoxP1 genes in the basal ganglia appears essential for vocal mimicry in a range of species that possess this relatively rare trait. PMID:25407828
Differential FoxP2 and FoxP1 expression in a vocal learning nucleus of the developing budgerigar.
Whitney, Osceola; Voyles, Tawni; Hara, Erina; Chen, Qianqian; White, Stephanie A; Wright, Timothy F
2015-07-01
The forkhead domain FOXP2 and FOXP1 transcription factors are implicated in several cognitive disorders with language deficits, notably autism, and thus play a central role in learned vocal motor behavior in humans. Although a similar role for FoxP2 and FoxP1 is proposed for other vertebrate species, including songbirds, the neurodevelopmental expression of these genes are unknown in a species with lifelong vocal learning abilities. Like humans, budgerigars (Melopsittacus undulatus) learn new vocalizations throughout their entire lifetime. Like songbirds, budgerigars have distinct brain nuclei for vocal learning, which include the magnocellular nucleus of the medial striatum (MMSt), a basal ganglia region that is considered developmentally and functionally analogous to Area X in songbirds. Here, we used in situ hybridization and immunohistochemistry to investigate FoxP2 and FoxP1 expression in the MMSt of juvenile and adult budgerigars. We found FoxP2 mRNA and protein expression levels in the MMSt that were lower than the surrounding striatum throughout development and adulthood. In contrast, FoxP1 mRNA and protein had an elevated MMSt/striatum expression ratio as birds matured, regardless of their sex. These results show that life-long vocal plasticity in budgerigars is associated with persistent low-level FoxP2 expression in the budgerigar MMSt, and suggests the possibility that FoxP1 plays an organizational role in the neurodevelopment of vocal motor circuitry. Thus, developmental regulation of the FoxP2 and FoxP1 genes in the basal ganglia appears essential for vocal mimicry in a range of species that possess this relatively rare trait. © 2014 Wiley Periodicals, Inc.
2013-01-01
Background A fundamental question in molecular neurobiology is how genes that determine basic neuronal properties shape the functional organization of brain circuits underlying complex learned behaviors. Given the growing availability of complete vertebrate genomes, comparative genomics represents a promising approach to address this question. Here we used genomics and molecular approaches to study how ion channel genes influence the properties of the brain circuitry that regulates birdsong, a learned vocal behavior with important similarities to human speech acquisition. We focused on potassium (K-)Channels, which are major determinants of neuronal cell excitability. Starting with the human gene set of K-Channels, we used cross-species mRNA/protein alignments, and syntenic analysis to define the full complement of orthologs, paralogs, allelic variants, as well as novel loci not previously predicted in the genome of zebra finch (Taeniopygia guttata). We also compared protein coding domains in chicken and zebra finch orthologs to identify genes under positive selective pressure, and those that contained lineage-specific insertions/deletions in functional domains. Finally, we conducted comprehensive in situ hybridizations to determine the extent of brain expression, and identify K-Channel gene enrichments in nuclei of the avian song system. Results We identified 107 K-Channel finch genes, including 6 novel genes common to non-mammalian vertebrate lineages. Twenty human genes are absent in songbirds, birds, or sauropsids, or unique to mammals, suggesting K-Channel properties may be lineage-specific. We also identified specific family members with insertions/deletions and/or high dN/dS ratios compared to chicken, a non-vocal learner. In situ hybridization revealed that while most K-Channel genes are broadly expressed in the brain, a subset is selectively expressed in song nuclei, representing molecular specializations of the vocal circuitry. Conclusions Together, these findings shed new light on genes that may regulate biophysical and excitable properties of the song circuitry, identify potential targets for the manipulation of the song system, and reveal genomic specializations that may relate to the emergence of vocal learning and associated brain areas in birds. PMID:23845108
Alt, Mary; Spaulding, Tammie
2011-01-01
The purpose of this study was to measure the effect of time to response in a fast-mapping word learning task for children with specific language impairment (SLI) and children with typically developing language skills (TD). Manipulating time to response allows us to examine decay of the memory trace, the use of vocal rehearsal, and their effects on word learning. Participants included 40 school-age children: half with SLI and half with TD. The children were asked to expressively and receptively fast-map 24 novel labels for 24 novel animated dinosaurs. They were asked to demonstrate learning either immediately after presentation of the novel word or after a 10-second delay. Data were collected on the use of vocal rehearsal and for recognition and production accuracy. Although the SLI group was less accurate overall, there was no evidence of decay of the memory trace. Both groups used vocal rehearsal at comparable rates, which did not vary when learning was tested immediately or after a delay. Use of vocal rehearsal resulted in better accuracy on the recognition task, but only for the TD group. A delay in time to response without interference was not an undue burden for either group. Despite the fact that children with SLI used a vocal rehearsal strategy as often as unimpaired peers, they did not benefit from the strategy in the same way as their peers. Possible explanations for these findings and clinical implications will be discussed. Readers will learn about how time to response affects word learning in children with specific language impairment and unimpaired peers. They will see how this issue fits into a framework of phonological working memory. They will also become acquainted with the effect of vocal rehearsal on word learning. Copyright © 2011 Elsevier Inc. All rights reserved.
Human mutant huntingtin disrupts vocal learning in transgenic songbirds.
Liu, Wan-Chun; Kohn, Jessica; Szwed, Sarah K; Pariser, Eben; Sepe, Sharon; Haripal, Bhagwattie; Oshimori, Naoki; Marsala, Martin; Miyanohara, Atsushi; Lee, Ramee
2015-11-01
Speech and vocal impairments characterize many neurological disorders. However, the neurogenetic mechanisms of these disorders are not well understood, and current animal models do not have the necessary circuitry to recapitulate vocal learning deficits. We developed germline transgenic songbirds, zebra finches (Taneiopygia guttata) expressing human mutant huntingtin (mHTT), a protein responsible for the progressive deterioration of motor and cognitive function in Huntington's disease (HD). Although generally healthy, the mutant songbirds had severe vocal disorders, including poor vocal imitation, stuttering, and progressive syntax and syllable degradation. Their song abnormalities were associated with HD-related neuropathology and dysfunction of the cortical-basal ganglia (CBG) song circuit. These transgenics are, to the best of our knowledge, the first experimentally created, functional mutant songbirds. Their progressive and quantifiable vocal disorder, combined with circuit dysfunction in the CBG song system, offers a model for genetic manipulation and the development of therapeutic strategies for CBG-related vocal and motor disorders.
Can vocal conditioning trigger a semiotic ratchet in marmosets?
Turesson, Hjalmar K; Ribeiro, Sidarta
2015-01-01
The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders.
Can vocal conditioning trigger a semiotic ratchet in marmosets?
Turesson, Hjalmar K.; Ribeiro, Sidarta
2015-01-01
The complexity of human communication has often been taken as evidence that our language reflects a true evolutionary leap, bearing little resemblance to any other animal communication system. The putative uniqueness of the human language poses serious evolutionary and ethological challenges to a rational explanation of human communication. Here we review ethological, anatomical, molecular, and computational results across several species to set boundaries for these challenges. Results from animal behavior, cognitive psychology, neurobiology, and semiotics indicate that human language shares multiple features with other primate communication systems, such as specialized brain circuits for sensorimotor processing, the capability for indexical (pointing) and symbolic (referential) signaling, the importance of shared intentionality for associative learning, affective conditioning and parental scaffolding of vocal production. The most substantial differences lie in the higher human capacity for symbolic compositionality, fast vertical transmission of new symbols across generations, and irreversible accumulation of novel adaptive behaviors (cultural ratchet). We hypothesize that increasingly-complex vocal conditioning of an appropriate animal model may be sufficient to trigger a semiotic ratchet, evidenced by progressive sign complexification, as spontaneous contact calls become indexes, then symbols and finally arguments (strings of symbols). To test this hypothesis, we outline a series of conditioning experiments in the common marmoset (Callithrix jacchus). The experiments are designed to probe the limits of vocal communication in a prosocial, highly vocal primate 35 million years far from the human lineage, so as to shed light on the mechanisms of semiotic complexification and cultural transmission, and serve as a naturalistic behavioral setting for the investigation of language disorders. PMID:26500583
An Automated Procedure for Evaluating Song Imitation
Mandelblat-Cerf, Yael; Fee, Michale S.
2014-01-01
Songbirds have emerged as an excellent model system to understand the neural basis of vocal and motor learning. Like humans, songbirds learn to imitate the vocalizations of their parents or other conspecific “tutors.” Young songbirds learn by comparing their own vocalizations to the memory of their tutor song, slowly improving until over the course of several weeks they can achieve an excellent imitation of the tutor. Because of the slow progression of vocal learning, and the large amounts of singing generated, automated algorithms for quantifying vocal imitation have become increasingly important for studying the mechanisms underlying this process. However, methodologies for quantifying song imitation are complicated by the highly variable songs of either juvenile birds or those that learn poorly because of experimental manipulations. Here we present a method for the evaluation of song imitation that incorporates two innovations: First, an automated procedure for selecting pupil song segments, and, second, a new algorithm, implemented in Matlab, for computing both song acoustic and sequence similarity. We tested our procedure using zebra finch song and determined a set of acoustic features for which the algorithm optimally differentiates between similar and non-similar songs. PMID:24809510
Precise auditory-vocal mirroring in neurons for learned vocal communication.
Prather, J F; Peters, S; Nowicki, S; Mooney, R
2008-01-17
Brain mechanisms for communication must establish a correspondence between sensory and motor codes used to represent the signal. One idea is that this correspondence is established at the level of single neurons that are active when the individual performs a particular gesture or observes a similar gesture performed by another individual. Although neurons that display a precise auditory-vocal correspondence could facilitate vocal communication, they have yet to be identified. Here we report that a certain class of neurons in the swamp sparrow forebrain displays a precise auditory-vocal correspondence. We show that these neurons respond in a temporally precise fashion to auditory presentation of certain note sequences in this songbird's repertoire and to similar note sequences in other birds' songs. These neurons display nearly identical patterns of activity when the bird sings the same sequence, and disrupting auditory feedback does not alter this singing-related activity, indicating it is motor in nature. Furthermore, these neurons innervate striatal structures important for song learning, raising the possibility that singing-related activity in these cells is compared to auditory feedback to guide vocal learning.
Cetacean vocal learning and communication.
Janik, Vincent M
2014-10-01
The cetaceans are one of the few mammalian clades capable of vocal production learning. Evidence for this comes from synchronous changes in song patterns of baleen whales and experimental work on toothed whales in captivity. While baleen whales like many vocal learners use this skill in song displays that are involved in sexual selection, toothed whales use learned signals in individual recognition and the negotiation of social relationships. Experimental studies demonstrated that dolphins can use learned signals referentially. Studies on wild dolphins demonstrated how this skill appears to be useful in their own communication system, making them an interesting subject for comparative communication studies. Copyright © 2014. Published by Elsevier Ltd.
A duetting perspective on avian song learning.
Rivera-Cáceres, Karla D; Templeton, Christopher N
2017-12-25
Avian song learning has a rich history of study and has become the preeminent system for understanding the ontogeny of vocal communication in animals. Song learning in birds has many parallels with human language learning, ranging from the neural mechanisms involved to the importance of social factors in shaping signal acquisition. While much has been learned about the process of song learning, virtually all of the research done to date has focused on temperate species, where often only one sex (the male) sings. Duetting species, in which both males and females learn to sing and learn to combine their songs into temporally coordinated joint displays, could provide many insights into the processes by which vocal learning takes place. Here we highlight three key features of song learning-neuroendocrine control mechanisms, timing and life history stages of song acquisition, and the role of social factors in song selection and use-that have been elucidated from species where only males sing, and compare these with duetting species. We summarize what is known about song learning in duetting species and then provide several suggestions for fruitful directions for future research. We suggest that focusing research efforts on duetting species could significantly advance our understanding of vocal learning in birds and further cement the importance of avian species as models for understanding human conversations and the processes of vocal learning more broadly. Copyright © 2017 Elsevier B.V. All rights reserved.
Learned vocal and breathing behavior in an enculturated gorilla.
Perlman, Marcus; Clark, Nathaniel
2015-09-01
We describe the repertoire of learned vocal and breathing-related behaviors (VBBs) performed by the enculturated gorilla Koko. We examined a large video corpus of Koko and observed 439 VBBs spread across 161 bouts. Our analysis shows that Koko exercises voluntary control over the performance of nine distinctive VBBs, which involve variable coordination of her breathing, larynx, and supralaryngeal articulators like the tongue and lips. Each of these behaviors is performed in the context of particular manual action routines and gestures. Based on these and other findings, we suggest that vocal learning and the ability to exercise volitional control over vocalization, particularly in a multimodal context, might have figured relatively early into the evolution of language, with some rudimentary capacity in place at the time of our last common ancestor with great apes.
Carey, Daniel; McGettigan, Carolyn
2017-04-01
The human vocal system is highly plastic, allowing for the flexible expression of language, mood and intentions. However, this plasticity is not stable throughout the life span, and it is well documented that adult learners encounter greater difficulty than children in acquiring the sounds of foreign languages. Researchers have used magnetic resonance imaging (MRI) to interrogate the neural substrates of vocal imitation and learning, and the correlates of individual differences in phonetic "talent". In parallel, a growing body of work using MR technology to directly image the vocal tract in real time during speech has offered primarily descriptive accounts of phonetic variation within and across languages. In this paper, we review the contribution of neural MRI to our understanding of vocal learning, and give an overview of vocal tract imaging and its potential to inform the field. We propose methods by which our understanding of speech production and learning could be advanced through the combined measurement of articulation and brain activity using MRI - specifically, we describe a novel paradigm, developed in our laboratory, that uses both MRI techniques to for the first time map directly between neural, articulatory and acoustic data in the investigation of vocalisation. This non-invasive, multimodal imaging method could be used to track central and peripheral correlates of spoken language learning, and speech recovery in clinical settings, as well as provide insights into potential sites for targeted neural interventions. Copyright © 2016 Elsevier Ltd. All rights reserved.
Hayase, Shin; Wada, Kazuhiro
2018-06-23
Learned vocalization, including birdsong and human speech, is acquired through self-motivated vocal practice during the sensitive period of vocal learning. The zebra finch (Taeniopygia guttata) develops a song characterized by vocal variability and crystalizes a defined song pattern as adulthood. However, it remains unknown how vocal variability is regulated with diurnal singing during the sensorimotor learning period. Here, we investigated the expression of activity-dependent neuroplasticity-related gene Arc during the early plastic song phase to examine its potential association with vocal plasticity. We first confirmed that multiple acoustic features of syllables in the plastic song were dramatically and simultaneously modulated during the first 3 hours of singing in a day and the altered features were maintained until sleep. Concurrently, Arc was intensely induced during morning singing and a subsequent attenuation during afternoon singing in the robust nucleus of the arcopallium (RA) and the interfacial nucleus of the nidopallium (NIf). The singing-driven Arc expression was not altered by circadian rhythm, but rather reduced during the day as juveniles produced more songs. Song stabilization accelerated by testosterone administration in juveniles was accompanied with attenuation of Arc induction in RA and NIf. In contrast, although early-deafened birds produced highly unstable song even at adulthood, singing-driven Arc expression was not different between intact and early-deafened adults. These results suggest a potential functional link between Arc expression in RA and NIf and vocal plasticity during the sensorimotor phase of song learning. Nonetheless, Arc expression did not reflect the quality of bird's own song or auditory feedback. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
Pinaud, Raphael; Terleph, Thomas A.; Tremere, Liisa A.; Phan, Mimi L.; Dagostin, André A.; Leão, Ricardo M.; Mello, Claudio V.; Vicario, David S.
2008-01-01
The role of GABA in the central processing of complex auditory signals is not fully understood. We have studied the involvement of GABAA-mediated inhibition in the processing of birdsong, a learned vocal communication signal requiring intact hearing for its development and maintenance. We focused on caudomedial nidopallium (NCM), an area analogous to parts of the mammalian auditory cortex with selective responses to birdsong. We present evidence that GABAA-mediated inhibition plays a pronounced role in NCM's auditory processing of birdsong. Using immunocytochemistry, we show that approximately half of NCM's neurons are GABAergic. Whole cell patch-clamp recordings in a slice preparation demonstrate that, at rest, spontaneously active GABAergic synapses inhibit excitatory inputs onto NCM neurons via GABAA receptors. Multi-electrode electrophysiological recordings in awake birds show that local blockade of GABAA-mediated inhibition in NCM markedly affects the temporal pattern of song-evoked responses in NCM without modifications in frequency tuning. Surprisingly, this blockade increases the phasic and largely suppresses the tonic response component, reflecting dynamic relationships of inhibitory networks that could include disinhibition. Thus processing of learned natural communication sounds in songbirds, and possibly other vocal learners, may depend on complex interactions of inhibitory networks. PMID:18480371
Auditory Signal Processing in Communication: Perception and Performance of Vocal Sounds
Prather, Jonathan F.
2013-01-01
Learning and maintaining the sounds we use in vocal communication require accurate perception of the sounds we hear performed by others and feedback-dependent imitation of those sounds to produce our own vocalizations. Understanding how the central nervous system integrates auditory and vocal-motor information to enable communication is a fundamental goal of systems neuroscience, and insights into the mechanisms of those processes will profoundly enhance clinical therapies for communication disorders. Gaining the high-resolution insight necessary to define the circuits and cellular mechanisms underlying human vocal communication is presently impractical. Songbirds are the best animal model of human speech, and this review highlights recent insights into the neural basis of auditory perception and feedback-dependent imitation in those animals. Neural correlates of song perception are present in auditory areas, and those correlates are preserved in the auditory responses of downstream neurons that are also active when the bird sings. Initial tests indicate that singing-related activity in those downstream neurons is associated with vocal-motor performance as opposed to the bird simply hearing itself sing. Therefore, action potentials related to auditory perception and action potentials related to vocal performance are co-localized in individual neurons. Conceptual models of song learning involve comparison of vocal commands and the associated auditory feedback to compute an error signal that is used to guide refinement of subsequent song performances, yet the sites of that comparison remain unknown. Convergence of sensory and motor activity onto individual neurons points to a possible mechanism through which auditory and vocal-motor signals may be linked to enable learning and maintenance of the sounds used in vocal communication. PMID:23827717
The response of the anterior striatum during adult human vocal learning
Leech, Robert; Iverson, Paul; Wise, Richard J. S.
2014-01-01
Research on mammals predicts that the anterior striatum is a central component of human motor learning. However, because vocalizations in most mammals are innate, much of the neurobiology of human vocal learning has been inferred from studies on songbirds. Essential for song learning is a pathway, the homolog of mammalian cortical-basal ganglia “loops,” which includes the avian striatum. The present functional magnetic resonance imaging (fMRI) study investigated adult human vocal learning, a skill that persists throughout life, albeit imperfectly given that late-acquired languages are spoken with an accent. Monolingual adult participants were scanned while repeating novel non-native words. After training on the pronunciation of half the words for 1 wk, participants underwent a second scan. During scanning there was no external feedback on performance. Activity declined sharply in left and right anterior striatum, both within and between scanning sessions, and this change was independent of training and performance. This indicates that adult speakers rapidly adapt to the novel articulatory movements, possibly by using motor sequences from their native speech to approximate those required for the novel speech sounds. Improved accuracy correlated only with activity in motor-sensory perisylvian cortex. We propose that future studies on vocal learning, using different behavioral and pharmacological manipulations, will provide insights into adult striatal plasticity and its potential for modification in both educational and clinical contexts. PMID:24805076
ERIC Educational Resources Information Center
Riede, Tobias; Goller, Franz
2010-01-01
Song production in songbirds is a model system for studying learned vocal behavior. As in humans, bird phonation involves three main motor systems (respiration, vocal organ and vocal tract). The avian respiratory mechanism uses pressure regulation in air sacs to ventilate a rigid lung. In songbirds sound is generated with two independently…
Broaddus-Lawrence, P L; Treole, K; McCabe, R B; Allen, R L; Toppin, L
2000-03-01
The purpose of the present study was to determine the effects of vocal hygiene education on the vocal hygiene behaviors and perceptual vocal characteristics of untrained singers. Eleven adult untrained singers served as subjects. They attended four 1-hour class sessions on vocal hygiene, including anatomy and physiology of the phonatory mechanism, vocally abusive behaviors, voice disorders commonly seen in singers, and measures to prevent voice disorders. Pre- and postinstruction surveys were used to record subjects' vocal abuses and their perceptions of their speaking and singing voice. They also rated their perceived value of vocal hygiene education. Results revealed minimal changes in vocal hygiene behaviors and perceptual voice characteristics. The subjects did report a high degree of benefit and learning, however.
Dissociable Effects on Birdsong of Androgen Signaling in Cortex-Like Brain Regions of Canaries
2017-01-01
The neural basis of how learned vocalizations change during development and in adulthood represents a major challenge facing cognitive neuroscience. This plasticity in the degree to which learned vocalizations can change in both humans and songbirds is linked to the actions of sex steroid hormones during ontogeny but also in adulthood in the context of seasonal changes in birdsong. We investigated the role of steroid hormone signaling in the brain on distinct features of birdsong using adult male canaries (Serinus canaria), which show extensive seasonal vocal plasticity as adults. Specifically, we bilaterally implanted the potent androgen receptor antagonist flutamide in two key brain regions that control birdsong. We show that androgen signaling in the motor cortical-like brain region, the robust nucleus of the arcopallium (RA), controls syllable and trill bandwidth stereotypy, while not significantly affecting higher order features of song such syllable-type usage (i.e., how many times each syllable type is used) or syllable sequences. In contrast, androgen signaling in the premotor cortical-like brain region, HVC (proper name), controls song variability by increasing the variability of syllable-type usage and syllable sequences, while having no effect on syllable or trill bandwidth stereotypy. Other aspects of song, such as the duration of trills and the number of syllables per song, were also differentially affected by androgen signaling in HVC versus RA. These results implicate androgens in regulating distinct features of complex motor output in a precise and nonredundant manner. SIGNIFICANCE STATEMENT Vocal plasticity is linked to the actions of sex steroid hormones, but the precise mechanisms are unclear. We investigated this question in adult male canaries (Serinus canaria), which show extensive vocal plasticity throughout their life. We show that androgens in two cortex-like vocal control brain regions regulate distinct aspects of vocal plasticity. For example, in HVC (proper name), androgens regulate variability in syntax but not phonology, whereas androgens in the robust nucleus of the arcopallium (RA) regulate variability in phonology but not syntax. Temporal aspects of song were also differentially affected by androgen signaling in HVC versus RA. Thus, androgen signaling may reduce vocal plasticity by acting in a nonredundant and precise manner in the brain. PMID:28821656
Panaitof, S. Carmen; Abrahams, Brett S.; Dong, Hongmei; Geschwind, Daniel H.; White, Stephanie A.
2010-01-01
Multiple studies, involving distinct clinical populations, implicate contactin associated protein-like 2 (CNTNAP2) in aspects of language development and performance. While CNTNAP2 is broadly distributed in developing rodent brain, it shows a striking gradient of frontal cortical enrichment in developing human brain, consistent with a role in patterning circuits that subserve higher cognition and language. To test the hypothesis that CNTNAP2 may be important for learned vocal communication in additional species, we employed in situ hybridization to characterize transcript distribution in the zebra finch, an experimentally tractable songbird for which the neural substrate of this behavior is well-established. Consistent with an important role in learned vocalization, Cntnap2 was enriched or diminished in key song control nuclei relative to adjacent brain tissue. Importantly, this punctuated expression was observed in males, but not females, in accord with the sexual dimorphism of neural circuitry and vocal learning in this species. Ongoing functional work will provide important insights into the relationship between Cntnap2 and vocal communication in songbirds and thereby clarify mechanisms at play in disorders of human cognition and language. PMID:20394055
Zhou, Xin; Fu, Xin; Lin, Chun; Zhou, Xiaojuan; Liu, Jin; Wang, Li; Zhang, Xinwen; Zuo, Mingxue; Fan, Xiaolong; Li, Dapeng; Sun, Yingyu
2017-05-01
Deafening elicits a deterioration of learned vocalization, in both humans and songbirds. In songbirds, learned vocal plasticity has been shown to depend on the basal ganglia-cortical circuit, but the underlying cellular basis remains to be clarified. Using confocal imaging and electron microscopy, we examined the effect of deafening on dendritic spines in avian vocal motor cortex, the robust nucleus of the arcopallium (RA), and investigated the role of the basal ganglia circuit in motor cortex plasticity. We found rapid structural changes to RA dendritic spines in response to hearing loss, accompanied by learned song degradation. In particular, the morphological characters of RA spine synaptic contacts between 2 major pathways were altered differently. However, experimental disruption of the basal ganglia circuit, through lesions in song-specialized basal ganglia nucleus Area X, largely prevented both the observed changes to RA dendritic spines and the song deterioration after hearing loss. Our results provide cellular evidence to highlight a key role of the basal ganglia circuit in the motor cortical plasticity that underlies learned vocal plasticity. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
Tokarev, Kirill; Tiunova, Anna; Scharff, Constance; Anokhin, Konstantin
2011-01-01
Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their 'evolutionary history'. To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding.
Ghassemi, Marzyeh; Van Stan, Jarrad H; Mehta, Daryush D; Zañartu, Matías; Cheyne, Harold A; Hillman, Robert E; Guttag, John V
2014-06-01
Voice disorders are medical conditions that often result from vocal abuse/misuse which is referred to generically as vocal hyperfunction. Standard voice assessment approaches cannot accurately determine the actual nature, prevalence, and pathological impact of hyperfunctional vocal behaviors because such behaviors can vary greatly across the course of an individual's typical day and may not be clearly demonstrated during a brief clinical encounter. Thus, it would be clinically valuable to develop noninvasive ambulatory measures that can reliably differentiate vocal hyperfunction from normal patterns of vocal behavior. As an initial step toward this goal we used an accelerometer taped to the neck surface to provide a continuous, noninvasive acceleration signal designed to capture some aspects of vocal behavior related to vocal cord nodules, a common manifestation of vocal hyperfunction. We gathered data from 12 female adult patients diagnosed with vocal fold nodules and 12 control speakers matched for age and occupation. We derived features from weeklong neck-surface acceleration recordings by using distributions of sound pressure level and fundamental frequency over 5-min windows of the acceleration signal and normalized these features so that intersubject comparisons were meaningful. We then used supervised machine learning to show that the two groups exhibit distinct vocal behaviors that can be detected using the acceleration signal. We were able to correctly classify 22 of the 24 subjects, suggesting that in the future measures of the acceleration signal could be used to detect patients with the types of aberrant vocal behaviors that are associated with hyperfunctional voice disorders.
Vocal repertoire of the social giant otter.
Leuchtenberger, Caroline; Sousa-Lima, Renata; Duplaix, Nicole; Magnusson, William E; Mourão, Guilherme
2014-11-01
According to the "social intelligence hypothesis," species with complex social interactions have more sophisticated communication systems. Giant otters (Pteronura brasiliensis) live in groups with complex social interactions. It is likely that the vocal communication of giant otters is more sophisticated than previous studies suggest. The objectives of the current study were to describe the airborne vocal repertoire of giant otters in the Pantanal area of Brazil, to analyze call types within different behavioral contexts, and to correlate vocal complexity with level of sociability of mustelids to verify whether or not the result supports the social intelligence hypothesis. The behavior of nine giant otters groups was observed. Vocalizations recorded were acoustically and statistically analyzed to describe the species' repertoire. The repertoire was comprised by 15 sound types emitted in different behavioral contexts. The main behavioral contexts of each sound type were significantly associated with the acoustic variable ordination of different sound types. A strong correlation between vocal complexity and sociability was found for different species, suggesting that the communication systems observed in the family mustelidae support the social intelligence hypothesis.
Alt, Mary; Spaulding, Tammie
2011-01-01
Purpose The purpose of this study was to measure the effect of time to response in a fast-mapping word learning task for children with Specific Language Impairment (SLI) and children with typically-developing language skills (TD). Manipulating time to response allows us to examine decay of the memory trace, the use of vocal rehearsal, and their effects on word learning. Method Participants included 40 school-age children: half with SLI and half with TD. The children were asked to expressively and receptively fast-map 24 novel labels for 24 novel animated dinosaurs. They were asked to demonstrate learning either immediately after presentation of the novel word or after a 10-second delay. Data were collected on the use of vocal rehearsal and for recognition and production accuracy. Results Although the SLI group was less accurate overall, there was no evidence of decay of the memory trace. Both groups used vocal rehearsal at comparable rates, which did not vary when learning was tested immediately or after a delay. Use of vocal rehearsal resulted in better accuracy on the recognition task, but only for the TD group. Conclusions A delay in time to response without interference was not an undue burden for either group. Despite the fact that children with SLI used a vocal rehearsal strategy as often as unimpaired peers, they did not benefit from the strategy in the same way as their peers. Possible explanations for these findings and clinical implications will be discussed. PMID:21885056
Vocal Learning via Social Reinforcement by Infant Marmoset Monkeys.
Takahashi, Daniel Y; Liao, Diana A; Ghazanfar, Asif A
2017-06-19
For over half a century now, primate vocalizations have been thought to undergo little or no experience-dependent acoustic changes during development [1]. If any changes are apparent, then they are routinely (and quite reasonably) attributed to the passive consequences of growth. Indeed, previous experiments on squirrel monkeys and macaque monkeys showed that social isolation [2, 3], deafness [2], cross-fostering [4] and parental absence [5] have little or no effect on vocal development. Here, we explicitly test in marmoset monkeys-a very vocal and cooperatively breeding species [6]-whether the transformation of immature into mature contact calls by infants is influenced by contingent parental vocal feedback. Using a closed-loop design, we experimentally provided more versus less contingent vocal feedback to twin infant marmoset monkeys over their first 2 months of life, the interval during which their contact calls transform from noisy, immature calls to tonal adult-like "phee" calls [7, 8]. Infants who received more contingent feedback had a faster rate of vocal development, producing mature-sounding contact calls earlier than the other twin. The differential rate of vocal development was not linked to genetics, perinatal experience, or body growth; nor did the amount of contingency influence the overall rate of spontaneous vocal production. Thus, we provide the first experimental evidence for production-related vocal learning during the development of a nonhuman primate. Copyright © 2017 Elsevier Ltd. All rights reserved.
ERIC Educational Resources Information Center
Donovan, Paul
2011-01-01
Collective decision making is an increasing requirement in organizations where the emphasis is on team work at every level. It is, however, very complex and difficult to achieve in practice. Too frequently, important discussions are bypassed or, while the majority of the meeting participants remain mute, decisions are being made by a vocal few. In…
Recent Advances in the Genetics of Vocal Learning
Condro, Michael C.; White, Stephanie A.
2015-01-01
Language is a complex communicative behavior unique to humans, and its genetic basis is poorly understood. Genes associated with human speech and language disorders provide some insights, originating with the FOXP2 transcription factor, a mutation in which is the source of an inherited form of developmental verbal dyspraxia. Subsequently, targets of FOXP2 regulation have been associated with speech and language disorders, along with other genes. Here, we review these recent findings that implicate genetic factors in human speech. Due to the exclusivity of language to humans, no single animal model is sufficient to study the complete behavioral effects of these genes. Fortunately, some animals possess subcomponents of language. One such subcomponent is vocal learning, which though rare in the animal kingdom, is shared with songbirds. We therefore discuss how songbird studies have contributed to the current understanding of genetic factors that impact human speech, and support the continued use of this animal model for such studies in the future. PMID:26052371
Processing of Communication Sounds: Contributions of Learning, Memory, and Experience
Bigelow, James; Rossi, Breein
2013-01-01
Abundant evidence from both field and lab studies has established that conspecific vocalizations (CVs) are of critical ecological significance for a wide variety of species, including humans, nonhuman primates, rodents, and other mammals and birds. Correspondingly, a number of experiments have demonstrated behavioral processing advantages for CVs, such as in discrimination and memory tasks. Further, a wide range of experiments have described brain regions in many species that appear to be specialized for processing CVs. For example, several neural regions have been described in both mammals and birds wherein greater neural responses are elicited by CVs than by comparison stimuli such as heterospecific vocalizations, nonvocal complex sounds, and artificial stimuli. These observations raise the question of whether these regions reflect domain-specific neural mechanisms dedicated to processing CVs, or alternatively, if these regions reflect domain-general neural mechanisms for representing complex sounds of learned significance. Inasmuch as CVs can be viewed as complex combinations of basic spectrotemporal features, the plausibility of the latter position is supported by a large body of literature describing modulated cortical and subcortical representation of a variety of acoustic features that have been experimentally associated with stimuli of natural behavioral significance (such as food rewards). Herein, we review a relatively small body of existing literature describing the roles of experience, learning, and memory in the emergence of species-typical neural representations of CVs and auditory system plasticity. In both songbirds and mammals, manipulations of auditory experience as well as specific learning paradigms are shown to modulate neural responses evoked by CVs, either in terms of overall firing rate or temporal firing patterns. In some cases, CV-sensitive neural regions gradually acquire representation of non-CV stimuli with which subjects have training and experience. These results parallel literature in humans describing modulation of responses in face-sensitive neural regions through learning and experience. Thus, although many questions remain, the available evidence is consistent with the notion that CVs may acquire distinct neural representation through domain-general mechanisms for representing complex auditory objects that are of learned importance to the animal. PMID:23792078
Sleep, offline processing, and vocal learning
Margoliash, Daniel; Schmidt, Marc F
2009-01-01
The study of song learning and the neural song system has provided an important comparative model system for the study of speech and language acquisition. We describe some recent advances in the bird song system, focusing on the role of offline processing including sleep in processing sensory information and in guiding developmental song learning. These observations motivate a new model of the organization and role of the sensory memories in vocal learning. PMID:19906416
Vocal learning in the functionally referential food grunts of chimpanzees.
Watson, Stuart K; Townsend, Simon W; Schel, Anne M; Wilke, Claudia; Wallace, Emma K; Cheng, Leveda; West, Victoria; Slocombe, Katie E
2015-02-16
One standout feature of human language is our ability to reference external objects and events with socially learned symbols, or words. Exploring the phylogenetic origins of this capacity is therefore key to a comprehensive understanding of the evolution of language. While non-human primates can produce vocalizations that refer to external objects in the environment, it is generally accepted that their acoustic structure is fixed and a product of arousal states. Indeed, it has been argued that the apparent lack of flexible control over the structure of referential vocalizations represents a key discontinuity with language. Here, we demonstrate vocal learning in the acoustic structure of referential food grunts in captive chimpanzees. We found that, following the integration of two groups of adult chimpanzees, the acoustic structure of referential food grunts produced for a specific food converged over 3 years. Acoustic convergence arose independently of preference for the food, and social network analyses indicated this only occurred after strong affiliative relationships were established between the original subgroups. We argue that these data represent the first evidence of non-human animals actively modifying and socially learning the structure of a meaningful referential vocalization from conspecifics. Our findings indicate that primate referential call structure is not simply determined by arousal and that the socially learned nature of referential words in humans likely has ancient evolutionary origins. Copyright © 2015 Elsevier Ltd. All rights reserved.
Mind the gap: Neural coding of species identity in birdsong prosody.
Araki, Makoto; Bandi, M M; Yazaki-Sugiyama, Yoko
2016-12-09
Juvenile songbirds learn vocal communication from adult tutors of the same species but not from adults of other species. How species-specific learning emerges from the basic features of song prosody remains unknown. In the zebra finch auditory cortex, we discovered a class of neurons that register the silent temporal gaps between song syllables and are distinct from neurons encoding syllable morphology. Behavioral learning and neuronal coding of temporal gap structure resisted song tutoring from other species: Zebra finches fostered by Bengalese finch parents learned Bengalese finch song morphology transposed onto zebra finch temporal gaps. During the vocal learning period, temporal gap neurons fired selectively to zebra finch song. The innate temporal coding of intersyllable silent gaps suggests a neuronal barcode for conspecific vocal learning and social communication in acoustically diverse environments. Copyright © 2016, American Association for the Advancement of Science.
FoxP2 in song-learning birds and vocal-learning mammals.
Webb, D M; Zhang, J
2005-01-01
FoxP2 is the first identified gene that is specifically involved in speech and language development in humans. Population genetic studies of FoxP2 revealed a selective sweep in recent human history associated with two amino acid substitutions in exon 7. Avian song learning and human language acquisition share many behavioral and neurological similarities. To determine whether FoxP2 plays a similar role in song-learning birds, we sequenced exon 7 of FoxP2 in multiple song-learning and nonlearning birds. We show extreme conservation of FoxP2 sequences in birds, including unusually low rates of synonymous substitutions. However, no amino acid substitutions are shared between the song-learning birds and humans. Furthermore, sequences from vocal-learning whales, dolphins, and bats do not share the human-unique substitutions. While FoxP2 appears to be under strong functional constraints in mammals and birds, we find no evidence for its role during the evolution of vocal learning in nonhuman animals as in humans.
The biology and evolution of music: a comparative perspective.
Fitch, W Tecumseh
2006-05-01
Studies of the biology of music (as of language) are highly interdisciplinary and demand the integration of diverse strands of evidence. In this paper, I present a comparative perspective on the biology and evolution of music, stressing the value of comparisons both with human language, and with those animal communication systems traditionally termed "song". A comparison of the "design features" of music with those of language reveals substantial overlap, along with some important differences. Most of these differences appear to stem from semantic, rather than structural, factors, suggesting a shared formal core of music and language. I next review various animal communication systems that appear related to human music, either by analogy (bird and whale "song") or potential homology (great ape bimanual drumming). A crucial comparative distinction is between learned, complex signals (like language, music and birdsong) and unlearned signals (like laughter, ape calls, or bird calls). While human vocalizations clearly build upon an acoustic and emotional foundation shared with other primates and mammals, vocal learning has evolved independently in our species since our divergence with chimpanzees. The convergent evolution of vocal learning in other species offers a powerful window into psychological and neural constraints influencing the evolution of complex signaling systems (including both song and speech), while ape drumming presents a fascinating potential homology with human instrumental music. I next discuss the archeological data relevant to music evolution, concluding on the basis of prehistoric bone flutes that instrumental music is at least 40,000 years old, and perhaps much older. I end with a brief review of adaptive functions proposed for music, concluding that no one selective force (e.g., sexual selection) is adequate to explaining all aspects of human music. I suggest that questions about the past function of music are unlikely to be answered definitively and are thus a poor choice as a research focus for biomusicology. In contrast, a comparative approach to music promises rich dividends for our future understanding of the biology and evolution of music.
Soma, Masayo; Mori, Chihiro
2015-01-01
Music and dance are two remarkable human characteristics that are closely related. Communication through integrated vocal and motional signals is also common in the courtship displays of birds. The contribution of songbird studies to our understanding of vocal learning has already shed some light on the cognitive underpinnings of musical ability. Moreover, recent pioneering research has begun to show how animals can synchronize their behaviors with external stimuli, like metronome beats. However, few studies have applied such perspectives to unraveling how animals can integrate multimodal communicative signals that have natural functions. Additionally, studies have rarely asked how well these behaviors are learned. With this in mind, here we cast a spotlight on an unusual animal behavior: non-vocal sound production associated with singing in the Java sparrow (Lonchura oryzivora), a songbird. We show that male Java sparrows coordinate their bill-click sounds with the syntax of their song-note sequences, similar to percussionists. Analysis showed that they produced clicks frequently toward the beginning of songs and before/after specific song notes. We also show that bill-clicking patterns are similar between social fathers and their sons, suggesting that these behaviors might be learned from models or linked to learning-based vocalizations. Individuals untutored by conspecifics also exhibited stereotypical bill-clicking patterns in relation to song-note sequence, indicating that while the production of bill clicking itself is intrinsic, its syncopation appears to develop with songs. This paints an intriguing picture in which non-vocal sounds are integrated with vocal courtship signals in a songbird, a model that we expect will contribute to the further understanding of multimodal communication. PMID:25992841
Alderete, Tanya L.; Chang, Daniel
2010-01-01
The cortical nucleus LMAN (lateral magnocellular nucleus of the anterior nidopallium) provides the output of a basal ganglia pathway that is necessary for acquisition of learned vocal behavior during development in songbirds. LMAN is composed of two subregions, a core and a surrounding shell, that give rise to independent pathways that traverse the forebrain in parallel. The LMANshell pathway forms a recurrent loop that includes a cortical region, the dorsal region of the caudolateral nidopallium (dNCL), hitherto unknown to be involved with learned vocal behavior. Here we show that vocal production strongly induces the IEG product ZENK in dNCL of zebra finches. Hearing tutor song while singing is more effective at inducing expression in dNCL of juvenile birds during the auditory–motor integration stage of vocal learning than is hearing conspecific song. In contrast, hearing conspecific song is relatively more effective at inducing expression in adult birds, regardless of whether they are producing song. Furthermore, ZENK+ neurons in dNCL include projection neurons that are part of the LMANshell recurrent loop and a high proportion of dNCL projection neurons express ZENK in singing juvenile birds that hear tutor song. Thus juvenile birds that are actively refining their vocal pattern to imitate a tutor song show high levels of ZENK induction in dNCL neurons when they are singing while hearing the song of their tutor and low levels when they hear a novel conspecific. This pattern indicates that dNCL is a novel brain region involved with vocal learning and that its function is developmentally regulated. PMID:20107119
Van Stan, Jarrad H; Mehta, Daryush D; Petit, Robert J; Sternad, Dagmar; Muise, Jason; Burns, James A; Hillman, Robert E
2017-02-01
Ambulatory voice biofeedback (AVB) has the potential to significantly improve voice therapy effectiveness by targeting one of the most challenging aspects of rehabilitation: carryover of desired behaviors outside of the therapy session. Although initial evidence indicates that AVB can alter vocal behavior in daily life, retention of the new behavior after biofeedback has not been demonstrated. Motor learning studies repeatedly have shown retention-related benefits when reducing feedback frequency or providing summary statistics. Therefore, novel AVB settings that are based on these concepts are developed and implemented. The underlying theoretical framework and resultant implementation of innovative AVB settings on a smartphone-based voice monitor are described. A clinical case study demonstrates the functionality of the new relative frequency feedback capabilities. With new technical capabilities, 2 aspects of feedback are directly modifiable for AVB: relative frequency and summary feedback. Although reduced-frequency AVB was associated with improved carryover of a therapeutic vocal behavior (i.e., reduced vocal intensity) in a patient post-excision of vocal fold nodules, causation cannot be assumed. Timing and frequency of AVB schedules can be manipulated to empirically assess generalization of motor learning principles to vocal behavior modification and test the clinical effectiveness of AVB with various feedback schedules.
Mehta, Daryush D.; Petit, Robert J.; Sternad, Dagmar; Muise, Jason; Burns, James A.; Hillman, Robert E.
2017-01-01
Purpose Ambulatory voice biofeedback (AVB) has the potential to significantly improve voice therapy effectiveness by targeting one of the most challenging aspects of rehabilitation: carryover of desired behaviors outside of the therapy session. Although initial evidence indicates that AVB can alter vocal behavior in daily life, retention of the new behavior after biofeedback has not been demonstrated. Motor learning studies repeatedly have shown retention-related benefits when reducing feedback frequency or providing summary statistics. Therefore, novel AVB settings that are based on these concepts are developed and implemented. Method The underlying theoretical framework and resultant implementation of innovative AVB settings on a smartphone-based voice monitor are described. A clinical case study demonstrates the functionality of the new relative frequency feedback capabilities. Results With new technical capabilities, 2 aspects of feedback are directly modifiable for AVB: relative frequency and summary feedback. Although reduced-frequency AVB was associated with improved carryover of a therapeutic vocal behavior (i.e., reduced vocal intensity) in a patient post-excision of vocal fold nodules, causation cannot be assumed. Conclusions Timing and frequency of AVB schedules can be manipulated to empirically assess generalization of motor learning principles to vocal behavior modification and test the clinical effectiveness of AVB with various feedback schedules. PMID:28124070
Goldberg, Jesse H.
2011-01-01
Young songbirds produce vocal “babbling,” and the variability of their songs is thought to underlie a process of trial-and-error vocal learning. It is known that this exploratory variability requires the “cortical” component of a basal ganglia (BG) thalamocortical loop, but less understood is the role of the BG and thalamic components in this behavior. We found that large bilateral lesions to the songbird BG homolog Area X had little or no effect on song variability during vocal babbling. In contrast, lesions to the BG-recipient thalamic nucleus DLM (medial portion of the dorsolateral thalamus) largely abolished normal vocal babbling in young birds and caused a dramatic increase in song stereotypy. These findings support the idea that the motor thalamus plays a key role in the expression of exploratory juvenile behaviors during learning. PMID:21430276
A neural circuit mechanism for regulating vocal variability during song learning in zebra finches.
Garst-Orozco, Jonathan; Babadi, Baktash; Ölveczky, Bence P
2014-12-15
Motor skill learning is characterized by improved performance and reduced motor variability. The neural mechanisms that couple skill level and variability, however, are not known. The zebra finch, a songbird, presents a unique opportunity to address this question because production of learned song and induction of vocal variability are instantiated in distinct circuits that converge on a motor cortex analogue controlling vocal output. To probe the interplay between learning and variability, we made intracellular recordings from neurons in this area, characterizing how their inputs from the functionally distinct pathways change throughout song development. We found that inputs that drive stereotyped song-patterns are strengthened and pruned, while inputs that induce variability remain unchanged. A simple network model showed that strengthening and pruning of action-specific connections reduces the sensitivity of motor control circuits to variable input and neural 'noise'. This identifies a simple and general mechanism for learning-related regulation of motor variability.
Limiting parental feedback disrupts vocal development in marmoset monkeys
Gultekin, Yasemin B.; Hage, Steffen R.
2017-01-01
Vocalizations of human infants undergo dramatic changes across the first year by becoming increasingly mature and speech-like. Human vocal development is partially dependent on learning by imitation through social feedback between infants and caregivers. Recent studies revealed similar developmental processes being influenced by parental feedback in marmoset monkeys for apparently innate vocalizations. Marmosets produce infant-specific vocalizations that disappear after the first postnatal months. However, it is yet unclear whether parental feedback is an obligate requirement for proper vocal development. Using quantitative measures to compare call parameters and vocal sequence structure we show that, in contrast to normally raised marmosets, marmosets that were separated from parents after the third postnatal month still produced infant-specific vocal behaviour at subadult stages. These findings suggest a significant role of social feedback on primate vocal development until the subadult stages and further show that marmoset monkeys are a compelling model system for early human vocal development. PMID:28090084
Salinas-Melgoza, Alejandro; Wright, Timothy F.
2012-01-01
Studies of avian vocal dialects commonly find evidence of geographic and acoustic stability in the face of substantial gene flow between dialects. The vocal imitation and reduced dispersal hypotheses are alternatives to explain this mismatch between vocal and genetic variation. We experimentally simulated dispersal in the yellow-naped amazon (Amazona auropalliata) by moving individuals within and across dialect boundaries in Costa Rica. One juvenile translocated across dialect boundaries altered its contact call to imitate the acoustic form of the local call six weeks post-release. In contrast, four adults translocated across dialect boundaries returned to their original capture site within 120 days, while five cross-dialect translocated adults who remained at the release site did not alter their contact calls. Translocated individuals were observed to show some segregation from resident flocks. The observation of vocal imitation by the juvenile bird supports the vocal imitation, whereas the behavior of adults is more consistent with the reduced dispersal hypotheses. Taken together, our results suggest that both post-dispersal learning by juveniles and high philopatry in adults could explain the stability of vocal dialects in the face of immigration and gene flow. PMID:23139809
Return of Function after Hair Cell Regeneration
Ryals, Brenda M.; Dent, Micheal L.; Dooling, Robert J.
2012-01-01
The ultimate goal of hair cell regeneration is to restore functional hearing. Because birds begin perceiving and producing song early in life, they provide a propitious model for studying not only whether regeneration of lost hair cells can return auditory sensitivity but also whether this regenerated periphery can restore complex auditory perception and production. They are the only animal where hair cell regeneration occurs naturally after hair cell loss and where the ability to correctly perceive and produce complex acoustic signals is critical to procreation and survival. The purpose of this review article is to survey the most recent literature on behavioral measures of auditory functional return in adult birds after hair cell regeneration. The first portion of the review summarizes the effect of ototoxic drug induced hair cell loss and regeneration on hearing loss and recovery for pure tones. The second portion reviews studies of complex, species-specific vocalization discrimination and recognition after hair cell regeneration. Finally, we discuss the relevance of temporary hearing loss and recovery through hair cell regeneration on complex call and song production. Hearing sensitivity is restored, except for the highest frequencies, after hair cell regeneration in birds, but there are enduring changes to complex auditory perception. These changes do not appear to provide any obstacle to future auditory or vocal learning. PMID:23202051
Tokarev, Kirill; Tiunova, Anna
2011-01-01
Background Specialized neural pathways, the song system, are required for acquiring, producing, and perceiving learned avian vocalizations. Birds that do not learn to produce their vocalizations lack telencephalic song system components. It is not known whether the song system forebrain regions are exclusively evolved for song or whether they also process information not related to song that might reflect their ‘evolutionary history’. Methodology/Principal Findings To address this question we monitored the induction of two immediate-early genes (IEGs) c-Fos and ZENK in various regions of the song system in zebra finches (Taeniopygia guttata) in response to an aversive food learning paradigm; this involves the association of a food item with a noxious stimulus that affects the oropharyngeal-esophageal cavity and tongue, causing subsequent avoidance of that food item. The motor response results in beak and head movements but not vocalizations. IEGs have been extensively used to map neuro-molecular correlates of song motor production and auditory processing. As previously reported, neurons in two pallial vocal motor regions, HVC and RA, expressed IEGs after singing. Surprisingly, c-Fos was induced equivalently also after food aversion learning in the absence of singing. The density of c-Fos positive neurons was significantly higher than that of birds in control conditions. This was not the case in two other pallial song nuclei important for vocal plasticity, LMAN and Area X, although singing did induce IEGs in these structures, as reported previously. Conclusions/Significance Our results are consistent with the possibility that some of the song nuclei may participate in non-vocal learning and the populations of neurons involved in the two tasks show partial overlap. These findings underscore the previously advanced notion that the specialized forebrain pre-motor nuclei controlling song evolved from circuits involved in behaviors related to feeding. PMID:21695176
Segmental Production in Mandarin-Learning Infants
ERIC Educational Resources Information Center
Chen, Li-Mei; Kent, Raymond D.
2010-01-01
The early development of vocalic and consonantal production in Mandarin-learning infants was studied at the transition from babbling to producing first words. Spontaneous vocalizations were recorded for 24 infants grouped by age: G1 (0 ; 7 to 1 ; 0) and G2 (1 ; 1 to 1 ; 6). Additionally, the infant-directed speech of 24 caregivers was recorded…
Statistical learning in songbirds: from self-tutoring to song culture.
Fehér, Olga; Ljubičić, Iva; Suzuki, Kenta; Okanoya, Kazuo; Tchernichovski, Ofer
2017-01-05
At the onset of vocal development, both songbirds and humans produce variable vocal babbling with broadly distributed acoustic features. Over development, these vocalizations differentiate into the well-defined, categorical signals that characterize adult vocal behaviour. A broadly distributed signal is ideal for vocal exploration, that is, for matching vocal production to the statistics of the sensory input. The developmental transition to categorical signals is a gradual process during which the vocal output becomes differentiated and stable. But does it require categorical input? We trained juvenile zebra finches with playbacks of their own developing song, produced just a few moments earlier, updated continuously over development. Although the vocalizations of these self-tutored (ST) birds were initially broadly distributed, birds quickly developed categorical signals, as fast as birds that were trained with a categorical, adult song template. By contrast, siblings of those birds that received no training (isolates) developed phonological categories much more slowly and never reached the same level of category differentiation as their ST brothers. Therefore, instead of simply mirroring the statistical properties of their sensory input, songbirds actively transform it into distinct categories. We suggest that the early self-generation of phonological categories facilitates the establishment of vocal culture by making the song easier to transmit at the micro level, while promoting stability of shared vocabulary at the group level over generations.This article is part of the themed issue 'New frontiers for statistical learning in the cognitive sciences'. © 2016 The Authors.
Universal mechanisms of sound production and control in birds and mammals
Elemans, C.P.H; Rasmussen, J.H.; Herbst, C.T.; Düring, D.N.; Zollinger, S.A.; Brumm, H.; Srivastava, K.; Svane, N.; Ding, M.; Larsen, O.N.; Sober, S.J.; Švec, J.G.
2015-01-01
As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introduce an ex vivo preparation of the avian vocal organ that allows simultaneous high-speed imaging, muscle stimulation and kinematic and acoustic analyses to reveal the mechanisms of vocal production in birds across a wide range of taxa. Remarkably, we show that all species tested employ the myoelastic-aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal learning and is common to MEAD sound production across birds and mammals, including humans. PMID:26612008
Universal mechanisms of sound production and control in birds and mammals.
Elemans, C P H; Rasmussen, J H; Herbst, C T; Düring, D N; Zollinger, S A; Brumm, H; Srivastava, K; Svane, N; Ding, M; Larsen, O N; Sober, S J; Švec, J G
2015-11-27
As animals vocalize, their vocal organ transforms motor commands into vocalizations for social communication. In birds, the physical mechanisms by which vocalizations are produced and controlled remain unresolved because of the extreme difficulty in obtaining in vivo measurements. Here, we introduce an ex vivo preparation of the avian vocal organ that allows simultaneous high-speed imaging, muscle stimulation and kinematic and acoustic analyses to reveal the mechanisms of vocal production in birds across a wide range of taxa. Remarkably, we show that all species tested employ the myoelastic-aerodynamic (MEAD) mechanism, the same mechanism used to produce human speech. Furthermore, we show substantial redundancy in the control of key vocal parameters ex vivo, suggesting that in vivo vocalizations may also not be specified by unique motor commands. We propose that such motor redundancy can aid vocal learning and is common to MEAD sound production across birds and mammals, including humans.
Properties of Vocalization- and Gesture-Combinations in the Transition to First Words
ERIC Educational Resources Information Center
Murillo, Eva; Capilla, Almudena
2016-01-01
Gestures and vocal elements interact from the early stages of language development, but the role of this interaction in the language learning process is not yet completely understood. The aim of this study is to explore gestural accompaniment's influence on the acoustic properties of vocalizations in the transition to first words. Eleven Spanish…
Vocal Stereotypy in Individuals with Autism Spectrum Disorders: A Review of Behavioral Interventions
ERIC Educational Resources Information Center
Lanovaz, Marc J.; Sladeczek, Ingrid E.
2012-01-01
Vocal stereotypy is a common problem behavior in individuals with autism spectrum disorders that may interfere considerably with learning and social inclusion. To assist clinicians in treating the behavior and to guide researchers in identifying gaps in the research literature, the authors provide an overview of research on vocal stereotypy in…
Can Birds Perceive Rhythmic Patterns? A Review and Experiments on a Songbird and a Parrot Species
ten Cate, Carel; Spierings, Michelle; Hubert, Jeroen; Honing, Henkjan
2016-01-01
While humans can easily entrain their behavior with the beat in music, this ability is rare among animals. Yet, comparative studies in non-human species are needed if we want to understand how and why this ability evolved. Entrainment requires two abilities: (1) recognizing the regularity in the auditory stimulus and (2) the ability to adjust the own motor output to the perceived pattern. It has been suggested that beat perception and entrainment are linked to the ability for vocal learning. The presence of some bird species showing beat induction, and also the existence of vocal learning as well as vocal non-learning bird taxa, make them relevant models for comparative research on rhythm perception and its link to vocal learning. Also, some bird vocalizations show strong regularity in rhythmic structure, suggesting that birds might perceive rhythmic structures. In this paper we review the available experimental evidence for the perception of regularity and rhythms by birds, like the ability to distinguish regular from irregular stimuli over tempo transformations and report data from new experiments. While some species show a limited ability to detect regularity, most evidence suggests that birds attend primarily to absolute and not relative timing of patterns and to local features of stimuli. We conclude that, apart from some large parrot species, there is limited evidence for beat and regularity perception among birds and that the link to vocal learning is unclear. We next report the new experiments in which zebra finches and budgerigars (both vocal learners) were first trained to distinguish a regular from an irregular pattern of beats and then tested on various tempo transformations of these stimuli. The results showed that both species reduced the discrimination after tempo transformations. This suggests that, as was found in earlier studies, they attended mainly to local temporal features of the stimuli, and not to their overall regularity. However, some individuals of both species showed an additional sensitivity to the more global pattern if some local features were left unchanged. Altogether our study indicates both between and within species variation, in which birds attend to a mixture of local and to global rhythmic features. PMID:27242635
Imitation of novel conspecific and human speech sounds in the killer whale (Orcinus orca).
Abramson, José Z; Hernández-Lloreda, Mª Victoria; García, Lino; Colmenares, Fernando; Aboitiz, Francisco; Call, Josep
2018-01-31
Vocal imitation is a hallmark of human spoken language, which, along with other advanced cognitive skills, has fuelled the evolution of human culture. Comparative evidence has revealed that although the ability to copy sounds from conspecifics is mostly uniquely human among primates, a few distantly related taxa of birds and mammals have also independently evolved this capacity. Remarkably, field observations of killer whales have documented the existence of group-differentiated vocal dialects that are often referred to as traditions or cultures and are hypothesized to be acquired non-genetically. Here we use a do-as-I-do paradigm to study the abilities of a killer whale to imitate novel sounds uttered by conspecific (vocal imitative learning) and human models (vocal mimicry). We found that the subject made recognizable copies of all familiar and novel conspecific and human sounds tested and did so relatively quickly (most during the first 10 trials and three in the first attempt). Our results lend support to the hypothesis that the vocal variants observed in natural populations of this species can be socially learned by imitation. The capacity for vocal imitation shown in this study may scaffold the natural vocal traditions of killer whales in the wild. © 2018 The Author(s).
Vocal interaction between children with Down syndrome and their parents.
Thiemann-Bourque, Kathy S; Warren, Steven F; Brady, Nancy; Gilkerson, Jill; Richards, Jeffrey A
2014-08-01
The purpose of this study was to describe differences in parent input and child vocal behaviors of children with Down syndrome (DS) compared with typically developing (TD) children. The goals were to describe the language learning environments at distinctly different ages in early childhood. Nine children with DS and 9 age-matched TD children participated; 4 children in each group were ages 9-11 months, and 5 were between 25 and 54 months. Measures were derived from automated vocal analysis. A digital language processor measured the richness of the child's language environment, including number of adult words, conversational turns, and child vocalizations. Analyses indicated no significant differences in words spoken by parents of younger versus older children with DS and significantly more words spoken by parents of TD children than parents of children with DS. Differences between the DS and TD groups were observed in rates of all vocal behaviors, with no differences noted between the younger versus older children with DS, and the younger TD children did not vocalize significantly more than the younger DS children. Parents of children with DS continue to provide consistent levels of input across the early language learning years; however, child vocal behaviors remain low after the age of 24 months, suggesting the need for additional and alternative intervention approaches.
Core and region-enriched networks of behaviorally regulated genes and the singing genome
Whitney, Osceola; Pfenning, Andreas R.; Howard, Jason T.; Blatti, Charles A; Liu, Fang; Ward, James M.; Wang, Rui; Audet, Jean-Nicolas; Kellis, Manolis; Mukherjee, Sayan; Sinha, Saurabh; Hartemink, Alexander J.; West, Anne E.; Jarvis, Erich D.
2015-01-01
Songbirds represent an important model organism for elucidating molecular mechanisms that link genes with complex behaviors, in part because they have discrete vocal learning circuits that have parallels with those that mediate human speech. We found that ~10% of the genes in the avian genome were regulated by singing, and we found a striking regional diversity of both basal and singing-induced programs in the four key song nuclei of the zebra finch, a vocal learning songbird. The region-enriched patterns were a result of distinct combinations of region-enriched transcription factors (TFs), their binding motifs, and presinging acetylation of histone 3 at lysine 27 (H3K27ac) enhancer activity in the regulatory regions of the associated genes. RNA interference manipulations validated the role of the calcium-response transcription factor (CaRF) in regulating genes preferentially expressed in specific song nuclei in response to singing. Thus, differential combinatorial binding of a small group of activity-regulated TFs and predefined epigenetic enhancer activity influences the anatomical diversity of behaviorally regulated gene networks. PMID:25504732
Multifunctional and Context-Dependent Control of Vocal Acoustics by Individual Muscles
Srivastava, Kyle H.; Elemans, Coen P.H.
2015-01-01
The relationship between muscle activity and behavioral output determines how the brain controls and modifies complex skills. In vocal control, ensembles of muscles are used to precisely tune single acoustic parameters such as fundamental frequency and sound amplitude. If individual vocal muscles were dedicated to the control of single parameters, then the brain could control each parameter independently by modulating the appropriate muscle or muscles. Alternatively, if each muscle influenced multiple parameters, a more complex control strategy would be required to selectively modulate a single parameter. Additionally, it is unknown whether the function of single muscles is fixed or varies across different vocal gestures. A fixed relationship would allow the brain to use the same changes in muscle activation to, for example, increase the fundamental frequency of different vocal gestures, whereas a context-dependent scheme would require the brain to calculate different motor modifications in each case. We tested the hypothesis that single muscles control multiple acoustic parameters and that the function of single muscles varies across gestures using three complementary approaches. First, we recorded electromyographic data from vocal muscles in singing Bengalese finches. Second, we electrically perturbed the activity of single muscles during song. Third, we developed an ex vivo technique to analyze the biomechanical and acoustic consequences of single-muscle perturbations. We found that single muscles drive changes in multiple parameters and that the function of single muscles differs across vocal gestures, suggesting that the brain uses a complex, gesture-dependent control scheme to regulate vocal output. PMID:26490859
Song evolution, speciation, and vocal learning in passerine birds.
Mason, Nicholas A; Burns, Kevin J; Tobias, Joseph A; Claramunt, Santiago; Seddon, Nathalie; Derryberry, Elizabeth P
2017-03-01
Phenotypic divergence can promote reproductive isolation and speciation, suggesting a possible link between rates of phenotypic evolution and the tempo of speciation at multiple evolutionary scales. To date, most macroevolutionary studies of diversification have focused on morphological traits, whereas behavioral traits─including vocal signals─are rarely considered. Thus, although behavioral traits often mediate mate choice and gene flow, we have a limited understanding of how behavioral evolution contributes to diversification. Furthermore, the developmental mode by which behavioral traits are acquired may affect rates of behavioral evolution, although this hypothesis is seldom tested in a phylogenetic framework. Here, we examine evidence for rate shifts in vocal evolution and speciation across two major radiations of codistributed passerines: one oscine clade with learned songs (Thraupidae) and one suboscine clade with innate songs (Furnariidae). We find that evolutionary bursts in rates of speciation and song evolution are coincident in both thraupids and furnariids. Further, overall rates of vocal evolution are higher among taxa with learned rather than innate songs. Taken together, these findings suggest an association between macroevolutionary bursts in speciation and vocal evolution, and that the tempo of behavioral evolution can be influenced by variation in developmental modes among lineages. © 2016 The Author(s). Evolution © 2016 The Society for the Study of Evolution.
London, Sarah E
2017-11-20
Songbirds famously learn their vocalizations. Some species can learn continuously, others seasonally, and still others just once. The zebra finch (Taeniopygia guttata) learns to sing during a single developmental "Critical Period," a restricted phase during which a specific experience has profound and permanent effects on brain function and behavioral patterns. The zebra finch can therefore provide fundamental insight into features that promote and limit the ability to acquire complex learned behaviors. For example, what properties permit the brain to come "on-line" for learning? How does experience become encoded to prevent future learning? What features define the brain in receptive compared to closed learning states? This piece will focus on epigenomic, genomic, and molecular levels of analysis that operate on the timescales of development and complex behavioral learning. Existing data will be discussed as they relate to Critical Period learning, and strategies for future studies to more directly address these questions will be considered. Birdsong learning is a powerful model for advancing knowledge of the biological intersections of maturation and experience. Lessons from its study not only have implications for understanding developmental song learning, but also broader questions of learning potential and the enduring effects of early life experience on neural systems and behavior. Copyright © 2017. Published by Elsevier B.V.
NASA Astrophysics Data System (ADS)
Doyle, Laurance R.; McCowan, Brenda; Hanser, Sean F.
2002-01-01
Information theory allows a quantification of the complexity of a given signaling system. We are applying information theory to dolphin whistle vocalizations, humpback whale songs, squirrel monkey chuck calls, and several other animal communication systems' in order to develop a quantitative and objective way to compare inter species communication systems' complexity. Once signaling units have been correctly classified the communication system must obey certain statistical distributions in order to contain complexity whether it is human languages, dolphin whistle vocalizations, or even a system of communication signals received from an extraterrestrial source.
Social learning of vocal structure in a nonhuman primate?
2011-01-01
Background Non-human primate communication is thought to be fundamentally different from human speech, mainly due to vast differences in vocal control. The lack of these abilities in non-human primates is especially striking if compared to some marine mammals and bird species, which has generated somewhat of an evolutionary conundrum. What are the biological roots and underlying evolutionary pressures of the human ability to voluntarily control sound production and learn the vocal utterances of others? One hypothesis is that this capacity has evolved gradually in humans from an ancestral stage that resembled the vocal behavior of modern primates. Support for this has come from studies that have documented limited vocal flexibility and convergence in different primate species, typically in calls used during social interactions. The mechanisms underlying these patterns, however, are currently unknown. Specifically, it has been difficult to rule out explanations based on genetic relatedness, suggesting that such vocal flexibility may not be the result of social learning. Results To address this point, we compared the degree of acoustic similarity of contact calls in free-ranging Campbell's monkeys as a function of their social bonds and genetic relatedness. We calculated three different indices to compare the similarities between the calls' frequency contours, the duration of grooming interactions and the microsatellite-based genetic relatedness between partners. We found a significantly positive relation between bond strength and acoustic similarity that was independent of genetic relatedness. Conclusion Genetic factors determine the general species-specific call repertoire of a primate species, while social factors can influence the fine structure of some the call types. The finding is in line with the more general hypothesis that human speech has evolved gradually from earlier primate-like vocal communication. PMID:22177339
Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H R; Schmidt, Marc
2013-06-01
Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC's auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf's involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. Copyright © 2013 Elsevier Ltd. All rights reserved.
Lewandowski, Brian; Vyssotski, Alexei; Hahnloser, Richard H.R.; Schmidt, Marc
2015-01-01
Communication between auditory and vocal motor nuclei is essential for vocal learning. In songbirds, the nucleus interfacialis of the nidopallium (NIf) is part of a sensorimotor loop, along with auditory nucleus avalanche (Av) and song system nucleus HVC, that links the auditory and song systems. Most of the auditory information comes through this sensorimotor loop, with the projection from NIf to HVC representing the largest single source of auditory information to the song system. In addition to providing the majority of HVC’s auditory input, NIf is also the primary driver of spontaneous activity and premotor-like bursting during sleep in HVC. Like HVC and RA, two nuclei critical for song learning and production, NIf exhibits behavioral-state dependent auditory responses and strong motor bursts that precede song output. NIf also exhibits extended periods of fast gamma oscillations following vocal production. Based on the converging evidence from studies of physiology and functional connectivity it would be reasonable to expect NIf to play an important role in the learning, maintenance, and production of song. Surprisingly, however, lesions of NIf in adult zebra finches have no effect on song production or maintenance. Only the plastic song produced by juvenile zebra finches during the sensorimotor phase of song learning is affected by NIf lesions. In this review, we carefully examine what is known about NIf at the anatomical, physiological, and behavioral levels. We reexamine conclusions drawn from previous studies in the light of our current understanding of the song system, and establish what can be said with certainty about NIf’s involvement in song learning, maintenance, and production. Finally, we review recent theories of song learning integrating possible roles for NIf within these frameworks and suggest possible parallels between NIf and sensorimotor areas that form part of the neural circuitry for speech processing in humans. PMID:23603062
Functional flexibility of infant vocalization and the emergence of language
Oller, D. Kimbrough; Buder, Eugene H.; Ramsdell, Heather L.; Warlaumont, Anne S.; Chorna, Lesya; Bakeman, Roger
2013-01-01
We report on the emergence of functional flexibility in vocalizations of human infants. This vastly underappreciated capability becomes apparent when prelinguistic vocalizations express a full range of emotional content—positive, neutral, and negative. The data show that at least three types of infant vocalizations (squeals, vowel-like sounds, and growls) occur with this full range of expression by 3–4 mo of age. In contrast, infant cry and laughter, which are species-specific signals apparently homologous to vocal calls in other primates, show functional stability, with cry overwhelmingly expressing negative and laughter positive emotional states. Functional flexibility is a sine qua non in spoken language, because all words or sentences can be produced as expressions of varying emotional states and because learning conventional “meanings” requires the ability to produce sounds that are free of any predetermined function. Functional flexibility is a defining characteristic of language, and empirically it appears before syntax, word learning, and even earlier-developing features presumed to be critical to language (e.g., joint attention, syllable imitation, and canonical babbling). The appearance of functional flexibility early in the first year of human life is a critical step in the development of vocal language and may have been a critical step in the evolution of human language, preceding protosyntax and even primitive single words. Such flexible affect expression of vocalizations has not yet been reported for any nonhuman primate but if found to occur would suggest deep roots for functional flexibility of vocalization in our primate heritage. PMID:23550164
ERIC Educational Resources Information Center
Obenland, Carrie A.; Munson, Ashlyn H.; Hutchinson, John S.
2013-01-01
Active learning is becoming more prevalent in large science classrooms, and this study shows the impact on performance of being vocal during Socratic questioning in a General Chemistry course. 800 college students over a two year period were given a pre and post-test using the Chemistry Concept Reasoning Test. The pre-test results showed that…
The Origins of Vocal Learning: New Sounds, New Circuits, New Cells
ERIC Educational Resources Information Center
Nottebohm, Fernando; Liu, Wan-Chun
2010-01-01
We do not know how vocal learning came to be, but it is such a salient trait in human evolution that many have tried to imagine it. In primates this is difficult because we are the only species known to possess this skill. Songbirds provide a richer and independent set of data. I use comparative data and ask broad questions: How does vocal…
LaZerte, Stefanie E.; Slabbekoorn, Hans; Otter, Ken A.
2016-01-01
Urban noise can interfere with avian communication through masking, but birds can reduce this interference by altering their vocalizations. Although several experimental studies indicate that birds can rapidly change their vocalizations in response to sudden increases in ambient noise, none have investigated whether this is a learned response that depends on previous exposure. Black-capped chickadees (Poecile atricapillus) change the frequency of their songs in response to both fluctuating traffic noise and experimental noise. We investigated whether these responses to fluctuating noise depend on familiarity with noise. We confirmed that males in noisy areas sang higher-frequency songs than those in quiet areas, but found that only males in already-noisy territories shifted songs upwards in immediate response to experimental noise. Unexpectedly, males in more quiet territories shifted songs downwards in response to experimental noise. These results suggest that chickadees may require prior experience with fluctuating noise to adjust vocalizations in such a way as to minimize masking. Thus, learning to cope may be an important part of adjusting to acoustic life in the city. PMID:27358372
LaZerte, Stefanie E; Slabbekoorn, Hans; Otter, Ken A
2016-06-29
Urban noise can interfere with avian communication through masking, but birds can reduce this interference by altering their vocalizations. Although several experimental studies indicate that birds can rapidly change their vocalizations in response to sudden increases in ambient noise, none have investigated whether this is a learned response that depends on previous exposure. Black-capped chickadees (Poecile atricapillus) change the frequency of their songs in response to both fluctuating traffic noise and experimental noise. We investigated whether these responses to fluctuating noise depend on familiarity with noise. We confirmed that males in noisy areas sang higher-frequency songs than those in quiet areas, but found that only males in already-noisy territories shifted songs upwards in immediate response to experimental noise. Unexpectedly, males in more quiet territories shifted songs downwards in response to experimental noise. These results suggest that chickadees may require prior experience with fluctuating noise to adjust vocalizations in such a way as to minimize masking. Thus, learning to cope may be an important part of adjusting to acoustic life in the city. © 2016 The Author(s).
Murphy, Karagh; James, Logan S; Sakata, Jon T; Prather, Jonathan F
2017-08-01
Sensorimotor integration is the process through which the nervous system creates a link between motor commands and associated sensory feedback. This process allows for the acquisition and refinement of many behaviors, including learned communication behaviors such as speech and birdsong. Consequently, it is important to understand fundamental mechanisms of sensorimotor integration, and comparative analyses of this process can provide vital insight. Songbirds offer a powerful comparative model system to study how the nervous system links motor and sensory information for learning and control. This is because the acquisition, maintenance, and control of birdsong critically depend on sensory feedback. Furthermore, there is an incredible diversity of song organizations across songbird species, ranging from songs with simple, stereotyped sequences to songs with complex sequencing of vocal gestures, as well as a wide diversity of song repertoire sizes. Despite this diversity, the neural circuitry for song learning, control, and maintenance remains highly similar across species. Here, we highlight the utility of songbirds for the analysis of sensorimotor integration and the insights about mechanisms of sensorimotor integration gained by comparing different songbird species. Key conclusions from this comparative analysis are that variation in song sequence complexity seems to covary with the strength of feedback signals in sensorimotor circuits and that sensorimotor circuits contain distinct representations of elements in the vocal repertoire, possibly enabling evolutionary variation in repertoire sizes. We conclude our review by highlighting important areas of research that could benefit from increased comparative focus, with particular emphasis on the integration of new technologies. Copyright © 2017 the American Physiological Society.
Striatal FoxP2 Is Actively Regulated during Songbird Sensorimotor Learning
Teramitsu, Ikuko; Poopatanapong, Amy; Torrisi, Salvatore; White, Stephanie A.
2010-01-01
Background Mutations in the FOXP2 transcription factor lead to language disorders with developmental onset. Accompanying structural abnormalities in cortico-striatal circuitry indicate that at least a portion of the behavioral phenotype is due to organizational deficits. We previously found parallel FoxP2 expression patterns in human and songbird cortico/pallio-striatal circuits important for learned vocalizations, suggesting that FoxP2's function in birdsong may generalize to speech. Methodology/Principal Findings We used zebra finches to address the question of whether FoxP2 is additionally important in the post-organizational function of these circuits. In both humans and songbirds, vocal learning depends on auditory guidance to achieve and maintain optimal vocal output. We tested whether deafening prior to or during the sensorimotor phase of song learning disrupted FoxP2 expression in song circuitry. As expected, the songs of deafened juveniles were abnormal, however basal FoxP2 levels were unaffected. In contrast, when hearing or deaf juveniles sang for two hours in the morning, FoxP2 was acutely down-regulated in the striatal song nucleus, area X. The extent of down-regulation was similar between hearing and deaf birds. Interestingly, levels of FoxP2 and singing were correlated only in hearing birds. Conclusions/Significance Hearing appears to link FoxP2 levels to the amount of vocal practice. As juvenile birds spent more time practicing than did adults, their FoxP2 levels are likely to be low more often. Behaviorally-driven reductions in the mRNA encoding this transcription factor could ultimately affect downstream molecules that function in vocal exploration, especially during sensorimotor learning. PMID:20062527
Seagraves, Kelly M.; Arthur, Ben J.; Egnor, S. E. Roian
2016-01-01
ABSTRACT Mice (Mus musculus) form large and dynamic social groups and emit ultrasonic vocalizations in a variety of social contexts. Surprisingly, these vocalizations have been studied almost exclusively in the context of cues from only one social partner, despite the observation that in many social species the presence of additional listeners changes the structure of communication signals. Here, we show that male vocal behavior elicited by female odor is affected by the presence of a male audience – with changes in vocalization count, acoustic structure and syllable complexity. We further show that single sensory cues are not sufficient to elicit this audience effect, indicating that multiple cues may be necessary for an audience to be apparent. Together, these experiments reveal that some features of mouse vocal behavior are only expressed in more complex social situations, and introduce a powerful new assay for measuring detection of the presence of social partners in mice. PMID:27207951
Seagraves, Kelly M; Arthur, Ben J; Egnor, S E Roian
2016-05-15
Mice (Mus musculus) form large and dynamic social groups and emit ultrasonic vocalizations in a variety of social contexts. Surprisingly, these vocalizations have been studied almost exclusively in the context of cues from only one social partner, despite the observation that in many social species the presence of additional listeners changes the structure of communication signals. Here, we show that male vocal behavior elicited by female odor is affected by the presence of a male audience - with changes in vocalization count, acoustic structure and syllable complexity. We further show that single sensory cues are not sufficient to elicit this audience effect, indicating that multiple cues may be necessary for an audience to be apparent. Together, these experiments reveal that some features of mouse vocal behavior are only expressed in more complex social situations, and introduce a powerful new assay for measuring detection of the presence of social partners in mice. © 2016. Published by The Company of Biologists Ltd.
Vocal Interaction between Children with Down syndrome and their Parents
Thiemann-Bourque, Kathy S.; Warren, Steven F.; Brady, Nancy; Gilkerson, Jill; Richards, Jeffrey A.
2014-01-01
Purpose The purpose of this study was to describe differences in parent input and child vocal behaviors of children with Down syndrome (DS) compared to typically developing (TD) children. The goals were to describe the language learning environments at distinctly different ages in early childhood. Method Nine children with DS and 9 age-matched TD children participated; four children in each group were ages 9–11 months and five were between 25–54 months. Measures were derived from automated vocal analysis. A digital language processer measured the richness of the child’s language environment, including number of adult words, conversational turns, and child vocalizations. Results Analyses indicated no significant differences in words spoken by parents of younger vs. older children with DS, and significantly more words spoken by parents of TD children than parents of children with DS. Differences between the DS and TD groups were observed in rates of all vocal behaviors; with no differences noted between the younger vs. older children with DS, and the younger TD children did not vocalize significantly more than the younger DS children. Conclusions Parents of children with DS continue to provide consistent levels of input across the early language learning years; however, child vocal behaviors remain low after the age of 24 months suggesting the need for additional and alternative intervention approaches. PMID:24686777
Rhythmic synchronization tapping to an audio–visual metronome in budgerigars
Hasegawa, Ai; Okanoya, Kazuo; Hasegawa, Toshikazu; Seki, Yoshimasa
2011-01-01
In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio–visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans. PMID:22355637
Rhythmic synchronization tapping to an audio-visual metronome in budgerigars.
Hasegawa, Ai; Okanoya, Kazuo; Hasegawa, Toshikazu; Seki, Yoshimasa
2011-01-01
In all ages and countries, music and dance have constituted a central part in human culture and communication. Recently, vocal-learning animals such as parrots and elephants have been found to share rhythmic ability with humans. Thus, we investigated the rhythmic synchronization of budgerigars, a vocal-mimicking parrot species, under controlled conditions and a systematically designed experimental paradigm as a first step in understanding the evolution of musical entrainment. We trained eight budgerigars to perform isochronous tapping tasks in which they pecked a key to the rhythm of audio-visual metronome-like stimuli. The budgerigars showed evidence of entrainment to external stimuli over a wide range of tempos. They seemed to be inherently inclined to tap at fast tempos, which have a similar time scale to the rhythm of budgerigars' natural vocalizations. We suggest that vocal learning might have contributed to their performance, which resembled that of humans.
2017-01-01
ABSTRACT Male-male vocal competition in anuran species is critical for mating success; however, it is also energetically demanding and highly time-consuming. Thus, we hypothesized that males may change signal elaboration in response to competition in real time. Male serrate-legged small treefrogs (Kurixalus odontotarsus) produce compound calls that contain two kinds of notes, harmonic sounds called ‘A notes’ and short broadband sounds called ‘B notes’. Using male evoked vocal response experiments, we found that competition influences the temporal structure and complexity of vocal signals produced by males. Males produce calls with a higher ratio of notes:call, and more compound calls including more A notes but fewer B notes with contest escalation. In doing so, males minimize the energy costs and maximize the benefits of competition when the level of competition is high. This means that the evolution of sexual signal complexity in frogs may be susceptible to selection for plasticity related to adjusting performance to the pressures of competition, and supports the idea that more complex social contexts can lead to greater vocal complexity. PMID:29175862
Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds
Veit, Lena; Aronov, Dmitriy
2011-01-01
How do animals with learned vocalizations coordinate vocal production with respiration? Songbirds such as the zebra finch learn their songs, beginning with highly variable babbling vocalizations known as subsong. After several weeks of practice, zebra finches are able to produce a precisely timed pattern of syllables and silences, precisely coordinated with expiratory and inspiratory pulses (Franz M, Goller F. J Neurobiol 51: 129–141, 2002). While respiration in adult song is well described, relatively little is known about respiratory patterns in subsong or about the processes by which respiratory and vocal patterns become coordinated. To address these questions, we recorded thoracic air sac pressure in juvenile zebra finches prior to the appearance of any consistent temporal or acoustic structure in their songs. We found that subsong contains brief inspiratory pulses (50 ms) alternating with longer pulses of sustained expiratory pressure (50–500 ms). In striking contrast to adult song, expiratory pulses often contained multiple (0–8) variably timed syllables separated by expiratory gaps and were only partially vocalized. During development, expiratory pulses became shorter and more stereotyped in duration with shorter and fewer nonvocalized parts. These developmental changes eventually resulted in the production of a single syllable per expiratory pulse and a single inspiratory pulse filling each gap, forming a coordinated sequence similar to that of adult song. To examine the role of forebrain song-control nuclei in the development of respiratory patterns, we performed pressure recordings before and after lesions of nucleus HVC (proper name) and found that this manipulation reverses the developmental trends in measures of the respiratory pattern. PMID:21697438
Learning to breathe and sing: development of respiratory-vocal coordination in young songbirds.
Veit, Lena; Aronov, Dmitriy; Fee, Michale S
2011-10-01
How do animals with learned vocalizations coordinate vocal production with respiration? Songbirds such as the zebra finch learn their songs, beginning with highly variable babbling vocalizations known as subsong. After several weeks of practice, zebra finches are able to produce a precisely timed pattern of syllables and silences, precisely coordinated with expiratory and inspiratory pulses (Franz M, Goller F. J Neurobiol 51: 129-141, 2002). While respiration in adult song is well described, relatively little is known about respiratory patterns in subsong or about the processes by which respiratory and vocal patterns become coordinated. To address these questions, we recorded thoracic air sac pressure in juvenile zebra finches prior to the appearance of any consistent temporal or acoustic structure in their songs. We found that subsong contains brief inspiratory pulses (50 ms) alternating with longer pulses of sustained expiratory pressure (50-500 ms). In striking contrast to adult song, expiratory pulses often contained multiple (0-8) variably timed syllables separated by expiratory gaps and were only partially vocalized. During development, expiratory pulses became shorter and more stereotyped in duration with shorter and fewer nonvocalized parts. These developmental changes eventually resulted in the production of a single syllable per expiratory pulse and a single inspiratory pulse filling each gap, forming a coordinated sequence similar to that of adult song. To examine the role of forebrain song-control nuclei in the development of respiratory patterns, we performed pressure recordings before and after lesions of nucleus HVC (proper name) and found that this manipulation reverses the developmental trends in measures of the respiratory pattern.
Vocal Fold Epithelial Barrier in Health and Injury: A Research Review
ERIC Educational Resources Information Center
Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.
2014-01-01
Purpose: Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially…
Chirathivat, Napim; Raja, Sahitya C; Gobes, Sharon M H
2015-06-22
Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have formed a memory of their fathers' song, just like Wernicke's area in the left hemisphere of the human brain is dominant for speech perception. However, it is unclear if hemispheric specialization is due to pre-existing functional asymmetry or the result of learning itself. Here we show that in juvenile male and female zebra finches that had never heard an adult song before, neuronal activation after initial exposure to a conspecific song is bilateral. Thus, like in humans, hemispheric dominance develops with vocal proficiency. A left-lateralized functional system that develops through auditory-vocal learning may be an evolutionary adaptation that could increase the efficiency of transferring information within one hemisphere, benefiting the production and perception of learned communication signals.
Chirathivat, Napim; Raja, Sahitya C.; Gobes, Sharon M. H.
2015-01-01
Many aspects of song learning in songbirds resemble characteristics of speech acquisition in humans. Genetic, anatomical and behavioural parallels have most recently been extended with demonstrated similarities in hemispheric dominance between humans and songbirds: the avian higher order auditory cortex is left-lateralized for processing song memories in juvenile zebra finches that already have formed a memory of their fathers’ song, just like Wernicke’s area in the left hemisphere of the human brain is dominant for speech perception. However, it is unclear if hemispheric specialization is due to pre-existing functional asymmetry or the result of learning itself. Here we show that in juvenile male and female zebra finches that had never heard an adult song before, neuronal activation after initial exposure to a conspecific song is bilateral. Thus, like in humans, hemispheric dominance develops with vocal proficiency. A left-lateralized functional system that develops through auditory-vocal learning may be an evolutionary adaptation that could increase the efficiency of transferring information within one hemisphere, benefiting the production and perception of learned communication signals. PMID:26098840
Fischer, J; Hammerschmidt, K
2011-01-01
Comparative analyses used to reconstruct the evolution of traits associated with the human language faculty, including its socio-cognitive underpinnings, highlight the importance of evolutionary constraints limiting vocal learning in non-human primates. After a brief overview of this field of research and the neural basis of primate vocalizations, we review studies that have addressed the genetic basis of usage and structure of ultrasonic communication in mice, with a focus on the gene FOXP2 involved in specific language impairments and neuroligin genes (NL-3 and NL-4) involved in autism spectrum disorders. Knockout of FoxP2 leads to reduced vocal behavior and eventually premature death. Introducing the human variant of FoxP2 protein into mice, in contrast, results in shifts in frequency and modulation of pup ultrasonic vocalizations. Knockout of NL-3 and NL-4 in mice diminishes social behavior and vocalizations. Although such studies may provide insights into the molecular and neural basis of social and communicative behavior, the structure of mouse vocalizations is largely innate, limiting the suitability of the mouse model to study human speech, a learned mode of production. Although knockout or replacement of single genes has perceptible effects on behavior, these genes are part of larger networks whose functions remain poorly understood. In humans, for instance, deficiencies in NL-4 can lead to a broad spectrum of disorders, suggesting that further factors (experiential and/or genetic) contribute to the variation in clinical symptoms. The precise nature as well as the interaction of these factors is yet to be determined. PMID:20579107
Cortical representations of communication sounds.
Heiser, Marc A; Cheung, Steven W
2008-10-01
This review summarizes recent research into cortical processing of vocalizations in animals and humans. There has been a resurgent interest in this topic accompanied by an increased number of studies using animal models with complex vocalizations and new methods in human brain imaging. Recent results from such studies are discussed. Experiments have begun to reveal the bilateral cortical fields involved in communication sound processing and the transformations of neural representations that occur among those fields. Advances have also been made in understanding the neuronal basis of interaction between developmental exposures and behavioral experiences with vocalization perception. Exposure to sounds during the developmental period produces large effects on brain responses, as do a variety of specific trained tasks in adults. Studies have also uncovered a neural link between the motor production of vocalizations and the representation of vocalizations in cortex. Parallel experiments in humans and animals are answering important questions about vocalization processing in the central nervous system. This dual approach promises to reveal microscopic, mesoscopic, and macroscopic principles of large-scale dynamic interactions between brain regions that underlie the complex phenomenon of vocalization perception. Such advances will yield a greater understanding of the causes, consequences, and treatment of disorders related to speech processing.
The Human Voice in Speech and Singing
NASA Astrophysics Data System (ADS)
Lindblom, Björn; Sundberg, Johan
This chapter
The Human Voice in Speech and Singing
NASA Astrophysics Data System (ADS)
Lindblom, Björn; Sundberg, Johan
This chapter describes various aspects of the human voice as a means of communication in speech and singing. From the point of view of function, vocal sounds can be regarded as the end result of a three stage process: (1) the compression of air in the respiratory system, which produces an exhalatory airstream, (2) the vibrating vocal folds' transformation of this air stream to an intermittent or pulsating air stream, which is a complex tone, referred to as the voice source, and (3) the filtering of this complex tone in the vocal tract resonator. The main function of the respiratory system is to generate an overpressure of air under the glottis, or a subglottal pressure. Section 16.1 describes different aspects of the respiratory system of significance to speech and singing, including lung volume ranges, subglottal pressures, and how this pressure is affected by the ever-varying recoil forces. The complex tone generated when the air stream from the lungs passes the vibrating vocal folds can be varied in at least three dimensions: fundamental frequency, amplitude and spectrum. Section 16.2 describes how these properties of the voice source are affected by the subglottal pressure, the length and stiffness of the vocal folds and how firmly the vocal folds are adducted. Section 16.3 gives an account of the vocal tract filter, how its form determines the frequencies of its resonances, and Sect. 16.4 gives an account for how these resonance frequencies or formants shape the vocal sounds by imposing spectrum peaks separated by spectrum valleys, and how the frequencies of these peaks determine vowel and voice qualities. The remaining sections of the chapter describe various aspects of the acoustic signals used for vocal communication in speech and singing. The syllable structure is discussed in Sect. 16.5, the closely related aspects of rhythmicity and timing in speech and singing is described in Sect. 16.6, and pitch and rhythm aspects in Sect. 16.7. The impressive control of all these acoustic characteristics of vocal signals is discussed in Sect. 16.8, while Sect. 16.9 considers expressive aspects of vocal communication.
ERIC Educational Resources Information Center
Alt, Mary; Spaulding, Tammie
2011-01-01
Purpose: The purpose of this study was to measure the effect of time to response in a fast-mapping word learning task for children with specific language impairment (SLI) and children with typically developing language skills (TD). Manipulating time to response allows us to examine decay of the memory trace, the use of vocal rehearsal, and their…
Growth and splitting of neural sequences in songbird vocal development
Okubo, Tatsuo S.; Mackevicius, Emily L.; Payne, Hannah L.; Lynch, Galen F.; Fee, Michale S.
2015-01-01
Neural sequences are a fundamental feature of brain dynamics underlying diverse behaviors, but the mechanisms by which they develop during learning remain unknown. Songbirds learn vocalizations composed of syllables; in adult birds, each syllable is produced by a different sequence of action potential bursts in the premotor cortical area HVC. Here we carried out recordings of large populations of HVC neurons in singing juvenile birds throughout learning to examine the emergence of neural sequences. Early in vocal development, HVC neurons begin producing rhythmic bursts, temporally locked to a ‘prototype’ syllable. Different neurons are active at different latencies relative to syllable onset to form a continuous sequence. Through development, as new syllables emerge from the prototype syllable, initially highly overlapping burst sequences become increasingly distinct. We propose a mechanistic model in which multiple neural sequences can emerge from the growth and splitting of a common precursor sequence. PMID:26618871
Developmental Modulation of the Temporal Relationship Between Brain and Behavior
Crandall, Shane R.; Aoki, Naoya; Nick, Teresa A.
2008-01-01
Humans and songbirds shape learned vocalizations during a sensorimotor sensitive period or “babbling” phase. The brain mechanisms that underlie the shaping of vocalizations by sensory feedback are not known. We examined song behavior and brain activity in zebra finches during singing as they actively shaped their song toward a tutor model. We now show that the temporal relationship of behavior and activity in the premotor area HVC changes with the development of song behavior. During sensorimotor learning, HVC bursting activity both preceded and followed learned vocalizations by hundreds of milliseconds. Correspondingly, the duration of bursts that occurred during ongoing song motif behavior was prolonged in juveniles, as compared with adults, and was inversely correlated with song maturation. Multielectrode single-unit recording in juveniles revealed that single fast-spiking neurons were active both before and after vocalization. These same neurons responded to auditory stimuli. Collectively, these data indicate that a key aspect of sensory critical periods—prolonged bursting—also applies to sensorimotor development. In addition, prolonged motor discharge and sensory input coincide in single neurons of the developing song system, providing the necessary cellular elements for sensorimotor shaping through activity-dependent mechanisms. PMID:17079340
Esch, Barbara E; Carr, James E; Michael, Jack
2005-01-01
Many children with autism do not imitate adult vocalizations, an important skill in learning to talk. Pairing adult vocalizations with preferred stimuli has been shown to increase free-operant vocalizations but effects are temporary; thus, direct reinforcement may be necessary to establish durable vocal behaviors. In Experiment 1, directly reinforced echoic responses did not increase following stimulus-stimulus pairings in three children with autism. Similarly, pairings did not increase free-operant vocalizations in Experiment 2, a replication of Miguel et al. (2002). Experiment 3 demonstrated that shaping increased vowel frequency for one participant. Results suggest that variables are yet to be delineated that influence effectiveness of a stimulus-stimulus pairing procedure on vocalization frequency and acquisition of a verbal operant following such pairings. PMID:22477313
Dynamics of zebra finch and mockingbird vocalizations
NASA Astrophysics Data System (ADS)
Cimenser, Aylin
Along with humans, whales, and bats, three groups of birds which include songbirds (oscines) such as the Zebra Finch (Taeniopygia guttata) and Mockingbird (Mimus polyglottos) are the only creatures known to learn sounds by imitation. Numerous similarities between human and songbird vocalizations exist and, recently, it has been shown that Zebra Finch in particular possesses a gene, FoxP2, known to be involved in human language. This thesis investigates song development in Zebra Finches, as well as the temporal dynamics of song in Mockingbirds. Zebra Finches have long been the system of choice for studying vocal development, ontogeny, and complexity in birdsong. Physicists find them intriguing because the spectrally complex vocalizations of the Zebra Finch can exhibit sudden transitions to chaotic dynamics, period doubling & mode-locking phenomena. Mockingbirds, by contrast, provide an ideal system to examine the richness of an avian repertoire, since these musically versatile songbirds typically know upwards of 200 songs. To analyse birdsong data, we have developed a novel clustering algorithm that can be applied to the bird's syllables, tracing their dynamics back to the earliest stages of vocal development. To characterize birdsong we have used Fourier techniques, based upon multitaper spectral analysis, to optimally work around the constraints imposed by (Heisenberg's) time-frequency uncertainty principle. Furthermore, estimates that provide optimal compromise between frequency and temporal resolution have beautiful connections with solutions to the Helmholtz wave equation in prolate spheroidal coordinates. We have used this connection to provide firm foundation for certain heuristics used in the literature to compute associated spectral derivatives and supply a pedagogical account here in this thesis. They are of interest because spectral derivatives emphasize sudden changes in the dynamics of the underlying phenomenon, and often provide a nice way to visualize such dynamics. Our Zebra Finch data consist of continuous recordings of six tutored birds from the early, plastic stages of sound production to the development of fully crystallized mature song. Our analysis reveals that well before the Zebra Finch hears adult song, identifiably distinct clusters are observable for all birds in the same regions of feature space. (Abstract shortened by UMI.)
"Bird Song Metronomics": Isochronous Organization of Zebra Finch Song Rhythm.
Norton, Philipp; Scharff, Constance
2016-01-01
The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a "signal-derived pulse," or pulse(S), of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulse(S) significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulse(P)), as yet untested. Strikingly, in our study, pulses(S) that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulse(S) periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music.
“Bird Song Metronomics”: Isochronous Organization of Zebra Finch Song Rhythm
Norton, Philipp; Scharff, Constance
2016-01-01
The human capacity for speech and vocal music depends on vocal imitation. Songbirds, in contrast to non-human primates, share this vocal production learning with humans. The process through which birds and humans learn many of their vocalizations as well as the underlying neural system exhibit a number of striking parallels and have been widely researched. In contrast, rhythm, a key feature of language, and music, has received surprisingly little attention in songbirds. Investigating temporal periodicity in bird song has the potential to inform the relationship between neural mechanisms and behavioral output and can also provide insight into the biology and evolution of musicality. Here we present a method to analyze birdsong for an underlying rhythmic regularity. Using the intervals from one note onset to the next as input, we found for each bird an isochronous sequence of time stamps, a “signal-derived pulse,” or pulseS, of which a subset aligned with all note onsets of the bird's song. Fourier analysis corroborated these results. To determine whether this finding was just a byproduct of the duration of notes and intervals typical for zebra finches but not dependent on the individual duration of elements and the sequence in which they are sung, we compared natural songs to models of artificial songs. Note onsets of natural song deviated from the pulseS significantly less than those of artificial songs with randomized note and gap durations. Thus, male zebra finch song has the regularity required for a listener to extract a perceived pulse (pulseP), as yet untested. Strikingly, in our study, pulsesS that best fit note onsets often also coincided with the transitions between sub-note elements within complex notes, corresponding to neuromuscular gestures. Gesture durations often equaled one or more pulseS periods. This suggests that gesture duration constitutes the basic element of the temporal hierarchy of zebra finch song rhythm, an interesting parallel to the hierarchically structured components of regular rhythms in human music. PMID:27458334
Halwani, Gus F; Loui, Psyche; Rüber, Theodor; Schlaug, Gottfried
2011-01-01
Structure and function of the human brain are affected by training in both linguistic and musical domains. Individuals with intensive vocal musical training provide a useful model for investigating neural adaptations of learning in the vocal-motor domain and can be compared with learning in a more general musical domain. Here we confirm general differences in macrostructure (tract volume) and microstructure (fractional anisotropy, FA) of the arcuate fasciculus (AF), a prominent white-matter tract connecting temporal and frontal brain regions, between singers, instrumentalists, and non-musicians. Both groups of musicians differed from non-musicians in having larger tract volume and higher FA values of the right and left AF. The AF was then subdivided in a dorsal (superior) branch connecting the superior temporal gyrus and the inferior frontal gyrus (STG ↔ IFG), and ventral (inferior) branch connecting the middle temporal gyrus and the inferior frontal gyrus (MTG ↔ IFG). Relative to instrumental musicians, singers had a larger tract volume but lower FA values in the left dorsal AF (STG ↔ IFG), and a similar trend in the left ventral AF (MTG ↔ IFG). This between-group comparison controls for the general effects of musical training, although FA was still higher in singers compared to non-musicians. Both musician groups had higher tract volumes in the right dorsal and ventral tracts compared to non-musicians, but did not show a significant difference between each other. Furthermore, in the singers' group, FA in the left dorsal branch of the AF was inversely correlated with the number of years of participants' vocal training. Our findings suggest that long-term vocal-motor training might lead to an increase in volume and microstructural complexity of specific white-matter tracts connecting regions that are fundamental to sound perception, production, and its feedforward and feedback control which can be differentiated from a more general musician effect.
Patient-Specific Computational Modeling of Human Phonation
NASA Astrophysics Data System (ADS)
Xue, Qian; Zheng, Xudong; University of Maine Team
2013-11-01
Phonation is a common biological process resulted from the complex nonlinear coupling between glottal aerodynamics and vocal fold vibrations. In the past, the simplified symmetric straight geometric models were commonly employed for experimental and computational studies. The shape of larynx lumen and vocal folds are highly three-dimensional indeed and the complex realistic geometry produces profound impacts on both glottal flow and vocal fold vibrations. To elucidate the effect of geometric complexity on voice production and improve the fundamental understanding of human phonation, a full flow-structure interaction simulation is carried out on a patient-specific larynx model. To the best of our knowledge, this is the first patient-specific flow-structure interaction study of human phonation. The simulation results are well compared to the established human data. The effects of realistic geometry on glottal flow and vocal fold dynamics are investigated. It is found that both glottal flow and vocal fold dynamics present a high level of difference from the previous simplified model. This study also paved the important step toward the development of computer model for voice disease diagnosis and surgical planning. The project described was supported by Grant Number ROlDC007125 from the National Institute on Deafness and Other Communication Disorders (NIDCD).
Yanagihara, Shin; Hessler, Neal A.
2011-01-01
Reactivations of waking experiences during sleep have been considered fundamental neural processes for memory consolidation. In songbirds, evidence suggests the importance of sleep-related neuronal activity in song system motor pathway nuclei for both juvenile vocal learning and maintenance of adult song. Like those in singing motor nuclei, neurons in the basal ganglia nucleus Area X, part of the basal ganglia-thalamocortical circuit essential for vocal plasticity, exhibit singing-related activity. It is unclear, however, whether Area X neurons show any distinctive spiking activity during sleep similar to that during singing. Here we demonstrate that, during sleep, Area X pallidal neurons exhibit phasic spiking activity, which shares some firing properties with activity during singing. Shorter interspike intervals that almost exclusively occurred during singing in awake periods were also observed during sleep. The level of firing variability was consistently higher during singing and sleep than during awake non-singing states. Moreover, deceleration of firing rate, which is considered to be an important firing property for transmitting signals from Area X to the thalamic nucleus DLM, was observed mainly during sleep as well as during singing. These results suggest that songbird basal ganglia circuitry may be involved in the off-line processing potentially critical for vocal learning during sensorimotor learning phase. PMID:21991379
Central pattern generators for social vocalization: Androgen-dependent neurophysiological mechanisms
Bass, Andrew H.; Remage-Healey, Luke
2008-01-01
Historically, most studies of vertebrate central pattern generators (CPGs) have focused on mechanisms for locomotion and respiration. Here, we highlight new results for ectothermic vertebrates, namely teleost fish and amphibians, showing how androgenic steroids can influence the temporal patterning of CPGs for social vocalization. Investigations of vocalizing teleosts show how androgens can rapidly (within minutes) modulate the neurophysiological output of the vocal CPG (fictive vocalizations that mimic the temporal properties of natural vocalizations) inclusive of their divergent actions between species, as well as intraspecific differences between male reproductive morphs. Studies of anuran amphibians (frogs) demonstrate that long-term steroid treatments (wks) can masculinize the fictive vocalizations of females, inclusive of its sensitivity to rapid modulation by serotonin. Given the conserved organization of vocal control systems across vertebrate groups, the vocal CPGs of fish and amphibians provide tractable models for identifying androgen-dependent events that are fundamental to the mechanisms of vocal motor patterning. These basic mechanisms can also inform our understanding of the more complex CPGs for vocalization, and social behaviors in general, that have evolved among birds and mammals. PMID:18262186
Vahaba, Daniel M; Macedo-Lima, Matheus; Remage-Healey, Luke
2017-01-01
Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor's song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM's established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E 2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches ( Taeniopygia guttata ) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E 2 administration on sensory processing. In sensory-aged subjects, E 2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E 2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E 2 sensitivity that each precisely track a key neural "switch point" from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds.
2017-01-01
Abstract Vocal learning occurs during an experience-dependent, age-limited critical period early in development. In songbirds, vocal learning begins when presinging birds acquire an auditory memory of their tutor’s song (sensory phase) followed by the onset of vocal production and refinement (sensorimotor phase). Hearing is necessary throughout the vocal learning critical period. One key brain area for songbird auditory processing is the caudomedial nidopallium (NCM), a telencephalic region analogous to mammalian auditory cortex. Despite NCM’s established role in auditory processing, it is unclear how the response properties of NCM neurons may shift across development. Moreover, communication processing in NCM is rapidly enhanced by local 17β-estradiol (E2) administration in adult songbirds; however, the function of dynamically fluctuating E2 in NCM during development is unknown. We collected bilateral extracellular recordings in NCM coupled with reverse microdialysis delivery in juvenile male zebra finches (Taeniopygia guttata) across the vocal learning critical period. We found that auditory-evoked activity and coding accuracy were substantially higher in the NCM of sensory-aged animals compared to sensorimotor-aged animals. Further, we observed both age-dependent and lateralized effects of local E2 administration on sensory processing. In sensory-aged subjects, E2 decreased auditory responsiveness across both hemispheres; however, a similar trend was observed in age-matched control subjects. In sensorimotor-aged subjects, E2 dampened auditory responsiveness in left NCM but enhanced auditory responsiveness in right NCM. Our results reveal an age-dependent physiological shift in auditory processing and lateralized E2 sensitivity that each precisely track a key neural “switch point” from purely sensory (pre-singing) to sensorimotor (singing) in developing songbirds. PMID:29255797
Neural imaging in songbirds using fiber optic fluorescence microscopy
NASA Astrophysics Data System (ADS)
Nooshabadi, Fatemeh; Hearn, Gentry; Lints, Thierry; Maitland, Kristen C.
2012-02-01
The song control system of juvenile songbirds is an important model for studying the developmental acquisition and generation of complex learned vocal motor sequences, two processes that are fundamental to human speech and language. To understand the neural mechanisms underlying song production, it is critical to characterize the activity of identified neurons in the song control system when the bird is singing. Neural imaging in unrestrained singing birds, although technically challenging, will advance our understanding of neural ensemble coding mechanisms in this system. We are exploring the use of a fiber optic microscope for functional imaging in the brain of behaving and singing birds in order to better understand the contribution of a key brain nucleus (high vocal center nucleus; HVC) to temporal aspects of song motor control. We have constructed a fluorescence microscope with LED illumination, a fiber bundle for transmission of fluorescence excitation and emission light, a ~2x GRIN lens, and a CCD for image acquisition. The system has 2 μm resolution, 375 μm field of view, 200 μm working distance, and 1 mm outer diameter. As an initial characterization of this setup, neurons in HVC were imaged using the fiber optic microscope after injection of quantum dots or fluorescent retrograde tracers into different song nuclei. A Lucid Vivascope confocal microscope was used to confirm the imaging results. Long-term imaging of the activity of these neurons in juvenile birds during singing may lead us to a better understanding of the central motor codes for song and the central mechanism by which auditory experience modifies song motor commands to enable vocal learning and imitation.
Central Nervous System Control of Voice and Swallowing
Ludlow, Christy L.
2015-01-01
This review of the central nervous control systems for voice and swallowing has suggested that the traditional concepts of a separation between cortical and limbic and brain stem control should be refined and more integrative. For voice production, a separation of the non-human vocalization system from the human learned voice production system has been posited based primarily on studies of non-human primates. However, recent humans studies of emotionally based vocalizations and human volitional voice production has shown more integration between these two systems than previously proposed. Recent human studies have shown that reflexive vocalization as well as learned voice production not involving speech, involve a common integrative system. On the other hand, recent studies of non-human primates have provided evidence of some cortical activity during vocalization and cortical changes with training during vocal behavior. For swallowing, evidence from the macaque and functional brain imaging in humans indicates that the control for the pharyngeal phase of swallowing is not primarily under brain stem mechanisms as previously proposed. Studies suggest that the initiation and patterning of swallowing for the pharyngeal phase is also under active cortical control for both spontaneous as well as volitional swallowing in awake humans and non-human primates. PMID:26241238
Communication Modality Sampling for a Toddler with Angelman Syndrome
ERIC Educational Resources Information Center
Martin, Jolene Hyppa; Reichle, Joe; Dimian, Adele; Chen, Mo
2013-01-01
Purpose: Vocal, gestural, and graphic communication modes were implemented concurrently with a toddler with Angelman syndrome to identify the most efficiently learned communication mode to emphasize in an initial augmentative communication system. Method: Symbols representing preferred objects were introduced in vocal, gestural, and graphic…
Vowels Development in Babbling of typically developing 6-to-12-month old Persian-learning Infants.
Fotuhi, Mina; Yadegari, Fariba; Teymouri, Robab
2017-10-01
Pre-linguistic vocalizations including early consonants, vowels, and their combinations into syllables are considered as important predictors of the speech and language development. The purpose of this study was to examine vowel development in babblings of normally developing Persian-learning infants. Eight typically developing 6-8-month-old Persian-learning infants (3 boys and 5 girls) participated in this 4-month longitudinal descriptive-analytic study. A weekly 30-60-minute audio- and video-recording was obtained at home from the comfort state vocalizations of infants and the mother-child interactions. A total of 74:02:03 hours of vocalizations were phonetically transcribed. Seven vowels comprising /i/,/e/,/a/,/u/,/o/,/ɑ/, and /ә/ were identified in the babblings. The inter-rater reliability was obtained for 20% of vocalizations. The data were analyzed by repeated measures ANOVA and Pearson's correlation coefficient using SPSS software version 20. The results showed that two vowels /a/ (46.04) and /e/ (23.60) were produced with the highest mean frequency of occurrence, respectively. Regarding front/back dimension, the front vowels were the most prominent ones (71.87); in terms of height, low (46.78) and mid (32.45) vowels occurred maximally. A good inter-rater reliability was obtained (0.99, P < .01). The increased frequency of occurrence of the low and mid front vowels in the current study was consistent with previous studies on the emergence of vowels in pre-linguistic vocalization in other languages.
Fournet, Michelle E; Szabo, Andy; Mellinger, David K
2015-01-01
On low-latitude breeding grounds, humpback whales produce complex and highly stereotyped songs as well as a range of non-song sounds associated with breeding behaviors. While on their Southeast Alaskan foraging grounds, humpback whales produce a range of previously unclassified non-song vocalizations. This study investigates the vocal repertoire of Southeast Alaskan humpback whales from a sample of 299 non-song vocalizations collected over a 3-month period on foraging grounds in Frederick Sound, Southeast Alaska. Three classification systems were used, including aural spectrogram analysis, statistical cluster analysis, and discriminant function analysis, to describe and classify vocalizations. A hierarchical acoustic structure was identified; vocalizations were classified into 16 individual call types nested within four vocal classes. The combined classification method shows promise for identifying variability in call stereotypy between vocal groupings and is recommended for future classification of broad vocal repertoires.
Animal vocal sequences: not the Markov chains we thought they were
Kershenbaum, Arik; Bowles, Ann E.; Freeberg, Todd M.; Jin, Dezhe Z.; Lameira, Adriano R.; Bohn, Kirsten
2014-01-01
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the ‘renewal process’ (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. PMID:25143037
Mouse Vocal Communication System: Are Ultrasounds Learned or Innate?
ERIC Educational Resources Information Center
Arriaga, Gustavo; Jarvis, Erich D.
2013-01-01
Mouse ultrasonic vocalizations (USVs) are often used as behavioral readouts of internal states, to measure effects of social and pharmacological manipulations, and for behavioral phenotyping of mouse models for neuropsychiatric and neurodegenerative disorders. However, little is known about the neurobiological mechanisms of rodent USV production.…
Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning.
Condro, Michael C; White, Stephanie A
2014-01-01
Variants of the contactin associated protein-like 2 (Cntnap2) gene are risk factors for language-related disorders including autism spectrum disorder, specific language impairment, and stuttering. Songbirds are useful models for study of human speech disorders due to their shared capacity for vocal learning, which relies on similar cortico-basal ganglia circuitry and genetic factors. Here we investigate Cntnap2 protein expression in the brain of the zebra finch, a songbird species in which males, but not females, learn their courtship songs. We hypothesize that Cntnap2 has overlapping functions in vocal learning species, and expect to find protein expression in song-related areas of the zebra finch brain. We further expect that the distribution of this membrane-bound protein may not completely mirror its mRNA distribution due to the distinct subcellular localization of the two molecular species. We find that Cntnap2 protein is enriched in several song control regions relative to surrounding tissues, particularly within the adult male, but not female, robust nucleus of the arcopallium (RA), a cortical song control region analogous to human layer 5 primary motor cortex. The onset of this sexually dimorphic expression coincides with the onset of sensorimotor learning in developing males. Enrichment in male RA appears due to expression in projection neurons within the nucleus, as well as to additional expression in nerve terminals of cortical projections to RA from the lateral magnocellular nucleus of the nidopallium. Cntnap2 protein expression in zebra finch brain supports the hypothesis that this molecule affects neural connectivity critical for vocal learning across taxonomic classes. Copyright © 2013 Wiley Periodicals, Inc.
Multiple Coordination Patterns in Infant and Adult Vocalizations
Abney, Drew H.; Warlaumont, Anne S.; Oller, D. Kimbrough; Wallot, Sebastian; Kello, Christopher T.
2017-01-01
The study of vocal coordination between infants and adults has led to important insights into the development of social, cognitive, emotional and linguistic abilities. We used an automatic system to identify vocalizations produced by infants and adults over the course of the day for fifteen infants studied longitudinally during the first two years of life. We measured three different types of vocal coordination: coincidence-based, rate-based, and cluster-based. Coincidence-based and rate-based coordination are established measures in the developmental literature. Cluster-based coordination is new and measures the strength of matching in the degree to which vocalization events occur in hierarchically nested clusters. We investigated whether various coordination patterns differ as a function of vocalization type, whether different coordination patterns provide unique information about the dynamics of vocal interaction, and how the various coordination patterns each relate to infant age. All vocal coordination patterns displayed greater coordination for infant speech-related vocalizations, adults adapted the hierarchical clustering of their vocalizations to match that of infants, and each of the three coordination patterns had unique associations with infant age. Altogether, our results indicate that vocal coordination between infants and adults is multifaceted, suggesting a complex relationship between vocal coordination and the development of vocal communication. PMID:29375276
Human-like brain hemispheric dominance in birdsong learning.
Moorman, Sanne; Gobes, Sharon M H; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A; Bolhuis, Johan J
2012-07-31
Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca's area in the frontal lobe and Wernicke's area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke's area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms.
Production, Usage, and Comprehension in Animal Vocalizations
ERIC Educational Resources Information Center
Seyfarth, Robert M.; Cheney, Dorothy L.
2010-01-01
In this review, we place equal emphasis on production, usage, and comprehension because these components of communication may exhibit different developmental trajectories and be affected by different neural mechanisms. In the animal kingdom generally, learned, flexible vocal production is rare, appearing in only a few orders of birds and few…
Talker identification across source mechanisms: experiments with laryngeal and electrolarynx speech.
Perrachione, Tyler K; Stepp, Cara E; Hillman, Robert E; Wong, Patrick C M
2014-10-01
The purpose of this study was to determine listeners' ability to learn talker identity from speech produced with an electrolarynx, explore source and filter differentiation in talker identification, and describe acoustic-phonetic changes associated with electrolarynx use. Healthy adult control listeners learned to identify talkers from speech recordings produced using talkers' normal laryngeal vocal source or an electrolarynx. Listeners' abilities to identify talkers from the trained vocal source (Experiment 1) and generalize this knowledge to the untrained source (Experiment 2) were assessed. Acoustic-phonetic measurements of spectral differences between source mechanisms were performed. Additional listeners attempted to match recordings from different source mechanisms to a single talker (Experiment 3). Listeners successfully learned talker identity from electrolarynx speech but less accurately than from laryngeal speech. Listeners were unable to generalize talker identity to the untrained source mechanism. Electrolarynx use resulted in vowels with higher F1 frequencies compared with laryngeal speech. Listeners matched recordings from different sources to a single talker better than chance. Electrolarynx speech, although lacking individual differences in voice quality, nevertheless conveys sufficient indexical information related to the vocal filter and articulation for listeners to identify individual talkers. Psychologically, perception of talker identity arises from a "gestalt" of the vocal source and filter.
Sohrabji, F; Nordeen, E J; Nordeen, K W
1990-01-01
Area X, a large sexually dimorphic nucleus in the avian ventral forebrain, is part of a highly discrete system of interconnected nuclei that have been implicated in either song learning or adult song production. Previously, this nucleus has been included in the song system because of its substantial connections with other vocal control nuclei, and because its volume is positively correlated with the capacity for song. In order to directly assess the role of Area X in song behavior, this nucleus was bilaterally lesioned in both juvenile and adult zebra finches, using ibotenic acid. We report here that lesioning Area X disrupts normal song development in juvenile birds, but does not affect the production of stereotyped song by adult birds. Although juvenile-lesioned birds were consistently judged as being in earlier stages of vocal development than age-matched controls, they continued to produce normal song-like vocalizations. Thus, unlike the lateral magnocellular nucleus of the anterior neostriatum, another avian forebrain nucleus implicated in song learning, Area X does not seem to be necessary for sustaining production of juvenile song. Rather, the behavioral results suggest Area X is important for either the acquisition of a song model or the improvement of song through vocal practice.
Talker identification across source mechanisms: Experiments with laryngeal and electrolarynx speech
Perrachione, Tyler K.; Stepp, Cara E.; Hillman, Robert E.; Wong, Patrick C.M.
2015-01-01
Purpose To determine listeners' ability to learn talker identity from speech produced with an electrolarynx, explore source and filter differentiation in talker identification, and describe acoustic-phonetic changes associated with electrolarynx use. Method Healthy adult control listeners learned to identify talkers from speech recordings produced using talkers' normal laryngeal vocal source or an electrolarynx. Listeners' abilities to identify talkers from the trained vocal source (Experiment 1) and generalize this knowledge to the untrained source (Experiment 2) were assessed. Acoustic-phonetic measurements of spectral differences between source mechanisms were performed. Additional listeners attempted to match recordings from different source mechanisms to a single talker (Experiment 3). Results Listeners successfully learned talker identity from electrolarynx speech, but less accurately than from laryngeal speech. Listeners were unable to generalize talker identity to the untrained source mechanism. Electrolarynx use resulted in vowels with higher F1 frequencies compared to laryngeal speech. Listeners matched recordings from different sources to a single talker better than chance. Conclusions Electrolarynx speech, though lacking individual differences in voice quality, nevertheless conveys sufficient indexical information related to the vocal filter and articulation for listeners to identify individual talkers. Psychologically, perception of talker identity arises from a “gestalt” of the vocal source and filter. PMID:24801962
Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T; Reidenberg, Joy S
2016-10-10
Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale's U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale's body size and physical fitness, and thus may be an important component of humpback whale songs.
NASA Astrophysics Data System (ADS)
Cazau, Dorian; Adam, Olivier; Aubin, Thierry; Laitman, Jeffrey T.; Reidenberg, Joy S.
2016-10-01
Although mammalian vocalizations are predominantly harmonically structured, they can exhibit an acoustic complexity with nonlinear vocal sounds, including deterministic chaos and frequency jumps. Such sounds are normative events in mammalian vocalizations, and can be directly traceable to the nonlinear nature of vocal-fold dynamics underlying typical mammalian sound production. In this study, we give qualitative descriptions and quantitative analyses of nonlinearities in the song repertoire of humpback whales from the Ste Marie channel (Madagascar) to provide more insight into the potential communication functions and underlying production mechanisms of these features. A low-dimensional biomechanical modeling of the whale’s U-fold (vocal folds homolog) is used to relate specific vocal mechanisms to nonlinear vocal features. Recordings of living humpback whales were searched for occurrences of vocal nonlinearities (instabilities). Temporal distributions of nonlinearities were assessed within sound units, and between different songs. The anatomical production sources of vocal nonlinearities and the communication context of their occurrences in recordings are discussed. Our results show that vocal nonlinearities may be a communication strategy that conveys information about the whale’s body size and physical fitness, and thus may be an important component of humpback whale songs.
Gruzelier, J H; Holmes, P; Hirst, L; Bulpin, K; Rahman, S; van Run, C; Leach, J
2014-01-01
Alpha/theta (A/T) and sensory-motor rhythm (SMR) neurofeedback were compared in university instrumentalists who were novice singers with regard to prepared and improvised instrumental and vocal performance in three music domains: creativity/musicality, technique and communication/presentation. Only A/T training enhanced advanced playing seen in all three domains by expert assessors and validated by correlations with learning indices, strongest with Creativity/Musicality as shown by Egner and Gruzelier (2003). Here A/T gains extended to novice performance - prepared vocal, improvised vocal and instrumental - and were recognised by a lay audience who judged the prepared folk songs. SMR learning correlated positively with Technical Competence and Communication in novice performance, in keeping with SMR neurofeedback's known impact on lower-order processes such as attention, working memory and psychomotor skills. The importance of validation through learning indices was emphasised in the interpretation of neurofeedback outcome. Copyright © 2013 Elsevier B.V. All rights reserved.
Kumar, Veena; Croxson, Paula L; Simonyan, Kristina
2016-04-13
The laryngeal motor cortex (LMC) is essential for the production of learned vocal behaviors because bilateral damage to this area renders humans unable to speak but has no apparent effect on innate vocalizations such as human laughing and crying or monkey calls. Several hypotheses have been put forward attempting to explain the evolutionary changes from monkeys to humans that potentially led to enhanced LMC functionality for finer motor control of speech production. These views, however, remain limited to the position of the larynx area within the motor cortex, as well as its connections with the phonatory brainstem regions responsible for the direct control of laryngeal muscles. Using probabilistic diffusion tractography in healthy humans and rhesus monkeys, we show that, whereas the LMC structural network is largely comparable in both species, the LMC establishes nearly 7-fold stronger connectivity with the somatosensory and inferior parietal cortices in humans than in macaques. These findings suggest that important "hard-wired" components of the human LMC network controlling the laryngeal component of speech motor output evolved from an already existing, similar network in nonhuman primates. However, the evolution of enhanced LMC-parietal connections likely allowed for more complex synchrony of higher-order sensorimotor coordination, proprioceptive and tactile feedback, and modulation of learned voice for speech production. The role of the primary motor cortex in the formation of a comprehensive network controlling speech and language has been long underestimated and poorly studied. Here, we provide comparative and quantitative evidence for the significance of this region in the control of a highly learned and uniquely human behavior: speech production. From the viewpoint of structural network organization, we discuss potential evolutionary advances of enhanced temporoparietal cortical connections with the laryngeal motor cortex in humans compared with nonhuman primates that may have contributed to the development of finer vocal motor control necessary for speech production. Copyright © 2016 the authors 0270-6474/16/364170-12$15.00/0.
Vasconcelos, Raquel O.; Fonseca, Paulo J.; Amorim, M. Clara P.; Ladich, Friedrich
2011-01-01
Many fishes rely on their auditory skills to interpret crucial information about predators and prey, and to communicate intraspecifically. Few studies, however, have examined how complex natural sounds are perceived in fishes. We investigated the representation of conspecific mating and agonistic calls in the auditory system of the Lusitanian toadfish Halobatrachus didactylus, and analysed auditory responses to heterospecific signals from ecologically relevant species: a sympatric vocal fish (meagre Argyrosomus regius) and a potential predator (dolphin Tursiops truncatus). Using auditory evoked potential (AEP) recordings, we showed that both sexes can resolve fine features of conspecific calls. The toadfish auditory system was most sensitive to frequencies well represented in the conspecific vocalizations (namely the mating boatwhistle), and revealed a fine representation of duration and pulsed structure of agonistic and mating calls. Stimuli and corresponding AEP amplitudes were highly correlated, indicating an accurate encoding of amplitude modulation. Moreover, Lusitanian toadfish were able to detect T. truncatus foraging sounds and A. regius calls, although at higher amplitudes. We provide strong evidence that the auditory system of a vocal fish, lacking accessory hearing structures, is capable of resolving fine features of complex vocalizations that are probably important for intraspecific communication and other relevant stimuli from the auditory scene. PMID:20861044
Vertical transmission of learned signatures in a wild parrot
Berg, Karl S.; Delgado, Soraya; Cortopassi, Kathryn A.; Beissinger, Steven R.; Bradbury, Jack W.
2012-01-01
Learned birdsong is a widely used animal model for understanding the acquisition of human speech. Male songbirds often learn songs from adult males during sensitive periods early in life, and sing to attract mates and defend territories. In presumably all of the 350+ parrot species, individuals of both sexes commonly learn vocal signals throughout life to satisfy a wide variety of social functions. Despite intriguing parallels with humans, there have been no experimental studies demonstrating learned vocal production in wild parrots. We studied contact call learning in video-rigged nests of a well-known marked population of green-rumped parrotlets (Forpus passerinus) in Venezuela. Both sexes of naive nestlings developed individually unique contact calls in the nest, and we demonstrate experimentally that signature attributes are learned from both primary care-givers. This represents the first experimental evidence for the mechanisms underlying the transmission of a socially acquired trait in a wild parrot population. PMID:21752824
Animal vocal sequences: not the Markov chains we thought they were.
Kershenbaum, Arik; Bowles, Ann E; Freeberg, Todd M; Jin, Dezhe Z; Lameira, Adriano R; Bohn, Kirsten
2014-10-07
Many animals produce vocal sequences that appear complex. Most researchers assume that these sequences are well characterized as Markov chains (i.e. that the probability of a particular vocal element can be calculated from the history of only a finite number of preceding elements). However, this assumption has never been explicitly tested. Furthermore, it is unclear how language could evolve in a single step from a Markovian origin, as is frequently assumed, as no intermediate forms have been found between animal communication and human language. Here, we assess whether animal taxa produce vocal sequences that are better described by Markov chains, or by non-Markovian dynamics such as the 'renewal process' (RP), characterized by a strong tendency to repeat elements. We examined vocal sequences of seven taxa: Bengalese finches Lonchura striata domestica, Carolina chickadees Poecile carolinensis, free-tailed bats Tadarida brasiliensis, rock hyraxes Procavia capensis, pilot whales Globicephala macrorhynchus, killer whales Orcinus orca and orangutans Pongo spp. The vocal systems of most of these species are more consistent with a non-Markovian RP than with the Markovian models traditionally assumed. Our data suggest that non-Markovian vocal sequences may be more common than Markov sequences, which must be taken into account when evaluating alternative hypotheses for the evolution of signalling complexity, and perhaps human language origins. © 2014 The Author(s) Published by the Royal Society. All rights reserved.
Communication modality sampling for a toddler with Angelman syndrome.
Hyppa Martin, Jolene; Reichle, Joe; Dimian, Adele; Chen, Mo
2013-10-01
Vocal, gestural, and graphic communication modes were implemented concurrently with a toddler with Angelman syndrome to identify the most efficiently learned communication mode to emphasize in an initial augmentative communication system. Symbols representing preferred objects were introduced in vocal, gestural, and graphic communication modes using an alternating treatment single-subject experimental design. Conventionally accepted prompting strategies were used to teach symbols in each communication mode. Because the learner did not vocally imitate, vocal mode intervention focused on increasing vocal frequency as an initial step. When graphic and gestural mode performances were compared, the learner most accurately produced requests in graphic mode (percentage of nonoverlapping data = 96). Given the lack of success in prompting vocal productions, a comparison between vocal and the other two communication modes was not made. A growing body of evidence suggests that concurrent modality sampling is a promising low-inference, data-driven procedure that can be used to inform selection of a communication mode(s) for initial emphasis with young children. Concurrent modality sampling can guide clinical decisions regarding the allocation of treatment resources to promote success in building an initial communicative repertoire.
Primate vocal communication: a useful tool for understanding human speech and language evolution?
Fedurek, Pawel; Slocombe, Katie E
2011-04-01
Language is a uniquely human trait, and questions of how and why it evolved have been intriguing scientists for years. Nonhuman primates (primates) are our closest living relatives, and their behavior can be used to estimate the capacities of our extinct ancestors. As humans and many primate species rely on vocalizations as their primary mode of communication, the vocal behavior of primates has been an obvious target for studies investigating the evolutionary roots of human speech and language. By studying the similarities and differences between human and primate vocalizations, comparative research has the potential to clarify the evolutionary processes that shaped human speech and language. This review examines some of the seminal and recent studies that contribute to our knowledge regarding the link between primate calls and human language and speech. We focus on three main aspects of primate vocal behavior: functional reference, call combinations, and vocal learning. Studies in these areas indicate that despite important differences, primate vocal communication exhibits some key features characterizing human language. They also indicate, however, that some critical aspects of speech, such as vocal plasticity, are not shared with our primate cousins. We conclude that comparative research on primate vocal behavior is a very promising tool for deepening our understanding of the evolution of human speech and language, but much is still to be done as many aspects of monkey and ape vocalizations remain largely unexplored.
A Comparison of Written, Vocal, and Video Feedback When Training Teachers
ERIC Educational Resources Information Center
Luck, Kally M.; Lerman, Dorothea C.; Wu, Wai-Ling; Dupuis, Danielle L.; Hussein, Louisa A.
2018-01-01
We compared the effectiveness of and preference for different feedback strategies when training six special education teachers during a 5-day summer training program. In Experiment 1, teachers received written or vocal feedback while learning to implement two different types of preference assessments. In Experiment 2, we compared either written or…
Mindfulness for Singers: The Effects of a Targeted Mindfulness Course on Learning Vocal Technique
ERIC Educational Resources Information Center
Czajkowski, Anne-Marie L.; Greasley, Alinka E.
2015-01-01
This paper reports the development and implementation of a unique Mindfulness for Singers (MfS) course designed to improve singers' vocal technique. Eight university students completed the intervention. Five Facet Mindfulness Questionnaire (FFMQ) scores showed general improvement across all five facets of mindfulness. Qualitative results showed…
Mets, David G; Brainard, Michael S
2018-01-01
Abstract Background Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly understood. Findings To establish a platform for the molecular analysis of behavioral variability and plasticity, we generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50 of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver, muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes. Conclusions We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support many avenues for the identification of genes involved in learning, including differential expression analysis, comparative genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic) of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior. PMID:29618046
Bottlenose dolphins can use learned vocal labels to address each other
King, Stephanie L.; Janik, Vincent M.
2013-01-01
In animal communication research, vocal labeling refers to incidents in which an animal consistently uses a specific acoustic signal when presented with a specific object or class of objects. Labeling with learned signals is a foundation of human language but is notably rare in nonhuman communication systems. In natural animal systems, labeling often occurs with signals that are not influenced by learning, such as in alarm and food calling. There is a suggestion, however, that some species use learned signals to label conspecific individuals in their own communication system when mimicking individually distinctive calls. Bottlenose dolphins (Tursiops truncatus) are a promising animal for exploration in this area because they are capable of vocal production learning and can learn to use arbitrary signals to report the presence or absence of objects. Bottlenose dolphins develop their own unique identity signal, the signature whistle. This whistle encodes individual identity independently of voice features. The copying of signature whistles may therefore allow animals to label or address one another. Here, we show that wild bottlenose dolphins respond to hearing a copy of their own signature whistle by calling back. Animals did not respond to whistles that were not their own signature. This study provides compelling evidence that a dolphin’s learned identity signal is used as a label when addressing conspecifics. Bottlenose dolphins therefore appear to be unique as nonhuman mammals to use learned signals as individually specific labels for different social companions in their own natural communication system. PMID:23878217
Colquitt, Bradley M; Mets, David G; Brainard, Michael S
2018-03-01
Vocal learning in songbirds has emerged as a powerful model for sensorimotor learning. Neurobehavioral studies of Bengalese finch (Lonchura striata domestica) song, naturally more variable and plastic than songs of other finch species, have demonstrated the importance of behavioral variability for initial learning, maintenance, and plasticity of vocalizations. However, the molecular and genetic underpinnings of this variability and the learning it supports are poorly understood. To establish a platform for the molecular analysis of behavioral variability and plasticity, we generated an initial draft assembly of the Bengalese finch genome from a single male animal to 151× coverage and an N50 of 3.0 MB. Furthermore, we developed an initial set of gene models using RNA-seq data from 8 samples that comprise liver, muscle, cerebellum, brainstem/midbrain, and forebrain tissue from juvenile and adult Bengalese finches of both sexes. We provide a draft Bengalese finch genome and gene annotation to facilitate the study of the molecular-genetic influences on behavioral variability and the process of vocal learning. These data will directly support many avenues for the identification of genes involved in learning, including differential expression analysis, comparative genomic analysis (through comparison to existing avian genome assemblies), and derivation of genetic maps for linkage analysis. Bengalese finch gene models and sequences will be essential for subsequent manipulation (molecular or genetic) of genes and gene products, enabling novel mechanistic investigations into the role of variability in learned behavior.
Harmonic template neurons in primate auditory cortex underlying complex sound processing
Feng, Lei
2017-01-01
Harmonicity is a fundamental element of music, speech, and animal vocalizations. How the auditory system extracts harmonic structures embedded in complex sounds and uses them to form a coherent unitary entity is not fully understood. Despite the prevalence of sounds rich in harmonic structures in our everyday hearing environment, it has remained largely unknown what neural mechanisms are used by the primate auditory cortex to extract these biologically important acoustic structures. In this study, we discovered a unique class of harmonic template neurons in the core region of auditory cortex of a highly vocal New World primate, the common marmoset (Callithrix jacchus), across the entire hearing frequency range. Marmosets have a rich vocal repertoire and a similar hearing range to that of humans. Responses of these neurons show nonlinear facilitation to harmonic complex sounds over inharmonic sounds, selectivity for particular harmonic structures beyond two-tone combinations, and sensitivity to harmonic number and spectral regularity. Our findings suggest that the harmonic template neurons in auditory cortex may play an important role in processing sounds with harmonic structures, such as animal vocalizations, human speech, and music. PMID:28096341
Biosimulation of Inflammation and Healing in Surgically Injured Vocal Folds
Li, Nicole Y. K.; Vodovotz, Yoram; Hebda, Patricia A.; Abbott, Katherine Verdolini
2010-01-01
Objectives The pathogenesis of vocal fold scarring is complex and remains to be deciphered. The current study is part of research endeavors aimed at applying systems biology approaches to address the complex biological processes involved in the pathogenesis of vocal fold scarring and other lesions affecting the larynx. Methods We developed a computational agent-based model (ABM) to quantitatively characterize multiple cellular and molecular interactions involved in inflammation and healing in vocal fold mucosa after surgical trauma. The ABM was calibrated with empirical data on inflammatory mediators (eg, tumor necrosis factor) and extracellular matrix components (eg, hyaluronan) from published studies on surgical vocal fold injury in the rat population. Results The simulation results reproduced and predicted trajectories seen in the empirical data from the animals. Moreover, the ABM studies suggested that hyaluronan fragments might be the clinical surrogate of tissue damage, a key variable that in these simulations both is enhanced by and further induces inflammation. Conclusions A relatively simple ABM such as the one reported in this study can provide new understanding of laryngeal wound healing and generate working hypotheses for further wet-lab studies. PMID:20583741
Biosimulation of inflammation and healing in surgically injured vocal folds.
Li, Nicole Y K; Vodovotz, Yoram; Hebda, Patricia A; Abbott, Katherine Verdolini
2010-06-01
The pathogenesis of vocal fold scarring is complex and remains to be deciphered. The current study is part of research endeavors aimed at applying systems biology approaches to address the complex biological processes involved in the pathogenesis of vocal fold scarring and other lesions affecting the larynx. We developed a computational agent-based model (ABM) to quantitatively characterize multiple cellular and molecular interactions involved in inflammation and healing in vocal fold mucosa after surgical trauma. The ABM was calibrated with empirical data on inflammatory mediators (eg, tumor necrosis factor) and extracellular matrix components (eg, hyaluronan) from published studies on surgical vocal fold injury in the rat population. The simulation results reproduced and predicted trajectories seen in the empirical data from the animals. Moreover, the ABM studies suggested that hyaluronan fragments might be the clinical surrogate of tissue damage, a key variable that in these simulations both is enhanced by and further induces inflammation. A relatively simple ABM such as the one reported in this study can provide new understanding of laryngeal wound healing and generate working hypotheses for further wet-lab studies.
Observational Learning in the Music Masterclass
ERIC Educational Resources Information Center
Haddon, Elizabeth
2014-01-01
This article contributes to research on music masterclasses through examining learning through observation. It investigates how students are learning as observers in this context; whether and how they will transfer their masterclass learning to their own instrumental/vocal development, and whether they have discussed learning through observation.…
Human-like brain hemispheric dominance in birdsong learning
Moorman, Sanne; Gobes, Sharon M. H.; Kuijpers, Maaike; Kerkhofs, Amber; Zandbergen, Matthijs A.; Bolhuis, Johan J.
2012-01-01
Unlike nonhuman primates, songbirds learn to vocalize very much like human infants acquire spoken language. In humans, Broca’s area in the frontal lobe and Wernicke’s area in the temporal lobe are crucially involved in speech production and perception, respectively. Songbirds have analogous brain regions that show a similar neural dissociation between vocal production and auditory perception and memory. In both humans and songbirds, there is evidence for lateralization of neural responsiveness in these brain regions. Human infants already show left-sided dominance in their brain activation when exposed to speech. Moreover, a memory-specific left-sided dominance in Wernicke’s area for speech perception has been demonstrated in 2.5-mo-old babies. It is possible that auditory-vocal learning is associated with hemispheric dominance and that this association arose in songbirds and humans through convergent evolution. Therefore, we investigated whether there is similar song memory-related lateralization in the songbird brain. We exposed male zebra finches to tutor or unfamiliar song. We found left-sided dominance of neuronal activation in a Broca-like brain region (HVC, a letter-based name) of juvenile and adult zebra finch males, independent of the song stimulus presented. In addition, juvenile males showed left-sided dominance for tutor song but not for unfamiliar song in a Wernicke-like brain region (the caudomedial nidopallium). Thus, left-sided dominance in the caudomedial nidopallium was specific for the song-learning phase and was memory-related. These findings demonstrate a remarkable neural parallel between birdsong and human spoken language, and they have important consequences for our understanding of the evolution of auditory-vocal learning and its neural mechanisms. PMID:22802637
Maciej, Peter; Ndao, Ibrahima; Hammerschmidt, Kurt; Fischer, Julia
2013-09-23
To understand the evolution of acoustic communication in animals, it is important to distinguish between the structure and the usage of vocal signals, since both aspects are subject to different constraints. In terrestrial mammals, the structure of calls is largely innate, while individuals have a greater ability to actively initiate or withhold calls. In closely related taxa, one would therefore predict a higher flexibility in call usage compared to call structure. In the present study, we investigated the vocal repertoire of free living Guinea baboons (Papio papio) and examined the structure and usage of the animals' vocal signals. Guinea baboons live in a complex multi-level social organization and exhibit a largely tolerant and affiliative social style, contrary to most other baboon taxa. To classify the vocal repertoire of male and female Guinea baboons, cluster analyses were used and focal observations were conducted to assess the usage of vocal signals in the particular contexts. In general, the vocal repertoire of Guinea baboons largely corresponded to the vocal repertoire other baboon taxa. The usage of calls, however, differed considerably from other baboon taxa and corresponded with the specific characteristics of the Guinea baboons' social behaviour. While Guinea baboons showed a diminished usage of contest and display vocalizations (a common pattern observed in chacma baboons), they frequently used vocal signals during affiliative and greeting interactions. Our study shows that the call structure of primates is largely unaffected by the species' social system (including grouping patterns and social interactions), while the usage of calls can be more flexibly adjusted, reflecting the quality of social interactions of the individuals. Our results support the view that the primary function of social signals is to regulate social interactions, and therefore the degree of competition and cooperation may be more important to explain variation in call usage than grouping patterns or group size.
2013-01-01
Background To understand the evolution of acoustic communication in animals, it is important to distinguish between the structure and the usage of vocal signals, since both aspects are subject to different constraints. In terrestrial mammals, the structure of calls is largely innate, while individuals have a greater ability to actively initiate or withhold calls. In closely related taxa, one would therefore predict a higher flexibility in call usage compared to call structure. In the present study, we investigated the vocal repertoire of free living Guinea baboons (Papio papio) and examined the structure and usage of the animals’ vocal signals. Guinea baboons live in a complex multi-level social organization and exhibit a largely tolerant and affiliative social style, contrary to most other baboon taxa. To classify the vocal repertoire of male and female Guinea baboons, cluster analyses were used and focal observations were conducted to assess the usage of vocal signals in the particular contexts. Results In general, the vocal repertoire of Guinea baboons largely corresponded to the vocal repertoire other baboon taxa. The usage of calls, however, differed considerably from other baboon taxa and corresponded with the specific characteristics of the Guinea baboons’ social behaviour. While Guinea baboons showed a diminished usage of contest and display vocalizations (a common pattern observed in chacma baboons), they frequently used vocal signals during affiliative and greeting interactions. Conclusions Our study shows that the call structure of primates is largely unaffected by the species’ social system (including grouping patterns and social interactions), while the usage of calls can be more flexibly adjusted, reflecting the quality of social interactions of the individuals. Our results support the view that the primary function of social signals is to regulate social interactions, and therefore the degree of competition and cooperation may be more important to explain variation in call usage than grouping patterns or group size. PMID:24059742
Precise Motor Control Enables Rapid Flexibility in Vocal Behavior of Marmoset Monkeys.
Pomberger, Thomas; Risueno-Segovia, Cristina; Löschner, Julia; Hage, Steffen R
2018-03-05
Investigating the evolution of human speech is difficult and controversial because human speech surpasses nonhuman primate vocal communication in scope and flexibility [1-3]. Monkey vocalizations have been assumed to be largely innate, highly affective, and stereotyped for over 50 years [4, 5]. Recently, this perception has dramatically changed. Current studies have revealed distinct learning mechanisms during vocal development [6-8] and vocal flexibility, allowing monkeys to cognitively control when [9, 10], where [11], and what to vocalize [10, 12, 13]. However, specific call features (e.g., duration, frequency) remain surprisingly robust and stable in adult monkeys, resulting in rather stereotyped and discrete call patterns [14]. Additionally, monkeys seem to be unable to modulate their acoustic call structure under reinforced conditions beyond natural constraints [15, 16]. Behavioral experiments have shown that monkeys can stop sequences of calls immediately after acoustic perturbation but cannot interrupt ongoing vocalizations, suggesting that calls consist of single impartible pulses [17, 18]. Using acoustic perturbation triggered by the vocal behavior itself and quantitative measures of resulting vocal adjustments, we show that marmoset monkeys are capable of producing calls with durations beyond the natural boundaries of their repertoire by interrupting ongoing vocalizations rapidly after perturbation onset. Our results indicate that marmosets are capable of interrupting vocalizations only at periodic time points throughout calls, further supported by the occurrence of periodically segmented phees. These ideas overturn decades-old concepts on primate vocal pattern generation, indicating that vocalizations do not consist of one discrete call pattern but are built of many sequentially uttered units, like human speech. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.
Development of precursors to speech in infants exposed to two languages.
Oller, D K; Eilers, R E; Urbano, R; Cobo-Lewis, A B
1997-06-01
The study of bilingualism has often focused on two contradictory possibilities: that the learning of two languages may produce deficits of performance in each language by comparison with performance of monolingual individuals, or on the contrary, that the learning of two languages may produce linguistic or cognitive advantages with regard to the monolingual learning experience. The work reported here addressed the possibility that the very early bilingual experience of infancy may affect the unfolding of vocal precursors to speech. The results of longitudinal research with 73 infants aged 0;4 to 1;6 in monolingual and bilingual environments provided no support for either a bilingual deficit hypothesis nor for its opposite, a bilingual advantage hypothesis. Infants reared in bilingual and monolingual environments manifested similar ages of onset for canonical babbling (production of well-formed syllables), an event known to be fundamentally related to speech development. Further, quantitative measures of vocal performance (proportion of usage of well-formed syllables and vowel-like sounds) showed additional similarities between monolingual and bilingual infants. The similarities applied to infants of middle and low socio-economic status and to infants that were born at term or prematurely. The results suggest that vocal development in the first year of life is robust with respect to conditions of rearing. The biological foundations of speech appear to be such as to resist modifications in the natural schedule of vocal development.
Properties of vocalization- and gesture-combinations in the transition to first words.
Murillo, Eva; Capilla, Almudena
2016-07-01
Gestures and vocal elements interact from the early stages of language development, but the role of this interaction in the language learning process is not yet completely understood. The aim of this study is to explore gestural accompaniment's influence on the acoustic properties of vocalizations in the transition to first words. Eleven Spanish children aged 0;9 to 1;3 were observed longitudinally in a semi-structured play situation with an adult. Vocalizations were analyzed using several acoustic parameters based on those described by Oller et al. (2010). Results indicate that declarative vocalizations have fewer protosyllables than imperative ones, but only when they are produced with a gesture. Protosyllables duration and f(0) are more similar to those of mature speech when produced with pointing and declarative function than when produced with reaching gestures and imperative purposes. The proportion of canonical syllables produced increases with age, but only when combined with a gesture.
ERIC Educational Resources Information Center
Ivanova, Tamara N.; Gross, Christina; Mappus, Rudolph C.; Kwon, Yong Jun; Bassell, Gary J.; Liu, Robert C.
2017-01-01
Learning to recognize a stimulus category requires experience with its many natural variations. However, the mechanisms that allow a category's sensorineural representation to be updated after experiencing new exemplars are not well understood, particularly at the molecular level. Here we investigate how a natural vocal category induces expression…
A humanized version of Foxp2 does not affect ultrasonic vocalization in adult mice.
Hammerschmidt, K; Schreiweis, C; Minge, C; Pääbo, S; Fischer, J; Enard, W
2015-11-01
The transcription factor FOXP2 has been linked to severe speech and language impairments in humans. An analysis of the evolution of the FOXP2 gene has identified two amino acid substitutions that became fixed after the split of the human and chimpanzee lineages. Studying the functional consequences of these two substitutions in the endogenous Foxp2 gene of mice showed alterations in dopamine levels, striatal synaptic plasticity, neuronal morphology and cortico-striatal-dependent learning. In addition, ultrasonic vocalizations (USVs) of pups had a significantly lower average pitch than control littermates. To which degree adult USVs would be affected in mice carrying the 'humanized' Foxp2 variant remained unclear. In this study, we analyzed USVs of 68 adult male mice uttered during repeated courtship encounters with different females. Mice carrying the Foxp2(hum/hum) allele did not differ significantly in the number of call elements, their element structure or in their element composition from control littermates. We conclude that neither the structure nor the usage of USVs in adult mice is affected by the two amino acid substitutions that occurred in FOXP2 during human evolution. The reported effect for pup vocalization thus appears to be transient. These results are in line with accumulating evidence that mouse USVs are hardly influenced by vocal learning. Hence, the function and evolution of genes that are necessary, but not sufficient for vocal learning in humans, must be either studied at a different phenotypic level in mice or in other organisms. © 2015 The Authors. Genes, Brain and Behavior published by International Behavioural and Neural Genetics Society and John Wiley & Sons Ltd.
Functional assessment of the ex vivo vocal folds through biomechanical testing: A review
Dion, Gregory R.; Jeswani, Seema; Roof, Scott; Fritz, Mark; Coelho, Paulo; Sobieraj, Michael; Amin, Milan R.; Branski, Ryan C.
2016-01-01
The human vocal folds are complex structures made up of distinct layers that vary in cellular and extracellular composition. The mechanical properties of vocal fold tissue are fundamental to the study of both the acoustics and biomechanics of voice production. To date, quantitative methods have been applied to characterize the vocal fold tissue in both normal and pathologic conditions. This review describes, summarizes, and discusses the most commonly employed methods for vocal fold biomechanical testing. Force-elongation, torsional parallel plate rheometry, simple-shear parallel plate rheometry, linear skin rheometry, and indentation are the most frequently employed biomechanical tests for vocal fold tissues and each provide material properties data that can be used to compare native tissue verses diseased for treated tissue. Force-elongation testing is clinically useful, as it allows for functional unit testing, while rheometry provides physiologically relevant shear data, and nanoindentation permits micrometer scale testing across different areas of the vocal fold as well as whole organ testing. Thoughtful selection of the testing technique during experimental design to evaluate a hypothesis is important to optimizing biomechanical testing of vocal fold tissues. PMID:27127075
The impact of intraglottal vortices on vocal fold dynamics
NASA Astrophysics Data System (ADS)
Erath, Byron; Pirnia, Alireza; Peterson, Sean
2016-11-01
During voiced speech a critical pressure is produced in the lungs that separates the vocal folds and creates a passage (the glottis) for airflow. As air passes through the vocal folds the resulting aerodynamic loading, coupled with the tissue properties of the vocal folds, produces self-sustained oscillations. Throughout each cycle a complex flow field develops, characterized by a plethora of viscous flow phenomena. Air passing through the glottis creates a jet, with periodically-shed vortices developing due to flow separation and the Kelvin-Helmholtz instability in the shear layer. These vortices have been hypothesized to be a crucial mechanism for producing vocal fold vibrations. In this study the effect of vortices on the vocal fold dynamics is investigated experimentally by passing a vortex ring over a flexible beam with the same non-dimensional mechanical properties as the vocal folds. Synchronized particle image velocimetry data are acquired in tandem with the beam dynamics. The resulting impact of the vortex ring loading on vocal fold dynamics is discussed in detail. This work was supported by the National Science Foundation Grant CBET #1511761.
Image, imagination, and reality: on effectiveness of introductory work with vocalists.
Gullaer, Irene; Walker, Robert; Badin, Pierre; Lamalle, Laurent
2006-01-01
Fifty-four sung tokens, each consisting of eight images were generated with the help of magnetic resonance imaging (MRI) technique to demonstrate the work of intrapharyngeal muscles when singing and speaking, and to help the educational process. The MRI images can be used as a part of a visualization feed-back method in vocal education and contribute to creation of proper mental images. The use of visualization (pictures, drafts, graphs, spectra, MRI images, etc.), along with mental images, facilitates simplification and acceleration of the process of understanding and learning how to master the basics of vocal technique, especially in the initial period of study. It is shown that work on muscle development and use of imagination should progress with close interaction between the two. For higher effectiveness and tangible results, mental images used by a vocal pedagogue should correspond to the technical and emotional level of a student. Therefore, mental images have to undertake the same evolution as articulation technique-from simplified and comprehensible to complex and abstract. Our integrated approach suggests continuing the work on muscle development and use of imagination in singing classes, employing the experience of voice-speech teachers. Their exercises are modified using the empirical method and other techniques developed creatively by singing teachers. In this method, sensitivity towards the state of the tissues becomes increasingly refined; students acquire a conscious control over the muscle work, students gain full awareness of both sensation and muscle activity. As a result, a complex of professional conditioned reflexes is being developed. A case study of the New Zealand experience was conducted with groups of Maori and European students. Unique properties and trends in the voices of Maori people are discussed.
Vocal Fold Epithelial Barrier in Health and Injury A Research Review
Levendoski, Elizabeth Erickson; Leydon, Ciara; Thibeault, Susan L.
2015-01-01
Purpose Vocal fold epithelium is composed of layers of individual epithelial cells joined by junctional complexes constituting a unique interface with the external environment. This barrier provides structural stability to the vocal folds and protects underlying connective tissue from injury while being nearly continuously exposed to potentially hazardous insults including environmental or systemic-based irritants such as pollutants and reflux, surgical procedures, and vibratory trauma. Small disruptions in the epithelial barrier may have a large impact on susceptibility to injury and overall vocal health. The purpose of this article is to provide a broad-based review of our current knowledge of the vocal fold epithelial barrier. Methods A comprehensive review of the literature was conducted. Details of the structure of the vocal fold epithelial barrier are presented and evaluated in the context of function in injury and pathology. The importance of the epithelial-associated vocal fold mucus barrier is also introduced. Results/Conclusions Information presented in this review is valuable for clinicians and researchers as it highlights the importance of this understudied portion of the vocal folds to overall vocal health and disease. Prevention and treatment of injury to the epithelial barrier is a significant area awaiting further investigation. PMID:24686981
Murugan, Malavika; Harward, Stephen; Scharff, Constance; Mooney, Richard
2013-12-18
Mutations of the FOXP2 gene impair speech and language development in humans and shRNA-mediated suppression of the avian ortholog FoxP2 disrupts song learning in juvenile zebra finches. How diminished FoxP2 levels affect vocal control and alter the function of neural circuits important to learned vocalizations remains unclear. Here we show that FoxP2 knockdown in the songbird striatum disrupts developmental and social modulation of song variability. Recordings in anesthetized birds show that FoxP2 knockdown interferes with D1R-dependent modulation of activity propagation in a corticostriatal pathway important to song variability, an effect that may be partly attributable to reduced D1R and DARPP-32 protein levels. Furthermore, recordings in singing birds reveal that FoxP2 knockdown prevents social modulation of singing-related activity in this pathway. These findings show that reduced FoxP2 levels interfere with the dopaminergic modulation of vocal variability, which may impede song and speech development by disrupting reinforcement learning mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.
Murugan, Malavika; Harward, Stephen; Scharff, Constance; Mooney, Richard
2013-01-01
Summary Mutations of the FOXP2 gene impair speech and language development in humans and shRNA-mediated suppression of the avian orthologue FoxP2 disrupts song learning in juvenile zebra finches. How diminished FoxP2 levels affect vocal control and alter the function of neural circuits important to learned vocalizations remains unclear. Here we show that FoxP2 knockdown in the songbird striatum disrupts developmental and social modulation of song variability. Recordings in anaesthetized birds show that FoxP2 knockdown interferes with D1R-dependent modulation of activity propagation in a corticostriatal pathway important to song variability, an effect that may be partly attributable to reduced D1R and DARPP-32 protein levels. Furthermore, recordings in singing birds reveal that FoxP2 knockdown prevents social modulation of singing-related activity in this pathway. These findings show that reduced FoxP2 levels interfere with the dopaminergic modulation of vocal variability, which may impede song and speech development by disrupting reinforcement learning mechanisms. PMID:24268418
Context-dependent vocal mimicry in a passerine bird.
Goodale, Eben; Kotagama, Sarath W
2006-04-07
How do birds select the sounds they mimic, and in what contexts do they use vocal mimicry? Some birds show a preference for mimicking other species' alarm notes, especially in situations when they appear to be alarmed. Yet no study has demonstrated that birds change the call types they mimic with changing contexts. We found that greater racket-tailed drongos (Dicrurus paradiseus) in the rainforest of Sri Lanka mimic the calls of predators and the alarm-associated calls of other species more often than would be expected from the frequency of these sounds in the acoustic environment. Drongos include this alarm-associated mimicry in their own alarm vocalizations, while incorporating other species' songs and contact calls in their own songs. Drongos show an additional level of context specificity by mimicking other species' ground predator-specific call types when mobbing. We suggest that drongos learn other species' calls and their contexts while interacting with these species in mixed flocks. The drongos' behaviour demonstrates that alarm-associated calls can have learned components, and that birds can learn the appropriate usage of calls that encode different types of information.
Context-dependent vocal mimicry in a passerine bird
Goodale, Eben; Kotagama, Sarath W
2005-01-01
How do birds select the sounds they mimic, and in what contexts do they use vocal mimicry? Some birds show a preference for mimicking other species' alarm notes, especially in situations when they appear to be alarmed. Yet no study has demonstrated that birds change the call types they mimic with changing contexts. We found that greater racket-tailed drongos (Dicrurus paradiseus) in the rainforest of Sri Lanka mimic the calls of predators and the alarm-associated calls of other species more often than would be expected from the frequency of these sounds in the acoustic environment. Drongos include this alarm-associated mimicry in their own alarm vocalizations, while incorporating other species' songs and contact calls in their own songs. Drongos show an additional level of context specificity by mimicking other species' ground predator-specific call types when mobbing. We suggest that drongos learn other species' calls and their contexts while interacting with these species in mixed flocks. The drongos' behaviour demonstrates that alarm-associated calls can have learned components, and that birds can learn the appropriate usage of calls that encode different types of information. PMID:16618682
Bohn, Kirsten M.; Schmidt-French, Barbara; Ma, Sean T.; Pollak, George D.
2008-01-01
Recent research has shown that some bat species have rich vocal repertoires with diverse syllable acoustics. Few studies, however, have compared vocalizations across different behavioral contexts or examined the temporal emission patterns of vocalizations. In this paper, a comprehensive examination of the vocal repertoire of Mexican free-tailed bats, T. brasiliensis, is presented. Syllable acoustics and temporal emission patterns for 16 types of vocalizations including courtship song revealed three main findings. First, although in some cases syllables are unique to specific calls, other syllables are shared among different calls. Second, entire calls associated with one behavior can be embedded into more complex vocalizations used in entirely different behavioral contexts. Third, when different calls are composed of similar syllables, distinctive temporal emission patterns may facilitate call recognition. These results indicate that syllable acoustics alone do not likely provide enough information for call recognition; rather, the acoustic context and temporal emission patterns of vocalizations may affect meaning. PMID:19045674
Tissue engineering therapies for the vocal fold lamina propria.
Kutty, Jaishankar K; Webb, Ken
2009-09-01
The vocal folds are laryngeal connective tissues with complex matrix composition/organization that provide the viscoelastic mechanical properties required for voice production. Vocal fold injury results in alterations in tissue structure and corresponding changes in tissue biomechanics that reduce vocal quality. Recent work has begun to elucidate the biochemical changes underlying injury-induced pathology and to apply tissue engineering principles to the prevention and reversal of vocal fold scarring. Based on the extensive history of injectable biomaterials in laryngeal surgery, a major focus of regenerative therapies has been the development of novel scaffolds with controlled in vivo residence time and viscoelastic properties approximating the native tissue. Additional strategies have included cell transplantation and delivery of the antifibrotic cytokine hepatocyte growth factor, as well as investigation of the effects of the unique vocal fold vibratory microenvironment using in vitro dynamic culture systems. Recent achievements of significant reductions in fibrosis and improved recovery of native tissue viscoelasticity and vibratory/functional performance in animal models are rapidly moving vocal fold tissue engineering toward clinical application.
Auditory responses in the amygdala to social vocalizations
NASA Astrophysics Data System (ADS)
Gadziola, Marie A.
The underlying goal of this dissertation is to understand how the amygdala, a brain region involved in establishing the emotional significance of sensory input, contributes to the processing of complex sounds. The general hypothesis is that communication calls of big brown bats (Eptesicus fuscus) transmit relevant information about social context that is reflected in the activity of amygdalar neurons. The first specific aim analyzed social vocalizations emitted under a variety of behavioral contexts, and related vocalizations to an objective measure of internal physiological state by monitoring the heart rate of vocalizing bats. These experiments revealed a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a sender. The second specific aim characterized the responsiveness of single neurons in the basolateral amygdala to a range of social syllables. Neurons typically respond to the majority of tested syllables, but effectively discriminate among vocalizations by varying the response duration. This novel coding strategy underscores the importance of persistent firing in the general functioning of the amygdala. The third specific aim examined the influence of acoustic context by characterizing both the behavioral and neurophysiological responses to natural vocal sequences. Vocal sequences differentially modify the internal affective state of a listening bat, with lower aggression vocalizations evoking the greatest change in heart rate. Amygdalar neurons employ two different coding strategies: low background neurons respond selectively to very few stimuli, whereas high background neurons respond broadly to stimuli but demonstrate variation in response magnitude and timing. Neurons appear to discriminate the valence of stimuli, with aggression sequences evoking robust population-level responses across all sound levels. Further, vocal sequences show improved discrimination among stimuli compared to isolated syllables, and this improved discrimination is expressed in part by the timing of action potentials. Taken together, these data support the hypothesis that big brown bat social vocalizations transmit relevant information about the social context that is encoded within the discharge pattern of amygdalar neurons ultimately responsible for coordinating appropriate social behaviors. I further propose that vocalization-evoked amygdalar activity will have significant impact on subsequent sensory processing and plasticity.
Vocal Fry Use in Adult Female Speakers Exposed to Two Languages.
Gibson, Todd A; Summers, Connie; Walls, Sydney
2017-07-01
Several studies have identified the widespread use of vocal fry among American women. Popular explanations for this phenomenon appeal to sociolinguistic purposes that likely take significant time for second language users to learn. The objective of this study was to determine if mere exposure to this vocal register, as opposed to nuanced sociolinguistic motivations, might explain its widespread use. This study used multigroup within- and between-subjects design. Fifty-eight women from one of three language background groups (functionally monolingual in English, functionally monolingual in Spanish, and Spanish-English bilinguals) living in El Paso, Texas, repeated a list of nonwords conforming to the sound rules of English and another list of nonwords conforming to the sound rules of Spanish. Perceptual analysis identified each episode of vocal fry. There were no statistically significant differences between groups in their frequency of vocal fry use despite large differences in their amount of English-language exposure. All groups produced more vocal fry when repeating English than when repeating Spanish nonwords. Because the human perceptual system encodes for vocal qualities even after minimal language experience, the widespread use of vocal fry among female residents in the United States likely is owing to mere exposure to English rather than nuanced sociolinguistic motivations. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Julias, Margaret; Riede, Tobias; Cook, Douglas
2014-01-01
Objectives Collagen fiber content and orientation affect the viscoelastic properties of the vocal folds, determining oscillation characteristics during speech and other vocalization. The investigation and reconstruction of the collagen network in vocal folds remains a challenge, because the collagen network requires at least micron-scale resolution. In this study, we used polarized light microscopy to investigate the distribution and alignment of collagen fibers within the vocal folds. Methods Data were collected in sections of human and rhesus monkey (Macaca mulatta) vocal folds cut at 3 different angles and stained with picrosirius red. Results Statistically significant differences were found between different section angles, implying that more than one section angle is required to capture the network’s complexity. In the human vocal folds, the collagen fiber distribution continuously varied across the lamina propria (medial to lateral). Distinct differences in birefringence distribution were observed between the species. For the human vocal folds, high birefringence was observed near the thyroarytenoid muscle and near the epithelium. However, in the rhesus monkey vocal folds, high birefringence was observed near the epithelium, and lower birefringence was seen near the thyroarytenoid muscle. Conclusions The differences between the collagen networks in human and rhesus monkey vocal folds provide a morphological basis for differences in viscoelastic properties between species. PMID:23534129
Anyanwu, G E; Nto, J N; Agu, A U; Ekezie, J; Esom, E A
2016-11-01
Background music has been reported to enhance learning in the cadaver dissection laboratory. This study was designed to determine the impact of various forms of musical genre and some of their characteristics on students' learning outcome in the dissection laboratory. Some selected musical genre in vocal and non-vocal forms and at different tempi and volume were played as background music (BM) to 253 Medical and Dental students during various sessions of cadaver dissection. Psychological Stress assessment was done using Psychological stress measure-9. Participants love for music, preferred musical genre and other musical characteristics were assessed. The impact of the various musical genre and their characteristics on learning was done via written examination on the region dissected during each musical session. A positive relationship was noted between students' preference for musical genre during leisure with their preference for BM during private study time (P<0.01). Statistically significant differences (P<0.01) were established in the impacts of the selected musical genre on some selected learning factors. Country and Classical music gave the highest positive impact on the various learning factors in CDL followed by R&B. No significant difference was noted between the cognitive values of vocal and non-vocal music. Classical music most effectively reduced the stress induced by dissection in the CDL while Reggae and High life musical genre created a more stressful environment than regular background noise (P<0.01). Moderate volume level and Tempo were most preferred during both cadaver dissection activity and leisure hours. This study shows statistically significant differences in the cognitive values of some of the studied musical genre and their various characteristics. The inability to isolate the particular musical genre with these desired properties could account for the controversies in the reports of the role of music in academic environment. Copyright © 2016 Elsevier GmbH. All rights reserved.
Geographical variation of St. Lucia Parrot flight vocalizations
Kleeman, Patrick M.; Gilardi, James D.
2005-01-01
Parrots are vocal learners and many species of parrots are capable of learning new calls, even as adults. This capability gives parrots the potential to develop communication systems that can vary dramatically over space. St. Lucia Parrot (Amazona versicolor) flight vocalizations were examined for geographic variation between four different sites on the island of St. Lucia. Spectrographic cross-correlation analysis of a commonly used flight vocalization, the p-chow call, demonstrated quantitative differences between sites. Additionally, the similarity of p-chows decreased as the distance between sites increased. Flight call repertoires also differed among sites; parrots at the Des Bottes and Quilesse sites each used one flight call unique to those sites, while parrots at the Barre de L'Isle site used a flight call that Quilesse parrots gave only while perched. It is unclear whether the vocal variation changed clinally with distance, or whether there were discrete dialect boundaries as in a congener, the Yellow-naped Parrot (Amazona auropalliata, Wright 1996). The geographical scale over which the St. Lucia Parrot's vocal variation occurred was dramatically smaller than that of the Yellow-naped Parrot. Similar patterns of fine-scale vocal variation may be more widespread among other parrot species in the Caribbean than previously documented.
Online contributions of auditory feedback to neural activity in avian song control circuitry
Sakata, Jon T.; Brainard, Michael S.
2008-01-01
Birdsong, like human speech, relies critically on auditory feedback to provide information about the quality of vocalizations. Although the importance of auditory feedback to vocal learning is well established, whether and how feedback signals influence vocal premotor circuitry has remained obscure. Previous studies in singing birds have not detected changes to vocal premotor activity following perturbations of auditory feedback, leading to the hypothesis that contributions of feedback to vocal plasticity might rely on ‘offline’ processing. Here, we recorded single and multi-unit activity in the premotor nucleus HVC of singing Bengalese finches in response to feedback perturbations that are known to drive plastic changes in song. We found that transient feedback perturbation caused reliable decreases in HVC activity at short latencies (20-80 ms). Similar changes to HVC activity occurred in awake, non-singing finches when the bird’s own song was played back with auditory perturbations that simulated those experienced by singing birds. These data indicate that neurons in avian vocal premotor circuitry are rapidly influenced by perturbations of auditory feedback and support the possibility that feedback information in HVC contributes online to the production and plasticity of vocalizations. PMID:18971480
Rules and mechanisms for efficient two-stage learning in neural circuits.
Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay
2017-04-04
Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in 'tutor' circuits ( e.g., LMAN) should match plasticity mechanisms in 'student' circuits ( e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning.
Insights into the role of elastin in vocal fold health and disease
Moore, Jaime
2011-01-01
Elastic fibers are large, complex and surprisingly poorly understood extracellular matrix (ECM) macromolecules. The elastin fiber, generated from a single human gene - elastin (ELN), is a self assembling integral protein that endows critical mechanic proprieties to elastic tissues and organs such as the skin, lungs, and arteries. The biology of elastic fibers is complex because they have multiple components, a tightly regulated developmental deposition, a multi-step hierarchical assembly and unique biomechanical functions. Elastin is present in vocal folds, where it plays a pivotal role in the quality of phonation. This review article provides an overview of the genesis of elastin and its wide- ranging structure and function. Specific distribution within the vocal fold lamina propria across the lifespan in normal and pathological states and its contribution to vocal fold biomechanics will be examined. Elastin and elastin-derived molecules are increasingly investigated for their application in tissue engineering. The properties of various elastin– based materials will be discussed and their current and future applications evaluated. A new level of understanding of the biomechanical properties of vocal fold elastin composites and their molecular basis should lead to new strategies for elastic fiber repair and regeneration in aging and disease. PMID:21708449
Machine Learning Algorithms for Automatic Classification of Marmoset Vocalizations
Ribeiro, Sidarta; Pereira, Danillo R.; Papa, João P.; de Albuquerque, Victor Hugo C.
2016-01-01
Automatic classification of vocalization type could potentially become a useful tool for acoustic the monitoring of captive colonies of highly vocal primates. However, for classification to be useful in practice, a reliable algorithm that can be successfully trained on small datasets is necessary. In this work, we consider seven different classification algorithms with the goal of finding a robust classifier that can be successfully trained on small datasets. We found good classification performance (accuracy > 0.83 and F1-score > 0.84) using the Optimum Path Forest classifier. Dataset and algorithms are made publicly available. PMID:27654941
Neural Processing of Musical and Vocal Emotions Through Cochlear Implants Simulation.
Ahmed, Duha G; Paquette, Sebastian; Zeitouni, Anthony; Lehmann, Alexandre
2018-05-01
Cochlear implants (CIs) partially restore the sense of hearing in the deaf. However, the ability to recognize emotions in speech and music is reduced due to the implant's electrical signal limitations and the patient's altered neural pathways. Electrophysiological correlations of these limitations are not yet well established. Here we aimed to characterize the effect of CIs on auditory emotion processing and, for the first time, directly compare vocal and musical emotion processing through a CI-simulator. We recorded 16 normal hearing participants' electroencephalographic activity while listening to vocal and musical emotional bursts in their original form and in a degraded (CI-simulated) condition. We found prolonged P50 latency and reduced N100-P200 complex amplitude in the CI-simulated condition. This points to a limitation in encoding sound signals processed through CI simulation. When comparing the processing of vocal and musical bursts, we found a delay in latency with the musical bursts compared to the vocal bursts in both conditions (original and CI-simulated). This suggests that despite the cochlear implants' limitations, the auditory cortex can distinguish between vocal and musical stimuli. In addition, it adds to the literature supporting the complexity of musical emotion. Replicating this study with actual CI users might lead to characterizing emotional processing in CI users and could ultimately help develop optimal rehabilitation programs or device processing strategies to improve CI users' quality of life.
Moving to the Beat and Singing are Linked in Humans
Dalla Bella, Simone; Berkowska, Magdalena; Sowiński, Jakub
2015-01-01
The abilities to sing and to move to the beat of a rhythmic auditory stimulus emerge early during development, and both engage perceptual, motor, and sensorimotor processes. These similarities between singing and synchronization to a beat may be rooted in biology. Patel (2008) has suggested that motor synchronization to auditory rhythms may have emerged during evolution as a byproduct of selection for vocal learning (“vocal learning and synchronization hypothesis”). This view predicts a strong link between vocal performance and synchronization skills in humans. Here, we tested this prediction by asking occasional singers to tap along with auditory pulse trains and to imitate familiar melodies. Both vocal imitation and synchronization skills were measured in terms of accuracy and precision or consistency. Accurate and precise singers tapped more in the vicinity of the pacing stimuli (i.e., they were more accurate) than less accurate and less precise singers. Moreover, accurate singers were more consistent when tapping to the beat. These differences cannot be ascribed to basic motor skills or to motivational factors. Individual differences in terms of singing proficiency and synchronization skills may reflect the variability of a shared sensorimotor translation mechanism. PMID:26733370
Predictive and tempo-flexible synchronization to a visual metronome in monkeys.
Takeya, Ryuji; Kameda, Masashi; Patel, Aniruddh D; Tanaka, Masaki
2017-07-21
Predictive and tempo-flexible synchronization to an auditory beat is a fundamental component of human music. To date, only certain vocal learning species show this behaviour spontaneously. Prior research training macaques (vocal non-learners) to tap to an auditory or visual metronome found their movements to be largely reactive, not predictive. Does this reflect the lack of capacity for predictive synchronization in monkeys, or lack of motivation to exhibit this behaviour? To discriminate these possibilities, we trained monkeys to make synchronized eye movements to a visual metronome. We found that monkeys could generate predictive saccades synchronized to periodic visual stimuli when an immediate reward was given for every predictive movement. This behaviour generalized to novel tempi, and the monkeys could maintain the tempo internally. Furthermore, monkeys could flexibly switch from predictive to reactive saccades when a reward was given for each reactive response. In contrast, when humans were asked to make a sequence of reactive saccades to a visual metronome, they often unintentionally generated predictive movements. These results suggest that even vocal non-learners may have the capacity for predictive and tempo-flexible synchronization to a beat, but that only certain vocal learning species are intrinsically motivated to do it.
Drinking Songs: Alcohol Effects on Learned Song of Zebra Finches
Olson, Christopher R.; Owen, Devin C.; Ryabinin, Andrey E.; Mello, Claudio V.
2014-01-01
Speech impairment is one of the most intriguing and least understood effects of alcohol on cognitive function, largely due to the lack of data on alcohol effects on vocalizations in the context of an appropriate experimental model organism. Zebra finches, a representative songbird and a premier model for understanding the neurobiology of vocal production and learning, learn song in a manner analogous to how humans learn speech. Here we show that when allowed access, finches readily drink alcohol, increase their blood ethanol concentrations (BEC) significantly, and sing a song with altered acoustic structure. The most pronounced effects were decreased amplitude and increased entropy, the latter likely reflecting a disruption in the birds’ ability to maintain the spectral structure of song under alcohol. Furthermore, specific syllables, which have distinct acoustic structures, were differentially influenced by alcohol, likely reflecting a diversity in the neural mechanisms required for their production. Remarkably, these effects on vocalizations occurred without overt effects on general behavioral measures, and importantly, they occurred within a range of BEC that can be considered risky for humans. Our results suggest that the variable effects of alcohol on finch song reflect differential alcohol sensitivity of the brain circuitry elements that control different aspects of song production. They also point to finches as an informative model for understanding how alcohol affects the neuronal circuits that control the production of learned motor behaviors. PMID:25536524
The neural network classification of false killer whale (Pseudorca crassidens) vocalizations.
Murray, S O; Mercado, E; Roitblat, H L
1998-12-01
This study reports the use of unsupervised, self-organizing neural network to categorize the repertoire of false killer whale vocalizations. Self-organizing networks are capable of detecting patterns in their input and partitioning those patterns into categories without requiring that the number or types of categories be predefined. The inputs for the neural networks were two-dimensional characterization of false killer whale vocalization, where each vocalization was characterized by a sequence of short-time measurements of duty cycle and peak frequency. The first neural network used competitive learning, where units in a competitive layer distributed themselves to recognize frequently presented input vectors. This network resulted in classes representing typical patterns in the vocalizations. The second network was a Kohonen feature map which organized the outputs topologically, providing a graphical organization of pattern relationships. The networks performed well as measured by (1) the average correlation between the input vectors and the weight vectors for each category, and (2) the ability of the networks to classify novel vocalizations. The techniques used in this study could easily be applied to other species and facilitate the development of objective, comprehensive repertoire models.
An agent-based model of dialect evolution in killer whales.
Filatova, Olga A; Miller, Patrick J O
2015-05-21
The killer whale is one of the few animal species with vocal dialects that arise from socially learned group-specific call repertoires. We describe a new agent-based model of killer whale populations and test a set of vocal-learning rules to assess which mechanisms may lead to the formation of dialect groupings observed in the wild. We tested a null model with genetic transmission and no learning, and ten models with learning rules that differ by template source (mother or matriline), variation type (random errors or innovations) and type of call change (no divergence from kin vs. divergence from kin). The null model without vocal learning did not produce the pattern of group-specific call repertoires we observe in nature. Learning from either mother alone or the entire matriline with calls changing by random errors produced a graded distribution of the call phenotype, without the discrete call types observed in nature. Introducing occasional innovation or random error proportional to matriline variance yielded more or less discrete and stable call types. A tendency to diverge from the calls of related matrilines provided fast divergence of loose call clusters. A pattern resembling the dialect diversity observed in the wild arose only when rules were applied in combinations and similar outputs could arise from different learning rules and their combinations. Our results emphasize the lack of information on quantitative features of wild killer whale dialects and reveal a set of testable questions that can draw insights into the cultural evolution of killer whale dialects. Copyright © 2015 Elsevier Ltd. All rights reserved.
Soderstrom, Ken; Tian, Qiyu
2008-01-01
CB1 cannabinoid receptors are distinctly expressed at high density within several regions of zebra finch telencephalon including those known to be involved in song learning (lMAN and Area X) and production (HVC and RA). Because: (1) exposure to cannabinoid agonists during developmental periods of auditory and sensory-motor song learning alters song patterns produced later in adulthood and; (2) densities of song region expression of CB1 waxes-and-wanes during song learning, it is becoming clear that CB1 receptor-mediated signaling is important to normal processes of vocal development. To better understand mechanisms involved in cannabinoid modulation of vocal behavior we have investigated the dose-response relationship between systemic cannabinoid exposure and changes in neuronal activity (as indicated by expression of the transcription factor, c-Fos) within telencephalic brain regions with established involvement in song learning and/or control. In adults we have found that low doses (0.1 mg/kg) of the cannabinoid agonist WIN-55212-2 decrease neuronal activity (as indicated by densities of c-fos-expressing nuclei) within vocal motor regions of caudal telencephalon (HVC and RA) while higher doses (3 mg/kg) stimulate activity. Both effects were reversed by pretreatment with the CB1-selective antagonist rimonabant. Interestingly, no effects of cannabinoid treatment were observed within the rostral song regions lMAN and Area X, despite distinct and dense CB1 receptor expression within these areas. Overall, our results demonstrate that, depending on dosage, CB1 agonism can both inhibit and stimulate neuronal activity within brain regions controlling adult vocal motor output, implicating involvement of multiple CB1-sensitive neuronal circuits. PMID:18509622
Paternal kin recognition in the high frequency / ultrasonic range in a solitary foraging mammal
2012-01-01
Background Kin selection is a driving force in the evolution of mammalian social complexity. Recognition of paternal kin using vocalizations occurs in taxa with cohesive, complex social groups. This is the first investigation of paternal kin recognition via vocalizations in a small-brained, solitary foraging mammal, the grey mouse lemur (Microcebus murinus), a frequent model for ancestral primates. We analyzed the high frequency/ultrasonic male advertisement (courtship) call and alarm call. Results Multi-parametric analyses of the calls’ acoustic parameters and discriminant function analyses showed that advertisement calls, but not alarm calls, contain patrilineal signatures. Playback experiments controlling for familiarity showed that females paid more attention to advertisement calls from unrelated males than from their fathers. Reactions to alarm calls from unrelated males and fathers did not differ. Conclusions 1) Findings provide the first evidence of paternal kin recognition via vocalizations in a small-brained, solitarily foraging mammal. 2) High predation, small body size, and dispersed social systems may select for acoustic paternal kin recognition in the high frequency/ultrasonic ranges, thus limiting risks of inbreeding and eavesdropping by predators or conspecific competitors. 3) Paternal kin recognition via vocalizations in mammals is not dependent upon a large brain and high social complexity, but may already have been an integral part of the dispersed social networks from which more complex, kin-based sociality emerged. PMID:23198727
Tissue Engineering-based Therapeutic Strategies for Vocal Fold Repair and Regeneration
Li, Linqing; Stiadle, Jeanna M.; Lau, Hang K.; Zerdoum, Aidan B.; Jia, Xinqiao; L.Thibeault, Susan; Kiick, Kristi L.
2016-01-01
Vocal folds are soft laryngeal connective tissues with distinct layered structures and complex multicomponent matrix compositions that endow phonatory and respiratory functions. This delicate tissue is easily damaged by various environmental factors and pathological conditions, altering vocal biomechanics and causing debilitating vocal disorders that detrimentally affect the daily lives of suffering individuals. Modern techniques and advanced knowledge of regenerative medicine have led to a deeper understanding of the microstructure, microphysiology, and micropathophysiology of vocal fold tissues. State-of-the-art materials ranging from extracecullar-matrix (ECM)-derived biomaterials to synthetic polymer scaffolds have been proposed for the prevention and treatment of voice disorders including vocal fold scarring and fibrosis. This review intends to provide a thorough overview of current achievements in the field of vocal fold tissue engineering, including the fabrication of injectable biomaterials to mimic in vitro cell microenvironments, novel designs of bioreactors that capture in vivo tissue biomechanics, and establishment of various animal models to characterize the in vivo biocompatibility of these materials. The combination of polymeric scaffolds, cell transplantation, biomechanical stimulation, and delivery of antifibrotic growth factors will lead to successful restoration of functional vocal folds and improved vocal recovery in animal models, facilitating the application of these materials and related methodologies in clinical practice. PMID:27619243
A novel model for examining recovery of phonation after vocal nerve damage.
Bhama, Prabhat K; Hillel, Allen D; Merati, Albert L; Perkel, David J
2011-05-01
Recurrent laryngeal nerve injury remains a dominant clinical issue in laryngology. To date, no animal model of laryngeal reinnervation has offered an outcome measure that can reflect the degree of recovery based on vocal function. We present an avian model system for studying recovery of learned vocalizations after nerve injury. Prospective animal study. Digital recordings of bird song were made from 11 adult male zebra finches; nine birds underwent bilateral crushing of the nerve supplying the vocal organ, and two birds underwent sham surgery. Songs from all the birds were then recorded regularly and analyzed based on temporal and spectral characteristics using computer software. Indices were calculated to indicate the degree of similarity between preoperative and postoperative song. Nerve crush caused audible differences in song quality and significant drops (P<0.05) in measured spectral and, to a lesser degree, temporal indices. Spectral indices recovered significantly (mean=43.0%; standard deviation [SD]=40.7; P<0.02), and there was an insignificant trend toward recovery of temporal index (mean=28.0%; SD=41.4; P=0.0771). In five of the nine (56%) birds, there was a greater than 50% recovery of spectral indices within a 4-week period. Two birds exhibited substantially less recovery of spectral indices and two birds had a persistent decline in spectral indices. Recovery of temporal index was highly variable as well, ranging from persistent further declines of 45.1% to recovery of 87%. Neither sham bird exhibited significant (P>0.05) differences in song after nerve crush. The songbird model system allows functional analysis of learned vocalization after surgical damage to vocal nerves. Copyright © 2011 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Temperature-dependent regulation of vocal pattern generator.
Yamaguchi, Ayako; Gooler, David; Herrold, Amy; Patel, Shailja; Pong, Winnie W
2008-12-01
Vocalizations of Xenopus laevis are generated by central pattern generators (CPGs). The advertisement call of male X. laevis is a complex biphasic motor rhythm consisting of fast and slow trills (a train of clicks). We found that the trill rate of these advertisement calls is sensitive to temperature and that this rate modification of the vocal rhythms originates in the central pattern generators. In vivo the rates of fast and slow trills increased linearly with an increase in temperature. In vitro a similar linear relation between temperature and compound action potential frequency in the laryngeal nerve was found when fictive advertisement calls were evoked in the isolated brain. Temperature did not limit the contractile properties of laryngeal muscles within the frequency range of vocalizations. We next took advantage of the temperature sensitivity of the vocal CPG in vitro to localize the source of the vocal rhythms. We focused on the dorsal tegmental area of the medulla (DTAM), a brain stem nucleus that is essential for vocal production. We found that bilateral cooling of DTAM reduced both fast and slow trill rates. Thus we conclude that DTAM is a source of biphasic vocal rhythms.
The Interaction of Surface Hydration and Vocal Loading on Voice Measures.
Fujiki, Robert Brinton; Chapleau, Abigail; Sundarrajan, Anusha; McKenna, Victoria; Sivasankar, M Preeti
2017-03-01
Vocal loading tasks provide insight regarding the mechanisms underlying healthy laryngeal function. Determining the manner in which the larynx can most efficiently be loaded is a complex task. The goal of this study was to determine if vocal loading could be achieved in 30 minutes by altering phonatory mode. Owing to the fact that surface hydration facilitates efficient vocal fold oscillation, the effects of environmental humidity on vocal loading were also examined. This study also investigated whether the detrimental effects of vocal loading could be attenuated by increasing environmental humidity. Sixteen vocally healthy adults (8 men, 8 women) completed a 30-minute vocal loading task in low and moderate humidity. The order of humidities was counterbalanced across subjects. The vocal loading task consisted of reading with elevated pitch and pressed vocal quality and low pitch and pressed and/or raspy vocal quality in the presence of 65 dB ambient, multi-talker babble noise. Significant effects were observed for (1) cepstral peak prominence on soft sustained phonation at 10th and 80th pitches, (2) perceived phonatory effort, and (3) perceived tiredness ratings. No loading effects were observed for cepstral peak prominence on the rainbow passage, although fundamental frequency on the rainbow passage increased post loading. No main effect was observed for humidity. Following a 30-minute vocal loading task involving altering laryngeal vibratory mode in combination with increased volume. Also, moderate environmental humidity did not significantly attenuate the negative effects of loading. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Laukkanen, Anne-Maria; Pulakka, Hannu; Alku, Paavo; Vilkman, Erkki; Hertegård, Stellan; Lindestad, Per-Ake; Larsson, Hans; Granqvist, Svante
2007-01-01
Vocal exercises that increase the vocal tract impedance are widely used in voice training and therapy. The present study applies a versatile methodology to investigate phonation during varying artificial extension of the vocal tract. Two males and one female phonated into a hard-walled plastic tube (phi 2 cm), whose physical length was randomly pair-wise changed between 30 cm, 60 cm and 100 cm. High-speed image (1900 f/sec) sequences of the vocal folds were obtained via a rigid endoscope. Acoustic and electroglottographic signals (EGG) were recorded. Oral pressure during shuttering of the tube was used to give an estimate of subglottic pressure (Psub). The only trend observed was that with the two longer tubes compared to the shortest one, fundamental frequency was lower, open time of the glottis shorter, and Psub higher. The results may partly reflect increased vocal tract impedance as such and partly the increased vocal effort to compensate for it. In other parameters there were individual differences in tube length-related changes, suggesting complexity of the coupling between supraglottic space and the glottis.
Luegmair, Georg; Mehta, Daryush D.; Kobler, James B.; Döllinger, Michael
2015-01-01
Vocal fold kinematics and its interaction with aerodynamic characteristics play a primary role in acoustic sound production of the human voice. Investigating the temporal details of these kinematics using high-speed videoendoscopic imaging techniques has proven challenging in part due to the limitations of quantifying complex vocal fold vibratory behavior using only two spatial dimensions. Thus, we propose an optical method of reconstructing the superior vocal fold surface in three spatial dimensions using a high-speed video camera and laser projection system. Using stereo-triangulation principles, we extend the camera-laser projector method and present an efficient image processing workflow to generate the three-dimensional vocal fold surfaces during phonation captured at 4000 frames per second. Initial results are provided for airflow-driven vibration of an ex vivo vocal fold model in which at least 75% of visible laser points contributed to the reconstructed surface. The method captures the vertical motion of the vocal folds at a high accuracy to allow for the computation of three-dimensional mucosal wave features such as vibratory amplitude, velocity, and asymmetry. PMID:26087485
Riede, Tobias; Li, Zhiheng; Tokuda, Isao T; Farmer, Colleen G
2015-04-01
Sauropsid vocalization is mediated by the syrinx in birds and the larynx in extant reptiles; but whereas avian vocal production has received much attention, the vocal mechanism of basal reptilians is poorly understood. The American alligator (Alligator mississippiensis) displays a large vocal repertoire during mating and in parent-offspring interactions. Although vocal outputs of these behaviors have received some attention, the underlying mechanism of sound production remains speculative. Here, we investigate the laryngeal anatomy of juvenile and adult animals by macroscopic and histological methods. Observations of the cartilaginous framework and associated muscles largely corroborate earlier findings, but one muscle, the cricoarytenoideus, exhibits a heretofore unknown extrinsic insertion that has important implications for effective regulation of vocal fold length and tension. Histological investigation of the larynx revealed a layered vocal fold morphology. The thick lamina propria consists of non-homogenous extracellular matrix containing collagen fibers that are tightly packed below the epithelium but loosely organized deep inside the vocal fold. We found few elastic fibers but comparatively high proportions of hyaluronan. Similar organizational complexity is also seen in mammalian vocal folds and the labia of the avian syrinx: convergent morphologies that suggest analogous mechanisms for sound production. In tensile tests, alligator vocal folds demonstrated a linear stress-strain behavior in the low strain region and nonlinear stress responses at strains larger than 15%, which is similar to mammalian vocal fold tissue. We have integrated morphological and physiological data in a two-mass vocal fold model, providing a systematic description of the possible acoustic space that could be available to an alligator larynx. Mapping actual call production onto possible acoustic space validates the model's predictions. © 2015. Published by The Company of Biologists Ltd.
Heinrich, J E; Nordeen, K W; Nordeen, E J
2005-03-01
Several instances of early learning coincide with significant rearrangements of neural connections in regions contributing to these behaviors. In fact developmentally restricted learning may be constrained temporally by the opportunity for experience to selectively maintain appropriate synapses amidst the elimination of exuberant connections. Consistent with this notion, during the normal sensitive period for vocal learning in zebra finches (Taenopygia guttata), there is a decline in the density of dendritic spines within a region essential for song development, the lateral magnocellular nucleus of the anterior nidopallium (lMAN). Moreover, in birds isolated from conspecific song shortly after hatching, both the closure of the sensitive period for vocal learning and the pruning of spines from lMAN neurons is delayed. Here, we employed a more subtle form of deprivation to delay the close of the sensitive period for song learning, and found that late song learning occurred without obvious alterations in the pruning of dendritic spines on lMAN neurons. At posthatch day (PHD) 65 (beyond the end of the normal sensitive period for song memorization in zebra finches), birds isolated from song beginning on PHD30 did not differ from normally reared birds in measures of dendritic spine density on Golgi-Cox stained lMAN neurons. Moreover, tutor exposure from PHD65 to 90 did not increase spine elimination in these isolates (who memorized new song material) relative to controls (who did not). Thus, we conclude that the extent of normally occurring lMAN spine loss is not sufficient to account for the timing of the sensitive period for zebra finch song learning.
How the songbird brain listens to its own songs
NASA Astrophysics Data System (ADS)
Hahnloser, Richard
2010-03-01
Songbirds are capable of vocal learning and communication and are ideally suited to the study of neural mechanisms of auditory feedback processing. When a songbird is deafened in the early sensorimotor phase after tutoring, it fails to imitate the song of its tutor and develops a highly aberrant song. It is also known that birds are capable of storing a long-term memory of tutor song and that they need intact auditory feedback to match their own vocalizations to the tutor's song. Based on these behavioral observations, we investigate feedback processing in single auditory forebrain neurons of juvenile zebra finches that are in a late developmental stage of song learning. We implant birds with miniature motorized microdrives that allow us to record the electrical activity of single neurons while birds are freely moving and singing in their cages. Occasionally, we deliver a brief sound through a loudspeaker to perturb the auditory feedback the bird experiences during singing. These acoustic perturbations of auditory feedback reveal complex sensitivity that cannot be predicted from passive playback responses. Some neurons are highly feedback sensitive in that they respond vigorously to song perturbations, but not to unperturbed songs or perturbed playback. These findings suggest that a computational function of forebrain auditory areas may be to detect errors between actual feedback and mirrored feedback deriving from an internal model of the bird's own song or that of its tutor.
Short bouts of vocalization induce long lasting fast gamma oscillations in a sensorimotor nucleus
Lewandowski, Brian; Schmidt, Marc
2011-01-01
Performance evaluation is a critical feature of motor learning. In the vocal system, it requires the integration of auditory feedback signals with vocal motor commands. The network activity that supports such integration is unknown, but it has been proposed that vocal performance evaluation occurs offline. Recording from NIf, a sensorimotor structure in the avian song system, we show that short bouts of singing in adult male zebra finches (Taeniopygia guttata) induce persistent increases in firing activity and coherent oscillations in the fast gamma range (90–150 Hz). Single units are strongly phase-locked to these oscillations, which can last up to 30 s, often outlasting vocal activity by an order of magnitude. In other systems, oscillations often are triggered by events or behavioral tasks but rarely outlast the event that triggered them by more than 1 second. The present observations are the longest reported gamma oscillations triggered by an isolated behavioral event. In mammals, gamma oscillations have been associated with memory consolidation and are hypothesized to facilitate communication between brain regions. We suggest that the timing and persistent nature of NIf’s fast gamma oscillations make them well suited to facilitate the integration of auditory and vocal motor traces associated with vocal performance evaluation. PMID:21957255
Interaction between telencephalic signals and respiratory dynamics in songbirds
Méndez, Jorge M.; Mindlin, Gabriel B.
2012-01-01
The mechanisms by which telencephalic areas affect motor activities are largely unknown. They could either take over motor control from downstream motor circuits or interact with the intrinsic dynamics of these circuits. Both models have been proposed for telencephalic control of respiration during learned vocal behavior in birds. The interactive model postulates that simple signals from the telencephalic song control areas are sufficient to drive the nonlinear respiratory network into producing complex temporal sequences. We tested this basic assumption by electrically stimulating telencephalic song control areas and analyzing the resulting respiratory patterns in zebra finches and in canaries. We found strong evidence for interaction between the rhythm of stimulation and the intrinsic respiratory rhythm, including naturally emerging subharmonic behavior and integration of lateralized telencephalic input. The evidence for clear interaction in our experimental paradigm suggests that telencephalic vocal control also uses a similar mechanism. Furthermore, species differences in the response of the respiratory system to stimulation show parallels to differences in the respiratory patterns of song, suggesting that the interactive production of respiratory rhythms is manifested in species-specific specialization of the involved circuitry. PMID:22402649
Bell, Brittany A; Phan, Mimi L; Vicario, David S
2015-03-01
How do social interactions form and modulate the neural representations of specific complex signals? This question can be addressed in the songbird auditory system. Like humans, songbirds learn to vocalize by imitating tutors heard during development. These learned vocalizations are important in reproductive and social interactions and in individual recognition. As a model for the social reinforcement of particular songs, male zebra finches were trained to peck for a food reward in response to one song stimulus (GO) and to withhold responding for another (NoGO). After performance reached criterion, single and multiunit neural responses to both trained and novel stimuli were obtained from multiple electrodes inserted bilaterally into two songbird auditory processing areas [caudomedial mesopallium (CMM) and caudomedial nidopallium (NCM)] of awake, restrained birds. Neurons in these areas undergo stimulus-specific adaptation to repeated song stimuli, and responses to familiar stimuli adapt more slowly than to novel stimuli. The results show that auditory responses differed in NCM and CMM for trained (GO and NoGO) stimuli vs. novel song stimuli. When subjects were grouped by the number of training days required to reach criterion, fast learners showed larger neural responses and faster stimulus-specific adaptation to all stimuli than slow learners in both areas. Furthermore, responses in NCM of fast learners were more strongly left-lateralized than in slow learners. Thus auditory responses in these sensory areas not only encode stimulus familiarity, but also reflect behavioral reinforcement in our paradigm, and can potentially be modulated by social interactions. Copyright © 2015 the American Physiological Society.
Sound localization by echolocating bats
NASA Astrophysics Data System (ADS)
Aytekin, Murat
Echolocating bats emit ultrasonic vocalizations and listen to echoes reflected back from objects in the path of the sound beam to build a spatial representation of their surroundings. Important to understanding the representation of space through echolocation are detailed studies of the cues used for localization, the sonar emission patterns and how this information is assembled. This thesis includes three studies, one on the directional properties of the sonar receiver, one on the directional properties of the sonar transmitter, and a model that demonstrates the role of action in building a representation of auditory space. The general importance of this work to a broader understanding of spatial localization is discussed. Investigations of the directional properties of the sonar receiver reveal that interaural level difference and monaural spectral notch cues are both dependent on sound source azimuth and elevation. This redundancy allows flexibility that an echolocating bat may need when coping with complex computational demands for sound localization. Using a novel method to measure bat sonar emission patterns from freely behaving bats, I show that the sonar beam shape varies between vocalizations. Consequently, the auditory system of a bat may need to adapt its computations to accurately localize objects using changing acoustic inputs. Extra-auditory signals that carry information about pinna position and beam shape are required for auditory localization of sound sources. The auditory system must learn associations between extra-auditory signals and acoustic spatial cues. Furthermore, the auditory system must adapt to changes in acoustic input that occur with changes in pinna position and vocalization parameters. These demands on the nervous system suggest that sound localization is achieved through the interaction of behavioral control and acoustic inputs. A sensorimotor model demonstrates how an organism can learn space through auditory-motor contingencies. The model also reveals how different aspects of sound localization, such as experience-dependent acquisition, adaptation, and extra-auditory influences, can be brought together under a comprehensive framework. This thesis presents a foundation for understanding the representation of auditory space that builds upon acoustic cues, motor control, and learning dynamic associations between action and auditory inputs.
White, Stephanie A.
2009-01-01
Could a mutation in a single gene be the evolutionary lynchpin supporting the development of human language? A rare mutation in the molecule known as FOXP2 discovered in a human family seemed to suggest so, and its sequence phylogeny reinforced a Chomskian view that language emerged wholesale in humans. Spurred by this discovery, research in primates, rodents and birds suggests that FoxP2 and other language-related genes are interactors in the neuromolecular networks that underlie subsystems of language, such symbolic understanding, vocal learning and theory of mind. The whole picture will only come together through comparative and integrative study into how the human language singularity evolved. PMID:19913899
Schmidt, Marc F.; McLean, Judith; Goller, Franz
2011-01-01
The production of vocalizations is intimately linked to the respiratory system. Despite our understanding of neural circuits that generate normal respiratory patterns, very little is understood regarding how these ponto-medullary circuits become engaged during vocal production. Songbirds offer a potentially powerful model system for addressing this relationship. Songs dramatically alter the respiratory pattern in ways that are often highly predictable and songbirds have a specialized telencephalic vocal motor circuit that provides massive innervation to a brainstem respiratory network that shares many similarities with its mammalian counterpart. In this review, we highlight interactions between the song motor circuit and the respiratory system, describing how both systems likely interact to produce the complex respiratory patterns that are observed during vocalization. We also discuss how the respiratory system, through its bilateral bottom-up projections to thalamus, might play a key role in sending precisely timed signals that synchronize premotor activity in both hemispheres. PMID:21984733
Human vocal attractiveness as signaled by body size projection.
Xu, Yi; Lee, Albert; Wu, Wing-Li; Liu, Xuan; Birkholz, Peter
2013-01-01
Voice, as a secondary sexual characteristic, is known to affect the perceived attractiveness of human individuals. But the underlying mechanism of vocal attractiveness has remained unclear. Here, we presented human listeners with acoustically altered natural sentences and fully synthetic sentences with systematically manipulated pitch, formants and voice quality based on a principle of body size projection reported for animal calls and emotional human vocal expressions. The results show that male listeners preferred a female voice that signals a small body size, with relatively high pitch, wide formant dispersion and breathy voice, while female listeners preferred a male voice that signals a large body size with low pitch and narrow formant dispersion. Interestingly, however, male vocal attractiveness was also enhanced by breathiness, which presumably softened the aggressiveness associated with a large body size. These results, together with the additional finding that the same vocal dimensions also affect emotion judgment, indicate that humans still employ a vocal interaction strategy used in animal calls despite the development of complex language.
Final Syllable Lengthening (FSL) in infant vocalizations.
Nathani, Suneeti; Oller, D Kimbrough; Cobo-Lewis, Alan B
2003-02-01
Final Syllable Lengthening (FSL) has been extensively examined in infant vocalizations in order to determine whether its basis is biological or learned. Findings suggest there may be a U-shaped developmental trajectory for FSL. The present study sought to verify this pattern and to determine whether vocal maturity and deafness influence FSL. Eight normally hearing infants, aged 0;3 to 1;0, and eight deaf infants, aged 0;8 to 4;0, were examined at three levels of prelinguistic vocal development: precanonical, canonical, and postcanonical. FSL was found at all three levels suggesting a biological basis for this phenomenon. Individual variability was, however, considerable. Reduction in the magnitude of FSL across the three sessions provided some support for a downward trend for FSL in infancy. Findings further indicated that auditory deprivation can significantly affect temporal aspects of infant speech production.
Nonlinear acoustics in the pant-hoot vocalization of common chimpanzees (Pan troglodytes)
NASA Astrophysics Data System (ADS)
Riede, Tobias; Arcadi, Adam Clark; Owren, Michael J.
2003-04-01
Pant-hoots produced by chimpanzees are multi-call vocalizations. While predominantly harmonically structured, pant-hoots can exhibit acoustic complexity that has recently been found to result from inherent nonlinearity in the vocal-fold dynamics. This complexity reflects abrupt shifts between qualitatively distinct vibration patterns (known as modes), which include but are not limited to simple, synchronous movements by the two vocal folds. Studies with humans in particular have shown that as the amplitude and vibration rate increase, vocal-fold action becomes increasingly susceptible to higher-order synchronizations, desynchronized movements, and irregular behavior. We examined the occurrence of these sorts of nonlinear phenomena in pant-hoots, contrasting quieter and lower-pitched introduction components with loud and high-pitched climax calls in the same sounds. Spectrographic evidence revealed four classic kinds of nonlinear phenomena, including discrete frequency jumps, subharmonics, biphonation, and deterministic chaos. While these events were virtually never found in the introduction, they occurred in more than half of the climax calls. Biphonation was by far the most common. Individual callers varied in the degree to which their climax calls exhibited nonlinear phenomena, but we are consistent in showing more biphonation than any of the other forms. These outcomes demonstrate that understanding these calls requisitely requires an understanding of such events.
Automatic mouse ultrasound detector (A-MUD): A new tool for processing rodent vocalizations.
Zala, Sarah M; Reitschmidt, Doris; Noll, Anton; Balazs, Peter; Penn, Dustin J
2017-01-01
House mice (Mus musculus) emit complex ultrasonic vocalizations (USVs) during social and sexual interactions, which have features similar to bird song (i.e., they are composed of several different types of syllables, uttered in succession over time to form a pattern of sequences). Manually processing complex vocalization data is time-consuming and potentially subjective, and therefore, we developed an algorithm that automatically detects mouse ultrasonic vocalizations (Automatic Mouse Ultrasound Detector or A-MUD). A-MUD is a script that runs on STx acoustic software (S_TOOLS-STx version 4.2.2), which is free for scientific use. This algorithm improved the efficiency of processing USV files, as it was 4-12 times faster than manual segmentation, depending upon the size of the file. We evaluated A-MUD error rates using manually segmented sound files as a 'gold standard' reference, and compared them to a commercially available program. A-MUD had lower error rates than the commercial software, as it detected significantly more correct positives, and fewer false positives and false negatives. The errors generated by A-MUD were mainly false negatives, rather than false positives. This study is the first to systematically compare error rates for automatic ultrasonic vocalization detection methods, and A-MUD and subsequent versions will be made available for the scientific community.
Towards Real-Time Speech Emotion Recognition for Affective E-Learning
ERIC Educational Resources Information Center
Bahreini, Kiavash; Nadolski, Rob; Westera, Wim
2016-01-01
This paper presents the voice emotion recognition part of the FILTWAM framework for real-time emotion recognition in affective e-learning settings. FILTWAM (Framework for Improving Learning Through Webcams And Microphones) intends to offer timely and appropriate online feedback based upon learner's vocal intonations and facial expressions in order…
Vocal Qualities in Music Theater Voice: Perceptions of Expert Pedagogues.
Bourne, Tracy; Kenny, Dianna
2016-01-01
To gather qualitative descriptions of music theater vocal qualities including belt, legit, and mix from expert pedagogues to better define this voice type. This is a prospective, semistructured interview. Twelve expert teachers from United States, United Kingdom, Asia, and Australia were interviewed by Skype and asked to identify characteristics of music theater vocal qualities including vocal production, physiology, esthetics, pitch range, and pedagogical techniques. Responses were compared with published studies on music theater voice. Belt and legit were generally described as distinct sounds with differing physiological and technical requirements. Teachers were concerned that belt should be taught "safely" to minimize vocal health risks. There was consensus between teachers and published research on the physiology of the glottis and vocal tract; however, teachers were not in agreement about breathing techniques. Neither were teachers in agreement about the meaning of "mix." Most participants described belt as heavily weighted, thick folds, thyroarytenoid-dominant, or chest register; however, there was no consensus on an appropriate term. Belt substyles were named and generally categorized by weightedness or tone color. Descriptions of male belt were less clear than for female belt. This survey provides an overview of expert pedagogical perspectives on the characteristics of belt, legit, and mix qualities in the music theater voice. Although teacher responses are generally in agreement with published research, there are still many controversial issues and gaps in knowledge and understanding of this vocal technique. Breathing techniques, vocal range, mix, male belt, and vocal registers require continuing investigation so that we can learn more about efficient and healthy vocal function in music theater singing. Copyright © 2016 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Rules and mechanisms for efficient two-stage learning in neural circuits
Teşileanu, Tiberiu; Ölveczky, Bence; Balasubramanian, Vijay
2017-01-01
Trial-and-error learning requires evaluating variable actions and reinforcing successful variants. In songbirds, vocal exploration is induced by LMAN, the output of a basal ganglia-related circuit that also contributes a corrective bias to the vocal output. This bias is gradually consolidated in RA, a motor cortex analogue downstream of LMAN. We develop a new model of such two-stage learning. Using stochastic gradient descent, we derive how the activity in ‘tutor’ circuits (e.g., LMAN) should match plasticity mechanisms in ‘student’ circuits (e.g., RA) to achieve efficient learning. We further describe a reinforcement learning framework through which the tutor can build its teaching signal. We show that mismatches between the tutor signal and the plasticity mechanism can impair learning. Applied to birdsong, our results predict the temporal structure of the corrective bias from LMAN given a plasticity rule in RA. Our framework can be applied predictively to other paired brain areas showing two-stage learning. DOI: http://dx.doi.org/10.7554/eLife.20944.001 PMID:28374674
Fehér, Olga
2017-02-01
In this article, I argue that a comparative approach focusing on the cognitive capacities and behavioral mechanisms that underlie vocal learning in songbirds and humans can provide valuable insights into the evolutionary origins of language. The experimental approaches I discuss use abnormal song and atypical linguistic input to study the processes of individual learning, social interaction, and cultural transmission. Atypical input places increased learning and communicative pressure on learners, so exploring how they respond to this type of input provides a particularly clear picture of the biases and constraints at work during learning and use. Furthermore, simulating the cultural transmission of these unnatural communication systems in the laboratory informs us about how learning and social biases influence the structure of communication systems in the long run. Findings based on these methods suggest fundamental similarities in the basic social-cognitive mechanisms underlying vocal learning in birds and humans, and continuing research promises insights into the uniquely human mechanisms and into how human cognition and social behavior interact, and ultimately impact on the evolution of language.
Advanced Technologies for Acoustic Monitoring of Bird Populations
2009-04-01
Ford and P. Spong. 2000. Dialect change in resident killer whales : implications for vocal learning and cultural transmission. Animal Behaviour 60: 629...network to compare killer whale (Orcinus orca) dialects. Journal of the Acoustical Society of America 105(4): 2499-2507. Deecke, V. B., J. K. B...Murray, S. O., E. Mercado and H. L. Roitblat. 1998. The neural network classification of false killer whale (Pseudorca crassidens) vocalizations
Conserved mechanisms of vocalization coding in mammalian and songbird auditory midbrain.
Woolley, Sarah M N; Portfors, Christine V
2013-11-01
The ubiquity of social vocalizations among animals provides the opportunity to identify conserved mechanisms of auditory processing that subserve communication. Identifying auditory coding properties that are shared across vocal communicators will provide insight into how human auditory processing leads to speech perception. Here, we compare auditory response properties and neural coding of social vocalizations in auditory midbrain neurons of mammalian and avian vocal communicators. The auditory midbrain is a nexus of auditory processing because it receives and integrates information from multiple parallel pathways and provides the ascending auditory input to the thalamus. The auditory midbrain is also the first region in the ascending auditory system where neurons show complex tuning properties that are correlated with the acoustics of social vocalizations. Single unit studies in mice, bats and zebra finches reveal shared principles of auditory coding including tonotopy, excitatory and inhibitory interactions that shape responses to vocal signals, nonlinear response properties that are important for auditory coding of social vocalizations and modulation tuning. Additionally, single neuron responses in the mouse and songbird midbrain are reliable, selective for specific syllables, and rely on spike timing for neural discrimination of distinct vocalizations. We propose that future research on auditory coding of vocalizations in mouse and songbird midbrain neurons adopt similar experimental and analytical approaches so that conserved principles of vocalization coding may be distinguished from those that are specialized for each species. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.
[Comparative study of respiratory mechanisms between professional lyrical singers and beginners].
Lassalle, A; Grini, M N; Amy de la Bretèque, B; Ouaknine, M; Giovanni, A
2002-01-01
The apprenticeship for classical singing requires years of training due to its complexity. This training is directed at the different levels of the vocal apparatus: the source of energy or air flow (lungs), the vibrator (vocal cords) and the resonators (bucco-pharyngeal cavity). For this study we have concentrated on the first level, that is, respiration. When a greater demand of vocal activity is required respiration becomes more sustained and more complex; this is when difficulties may be observed. Singers overcome these difficulties through different strategies according to their level of vocal training. Our study compared respiratory strategies used by professional singers and singing students (first year conservatoire students) during singing tasks; none of the subjects had any history of vocal pathology. Electromyographic analysis of muscle activity was registered for the rectus abdominals muscle, external oblique muscle and transverse muscle with surface electrodes. Kinetic analysis was used to measure thoracic cage displacement: pressure sensitive belts were placed around the pubis, the epigastric region and thorax. The subjects were asked to perform two vocal tasks: vocalization of a sustained "i" and singing of an extract of a vaccaï. Results were compared between the 7 professional singers and the 6 singing students. They allowed us to confirm the existence of distinct respiratory strategies according to the level of vocal training, as described in literature. Professional singers inhibited the activity of their rectus abdominals muscles during singing and used mostly their external oblique and transverse muscles, thus, sustaining an expanded ribcage and a longer expiratory breath. Singing students, on the other hand, worked intensively all the abdominal muscles leading to a collapse of the ribcage. Management of air was more difficult and breath was shorter. Future studies will consider a larger population sample in order to define quantitative parameters that might allow a significant differentiation of respiratory strategies between professional singers and singing students.
Fernández-Vargas, Marcela; Johnston, Robert E
2015-01-01
Vocal signaling is one of many behaviors that animals perform during social interactions. Vocalizations produced by both sexes before mating can communicate sex, identity and condition of the caller. Adult golden hamsters produce ultrasonic vocalizations (USV) after intersexual contact. To determine whether these vocalizations are sexually dimorphic, we analyzed the vocal repertoire for sex differences in: 1) calling rates, 2) composition (structural complexity, call types and nonlinear phenomena) and 3) acoustic structure. In addition, we examined it for individual variation in the calls. The vocal repertoire was mainly composed of 1-note simple calls and at least half of them presented some degree of deterministic chaos. The prevalence of this nonlinear phenomenon was confirmed by low values of harmonic-to-noise ratio for most calls. We found modest sexual differences between repertoires. Males were more likely than females to produce tonal and less chaotic calls, as well as call types with frequency jumps. Multivariate analysis of the acoustic features of 1-note simple calls revealed significant sex differences in the second axis represented mostly by entropy and bandwidth parameters. Male calls showed lower entropy and inter-quartile bandwidth than female calls. Because the variation of acoustic structure within individuals was higher than among individuals, USV could not be reliably assigned to the correct individual. Interestingly, however, this high variability, augmented by the prevalence of chaos and frequency jumps, could be the result of increased vocal effort. Hamsters motivated to produce high calling rates also produced longer calls of broader bandwidth. Thus, the sex differences found could be the result of different sex preferences but also of a sex difference in calling motivation or condition. We suggest that variable and complex USV may have been selected to increase responsiveness of a potential mate by communicating sexual arousal and preventing habituation to the caller.
Complex vibratory patterns in an elephant larynx.
Herbst, Christian T; Svec, Jan G; Lohscheller, Jörg; Frey, Roland; Gumpenberger, Michaela; Stoeger, Angela S; Fitch, W Tecumseh
2013-11-01
Elephants' low-frequency vocalizations are produced by flow-induced self-sustaining oscillations of laryngeal tissue. To date, little is known in detail about the vibratory phenomena in the elephant larynx. Here, we provide a first descriptive report of the complex oscillatory features found in the excised larynx of a 25 year old female African elephant (Loxodonta africana), the largest animal sound generator ever studied experimentally. Sound production was documented with high-speed video, acoustic measurements, air flow and sound pressure level recordings. The anatomy of the larynx was studied with computed tomography (CT) and dissections. Elephant CT vocal anatomy data were further compared with the anatomy of an adult human male. We observed numerous unusual phenomena, not typically reported in human vocal fold vibrations. Phase delays along both the inferior-superior and anterior-posterior (A-P) dimension were commonly observed, as well as transverse travelling wave patterns along the A-P dimension, previously not documented in the literature. Acoustic energy was mainly created during the instant of glottal opening. The vestibular folds, when adducted, participated in tissue vibration, effectively increasing the generated sound pressure level by 12 dB. The complexity of the observed phenomena is partly attributed to the distinct laryngeal anatomy of the elephant larynx, which is not simply a large-scale version of its human counterpart. Travelling waves may be facilitated by low fundamental frequencies and increased vocal fold tension. A travelling wave model is proposed, to account for three types of phenomena: A-P travelling waves, 'conventional' standing wave patterns, and irregular vocal fold vibration.
Avian vocal mimicry: a unified conceptual framework.
Dalziell, Anastasia H; Welbergen, Justin A; Igic, Branislav; Magrath, Robert D
2015-05-01
Mimicry is a classical example of adaptive signal design. Here, we review the current state of research into vocal mimicry in birds. Avian vocal mimicry is a conspicuous and often spectacular form of animal communication, occurring in many distantly related species. However, the proximate and ultimate causes of vocal mimicry are poorly understood. In the first part of this review, we argue that progress has been impeded by conceptual confusion over what constitutes vocal mimicry. We propose a modified version of Vane-Wright's (1980) widely used definition of mimicry. According to our definition, a vocalisation is mimetic if the behaviour of the receiver changes after perceiving the acoustic resemblance between the mimic and the model, and the behavioural change confers a selective advantage on the mimic. Mimicry is therefore specifically a functional concept where the resemblance between heterospecific sounds is a target of selection. It is distinct from other forms of vocal resemblance including those that are the result of chance or common ancestry, and those that have emerged as a by-product of other processes such as ecological convergence and selection for large song-type repertoires. Thus, our definition provides a general and functionally coherent framework for determining what constitutes vocal mimicry, and takes account of the diversity of vocalisations that incorporate heterospecific sounds. In the second part we assess and revise hypotheses for the evolution of avian vocal mimicry in the light of our new definition. Most of the current evidence is anecdotal, but the diverse contexts and acoustic structures of putative vocal mimicry suggest that mimicry has multiple functions across and within species. There is strong experimental evidence that vocal mimicry can be deceptive, and can facilitate parasitic interactions. There is also increasing support for the use of vocal mimicry in predator defence, although the mechanisms are unclear. Less progress has been made in explaining why many birds incorporate heterospecific sounds into their sexual displays, and in determining whether these vocalisations are functionally mimetic or by-products of sexual selection for other traits such as repertoire size. Overall, this discussion reveals a more central role for vocal mimicry in the behavioural ecology of birds than has previously been appreciated. The final part of this review identifies important areas for future research. Detailed empirical data are needed on individual species, including on the structure of mimetic signals, the contexts in which mimicry is produced, how mimicry is acquired, and the ecological relationships between mimic, model and receiver. At present, there is little information and no consensus about the various costs of vocal mimicry for the protagonists in the mimicry complex. The diversity and complexity of vocal mimicry in birds raises important questions for the study of animal communication and challenges our view of the nature of mimicry itself. Therefore, a better understanding of avian vocal mimicry is essential if we are to account fully for the diversity of animal signals. © 2014 The Authors. Biological Reviews © 2014 Cambridge Philosophical Society.
A role for descending auditory cortical projections in songbird vocal learning
Mandelblat-Cerf, Yael; Las, Liora; Denisenko, Natalia; Fee, Michale S
2014-01-01
Many learned motor behaviors are acquired by comparing ongoing behavior with an internal representation of correct performance, rather than using an explicit external reward. For example, juvenile songbirds learn to sing by comparing their song with the memory of a tutor song. At present, the brain regions subserving song evaluation are not known. In this study, we report several findings suggesting that song evaluation involves an avian 'cortical' area previously shown to project to the dopaminergic midbrain and other downstream targets. We find that this ventral portion of the intermediate arcopallium (AIV) receives inputs from auditory cortical areas, and that lesions of AIV result in significant deficits in vocal learning. Additionally, AIV neurons exhibit fast responses to disruptive auditory feedback presented during singing, but not during nonsinging periods. Our findings suggest that auditory cortical areas may guide learning by transmitting song evaluation signals to the dopaminergic midbrain and/or other subcortical targets. DOI: http://dx.doi.org/10.7554/eLife.02152.001 PMID:24935934
Self-Organization: Complex Dynamical Systems in the Evolution of Speech
NASA Astrophysics Data System (ADS)
Oudeyer, Pierre-Yves
Human vocalization systems are characterized by complex structural properties. They are combinatorial, based on the systematic reuse of phonemes, and the set of repertoires in human languages is characterized by both strong statistical regularities—universals—and a great diversity. Besides, they are conventional codes culturally shared in each community of speakers. What are the origins of the forms of speech? What are the mechanisms that permitted their evolution in the course of phylogenesis and cultural evolution? How can a shared speech code be formed in a community of individuals? This chapter focuses on the way the concept of self-organization, and its interaction with natural selection, can throw light on these three questions. In particular, a computational model is presented which shows that a basic neural equipment for adaptive holistic vocal imitation, coupling directly motor and perceptual representations in the brain, can generate spontaneously shared combinatorial systems of vocalizations in a society of babbling individuals. Furthermore, we show how morphological and physiological innate constraints can interact with these self-organized mechanisms to account for both the formation of statistical regularities and diversity in vocalization systems.
The vocal repertoire of Tibetan macaques (Macaca thibetana): A quantitative classification.
Bernstein, Sofia K; Sheeran, Lori K; Wagner, R Steven; Li, Jin-Hua; Koda, Hiroki
2016-09-01
Vocal repertoires are basic and essential components for describing vocal communication in animals. Studying the entire suite of vocal signals aids investigations on the variation of acoustic structure across social contexts, comparisons on the complexity of communication systems across taxa, and in exploration of the evolutionary origins of species-specific vocalizations. Here, we describe the vocal repertoire of the largest species in the macaque genus, Macaca thibetana. We extracted thirty acoustic parameters from call recordings. Post hoc validation through quantitative analyses of the a priori repertoire classified eleven call types: coo, squawk, squeal, noisy scream, growl, bark, compound squeak, leap coo, weeping, modulated tonal scream, and pant. In comparison to the rest of the genus, Tibetan macaques uttered a wider array of vocalizations in the context of copulations. Previous reports did not include modulated tonal screams and pants during harassment of copulatory dyads. Furthermore, in comparison to the rest of the genus, Tibetan macaque females emit acoustically distinct copulation calls. The vocal repertoire of Tibetan macaques contributes to the literature on the emergence of species-specific calls in the genus Macaca with potential insights from social, reproductive, and ecological comparisons across species. Am. J. Primatol. 78:937-949, 2016. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
Social Vocalizations of Big Brown Bats Vary with Behavioral Context
Gadziola, Marie A.; Grimsley, Jasmine M. S.; Faure, Paul A.; Wenstrup, Jeffrey J.
2012-01-01
Bats are among the most gregarious and vocal mammals, with some species demonstrating a diverse repertoire of syllables under a variety of behavioral contexts. Despite extensive characterization of big brown bat (Eptesicus fuscus) biosonar signals, there have been no detailed studies of adult social vocalizations. We recorded and analyzed social vocalizations and associated behaviors of captive big brown bats under four behavioral contexts: low aggression, medium aggression, high aggression, and appeasement. Even limited to these contexts, big brown bats possess a rich repertoire of social vocalizations, with 18 distinct syllable types automatically classified using a spectrogram cross-correlation procedure. For each behavioral context, we describe vocalizations in terms of syllable acoustics, temporal emission patterns, and typical syllable sequences. Emotion-related acoustic cues are evident within the call structure by context-specific syllable types or variations in the temporal emission pattern. We designed a paradigm that could evoke aggressive vocalizations while monitoring heart rate as an objective measure of internal physiological state. Changes in the magnitude and duration of elevated heart rate scaled to the level of evoked aggression, confirming the behavioral state classifications assessed by vocalizations and behavioral displays. These results reveal a complex acoustic communication system among big brown bats in which acoustic cues and call structure signal the emotional state of a caller. PMID:22970247
High-precision spatial localization of mouse vocalizations during social interaction.
Heckman, Jesse J; Proville, Rémi; Heckman, Gert J; Azarfar, Alireza; Celikel, Tansu; Englitz, Bernhard
2017-06-07
Mice display a wide repertoire of vocalizations that varies with age, sex, and context. Especially during courtship, mice emit ultrasonic vocalizations (USVs) of high complexity, whose detailed structure is poorly understood. As animals of both sexes vocalize, the study of social vocalizations requires attributing single USVs to individuals. The state-of-the-art in sound localization for USVs allows spatial localization at centimeter resolution, however, animals interact at closer ranges, involving tactile, snout-snout exploration. Hence, improved algorithms are required to reliably assign USVs. We develop multiple solutions to USV localization, and derive an analytical solution for arbitrary vertical microphone positions. The algorithms are compared on wideband acoustic noise and single mouse vocalizations, and applied to social interactions with optically tracked mouse positions. A novel, (frequency) envelope weighted generalised cross-correlation outperforms classical cross-correlation techniques. It achieves a median error of ~1.4 mm for noise and ~4-8.5 mm for vocalizations. Using this algorithms in combination with a level criterion, we can improve the assignment for interacting mice. We report significant differences in mean USV properties between CBA mice of different sexes during social interaction. Hence, the improved USV attribution to individuals lays the basis for a deeper understanding of social vocalizations, in particular sequences of USVs.
Bat echolocation calls facilitate social communication
Knörnschild, Mirjam; Jung, Kirsten; Nagy, Martina; Metz, Markus; Kalko, Elisabeth
2012-01-01
Bat echolocation is primarily used for orientation and foraging but also holds great potential for social communication. The communicative function of echolocation calls is still largely unstudied, especially in the wild. Eavesdropping on vocal signatures encoding social information in echolocation calls has not, to our knowledge, been studied in free-living bats so far. We analysed echolocation calls of the polygynous bat Saccopteryx bilineata and found pronounced vocal signatures encoding sex and individual identity. We showed experimentally that free-living males discriminate approaching male and female conspecifics solely based on their echolocation calls. Males always produced aggressive vocalizations when hearing male echolocation calls and courtship vocalizations when hearing female echolocation calls; hence, they responded with complex social vocalizations in the appropriate social context. Our study demonstrates that social information encoded in bat echolocation calls plays a crucial and hitherto underestimated role for eavesdropping conspecifics and thus facilitates social communication in a highly mobile nocturnal mammal. PMID:23034703
Bat echolocation calls facilitate social communication.
Knörnschild, Mirjam; Jung, Kirsten; Nagy, Martina; Metz, Markus; Kalko, Elisabeth
2012-12-07
Bat echolocation is primarily used for orientation and foraging but also holds great potential for social communication. The communicative function of echolocation calls is still largely unstudied, especially in the wild. Eavesdropping on vocal signatures encoding social information in echolocation calls has not, to our knowledge, been studied in free-living bats so far. We analysed echolocation calls of the polygynous bat Saccopteryx bilineata and found pronounced vocal signatures encoding sex and individual identity. We showed experimentally that free-living males discriminate approaching male and female conspecifics solely based on their echolocation calls. Males always produced aggressive vocalizations when hearing male echolocation calls and courtship vocalizations when hearing female echolocation calls; hence, they responded with complex social vocalizations in the appropriate social context. Our study demonstrates that social information encoded in bat echolocation calls plays a crucial and hitherto underestimated role for eavesdropping conspecifics and thus facilitates social communication in a highly mobile nocturnal mammal.
Meaning in the avian auditory cortex: Neural representation of communication calls
Elie, Julie E; Theunissen, Frédéric E
2014-01-01
Understanding how the brain extracts the behavioral meaning carried by specific vocalization types that can be emitted by various vocalizers and in different conditions is a central question in auditory research. This semantic categorization is a fundamental process required for acoustic communication and presupposes discriminative and invariance properties of the auditory system for conspecific vocalizations. Songbirds have been used extensively to study vocal learning, but the communicative function of all their vocalizations and their neural representation has yet to be examined. In our research, we first generated a library containing almost the entire zebra finch vocal repertoire and organized communication calls along 9 different categories based on their behavioral meaning. We then investigated the neural representations of these semantic categories in the primary and secondary auditory areas of 6 anesthetized zebra finches. To analyze how single units encode these call categories, we described neural responses in terms of their discrimination, selectivity and invariance properties. Quantitative measures for these neural properties were obtained using an optimal decoder based both on spike counts and spike patterns. Information theoretic metrics show that almost half of the single units encode semantic information. Neurons achieve higher discrimination of these semantic categories by being more selective and more invariant. These results demonstrate that computations necessary for semantic categorization of meaningful vocalizations are already present in the auditory cortex and emphasize the value of a neuro-ethological approach to understand vocal communication. PMID:25728175
The audiovisual structure of onomatopoeias: An intrusion of real-world physics in lexical creation.
Taitz, Alan; Assaneo, M Florencia; Elisei, Natalia; Trípodi, Mónica; Cohen, Laurent; Sitt, Jacobo D; Trevisan, Marcos A
2018-01-01
Sound-symbolic word classes are found in different cultures and languages worldwide. These words are continuously produced to code complex information about events. Here we explore the capacity of creative language to transport complex multisensory information in a controlled experiment, where our participants improvised onomatopoeias from noisy moving objects in audio, visual and audiovisual formats. We found that consonants communicate movement types (slide, hit or ring) mainly through the manner of articulation in the vocal tract. Vowels communicate shapes in visual stimuli (spiky or rounded) and sound frequencies in auditory stimuli through the configuration of the lips and tongue. A machine learning model was trained to classify movement types and used to validate generalizations of our results across formats. We implemented the classifier with a list of cross-linguistic onomatopoeias simple actions were correctly classified, while different aspects were selected to build onomatopoeias of complex actions. These results show how the different aspects of complex sensory information are coded and how they interact in the creation of novel onomatopoeias.
Activity propagation in an avian basal ganglia-thalamo-cortical circuit essential for vocal learning
Kojima, Satoshi; Doupe, Allison J.
2009-01-01
In mammalian basal ganglia-thalamo-cortical circuits, GABAergic pallidal neurons are thought to ‘gate’ or modulate excitation in thalamus with their strong inhibitory inputs, and thus signal to cortex by pausing and permitting thalamic neurons to fire in response to excitatory drive. In contrast, in a homologous circuit specialized for vocal learning in songbirds, evidence suggests that pallidal neurons signal by eliciting postinhibitory rebound spikes in thalamus, which could occur even without any excitatory drive to thalamic neurons. To test whether songbird pallidal neurons can also communicate with thalamus by gating excitatory drive, as well as by postinhibitory rebound, we examined the activity of thalamic relay neurons in response to acute inactivation of the basal ganglia structure Area X; Area X contains the pallidal neurons that project to thalamus. Although inactivation of Area X should eliminate rebound-mediated spiking in thalamus, this manipulation tonically increases the firing rate of thalamic relay neurons, providing evidence that songbird pallidal neurons can gate tonic thalamic excitatory drive. We also found that the increased thalamic activity was fed forward to its target in the avian equivalent of cortex, which includes neurons that project to the vocal premotor area. These data raise the possibility that basal ganglia circuits can signal to cortex through thalamus both by generating postinhibitory rebound and by gating excitatory drive, and may switch between these modes depending on the statistics of pallidal firing. Moreover, these findings provide insight into the strikingly different disruptive effects of basal ganglia and ‘cortical’ lesions on songbird vocal learning. PMID:19369547
NASA Astrophysics Data System (ADS)
Rogers, Dylan; Wei, Nathaniel; Ringenber, Hunter; Krane, Michael; Wei, Timothy
2017-11-01
This study builds on the parallel presentation of Ringenberg, et al. (APS-DFD 2017) involving simultaneous, temporally and spatially resolved flow and pressure measurements in a scaled-up vocal fold model. In this talk, data from experiments replicating characteristics of diseased vocal folds are presented. This begins with vocal folds that do not fully close and continues with asymmetric oscillations. Data are compared to symmetric, i.e. `healthy', oscillatory motions presented in the companion talk. Having pressure and flow data for individual as well as phase averaged oscillations for these diseased cases highlights the potential for aeroacoustic analysis in this complex system. Supported by NIH Grant No. 2R01 DC005642-11.
Effect of the losses in the vocal tract on determination of the area function.
Gülmezoğlu, M Bilginer; Barkana, Atalay
2003-01-01
In this work, the cross-sectional areas of the vocal tract are determined for the lossy and lossless cases by using the pole-zero models obtained from the electrical equivalent circuit model of the vocal tract and the system identification method. The cross-sectional areas are used to compare the lossy and lossless cases. In the lossy case, the internal losses due to wall vibration, heat conduction, air friction and viscosity are considered, that is, the complex poles and zeros obtained from the models are used directly. Whereas, in the lossless case, only the imaginary parts of these poles and zeros are used. The vocal tract shapes obtained for the lossy case are close to the actual ones.
Vocal tract characteristics in Parkinson's disease.
Gillivan-Murphy, Patricia; Carding, Paul; Miller, Nick
2016-06-01
Voice tremor is strongly linked to the Parkinson's disease speech-voice symptom complex. Little is known about the underlying anatomic source(s) of voice tremor when it occurs. We review recent literature addressing this issue. Additionally we report findings from a study we conducted employing rating of vocal tract structures viewed using nasolaryngoscopy during vocal and nonspeech tasks. In Parkinson's disease, using laryngeal electromyography, tremor has not been identified in muscles in the vocal folds even when perceived auditorily. Preliminary findings using nasolaryngoscopy suggest that Parkinson's disease voice tremor is not associated with the vocal folds and may involve the palate, the global larynx, and the arytenoids. Tremor in the vertical larynx on /a/, and tremor in the arytenoid cartilages on /s/ differentiated patients with Parkinson's disease from neurologically healthy controls. Visual reliable detection of tremor when it is absent or borderline present, is challenging. Parkinson's disease voice tremor is likely to be related to oscillatory movement in structures across the vocal tract rather than just the vocal folds. To progress clinical practice, more refined tools for the visual rating of tremor would be beneficial. How far voice tremor represents a functionally significant factor for speakers would also add to the literature.
Scattoni, Maria Luisa; Crawley, Jacqueline; Ricceri, Laura
2009-01-01
In neonatal mice ultrasonic vocalizations have been studied both as an early communicative behavior of the pup-mother dyad and as a sign of an aversive affective state. Adult mice of both sexes produce complex ultrasonic vocalization patterns in different experimental/social contexts. All these vocalizations are becoming an increasingly valuable assay for behavioral phenotyping throughout the mouse life-span and alterations of the ultrasound patterns have been reported in several mouse models of neurodevelopmental disorders. Here we also show that the modulation of vocalizations by maternal cues (maternal potentiation paradigm) – originally identified and investigated in rats - can be measured in C57Bl/6 mouse pups with appropriate modifications of the rat protocol and can likely be applied to mouse behavioral phenotyping. In addition we suggest that a detailed qualitative evaluation of neonatal calls together with analysis of adult mouse vocalization patterns in both sexes in social settings, may lead to a greater understanding of the communication value of vocalizations in mice. Importantly, both neonatal and adult USV altered patterns can be determined during the behavioural phenotyping of mouse models of human neurodevelopmental and neuropsychiatric disorders, starting from those in which deficits in communication are a primary symptom. PMID:18771687
Effects of background noise on acoustic characteristics of Bengalese finch songs.
Shiba, Shintaro; Okanoya, Kazuo; Tachibana, Ryosuke O
2016-12-01
Online regulation of vocalization in response to auditory feedback is one of the essential issues for vocal communication. One such audio-vocal interaction is the Lombard effect, an involuntary increase in vocal amplitude in response to the presence of background noise. Along with vocal amplitude, other acoustic characteristics, including fundamental frequency (F0), also change in some species. Bengalese finches (Lonchura striata var. domestica) are a suitable model for comparative, ethological, and neuroscientific studies on audio-vocal interaction because they require real-time auditory feedback of their own songs to maintain normal singing. Here, the changes in amplitude and F0 with a focus on the distinct song elements (i.e., notes) of Bengalese finches under noise presentation are demonstrated. To accurately analyze these acoustic characteristics, two different bandpass-filtered noises at two levels of sound intensity were used. The results confirmed that the Lombard effect occurs at the note level of Bengalese finch song. Further, individually specific modes of changes in F0 are shown. These behavioral changes suggested the vocal control mechanisms on which the auditory feedback is based have a predictable effect on amplitude, but complex spectral effects on individual note production.
Rules of song development and their use in vocal interactions by birds with large repertoires.
Geberzahn, Nicole; Hultsch, Henrike
2004-06-01
Songbirds are well known for settling their disputes by vocal signals, and their singing plays a dominant role. Most studies on this issue have concentrated on bird species that develop and use small vocal repertoires. In this article we will go farther and focus on examples of how species with large song repertoires make use of their vocal competence. In particular, we will outline the study of interaction rules which have been elucidated by examining time- and pattern-specific relationships between signals exchanged by territorial neighbors. First we present an inquiry into the rules of song learning and development. In birds with large song repertoires, the ontogeny of such rules proceeds along a number of trajectories which help in understanding the often remarkable accomplishments of adult birds. In both approaches, our model species will be the Common Nightingale Luscinia megarhynchos that has been investigated intensively in the field and in the laboratory.
Effects of vocal training and phonatory task on voice onset time.
McCrea, Christopher R; Morris, Richard J
2007-01-01
The purpose of this study was to examine the temporal-acoustic differences between trained singers and nonsingers during speech and singing tasks. Thirty male participants were separated into two groups of 15 according to level of vocal training (ie, trained or untrained). The participants spoke and sang carrier phrases containing English voiced and voiceless bilabial stops, and voice onset time (VOT) was measured for the stop consonant productions. Mixed analyses of variance revealed a significant main effect between speech and singing for /p/ and /b/, with VOT durations longer during speech than singing for /p/, and the opposite true for /b/. Furthermore, a significant phonatory task by vocal training interaction was observed for /p/ productions. The results indicated that the type of phonatory task influences VOT and that these influences are most obvious in trained singers secondary to the articulatory and phonatory adjustments learned during vocal training.
ERIC Educational Resources Information Center
Malloy, Peggy
2009-01-01
Long before children learn language, they communicate with gestures, vocalizations, facial expressions, and body language. This is known as prelinguistic (prior to language) communication. Most children learn this type of communication without formal teaching, but children who are deaf-blind may need guidance to learn it. This publication…
Retrieving Tract Variables From Acoustics: A Comparison of Different Machine Learning Strategies.
Mitra, Vikramjit; Nam, Hosung; Espy-Wilson, Carol Y; Saltzman, Elliot; Goldstein, Louis
2010-09-13
Many different studies have claimed that articulatory information can be used to improve the performance of automatic speech recognition systems. Unfortunately, such articulatory information is not readily available in typical speaker-listener situations. Consequently, such information has to be estimated from the acoustic signal in a process which is usually termed "speech-inversion." This study aims to propose and compare various machine learning strategies for speech inversion: Trajectory mixture density networks (TMDNs), feedforward artificial neural networks (FF-ANN), support vector regression (SVR), autoregressive artificial neural network (AR-ANN), and distal supervised learning (DSL). Further, using a database generated by the Haskins Laboratories speech production model, we test the claim that information regarding constrictions produced by the distinct organs of the vocal tract (vocal tract variables) is superior to flesh-point information (articulatory pellet trajectories) for the inversion process.
The physics of birdsong production
NASA Astrophysics Data System (ADS)
Mindlin, G. B.
2013-04-01
Human babies need to learn how to talk. The need of a tutor to achieve acceptable vocalisations is a feature that we share with a few species in the animal kingdom. Among those are Songbirds, which account for nearly half of the known bird species. For that reason, Songbirds have become an ideal animal model to study how a brain reconfigures itself during the process of learning a complex task. In the last few years, neuroscientists have invested important resources in order to unveil the neural architecture involved in birdsong production and learning. Yet, behaviour emerges from the interaction between a nervous system, a peripheral biomechanical architecture and environment, and therefore its study should be just as integrated. In particular, the physical study of the avian vocal organ can help to elucidate which features found in the song of birds are under direct control of specific neural instructions and which emerge from the biomechanics involved in its generation. This work describes recent advances in the study of the physics of birdsong production.
Vocal cord paralysis after aortic surgery.
DiLisio, Ralph P; Mazzeffi, Michael A; Bodian, Carol A; Fischer, Gregory W
2013-06-01
The purpose of this study was to investigate variables associated with vocal cord paralysis during complex aortic procedures. A retrospective review. A tertiary care center. Four hundred ninety-eight patients who underwent aortic surgery between 2002 and 2007. Two groups were studied. Group A patients had procedures only involving their aortic root and/or ascending aorta. Group B patients had procedures only involving their aortic arch and/or descending aorta. The incidence of vocal cord paralysis was higher (7.26% v 0.8%) in group B patients (p < 0.0001). Increasing the duration of cardiopulmonary bypass time was associated with an increased risk of vocal cord paralysis and death in both groups A and B (p = 0.0002 and 0.002, respectively). Additionally, within group B, descending aneurysms emerged as an independent risk factor associated with vocal cord paralysis (p = 0.03). Length of stay was statistically significantly longer among group A patients who suffered vocal cord paralysis (p = 0.017) and trended toward significance in group B patients who suffered vocal cord paralysis (p = 0.059). The association between tracheostomy and vocal cord paralysis among group A patients reached statistical significance (p = 0.007) and trended toward significance in group B patients (p = 0.057). Increasing duration of cardiopulmonary bypass time was associated with a higher risk of vocal cord paralysis in patients undergoing aortic surgery. Additionally, within group B patients, descending aortic aneurysm was an independent risk factor associated with vocal cord paralysis. Most importantly, vocal cord paralysis appeared to have an association between an increased length of stay and tracheostomy among a select group of patients undergoing aortic surgery. Copyright © 2013 Elsevier Inc. All rights reserved.
Brain evolution by brain pathway duplication
Chakraborty, Mukta; Jarvis, Erich D.
2015-01-01
Understanding the mechanisms of evolution of brain pathways for complex behaviours is still in its infancy. Making further advances requires a deeper understanding of brain homologies, novelties and analogies. It also requires an understanding of how adaptive genetic modifications lead to restructuring of the brain. Recent advances in genomic and molecular biology techniques applied to brain research have provided exciting insights into how complex behaviours are shaped by selection of novel brain pathways and functions of the nervous system. Here, we review and further develop some insights to a new hypothesis on one mechanism that may contribute to nervous system evolution, in particular by brain pathway duplication. Like gene duplication, we propose that whole brain pathways can duplicate and the duplicated pathway diverge to take on new functions. We suggest that one mechanism of brain pathway duplication could be through gene duplication, although other mechanisms are possible. We focus on brain pathways for vocal learning and spoken language in song-learning birds and humans as example systems. This view presents a new framework for future research in our understanding of brain evolution and novel behavioural traits. PMID:26554045
Jiang, Lei; Han, Juan; Yang, Limin; Ma, Hongchao; Huang, Bo
2015-10-07
Vocal folds are complex and multilayer-structured where the main layer is widely composed of hyaluronan (HA). The viscoelasticity of HA is key to voice production in the vocal fold as it affects the initiation and maintenance of phonation. In this study a simple layer-structured surface model was set up to mimic the structure of the vocal folds. The interactions between two opposing surfaces bearing HA were measured and characterised to analyse HA's response to the normal and shear compression at a stress level similar to that in the vocal fold. From the measurements of the quartz crystal microbalance, atomic force microscopy and the surface force balance, the osmotic pressure, normal interactions, elasticity change, volume fraction, refractive index and friction of both HA and the supporting protein layer were obtained. These findings may shed light on the physical mechanism of HA function in the vocal fold and the specific role of HA as an important component in the effective treatment of the vocal fold disease.
Computational Modeling of Fluid–Structure–Acoustics Interaction during Voice Production
Jiang, Weili; Zheng, Xudong; Xue, Qian
2017-01-01
The paper presented a three-dimensional, first-principle based fluid–structure–acoustics interaction computer model of voice production, which employed a more realistic human laryngeal and vocal tract geometries. Self-sustained vibrations, important convergent–divergent vibration pattern of the vocal folds, and entrainment of the two dominant vibratory modes were captured. Voice quality-associated parameters including the frequency, open quotient, skewness quotient, and flow rate of the glottal flow waveform were found to be well within the normal physiological ranges. The analogy between the vocal tract and a quarter-wave resonator was demonstrated. The acoustic perturbed flux and pressure inside the glottis were found to be at the same order with their incompressible counterparts, suggesting strong source–filter interactions during voice production. Such high fidelity computational model will be useful for investigating a variety of pathological conditions that involve complex vibrations, such as vocal fold paralysis, vocal nodules, and vocal polyps. The model is also an important step toward a patient-specific surgical planning tool that can serve as a no-risk trial and error platform for different procedures, such as injection of biomaterials and thyroplastic medialization. PMID:28243588
Automatic mouse ultrasound detector (A-MUD): A new tool for processing rodent vocalizations
Reitschmidt, Doris; Noll, Anton; Balazs, Peter; Penn, Dustin J.
2017-01-01
House mice (Mus musculus) emit complex ultrasonic vocalizations (USVs) during social and sexual interactions, which have features similar to bird song (i.e., they are composed of several different types of syllables, uttered in succession over time to form a pattern of sequences). Manually processing complex vocalization data is time-consuming and potentially subjective, and therefore, we developed an algorithm that automatically detects mouse ultrasonic vocalizations (Automatic Mouse Ultrasound Detector or A-MUD). A-MUD is a script that runs on STx acoustic software (S_TOOLS-STx version 4.2.2), which is free for scientific use. This algorithm improved the efficiency of processing USV files, as it was 4–12 times faster than manual segmentation, depending upon the size of the file. We evaluated A-MUD error rates using manually segmented sound files as a ‘gold standard’ reference, and compared them to a commercially available program. A-MUD had lower error rates than the commercial software, as it detected significantly more correct positives, and fewer false positives and false negatives. The errors generated by A-MUD were mainly false negatives, rather than false positives. This study is the first to systematically compare error rates for automatic ultrasonic vocalization detection methods, and A-MUD and subsequent versions will be made available for the scientific community. PMID:28727808
Differential coding of conspecific vocalizations in the ventral auditory cortical stream.
Fukushima, Makoto; Saunders, Richard C; Leopold, David A; Mishkin, Mortimer; Averbeck, Bruno B
2014-03-26
The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway.
Differential Coding of Conspecific Vocalizations in the Ventral Auditory Cortical Stream
Saunders, Richard C.; Leopold, David A.; Mishkin, Mortimer; Averbeck, Bruno B.
2014-01-01
The mammalian auditory cortex integrates spectral and temporal acoustic features to support the perception of complex sounds, including conspecific vocalizations. Here we investigate coding of vocal stimuli in different subfields in macaque auditory cortex. We simultaneously measured auditory evoked potentials over a large swath of primary and higher order auditory cortex along the supratemporal plane in three animals chronically using high-density microelectrocorticographic arrays. To evaluate the capacity of neural activity to discriminate individual stimuli in these high-dimensional datasets, we applied a regularized multivariate classifier to evoked potentials to conspecific vocalizations. We found a gradual decrease in the level of overall classification performance along the caudal to rostral axis. Furthermore, the performance in the caudal sectors was similar across individual stimuli, whereas the performance in the rostral sectors significantly differed for different stimuli. Moreover, the information about vocalizations in the caudal sectors was similar to the information about synthetic stimuli that contained only the spectral or temporal features of the original vocalizations. In the rostral sectors, however, the classification for vocalizations was significantly better than that for the synthetic stimuli, suggesting that conjoined spectral and temporal features were necessary to explain differential coding of vocalizations in the rostral areas. We also found that this coding in the rostral sector was carried primarily in the theta frequency band of the response. These findings illustrate a progression in neural coding of conspecific vocalizations along the ventral auditory pathway. PMID:24672012
Visual classification of feral cat Felis silvestris catus vocalizations.
Owens, Jessica L; Olsen, Mariana; Fontaine, Amy; Kloth, Christopher; Kershenbaum, Arik; Waller, Sara
2017-06-01
Cat vocal behavior, in particular, the vocal and social behavior of feral cats, is poorly understood, as are the differences between feral and fully domestic cats. The relationship between feral cat social and vocal behavior is important because of the markedly different ecology of feral and domestic cats, and enhanced comprehension of the repertoire and potential information content of feral cat calls can provide both better understanding of the domestication and socialization process, and improved welfare for feral cats undergoing adoption. Previous studies have used conflicting classification schemes for cat vocalizations, often relying on onomatopoeic or popular descriptions of call types (e.g., "miow"). We studied the vocalizations of 13 unaltered domestic cats that complied with our behavioral definition used to distinguish feral cats from domestic. A total of 71 acoustic units were extracted and visually analyzed for the construction of a hierarchical classification of vocal sounds, based on acoustic properties. We identified 3 major categories (tonal, pulse, and broadband) that further breakdown into 8 subcategories, and show a high degree of reliability when sounds are classified blindly by independent observers (Fleiss' Kappa K = 0.863). Due to the limited behavioral contexts in this study, additional subcategories of cat vocalizations may be identified in the future, but our hierarchical classification system allows for the addition of new categories and new subcategories as they are described. This study shows that cat vocalizations are diverse and complex, and provides an objective and reliable classification system that can be used in future studies.
Vassilieva, Anna B; Gogoleva, Svetlana S; Poyarkov, Nikolay A Jr
2016-06-24
We present new data on the distribution, reproduction, larval morphology and vocalization of Rhacophorus helenae (Rhacophoridae), a narrowly distributed frog from southern Vietnam. Two new populations of R. helenae were discovered during field surveys in the lowland monsoon forests in Dong Nai and Ba Ria-Vung Tau provinces in 2010-2013. Spawning was observed in May 2013. Egg clutches containing small (2.3±0.1 mm) unpigmented eggs were embedded in a foam nest and suspended high on trees above temporary ponds. The tadpoles of R. helenae have a morphology typical of pond-dwelling Rhacophorus larvae with a moderate tail length and a labial tooth row formula of 5(2-5)/3. Postmetamorphic juveniles differed from adult frogs in the features of their coloration and less developed webbing. The complex vocal repertoire of R. helenae included five types of tonal, wideband and pulsed calls and several transitional signal types differentiated by frequency and amplitude parameters. Calls were uttered as singular signals (pulsed calls) or within non-stereotyped series of variable duration (other call types). The complex structure of the advertisement call markedly distinguishes R. helenae from other members of the Rhacophorus reinwardtii species complex.
Daily and Developmental Modulation of “Premotor” Activity in the Birdsong System
Day, Nancy F.; Kinnischtzke, Amanda K.; Adam, Murtaza; Nick, Teresa A.
2009-01-01
Human speech and birdsong are shaped during a sensorimotor sensitive period in which auditory feedback guides vocal learning. To study brain activity as song learning occurred, we recorded longitudinally from developing zebra finches during the sensorimotor phase. Learned sequences of vocalizations (motifs) were examined along with contemporaneous neural population activity in the song nucleus HVC, which is necessary for the production of learned song (Nottebohm et al. [1976]: J Comp Neurol 165:457–486; Simpson and Vicario [1990]: J Neurosci 10:1541–1556). During singing, HVC activity levels increased as the day progressed and decreased after a night of sleep in juveniles and adults. In contrast, the pattern of HVC activity changed on a daily basis only in juveniles: activity bursts became more pronounced during the day. The HVC of adults was significantly burstier than that of juveniles. HVC bursting was relevant to song behavior because the degree of burstiness inversely correlated with the variance of song features in juveniles. The song of juveniles degrades overnight (Deregnaucourt et al. [2005]: Nature 433:710–716). Consistent with a relationship between HVC activity and song plasticity (Day et al. [2008]: J Neurophys 100:2956–2965), HVC burstiness degraded overnight in young juveniles and the amount of overnight degradation declined with developmental song learning. Nocturnal changes in HVC activity strongly and inversely correlated with the next day's change, suggesting that sleep-dependent degradation of HVC activity may facilitate or enable subsequent diurnal changes. Collectively, these data show that HVC activity levels exhibit daily cycles in adults and juveniles, whereas HVC burstiness and song stereotypy change daily in juveniles only. In addition, the data indicate that HVC burstiness increases with development and inversely correlates with song variability, which is necessary for trial and error vocal learning. PMID:19650042
Cornez, Gilles; Madison, Farrah N; Van der Linden, Annemie; Cornil, Charlotte; Yoder, Kathleen M; Ball, Gregory F; Balthazart, Jacques
2017-09-01
Perineuronal nets (PNN) are aggregations of chondroitin sulfate proteoglycans surrounding the soma and proximal processes of neurons, mostly GABAergic interneurons expressing parvalbumin. They limit the plasticity of their afferent synaptic connections. In zebra finches PNN develop in an experience-dependent manner in the song control nuclei HVC and RA (nucleus robustus arcopallialis) when young birds crystallize their song. Because songbird species that are open-ended learners tend to recapitulate each year the different phases of song learning until their song crystallizes at the beginning of the breeding season, we tested whether seasonal changes in PNN expression would be found in the song control nuclei of a seasonally breeding species such as the European starling. Only minimal changes in PNN densities and total number of cells surrounded by PNN were detected. However, comparison of the density of PNN and of PNN surrounding parvalbumin-positive cells revealed that these structures are far less numerous in starlings that show extensive adult vocal plasticity, including learning of new songs throughout the year, than in the closed-ended learner zebra finches. Canaries that also display some vocal plasticity across season but were never formally shown to learn new songs in adulthood were intermediate in this respect. Together these data suggest that establishment of PNN around parvalbumin-positive neurons in song control nuclei has diverged during evolution to control the different learning capacities observed in songbird species. This differential expression of PNN in different songbird species could represent a key cellular mechanism mediating species variation between closed-ended and open-ended learning strategies. © 2017 Wiley Periodicals, Inc. Develop Neurobiol 77: 975-994, 2017. © 2017 Wiley Periodicals, Inc.
Mother goats do not forget their kids’ calls
Briefer, Elodie F.; Padilla de la Torre, Monica; McElligott, Alan G.
2012-01-01
Parent–offspring recognition is crucial for offspring survival. At long distances, this recognition is mainly based on vocalizations. Because of maturation-related changes to the structure of vocalizations, parents have to learn successive call versions produced by their offspring throughout ontogeny in order to maintain recognition. However, because of the difficulties involved in following the same individuals over years, it is not clear how long this vocal memory persists. Here, we investigated long-term vocal recognition in goats. We tested responses of mothers to their kids’ calls 7–13 months after weaning. We then compared mothers’ responses to calls of their previous kids with their responses to the same calls at five weeks postpartum. Subjects tended to respond more to their own kids at five weeks postpartum than 11–17 months later, but displayed stronger responses to their previous kids than to familiar kids from other females. Acoustic analyses showed that it is unlikely that mothers were responding to their previous kids simply because they confounded them with the new kids they were currently nursing. Therefore, our results provide evidence for strong, long-term vocal memory capacity in goats. The persistence of offspring vocal recognition beyond weaning could have important roles in kin social relationships and inbreeding avoidance. PMID:22719031
Using Ambulatory Voice Monitoring to Investigate Common Voice Disorders: Research Update
Mehta, Daryush D.; Van Stan, Jarrad H.; Zañartu, Matías; Ghassemi, Marzyeh; Guttag, John V.; Espinoza, Víctor M.; Cortés, Juan P.; Cheyne, Harold A.; Hillman, Robert E.
2015-01-01
Many common voice disorders are chronic or recurring conditions that are likely to result from inefficient and/or abusive patterns of vocal behavior, referred to as vocal hyperfunction. The clinical management of hyperfunctional voice disorders would be greatly enhanced by the ability to monitor and quantify detrimental vocal behaviors during an individual’s activities of daily life. This paper provides an update on ongoing work that uses a miniature accelerometer on the neck surface below the larynx to collect a large set of ambulatory data on patients with hyperfunctional voice disorders (before and after treatment) and matched-control subjects. Three types of analysis approaches are being employed in an effort to identify the best set of measures for differentiating among hyperfunctional and normal patterns of vocal behavior: (1) ambulatory measures of voice use that include vocal dose and voice quality correlates, (2) aerodynamic measures based on glottal airflow estimates extracted from the accelerometer signal using subject-specific vocal system models, and (3) classification based on machine learning and pattern recognition approaches that have been used successfully in analyzing long-term recordings of other physiological signals. Preliminary results demonstrate the potential for ambulatory voice monitoring to improve the diagnosis and treatment of common hyperfunctional voice disorders. PMID:26528472
Mother goats do not forget their kids' calls.
Briefer, Elodie F; Padilla de la Torre, Monica; McElligott, Alan G
2012-09-22
Parent-offspring recognition is crucial for offspring survival. At long distances, this recognition is mainly based on vocalizations. Because of maturation-related changes to the structure of vocalizations, parents have to learn successive call versions produced by their offspring throughout ontogeny in order to maintain recognition. However, because of the difficulties involved in following the same individuals over years, it is not clear how long this vocal memory persists. Here, we investigated long-term vocal recognition in goats. We tested responses of mothers to their kids' calls 7-13 months after weaning. We then compared mothers' responses to calls of their previous kids with their responses to the same calls at five weeks postpartum. Subjects tended to respond more to their own kids at five weeks postpartum than 11-17 months later, but displayed stronger responses to their previous kids than to familiar kids from other females. Acoustic analyses showed that it is unlikely that mothers were responding to their previous kids simply because they confounded them with the new kids they were currently nursing. Therefore, our results provide evidence for strong, long-term vocal memory capacity in goats. The persistence of offspring vocal recognition beyond weaning could have important roles in kin social relationships and inbreeding avoidance.
Experiences of a short vocal training course for call-centre customer service advisors.
Lehto, Laura; Rantala, Leena; Vilkman, Erkki; Alku, Paavo; Bäckström, Tom
2003-01-01
It is commonly known that occupational voice users suffer from voice symptoms to varying extents. The purpose of this study was to find out the effects of a short (2-day) vocal training course on professional speakers' voice. The subjects were 38 female and 10 male customer advisors, who mainly use the telephone during their working hours at a call centre. The findings showed that although the subjects did not suffer from severe voice problems, they reported that the short vocal training course had an effect of some of the vocal symptoms they had experienced. More than 50% of the females and males reported a decrease in the feeling of mucus and the consequent need to clear the throat, and diminished worsening of their voice. Over 60% thought that voice training had improved their vocal habits and none reported a negative influence of the course on their voice. Females also reported a reduction of vocal fatigue. The subjects were further asked to respond to 23 statements on how they experienced the voice training in general. The statements 'I learned things that I didn't know about the use of voice in general' and 'I got useful and important knowledge concerning my work' were highly assessed by both females and males. The results suggest that even a short vocal training course might affect positively the self-reported well-being of persons working in a vocally loading occupation. However, to find out the long-term effects of a short training course, a follow-up study would need to be carried out. Copyright 2003 S. Karger AG, Basel
Common Vocal Effects and Partial Glottal Vibration in Professional Nonclassical Singers.
Caffier, Philipp P; Ibrahim Nasr, Ahmed; Ropero Rendon, Maria Del Mar; Wienhausen, Sascha; Forbes, Eleanor; Seidner, Wolfram; Nawka, Tadeus
2018-05-01
To multidimensionally investigate common vocal effects in experienced professional nonclassical singers, to examine their mechanism of production and reproducibility, to demonstrate the existence of partial glottal vibration, and to assess the potential of damage to the voice from nonclassical singing. Individual cohort study. Ten male singers aged between 25 and 46 years (34 ± 7 years [mean ± SD]) with different stylistic backgrounds were recruited (five pop/rock/metal, five musical theater). Participants repeatedly presented the usual nonclassical vocal effects and techniques in their repertoire. All performances were documented and analyzed using established instruments (eg, auditory-perceptual assessment, videolaryngostroboscopy, electroglottography, voice function diagnostics). The vocal apparatus of all singers was healthy and capable of high performance. Typical nonclassical vocal effects were breathy voice, creaky voice, vocal fry, grunting, distortion, rattle, belt, and twang. All effects could be easily differentiated from each other. They were intraindividually consistently repeatable and also interindividually produced in a similar manner. A special feature in one singer was the first evidence of partial glottal vibration when belting in the high register. The unintended transition to this reduced voice quality was accompanied by physical fatigue and inflexible respiratory support. The long-lasting use of the investigated nonclassical vocal effects had no negative impact on trained singers. The possibility of long-term damage depends on the individual constitution, specific use, duration, and extent of the hyperfunction. The incidence of partial glottal vibration and its consequences require continuing research to learn more about efficient and healthy vocal function in nonclassical singing. Copyright © 2018 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
The acoustic features of human laughter
NASA Astrophysics Data System (ADS)
Bachorowski, Jo-Anne; Owren, Michael J.
2002-05-01
Remarkably little is known about the acoustic features of laughter, despite laughter's ubiquitous role in human vocal communication. Outcomes are described for 1024 naturally produced laugh bouts recorded from 97 young adults. Acoustic analysis focused on temporal characteristics, production modes, source- and filter-related effects, and indexical cues to laugher sex and individual identity. The results indicate that laughter is a remarkably complex vocal signal, with evident diversity in both production modes and fundamental frequency characteristics. Also of interest was finding a consistent lack of articulation effects in supralaryngeal filtering. Outcomes are compared to previously advanced hypotheses and conjectures about this species-typical vocal signal.
Kessler, Sharon E; Radespiel, Ute; Hasiniaina, Alida I F; Leliveld, Lisette M C; Nash, Leanne T; Zimmermann, Elke
2014-02-20
Maternal kin selection is a driving force in the evolution of mammalian social complexity and it requires that kin are distinctive from nonkin. The transition from the ancestral state of asociality to the derived state of complex social groups is thought to have occurred via solitary foraging, in which individuals forage alone, but, unlike the asocial ancestors, maintain dispersed social networks via scent-marks and vocalizations. We hypothesize that matrilineal signatures in vocalizations were an important part of these networks. We used the solitary foraging gray mouse lemur (Microcebus murinus) as a model for ancestral solitary foragers and tested for matrilineal signatures in their calls, thus investigating whether such signatures are already present in solitary foragers and could have facilitated the kin selection thought to have driven the evolution of increased social complexity in mammals. Because agonism can be very costly, selection for matrilineal signatures in agonistic calls should help reduce agonism between unfamiliar matrilineal kin. We conducted this study on a well-studied population of wild mouse lemurs at Ankarafantsika National Park, Madagascar. We determined pairwise relatedness using seven microsatellite loci, matrilineal relatedness by sequencing the mitrochondrial D-loop, and sleeping group associations using radio-telemetry. We recorded agonistic calls during controlled social encounters and conducted a multi-parametric acoustic analysis to determine the spectral and temporal structure of the agonistic calls. We measured 10 calls for each of 16 females from six different matrilineal kin groups. Calls were assigned to their matriline at a rate significantly higher than chance (pDFA: correct = 47.1%, chance = 26.7%, p = 0.03). There was a statistical trend for a negative correlation between acoustic distance and relatedness (Mantel Test: g = -1.61, Z = 4.61, r = -0.13, p = 0.058). Mouse lemur agonistic calls are moderately distinctive by matriline. Because sleeping groups consisted of close maternal kin, both genetics and social learning may have generated these acoustic signatures. As mouse lemurs are models for solitary foragers, we recommend further studies testing whether the lemurs use these calls to recognize kin. This would enable further modeling of how kin recognition in ancestral species could have shaped the evolution of complex sociality.
Kello, Christopher T; Bella, Simone Dalla; Médé, Butovens; Balasubramaniam, Ramesh
2017-10-01
Humans talk, sing and play music. Some species of birds and whales sing long and complex songs. All these behaviours and sounds exhibit hierarchical structure-syllables and notes are positioned within words and musical phrases, words and motives in sentences and musical phrases, and so on. We developed a new method to measure and compare hierarchical temporal structures in speech, song and music. The method identifies temporal events as peaks in the sound amplitude envelope, and quantifies event clustering across a range of timescales using Allan factor (AF) variance. AF variances were analysed and compared for over 200 different recordings from more than 16 different categories of signals, including recordings of speech in different contexts and languages, musical compositions and performances from different genres. Non-human vocalizations from two bird species and two types of marine mammals were also analysed for comparison. The resulting patterns of AF variance across timescales were distinct to each of four natural categories of complex sound: speech, popular music, classical music and complex animal vocalizations. Comparisons within and across categories indicated that nested clustering in longer timescales was more prominent when prosodic variation was greater, and when sounds came from interactions among individuals, including interactions between speakers, musicians, and even killer whales. Nested clustering also was more prominent for music compared with speech, and reflected beat structure for popular music and self-similarity across timescales for classical music. In summary, hierarchical temporal structures reflect the behavioural and social processes underlying complex vocalizations and musical performances. © 2017 The Author(s).
Identification of prelinguistic phonological categories.
Ramsdell, Heather L; Oller, D Kimbrough; Buder, Eugene H; Ethington, Corinna A; Chorna, Lesya
2012-12-01
The prelinguistic infant's babbling repertoire of syllables--the phonological categories that form the basis for early word learning--is noticed by caregivers who interact with infants around them. Prior research on babbling has not explored the caregiver's role in recognition of early vocal categories as foundations for word learning. In the present work, the authors begin to address this gap. The authors explored vocalizations produced by 8 infants at 3 ages (8, 10, and 12 months) in studies illustrating identification of phonological categories through caregiver report, laboratory procedures simulating the caregiver's natural mode of listening, and the more traditional laboratory approach (phonetic transcription). Caregivers reported small repertoires of syllables for their infants. Repertoires of similar size and phonetic content were discerned in the laboratory by judges who simulated the caregiver's natural mode of listening. However, phonetic transcription with repeated listening to infant recordings yielded repertoire sizes that vastly exceeded those reported by caregivers and naturalistic listeners. The results suggest that caregiver report and naturalistic listening by laboratory staff can provide a new way to explore key characteristics of early infant vocal categories, a way that may provide insight into later speech and language development.
Difference between the vocalizations of two sister species of pigeons explained in dynamical terms.
Alonso, R Gogui; Kopuchian, Cecilia; Amador, Ana; Suarez, Maria de Los Angeles; Tubaro, Pablo L; Mindlin, Gabriel B
2016-05-01
Vocal communication is an unique example, where the nonlinear nature of the periphery can give rise to complex sounds even when driven by simple neural instructions. In this work we studied the case of two close-related bird species, Patagioenas maculosa and Patagioenas picazuro, whose vocalizations differ only in the timbre. The temporal modulation of the fundamental frequency is similar in both cases, differing only in the existence of sidebands around the fundamental frequency in the P. maculosa. We tested the hypothesis that the qualitative difference between these vocalizations lies in the nonlinear nature of the syrinx. In particular, we propose that the roughness of maculosa's vocalizations is due to an asymmetry between the right and left vibratory membranes, whose nonlinear dynamics generate the sound. To test the hypothesis, we generated a biomechanical model for vocal production with an asymmetric parameter Q with which we can control the level of asymmetry between these membranes. Using this model we generated synthetic vocalizations with the principal acoustic features of both species. In addition, we confirmed the anatomical predictions by making post mortem inspection of the syrinxes, showing that the species with tonal song (picazuro) has a more symmetrical pair of membranes compared to maculosa.
Difference between the vocalizations of two sister species of pigeons explained in dynamical terms
Alonso, R. Gogui; Kopuchian, Cecilia; Amador, Ana; de los Angeles Suarez, Maria; Tubaro, Pablo L.; Mindlin, Gabriel B.
2016-01-01
Vocal communication is a unique example where the nonlinear nature of the periphery can give rise to complex sounds even when driven by simple neural instructions. In this work we studied the case of two close-related bird species, Patagioenas maculosa and Patagioenas picazuro, whose vocalizations differ only in the timbre. The temporal modulation of the fundamental frequency is similar in both cases, differing only in the existence of sidebands around the fundamental frequency in the Patagioenas maculosa. We tested the hypothesis that the qualitative difference between these vocalizations lies in the nonlinear nature of the syrinx. In particular, we propose that the roughness of maculosa's vocalizations is due to an asymmetry between the right and left vibratory membranes, whose nonlinear dynamics generate the sound. To test the hypothesis, we generated a biomechanical model for vocal production with an asymmetric parameter Q with which we can control the level of asymmetry between these membranes. Using this model we generated synthetic vocalizations with the principal acoustic features of both species. In addition, we confirmed the anatomical predictions by making post-mortem inspection of the syrinxes, showing that the species with tonal song (picazuro) has a more symmetrical pair of membranes compared to maculosa. PMID:27033354
Basal ganglia function, stuttering, sequencing, and repair in adult songbirds.
Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich D
2014-10-13
A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations.
Place preference and vocal learning rely on distinct reinforcers in songbirds.
Murdoch, Don; Chen, Ruidong; Goldberg, Jesse H
2018-04-30
In reinforcement learning (RL) agents are typically tasked with maximizing a single objective function such as reward. But it remains poorly understood how agents might pursue distinct objectives at once. In machines, multiobjective RL can be achieved by dividing a single agent into multiple sub-agents, each of which is shaped by agent-specific reinforcement, but it remains unknown if animals adopt this strategy. Here we use songbirds to test if navigation and singing, two behaviors with distinct objectives, can be differentially reinforced. We demonstrate that strobe flashes aversively condition place preference but not song syllables. Brief noise bursts aversively condition song syllables but positively reinforce place preference. Thus distinct behavior-generating systems, or agencies, within a single animal can be shaped by correspondingly distinct reinforcement signals. Our findings suggest that spatially segregated vocal circuits can solve a credit assignment problem associated with multiobjective learning.
Songs to syntax: the linguistics of birdsong.
Berwick, Robert C; Okanoya, Kazuo; Beckers, Gabriel J L; Bolhuis, Johan J
2011-03-01
Unlike our primate cousins, many species of bird share with humans a capacity for vocal learning, a crucial factor in speech acquisition. There are striking behavioural, neural and genetic similarities between auditory-vocal learning in birds and human infants. Recently, the linguistic parallels between birdsong and spoken language have begun to be investigated. Although both birdsong and human language are hierarchically organized according to particular syntactic constraints, birdsong structure is best characterized as 'phonological syntax', resembling aspects of human sound structure. Crucially, birdsong lacks semantics and words. Formal language and linguistic analysis remains essential for the proper characterization of birdsong as a model system for human speech and language, and for the study of the brain and cognition evolution. Copyright © 2011 Elsevier Ltd. All rights reserved.
Reduced auditory efferent activity in childhood selective mutism.
Bar-Haim, Yair; Henkin, Yael; Ari-Even-Roth, Daphne; Tetin-Schneider, Simona; Hildesheimer, Minka; Muchnik, Chava
2004-06-01
Selective mutism is a psychiatric disorder of childhood characterized by consistent inability to speak in specific situations despite the ability to speak normally in others. The objective of this study was to test whether reduced auditory efferent activity, which may have direct bearings on speaking behavior, is compromised in selectively mute children. Participants were 16 children with selective mutism and 16 normally developing control children matched for age and gender. All children were tested for pure-tone audiometry, speech reception thresholds, speech discrimination, middle-ear acoustic reflex thresholds and decay function, transient evoked otoacoustic emission, suppression of transient evoked otoacoustic emission, and auditory brainstem response. Compared with control children, selectively mute children displayed specific deficiencies in auditory efferent activity. These aberrations in efferent activity appear along with normal pure-tone and speech audiometry and normal brainstem transmission as indicated by auditory brainstem response latencies. The diminished auditory efferent activity detected in some children with SM may result in desensitization of their auditory pathways by self-vocalization and in reduced control of masking and distortion of incoming speech sounds. These children may gradually learn to restrict vocalization to the minimal amount possible in contexts that require complex auditory processing.
NASA Astrophysics Data System (ADS)
Hernandez Lahme, Damian; Sober, Samuel; Nemenman, Ilya
Important questions in computational neuroscience are whether, how much, and how information is encoded in the precise timing of neural action potentials. We recently demonstrated that, in the premotor cortex during vocal control in songbirds, spike timing is far more informative about upcoming behavior than is spike rate (Tang et al, 2014). However, identification of complete dictionaries that relate spike timing patterns with the controled behavior remains an elusive problem. Here we present a computational approach to deciphering such codes for individual neurons in the songbird premotor area RA, an analog of mammalian primary motor cortex. Specifically, we analyze which multispike patterns of neural activity predict features of the upcoming vocalization, and hence are important codewords. We use a recently introduced Bayesian Ising Approximation, which properly accounts for the fact that many codewords overlap and hence are not independent. Our results show which complex, temporally precise multispike combinations are used by individual neurons to control acoustic features of the produced song, and that these code words are different across individual neurons and across different acoustic features. This work was supported, in part, by JSMF Grant 220020321, NSF Grant 1208126, NIH Grant NS084844 and NIH Grant 1 R01 EB022872.
Danish, Husain H.; Aronov, Dmitriy; Fee, Michale S.
2017-01-01
Birdsong is a complex behavior that exhibits hierarchical organization. While the representation of singing behavior and its hierarchical organization has been studied in some detail in avian cortical premotor circuits, our understanding of the role of the thalamus in adult birdsong is incomplete. Using a combination of behavioral and electrophysiological studies, we seek to expand on earlier work showing that the thalamic nucleus Uvaeformis (Uva) is necessary for the production of stereotyped, adult song in zebra finch (Taeniopygia guttata). We confirm that complete bilateral lesions of Uva abolish singing in the ‘directed’ social context, but find that in the ‘undirected’ social context, such lesions result in highly variable vocalizations similar to early babbling song in juvenile birds. Recordings of neural activity in Uva reveal strong syllable-related modulation, maximally active prior to syllable onsets and minimally active prior to syllable offsets. Furthermore, both song and Uva activity exhibit a pronounced coherent modulation at 10Hz—a pattern observed in downstream premotor areas in adult and, even more prominently, in juvenile birds. These findings are broadly consistent with the idea that Uva is critical in the sequential activation of behavioral modules in HVC. PMID:28617829
Visual classification of feral cat Felis silvestris catus vocalizations
Owens, Jessica L.; Olsen, Mariana; Fontaine, Amy; Kloth, Christopher; Kershenbaum, Arik
2017-01-01
Abstract Cat vocal behavior, in particular, the vocal and social behavior of feral cats, is poorly understood, as are the differences between feral and fully domestic cats. The relationship between feral cat social and vocal behavior is important because of the markedly different ecology of feral and domestic cats, and enhanced comprehension of the repertoire and potential information content of feral cat calls can provide both better understanding of the domestication and socialization process, and improved welfare for feral cats undergoing adoption. Previous studies have used conflicting classification schemes for cat vocalizations, often relying on onomatopoeic or popular descriptions of call types (e.g., “miow”). We studied the vocalizations of 13 unaltered domestic cats that complied with our behavioral definition used to distinguish feral cats from domestic. A total of 71 acoustic units were extracted and visually analyzed for the construction of a hierarchical classification of vocal sounds, based on acoustic properties. We identified 3 major categories (tonal, pulse, and broadband) that further breakdown into 8 subcategories, and show a high degree of reliability when sounds are classified blindly by independent observers (Fleiss’ Kappa K = 0.863). Due to the limited behavioral contexts in this study, additional subcategories of cat vocalizations may be identified in the future, but our hierarchical classification system allows for the addition of new categories and new subcategories as they are described. This study shows that cat vocalizations are diverse and complex, and provides an objective and reliable classification system that can be used in future studies. PMID:29491992
ERIC Educational Resources Information Center
Saktanli, S. Cem
2011-01-01
This experimental study was done to see if using computer supported notation and vocalization program for teaching songs instead of using block flute accompanied song teaching has any significant effect on students' singing behavior. The study group is composed of the 5th, 6th and 7th graders of 2008-2009 educational term in T.O.K.I. Yahya Kemal…
Vibrational dynamics of vocal folds using nonlinear normal modes.
Pinheiro, Alan P; Kerschen, Gaëtan
2013-08-01
Many previous works involving physical models, excised and in vivo larynges have pointed out nonlinear vibration in vocal folds during voice production. Moreover, theoretical studies involving mechanical modeling of these folds have tried to gain a profound understanding of the observed nonlinear phenomena. In this context, the present work uses the nonlinear normal mode theory to investigate the nonlinear modal behavior of 16 subjects using a two-mass mechanical modeling of the vocal folds. The free response of the conservative system at different energy levels is considered to assess the impact of the structural nonlinearity of the vocal fold tissues. The results show very interesting and complex nonlinear phenomena including frequency-energy dependence, subharmonic regimes and, in some cases, modal interactions, entrainment and bifurcations. Copyright © 2012 IPEM. Published by Elsevier Ltd. All rights reserved.
Perceptual fluency and judgments of vocal aesthetics and stereotypicality.
Babel, Molly; McGuire, Grant
2015-05-01
Research has shown that processing dynamics on the perceiver's end determine aesthetic pleasure. Specifically, typical objects, which are processed more fluently, are perceived as more attractive. We extend this notion of perceptual fluency to judgments of vocal aesthetics. Vocal attractiveness has traditionally been examined with respect to sexual dimorphism and the apparent size of a talker, as reconstructed from the acoustic signal, despite evidence that gender-specific speech patterns are learned social behaviors. In this study, we report on a series of three experiments using 60 voices (30 females) to compare the relationship between judgments of vocal attractiveness, stereotypicality, and gender categorization fluency. Our results indicate that attractiveness and stereotypicality are highly correlated for female and male voices. Stereotypicality and categorization fluency were also correlated for male voices, but not female voices. Crucially, stereotypicality and categorization fluency interacted to predict attractiveness, suggesting the role of perceptual fluency is present, but nuanced, in judgments of human voices. © 2014 Cognitive Science Society, Inc.
Mother-offspring recognition in the domestic cat: Kittens recognize their own mother's call.
Szenczi, Péter; Bánszegi, Oxána; Urrutia, Andrea; Faragó, Tamás; Hudson, Robyn
2016-07-01
Acoustic communication can play an important part in mother-young recognition in many mammals. This, however, has still only been investigated in a small range mainly of herd- or colony-living species. Here we report on the behavioral response of kittens of the domestic cat, a typically solitary carnivore, to playbacks of "greeting chirps" and "meows" from their own versus alien mothers. We found significantly stronger responses to the chirps from kittens' own mother than to her meows or to the chirps or meows of alien mothers. Acoustic analysis revealed greater variation between vocalizations from different mothers than for vocalizations from the same mother. We conclude that chirps emitted by mother cats at the nest represent a specific form of vocal communication with their young, and that kittens learn and respond positively to these and distinguish them from chirps of other mothers and from other cat vocalizations while still in the nest. © 2016 Wiley Periodicals, Inc. Dev Psychobiol 58: 568-577, 2016. © 2016 Wiley Periodicals, Inc.
Gestures, vocalizations, and memory in language origins.
Aboitiz, Francisco
2012-01-01
THIS ARTICLE DISCUSSES THE POSSIBLE HOMOLOGIES BETWEEN THE HUMAN LANGUAGE NETWORKS AND COMPARABLE AUDITORY PROJECTION SYSTEMS IN THE MACAQUE BRAIN, IN AN ATTEMPT TO RECONCILE TWO EXISTING VIEWS ON LANGUAGE EVOLUTION: one that emphasizes hand control and gestures, and the other that emphasizes auditory-vocal mechanisms. The capacity for language is based on relatively well defined neural substrates whose rudiments have been traced in the non-human primate brain. At its core, this circuit constitutes an auditory-vocal sensorimotor circuit with two main components, a "ventral pathway" connecting anterior auditory regions with anterior ventrolateral prefrontal areas, and a "dorsal pathway" connecting auditory areas with parietal areas and with posterior ventrolateral prefrontal areas via the arcuate fasciculus and the superior longitudinal fasciculus. In humans, the dorsal circuit is especially important for phonological processing and phonological working memory, capacities that are critical for language acquisition and for complex syntax processing. In the macaque, the homolog of the dorsal circuit overlaps with an inferior parietal-premotor network for hand and gesture selection that is under voluntary control, while vocalizations are largely fixed and involuntary. The recruitment of the dorsal component for vocalization behavior in the human lineage, together with a direct cortical control of the subcortical vocalizing system, are proposed to represent a fundamental innovation in human evolution, generating an inflection point that permitted the explosion of vocal language and human communication. In this context, vocal communication and gesturing have a common history in primate communication.
Reynolds, Conner D; Nolan, Suzanne O; Huebschman, Jessica L; Hodges, Samantha L; Lugo, Joaquin N
2017-07-01
Early-life seizures are known to cause long-term deficits in social behavior, learning, and memory, however little is known regarding their acute impact. Ultrasonic vocalization (USV) recordings have been developed as a tool for investigating early communicative deficits in mice. Previous investigation from our lab found that postnatal day (PD) 10 seizures cause male-specific suppression of 50-kHz USVs on PD12 in 129 SvEvTac mouse pups. The present study extends these findings by spectrographic characterization of USVs following neonatal seizures. On PD10, male C57BL/6 pups were administered intraperitoneal injections of kainic acid or physiological saline. On PD12, isolation-induced recordings were captured using a broad-spectrum ultrasonic microphone. Status epilepticus significantly suppressed USV quantity (p=0.001) and total duration (p<0.05). Seizure pups also utilized fewer complex calls than controls (p<0.05). There were no changes in call latency or inter-call intervals. Spectrographic analysis revealed increased peak amplitude for complex, downward, short, two-syllable, and upward calls, as well as reduced mean duration for short and two-syllable calls in seizure mice. This investigation provides the first known spectrographic characterization of USVs following early-life seizures. These findings also enhance evidence for USVs as an indicator of select communicative impairment. Copyright © 2017 Elsevier Inc. All rights reserved.
Hamaide, Julie; De Groof, Geert; Van Steenkiste, Gwendolyn; Jeurissen, Ben; Van Audekerke, Johan; Naeyaert, Maarten; Van Ruijssevelt, Lisbeth; Cornil, Charlotte; Sijbers, Jan; Verhoye, Marleen; Van der Linden, Annemie
2017-02-01
Zebra finches are an excellent model to study the process of vocal learning, a complex socially-learned tool of communication that forms the basis of spoken human language. So far, structural investigation of the zebra finch brain has been performed ex vivo using invasive methods such as histology. These methods are highly specific, however, they strongly interfere with performing whole-brain analyses and exclude longitudinal studies aimed at establishing causal correlations between neuroplastic events and specific behavioral performances. Therefore, the aim of the current study was to implement an in vivo Diffusion Tensor Imaging (DTI) protocol sensitive enough to detect structural sex differences in the adult zebra finch brain. Voxel-wise comparison of male and female DTI parameter maps shows clear differences in several components of the song control system (i.e. Area X surroundings, the high vocal center (HVC) and the lateral magnocellular nucleus of the anterior nidopallium (LMAN)), which corroborate previous findings and are in line with the clear behavioral difference as only males sing. Furthermore, to obtain additional insights into the 3-dimensional organization of the zebra finch brain and clarify findings obtained by the in vivo study, ex vivo DTI data of the male and female brain were acquired as well, using a recently established super-resolution reconstruction (SRR) imaging strategy. Interestingly, the SRR-DTI approach led to a marked reduction in acquisition time without interfering with the (spatial and angular) resolution and SNR which enabled to acquire a data set characterized by a 78μm isotropic resolution including 90 diffusion gradient directions within 44h of scanning time. Based on the reconstructed SRR-DTI maps, whole brain probabilistic Track Density Imaging (TDI) was performed for the purpose of super resolved track density imaging, further pushing the resolution up to 40μm isotropic. The DTI and TDI maps realized atlas-quality anatomical maps that enable a clear delineation of most components of the song control and auditory systems. In conclusion, this study paves the way for longitudinal in vivo and high-resolution ex vivo experiments aimed at disentangling neuroplastic events that characterize the critical period for vocal learning in zebra finch ontogeny. Copyright © 2016 Elsevier Inc. All rights reserved.
Sex-dependent modulation of ultrasonic vocalizations in house mice (Mus musculus musculus)
Reitschmidt, Doris; Noll, Anton; Balazs, Peter; Penn, Dustin J.
2017-01-01
House mice (Mus musculus) emit ultrasonic vocalizations (USVs), which are surprisingly complex and have features of bird song, but their functions are not well understood. Previous studies have reported mixed evidence on whether there are sex differences in USV emission, though vocalization rate or other features may depend upon whether potential receivers are of the same or opposite sex. We recorded the USVs of wild-derived adult house mice (F1 of wild-caught Mus musculus musculus), and we compared the vocalizations of males and females in response to a stimulus mouse of the same- or opposite-sex. To detect and quantify vocalizations, we used an algorithm that automatically detects USVs (Automatic Mouse Ultrasound Detector or A-MUD). We found high individual variation in USV emission rates (4 to 2083 elements/10 min trial) and a skewed distribution, with most mice (60%) emitting few (≤50) elements. We found no differences in the rates of calling between the sexes overall, but mice of both sexes emitted vocalizations at a higher rate and higher frequencies during opposite- compared to same-sex interactions. We also observed a trend toward higher amplitudes by males when presented with a male compared to a female stimulus. Our results suggest that mice modulate the rate and frequency of vocalizations depending upon the sex of potential receivers. PMID:29236704
Rodent ultrasonic vocalizations are bound to active sniffing behavior
Sirotin, Yevgeniy B.; Costa, Martín Elias; Laplagne, Diego A.
2014-01-01
During rodent active behavior, multiple orofacial sensorimotor behaviors, including sniffing and whisking, display rhythmicity in the theta range (~5–10 Hz). During specific behaviors, these rhythmic patterns interlock, such that execution of individual motor programs becomes dependent on the state of the others. Here we performed simultaneous recordings of the respiratory cycle and ultrasonic vocalization emission by adult rats and mice in social settings. We used automated analysis to examine the relationship between breathing patterns and vocalization over long time periods. Rat ultrasonic vocalizations (USVs, “50 kHz”) were emitted within stretches of active sniffing (5–10 Hz) and were largely absent during periods of passive breathing (1–4 Hz). Because ultrasound was tightly linked to the exhalation phase, the sniffing cycle segmented vocal production into discrete calls and imposed its theta rhythmicity on their timing. In turn, calls briefly prolonged exhalations, causing an immediate drop in sniffing rate. Similar results were obtained in mice. Our results show that ultrasonic vocalizations are an integral part of the rhythmic orofacial behavioral ensemble. This complex behavioral program is thus involved not only in active sensing but also in the temporal structuring of social communication signals. Many other social signals of mammals, including monkey calls and human speech, show structure in the theta range. Our work points to a mechanism for such structuring in rodent ultrasonic vocalizations. PMID:25477796
Riede, Tobias; Tokuda, Isao T.; Farmer, C. G.
2011-01-01
SUMMARY Vocalization is rare among non-avian reptiles, with the exception of the crocodilians, the sister taxon of birds. Crocodilians have a complex vocal repertoire. Their vocal and respiratory system is not well understood but appears to consist of a combination of features that are also found in the extremely vocal avian and mammalian taxa. Anatomical studies suggest that the alligator larynx is able to abduct and adduct the vocal folds, but not to elongate or shorten them, and is therefore lacking a key regulator of frequency, yet alligators can modulate fundamental frequency remarkably well. We investigated the morphological and physiological features of sound production in alligators. Vocal fold length scales isometrically across a wide range of alligator body sizes. The relationship between fundamental frequency and subglottal pressure is significant in some individuals at some isolated points, such as call onset and position of maximum fundamental frequency. The relationship is not consistent over large segments of the call. Fundamental frequency can change faster than expected by pressure changes alone, suggesting an active motor pattern controls frequency and is intrinsic to the larynx. We utilized a two-mass vocal fold model to test whether abduction and adduction could generate this motor pattern. The fine-tuned interplay between subglottal pressure and glottal adduction can achieve frequency modulations much larger than those resulting from subglottal pressure variations alone and of similar magnitude, as observed in alligator calls. We conclude that the alligator larynx represents a sound source with only two control parameters (subglottal pressure and vocal fold adduction) in contrast to the mammalian larynx in which three parameters can be altered to modulate frequency (subglottal pressure, vocal fold adduction and length/tension). PMID:21865521
Evaluating theories of bird song learning: implications for future directions.
Margoliash, D
2002-12-01
Studies of birdsong learning have stimulated extensive hypotheses at all levels of behavioral and physiological organization. This hypothesis building is valuable for the field and is consistent with the remarkable range of issues that can be rigorously addressed in this system. The traditional instructional (template) theory of song learning has been challenged on multiple fronts, especially at a behavioral level by evidence consistent with selectional hypotheses. In this review I highlight the caveats associated with these theories to better define the limits of our knowledge and identify important experiments for the future. The sites and representational forms of the various conceptual entities posited by the template theory are unknown. The distinction between instruction and selection in vocal learning is not well established at a mechanistic level. There is as yet insufficient neurophysiological data to choose between competing mechanisms of error-driven learning and reinforcement learning. Both may obtain for vocal learning. The possible role of sleep in acoustic or procedural memory consolidation, while supported by some physiological observations, does not yet have support in the behavioral literature. The remarkable expansion of knowledge in the past 20 years and the recent development of new technologies for physiological and behavioral experiments should permit direct tests of these theories in the coming decade.
Nonlinear dynamic analysis of voices before and after surgical excision of vocal polyps
NASA Astrophysics Data System (ADS)
Zhang, Yu; McGilligan, Clancy; Zhou, Liang; Vig, Mark; Jiang, Jack J.
2004-05-01
Phase space reconstruction, correlation dimension, and second-order entropy, methods from nonlinear dynamics, are used to analyze sustained vowels generated by patients before and after surgical excision of vocal polyps. Two conventional acoustic perturbation parameters, jitter and shimmer, are also employed to analyze voices before and after surgery. Presurgical and postsurgical analyses of jitter, shimmer, correlation dimension, and second-order entropy are statistically compared. Correlation dimension and second-order entropy show a statistically significant decrease after surgery, indicating reduced complexity and higher predictability of postsurgical voice dynamics. There is not a significant postsurgical difference in shimmer, although jitter shows a significant postsurgical decrease. The results suggest that jitter and shimmer should be applied to analyze disordered voices with caution; however, nonlinear dynamic methods may be useful for analyzing abnormal vocal function and quantitatively evaluating the effects of surgical excision of vocal polyps.
Vampola, Tomáš; Horáček, Jaromír; Laukkanen, Anne-Maria; Švec, Jan G
2015-04-01
Resonance frequencies of the vocal tract have traditionally been modelled using one-dimensional models. These cannot accurately represent the events in the frequency region of the formant cluster around 2.5-4.5 kHz, however. Here, the vocal tract resonance frequencies and their mode shapes are studied using a three-dimensional finite element model obtained from computed tomography measurements of a subject phonating on vowel [a:]. Instead of the traditional five, up to eight resonance frequencies of the vocal tract were found below the prominent antiresonance around 4.7 kHz. The three extra resonances were found to correspond to modes which were axially asymmetric and involved the piriform sinuses, valleculae, and transverse vibrations in the oral cavity. The results therefore suggest that the phenomenon of speaker's and singer's formant clustering may be more complex than originally thought.
Chen, Xuhai; Yang, Jianfeng; Gan, Shuzhen; Yang, Yufang
2012-01-01
Although its role is frequently stressed in acoustic profile for vocal emotion, sound intensity is frequently regarded as a control parameter in neurocognitive studies of vocal emotion, leaving its role and neural underpinnings unclear. To investigate these issues, we asked participants to rate the angry level of neutral and angry prosodies before and after sound intensity modification in Experiment 1, and recorded electroencephalogram (EEG) for mismatching emotional prosodies with and without sound intensity modification and for matching emotional prosodies while participants performed emotional feature or sound intensity congruity judgment in Experiment 2. It was found that sound intensity modification had significant effect on the rating of angry level for angry prosodies, but not for neutral ones. Moreover, mismatching emotional prosodies, relative to matching ones, induced enhanced N2/P3 complex and theta band synchronization irrespective of sound intensity modification and task demands. However, mismatching emotional prosodies with reduced sound intensity showed prolonged peak latency and decreased amplitude in N2/P3 complex and smaller theta band synchronization. These findings suggest that though it cannot categorically affect emotionality conveyed in emotional prosodies, sound intensity contributes to emotional significance quantitatively, implying that sound intensity should not simply be taken as a control parameter and its unique role needs to be specified in vocal emotion studies.
Chen, Xuhai; Yang, Jianfeng; Gan, Shuzhen; Yang, Yufang
2012-01-01
Although its role is frequently stressed in acoustic profile for vocal emotion, sound intensity is frequently regarded as a control parameter in neurocognitive studies of vocal emotion, leaving its role and neural underpinnings unclear. To investigate these issues, we asked participants to rate the angry level of neutral and angry prosodies before and after sound intensity modification in Experiment 1, and recorded electroencephalogram (EEG) for mismatching emotional prosodies with and without sound intensity modification and for matching emotional prosodies while participants performed emotional feature or sound intensity congruity judgment in Experiment 2. It was found that sound intensity modification had significant effect on the rating of angry level for angry prosodies, but not for neutral ones. Moreover, mismatching emotional prosodies, relative to matching ones, induced enhanced N2/P3 complex and theta band synchronization irrespective of sound intensity modification and task demands. However, mismatching emotional prosodies with reduced sound intensity showed prolonged peak latency and decreased amplitude in N2/P3 complex and smaller theta band synchronization. These findings suggest that though it cannot categorically affect emotionality conveyed in emotional prosodies, sound intensity contributes to emotional significance quantitatively, implying that sound intensity should not simply be taken as a control parameter and its unique role needs to be specified in vocal emotion studies. PMID:22291928
Garland, Ellen C; Rendell, Luke; Lilley, Matthew S; Poole, M Michael; Allen, Jenny; Noad, Michael J
2017-07-01
Identifying and quantifying variation in vocalizations is fundamental to advancing our understanding of processes such as speciation, sexual selection, and cultural evolution. The song of the humpback whale (Megaptera novaeangliae) presents an extreme example of complexity and cultural evolution. It is a long, hierarchically structured vocal display that undergoes constant evolutionary change. Obtaining robust metrics to quantify song variation at multiple scales (from a sound through to population variation across the seascape) is a substantial challenge. Here, the authors present a method to quantify song similarity at multiple levels within the hierarchy. To incorporate the complexity of these multiple levels, the calculation of similarity is weighted by measurements of sound units (lower levels within the display) to bridge the gap in information between upper and lower levels. Results demonstrate that the inclusion of weighting provides a more realistic and robust representation of song similarity at multiple levels within the display. This method permits robust quantification of cultural patterns and processes that will also contribute to the conservation management of endangered humpback whale populations, and is applicable to any hierarchically structured signal sequence.
Combining Multiobjective Optimization and Cluster Analysis to Study Vocal Fold Functional Morphology
Palaparthi, Anil; Riede, Tobias
2017-01-01
Morphological design and the relationship between form and function have great influence on the functionality of a biological organ. However, the simultaneous investigation of morphological diversity and function is difficult in complex natural systems. We have developed a multiobjective optimization (MOO) approach in association with cluster analysis to study the form-function relation in vocal folds. An evolutionary algorithm (NSGA-II) was used to integrate MOO with an existing finite element model of the laryngeal sound source. Vocal fold morphology parameters served as decision variables and acoustic requirements (fundamental frequency, sound pressure level) as objective functions. A two-layer and a three-layer vocal fold configuration were explored to produce the targeted acoustic requirements. The mutation and crossover parameters of the NSGA-II algorithm were chosen to maximize a hypervolume indicator. The results were expressed using cluster analysis and were validated against a brute force method. Results from the MOO and the brute force approaches were comparable. The MOO approach demonstrated greater resolution in the exploration of the morphological space. In association with cluster analysis, MOO can efficiently explore vocal fold functional morphology. PMID:24771563
Sleep, Off-Line Processing, and Vocal Learning
ERIC Educational Resources Information Center
Margoliash, Daniel; Schmidt, Marc F.
2010-01-01
The study of song learning and the neural song system has provided an important comparative model system for the study of speech and language acquisition. We describe some recent advances in the bird song system, focusing on the role of off-line processing including sleep in processing sensory information and in guiding developmental song…
Teaching Young Children How to Sing: One School's Experience
ERIC Educational Resources Information Center
Kenney, Susan
2011-01-01
In many schools, classroom teachers are responsible for the music experiences of young children. Children may learn songs, but may not learn "how" to sing. This article outlines simple teaching strategies to help young children develop listening and vocal habits leading to beautiful singing. The article discusses how the kindergarten classes at…
Population genetic structure and vocal dialects in an amazon parrot.
Wright, T F; Wilkinson, G S
2001-01-01
The relationship between cultural and genetic evolution was examined in the yellow-naped amazon Amazona auropalliata. This species has previously been shown to have regional dialects defined by large shifts in the acoustic structure of its learned contact call. Mitochondrial DNA sequence variation from a 680 base pair segment of the first domain of the control region was assayed in 41 samples collected from two neighbouring dialects in Costa Rica. The relationship of genetic variation to vocal variation was examined using haplotype analysis, genetic distance analysis, a maximum-likelihood estimator of migration rates and phylogenetic reconstructions. All analyses indicated a high degree of gene flow and, thus, individual dispersal across dialect boundaries. Calls sampled from sound libraries suggested that temporally stable contact call dialects occur throughout the range of the yellow-naped amazon, while the presence of similar dialects in the sister species Amazona ochrocephala suggests that the propensity to form dialects is ancestral in this clade. These results indicate that genes and culture are not closely associated in the yellow-naped amazon. Rather, they suggest that regional diversity in vocalizations is maintained by selective pressures that promote social learning and allow individual repertoires to conform to local call types. PMID:11297178
Hahn, Allison H; Campbell, Kimberley A; Congdon, Jenna V; Hoang, John; McMillan, Neil; Scully, Erin N; Yong, Joshua J H; Elie, Julie E; Sturdy, Christopher B
2017-07-01
Chickadees produce a multi-note chick-a-dee call in multiple socially relevant contexts. One component of this call is the D note, which is a low-frequency and acoustically complex note with a harmonic-like structure. In the current study, we tested black-capped chickadees on a between-category operant discrimination task using vocalizations with acoustic structures similar to black-capped chickadee D notes, but produced by various songbird species, in order to examine the role that phylogenetic distance plays in acoustic perception of vocal signals. We assessed the extent to which discrimination performance was influenced by the phylogenetic relatedness among the species producing the vocalizations and by the phylogenetic relatedness between the subjects' species (black-capped chickadees) and the vocalizers' species. We also conducted a bioacoustic analysis and discriminant function analysis in order to examine the acoustic similarities among the discrimination stimuli. A previous study has shown that neural activation in black-capped chickadee auditory and perceptual brain regions is similar following the presentation of these vocalization categories. However, we found that chickadees had difficulty discriminating between forward and reversed black-capped chickadee D notes, a result that directly corresponded to the bioacoustic analysis indicating that these stimulus categories were acoustically similar. In addition, our results suggest that the discrimination between vocalizations produced by two parid species (chestnut-backed chickadees and tufted titmice) is perceptually difficult for black-capped chickadees, a finding that is likely in part because these vocalizations contain acoustic similarities. Overall, our results provide evidence that black-capped chickadees' perceptual abilities are influenced by both phylogenetic relatedness and acoustic structure.
Singers' phonation threshold pressure and ratings of self-perceived effort on vocal tasks.
McHenry, Monica; Evans, Joseph; Powitzky, Eric
2013-05-01
This study was designed to determine if singers' self-ratings of vocal effort could predict phonation threshold pressure (PTP). It was hypothesized that effort ratings on the more complex task of singing "Happy Birthday" would best predict PTP. A multiple regression analysis was performed with PTP as the predicted variable and self-ratings on four phonatory tasks as the predictor variables. Participants were 48 undergraduate and graduate students majoring in vocal performance. They produced /pi/ syllable trains as softly as possible for the measurement of PTP. They then rated their self-perceived vocal effort while softly producing the following: (1) sustained "ah" (comfortable, midrange pitch); (2) "ah" glide (chest to head voice); (3) Staccato "ah" in head voice (not falsetto); and (4) Happy Birthday in head voice (not falsetto). No ratings of vocal effort predicted PTP. The lack of correlation between PTP and ratings of Happy Birthday remained when separately evaluating graduate versus undergraduate students or males versus females. Informal evaluation of repeated ratings over time suggested the potential for effective self-monitoring. Students' ratings of self-perceived vocal effort were poor predictors of PTP. This may be because of the use of "effortless" imagery during singing instruction or consistent positive feedback regarding vocal performance. It is possible that self-rating could become an effective tool to predict vocal health if task elicitation instructions were more precise, and the student and voice teacher worked collaboratively to improve self-evaluation. Copyright © 2013 The Voice Foundation. Published by Mosby, Inc. All rights reserved.
Dorsal periaqueductal gray-amygdala pathway conveys both innate and learned fear responses in rats
Kim, Eun Joo; Horovitz, Omer; Pellman, Blake A.; Tan, Lancy Mimi; Li, Qiuling; Richter-Levin, Gal; Kim, Jeansok J.
2013-01-01
The periaqueductal gray (PAG) and amygdala are known to be important for defensive responses, and many contemporary fear-conditioning models present the PAG as downstream of the amygdala, directing the appropriate behavior (i.e., freezing or fleeing). However, empirical studies of this circuitry are inconsistent and warrant further examination. Hence, the present study investigated the functional relationship between the PAG and amygdala in two different settings, fear conditioning and naturalistic foraging, in rats. In fear conditioning, electrical stimulation of the dorsal PAG (dPAG) produced unconditional responses (URs) composed of brief activity bursts followed by freezing and 22-kHz ultrasonic vocalization. In contrast, stimulation of ventral PAG and the basolateral amygdalar complex (BLA) evoked freezing and/or ultrasonic vocalization. Whereas dPAG stimulation served as an effective unconditional stimulus for fear conditioning to tone and context conditional stimuli, neither ventral PAG nor BLA stimulation supported fear conditioning. The conditioning effect of dPAG, however, was abolished by inactivation of the BLA. In a foraging task, dPAG and BLA stimulation evoked only fleeing toward the nest. Amygdalar lesion/inactivation blocked the UR of dPAG stimulation, but dPAG lesions did not block the UR of BLA stimulation. Furthermore, in vivo recordings demonstrated that electrical priming of the dPAG can modulate plasticity of subiculum–BLA synapses, providing additional evidence that the amygdala is downstream of the dPAG. These results suggest that the dPAG conveys unconditional stimulus information to the BLA, which directs both innate and learned fear responses, and that brain stimulation-evoked behaviors are modulated by context. PMID:23959880
Leininger, Elizabeth C.; Kitayama, Ken; Kelley, Darcy B.
2015-01-01
ABSTRACT Phylogenetic studies can reveal patterns of evolutionary change, including the gain or loss of elaborate courtship traits in males. Male African clawed frogs generally produce complex and rapid courtship vocalizations, whereas female calls are simple and slow. In a few species, however, male vocalizations are also simple and slow, suggesting loss of male-typical traits. Here, we explore features of the male vocal organ that could contribute to loss in two species with simple, slow male calls. In Xenopus boumbaensis, laryngeal morphology is more robust in males than in females. Larynges are larger, have a more complex cartilaginous morphology and contain more muscle fibers. Laryngeal muscle fibers are exclusively fast-twitch in males but are both fast- and slow-twitch in females. The laryngeal electromyogram, a measure of neuromuscular synaptic strength, shows greater potentiation in males than in females. Male-specific physiological features are shared with X. laevis, as well as with a species of the sister clade, Silurana tropicalis, and thus are likely ancestral. In X. borealis, certain aspects of laryngeal morphology and physiology are sexually monomorphic rather than dimorphic. In both sexes, laryngeal muscle fibers are of mixed-twitch type, which limits the production of muscle contractions at rapid intervals. Muscle activity potentiation and discrete tension transients resemble female rather than male X. boumbaensis. The de-masculinization of these laryngeal features suggests an alteration in sensitivity to the gonadal hormones that are known to control the sexual differentiation of the larynx in other Xenopus and Silurana species. PMID:25788725
Characterization of vocal fold scar formation, prophylaxis, and treatment using animal models.
Bless, Diane M; Welham, Nathan V
2010-12-01
To review recent literature on animal models used to study the pathogenesis, detection, prevention, and treatment of vocal fold scarring. Animal work is critical to studying vocal fold scarring because it is the only way to conduct systematic research on the biomechanical properties of the layered structure of the vocal fold lamina propria, and therefore develop reliable prevention and treatment strategies for this complex clinical problem. During the period of review, critical anatomic, physiologic, and wound healing characteristics, which may serve as the bases for selection of a certain species to help answer a specific question, have been described in mouse, rat, rabbit, ferret, and canine models. A number of different strategies for prophylaxis and chronic scar treatment in animals show promise for clinical application. The pathways of scar formation and methods for quantifying treatment-induced change have become better defined. Recent animal vocal fold scarring studies have enriched and confirmed earlier work indicating that restoring pliability to the scarred vocal fold mucosa is challenging but achievable. Differences between animal models and differences in outcome measurements across studies necessitate considering each study individually to obtain guidance for future research. With increased standardization of measurement techniques it may be possible to make more inter-study comparisons.
Basal ganglia function, stuttering, sequencing, and repair in adult songbirds
Kubikova, Lubica; Bosikova, Eva; Cvikova, Martina; Lukacova, Kristina; Scharff, Constance; Jarvis, Erich D.
2014-01-01
A pallial-basal-ganglia-thalamic-pallial loop in songbirds is involved in vocal motor learning. Damage to its basal ganglia part, Area X, in adult zebra finches has been noted to have no strong effects on song and its function is unclear. Here we report that neurotoxic damage to adult Area X induced changes in singing tempo and global syllable sequencing in all animals, and considerably increased syllable repetition in birds whose song motifs ended with minor repetitions before lesioning. This stuttering-like behavior started at one month, and improved over six months. Unexpectedly, the lesioned region showed considerable recovery, including immigration of newly generated or repaired neurons that became active during singing. The timing of the recovery and stuttering suggest that immature recovering activity of the circuit might be associated with stuttering. These findings indicate that even after juvenile learning is complete, the adult striatum plays a role in higher level organization of learned vocalizations. PMID:25307086
Sounds of Modified Flight Feathers Reliably Signal Danger in a Pigeon.
Murray, Trevor G; Zeil, Jochen; Magrath, Robert D
2017-11-20
In his book on sexual selection, Darwin [1] devoted equal space to non-vocal and vocal communication in birds. Since then, vocal communication has become a model for studies of neurobiology, learning, communication, evolution, and conservation [2, 3]. In contrast, non-vocal "instrumental music," as Darwin called it, has only recently become subject to sustained inquiry [4, 5]. In particular, outstanding work reveals how feathers, often highly modified, produce distinctive sounds [6-9], and suggests that these sounds have evolved at least 70 times, in many orders [10]. It remains to be shown, however, that such sounds are signals used in communication. Here we show that crested pigeons (Ochyphaps lophotes) signal alarm with specially modified wing feathers. We used video and feather-removal experiments to demonstrate that the highly modified 8 th primary wing feather (P8) produces a distinct note during each downstroke. The sound changes with wingbeat frequency, so that birds fleeing danger produce wing sounds with a higher tempo. Critically, a playback experiment revealed that only if P8 is present does the sound of escape flight signal danger. Our results therefore indicate, nearly 150 years after Darwin's book, that modified feathers can be used for non-vocal communication, and they reveal an intrinsically reliable alarm signal. Copyright © 2017 Elsevier Ltd. All rights reserved.
The Vocal Tract Organ: A New Musical Instrument Using 3-D Printed Vocal Tracts.
Howard, David M
2017-10-27
The advent and now increasingly widespread availability of 3-D printers is transforming our understanding of the natural world by enabling observations to be made in a tangible manner. This paper describes the use of 3-D printed models of the vocal tract for different vowels that are used to create an acoustic output when stimulated with an appropriate sound source in a new musical instrument: the Vocal Tract Organ. The shape of each printed vocal tract is recovered from magnetic resonance imaging. It sits atop a loudspeaker to which is provided an acoustic L-F model larynx input signal that is controlled by the notes played on a musical instrument digital interface device such as a keyboard. The larynx input is subject to vibrato with extent and frequency adjustable as desired within the ranges usually found for human singing. Polyphonic inputs for choral singing textures can be applied via a single loudspeaker and vocal tract, invoking the approximation of linearity in the voice production system, thereby making multiple vowel stops a possibility while keeping the complexity of the instrument in reasonable check. The Vocal Tract Organ offers a much more human and natural sounding result than the traditional Vox Humana stops found in larger pipe organs, offering the possibility of enhancing pipe organs of the future as well as becoming the basis for a "multi-vowel" chamber organ in its own right. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Peh, Wendy Y X; Roberts, Todd F; Mooney, Richard
2015-04-08
Vocal communication depends on the coordinated activity of sensorimotor neurons important to vocal perception and production. How vocalizations are represented by spatiotemporal activity patterns in these neuronal populations remains poorly understood. Here we combined intracellular recordings and two-photon calcium imaging in anesthetized adult zebra finches (Taeniopygia guttata) to examine how learned birdsong and its component syllables are represented in identified projection neurons (PNs) within HVC, a sensorimotor region important for song perception and production. These experiments show that neighboring HVC PNs can respond at markedly different times to song playback and that different syllables activate spatially intermingled PNs within a local (~100 μm) region of HVC. Moreover, noise correlations were stronger between PNs that responded most strongly to the same syllable and were spatially graded within and between classes of PNs. These findings support a model in which syllabic and temporal features of song are represented by spatially intermingled PNs functionally organized into cell- and syllable-type networks within local spatial scales in HVC. Copyright © 2015 the authors 0270-6474/15/355589-17$15.00/0.
Shi, Zhimin; Luo, Guanzheng; Fu, Lijuan; Fang, Zhide; Wang, XiuJie; Li, XiaoChing
2013-10-16
Mutations in the FOXP2 gene cause speech and language impairments, accompanied by structural and functional abnormalities in brain regions underlying speech-related sensory-motor processing, including the striatum and cerebellum. The sequence and expression patterns of FOXP2 are highly conserved among higher vertebrates. In the zebra finch brain, FoxP2 is expressed in Area X, a striatal nucleus required for vocal learning, and reduced FoxP2 expression impairs dendritic development and vocal learning. The FoxP2 gene encodes a transcription factor that controls the expression of many downstream genes. However, how FOXP2 gene expression is regulated is not clearly understood. miRNAs regulate gene expression post-transcriptionally by targeting the 3'-untranslated regions (UTRs) of mRNAs, leading to translational suppression or mRNA degradation. In this study, we identified miR-9 and miR-140-5p as potential regulators of the FoxP2 gene. We show that both miR-9 and miR-140-5p target specific sequences in the FoxP2 3'-UTR and downregulate FoxP2 protein and mRNA expression in vitro. We also show that the expression of miR-9 and miR-140-5p in Area X of the zebra finch brain is regulated during song development in juvenile zebra finches. We further show that in adult zebra finches the expression of miR-9 and miR-140-5p in Area X is regulated as a function of the social context of song behavior in males singing undirected songs. Our findings reveal a post-transcriptional mechanism that regulates FoxP2 expression and suggest that social vocal behavior can influence the basal ganglia circuit controlling vocal learning via a miRNA-FoxP2 gene regulatory network.
Shi, Zhimin; Luo, Guanzheng; Fu, Lijuan; Fang, Zhide; Wang, XiuJie
2013-01-01
Mutations in the FOXP2 gene cause speech and language impairments, accompanied by structural and functional abnormalities in brain regions underlying speech-related sensory-motor processing, including the striatum and cerebellum. The sequence and expression patterns of FOXP2 are highly conserved among higher vertebrates. In the zebra finch brain, FoxP2 is expressed in Area X, a striatal nucleus required for vocal learning, and reduced FoxP2 expression impairs dendritic development and vocal learning. The FoxP2 gene encodes a transcription factor that controls the expression of many downstream genes. However, how FOXP2 gene expression is regulated is not clearly understood. miRNAs regulate gene expression post-transcriptionally by targeting the 3′-untranslated regions (UTRs) of mRNAs, leading to translational suppression or mRNA degradation. In this study, we identified miR-9 and miR-140-5p as potential regulators of the FoxP2 gene. We show that both miR-9 and miR-140-5p target specific sequences in the FoxP2 3′-UTR and downregulate FoxP2 protein and mRNA expression in vitro. We also show that the expression of miR-9 and miR-140-5p in Area X of the zebra finch brain is regulated during song development in juvenile zebra finches. We further show that in adult zebra finches the expression of miR-9 and miR-140-5p in Area X is regulated as a function of the social context of song behavior in males singing undirected songs. Our findings reveal a post-transcriptional mechanism that regulates FoxP2 expression and suggest that social vocal behavior can influence the basal ganglia circuit controlling vocal learning via a miRNA-FoxP2 gene regulatory network. PMID:24133256
Can a bird brain do phonology?
Samuels, Bridget D.
2015-01-01
A number of recent studies have revealed correspondences between song- and language-related neural structures, pathways, and gene expression in humans and songbirds. Analyses of vocal learning, song structure, and the distribution of song elements have similarly revealed a remarkable number of shared characteristics with human speech. This article reviews recent developments in the understanding of these issues with reference to the phonological phenomena observed in human language. This investigation suggests that birds possess a host of abilities necessary for human phonological computation, as evidenced by behavioral, neuroanatomical, and molecular genetic studies. Vocal-learning birds therefore present an excellent model for studying some areas of human phonology, though differences in the primitives of song and language as well as the absence of a human-like morphosyntax make human phonology differ from birdsong phonology in crucial ways. PMID:26284006
Using Videos and Multimodal Discourse Analysis to Study How Students Learn a Trade
ERIC Educational Resources Information Center
Chan, Selena
2013-01-01
The use of video to assist with ethnographical-based research is not a new phenomenon. Recent advances in technology have reduced the costs and technical expertise required to use videos for gathering research data. Audio-visual records of learning activities as they take place, allow for many non-vocal and inter-personal communication…
Assessing Middle School Student Participation in Online vs. Face-to-Face Environments
ERIC Educational Resources Information Center
Oravetz, Cathleen L.
2011-01-01
Educators have observed reluctance in middle school students to vocally engage in small group learning tasks, the result of which could be a decrease in student learning. The same students have been observed collaborating with peers outside of the classroom when using technology. The purpose of this study is to determine if technology provides a…
An Evaluation of Preference for Mode of Instruction Following Variations in Response Effort
ERIC Educational Resources Information Center
Romani, Patrick W.; McCoy, Thomasin E.; Wacker, David P.; Padilla-Dalmau, Yaniz C.
2014-01-01
The current study evaluated preference for mode of instruction (i.e., visual or vocal) for four children diagnosed with a language-based learning disability. Each participant was an elementary student who was initially referred to a neuropsychology clinic specializing in learning disabilities. As a part of the evaluation, measures of each…
Classroom Audio Distribution in the Postsecondary Setting: A Story of Universal Design for Learning
ERIC Educational Resources Information Center
Flagg-Williams, Joan B.; Bokhorst-Heng, Wendy D.
2016-01-01
Classroom Audio Distribution Systems (CADS) consist of amplification technology that enhances the teacher's, or sometimes the student's, vocal signal above the background noise in a classroom. Much research has supported the benefits of CADS for student learning, but most of it has focused on elementary school classrooms. This study investigated…
Learning in Communities of Inquiry: A Review of the Literature
ERIC Educational Resources Information Center
Rourke, Liam; Kanuka, Heather
2009-01-01
The purpose of this study was to investigate learning in communities of inquiry (CoI) as the terms are defined in Garrison, Anderson, and Archer's (2000) framework. We identified 252 reports from 2000-2008 that referenced the framework, and we reviewed them using Ogawan and Malen's (1991) strategy for synthesizing multi-vocal bodies of literature.…
Watts, Christopher R
2016-01-01
Reduced vocal intensity is a core impairment of hypokinetic dysarthria in Parkinson's disease (PD). Speech treatments have been developed to rehabilitate the vocal subsystems underlying this impairment. Intensive treatment programs requiring high-intensity voice and speech exercises with clinician-guided prompting and feedback have been established as effective for improving vocal function. Less is known, however, regarding long-term outcomes of clinical benefit in speakers with PD who receive these treatments. A retrospective cohort design was utilized. Data from 78 patient files across a three year period were analyzed. All patients received a structured, intensive program of voice therapy focusing on speaking intent and loudness. The dependent variable for all analyses was vocal intensity in decibels (dBSPL). Vocal intensity during sustained vowel production, reading, and novel conversational speech was compared at pre-treatment, post-treatment, six month follow-up, and twelve month follow-up periods. Statistically significant increases in vocal intensity were found at post-treatment, 6 months, and 12 month follow-up periods with intensity gains ranging from 5 to 17 dB depending on speaking condition and measurement period. Significant treatment effects were found in all three speaking conditions. Effect sizes for all outcome measures were large, suggesting a strong degree of practical significance. Significant increases in vocal intensity measured at 6 and 12 moth follow-up periods suggested that the sample of patients maintained treatment benefit for up to a year. These findings are supported by outcome studies reporting treatment outcomes within a few months post-treatment, in addition to prior studies that have reported long-term outcome results. The positive treatment outcomes experienced by the PD cohort in this study are consistent with treatment responses subsequent to other treatment approaches which focus on high-intensity, clinician guided motor learning for voice and speech production in PD. Theories regarding the underlying neurophysiological response to treatment will be discussed.
Heterospecific eavesdropping in ant-following birds of the Neotropics is a learned behaviour.
Pollock, Henry S; Martínez, Ari E; Kelley, J Patrick; Touchton, Janeene M; Tarwater, Corey E
2017-10-25
Animals eavesdrop on other species to obtain information about their environments. Heterospecific eavesdropping can yield tangible fitness benefits by providing valuable information about food resources and predator presence. The ability to eavesdrop may therefore be under strong selection, although extensive research on alarm-calling in avian mixed-species flocks has found only limited evidence that close association with another species could select for innate signal recognition. Nevertheless, very little is known about the evolution of eavesdropping behaviour and the mechanism of heterospecific signal recognition, particularly in other ecological contexts, such as foraging. To understand whether heterospecific eavesdropping was an innate or learned behaviour in a foraging context, we studied heterospecific signal recognition in ant-following birds of the Neotropics, which eavesdrop on vocalizations of obligate ant-following species to locate and recruit to swarms of the army ant Eciton burchellii , a profitable food resource. We used a playback experiment to compare recruitment of ant-following birds to vocalizations of two obligate species at a mainland site (where both species are present) and a nearby island site (where one species remains whereas the other went extinct approx. 40 years ago). We found that ant-following birds recruited strongly to playbacks of the obligate species present at both island and mainland sites, but the island birds did not recruit to playbacks of the absent obligate species. Our results strongly suggest that (i) ant-following birds learn to recognize heterospecific vocalizations from ecological experience and (ii) island birds no longer recognize the locally extinct obligate species after eight generations of absence from the island. Although learning appears to be the mechanism of heterospecific signal recognition in ant-following birds, more experimental tests are needed to fully understand the evolution of eavesdropping behaviour. © 2017 The Author(s).
Allen, Jacqui
2010-12-01
The prolonged debilitation, loss of income, and decrement in quality of life caused by vocal fold scar is exacerbated by our inability to successfully treat this difficult problem. As technology focuses on developing innovative treatments, we need to fully appreciate and understand the mechanisms giving rise to glottal scar, on both a macroscopic and microscopic level. This review examines recent literature pertaining to the gross and molecular mechanisms which give rise to vocal fold scar. Mechanisms of vocal fold scar production have been examined in both macroscopic and microscopic detail. Trauma and injury involving any aspect of the lamina propria, particularly the deeper layers, may result in epithelial tethering and scar formation. At the molecular level, early inflammatory cytokines activate and recruit fibroblasts which then drive the fibrotic cascade. Transforming growth factor-β enhances fibrosis and is balanced by tissue matrix metalloproteinases and hepatocyte growth factor activity. Molecular signaling offers novel opportunities to intervene in scar formation. New work investigating the cause of vocal fold scar identifies complex molecular processes leading to fibrosis in the lamina propria. Improved mechanistic understanding offers insight into prevention strategies and possible targets for antifibrotic therapies that may help prevent or treat this debilitating condition.
Common diagnoses and treatments in professional voice users.
Franco, Ramon A; Andrus, Jennifer G
2007-10-01
Common problems among all patients seen by the laryngologist are also common among professional voice users. These include laryngopharyngeal reflux, muscle tension dysphonia, fibrovascular vocal fold lesions (eg, nodules and polyps), cysts, vocal fold scarring, changes in vocal fold mobility, and age-related changes. Microvascular lesions and their associated sequelae of vocal fold hemorrhage and laryngitis due to voice overuse are more common among professional voice users. Much more common among professional voice users is the negative impact that voice problems have on their ability to work, on their overall sense of well-being, and sometimes on their very sense of self. This article reviews the diagnosis and treatment options for these and other problems among professional voice users, describing the relevant roles of medical treatment, voice therapy, and surgery. The common scenario of multiple concomitant entities contributing to a symptom complex is underscored. Emphasis is placed on gaining insight into the "whole" patient so that individualized management plans can be developed. Videos of select diagnoses accompany this content online.
Romanski, Lizabeth M.
2012-01-01
The integration of facial gestures and vocal signals is an essential process in human communication and relies on an interconnected circuit of brain regions, including language regions in the inferior frontal gyrus (IFG). Studies have determined that ventral prefrontal cortical regions in macaques [e.g., the ventrolateral prefrontal cortex (VLPFC)] share similar cytoarchitectonic features as cortical areas in the human IFG, suggesting structural homology. Anterograde and retrograde tracing studies show that macaque VLPFC receives afferents from the superior and inferior temporal gyrus, which provide complex auditory and visual information, respectively. Moreover, physiological studies have shown that single neurons in VLPFC integrate species-specific face and vocal stimuli. Although bimodal responses may be found across a wide region of prefrontal cortex, vocalization responsive cells, which also respond to faces, are mainly found in anterior VLPFC. This suggests that VLPFC may be specialized to process and integrate social communication information, just as the IFG is specialized to process and integrate speech and gestures in the human brain. PMID:22723356
Wallez, Catherine; Schaeffer, Jennifer; Meguerditchian, Adrien; Vauclair, Jacques; Schapiro, Steven J.; Hopkins, William D.
2013-01-01
Studies involving oro-facial asymmetries in nonhuman primates have largely demonstrated a right hemispheric dominance for communicative signals and conveyance of emotional information. A recent study on chimpanzee reported the first evidence of significant left-hemispheric dominance when using attention-getting sounds and rightward bias for species-typical vocalizations (Losin, Russell, Freeman, Meguerditchian, Hopkins & Fitch, 2008). The current study sought to extend the findings from Losin et al. (2008) with additional oro-facial assessment in a new colony of chimpanzees. When combining the two populations, the results indicated a consistent leftward bias for attention-getting sounds and a right lateralization for species-typical vocalizations. Collectively, the results suggest that both voluntary- controlled oro-facial and gestural communication might share the same left-hemispheric specialization and might have coevolved into a single integrated system present in a common hominid ancestor. PMID:22867751
Involvement of the avian song system in reproductive behaviour
Wild, J. Martin; Botelho, João F.
2015-01-01
The song system of songbirds consists of an interconnected set of forebrain nuclei that has traditionally been regarded as dedicated to the learning and production of song. Here, however, we suggest that the song system could also influence muscles used in reproductive behaviour, such as the cloacal sphincter muscle. We show that the same medullary nucleus, retroambigualis (RAm), that projects upon spinal motoneurons innervating expiratory muscles (which provide the pressure head for vocalization) and upon vocal motoneurons for respiratory–vocal coordination also projects upon cloacal motoneurons. Furthermore, RAm neurons projecting to sacral spinal levels were shown to receive direct projections from nucleus robustus arcopallialis (RA) of the forebrain song system. Thus, by indicating a possible disynaptic relationship between RA and motoneurons innervating the reproductive organ, in both males and females, these results potentially extend the role of the song system to include consummatory as well as appetitive aspects of reproductive behaviour. PMID:26631245
Stiffler, Lydia L.; Anderson, James T.; Welsh, Amy B.; Harding, Sergio R.; Costanzo, Gary R.; Katzner, Todd
2017-01-01
Surveys for secretive marsh birds could be improved with refinements to address regional and species-specific variation in detection probabilities and optimal times of day to survey. Diel variation in relation to naïve occupancy, detection rates, and vocalization rates of King (Rallus elegans) and Clapper (R. crepitans) rails were studied in intracoastal waterways in Virginia, USA. Autonomous acoustic devices recorded vocalizations of King and Clapper rails at 75 locations for 48-hr periods within a marsh complex. Naïve King and Clapper rail occupancy did not vary hourly at either the marsh or the study area level. Combined King and Clapper rail detections and vocalizations varied across marshes, decreased as the sampling season progressed, and, for detections, was greatest during low rising tides (P < 0.01). Hourly variation in vocalization and detection rates did not show a pattern but occurred between 7.8% of pairwise comparisons for detections and 10.5% of pairwise comparisons for vocalizations (P < 0.01). Higher rates of detections and vocalizations occurred during the hours of 00:00–00:59, 05:00–05:59, 14:00–15:59, and lower rates during the hours of 07:00–09:59. Although statistically significant, because there were no patterns in these hourly differences, they may not be biologically relevant and are of little use to management. In fact, these findings demonstrate that surveys for King and Clapper rails in Virginia intracoastal waterways may be effectively conducted throughout the day.
NASA Astrophysics Data System (ADS)
Benboujja, Fouzi; Garcia, Jordan; Beaudette, Kathy; Strupler, Mathias; Hartnick, Christopher J.; Boudoux, Caroline
2016-02-01
Excessive and repetitive force applied on vocal fold tissue can induce benign vocal fold lesions. Children affected suffer from chronic hoarseness. In this instance, the vibratory ability of the folds, a complex layered microanatomy, becomes impaired. Histological findings have shown that lesions produce a remodeling of sup-epithelial vocal fold layers. However, our understanding of lesion features and development is still limited. Indeed, conventional imaging techniques do not allow a non-invasive assessment of sub-epithelial integrity of the vocal fold. Furthermore, it remains challenging to differentiate these sub-epithelial lesions (such as bilateral nodules, polyps and cysts) from a clinical perspective, as their outer surfaces are relatively similar. As treatment strategy differs for each lesion type, it is critical to efficiently differentiate sub-epithelial alterations involved in benign lesions. In this study, we developed an optical coherence tomography (OCT) based handheld probe suitable for pediatric laryngological imaging. The probe allows for rapid three-dimensional imaging of vocal fold lesions. The system is adapted to allow for high-resolution intra-operative imaging. We imaged 20 patients undergoing direct laryngoscopy during which we looked at different benign pediatric pathologies such as bilateral nodules, cysts and laryngeal papillomatosis and compared them to healthy tissue. We qualitatively and quantitatively characterized laryngeal pathologies and demonstrated the added advantage of using 3D OCT imaging for lesion discrimination and margin assessment. OCT evaluation of the integrity of the vocal cord could yield to a better pediatric management of laryngeal diseases.
Undergraduate Students' Ownership of Musical Learning: Obstacles and Options in One-to-One Teaching
ERIC Educational Resources Information Center
Johansson, Karin
2013-01-01
This paper describes a longitudinal, collaborative case study, made in the framework of the project Students' Ownership of Learning (SOL) during one academic year with one vocal teacher and two female students. The aim of the study was to relate the interaction between the teacher's and the students' intentions and expectations to…
What songbirds teach us about learning
NASA Astrophysics Data System (ADS)
Brainard, Michael S.; Doupe, Allison J.
2002-05-01
Bird fanciers have known for centuries that songbirds learn their songs. This learning has striking parallels to speech acquisition: like humans, birds must hear the sounds of adults during a sensitive period, and must hear their own voice while learning to vocalize. With the discovery and investigation of discrete brain structures required for singing, songbirds are now providing insights into neural mechanisms of learning. Aided by a wealth of behavioural observations and species diversity, studies in songbirds are addressing such basic issues in neuroscience as perceptual and sensorimotor learning, developmental regulation of plasticity, and the control and function of adult neurogenesis.
Sons learn songs from their social fathers in a cooperatively breeding bird
Greig, Emma I.; Taft, Benjamin N.; Pruett-Jones, Stephen
2012-01-01
Song learning is hypothesized to allow social adaptation to a local song neighbourhood. Maintaining social associations is particularly important in cooperative breeders, yet vocal learning in such species has only been assessed in systems where social association was correlated with relatedness. Thus, benefits of vocal learning as a means of maintaining social associations could not be disentangled from benefits of kin recognition. We assessed genetic and cultural contributions to song in a species where social association was not strongly correlated with kinship: the cooperatively breeding, reproductively promiscuous splendid fairy-wren (Malurus splendens). We found that song characters of socially associated father–son pairs were more strongly correlated (and thus songs were more similar) than songs of father–son pairs with a genetic, but no social, association (i.e. cuckolding fathers). Song transmission was, therefore, vertical and cultural, with minimal signatures of kinship. Additionally, song characters were not correlated with several phenotypic indicators of male quality, supporting the idea that there may be a tradeoff between accurate copying of tutors and quality signalling via maximizing song performance, particularly when social and genetic relationships are decoupled. Our results lend support to the hypothesis that song learning facilitates the maintenance of social associations by permitting unrelated individuals to acquire similar signal phenotypes. PMID:22593105
Sons learn songs from their social fathers in a cooperatively breeding bird.
Greig, Emma I; Taft, Benjamin N; Pruett-Jones, Stephen
2012-08-22
Song learning is hypothesized to allow social adaptation to a local song neighbourhood. Maintaining social associations is particularly important in cooperative breeders, yet vocal learning in such species has only been assessed in systems where social association was correlated with relatedness. Thus, benefits of vocal learning as a means of maintaining social associations could not be disentangled from benefits of kin recognition. We assessed genetic and cultural contributions to song in a species where social association was not strongly correlated with kinship: the cooperatively breeding, reproductively promiscuous splendid fairy-wren (Malurus splendens). We found that song characters of socially associated father-son pairs were more strongly correlated (and thus songs were more similar) than songs of father-son pairs with a genetic, but no social, association (i.e. cuckolding fathers). Song transmission was, therefore, vertical and cultural, with minimal signatures of kinship. Additionally, song characters were not correlated with several phenotypic indicators of male quality, supporting the idea that there may be a tradeoff between accurate copying of tutors and quality signalling via maximizing song performance, particularly when social and genetic relationships are decoupled. Our results lend support to the hypothesis that song learning facilitates the maintenance of social associations by permitting unrelated individuals to acquire similar signal phenotypes.
Assessing the uniqueness of language: Animal grammatical abilities take center stage.
Ten Cate, Carel
2017-02-01
Questions related to the uniqueness of language can only be addressed properly by referring to sound knowledge of the relevant cognitive abilities of nonhuman animals. A key question concerns the nature and extent of animal rule-learning abilities. I discuss two approaches used to assess these abilities. One is comparing the structures of animal vocalizations to linguistic ones, and another is addressing the grammatical rule- and pattern-learning abilities of animals through experiments using artificial grammars. Neither of these approaches has so far provided unambiguous evidence of advanced animal abilities. However, when we consider how animal vocalizations are analyzed, the types of stimuli and tasks that are used in artificial grammar learning experiments, the limited number of species examined, and the groups to which these belong, I argue that the currently available evidence is insufficient to arrive at firm conclusions concerning the limitations of animal grammatical abilities. As a consequence, the gap between human linguistic rule-learning abilities and those of nonhuman animals may be smaller and less clear than is currently assumed. This means that it is still an open question whether a difference in the rule-learning and rule abstraction abilities between animals and humans played the key role in the evolution of language.
Echolocating bats rely on audiovocal feedback to adapt sonar signal design.
Luo, Jinhong; Moss, Cynthia F
2017-10-10
Many species of bat emit acoustic signals and use information carried by echoes reflecting from nearby objects to navigate and forage. It is widely documented that echolocating bats adjust the features of sonar calls in response to echo feedback; however, it remains unknown whether audiovocal feedback contributes to sonar call design. Audiovocal feedback refers to the monitoring of one's own vocalizations during call production and has been intensively studied in nonecholocating animals. Audiovocal feedback not only is a necessary component of vocal learning but also guides the control of the spectro-temporal structure of vocalizations. Here, we show that audiovocal feedback is directly involved in the echolocating bat's control of sonar call features. As big brown bats tracked targets from a stationary position, we played acoustic jamming signals, simulating calls of another bat, timed to selectively perturb audiovocal feedback or echo feedback. We found that the bats exhibited the largest call-frequency adjustments when the jamming signals occurred during vocal production. By contrast, bats did not show sonar call-frequency adjustments when the jamming signals coincided with the arrival of target echoes. Furthermore, bats rapidly adapted sonar call design in the first vocalization following the jamming signal, revealing a response latency in the range of 66 to 94 ms. Thus, bats, like songbirds and humans, rely on audiovocal feedback to structure sonar signal design.
A Mozart is not a Pavarotti: singers outperform instrumentalists on foreign accent imitation
Christiner, Markus; Reiterer, Susanne Maria
2015-01-01
Recent findings have shown that people with higher musical aptitude were also better in oral language imitation tasks. However, whether singing capacity and instrument playing contribute differently to the imitation of speech has been ignored so far. Research has just recently started to understand that instrumentalists develop quite distinct skills when compared to vocalists. In the same vein the role of the vocal motor system in language acquisition processes has poorly been investigated as most investigations (neurobiological and behavioral) favor to examine speech perception. We set out to test whether the vocal motor system can influence an ability to learn, produce and perceive new languages by contrasting instrumentalists and vocalists. Therefore, we investigated 96 participants, 27 instrumentalists, 33 vocalists and 36 non-musicians/non-singers. They were tested for their abilities to imitate foreign speech: unknown language (Hindi), second language (English) and their musical aptitude. Results revealed that both instrumentalists and vocalists have a higher ability to imitate unintelligible speech and foreign accents than non-musicians/non-singers. Within the musician group, vocalists outperformed instrumentalists significantly. Conclusion: First, adaptive plasticity for speech imitation is not reliant on audition alone but also on vocal-motor induced processes. Second, vocal flexibility of singers goes together with higher speech imitation aptitude. Third, vocal motor training, as of singers, may speed up foreign language acquisition processes. PMID:26379537
A Mozart is not a Pavarotti: singers outperform instrumentalists on foreign accent imitation.
Christiner, Markus; Reiterer, Susanne Maria
2015-01-01
Recent findings have shown that people with higher musical aptitude were also better in oral language imitation tasks. However, whether singing capacity and instrument playing contribute differently to the imitation of speech has been ignored so far. Research has just recently started to understand that instrumentalists develop quite distinct skills when compared to vocalists. In the same vein the role of the vocal motor system in language acquisition processes has poorly been investigated as most investigations (neurobiological and behavioral) favor to examine speech perception. We set out to test whether the vocal motor system can influence an ability to learn, produce and perceive new languages by contrasting instrumentalists and vocalists. Therefore, we investigated 96 participants, 27 instrumentalists, 33 vocalists and 36 non-musicians/non-singers. They were tested for their abilities to imitate foreign speech: unknown language (Hindi), second language (English) and their musical aptitude. Results revealed that both instrumentalists and vocalists have a higher ability to imitate unintelligible speech and foreign accents than non-musicians/non-singers. Within the musician group, vocalists outperformed instrumentalists significantly. First, adaptive plasticity for speech imitation is not reliant on audition alone but also on vocal-motor induced processes. Second, vocal flexibility of singers goes together with higher speech imitation aptitude. Third, vocal motor training, as of singers, may speed up foreign language acquisition processes.
Petekkaya, Emine; Yücel, Ahmet Hilmi; Sürmelioğlu, Özgür
2017-12-28
Opera and chant singers learn to effectively use aerodynamic components by breathing exercises during their education. Aerodynamic components, including subglottic air pressure and airflow, deteriorate in voice disorders. This study aimed to evaluate the changes in aerodynamic parameters and supraglottic structures of men and women with different vocal registers who are in an opera and chant education program. Vocal acoustic characteristics, aerodynamic components, and supraglottic structures were evaluated in 40 opera and chant art branch students. The majority of female students were sopranos, and the male students were baritone or tenor vocalists. The acoustic analyses revealed that the mean fundamental frequency was 152.33 Hz in the males and 218.77 Hz in the females. The estimated mean subglottal pressures were similar in females (14.99 cmH 2 O) and in males (14.48 cmH 2 O). Estimated mean airflow rates were also similar in both groups. The supraglottic structure compression analyses revealed partial anterior-posterior compressions in 2 tenors and 2 sopranos, and false vocal fold compression in 2 sopranos. Opera music is sung in high-pitched sounds. Attempts to sing high-pitched notes and frequently using register transitions overstrain the vocal structures. This intense muscular effort eventually traumatizes the vocal structures and causes supraglottic activity. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
38 CFR 21.7120 - Courses included in programs of education.
Code of Federal Regulations, 2011 CFR
2011-07-01
... (ii) Any music course, instrumental or vocal, public speaking course or courses in dancing, sports or... public speaking which are offered by institutions of higher learning for credit as an integral part of a...
Behroozmand, Roozbeh; Korzyukov, Oleg; Larson, Charles R.
2012-01-01
Previous studies have shown that the pitch of a sound is perceived in the absence of its fundamental frequency (F0), suggesting that a distinct mechanism may resolve pitch based on a pattern that exists between harmonic frequencies. The present study investigated whether such a mechanism is active during voice pitch control. ERPs were recorded in response to +200 cents pitch shifts in the auditory feedback of self-vocalizations and complex tones with and without the F0. The absence of the fundamental induced no difference in ERP latencies. However, a right-hemisphere difference was found in the N1 amplitudes with larger responses to complex tones that included the fundamental compared to when it was missing. The P1 and N1 latencies were shorter in the left hemisphere, and the N1 and P2 amplitudes were larger bilaterally for pitch shifts in voice and complex tones compared with pure tones. These findings suggest hemispheric differences in neural encoding of pitch in sounds with missing fundamental. Data from the present study suggest that the right cortical auditory areas, thought to be specialized for spectral processing, may utilize different mechanisms to resolve pitch in sounds with missing fundamental. The left hemisphere seems to perform faster processing to resolve pitch based on the rate of temporal variations in complex sounds compared with pure tones. These effects indicate that the differential neural processing of pitch in the left and right hemispheres may enable the audio-vocal system to detect temporal and spectral variations in the auditory feedback for vocal pitch control. PMID:22386045
Godino-Llorente, J I; Gómez-Vilda, P
2004-02-01
It is well known that vocal and voice diseases do not necessarily cause perceptible changes in the acoustic voice signal. Acoustic analysis is a useful tool to diagnose voice diseases being a complementary technique to other methods based on direct observation of the vocal folds by laryngoscopy. Through the present paper two neural-network based classification approaches applied to the automatic detection of voice disorders will be studied. Structures studied are multilayer perceptron and learning vector quantization fed using short-term vectors calculated accordingly to the well-known Mel Frequency Coefficient cepstral parameterization. The paper shows that these architectures allow the detection of voice disorders--including glottic cancer--under highly reliable conditions. Within this context, the Learning Vector quantization methodology demonstrated to be more reliable than the multilayer perceptron architecture yielding 96% frame accuracy under similar working conditions.
Nimodipine alters acquisition of a visual discrimination task in chicks.
Deyo, R; Panksepp, J; Conner, R L
1990-03-01
Chicks 5 days old received intraperitoneal injections of nimodipine 30 min before training on either a visual discrimination task (0, 0.5, 1.0, or 5.0 mg/kg) or a test of separation-induced distress vocalizations (0, 0.5, or 2.5 mg/kg). Chicks receiving 1.0 mg/kg nimodipine made significantly fewer visual discrimination errors than vehicle controls by trials 41-60, but did not differ from controls 24 h later. Chicks in the 5 mg/kg group made significantly more errors when compared to controls both during acquisition of the task and during retention. Nimodipine did not alter separation-induced distress vocalizations at any of the doses tested, suggesting that nimodipine's effects on learning cannot be attributed to a reduction in separation distress. These data indicate that nimodipine's facilitation of learning in young subjects is dose dependent, but nimodipine failed to enhance retention.
Chen, Qianqian; Heston, Jonathan B; Burkett, Zachary D; White, Stephanie A
2013-10-01
Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song.
Chen, Qianqian; Heston, Jonathan B.; Burkett, Zachary D.; White, Stephanie A.
2013-01-01
SUMMARY Humans and songbirds are among the rare animal groups that exhibit socially learned vocalizations: speech and song, respectively. These vocal-learning capacities share a reliance on audition and cortico-basal ganglia circuitry, as well as neurogenetic mechanisms. Notably, the transcription factors Forkhead box proteins 1 and 2 (FoxP1, FoxP2) exhibit similar expression patterns in the cortex and basal ganglia of humans and the zebra finch species of songbird, among other brain regions. Mutations in either gene are associated with language disorders in humans. Experimental knock-down of FoxP2 in the basal ganglia song control region Area X during song development leads to imprecise copying of tutor songs. Moreover, FoxP2 levels decrease naturally within Area X when zebra finches sing. Here, we examined neural expression patterns of FoxP1 and FoxP2 mRNA in adult Bengalese finches, a songbird species whose songs exhibit greater sequence complexity and increased reliance on audition for maintaining their quality. We found that FoxP1 and FoxP2 expression in Bengalese finches is similar to that in zebra finches, including strong mRNA signals for both factors in multiple song control nuclei and enhancement of FoxP1 in these regions relative to surrounding brain tissue. As with zebra finches, when Bengalese finches sing, FoxP2 is behaviorally downregulated within basal ganglia Area X over a similar time course, and expression negatively correlates with the amount of singing. This study confirms that in multiple songbird species, FoxP1 expression highlights song control regions, and regulation of FoxP2 is associated with motor control of song. PMID:24006346
Mencio, Caitlin; Kuberan, Balagurunathan; Goller, Franz
2017-02-01
Neural control of complex vocal behaviors, such as birdsong and speech, requires integration of biomechanical nonlinearities through muscular output. Although control of airflow and tension of vibrating tissues are known functions of vocal muscles, it remains unclear how specific muscle characteristics contribute to specific acoustic parameters. To address this gap, we removed heparan sulfate chains using heparitinases to perturb neuromuscular transmission subtly in the syrinx of adult male zebra finches (Taeniopygia guttata). Infusion of heparitinases into ventral syringeal muscles altered their excitation threshold and reduced neuromuscular transmission changing their ability to modulate airflow. The changes in muscle activation dynamics caused a reduction in frequency modulation rates and elimination of many high-frequency syllables but did not alter the fundamental frequency of syllables. Sound amplitude was reduced and sound onset pressure was increased, suggesting a role of muscles in the induction of self-sustained oscillations under low-airflow conditions, thus enhancing vocal efficiency. These changes were reversed to preinfusion levels by 7 days after infusion. These results illustrate complex interactions between the control of airflow and tension and further define the importance of syringeal muscle in the control of a variety of acoustic song characteristics. In summary, the findings reported here show that altering neuromuscular transmission can lead to reversible changes to the acoustic structure of song. Understanding the full extent of muscle involvement in song production is critical in decoding the motor program for the production of complex vocal behavior, including our search for parallels between birdsong and human speech motor control. It is largely unknown how fine motor control of acoustic parameters is achieved in vocal organs. Subtle manipulation of syringeal muscle function was used to test how active motor control influences acoustic parameters. Slowed activation kinetics of muscles reduced frequency modulation and, unexpectedly, caused a distinct decrease in sound amplitude and increase in phonation onset pressure. These results show that active control enhances the efficiency of energy conversion in the syrinx. Copyright © 2017 the American Physiological Society.
Partial trisomy 16p in an adolescent with autistic disorder and Tourette`s syndrome
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hebebrand, J.; Martin, M.; Remschmidt, H.
A partial trisomy 16p was identified in a 14-year-old male adolescent with autistic disorder. He additionally showed complex motor and vocal phenomena, including some simple tics which had first appeared in childhood. Whereas these simple tics were of subclinical significance, an additional diagnosis of Tourette`s syndrome (TS) appears justified. The case report illustrates the diagnostic difficulties in assessing psychiatric symptomatology associated with both disorders, especially complex motor and vocal phenomena. The cytogenetic finding is discussed critically in the light of other chromosome abnormalities reported in both TS and autistic disorder. Chromosome 16p should be considered as a candidate region especiallymore » for autistic disorder. 21 refs.« less
Distributed Recognition of Natural Songs by European Starlings
ERIC Educational Resources Information Center
Knudsen, Daniel; Thompson, Jason V.; Gentner, Timothy Q.
2010-01-01
Individual vocal recognition behaviors in songbirds provide an excellent framework for the investigation of comparative psychological and neurobiological mechanisms that support the perception and cognition of complex acoustic communication signals. To this end, the complex songs of European starlings have been studied extensively. Yet, several…
Automated extraction and classification of time-frequency contours in humpback vocalizations.
Ou, Hui; Au, Whitlow W L; Zurk, Lisa M; Lammers, Marc O
2013-01-01
A time-frequency contour extraction and classification algorithm was created to analyze humpback whale vocalizations. The algorithm automatically extracted contours of whale vocalization units by searching for gray-level discontinuities in the spectrogram images. The unit-to-unit similarity was quantified by cross-correlating the contour lines. A library of distinctive humpback units was then generated by applying an unsupervised, cluster-based learning algorithm. The purpose of this study was to provide a fast and automated feature selection tool to describe the vocal signatures of animal groups. This approach could benefit a variety of applications such as species description, identification, and evolution of song structures. The algorithm was tested on humpback whale song data recorded at various locations in Hawaii from 2002 to 2003. Results presented in this paper showed low probability of false alarm (0%-4%) under noisy environments with small boat vessels and snapping shrimp. The classification algorithm was tested on a controlled set of 30 units forming six unit types, and all the units were correctly classified. In a case study on humpback data collected in the Auau Chanel, Hawaii, in 2002, the algorithm extracted 951 units, which were classified into 12 distinctive types.
Gender and vocal production mode discrimination using the high frequencies for speech and singing
Monson, Brian B.; Lotto, Andrew J.; Story, Brad H.
2014-01-01
Humans routinely produce acoustical energy at frequencies above 6 kHz during vocalization, but this frequency range is often not represented in communication devices and speech perception research. Recent advancements toward high-definition (HD) voice and extended bandwidth hearing aids have increased the interest in the high frequencies. The potential perceptual information provided by high-frequency energy (HFE) is not well characterized. We found that humans can accomplish tasks of gender discrimination and vocal production mode discrimination (speech vs. singing) when presented with acoustic stimuli containing only HFE at both amplified and normal levels. Performance in these tasks was robust in the presence of low-frequency masking noise. No substantial learning effect was observed. Listeners also were able to identify the sung and spoken text (excerpts from “The Star-Spangled Banner”) with very few exposures. These results add to the increasing evidence that the high frequencies provide at least redundant information about the vocal signal, suggesting that its representation in communication devices (e.g., cell phones, hearing aids, and cochlear implants) and speech/voice synthesizers could improve these devices and benefit normal-hearing and hearing-impaired listeners. PMID:25400613
Fee, Michale S.
2012-01-01
In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG) function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current “time” in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs) onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources. PMID:22754501
Fee, Michale S
2012-01-01
In its simplest formulation, reinforcement learning is based on the idea that if an action taken in a particular context is followed by a favorable outcome, then, in the same context, the tendency to produce that action should be strengthened, or reinforced. While reinforcement learning forms the basis of many current theories of basal ganglia (BG) function, these models do not incorporate distinct computational roles for signals that convey context, and those that convey what action an animal takes. Recent experiments in the songbird suggest that vocal-related BG circuitry receives two functionally distinct excitatory inputs. One input is from a cortical region that carries context information about the current "time" in the motor sequence. The other is an efference copy of motor commands from a separate cortical brain region that generates vocal variability during learning. Based on these findings, I propose here a general model of vertebrate BG function that combines context information with a distinct motor efference copy signal. The signals are integrated by a learning rule in which efference copy inputs gate the potentiation of context inputs (but not efference copy inputs) onto medium spiny neurons in response to a rewarded action. The hypothesis is described in terms of a circuit that implements the learning of visually guided saccades. The model makes testable predictions about the anatomical and functional properties of hypothesized context and efference copy inputs to the striatum from both thalamic and cortical sources.
A Mechanism for Frequency Modulation in Songbirds Shared with Humans
Margoliash, Daniel
2013-01-01
In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways. PMID:23825417
A mechanism for frequency modulation in songbirds shared with humans.
Amador, Ana; Margoliash, Daniel
2013-07-03
In most animals that vocalize, control of fundamental frequency is a key element for effective communication. In humans, subglottal pressure controls vocal intensity but also influences fundamental frequency during phonation. Given the underlying similarities in the biomechanical mechanisms of vocalization in humans and songbirds, songbirds offer an attractive opportunity to study frequency modulation by pressure. Here, we present a novel technique for dynamic control of subsyringeal pressure in zebra finches. By regulating the opening of a custom-built fast valve connected to the air sac system, we achieved partial or total silencing of specific syllables, and could modify syllabic acoustics through more complex manipulations of air sac pressure. We also observed that more nuanced pressure variations over a limited interval during production of a syllable concomitantly affected the frequency of that syllable segment. These results can be explained in terms of a mathematical model for phonation that incorporates a nonlinear description for the vocal source capable of generating the observed frequency modulations induced by pressure variations. We conclude that the observed interaction between pressure and frequency was a feature of the source, not a result of feedback control. Our results indicate that, beyond regulating phonation or its absence, regulation of pressure is important for control of fundamental frequencies of vocalizations. Thus, although there are separate brainstem pathways for syringeal and respiratory control of song production, both can affect airflow and frequency. We hypothesize that the control of pressure and frequency is combined holistically at higher levels of the vocalization pathways.
Scott, Andrew R; Chong, Peter Siao Tick; Randolph, Gregory W; Hartnick, Christopher J
2008-01-01
The primary objective of this study was to determine whether a simplified technique for intraoperative laryngeal electromyography was feasible using standard nerve integrity monitoring electrodes and audiovisual digital recording equipment. Our secondary objective was to determine if laryngeal electromyography data provided any additional information that significantly influenced patient management. Between February 2006 and February 2007, 10 children referred to our institution with vocal fold immobility underwent intraoperative laryngeal electromyography of the thyroarytenoid muscles. A retrospective chart review of these 10 patients was performed after institutional review board approval. Standard nerve integrity monitoring electrodes can be used to perform intraoperative laryngeal electromyography of the thyroarytenoid muscles in children. In 5 of 10 cases reviewed, data from laryngeal electromyography recordings meaningfully influenced the care of children with vocal fold immobility and affected clinical decision-making, sometimes altering management strategies. In the remaining 5 children, data supported clinical impressions but did not alter treatment plans. Two children with idiopathic bilateral vocal fold paralysis initially presented with a lack of electrical activity on one or both sides but went on to develop motor unit action potentials that preceded recovery of motion in both vocal folds. Our findings suggest that standard nerve monitoring equipment can be used to perform intraoperative laryngeal electromyography and that electromyographic data can assist clinicians in the management of complex patients. Additionally, there may be a role for the use of serial intraoperative measurements in predicting recovery from vocal fold paralysis in the pediatric age group.
Leininger, Elizabeth C.; Kelley, Darcy B.
2013-01-01
Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors. PMID:23407829
Cui, Jianguo; Tang, Yezhong; Narins, Peter M
2012-06-23
During female mate choice, both the male's phenotype and resources (e.g. his nest) contribute to the chooser's fitness. Animals other than humans are not known to advertise resource characteristics to potential mates through vocal communication; although in some species of anurans and birds, females do evaluate male qualities through vocal communication. Here, we demonstrate that calls of the male Emei music frog (Babina dauchina), vocalizing from male-built nests, reflect nest structure information that can be recognized by females. Inside-nest calls consisted of notes with energy concentrated at lower frequency ranges and longer note durations when compared with outside-nest calls. Centre frequencies and note durations of the inside calls positively correlate with the area of the burrow entrance and the depth of the burrow, respectively. When given a choice between outside and inside calls played back alternately, more than 70 per cent of the females (33/47) chose inside calls. These results demonstrate that males of this species faithfully advertise whether or not they possess a nest to potential mates by vocal communication, which probably facilitates optimal mate selection by females. These results revealed a novel function of advertisement calls, which is consistent with the wide variation in both call complexity and social behaviour within amphibians.
3D analysis of the movements of the laryngeal cartilages during singing.
Unteregger, Fabian; Honegger, Flurin; Potthast, Silke; Zwicky, Salome; Schiwowa, Julia; Storck, Claudio
2017-07-01
The vocal range of untrained singers rarely exceeds one and a half octaves, but professional singers have a range of at least two and a half octaves. The aim of this study was to better understand the muscle and cartilage movements responsible for the control of vocal pitch in singing. Prospective study. We recruited 49 female professional singers (25 sopranos and 24 altos) and analyzed laryngeal three-dimensional images derived from high-resolution computed tomography scans obtained at the mean speaking fundamental frequency (F0) and at one (F1) and two octaves (F2) above this pitch. From F0 to F1, the only observable movement was a backward cricoid tilting caused by the cricothyroid muscles (CTMs), leading to vocal fold stretching. Above F1, a medial rotation and inward rocking of the arytenoid cartilages was observed, caused by the lateral cricothyroid muscles (LCAMs) and leading to inferior displacement of the vocal process of the arytenoid cartilage, and thus to further vocal fold stretching. Trained singers achieve the first octave of pitch elevation by simple cricothyroid approximation. Further pitch elevation necessitates a complex movement of the arytenoids, first by CTM contraction and second by LCAM contraction. 4. Laryngoscope, 127:1639-1643, 2017. © 2016 The American Laryngological, Rhinological and Otological Society, Inc.
Leininger, Elizabeth C; Kelley, Darcy B
2013-04-07
Independent or convergent evolution can underlie phenotypic similarity of derived behavioural characters. Determining the underlying neural and neuromuscular mechanisms sheds light on how these characters arose. One example of evolutionarily derived characters is a temporally simple advertisement call of male African clawed frogs (Xenopus) that arose at least twice independently from a more complex ancestral pattern. How did simplification occur in the vocal circuit? To distinguish shared from divergent mechanisms, we examined activity from the calling brain and vocal organ (larynx) in two species that independently evolved simplified calls. We find that each species uses distinct neural and neuromuscular strategies to produce the simplified calls. Isolated Xenopus borealis brains produce fictive vocal patterns that match temporal patterns of actual male calls; the larynx converts nerve activity faithfully into muscle contractions and single clicks. In contrast, fictive patterns from isolated Xenopus boumbaensis brains are short bursts of nerve activity; the isolated larynx requires stimulus bursts to produce a single click of sound. Thus, unlike X. borealis, the output of the X. boumbaensis hindbrain vocal pattern generator is an ancestral burst-type pattern, transformed by the larynx into single clicks. Temporally simple advertisement calls in genetically distant species of Xenopus have thus arisen independently via reconfigurations of central and peripheral vocal neuroeffectors.
2011-01-01
Vocal production requires complex planning and coordination of respiratory, laryngeal, and vocal tract movements, which are incompletely understood in most mammals. Rats produce a variety of whistles in the ultrasonic range that are of communicative relevance and of importance as a model system, but the sources of acoustic variability were mostly unknown. The goal was to identify sources of fundamental frequency variability. Subglottal pressure, tracheal airflow, and electromyographic (EMG) data from two intrinsic laryngeal muscles were measured during 22-kHz and 50-kHz call production in awake, spontaneously behaving adult male rats. During ultrasound vocalization, subglottal pressure ranged between 0.8 and 1.9 kPa. Pressure differences between call types were not significant. The relation between fundamental frequency and subglottal pressure within call types was inconsistent. Experimental manipulations of subglottal pressure had only small effects on fundamental frequency. Tracheal airflow patterns were also inconsistently associated with frequency. Pressure and flow seem to play a small role in regulation of fundamental frequency. Muscle activity, however, is precisely regulated and very sensitive to alterations, presumably because of effects on resonance properties in the vocal tract. EMG activity of cricothyroid and thyroarytenoid muscle was tonic in calls with slow or no fundamental frequency modulations, like 22-kHz and flat 50-kHz calls. Both muscles showed brief high-amplitude, alternating bursts at rates up to 150 Hz during production of frequency-modulated 50-kHz calls. A differentiated and fine regulation of intrinsic laryngeal muscles is critical for normal ultrasound vocalization. Many features of the laryngeal muscle activation pattern during ultrasound vocalization in rats are shared with other mammals. PMID:21832032
Social Communication and Vocal Recognition in Free-Ranging Rhesus Monkeys
NASA Astrophysics Data System (ADS)
Rendall, Christopher Andrew
Kinship and individual identity are key determinants of primate sociality, and the capacity for vocal recognition of individuals and kin is hypothesized to be an important adaptation facilitating intra-group social communication. Research was conducted on adult female rhesus monkeys on Cayo Santiago, Puerto Rico to test this hypothesis for three acoustically distinct calls characterized by varying selective pressures on communicating identity: coos (contact calls), grunts (close range social calls), and noisy screams (agonistic recruitment calls). Vocalization playback experiments confirmed a capacity for both individual and kin recognition of coos, but not screams (grunts were not tested). Acoustic analyses, using traditional spectrographic methods as well as linear predictive coding techniques, indicated that coos (but not grunts or screams) were highly distinctive, and that the effects of vocal tract filtering--formants --contributed more to statistical discriminations of both individuals and kin groups than did temporal or laryngeal source features. Formants were identified from very short (23 ms.) segments of coos and were stable within calls, indicating that formant cues to individual and kin identity were available throughout a call. This aspect of formant cues is predicted to be an especially important design feature for signaling identity efficiently in complex acoustic environments. Results of playback experiments involving manipulated coo stimuli provided preliminary perceptual support for the statistical inference that formant cues take precedence in facilitating vocal recognition. The similarity of formants among female kin suggested a mechanism for the development of matrilineal vocal signatures from the genetic and environmental determinants of vocal tract morphology shared among relatives. The fact that screams --calls strongly expected to communicate identity--were not individually distinctive nor recognized suggested the possibility that their acoustic structure and role in signaling identity might be constrained by functional or morphological design requirements associated with their role in signaling submission.
Characterization of ultrasonic vocalizations of Fragile X mice.
Belagodu, Amogh P; Johnson, Aaron M; Galvez, Roberto
2016-09-01
Fragile X Syndrome (FXS) is the leading form of inherited intellectual disability. It is caused by the transcriptional silencing of FMR1, the gene which codes for the Fragile X Mental Retardation Protein (FMRP). Patients who have FXS exhibit numerous behavioral and cognitive impairments, such as attention-deficit/hyperactivity disorder, obsessive compulsive disorder, and autistic-like behaviors. In addition to these behavioral abnormalities, FXS patients have also been shown to exhibit various deficits in communication such as abnormal sentence structures, increased utterances, repetition of sounds and words, and reduced articulation. These deficits can dramatically hinder communication for FXS patients, exacerbating learning and cognition impairments while decreasing their quality of life. To examine the biological underpinnings of these communication abnormalities, studies have used a mouse model of the Fragile X Syndrome; however, these vocalization studies have resulted in inconsistent findings that often do not correlate with abnormalities observed in FXS patients. Interestingly, a detailed examination of frequency modulated vocalizations that are believed to be a better assessment of rodent communication has never been conducted. The following study used courtship separation to conduct a detailed examination of frequency modulated ultrasonic vocalizations (USV) in FXS mice. Our analyses of frequency modulated USVs demonstrated that adult FXS mice exhibited longer phrases and more motifs. Phrases are vocalizations consisting of multiple frequency modulated ultrasonic vocalizations, while motifs are repeated frequency modulated USV patterns. Fragile X mice had a higher proportion of "u" syllables in all USVs and phrases while their wildtype counterparts preferred isolated "h" syllables. Although the specific importance of these syllables towards communication deficits still needs to be evaluated, these findings in production of USVs are consistent with the repetitive and perseverative speech patterns observed in FXS patients. This study demonstrates that FXS mice can be used to study the underlying biological mechanism(s) mediating FXS vocalization abnormalities. Copyright © 2016 Elsevier B.V. All rights reserved.
Amaya, Kensey R; Sweedler, Jonathan V; Clayton, David F
2011-08-01
Fatty acids are central to brain metabolism and signaling, but their distributions within complex brain circuits have been difficult to study. Here we applied an emerging technique, time-of-flight secondary ion mass spectrometry (ToF-SIMS), to image specific fatty acids in a favorable model system for chemical analyses of brain circuits, the zebra finch (Taeniopygia guttata). The zebra finch, a songbird, produces complex learned vocalizations under the control of an interconnected set of discrete, dedicated brain nuclei 'song nuclei'. Using ToF-SIMS, the major song nuclei were visualized by virtue of differences in their content of essential and non-essential fatty acids. Essential fatty acids (arachidonic acid and docosahexaenoic acid) showed distinctive distributions across the song nuclei, and the 18-carbon fatty acids stearate and oleate discriminated the different core and shell subregions of the lateral magnocellular nucleus of the anterior nidopallium. Principal component analysis of the spectral data set provided further evidence of chemical distinctions between the song nuclei. By analyzing the robust nucleus of the arcopallium at three different ages during juvenile song learning, we obtain the first direct evidence of changes in lipid content that correlate with progression of song learning. The results demonstrate the value of ToF-SIMS to study lipids in a favorable model system for probing the function of lipids in brain organization, development and function. © 2011 The Authors. Journal of Neurochemistry © 2011 International Society for Neurochemistry.
Keough, Dwayne
2011-01-01
Research on the control of visually guided limb movements indicates that the brain learns and continuously updates an internal model that maps the relationship between motor commands and sensory feedback. A growing body of work suggests that an internal model that relates motor commands to sensory feedback also supports vocal control. There is evidence from arm-reaching studies that shows that when provided with a contextual cue, the motor system can acquire multiple internal models, which allows an animal to adapt to different perturbations in diverse contexts. In this study we show that trained singers can rapidly acquire multiple internal models regarding voice fundamental frequency (F0). These models accommodate different perturbations to ongoing auditory feedback. Participants heard three musical notes and reproduced each one in succession. The musical targets could serve as a contextual cue to indicate which direction (up or down) feedback would be altered on each trial; however, participants were not explicitly instructed to use this strategy. When participants were gradually exposed to altered feedback adaptation was observed immediately following vocal onset. Aftereffects were target specific and did not influence vocal productions on subsequent trials. When target notes were no longer a contextual cue, adaptation occurred during altered feedback trials and evidence for trial-by-trial adaptation was found. These findings indicate that the brain is exceptionally sensitive to the deviations between auditory feedback and the predicted consequence of a motor command during vocalization. Moreover, these results indicate that, with contextual cues, the vocal control system may maintain multiple internal models that are capable of independent modification during different tasks or environments. PMID:21346208
Fee, Michale S.
2011-01-01
Learned motor behaviors require descending forebrain control to be coordinated with midbrain and brainstem motor systems. In songbirds, such as the zebra finch, regular breathing is controlled by brainstem centers, but when the adult songbird begins to sing, its breathing becomes tightly coordinated with forebrain-controlled vocalizations. The periods of silence (gaps) between song syllables are typically filled with brief breaths, allowing the bird to sing uninterrupted for many seconds. While substantial progress has been made in identifying the brain areas and pathways involved in vocal and respiratory control, it is not understood how respiratory and vocal control is coordinated by forebrain motor circuits. Here we combine a recently developed technique for localized brain cooling, together with recordings of thoracic air sac pressure, to examine the role of cortical premotor nucleus HVC (proper name) in respiratory-vocal coordination. We found that HVC cooling, in addition to slowing all song timescales as previously reported, also increased the duration of expiratory pulses (EPs) and inspiratory pulses (IPs). Expiratory pulses, like song syllables, were stretched uniformly by HVC cooling, but most inspiratory pulses exhibited non-uniform stretch of pressure waveform such that the majority of stretch occurred late in the IP. Indeed, some IPs appeared to change duration by the earlier or later truncation of an underlying inspiratory event. These findings are consistent with the idea that during singing the temporal structure of EPs is under the direct control of forebrain circuits, whereas that of IPs can be strongly influenced by circuits downstream of HVC, likely in the brainstem. An analysis of the temporal jitter of respiratory and vocal structure suggests that IPs may be initiated by HVC at the end of each syllable and terminated by HVC immediately before the onset of the next syllable. PMID:21980466
Garland, Ellen C; Goldizen, Anne W; Lilley, Matthew S; Rekdahl, Melinda L; Garrigue, Claire; Constantine, Rochelle; Hauser, Nan Daeschler; Poole, M Michael; Robbins, Jooke; Noad, Michael J
2015-08-01
For cetaceans, population structure is traditionally determined by molecular genetics or photographically identified individuals. Acoustic data, however, has provided information on movement and population structure with less effort and cost than traditional methods in an array of taxa. Male humpback whales (Megaptera novaeangliae) produce a continually evolving vocal sexual display, or song, that is similar among all males in a population. The rapid cultural transmission (the transfer of information or behavior between conspecifics through social learning) of different versions of this display between distinct but interconnected populations in the western and central South Pacific region presents a unique way to investigate population structure based on the movement dynamics of a song (acoustic) display. Using 11 years of data, we investigated an acoustically based population structure for the region by comparing stereotyped song sequences among populations and years. We used the Levenshtein distance technique to group previously defined populations into (vocally based) clusters based on the overall similarity of their song display in space and time. We identified the following distinct vocal clusters: western cluster, 1 population off eastern Australia; central cluster, populations around New Caledonia, Tonga, and American Samoa; and eastern region, either a single cluster or 2 clusters, one around the Cook Islands and the other off French Polynesia. These results are consistent with the hypothesis that each breeding aggregation represents a distinct population (each occupied a single, terminal node) in a metapopulation, similar to the current understanding of population structure based on genetic and photo-identification studies. However, the central vocal cluster had higher levels of song-sharing among populations than the other clusters, indicating that levels of vocal connectivity varied within the region. Our results demonstrate the utility and value of using culturally transmitted vocal patterns as a way of defining connectivity to infer population structure. We suggest vocal patterns be incorporated by the International Whaling Commission in conjunction with traditional methods in the assessment of structure. © 2015, Society for Conservation Biology.
Ellis, Jesse M S; Riters, Lauren V
2012-01-01
Transmitting information via communicative signals is integral to interacting with conspecifics, and some species achieve this task by varying vocalizations to reflect context. Although signal variation is critical to social interactions, the underlying neural control has not been studied. In response to a predator, black-capped chickadees (Poecile atricapilla) produce mobbing calls (chick-a-dee calls) with various parameters, some of which convey information about the threat stimulus. We predicted that vocal parameters indicative of threat would be associated with distinct patterns of neuronal activity within brain areas involved in social behavior and those involved in the sensorimotor control of vocal production. To test this prediction, we measured the syntax and structural aspects of chick-a-dee call production in response to a hawk model and assessed the protein product of the immediate early gene FOS in brain regions implicated in context-specific vocal and social behavior. These regions include the medial preoptic area (POM) and lateral septum (LS), as well as regions involved in vocal motor control, including the dorsomedial nucleus of the intercollicular complex and the HVC. We found correlations linking call rate (previously demonstrated to reflect threat) to labeling in the POM and LS. Labeling in the HVC correlated with the number of D notes per call, which may also signal threat level. Labeling in the call control region dorsomedial nucleus was associated with the structure of D notes and the overall number of notes, but not call rate or type of notes produced. These results suggest that the POM and LS may influence attributes of vocalizations produced in response to predators and that the brain region implicated in song control, the HVC, also influences call production. Because variation in chick-a-dee call rate indicates predator threat, we speculate that these areas could integrate with motor control regions to imbue mobbing signals with additional information about threat level. Copyright © 2011 S. Karger AG, Basel.
Physically Challenging Song Traits, Male Quality, and Reproductive Success in House Wrens
Cramer, Emily R. A.
2013-01-01
Physically challenging signals are likely to honestly indicate signaler quality. In trilled bird song two physically challenging parameters are vocal deviation (the speed of sound frequency modulation) and trill consistency (how precisely syllables are repeated). As predicted, in several species, they correlate with male quality, are preferred by females, and/or function in male-male signaling. Species may experience different selective pressures on their songs, however; for instance, there may be opposing selection between song complexity and song performance difficulty, such that in species where song complexity is strongly selected, there may not be strong selection on performance-based traits. I tested whether vocal deviation and trill consistency are signals of male quality in house wrens (Troglodytes aedon), a species with complex song structure. Males’ singing ability did not correlate with male quality, except that older males sang with higher trill consistency, and males with more consistent trills responded more aggressively to playback (although a previous study found no effect of stimulus trill consistency on males’ responses to playback). Males singing more challenging songs did not gain in polygyny, extra-pair paternity, or annual reproductive success. Moreover, none of the standard male quality measures I investigated correlated with mating or reproductive success. I conclude that vocal deviation and trill consistency do not signal male quality in this species. PMID:23527137
Embodied Pronunciation Learning: Research and Practice
ERIC Educational Resources Information Center
Chan, Marsha J.
2018-01-01
This article summarizes research on body language, embodiment, and the incorporation of proprioception, physical movement, gestures, and touch into second language education, particularly with regard to the pronunciation of English. It asserts that careful attention to breathing, vocalization, articulatory positions, pulmonic and tactile…
The neural dynamics of song syntax in songbirds
NASA Astrophysics Data System (ADS)
Jin, Dezhe
2010-03-01
Songbird is ``the hydrogen atom'' of the neuroscience of complex, learned vocalizations such as human speech. Songs of Bengalese finch consist of sequences of syllables. While syllables are temporally stereotypical, syllable sequences can vary and follow complex, probabilistic syntactic rules, which are rudimentarily similar to grammars in human language. Songbird brain is accessible to experimental probes, and is understood well enough to construct biologically constrained, predictive computational models. In this talk, I will discuss the structure and dynamics of neural networks underlying the stereotypy of the birdsong syllables and the flexibility of syllable sequences. Recent experiments and computational models suggest that a syllable is encoded in a chain network of projection neurons in premotor nucleus HVC (proper name). Precisely timed spikes propagate along the chain, driving vocalization of the syllable through downstream nuclei. Through a computational model, I show that that variable syllable sequences can be generated through spike propagations in a network in HVC in which the syllable-encoding chain networks are connected into a branching chain pattern. The neurons mutually inhibit each other through the inhibitory HVC interneurons, and are driven by external inputs from nuclei upstream of HVC. At a branching point that connects the final group of a chain to the first groups of several chains, the spike activity selects one branch to continue the propagation. The selection is probabilistic, and is due to the winner-take-all mechanism mediated by the inhibition and noise. The model predicts that the syllable sequences statistically follow partially observable Markov models. Experimental results supporting this and other predictions of the model will be presented. We suggest that the syntax of birdsong syllable sequences is embedded in the connection patterns of HVC projection neurons.
Using nonlinear methods to quantify changes in infant limb movements and vocalizations.
Abney, Drew H; Warlaumont, Anne S; Haussman, Anna; Ross, Jessica M; Wallot, Sebastian
2014-01-01
The pairing of dynamical systems theory and complexity science brings novel concepts and methods to the study of infant motor development. Accordingly, this longitudinal case study presents a new approach to characterizing the dynamics of infant limb and vocalization behaviors. A single infant's vocalizations and limb movements were recorded from 51-days to 305-days of age. On each recording day, accelerometers were placed on all four of the infant's limbs and an audio recorder was worn on the child's chest. Using nonlinear time series analysis methods, such as recurrence quantification analysis and Allan factor, we quantified changes in the stability and multiscale properties of the infant's behaviors across age as well as how these dynamics relate across modalities and effectors. We observed that particular changes in these dynamics preceded or coincided with the onset of various developmental milestones. For example, the largest changes in vocalization dynamics preceded the onset of canonical babbling. The results show that nonlinear analyses can help to understand the functional co-development of different aspects of infant behavior.
Using nonlinear methods to quantify changes in infant limb movements and vocalizations
Abney, Drew H.; Warlaumont, Anne S.; Haussman, Anna; Ross, Jessica M.; Wallot, Sebastian
2014-01-01
The pairing of dynamical systems theory and complexity science brings novel concepts and methods to the study of infant motor development. Accordingly, this longitudinal case study presents a new approach to characterizing the dynamics of infant limb and vocalization behaviors. A single infant's vocalizations and limb movements were recorded from 51-days to 305-days of age. On each recording day, accelerometers were placed on all four of the infant's limbs and an audio recorder was worn on the child's chest. Using nonlinear time series analysis methods, such as recurrence quantification analysis and Allan factor, we quantified changes in the stability and multiscale properties of the infant's behaviors across age as well as how these dynamics relate across modalities and effectors. We observed that particular changes in these dynamics preceded or coincided with the onset of various developmental milestones. For example, the largest changes in vocalization dynamics preceded the onset of canonical babbling. The results show that nonlinear analyses can help to understand the functional co-development of different aspects of infant behavior. PMID:25161629
Valentinuzzi, Veronica S.; Zufiaurre, Emmanuel
2016-01-01
The underground environment poses particular communication challenges for subterranean rodents. Some loud and low-pitched acoustic signals that can travel long distances are appropriate for long-range underground communication and have been suggested to be territorial signals. Long-range vocalizations (LRVs) are important in long-distance communication in Ctenomys tuco-tucos. We characterized the LRV of the Anillaco Tuco-Tuco (Ctenomys sp.) using recordings from free-living individuals and described the behavioral context in which this vocalization was produced during laboratory staged encounters between individuals of both sexes. Long-range calls of Anillaco tuco-tucos are low-frequency, broad-band, loud, and long sounds composed by the repetition of two syllable types: series (formed by notes and soft-notes) and individual notes. All vocalizations were initiated with series, but not all had individual notes. Males were heavier than females and gave significantly lower-pitched vocalizations, but acoustic features were independent of body mass in males. The pronounced variation among individuals in the arrangement and number of syllables and the existence of three types of series (dyads, triads, and tetrads), created a diverse collection of syntactic patterns in vocalizations that would provide the opportunity to encode multiple types of information. The existence of complex syntactic patterns and the description of soft-notes represent new aspects of the vocal communication of Ctenomys. Long-distance vocalizations by Anillaco Tuco-Tucos appear to be territorial signals used mostly in male-male interactions. First, emission of LRVs resulted in de-escalation or space-keeping in male-male and male-female encounters in laboratory experiments. Second, these vocalizations were produced most frequently (in the field and in the lab) by males in our study population. Third, males produced LRVs with greater frequency during male-male encounters compared to male-female encounters. Finally, males appear to have larger home ranges that were more spatially segregated than those of females, suggesting that males may have greater need for long-distance signals that advertise their presence. Due to their apparent rarity, the function and acoustic features of LRV in female tuco-tucos remain inadequately known. PMID:27761344
Fourier Analysis and the Rhythm of Conversation.
ERIC Educational Resources Information Center
Dabbs, James M., Jr.
Fourier analysis, a common technique in engineering, breaks down a complex wave form into its simple sine wave components. Communication researchers have recently suggested that this technique may provide an index of the rhythm of conversation, since vocalizing and pausing produce a complex wave form pattern of alternation between two speakers. To…
Tanaka, Masashi; Singh Alvarado, Jonnathan; Murugan, Malavika; Mooney, Richard
2016-01-01
The basal ganglia (BG) promote complex sequential movements by helping to select elementary motor gestures appropriate to a given behavioral context. Indeed, Huntington’s disease (HD), which causes striatal atrophy in the BG, is characterized by hyperkinesia and chorea. How striatal cell loss alters activity in the BG and downstream motor cortical regions to cause these disorganized movements remains unknown. Here, we show that expressing the genetic mutation that causes HD in a song-related region of the songbird BG destabilizes syllable sequences and increases overall vocal activity, but leave the structure of individual syllables intact. These behavioral changes are paralleled by the selective loss of striatal neurons and reduction of inhibitory synapses on pallidal neurons that serve as the BG output. Chronic recordings in singing birds revealed disrupted temporal patterns of activity in pallidal neurons and downstream cortical neurons. Moreover, reversible inactivation of the cortical neurons rescued the disorganized vocal sequences in transfected birds. These findings shed light on a key role of temporal patterns of cortico-BG activity in the regulation of complex motor sequences and show how a genetic mutation alters cortico-BG networks to cause disorganized movements. PMID:26951661
Structure and dynamics of human communication at the beginning of life.
Papousek, H; Papousek, M
1986-01-01
Although the beginning of postpartum social integration and communication has been long viewed as relevant to psychiatric theories, early parent-infant communication has become a matter of scientific investigation only recently. The present survey explains the significance of an approach based upon the general systems theory and explores to what extent the early parent-infant interaction can function as a didactic system to support the development of thought and speech. Evidence of this function has been found in those forms of parental behavior that escape the parent's conscious awareness and control, as exemplified in the vocal communication with presyllabic infants. Parents unknowingly adjust the structure and dynamics of speech to the constraints of infant capacities, detach prosodic musicality from lexical structure, and use it in particularly expressive forms for the delivery of the first prototypical messages. In this and other similar ways, parents offer an abundance of learning situations in which infants can try out various integrative operations. A biological rather than cultural provenience of the support of communicative development indicates a potential relevance for the interpretation of speech evolution. In addition to qualities of the vocal tract and to complex symbolic capacities in humans, the early intuitive support of communicative development and its playful character are suggested as species-specific determinants of speech evolution. Implications for clinical research are suggested.
Bennur, Sharath; Tsunada, Joji; Cohen, Yale E; Liu, Robert C
2013-11-01
Acoustic communication between animals requires them to detect, discriminate, and categorize conspecific or heterospecific vocalizations in their natural environment. Laboratory studies of the auditory-processing abilities that facilitate these tasks have typically employed a broad range of acoustic stimuli, ranging from natural sounds like vocalizations to "artificial" sounds like pure tones and noise bursts. However, even when using vocalizations, laboratory studies often test abilities like categorization in relatively artificial contexts. Consequently, it is not clear whether neural and behavioral correlates of these tasks (1) reflect extensive operant training, which drives plastic changes in auditory pathways, or (2) the innate capacity of the animal and its auditory system. Here, we review a number of recent studies, which suggest that adopting more ethological paradigms utilizing natural communication contexts are scientifically important for elucidating how the auditory system normally processes and learns communication sounds. Additionally, since learning the meaning of communication sounds generally involves social interactions that engage neuromodulatory systems differently than laboratory-based conditioning paradigms, we argue that scientists need to pursue more ethological approaches to more fully inform our understanding of how the auditory system is engaged during acoustic communication. This article is part of a Special Issue entitled "Communication Sounds and the Brain: New Directions and Perspectives". Copyright © 2013 Elsevier B.V. All rights reserved.
Collaborative Learning in Two Vocal Conservatoire Courses
ERIC Educational Resources Information Center
Rumiantsev, Tamara W.; Maas, Annemarie; Admiraal, Wilfried
2017-01-01
The apprenticeship tradition in conservatoire education assumes that teachers' expertise is the main source for the development of future music professionals. However, the professional practice of vocalists is nearly completely based on collaboration, such as with other vocalists, instrumentalists, accompanists, orchestras, conductors, or stage…
Production and survival of projection neurons in a forebrain vocal center of adult male canaries
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kirn, J.R.; Alvarez-Buylla, A.; Nottebohm, F.
1991-06-01
Neurons are produced in the adult canary telencephalon. Many of these cells are incorporated into the high vocal center (nucleus HVC), which participates in the control of learned song. In the present work, 3H-thymidine and fluorogold were employed to follow the differentiation and survival of HVC neurons born in adulthood. We found that many HVC neurons born in September grow long axons to the robust nucleus of the archistriatum (nucleus RA) and thus become part of the efferent pathway for song control. Many of these new neurons have already established their connections with RA by 30 d after their birth.more » By 240 d, 75-80% of the September-born HVC neurons project to RA. Most of these new projection neurons survive at least 8 months. The longevity of HVC neurons born in September suggests that these cells remain part of the vocal control circuit long enough to participate in the yearly renewal of the song repertoire.« less
Laukka, Petri; Neiberg, Daniel; Elfenbein, Hillary Anger
2014-06-01
The possibility of cultural differences in the fundamental acoustic patterns used to express emotion through the voice is an unanswered question central to the larger debate about the universality versus cultural specificity of emotion. This study used emotionally inflected standard-content speech segments expressing 11 emotions produced by 100 professional actors from 5 English-speaking cultures. Machine learning simulations were employed to classify expressions based on their acoustic features, using conditions where training and testing were conducted on stimuli coming from either the same or different cultures. A wide range of emotions were classified with above-chance accuracy in cross-cultural conditions, suggesting vocal expressions share important characteristics across cultures. However, classification showed an in-group advantage with higher accuracy in within- versus cross-cultural conditions. This finding demonstrates cultural differences in expressive vocal style, and supports the dialect theory of emotions according to which greater recognition of expressions from in-group members results from greater familiarity with culturally specific expressive styles.
Development of auditory sensitivity in budgerigars (Melopsittacus undulatus)
NASA Astrophysics Data System (ADS)
Brittan-Powell, Elizabeth F.; Dooling, Robert J.
2004-06-01
Auditory feedback influences the development of vocalizations in songbirds and parrots; however, little is known about the development of hearing in these birds. The auditory brainstem response was used to track the development of auditory sensitivity in budgerigars from hatch to 6 weeks of age. Responses were first obtained from 1-week-old at high stimulation levels at frequencies at or below 2 kHz, showing that budgerigars do not hear well at hatch. Over the next week, thresholds improved markedly, and responses were obtained for almost all test frequencies throughout the range of hearing by 14 days. By 3 weeks posthatch, birds' best sensitivity shifted from 2 to 2.86 kHz, and the shape of the auditory brainstem response (ABR) audiogram became similar to that of adult budgerigars. About a week before leaving the nest, ABR audiograms of young budgerigars are very similar to those of adult birds. These data complement what is known about vocal development in budgerigars and show that hearing is fully developed by the time that vocal learning begins.
Schneider, David M; Woolley, Sarah M N
2010-06-01
Many social animals including songbirds use communication vocalizations for individual recognition. The perception of vocalizations depends on the encoding of complex sounds by neurons in the ascending auditory system, each of which is tuned to a particular subset of acoustic features. Here, we examined how well the responses of single auditory neurons could be used to discriminate among bird songs and we compared discriminability to spectrotemporal tuning. We then used biologically realistic models of pooled neural responses to test whether the responses of groups of neurons discriminated among songs better than the responses of single neurons and whether discrimination by groups of neurons was related to spectrotemporal tuning and trial-to-trial response variability. The responses of single auditory midbrain neurons could be used to discriminate among vocalizations with a wide range of abilities, ranging from chance to 100%. The ability to discriminate among songs using single neuron responses was not correlated with spectrotemporal tuning. Pooling the responses of pairs of neurons generally led to better discrimination than the average of the two inputs and the most discriminating input. Pooling the responses of three to five single neurons continued to improve neural discrimination. The increase in discriminability was largest for groups of neurons with similar spectrotemporal tuning. Further, we found that groups of neurons with correlated spike trains achieved the largest gains in discriminability. We simulated neurons with varying levels of temporal precision and measured the discriminability of responses from single simulated neurons and groups of simulated neurons. Simulated neurons with biologically observed levels of temporal precision benefited more from pooling correlated inputs than did neurons with highly precise or imprecise spike trains. These findings suggest that pooling correlated neural responses with the levels of precision observed in the auditory midbrain increases neural discrimination of complex vocalizations.
Avey, Marc T; Hoeschele, Marisa; Moscicki, Michele K; Bloomfield, Laurie L; Sturdy, Christopher B
2011-01-01
Songbird auditory areas (i.e., CMM and NCM) are preferentially activated to playback of conspecific vocalizations relative to heterospecific and arbitrary noise. Here, we asked if the neural response to auditory stimulation is not simply preferential for conspecific vocalizations but also for the information conveyed by the vocalization. Black-capped chickadees use their chick-a-dee mobbing call to recruit conspecifics and other avian species to mob perched predators. Mobbing calls produced in response to smaller, higher-threat predators contain more "D" notes compared to those produced in response to larger, lower-threat predators and thus convey the degree of threat of predators. We specifically asked whether the neural response varies with the degree of threat conveyed by the mobbing calls of chickadees and whether the neural response is the same for actual predator calls that correspond to the degree of threat of the chickadee mobbing calls. Our results demonstrate that, as degree of threat increases in conspecific chickadee mobbing calls, there is a corresponding increase in immediate early gene (IEG) expression in telencephalic auditory areas. We also demonstrate that as the degree of threat increases for the heterospecific predator, there is a corresponding increase in IEG expression in the auditory areas. Furthermore, there was no significant difference in the amount IEG expression between conspecific mobbing calls or heterospecific predator calls that were the same degree of threat. In a second experiment, using hand-reared chickadees without predator experience, we found more IEG expression in response to mobbing calls than corresponding predator calls, indicating that degree of threat is learned. Our results demonstrate that degree of threat corresponds to neural activity in the auditory areas and that threat can be conveyed by different species signals and that these signals must be learned.
Early life stress impairs contextual threat expression in female, but not male, mice.
Manzano-Nieves, Gabriela; Gaillard, Mizan; Gallo, Meghan; Bath, Kevin G
2018-05-21
Early life stress (ELS) is associated with altered processing of threat signals, and increased lifetime risk of anxiety and affective pathology, disorders that disproportionately affect females. We tested the impact of a limited bedding paradigm of ELS (from P4-11) on contextual threat learning, context memory, footshock sensitivity, and anxietylike behavior, in adult male and female mice. To examine contextual threat learning, mice conditioned by context/footshock association were tested 24 hr later for the context memory. To determine the effect of ELS on footshock sensitivity, a separate cohort of mice were exposed to footshocks of increasing intensity (0.06 to 0.40 mA) and behavioral responses (jump and audible vocalization) were assessed by observers blind to treatment condition, sex, and cycle stage. ELS impaired context memory in female, but not male, mice. ELS increased footshock-induced threshold to vocalize, but not to jump, in both sexes. In female mice, this effect was most apparent during estrus. Decreased body weight, indicative of higher stress incurred by an individual mouse, correlated with increased threshold to jump in both sexes reared in ELS, and to audibly vocalize in ELS females. As ELS effects on shock sensitivity were present in both sexes, the contextual recall deficit in females was not likely driven by changes in the salience of aversive footshocks. No effects on anxietylike behavior, as measured in the elevated plus maze (EPM), were observed. More work is needed to better understand the impact of ELS on both somatic and gonadal development, and their potential contribution to threat learning. (PsycINFO Database Record (c) 2018 APA, all rights reserved).
Singer, Magi; Saint Georges, Catherine; Bodeau, Nicolas; Chetouani, Mohamed; Cohen, David; Feldman, Ruth
2018-01-01
Language has long been identified as a powerful communicative tool among humans. Yet, pre-linguistic communication, which is common in many species, is also used by human infants prior to the acquisition of language. The potential communicational value of pre-linguistic vocal interactions between human infants and mothers has been studied in the past decades. With 120 dyads (mothers and three- or six-month-old infants), we used the classical Still Face Paradigm (SFP) in which mothers interact freely with their infants, then refrain from communication (Still Face, SF), and finally resume play. We employed innovative automated techniques to measure infant and maternal vocalization and pause, and dyadic parameters (infant response to mother, joint silence and overlap) and the emotional component of Infant Directed Speech (e-IDS) throughout the interaction. We showed that: (i) during the initial free play mothers use longer vocalizations and more e-IDS when they interact with older infants and (ii) infant boys exhibit longer vocalizations and shorter pauses than girls. (iii) During the SF and reunion phases, infants show marked and sustained changes in vocalizations but their mothers do not and (iv) mother–infant dyadic parameters increase in the reunion phase. Our quantitative results show that infants, from the age of three months, actively participate to restore the interactive loop after communicative ruptures long before vocalizations show clear linguistic meaning. Thus, auditory signals provide from early in life a channel by which infants co-create interactions, enhancing the mother–infant bond. PMID:29410790
Prenatal stress changes courtship vocalizations and bone mineral density in mice.
Schmidt, Michaela; Lapert, Florian; Brandwein, Christiane; Deuschle, Michael; Kasperk, Christian; Grimsley, Jasmine M; Gass, Peter
2017-01-01
Stress during the prenatal period has various effects on social and sexual behavior in both human and animal offspring. The present study examines the effects of chronic restraint stress in the second vs third trimester in pregnancy and glucocorticoid receptor (GR) heterozygous mutation on C57BL/6N male offspring's vocal courtship behavior in adulthood by applying a novel analyzing method. Finally, corticosterone and testosterone levels as well as bone mineral density were measured. Prenatal stress in the third, but not in the second trimester caused a significant qualitative change in males' courtship vocalizations, independent of their GR genotype. Bone mineral density was decreased also by prenatal stress exclusively in the third trimester in GR mutant and wildtype mice and - in contrast to corticosterone and testosterone - highly correlated with courtship vocalizations. In Gr +/- males corticosterone serum levels were significantly increased in animals that had experienced prenatal stress in the third trimester. Testosterone serum levels were overall increased in Gr +/- males in comparison to wildtypes as a tendency - whereas prenatal stress had no influence. Prenatal stress alters adult males' courtship vocalizations exclusively when applied in the third trimester, with closely related changes in bone mineral density. Bone mineral density seems to reflect best the complex neuroendocrine mechanisms underlying the production of courtship vocalizations. Besides, we demonstrated for the first time elevated basal corticosterone levels in Gr +/- males after prenatal stress which suggests that the Gr +/- mouse model of depression might also serve as a model of prenatal stress in male offspring. Copyright © 2016 Elsevier Ltd. All rights reserved.
The opportunities and challenges of large-scale molecular approaches to songbird neurobiology
Mello, C.V.; Clayton, D.F.
2014-01-01
High-through put methods for analyzing genome structure and function are having a large impact in song-bird neurobiology. Methods include genome sequencing and annotation, comparative genomics, DNA microarrays and transcriptomics, and the development of a brain atlas of gene expression. Key emerging findings include the identification of complex transcriptional programs active during singing, the robust brain expression of non-coding RNAs, evidence of profound variations in gene expression across brain regions, and the identification of molecular specializations within song production and learning circuits. Current challenges include the statistical analysis of large datasets, effective genome curations, the efficient localization of gene expression changes to specific neuronal circuits and cells, and the dissection of behavioral and environmental factors that influence brain gene expression. The field requires efficient methods for comparisons with organisms like chicken, which offer important anatomical, functional and behavioral contrasts. As sequencing costs plummet, opportunities emerge for comparative approaches that may help reveal evolutionary transitions contributing to vocal learning, social behavior and other properties that make songbirds such compelling research subjects. PMID:25280907
Ivanova, Tamara N; Gross, Christina; Mappus, Rudolph C; Kwon, Yong Jun; Bassell, Gary J; Liu, Robert C
2017-12-01
Learning to recognize a stimulus category requires experience with its many natural variations. However, the mechanisms that allow a category's sensorineural representation to be updated after experiencing new exemplars are not well understood, particularly at the molecular level. Here we investigate how a natural vocal category induces expression in the auditory system of a key synaptic plasticity effector immediate early gene, Arc/Arg3.1 , which is required for memory consolidation. We use the ultrasonic communication system between mouse pups and adult females to study whether prior familiarity with pup vocalizations alters how Arc is engaged in the core auditory cortex after playback of novel exemplars from the pup vocal category. A computerized, 3D surface-assisted cellular compartmental analysis, validated against manual cell counts, demonstrates significant changes in the recruitment of neurons expressing Arc in pup-experienced animals (mothers and virgin females "cocaring" for pups) compared with pup-inexperienced animals (pup-naïve virgins), especially when listening to more familiar, natural calls compared to less familiar but similarly recognized tonal model calls. Our data support the hypothesis that the kinetics of Arc induction to refine cortical representations of sensory categories is sensitive to the familiarity of the sensory experience. © 2017 Ivanova et al.; Published by Cold Spring Harbor Laboratory Press.
L1 literacy affects L2 pronunciation intake and text vocalization
NASA Astrophysics Data System (ADS)
Walton, Martin
2005-04-01
For both deaf and hearing learners, L1 acquisition calls on auditive, gestural and visual modes in progressive processes over longer stages imposed in strictly anatomical and social order from the earliest pre-lexical phase [Jusczyk (1993), Kuhl & Meltzoff (1996)] to ultimate literacy. By contrast, L2 learning will call on accelerating procedures but with restricted input, arbitrated by L1 literacy as can be traced in the English of French-speaking learners, whether observed in spontaneous speech or in text vocalization modes. An inventory of their predictable omissions, intrusions and substitutions at suprasegmental and syllabic levels, many of which they can actually hear while unable to vocalize in real-time, suggests that a photogenic segmentation of continuous speech into alphabetical units has eclipsed the indispensable earlier phonogenic module, filtering L2 intake and output. This competing mode analysis hypothesizes a critical effect on L2 pronunciation of L1 graphemic procedures acquired usually before puberty, informing data for any Critical Period Hypothesis or amounts of L1 activation influencing L2 accent [Flege (1997, 1998)] or any psychoacoustic French deafness with regard to English stress-timing [Dupoux (1997)]. A metaphonic model [Howell & Dean (1991)] adapted for French learners may remedially distance L1 from L2 vocalization procedures.
Rehn, Nicola; Filatova, Olga A; Durban, John W; Foote, Andrew D
2011-01-01
Facial and vocal expressions of emotion have been found in a number of social mammal species and are thought to have evolved to aid social communication. There has been much debate about whether such signals are culturally inherited or are truly biologically innate. Evidence for the innateness of such signals can come from cross-cultural studies. Previous studies have identified a vocalisation (the V4 or 'excitement' call) associated with high arousal behaviours in a population of killer whales in British Columbia, Canada. In this study, we compared recordings from three different socially and reproductively isolated ecotypes of killer whales, including five vocal clans of one ecotype, each clan having discrete culturally transmitted vocal traditions. The V4 call was found in recordings of each ecotype and each vocal clan. Nine independent observers reproduced our classification of the V4 call from each population with high inter-observer agreement. Our results suggest the V4 call may be universal in Pacific killer whale populations and that transmission of this call is independent of cultural tradition or ecotype. We argue that such universality is more consistent with an innate vocalisation than one acquired through social learning and may be linked to its apparent function of motivational expression.
NASA Astrophysics Data System (ADS)
Rehn, Nicola; Filatova, Olga A.; Durban, John W.; Foote, Andrew D.
2011-01-01
Facial and vocal expressions of emotion have been found in a number of social mammal species and are thought to have evolved to aid social communication. There has been much debate about whether such signals are culturally inherited or are truly biologically innate. Evidence for the innateness of such signals can come from cross-cultural studies. Previous studies have identified a vocalisation (the V4 or `excitement' call) associated with high arousal behaviours in a population of killer whales in British Columbia, Canada. In this study, we compared recordings from three different socially and reproductively isolated ecotypes of killer whales, including five vocal clans of one ecotype, each clan having discrete culturally transmitted vocal traditions. The V4 call was found in recordings of each ecotype and each vocal clan. Nine independent observers reproduced our classification of the V4 call from each population with high inter-observer agreement. Our results suggest the V4 call may be universal in Pacific killer whale populations and that transmission of this call is independent of cultural tradition or ecotype. We argue that such universality is more consistent with an innate vocalisation than one acquired through social learning and may be linked to its apparent function of motivational expression.
Hemispheric differences in processing of vocalizations depend on early experience.
Phan, Mimi L; Vicario, David S
2010-02-02
An intriguing phenomenon in the neurobiology of language is lateralization: the dominant role of one hemisphere in a particular function. Lateralization is not exclusive to language because lateral differences are observed in other sensory modalities, behaviors, and animal species. Despite much scientific attention, the function of lateralization, its possible dependence on experience, and the functional implications of such dependence have yet to be clearly determined. We have explored the role of early experience in the development of lateralized sensory processing in the brain, using the songbird model of vocal learning. By controlling exposure to natural vocalizations (through isolation, song tutoring, and muting), we manipulated the postnatal auditory environment of developing zebra finches, and then assessed effects on hemispheric specialization for communication sounds in adulthood. Using bilateral multielectrode recordings from a forebrain auditory area known to selectively process species-specific vocalizations, we found that auditory responses to species-typical songs and long calls, in both male and female birds, were stronger in the right hemisphere than in the left, and that right-side responses adapted more rapidly to stimulus repetition. We describe specific instances, particularly in males, where these lateral differences show an influence of auditory experience with song and/or the bird's own voice during development.
Recursive Vocal Pattern Learning and Generalization in Starlings
ERIC Educational Resources Information Center
Bloomfield, Tiffany Corinna
2012-01-01
Among known communication systems, human language alone exhibits open-ended productivity of meaning. Interest in the psychological mechanisms supporting this ability, and their evolutionary origins, has resurged following the suggestion that the only uniquely human ability underlying language is a mechanism of recursion. This "Unique…
The Molecular Basis of Human Brain Evolution.
Enard, Wolfgang
2016-10-24
Humans are a remarkable species, especially because of the remarkable properties of their brain. Since the split from the chimpanzee lineage, the human brain has increased three-fold in size and has acquired abilities for vocal learning, language and intense cooperation. To better understand the molecular basis of these changes is of great biological and biomedical interest. However, all the about 16 million fixed genetic changes that occurred during human evolution are fully correlated with all molecular, cellular, anatomical and behavioral changes that occurred during this time. Hence, as humans and chimpanzees cannot be crossed or genetically manipulated, no direct evidence for linking particular genetic and molecular changes to human brain evolution can be obtained. Here, I sketch a framework how indirect evidence can be obtained and review findings related to the molecular basis of human cognition, vocal learning and brain size. In particular, I discuss how a comprehensive comparative approach, leveraging cellular systems and genomic technologies, could inform the evolution of our brain in the future. Copyright © 2016 Elsevier Ltd. All rights reserved.
Wohlgemuth, Sandra; Adam, Iris; Scharff, Constance
2014-10-01
Humans with mutations in the transcription factor FOXP2 display a severe speech disorder. Songbirds are a powerful model system to study FoxP2. Like humans, songbirds communicate via vocalizations that are imitatively learned during critical periods and this learning is influenced by social factors and relies on functionally lateralized neural circuits. During the past five years significant progress has been made moving from a descriptive to a more mechanistic understanding of how FoxP2 functions in songbirds. Current evidence from molecular and electrophysiological studies indicates that FoxP2 is important for shaping synaptic plasticity of specific neuron populations. One future goal will be to identify the transcriptional regulation orchestrated by FoxP2 and its associated molecular network that brings about these physiological effects. This will be key to further unravel how FoxP2 influences synaptic function and thereby contributes to auditory guided vocal motor behavior in the songbird model. Copyright © 2014 Elsevier Ltd. All rights reserved.
Shapes and sounds as self-objects in learning geography.
Baum, E A
1978-01-01
The pleasure which some children find in maps and map reading is manifold in origin. Children cathect patterns of configuration and color and derive joy from the visual mastery of these. This gratification is enhanced by the child's knowledge that the map represents something bigger than and external to itself. Likewise, some children take pleasure in the pronunciation of names themselves. The phonetic transcription of multisyllabic names is often a plearurable challenge. The vocalized name has its origin in the self, becomes barely external to self, and is self-monitored. Thus, in children both the configurations and the vocalizations associated with map reading have the properties of "self=objects" (Kohut, 1971). From the author's observation the delight which some children take in sounding out geographic names on a map may, in some instances, indicate pre-existing gratifying sound associations. Childish amusement in punning on cognomens may be an even greater stimulant for learning than visual configurations or artificial cognitive devices.
Synthetic, multi-layer, self-oscillating vocal fold model fabrication.
Murray, Preston R; Thomson, Scott L
2011-12-02
Sound for the human voice is produced via flow-induced vocal fold vibration. The vocal folds consist of several layers of tissue, each with differing material properties. Normal voice production relies on healthy tissue and vocal folds, and occurs as a result of complex coupling between aerodynamic, structural dynamic, and acoustic physical phenomena. Voice disorders affect up to 7.5 million annually in the United States alone and often result in significant financial, social, and other quality-of-life difficulties. Understanding the physics of voice production has the potential to significantly benefit voice care, including clinical prevention, diagnosis, and treatment of voice disorders. Existing methods for studying voice production include in vivo experimentation using human and animal subjects, in vitro experimentation using excised larynges and synthetic models, and computational modeling. Owing to hazardous and difficult instrument access, in vivo experiments are severely limited in scope. Excised larynx experiments have the benefit of anatomical and some physiological realism, but parametric studies involving geometric and material property variables are limited. Further, they are typically only able to be vibrated for relatively short periods of time (typically on the order of minutes). Overcoming some of the limitations of excised larynx experiments, synthetic vocal fold models are emerging as a complementary tool for studying voice production. Synthetic models can be fabricated with systematic changes to geometry and material properties, allowing for the study of healthy and unhealthy human phonatory aerodynamics, structural dynamics, and acoustics. For example, they have been used to study left-right vocal fold asymmetry, clinical instrument development, laryngeal aerodynamics, vocal fold contact pressure, and subglottal acoustics (a more comprehensive list can be found in Kniesburges et al.) Existing synthetic vocal fold models, however, have either been homogenous (one-layer models) or have been fabricated using two materials of differing stiffness (two-layer models). This approach does not allow for representation of the actual multi-layer structure of the human vocal folds that plays a central role in governing vocal fold flow-induced vibratory response. Consequently, one- and two-layer synthetic vocal fold models have exhibited disadvantages such as higher onset pressures than what are typical for human phonation (onset pressure is the minimum lung pressure required to initiate vibration), unnaturally large inferior-superior motion, and lack of a "mucosal wave" (a vertically-traveling wave that is characteristic of healthy human vocal fold vibration). In this paper, fabrication of a model with multiple layers of differing material properties is described. The model layers simulate the multi-layer structure of the human vocal folds, including epithelium, superficial lamina propria (SLP), intermediate and deep lamina propria (i.e., ligament; a fiber is included for anterior-posterior stiffness), and muscle (i.e., body) layers. Results are included that show that the model exhibits improved vibratory characteristics over prior one- and two-layer synthetic models, including onset pressure closer to human onset pressure, reduced inferior-superior motion, and evidence of a mucosal wave.
Lateralization as a symmetry breaking process in birdsong
NASA Astrophysics Data System (ADS)
Trevisan, M. A.; Cooper, B.; Goller, F.; Mindlin, G. B.
2007-03-01
The singing by songbirds is a most convincing example in the animal kingdom of functional lateralization of the brain, a feature usually associated with human language. Lateralization is expressed as one or both of the bird’s sound sources being active during the vocalization. Normal songs require high coordination between the vocal organ and respiratory activity, which is bilaterally symmetric. Moreover, the physical and neural substrate used to produce the song lack obvious asymmetries. In this work we show that complex spatiotemporal patterns of motor activity controlling airflow through the sound sources can be explained in terms of spontaneous symmetry breaking bifurcations. This analysis also provides a framework from which to study the effects of imperfections in the system’ s symmetries. A physical model of the avian vocal organ is used to generate synthetic sounds, which allows us to predict acoustical signatures of the song and compare the predictions of the model with experimental data.
In vitro experimental investigation of voice production
Horáčcek, Jaromír; Brücker, Christoph; Becker, Stefan
2012-01-01
The process of human phonation involves a complex interaction between the physical domains of structural dynamics, fluid flow, and acoustic sound production and radiation. Given the high degree of nonlinearity of these processes, even small anatomical or physiological disturbances can significantly affect the voice signal. In the worst cases, patients can lose their voice and hence the normal mode of speech communication. To improve medical therapies and surgical techniques it is very important to understand better the physics of the human phonation process. Due to the limited experimental access to the human larynx, alternative strategies, including artificial vocal folds, have been developed. The following review gives an overview of experimental investigations of artificial vocal folds within the last 30 years. The models are sorted into three groups: static models, externally driven models, and self-oscillating models. The focus is on the different models of the human vocal folds and on the ways in which they have been applied. PMID:23181007
Language development in a non-vocal child.
Rogow, S M
1994-01-01
Many children who cannot speak, comprehend both oral and written language. Having knowledge of language is not the same as being able to use language for social transactions. Non-vocal children learn to use augmented and assisted systems, but they experience specific difficulties in initiating and maintaining conversations and making use of the pragmatic functions of language. The purpose of this study was to investigate the semantic and syntactic knowledge of a child with severe multiple disabilities who can read and write and comprehend two languages, but does not initiate conversation. The study demonstrates that high levels of language comprehension and ability to read and write do not automatically transfer to conversational competence or narrative ability.
Singing-driven gene expression in the developing songbird brain
Johnson, Frank; Whitney, Osceola
2014-01-01
Neural and behavioral development arises from an integration of genetic and environmental influences, yet specifying the nature of this interaction remains a primary problem in neuroscience. Here, we review molecular and behavioral studies that focus on the role of singing-driven gene expression during neural and vocal development in the male zebra finch (Taeniopygia guttata), a songbird that learns a species-typical vocal pattern during juvenile development by imitating an adult male tutor. A primary aim of our lab has been to identify naturally-occurring environmental influences that shape the propensity to sing. This ethological approach underlies our theoretical perspective, which is to integrate the significance of singing-driven gene expression into a broader ecological context. PMID:16129463
The program complex for vocal recognition
NASA Astrophysics Data System (ADS)
Konev, Anton; Kostyuchenko, Evgeny; Yakimuk, Alexey
2017-01-01
This article discusses the possibility of applying the algorithm of determining the pitch frequency for the note recognition problems. Preliminary study of programs-analogues were carried out for programs with function “recognition of the music”. The software package based on the algorithm for pitch frequency calculation was implemented and tested. It was shown that the algorithm allows recognizing the notes in the vocal performance of the user. A single musical instrument, a set of musical instruments, and a human voice humming a tune can be the sound source. The input file is initially presented in the .wav format or is recorded in this format from a microphone. Processing is performed by sequentially determining the pitch frequency and conversion of its values to the note. According to test results, modification of algorithms used in the complex was planned.
Look, Clarisse; McCabe, Patricia; Heard, Robert; Madill, Catherine J
2018-02-02
Modeling and instruction are frequent components of both traditional and technology-assisted voice therapy. This study investigated the value of video modeling and instruction in the early acquisition and short-term retention of a complex voice task without external feedback. Thirty participants were randomized to two conditions and trained to produce a vocal siren over 40 trials. One group received a model and verbal instructions, the other group received a model only. Sirens were analyzed for phonation time, vocal intensity, cepstral peak prominence, peak-to-peak time, and root-mean-square error at five time points. The model and instruction group showed significant improvement on more outcome measures than the model-only group. There was an interaction effect for vocal intensity, which showed that instructions facilitated greater improvement when they were first introduced. However, neither group reproduced the model's siren performance across all parameters or retained the skill 1 day later. Providing verbal instruction with a model appears more beneficial than providing a model only in the prepractice phase of acquiring a complex voice skill. Improved performance was observed; however, the higher level of performance was not retained after 40 trials in both conditions. Other prepractice variables may need to be considered. Findings have implications for traditional and technology-assisted voice therapy. Copyright © 2017 The Voice Foundation. Published by Elsevier Inc. All rights reserved.
Guillette, Lauren M; Healy, Susan D
2017-06-01
The transmission of information from an experienced demonstrator to a naïve observer often depends on characteristics of the demonstrator, such as familiarity, success or dominance status. Whether or not the demonstrator pays attention to and/or interacts with the observer may also affect social information acquisition or use by the observer. Here we used a video-demonstrator paradigm first to test whether video demonstrators have the same effect as using live demonstrators in zebra finches, and second, to test the importance of visual and vocal interactions between the demonstrator and observer on social information use by the observer. We found that female zebra finches copied novel food choices of male demonstrators they saw via live-streaming video while they did not consistently copy from the demonstrators when they were seen in playbacks of the same videos. Although naive observers copied in the absence of vocalizations by the demonstrator, as they copied from playback of videos with the sound off, females did not copy where there was a mis-match between the visual information provided by the video and vocal information from a live male that was out of sight. Taken together these results suggest that video demonstration is a useful methodology for testing social information transfer, at least in a foraging context, but more importantly, that social information use varies according to the vocal interactions, or lack thereof, between the observer and the demonstrator. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
Kleber, Boris; Zeitouni, Anthony G; Friberg, Anders; Zatorre, Robert J
2013-04-03
Somatosensation plays an important role in the motor control of vocal functions, yet its neural correlate and relation to vocal learning is not well understood. We used fMRI in 17 trained singers and 12 nonsingers to study the effects of vocal-fold anesthesia on the vocal-motor singing network as a function of singing expertise. Tasks required participants to sing musical target intervals under normal conditions and after anesthesia. At the behavioral level, anesthesia altered pitch accuracy in both groups, but singers were less affected than nonsingers, indicating an experience-dependent effect of the intervention. At the neural level, this difference was accompanied by distinct patterns of decreased activation in singers (cortical and subcortical sensory and motor areas) and nonsingers (subcortical motor areas only) respectively, suggesting that anesthesia affected the higher-level voluntary (explicit) motor and sensorimotor integration network more in experienced singers, and the lower-level (implicit) subcortical motor loops in nonsingers. The right anterior insular cortex (AIC) was identified as the principal area dissociating the effect of expertise as a function of anesthesia by three separate sources of evidence. First, it responded differently to anesthesia in singers (decreased activation) and nonsingers (increased activation). Second, functional connectivity between AIC and bilateral A1, M1, and S1 was reduced in singers but augmented in nonsingers. Third, increased BOLD activity in right AIC in singers was correlated with larger pitch deviation under anesthesia. We conclude that the right AIC and sensory-motor areas play a role in experience-dependent modulation of feedback integration for vocal motor control during singing.
Tourette syndrome: the self under siege.
Leckman, James F; Bloch, Michael H; Scahill, Lawrence; King, Robert A
2006-08-01
Tourette syndrome is a neurodevelopmental disorder characterized by motor and vocal tics--rapid, repetitive, stereotyped movements or vocalizations. Tourette syndrome typically has a prepubertal onset, and boys are more commonly affected than girls. Symptoms usually begin with transient bouts of simple motor tics. By age 10 years, most children are aware of nearly irresistible somatosensory urges that precede the tics. These urges likely reflect a defect in sensorimotor gating because they intrude into the child's conscious awareness and become a source of distraction and distress. A momentary sense of relief typically follows the completion of a tic. Over the course of hours, tics occur in bouts, with a regular intertic interval. Tics increase during periods of emotional excitement and fatigue. Tics can become "complex" in nature and appear to be purposeful. Tics can be willfully suppressed for brief intervals and can be evoked by the mere mention of them. Tics typically diminish during periods of goal-directed behavior, especially those that involve both heightened attention and fine motor or vocal control, as occur in musical and athletic performances. Over the course of months, tics wax and wane. New tics appear, often in response to new sources of somatosensory irritation, such as the appearance of a persistent vocal tic (a cough) following a cold. Over the course of years, tic severity typically peaks between 8 and 12 years of age. By the end of the second decade of life, many individuals are virtually tic free. Less than 20% of cases continue to experience clinically impairing tics as adults. Tics rarely occur in isolation, and other coexisting conditions--such as behavioral disinhibition, hypersensitivity to a broad range of sensory stimuli, problems with visual motor integration, procedural learning difficulties, attention-deficit hyperactivity disorder (ADHD), obsessive-compulsive disorder, depression, anxiety, and emotional instability--are often a greater source of impairment than the tics themselves. Emerging behavioral treatments of Tourette syndrome are based in part on an understanding of the moment-to-moment experience of somatosensory urges and motor response. With identification of specific genes of major effect and advances in our understanding of the neural circuitry of sensorimotor gating, habit formation, and procedural memory--together with insights from postmortem brain studies, in vivo brain imaging, and electrophysiologic recordings--we might be on the threshold of a deeper understanding of the phenomenology and natural history of Tourette syndrome.
Memory in the making: localized brain activation related to song learning in young songbirds
Gobes, Sharon M. H.; Zandbergen, Matthijs A.; Bolhuis, Johan J.
2010-01-01
Songbird males learn to sing their songs from an adult ‘tutor’ early in life, much like human infants learn to speak. Similar to humans, in the songbird brain there are separate neural substrates for vocal production and for auditory memory. In adult songbirds, the caudal pallium, the avian equivalent of the auditory association cortex, has been proposed to contain the neural substrate of tutor song memory, while the song system is involved in song production as well as sensorimotor learning. If this hypothesis is correct, there should be neuronal activation in the caudal pallium, and not in the song system, while the young bird is hearing the tutor song. We found increased song-induced molecular neuronal activation, measured as the expression of an immediate early gene, in the caudal pallium of juvenile zebra finch males that were in the process of learning to sing their songs. No such activation was found in the song system. Molecular neuronal activation was significantly greater in response to tutor song than to novel song or silence in the medial part of the caudomedial nidopallium (NCM). In the caudomedial mesopallium, there was significantly greater molecular neuronal activation in response to tutor song than to silence. In addition, in the NCM there was a significant positive correlation between spontaneous molecular neuronal activation and the strength of song learning during sleep. These results suggest that the caudal pallium contains the neural substrate for tutor song memory, which is activated during sleep when the young bird is in the process of learning its song. The findings provide insight into the formation of auditory memories that guide vocal production learning, a process fundamental for human speech acquisition. PMID:20534608
The Referent of Children's Early Songs
ERIC Educational Resources Information Center
Mang, Esther
2005-01-01
Musical creativity during early childhood is readily exemplified in vocal behaviours. This paper is a discussion of observations on children's performance of learned songs and self-generated songs. Longitudinal observations suggest that self-generated songs may be seen as referent-guided improvisation using source materials derived from learned…
Syllabic Patterns in the Early Vocalizations of Quichua Children
ERIC Educational Resources Information Center
Gildersleeve-Neumann, Christina E.; Davis, Barbara L.; Macneilage, Peter F.
2013-01-01
To understand the interactions between production patterns common to children regardless of language environment and the early appearance of production effects based on perceptual learning from the ambient language requires the study of languages with diverse phonological properties. Few studies have evaluated early phonological acquisition…
ERIC Educational Resources Information Center
McCloskey, Patrick J.
2005-01-01
Nelson Beaudoin, the principal of Kennebunk High School in Maine believes devoutly in letting students have a say in how they are educated. He also knows the risks. At this student-centered school, learning includes sex education. The girls' team chooses "sexually transmitted diseases" for 300 points. Although the game is modeled after…
ERIC Educational Resources Information Center
Skouge, James R.; Kajiyama, Brian
2009-01-01
In this article, the authors relate a story about the transformative power of technologies for voice. They relate Brian Kajiyama's personal odyssey--what might be described as a journey from unvoiced to vocal--in learning to use a DynaWrite, a type-and-talk device that Brian uses as a communication tool.
Quantitative Tools for Examining the Vocalizations of Juvenile Songbirds
Wellock, Cameron D.; Reeke, George N.
2012-01-01
The singing of juvenile songbirds is highly variable and not well stereotyped, a feature that makes it difficult to analyze with existing computational techniques. We present here a method suitable for analyzing such vocalizations, windowed spectral pattern recognition (WSPR). Rather than performing pairwise sample comparisons, WSPR measures the typicality of a sample against a large sample set. We also illustrate how WSPR can be used to perform a variety of tasks, such as sample classification, song ontogeny measurement, and song variability measurement. Finally, we present a novel measure, based on WSPR, for quantifying the apparent complexity of a bird's singing. PMID:22701474
Subauditory Speech Recognition based on EMG/EPG Signals
NASA Technical Reports Server (NTRS)
Jorgensen, Charles; Lee, Diana Dee; Agabon, Shane; Lau, Sonie (Technical Monitor)
2003-01-01
Sub-vocal electromyogram/electro palatogram (EMG/EPG) signal classification is demonstrated as a method for silent speech recognition. Recorded electrode signals from the larynx and sublingual areas below the jaw are noise filtered and transformed into features using complex dual quad tree wavelet transforms. Feature sets for six sub-vocally pronounced words are trained using a trust region scaled conjugate gradient neural network. Real time signals for previously unseen patterns are classified into categories suitable for primitive control of graphic objects. Feature construction, recognition accuracy and an approach for extension of the technique to a variety of real world application areas are presented.
Murray, T. J.
1982-01-01
Tourette syndrome (Gilles de la Tourette disease) is a disorder of involuntary muscular tics, vocalizations and compulsive behavior. The tics and muscle movements vary in form and course; the complex repetitive patterns are eventually replaced by other patterns. The vocalization may be in the form of sounds, words or profanities and sometimes echolalia, echopraxia and palilalia. The onset may be from age two to 15 but is usually between ages eight and 12. Recent studies suggest that there is a hypersensitivity of dopamine receptors. Most patients respond well to haloperidol, but other drugs that may be of value include clonidine, pimozide, fluphenazine and trifluoroperazine. PMID:21286050
DOE Office of Scientific and Technical Information (OSTI.GOV)
Matthews, Douglas B; Chesler, Elissa J; Cook, Melloni N.
2008-01-01
Footshock response is used to study biological functions in mammals. However, the genetics underlying variability in footshock sensitivity are not well understood. In the current studies, a panel of B6.A consomic mouse strains, two B6.D2 congenic mouse strains and the progenitor strains were screened for footshock sensitivity as measured by audible vocalization. It was found that A/J (A) mice and C57BL/6J (B6) mice with an A Chromosome 1 (Chr 1) were less sensitive to footshock compared to B6 animals. Furthermore, the offspring of Chr 1 consomic mice crossed with B6 mice had vocalization levels that were intermediate to A/J andmore » B6 animals. A F2 mapping panel revealed two significant QTLs for footshock vocalization centered around D1Mit490 and D1Mit206 on Chr 1. The role of these Chr 1 loci in footshock sensitivity was confirmed in B6.D2 congenic mice. These data identify genetic regions involved in footshock sensitivity and establish additional mouse resources for use in investigating complex behaviors.« less
Morphological Variation in the Adult Hard Palate and Posterior Pharyngeal Wall
Lammert, Adam; Proctor, Michael; Narayanan, Shrikanth
2013-01-01
Purpose Adult human vocal tracts display considerable morphological variation across individuals, but the nature and extent of this variation has not been extensively studied for many vocal tract structures. There exists a need to analyze morphological variation and, even more basically, to develop a methodology for morphological analysis of the vocal tract. Such analysis will facilitate fundamental characterization of the speech production system, with broad implications from modeling to explaining inter-speaker variability. Method A data-driven methodology to automatically analyze the extent and variety of morphological variation is proposed and applied to a diverse subject pool of 36 adults. Analysis is focused on two key aspects of vocal tract structure: the midsagittal shape of the hard palate and the posterior pharyngeal wall. Result Palatal morphology varies widely in its degree of concavity, but also in anteriority and sharpness. Pharyngeal wall morphology, by contrast, varies mostly in terms of concavity alone. The distribution of morphological characteristics is complex, and analysis suggests that certain variations may be categorical in nature. Conclusion Major modes of morphological variation are identified, including their relative magnitude, distribution and categorical nature. Implications of these findings for speech articulation strategies and speech acoustics are discussed. PMID:23690566
Information content and acoustic structure of male African elephant social rumbles
Stoeger, Angela S.; Baotic, Anton
2016-01-01
Until recently, the prevailing theory about male African elephants (Loxodonta africana) was that, once adult and sexually mature, males are solitary and targeted only at finding estrous females. While this is true during the state of ‘musth’ (a condition characterized by aggressive behavior and elevated androgen levels), ‘non-musth’ males exhibit a social system seemingly based on companionship, dominance and established hierarchies. Research on elephant vocal communication has so far focused on females, and very little is known about the acoustic structure and the information content of male vocalizations. Using the source and filter theory approach, we analyzed social rumbles of 10 male African elephants. Our results reveal that male rumbles encode information about individuality and maturity (age and size), with formant frequencies and absolute fundamental frequency values having the most informative power. This first comprehensive study on male elephant vocalizations gives important indications on their potential functional relevance for male-male and male-female communication. Our results suggest that, similar to the highly social females, future research on male elephant vocal behavior will reveal a complex communication system in which social knowledge, companionship, hierarchy, reproductive competition and the need to communicate over long distances play key roles. PMID:27273586
Kogan, J A; Margoliash, D
1998-04-01
The performance of two techniques is compared for automated recognition of bird song units from continuous recordings. The advantages and limitations of dynamic time warping (DTW) and hidden Markov models (HMMs) are evaluated on a large database of male songs of zebra finches (Taeniopygia guttata) and indigo buntings (Passerina cyanea), which have different types of vocalizations and have been recorded under different laboratory conditions. Depending on the quality of recordings and complexity of song, the DTW-based technique gives excellent to satisfactory performance. Under challenging conditions such as noisy recordings or presence of confusing short-duration calls, good performance of the DTW-based technique requires careful selection of templates that may demand expert knowledge. Because HMMs are trained, equivalent or even better performance of HMMs can be achieved based only on segmentation and labeling of constituent vocalizations, albeit with many more training examples than DTW templates. One weakness in HMM performance is the misclassification of short-duration vocalizations or song units with more variable structure (e.g., some calls, and syllables of plastic songs). To address these and other limitations, new approaches for analyzing bird vocalizations are discussed.
Hasiniaina, Alida F; Scheumann, Marina; Rina Evasoa, Mamy; Braud, Diane; Rasoloharijaona, Solofonirina; Randrianambinina, Blanchard; Zimmermann, Elke
2018-05-02
The critically endangered Claire's mouse lemur, only found in the evergreen rain forest of the National Park Lokobe (LNP) and a few lowland evergreen rain forest fragments of northern Madagascar, was described recently. The present study provides the first quantified information on vocal acoustics of calls, sound associated behavioral context, acoustic niche, and vocal activity of this species. We recorded vocal and social behavior of six male-female and six male-male dyads in a standardized social-encounter paradigm in June and July 2016 at the LNP, Nosy Bé island. Over six successive nights per dyad, we audio recorded and observed behaviors for 3 hr at the beginning of the activity period. Based on the visual inspection of spectrograms and standardized multiparametric sound analysis, we identified seven different call types. Call types can be discriminated based on a combination of harmonicity, fundamental frequency variation, call duration, and degree of tonality. Acoustic features of tonal call types showed that for communication, mouse lemurs use the cryptic, high frequency/ultrasonic frequency niche. Two call types, the Tsak and the Grunt call, were emitted most frequently. Significant differences in vocal activity of the Tsak call were found between male-female and male-male dyads, linked primarily to agonistic conflicts. Dominant mouse lemurs vocalized more than subdominant ones, suggesting that signaling may present an honest indicator of fitness. A comparison of our findings of the Claire's mouse lemur with published findings of five bioacoustically studied mouse lemur species points to the notion that a complex interplay between ecology, predation pressure, and phylogenetic relatedness may shape the evolution of acoustic divergence between species in this smallest-bodied primate radiation. Thus, comparative bioacoustic studies, using standardized procedures, are promising to unravel the role of vocalization for primate species diversity and evolution and for identifying candidates for vocalization-based non-invasive monitoring for conservation purposes. © 2018 Wiley Periodicals, Inc.
Li, XiaoChing; Wang, Xiu-Jie; Tannenhauser, Jonathan; Podell, Sheila; Mukherjee, Piali; Hertel, Moritz; Biane, Jeremy; Masuda, Shoko; Nottebohm, Fernando; Gaasterland, Terry
2007-01-01
Vocal learning and neuronal replacement have been studied extensively in songbirds, but until recently, few molecular and genomic tools for songbird research existed. Here we describe new molecular/genomic resources developed in our laboratory. We made cDNA libraries from zebra finch (Taeniopygia guttata) brains at different developmental stages. A total of 11,000 cDNA clones from these libraries, representing 5,866 unique gene transcripts, were randomly picked and sequenced from the 3′ ends. A web-based database was established for clone tracking, sequence analysis, and functional annotations. Our cDNA libraries were not normalized. Sequencing ESTs without normalization produced many developmental stage-specific sequences, yielding insights into patterns of gene expression at different stages of brain development. In particular, the cDNA library made from brains at posthatching day 30–50, corresponding to the period of rapid song system development and song learning, has the most diverse and richest set of genes expressed. We also identified five microRNAs whose sequences are highly conserved between zebra finch and other species. We printed cDNA microarrays and profiled gene expression in the high vocal center of both adult male zebra finches and canaries (Serinus canaria). Genes differentially expressed in the high vocal center were identified from the microarray hybridization results. Selected genes were validated by in situ hybridization. Networks among the regulated genes were also identified. These resources provide songbird biologists with tools for genome annotation, comparative genomics, and microarray gene expression analysis. PMID:17426146
Tervo, Outi M; Christoffersen, Mads F; Simon, Malene; Miller, Lee A; Jensen, Frants H; Parks, Susan E; Madsen, Peter T
2012-01-01
The low-frequency, powerful vocalizations of blue and fin whales may potentially be detected by conspecifics across entire ocean basins. In contrast, humpback and bowhead whales produce equally powerful, but more complex broadband vocalizations composed of higher frequencies that suffer from higher attenuation. Here we evaluate the active space of high frequency song notes of bowhead whales (Balaena mysticetus) in Western Greenland using measurements of song source levels and ambient noise. Four independent, GPS-synchronized hydrophones were deployed through holes in the ice to localize vocalizing bowhead whales, estimate source levels and measure ambient noise. The song had a mean apparent source level of 185±2 dB rms re 1 µPa @ 1 m and a high mean centroid frequency of 444±48 Hz. Using measured ambient noise levels in the area and Arctic sound spreading models, the estimated active space of these song notes is between 40 and 130 km, an order of magnitude smaller than the estimated active space of low frequency blue and fin whale songs produced at similar source levels and for similar noise conditions. We propose that bowhead whales spatially compensate for their smaller communication range through mating aggregations that co-evolved with broadband song to form a complex and dynamic acoustically mediated sexual display.
Tervo, Outi M.; Christoffersen, Mads F.; Simon, Malene; Miller, Lee A.; Jensen, Frants H.; Parks, Susan E.; Madsen, Peter T.
2012-01-01
The low-frequency, powerful vocalizations of blue and fin whales may potentially be detected by conspecifics across entire ocean basins. In contrast, humpback and bowhead whales produce equally powerful, but more complex broadband vocalizations composed of higher frequencies that suffer from higher attenuation. Here we evaluate the active space of high frequency song notes of bowhead whales (Balaena mysticetus) in Western Greenland using measurements of song source levels and ambient noise. Four independent, GPS-synchronized hydrophones were deployed through holes in the ice to localize vocalizing bowhead whales, estimate source levels and measure ambient noise. The song had a mean apparent source level of 185±2 dB rms re 1 µPa @ 1 m and a high mean centroid frequency of 444±48 Hz. Using measured ambient noise levels in the area and Arctic sound spreading models, the estimated active space of these song notes is between 40 and 130 km, an order of magnitude smaller than the estimated active space of low frequency blue and fin whale songs produced at similar source levels and for similar noise conditions. We propose that bowhead whales spatially compensate for their smaller communication range through mating aggregations that co-evolved with broadband song to form a complex and dynamic acoustically mediated sexual display. PMID:23300591
Ota, Nao; Gahr, Manfred; Soma, Masayo
2015-11-19
According to classical sexual selection theory, complex multimodal courtship displays have evolved in males through female choice. While it is well-known that socially monogamous songbird males sing to attract females, we report here the first example of a multimodal dance display that is not a uniquely male trait in these birds. In the blue-capped cordon-bleu (Uraeginthus cyanocephalus), a socially monogamous songbird, both sexes perform courtship displays that are characterised by singing and simultaneous visual displays. By recording these displays with a high-speed video camera, we discovered that in addition to bobbing, their visual courtship display includes quite rapid step-dancing, which is assumed to produce vibrations and/or presumably non-vocal sounds. Dance performances did not differ between sexes but varied among individuals. Both male and female cordon-bleus intensified their dance performances when their mate was on the same perch. The multimodal (acoustic, visual, tactile) and multicomponent (vocal and non-vocal sounds) courtship display observed was a combination of several motor behaviours (singing, bobbing, stepping). The fact that both sexes of this socially monogamous songbird perform such a complex courtship display is a novel finding and suggests that the evolution of multimodal courtship display as an intersexual communication should be considered.
Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language
Scharff, Constance; Petri, Jana
2011-01-01
The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the ‘evo-devo’ conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this ‘deep homology’. Recently, ‘evo-devo’ has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can ‘descend with modification’. PMID:21690130
Evo-devo, deep homology and FoxP2: implications for the evolution of speech and language.
Scharff, Constance; Petri, Jana
2011-07-27
The evolution of novel morphological features, such as feathers, involves the modification of developmental processes regulated by gene networks. The fact that genetic novelty operates within developmental constraints is the central tenet of the 'evo-devo' conceptual framework. It is supported by findings that certain molecular regulatory pathways act in a similar manner in the development of morphological adaptations, which are not directly related by common ancestry but evolved convergently. The Pax6 gene, important for vision in molluscs, insects and vertebrates, and Hox genes, important for tetrapod limbs and fish fins, exemplify this 'deep homology'. Recently, 'evo-devo' has expanded to the molecular analysis of behavioural traits, including social behaviour, learning and memory. Here, we apply this approach to the evolution of human language. Human speech is a form of auditory-guided, learned vocal motor behaviour that also evolved in certain species of birds, bats and ocean mammals. Genes relevant for language, including the transcription factor FOXP2, have been identified. We review evidence that FoxP2 and its regulatory gene network shapes neural plasticity in cortico-basal ganglia circuits underlying the sensory-guided motor learning in animal models. The emerging picture can help us understand how complex cognitive traits can 'descend with modification'.
Models of vocal learning in the songbird: Historical frameworks and the stabilizing critic.
Nick, Teresa A
2015-10-01
Birdsong is a form of sensorimotor learning that involves a mirror-like system that activates with both song hearing and production. Early models of song learning, based on behavioral measures, identified key features of vocal plasticity, such as the requirements for memorization of a tutor song and auditory feedback during song practice. The concept of a comparator, which compares the memory of the tutor song to auditory feedback, featured prominently. Later models focused on linking anatomically-defined neural modules to behavioral concepts, such as the comparator. Exploiting the anatomical modularity of the songbird brain, localized lesions illuminated mechanisms of the neural song system. More recent models have integrated neuronal mechanisms identified in other systems with observations in songbirds. While these models explain multiple aspects of song learning, they must incorporate computational elements based on unknown biological mechanisms to bridge the motor-to-sensory delay and/or transform motor signals into the sensory domain. Here, I introduce the stabilizing critic hypothesis, which enables sensorimotor learning by (1) placing a purely sensory comparator afferent of the song system and (2) endowing song system disinhibitory interneuron networks with the capacity both to bridge the motor-sensory delay through prolonged bursting and to stabilize song segments selectively based on the comparator signal. These proposed networks stabilize an otherwise variable signal generated by both putative mirror neurons and a cortical-basal ganglia-thalamic loop. This stabilized signal then temporally converges with a matched premotor signal in the efferent song motor cortex, promoting spike-timing-dependent plasticity in the premotor circuitry and behavioral song learning. © 2014 Wiley Periodicals, Inc.
ERIC Educational Resources Information Center
Burks, Beatrice Karol; Reeves, Richard
2009-01-01
Despite a vocal commitment to fairness, the British Government has, according to these authors, wholeheartedly failed to live up to this pledge when it comes to skills and adult training. A report on adult learning released in December by Demos found a system rife with inequality and contradictions. As the jobs market becomes increasingly…
Social Modulation of Associative Fear Learning by Pheromone Communication
ERIC Educational Resources Information Center
Bredy, Timothy W.; Barad, Mark
2009-01-01
Mice communicate through visual, vocal, and olfactory cues that influence innate, nonassociative behavior. We here report that exposure to a recently fear-conditioned familiar mouse impairs acquisition of conditioned fear and facilitates fear extinction, effects mimicked by both an olfactory chemosignal emitted by a recently fear-conditioned…
Tourette Syndrome: A Case for Establishing the Individual Needs of Children at Risk.
ERIC Educational Resources Information Center
Wilson, Jeni; Shrimpton, Bradley
Tourette Syndrome (TS) is a neurological disorder characterized by multiple, involuntary, and repetitive motor and vocal tics. This paper addresses the educational needs of students with TS noting that, without proper intervention and appropriate learning experiences, these children often experience personal distress, reduced self-esteem, social…
Stimulus-Dependent Flexibility in Non-Human Auditory Pitch Processing
ERIC Educational Resources Information Center
Bregman, Micah R.; Patel, Aniruddh D.; Gentner, Timothy Q.
2012-01-01
Songbirds and humans share many parallels in vocal learning and auditory sequence processing. However, the two groups differ notably in their abilities to recognize acoustic sequences shifted in absolute pitch (pitch height). Whereas humans maintain accurate recognition of words or melodies over large pitch height changes, songbirds are…
From Band Rooms to Choral Risers.
ERIC Educational Resources Information Center
Washington, William Lee
1999-01-01
Offers suggestions for instrumentalists who have become choral instructors explaining that their first goal should be to learn how to identify and understand an ideal vocal sound. Finds that the hardest aspect of choral instruction is developing a teaching approach. Offers five steps to assist instrumentalists in molding their own approach. (CMK)
The Importance of Music in Early Childhood.
ERIC Educational Resources Information Center
Levinowitz, Lili M.
1998-01-01
Surveys some of the research in music education that validates the inclusion of music for its own sake in models for early childhood learning. Focuses on topics that include, but are not limited to, child and vocal development, the importance of movement for children, and adult involvement in music education. (CMK)
Mechanisms of Song Perception in Oscine Birds
ERIC Educational Resources Information Center
Knudsen, Daniel P.; Gentner, Timothy Q.
2010-01-01
Songbirds share a number of parallels with humans that make them an attractive model system for studying the behavioral and neurobiological mechanisms that underlie the learning and processing of vocal communication signals. Here we review the perceptual and cognitive mechanisms of audition in birds, and emphasize the behavioral and neural basis…
Audio/ Videoconferencing Packages: Low Cost
ERIC Educational Resources Information Center
Treblay, Remy; Fyvie, Barb; Koritko, Brenda
2005-01-01
A comparison was conducted of "Voxwire MeetingRoom" and "iVocalize" v4.1.0.3, both Web-conferencing products using voice-over-Internet protocol (VoIP) to provide unlimited, inexpensive, international audio communication, and high-quality Web-conferencing fostering collaborative learning. The study used the evaluation criteria used in earlier…
Mechanisms and time course of vocal learning and consolidation in the adult songbird.
Warren, Timothy L; Tumer, Evren C; Charlesworth, Jonathan D; Brainard, Michael S
2011-10-01
In songbirds, the basal ganglia outflow nucleus LMAN is a cortical analog that is required for several forms of song plasticity and learning. Moreover, in adults, inactivating LMAN can reverse the initial expression of learning driven via aversive reinforcement. In the present study, we investigated how LMAN contributes to both reinforcement-driven learning and a self-driven recovery process in adult Bengalese finches. We first drove changes in the fundamental frequency of targeted song syllables and compared the effects of inactivating LMAN with the effects of interfering with N-methyl-d-aspartate (NMDA) receptor-dependent transmission from LMAN to one of its principal targets, the song premotor nucleus RA. Inactivating LMAN and blocking NMDA receptors in RA caused indistinguishable reversions in the expression of learning, indicating that LMAN contributes to learning through NMDA receptor-mediated glutamatergic transmission to RA. We next assessed how LMAN's role evolves over time by maintaining learned changes to song while periodically inactivating LMAN. The expression of learning consolidated to become LMAN independent over multiple days, indicating that this form of consolidation is not completed over one night, as previously suggested, and instead may occur gradually during singing. Subsequent cessation of reinforcement was followed by a gradual self-driven recovery of original song structure, indicating that consolidation does not correspond with the lasting retention of changes to song. Finally, for self-driven recovery, as for reinforcement-driven learning, LMAN was required for the expression of initial, but not later, changes to song. Our results indicate that NMDA receptor-dependent transmission from LMAN to RA plays an essential role in the initial expression of two distinct forms of vocal learning and that this role gradually wanes over a multiday process of consolidation. The results support an emerging view that cortical-basal ganglia circuits can direct the initial expression of learning via top-down influences on primary motor circuitry.
Mechanisms and time course of vocal learning and consolidation in the adult songbird
Tumer, Evren C.; Charlesworth, Jonathan D.; Brainard, Michael S.
2011-01-01
In songbirds, the basal ganglia outflow nucleus LMAN is a cortical analog that is required for several forms of song plasticity and learning. Moreover, in adults, inactivating LMAN can reverse the initial expression of learning driven via aversive reinforcement. In the present study, we investigated how LMAN contributes to both reinforcement-driven learning and a self-driven recovery process in adult Bengalese finches. We first drove changes in the fundamental frequency of targeted song syllables and compared the effects of inactivating LMAN with the effects of interfering with N-methyl-d-aspartate (NMDA) receptor-dependent transmission from LMAN to one of its principal targets, the song premotor nucleus RA. Inactivating LMAN and blocking NMDA receptors in RA caused indistinguishable reversions in the expression of learning, indicating that LMAN contributes to learning through NMDA receptor-mediated glutamatergic transmission to RA. We next assessed how LMAN's role evolves over time by maintaining learned changes to song while periodically inactivating LMAN. The expression of learning consolidated to become LMAN independent over multiple days, indicating that this form of consolidation is not completed over one night, as previously suggested, and instead may occur gradually during singing. Subsequent cessation of reinforcement was followed by a gradual self-driven recovery of original song structure, indicating that consolidation does not correspond with the lasting retention of changes to song. Finally, for self-driven recovery, as for reinforcement-driven learning, LMAN was required for the expression of initial, but not later, changes to song. Our results indicate that NMDA receptor-dependent transmission from LMAN to RA plays an essential role in the initial expression of two distinct forms of vocal learning and that this role gradually wanes over a multiday process of consolidation. The results support an emerging view that cortical-basal ganglia circuits can direct the initial expression of learning via top-down influences on primary motor circuitry. PMID:21734110
Gaub, S; Fisher, S E; Ehret, G
2016-02-01
Adult mouse ultrasonic vocalizations (USVs) occur in multiple behavioral and stimulus contexts associated with various levels of arousal, emotion and social interaction. Here, in three experiments of increasing stimulus intensity (water; female urine; male interacting with adult female), we tested the hypothesis that USVs of adult males express the strength of arousal and emotion via different USV parameters (18 parameters analyzed). Furthermore, we analyzed two mouse lines with heterozygous Foxp2 mutations (R552H missense, S321X nonsense), known to produce severe speech and language disorders in humans. These experiments allowed us to test whether intact Foxp2 function is necessary for developing full adult USV repertoires, and whether mutations of this gene influence instinctive vocal expressions based on arousal and emotion. The results suggest that USV calling rate characterizes the arousal level, while sound pressure and spectrotemporal call complexity (overtones/harmonics, type of frequency jumps) may provide indices of levels of positive emotion. The presence of Foxp2 mutations did not qualitatively affect the USVs; all USV types that were found in wild-type animals also occurred in heterozygous mutants. However, mice with Foxp2 mutations displayed quantitative differences in USVs as compared to wild-types, and these changes were context dependent. Compared to wild-type animals, heterozygous mutants emitted mainly longer and louder USVs at higher minimum frequencies with a higher occurrence rate of overtones/harmonics and complex frequency jump types. We discuss possible hypotheses about Foxp2 influence on emotional vocal expressions, which can be investigated in future experiments using selective knockdown of Foxp2 in specific brain circuits. © 2015 John Wiley & Sons Ltd and International Behavioural and Neural Genetics Society.
Ordóñez-Gómez, José D; Santillán-Doherty, Ana M; Fischer, Julia; Hammerschmidt, Kurt
2018-04-01
Due to several factors such as ecological conditions, group size, and social organization, primates frequently spend time out of visual contact with individuals of their own group. Through the use of long-distance vocalizations, often termed "contact calls," primates are able to maintain contact with out-of-sight individuals. Contact calls have been shown to be individually distinct, and reverberation and attenuation provide information about caller distance. It is less clear, however, whether callers actively change the structure of contact calls depending on the distance to the presumed listeners. We studied this question in spider monkeys (Ateles geoffroyi), a species with complex spatial dynamics (fission-fusion society) that produces highly frequency modulated contact calls, denominated "whinnies." We determined the acoustic characteristics of 566 whinnies recorded from 35 free-ranging spider monkeys that belong to a community located in Mexico, and used cluster analyses, discriminant function analyses, and generalized linear mixed models to assess if they varied in relation to the presumed distance to the listener. Whinnies could be grouped into five subtypes. Since the lowest frequency subtype was mainly produced by spider monkeys that exchanged whinnies at longer distances, and lower frequency calls propagate across longer distances, our results suggest that whinnies vary in order to enhance vocal contact between individuals separated by different distances. Our results also revealed that whinnies convey potential information about caller immediate behaviors and corroborated that these calls are individually distinct. Overall, our results suggest that whinny acoustic variation facilitates the maintenance of vocal contact between individuals living in a society with complex spatial dynamics. © 2018 Wiley Periodicals, Inc.
Riehl, Christina; Stern, Caitlin A
2015-12-01
Cooperative breeding in birds typically occurs when offspring - usually males - delay dispersal from their natal group, remaining with the family to help rear younger kin. Sex-biased dispersal is thought to have evolved in order to reduce the risk of inbreeding, resulting in low relatedness between mates and the loss of indirect fitness benefits for the dispersing sex. In this review, we discuss several recent studies showing that dispersal patterns are more variable than previously thought, often leading to complex genetic structure within cooperative avian societies. These empirical findings accord with recent theoretical models suggesting that sex- biased dispersal is neither necessary, nor always sufficient, to prevent inbreeding. The ability to recognize relatives, primarily by learning individual or group-specific vocalizations, may play a more important role in incest avoidance than currently appreciated. © 2015 WILEY Periodicals, Inc.
Central auditory neurons have composite receptive fields.
Kozlov, Andrei S; Gentner, Timothy Q
2016-02-02
High-level neurons processing complex, behaviorally relevant signals are sensitive to conjunctions of features. Characterizing the receptive fields of such neurons is difficult with standard statistical tools, however, and the principles governing their organization remain poorly understood. Here, we demonstrate multiple distinct receptive-field features in individual high-level auditory neurons in a songbird, European starling, in response to natural vocal signals (songs). We then show that receptive fields with similar characteristics can be reproduced by an unsupervised neural network trained to represent starling songs with a single learning rule that enforces sparseness and divisive normalization. We conclude that central auditory neurons have composite receptive fields that can arise through a combination of sparseness and normalization in neural circuits. Our results, along with descriptions of random, discontinuous receptive fields in the central olfactory neurons in mammals and insects, suggest general principles of neural computation across sensory systems and animal classes.
The role of the medial temporal limbic system in processing emotions in voice and music.
Frühholz, Sascha; Trost, Wiebke; Grandjean, Didier
2014-12-01
Subcortical brain structures of the limbic system, such as the amygdala, are thought to decode the emotional value of sensory information. Recent neuroimaging studies, as well as lesion studies in patients, have shown that the amygdala is sensitive to emotions in voice and music. Similarly, the hippocampus, another part of the temporal limbic system (TLS), is responsive to vocal and musical emotions, but its specific roles in emotional processing from music and especially from voices have been largely neglected. Here we review recent research on vocal and musical emotions, and outline commonalities and differences in the neural processing of emotions in the TLS in terms of emotional valence, emotional intensity and arousal, as well as in terms of acoustic and structural features of voices and music. We summarize the findings in a neural framework including several subcortical and cortical functional pathways between the auditory system and the TLS. This framework proposes that some vocal expressions might already receive a fast emotional evaluation via a subcortical pathway to the amygdala, whereas cortical pathways to the TLS are thought to be equally used for vocal and musical emotions. While the amygdala might be specifically involved in a coarse decoding of the emotional value of voices and music, the hippocampus might process more complex vocal and musical emotions, and might have an important role especially for the decoding of musical emotions by providing memory-based and contextual associations. Copyright © 2014 Elsevier Ltd. All rights reserved.
NCS-1 dependent learning bonus and behavior outputs of self-directed exploration
NASA Astrophysics Data System (ADS)
Mun, Ho-Suk
Animals explore a new environment and learn about their surroundings. "Exploration" refers to all activities that increase the information obtained from an animal. For this study, I determined a molecule that mediates self-directed exploration, with a particular focus on rearing behavior and vocalization. Rearing can be either self-directed exploration or escape-oriented exploration. Self-directed exploration can be driven by the desire to gather information about environments while escape-oriented exploration can be driven by fear or anxiety. To differentiate between these two concepts, I compared rearing and other behaviors in three different conditions 1) novel dim (safe environment), which induces exploration based rearing; 2) novel bright (fearful environment), which elicits fear driven rearing; and 3) familiar environment as a control. First, I characterized the effects on two distinct types of environment in exploratory behavior and its effect on learning. From this, I determined that self-directed exploration enhances spatial learning while escape-oriented exploration does not produce a learning bonus. Second, I found that NCS-1 is involved in exploration, as well as learning and memory, by testing mice with reduced levels of Ncs-1 by point mutation and also siRNA injection. Finally, I illustrated other behavior outputs and neural substrate activities, which co-occurred during either self-directed or escape-oriented exploration. I found that high-frequency ultrasonic vocalizations occurred during self-directed exploration while low-frequency calls were emitted during escape-oriented exploration. Also, with immediate early gene imaging techniques, I found hippocampus and nucleus accumbens activation in self-directed exploration. This study is the first comprehensive molecular analysis of learning bonus in self-directed exploration. These results may be beneficial for studying underlying mechanisms of neuropsychiatric disease, and also reveal therapeutic targets for them.
Vibratory regime classification of infant phonation.
Buder, Eugene H; Chorna, Lesya B; Oller, D Kimbrough; Robinson, Rebecca B
2008-09-01
Infant phonation is highly variable in many respects, including the basic vibratory patterns by which the vocal tissues create acoustic signals. Previous studies have identified the regular occurrence of nonmodal phonation types in normal infant phonation. The glottis is like many oscillating systems that, because of nonlinear relationships among the elements, may vibrate in ways representing the deterministic patterns classified theoretically within the mathematical framework of nonlinear dynamics. The infant's preverbal vocal explorations present such a variety of phonations that it may be possible to find effectively all the classes of vibration predicted by nonlinear dynamic theory. The current report defines acoustic criteria for an important subset of such vibratory regimes, and demonstrates that analysts can be trained to reliably use these criteria for a classification that includes all instances of infant phonation in the recorded corpora. The method is thus internally comprehensive in the sense that all phonations are classified, but it is not exhaustive in the sense that all vocal qualities are thereby represented. Using the methods thus developed, this study also demonstrates that the distributions of these phonation types vary significantly across sessions of recording in the first year of life, suggesting developmental changes. The method of regime classification is thus capable of tracking changes that may be indicative of maturation of the mechanism, the learning of categories of phonatory control, and the possibly varying use of vocalizations across social contexts.
[Diagnosis and treatment of tics].
Topka, H
2007-05-21
Tics are repetitive and sudden purposeless movements. Phenomenologically tics are differentiated as simple or complex, motor or vocal. Transient forms, which last less than 1 year, occur frequently in child hood. For Tourette syndrome, multiple simple and complex motor and vocal tics are present for more than one year. Frequently, additional symptoms of an obsessive-compulsive disorder or an attention deficit hyperactivity disorder are present. There is no therapy for the cause of tics. For minor symptoms or if a transient tic disorder is suspected, the use of medications should be avoided. Instead the patient and if necessary, the parents should be informed in detail and given advice. Particularly for children, it is important to exclude antiepileptic drugs as the cause of tics. For chronic tics and for pronounced symptoms, drug therapy with neuroleptic drugs or clonidine is a possibility. However, the efficacy of these substances is limited.
Vocal complexity and sociality in spotted paca (Cuniculus paca).
Lima, Stella G C; Sousa-Lima, Renata S; Tokumaru, Rosana S; Nogueira-Filho, Sérgio L G; Nogueira, Selene S C
2018-01-01
The evolution of sociality is related to many ecological factors that act on animals as selective forces, thus driving the formation of groups. Group size will depend on the payoffs of group living. The Social Complexity Hypothesis for Communication (SCHC) predicts that increases in group size will be related to increases in the complexity of the communication among individuals. This hypothesis, which was confirmed in some mammal societies, may be useful to trace sociality in the spotted paca (Cuniculus paca), a Neotropical caviomorph rodent reported as solitary. There are, however, sightings of groups in the wild, and farmers easily form groups of spotted paca in captivity. Thus, we aimed to describe the acoustic repertoire of captive spotted paca to test the SCHC and to obtain insights about the sociability of this species. Moreover, we aimed to verify the relationship between group size and acoustic repertoire size of caviomorph rodents, to better understand the evolution of sociality in this taxon. We predicted that spotted paca should display a complex acoustic repertoire, given their social behavior in captivity and group sightings in the wild. We also predicted that in caviomorph species the group size would increase with acoustic repertoire, supporting the SCHC. We performed a Linear Discriminant Analysis (LDA) based on acoustic parameters of the vocalizations recorded. In addition, we applied an independent contrasts approach to investigate sociality in spotted paca following the social complexity hypothesis, independent of phylogeny. Our analysis showed that the spotted paca's acoustic repertoire contains seven vocal types and one mechanical signal. The broad acoustic repertoire of the spotted paca might have evolved given the species' ability to live in groups. The relationship between group size and the size of the acoustic repertoires of caviomorph species was confirmed, providing additional support for the SCHC in yet another group of diverse mammals-caviomorph rodents.
Vocal complexity and sociality in spotted paca (Cuniculus paca)
2018-01-01
The evolution of sociality is related to many ecological factors that act on animals as selective forces, thus driving the formation of groups. Group size will depend on the payoffs of group living. The Social Complexity Hypothesis for Communication (SCHC) predicts that increases in group size will be related to increases in the complexity of the communication among individuals. This hypothesis, which was confirmed in some mammal societies, may be useful to trace sociality in the spotted paca (Cuniculus paca), a Neotropical caviomorph rodent reported as solitary. There are, however, sightings of groups in the wild, and farmers easily form groups of spotted paca in captivity. Thus, we aimed to describe the acoustic repertoire of captive spotted paca to test the SCHC and to obtain insights about the sociability of this species. Moreover, we aimed to verify the relationship between group size and acoustic repertoire size of caviomorph rodents, to better understand the evolution of sociality in this taxon. We predicted that spotted paca should display a complex acoustic repertoire, given their social behavior in captivity and group sightings in the wild. We also predicted that in caviomorph species the group size would increase with acoustic repertoire, supporting the SCHC. We performed a Linear Discriminant Analysis (LDA) based on acoustic parameters of the vocalizations recorded. In addition, we applied an independent contrasts approach to investigate sociality in spotted paca following the social complexity hypothesis, independent of phylogeny. Our analysis showed that the spotted paca’s acoustic repertoire contains seven vocal types and one mechanical signal. The broad acoustic repertoire of the spotted paca might have evolved given the species’ ability to live in groups. The relationship between group size and the size of the acoustic repertoires of caviomorph species was confirmed, providing additional support for the SCHC in yet another group of diverse mammals–caviomorph rodents. PMID:29364898