NASA Astrophysics Data System (ADS)
Badalyan, A. M.; Bakhturova, L. F.; Kaichev, V. V.; Polyakov, O. V.; Pchelyakov, O. P.; Smirnov, G. I.
2011-09-01
A new technique for depositing thin nanostructured layers on semiconductor and insulating substrates that is based on heterogeneous gas-phase synthesis from low-dimensional volatile metal complexes is suggested and tried out. Thin nanostructured copper layers are deposited on silicon and quartz substrates from low-dimensional formate complexes using a combined synthesis-mass transport process. It is found that copper in layers thus deposited is largely in a metal state (Cu0) and has the form of closely packed nanograins with a characteristic structure.
NASA Astrophysics Data System (ADS)
Rosner, Helge
2011-03-01
A microscopic understanding of the structure-properties relation in crystalline materials is a main goal of modern solid state chemistry and physics. Due to their peculiar magnetism, low dimensional spin 1/2 systems are often highly sensitive to structural details. Seemingly unimportant structural details can be crucial for the magnetic ground state of a compound, especially in the case of competing interactions, frustration and near-degeneracy. Here, we present for selected, complex Cu 2+ systems that a first principles based approach can reliably provide the correct magnetic model, especially in cases where the interpretation of experimental data meets serious difficulties or fails. We demonstrate that the magnetism of low dimensional insulators crucially depends on the magnetically active orbitals which are determined by details of the ligand field of the magnetic cation. Our theoretical results are in very good agreement with thermodynamic and spectroscopic data and provide deep microscopic insight into topical low dimensional magnets.
Experiments on an unsteady, three-dimensional separation
NASA Technical Reports Server (NTRS)
Henk, R. W.; Reynolds, W. C.; Reed, H. L.
1992-01-01
Unsteady, three-dimensional flow separation occurs in a variety of technical situations including turbomachinery and low-speed aircraft. An experimental program at Stanford in unsteady, three-dimensional, pressure-driven laminar separation has investigated the structure and time-scaling of these flows; of particular interest is the development, washout, and control of flow separation. Results reveal that a two-dimensional, laminar boundary layer passes through several stages on its way to a quasi-steady three-dimensional separation. The quasi-steady state of the separation embodies a complex, unsteady, vortical structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang
A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less
Abernathy, Douglas L.; Ma, Jie; Yan, Jiaqiang; ...
2015-04-15
A variety of crystals contain quasi-one-dimensional substructures, which yield distinctive electronic, spintronic, optical and thermoelectric properties. There is a lack of understanding of the lattice dynamics that influences the properties of such complex crystals. Here we employ inelastic neutron scatting measurements and density functional theory calculations to show that numerous low-energy optical vibrational modes exist in higher manganese silicides, an example of such crystals. These optical modes, including unusually low-frequency twisting motions of the Si ladders inside the Mn chimneys, provide a large phase space for scattering acoustic phonons. A hybrid phonon and diffuson model is proposed to explain themore » low and anisotropic thermal conductivity of higher manganese silicides and to evaluate nanostructuring as an approach to further suppress the thermal conductivity and enhance the thermoelectric energy conversion efficiency. This discovery offers new insights into the structure-property relationships of a broad class of materials with quasi-one-dimensional substructures for various applications.« less
Kaleidoscopic imaging patterns of complex structures fabricated by laser-induced deformation
Zhang, Haoran; Yang, Fengyou; Dong, Jianjie; Du, Lena; Wang, Chuang; Zhang, Jianming; Guo, Chuan Fei; Liu, Qian
2016-01-01
Complex surface structures have stimulated a great deal of interests due to many potential applications in surface devices. However, in the fabrication of complex surface micro-/nanostructures, there are always great challenges in precise design, or good controllability, or low cost, or high throughput. Here, we present a route for the accurate design and highly controllable fabrication of surface quasi-three-dimensional (quasi-3D) structures based on a thermal deformation of simple two-dimensional laser-induced patterns. A complex quasi-3D structure, coaxially nested convex–concave microlens array, as an example, demonstrates our capability of design and fabrication of surface elements with this method. Moreover, by using only one relief mask with the convex–concave microlens structure, we have gotten hundreds of target patterns at different imaging planes, offering a cost-effective solution for mass production in lithography and imprinting, and portending a paradigm in quasi-3D manufacturing. PMID:27910852
Ni, Zhong-Hai; Kou, Hui-Zhong; Zhao, Yi-Hua; Zheng, Lei; Wang, Ru-Ji; Cui, Ai-Li; Sato, Osamu
2005-03-21
A dicyano-containing [Fe(bpb)(CN)2]- building block has been employed for the synthesis of cyano-bridged heterometallic Ni(II)-Fe(III) complexes. The presence of steric bpb(2-) ligand around the iron ion results in the formation of low-dimensional species: five are neutral NiFe2 trimers and three are one-dimensional (1D). The structure of the 1D complexes consists of alternating [NiL]2+ and [Fe(bpb)(CN)2]- generating a cyano-bridged cationic polymeric chain and the perchlorate as the counteranion. In all complexes, the coordination geometry of the nickel ions is approximately octahedral with the cyano nitrogen atoms at the trans positions. Magnetic studies of seven complexes show the presence of ferromagnetic interaction between the metal ions through the cyano bridges. Variable temperature magnetic susceptibility investigations of the trimeric complexes yield the following J(NiFe) values (based on the spin exchange Hamiltonian H = -2J(NiFe) S(Ni) (S(Fe(1)) + S(Fe(2))): J(NiFe) = 6.40(5), 7.8(1), 8.9(2), and 6.03(4) cm(-1), respectively. The study of the magneto-structural correlation reveals that the cyanide-bridging bond angle is related to the strength of magnetic exchange coupling: the larger the Ni-N[triple bond]C bond angle, the stronger the Ni- - -Fe magnetic interaction. One 1D complex exhibits long-range antiferromagnetic ordering with T(N) = 3.5 K. Below T(N) (1.82 K), a metamagnetic behavior was observed with the critical field of approximately 6 kOe. The present research shows that the [Fe(bpb)(CN)2]- building block is a good candidate for the construction of low-dimensional magnetic materials.
McKee, Edwin H.; Hildenbrand, Thomas G.; Anderson, Megan L.; Rowley, Peter D.; Sawyer, David A.
1999-01-01
The structural framework of Pahute Mesa, Nevada, is dominated by the Silent Canyon caldera complex, a buried, multiple collapse caldera complex. Using the boundary surface between low density Tertiary volcanogenic rocks and denser granitic and weakly metamorphosed sedimentary rocks (basement) as the outer fault surfaces for the modeled collapse caldera complex, it is postulated that the caldera complex collapsed on steeply- dipping arcuate faults two, possibly three, times following eruption of at least two major ash-flow tuffs. The caldera and most of its eruptive products are now deeply buried below the surface of Pahute Mesa. Relatively low-density rocks in the caldera complex produce one of the largest gravity lows in the western conterminous United States. Gravity modeling defines a steep sided, cup-shaped depression as much as 6,000 meters (19,800 feet) deep that is surrounded and floored by denser rocks. The steeply dipping surface located between the low-density basin fill and the higher density external rocks is considered to be the surface of the ring faults of the multiple calderas. Extrapolation of this surface upward to the outer, or topographic rim, of the Silent Canyon caldera complex defines the upper part of the caldera collapse structure. Rock units within and outside the Silent Canyon caldera complex are combined into seven hydrostratigraphic units based on their predominant hydrologic characteristics. The caldera structures and other faults on Pahute Mesa are used with the seven hydrostratigraphic units to make a three-dimensional geologic model of Pahute Mesa using the "EarthVision" (Dynamic Graphics, Inc.) modeling computer program. This method allows graphic representation of the geometry of the rocks and produces computer generated cross sections, isopach maps, and three-dimensional oriented diagrams. These products have been created to aid in visualizing and modeling the ground-water flow system beneath Pahute Mesa.
NASA Astrophysics Data System (ADS)
Wang, Jin-Hua; Tang, Gui-Mei; Qin, Ting-Xiao; Yan, Shi-Chen; Wang, Yong-Tao; Cui, Yue-Zhi; Weng Ng, Seik
2014-11-01
Four new metal coordination complexes, namely, [Na(BTA)]n (1), [K2(BTA)2(μ2-H2O)]n (2), and [M(BTA)2(H2O)2]n (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1-4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11 nodal net with Schläfli symbol of {318}. Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of {311×42}. Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1-4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail.
Hinton, Thomas J.; Jallerat, Quentin; Palchesko, Rachelle N.; Park, Joon Hyung; Grodzicki, Martin S.; Shue, Hao-Jan; Ramadan, Mohamed H.; Hudson, Andrew R.; Feinberg, Adam W.
2015-01-01
We demonstrate the additive manufacturing of complex three-dimensional (3D) biological structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels, enables 3D printing of hydrated materials with an elastic modulus <500 kPa including alginate, collagen, and fibrin. Computer-aided design models of 3D optical, computed tomography, and magnetic resonance imaging data were 3D printed at a resolution of ~200 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains were mechanically robust and recreated complex 3D internal and external anatomical architectures. PMID:26601312
Dimensional Precision Research of Wax Molding Rapid Prototyping based on Droplet Injection
NASA Astrophysics Data System (ADS)
Mingji, Huang; Geng, Wu; yan, Shan
2017-11-01
The traditional casting process is complex, the mold is essential products, mold quality directly affect the quality of the product. With the method of rapid prototyping 3D printing to produce mold prototype. The utility wax model has the advantages of high speed, low cost and complex structure. Using the orthogonal experiment as the main method, analysis each factors of size precision. The purpose is to obtain the optimal process parameters, to improve the dimensional accuracy of production based on droplet injection molding.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang, Jin-Hua; Tang, Gui-Mei, E-mail: meiguit@163.com; Qin, Ting-Xiao
2014-11-15
Four new metal coordination complexes, namely, [Na(BTA)]{sub n} (1), [K{sub 2}(BTA){sub 2}(μ{sub 2}-H{sub 2}O)]{sub n} (2), and [M(BTA){sub 2}(H{sub 2}O){sub 2}]{sub n} (M=Ca(II) and Sr(II) for 3 and 4, respectively) [BTA=2-(1H-benzotriazol-1-yl) acetic anion], have been obtained under hydrothermal condition, by reacting the different alkali and alkaline-earth metal hydroxides with HBTA. Complexes 1–4 were structurally characterized by X-ray single-crystal diffraction, EA, IR, PXRD, and thermogravimetry analysis (TGA). These complexes display low-dimensional features displaying various two-dimensional (2D) and one-dimensional (1D) coordination motifs. Complex 1 displays a 2D layer with the thickness of 1.5 nm and possesses a topologic structure of a 11more » nodal net with Schläfli symbol of (3{sup 18}). Complex 2 also shows a thick 2D sheet and its topologic structure is a 9 nodes with Schläfli symbol of (3{sup 11}×4{sup 2}). Complexes 3 and 4 possess a 1D linear chain and further stack via hydrogen bonding interactions to generate a three-dimensional supramolecular architecture. These results suggest that both the coordination preferences of the metal ions and the versatile nature of this flexible ligand play a critical role in the final structures. The luminescent spectra show strong emission intensities in complexes 1–4, which display violet photoluminescence. Additionally, ferroelectric, dielectric and nonlinear optic (NLO) second-harmonic generation (SHG) properties of 2 are discussed in detail. - Graphical abstract: A set of alkali and alkaline-earth metal coordination polymers were hydrothermally synthesized by 2-(1H-benzotriazol-1-yl)acetic acid, displaying interesting topologic motifs from two-dimension to one-dimension and specific physical properties. - Highlights: • Alkali and alkaline-earth metal coordination polymers have been obtained. • The ligand 2-(1H-benzotriazol-1-yl)acetic acid has been adopted. • The two-dimensional and one-dimensional structures have been observed. • The properties of second harmonic generation and ferroelectricity for complex 2.« less
Surface tension driven aggregation of organic nanowires via lab in a droplet.
Gu, Jianmin; Yin, Baipeng; Fu, Shaoyan; Feng, Man; Zhang, Ziming; Dong, Haiyun; Gao, Faming; Zhao, Yong Sheng
2018-06-05
Directing the architecture of complex organic nanostructures is desirable and still remains a challenge in areas of materials science due to their structure-dependent collective optoelectronic properties. Herein, we demonstrate a simple and versatile solution strategy that allows surface tension to drive low-dimensional nanostructures to aggregate into complex structures via a lab in a droplet technique. By selecting a suitable combination of a solvent and an anti-solvent with controllable surface tension difference, the droplets can be automatically cracked into micro-droplets, which provides an aggregation force directed toward the centre of the droplet to drive the low-dimensional building blocks to form the special aggregations during the self-assembly process. This synthetic strategy has been shown to be universal for organic materials, which is beneficial for further optimizing the optoelectronic properties. These results contribute to gaining an insightful understanding on the detailed growth mechanism of complex organic nanostructures and greatly promoting the development of organic nanophotonics.
NASA Astrophysics Data System (ADS)
Qiao, Rui; Chen, Shui-Sheng; Sheng, Liang-Quan; Yang, Song; Li, Wei-Dong
2015-08-01
Four metal-organic coordination polymers [Zn(HL)(H2O)]·4H2O (1), [Zn(HL)(L1)]·4H2O (2), [Cu(HL)(H2O)]·3H2O (3) and [Cu(HL)(L1)]·5H2O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H3L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L1). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L1 has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbol of (103) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 63-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear CuII subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C-H···π exist in complexes 1-4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated.
ERIC Educational Resources Information Center
Svetina, Dubravka
2013-01-01
The purpose of this study was to investigate the effect of complex structure on dimensionality assessment in noncompensatory multidimensional item response models using dimensionality assessment procedures based on DETECT (dimensionality evaluation to enumerate contributing traits) and NOHARM (normal ogive harmonic analysis robust method). Five…
Dimensionality and entropy of spontaneous and evoked rate activity
NASA Astrophysics Data System (ADS)
Engelken, Rainer; Wolf, Fred
Cortical circuits exhibit complex activity patterns both spontaneously and evoked by external stimuli. Finding low-dimensional structure in population activity is a challenge. What is the diversity of the collective neural activity and how is it affected by an external stimulus? Using concepts from ergodic theory, we calculate the attractor dimensionality and dynamical entropy production of these networks. We obtain these two canonical measures of the collective network dynamics from the full set of Lyapunov exponents. We consider a randomly-wired firing-rate network that exhibits chaotic rate fluctuations for sufficiently strong synaptic weights. We show that dynamical entropy scales logarithmically with synaptic coupling strength, while the attractor dimensionality saturates. Thus, despite the increasing uncertainty, the diversity of collective activity saturates for strong coupling. We find that a time-varying external stimulus drastically reduces both entropy and dimensionality. Finally, we analytically approximate the full Lyapunov spectrum in several limiting cases by random matrix theory. Our study opens a novel avenue to characterize the complex dynamics of rate networks and the geometric structure of the corresponding high-dimensional chaotic attractor. received funding from Evangelisches Studienwerk Villigst, DFG through CRC 889 and Volkswagen Foundation.
Delparte, D; Gates, RD; Takabayashi, M
2015-01-01
The structural complexity of coral reefs plays a major role in the biodiversity, productivity, and overall functionality of reef ecosystems. Conventional metrics with 2-dimensional properties are inadequate for characterization of reef structural complexity. A 3-dimensional (3D) approach can better quantify topography, rugosity and other structural characteristics that play an important role in the ecology of coral reef communities. Structure-from-Motion (SfM) is an emerging low-cost photogrammetric method for high-resolution 3D topographic reconstruction. This study utilized SfM 3D reconstruction software tools to create textured mesh models of a reef at French Frigate Shoals, an atoll in the Northwestern Hawaiian Islands. The reconstructed orthophoto and digital elevation model were then integrated with geospatial software in order to quantify metrics pertaining to 3D complexity. The resulting data provided high-resolution physical properties of coral colonies that were then combined with live cover to accurately characterize the reef as a living structure. The 3D reconstruction of reef structure and complexity can be integrated with other physiological and ecological parameters in future research to develop reliable ecosystem models and improve capacity to monitor changes in the health and function of coral reef ecosystems. PMID:26207190
High dimensional model representation method for fuzzy structural dynamics
NASA Astrophysics Data System (ADS)
Adhikari, S.; Chowdhury, R.; Friswell, M. I.
2011-03-01
Uncertainty propagation in multi-parameter complex structures possess significant computational challenges. This paper investigates the possibility of using the High Dimensional Model Representation (HDMR) approach when uncertain system parameters are modeled using fuzzy variables. In particular, the application of HDMR is proposed for fuzzy finite element analysis of linear dynamical systems. The HDMR expansion is an efficient formulation for high-dimensional mapping in complex systems if the higher order variable correlations are weak, thereby permitting the input-output relationship behavior to be captured by the terms of low-order. The computational effort to determine the expansion functions using the α-cut method scales polynomically with the number of variables rather than exponentially. This logic is based on the fundamental assumption underlying the HDMR representation that only low-order correlations among the input variables are likely to have significant impacts upon the outputs for most high-dimensional complex systems. The proposed method is first illustrated for multi-parameter nonlinear mathematical test functions with fuzzy variables. The method is then integrated with a commercial finite element software (ADINA). Modal analysis of a simplified aircraft wing with fuzzy parameters has been used to illustrate the generality of the proposed approach. In the numerical examples, triangular membership functions have been used and the results have been validated against direct Monte Carlo simulations. It is shown that using the proposed HDMR approach, the number of finite element function calls can be reduced without significantly compromising the accuracy.
Interaction of a supersonic particle with a three-dimensional complex plasma
NASA Astrophysics Data System (ADS)
Zaehringer, E.; Schwabe, M.; Zhdanov, S.; Mohr, D. P.; Knapek, C. A.; Huber, P.; Semenov, I. L.; Thomas, H. M.
2018-03-01
The influence of a supersonic projectile on a three-dimensional complex plasma is studied. Micron sized particles in a low-temperature plasma formed a large undisturbed system in the new "Zyflex" chamber during microgravity conditions. A supersonic probe particle excited a Mach cone with Mach number M ≈ 1.5-2 and double Mach cone structure in the large weakly damped particle cloud. The speed of sound is measured with different methods and particle charge estimations are compared to the calculations from standard theories. The high image resolution enables the study of Mach cones in microgravity on the single particle level of a three-dimensional complex plasma and gives insight to the dynamics. A heating of the microparticles is discovered behind the supersonic projectile but not in the flanks of the Mach cone.
Design of efficient circularly symmetric two-dimensional variable digital FIR filters.
Bindima, Thayyil; Elias, Elizabeth
2016-05-01
Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability.
Design of efficient circularly symmetric two-dimensional variable digital FIR filters
Bindima, Thayyil; Elias, Elizabeth
2016-01-01
Circularly symmetric two-dimensional (2D) finite impulse response (FIR) filters find extensive use in image and medical applications, especially for isotropic filtering. Moreover, the design and implementation of 2D digital filters with variable fractional delay and variable magnitude responses without redesigning the filter has become a crucial topic of interest due to its significance in low-cost applications. Recently the design using fixed word length coefficients has gained importance due to the replacement of multipliers by shifters and adders, which reduces the hardware complexity. Among the various approaches to 2D design, transforming a one-dimensional (1D) filter to 2D by transformation, is reported to be an efficient technique. In this paper, 1D variable digital filters (VDFs) with tunable cut-off frequencies are designed using Farrow structure based interpolation approach, and the sub-filter coefficients in the Farrow structure are made multiplier-less using canonic signed digit (CSD) representation. The resulting performance degradation in the filters is overcome by using artificial bee colony (ABC) optimization. Finally, the optimized 1D VDFs are mapped to 2D using generalized McClellan transformation resulting in low complexity, circularly symmetric 2D VDFs with real-time tunability. PMID:27222739
On the dimension of complex responses in nonlinear structural vibrations
NASA Astrophysics Data System (ADS)
Wiebe, R.; Spottswood, S. M.
2016-07-01
The ability to accurately model engineering systems under extreme dynamic loads would prove a major breakthrough in many aspects of aerospace, mechanical, and civil engineering. Extreme loads frequently induce both nonlinearities and coupling which increase the complexity of the response and the computational cost of finite element models. Dimension reduction has recently gained traction and promises the ability to distill dynamic responses down to a minimal dimension without sacrificing accuracy. In this context, the dimensionality of a response is related to the number of modes needed in a reduced order model to accurately simulate the response. Thus, an important step is characterizing the dimensionality of complex nonlinear responses of structures. In this work, the dimensionality of the nonlinear response of a post-buckled beam is investigated. Significant detail is dedicated to carefully introducing the experiment, the verification of a finite element model, and the dimensionality estimation algorithm as it is hoped that this system may help serve as a benchmark test case. It is shown that with minor modifications, the method of false nearest neighbors can quantitatively distinguish between the response dimension of various snap-through, non-snap-through, random, and deterministic loads. The state-space dimension of the nonlinear system in question increased from 2-to-10 as the system response moved from simple, low-level harmonic to chaotic snap-through. Beyond the problem studied herein, the techniques developed will serve as a prescriptive guide in developing fast and accurate dimensionally reduced models of nonlinear systems, and eventually as a tool for adaptive dimension-reduction in numerical modeling. The results are especially relevant in the aerospace industry for the design of thin structures such as beams, panels, and shells, which are all capable of spatio-temporally complex dynamic responses that are difficult and computationally expensive to model.
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, J. M.
1987-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or Finite Element Analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid- frequencies between the optimum frequency regimes for FEA and SEA. Power flow analysis has in general been used on one-dimensional beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to two-dimensional plate like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
NASA Astrophysics Data System (ADS)
Chen, Shui-Sheng; Guo, Xing-Zhe; Zhao, Yue; Li, Wei-Dong
2018-02-01
Four new coordination polymers [Ni2(HL1)2(L1)3(BTC)2]·6H2O (1), [Ni2(L1)3(HBTC)2]·4H2O (2), [Cd2(L2)(BTC)(H2O)3]·2H2O (3) and [Cd2(HL2)(BTCA)] (4) were synthesized by reactions of nickel(II)/ cadmium(II) salts with rigid ligands of 1,4-di(1H-imidazol-4-yl)benzene (L1), 1,3-di(1-imidazolyl)-5-(4H-tetrazol-5-yl)benzene (HL2) and polycarboxylic acids of 1,3,5-benzenetricarboxylic acid (H3BTC), 1,2,4,5-benzenetetracarboxylic acid (H4BTCA), respectively. The structures of the complexes were determined by single crystal X-ray diffraction analysis. The complex 1 is one-dimensional (1D) chain while 2 is a (4, 4)-connected two-dimensional (2D) layered structure with 2D → 2D parallel interpenetration. Complex 3 is a rare tetranodal (3,4)-connected three-dimensional (3D) CrVTiSc architecture with Point (Schläfli) symbol of (4·82)(4·84·10)(42·82·102)(83), and compound 4 has the 2D network with (4,4) topology based on the [Cd2(COO)4] SBUs. The weak interactions such as hydrogen bonds and π···π stacking contribute to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. The UV-vis absorption spectra of 1 - 4 are discussed. Moreover, the photo luminescent properties of 3 and 4 and gas sorption property of 2 have been investigated.
Ouyang, Yilan; Zeng, Yangyang; Rong, Yinxiu; Song, Yue; Shi, Lv; Chen, Bo; Yang, Xinlei; Xu, Naiyu; Linhardt, Robert J; Zhang, Zhenqing
2015-09-01
Low molecular weight heparins (LMWHs) are polydisperse and microheterogenous mixtures of polysaccharides used as anticoagulant drugs. Profiling analysis is important for obtaining deeper insights into the structure of LMWHs. Previous oligosaccharide mapping methods are relatively low resolution and are unable to show an entire picture of the structural complexity of LMWHs. In the current study a profiling method was developed relying on multiple heart-cutting, two-dimensional, ultrahigh performance liquid chromatography with quadruple time-of-flight mass spectrometry. This represents an efficient, automated, and robust approach for profiling LMWHs. Using size-exclusion chromatography and ion-pairing reversed-phase chromatography in a two-dimensional separation, LMW components of different sizes and LMW components of the same size but with different charges and polarities can be resolved, providing a more complete picture of a LMWH. Structural information on each component was then obtained with quadrupole time-of-flight mass spectrometry. More than 80 and 120 oligosaccharides were observed and unambiguously assigned from the LMWHs, nadroparin and enoxaparin, respectively. This method might be useful for quality control of LMWHs and as a powerful tool for heparin-related glycomics.
Starch-based aerogels: airy materials from amylose-sodium palmitate inclusion complexes
USDA-ARS?s Scientific Manuscript database
Aerogels are a class of interesting low density porous materials prepared by replacing the water phase contained within a hydrogel with a gas phase while maintaining the three dimensional network structure of the gel. The investigation of starch and hydrocolloid-based aerogels has received attentio...
Low complexity 1D IDCT for 16-bit parallel architectures
NASA Astrophysics Data System (ADS)
Bivolarski, Lazar
2007-09-01
This paper shows that using the Loeffler, Ligtenberg, and Moschytz factorization of 8-point IDCT [2] one-dimensional (1-D) algorithm as a fast approximation of the Discrete Cosine Transform (DCT) and using only 16 bit numbers, it is possible to create in an IEEE 1180-1990 compliant and multiplierless algorithm with low computational complexity. This algorithm as characterized by its structure is efficiently implemented on parallel high performance architectures as well as due to its low complexity is sufficient for wide range of other architectures. Additional constraint on this work was the requirement of compliance with the existing MPEG standards. The hardware implementation complexity and low resources where also part of the design criteria for this algorithm. This implementation is also compliant with the precision requirements described in MPEG IDCT precision specification ISO/IEC 23002-1. Complexity analysis is performed as an extension to the simple measure of shifts and adds for the multiplierless algorithm as additional operations are included in the complexity measure to better describe the actual transform implementation complexity.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Qiao, Rui; Chen, Shui-Sheng, E-mail: chenss@fync.edu.cn; Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210093
2015-08-15
Four metal–organic coordination polymers [Zn(HL)(H{sub 2}O)]·4H{sub 2}O (1), [Zn(HL)(L{sub 1})]·4H{sub 2}O (2), [Cu(HL)(H{sub 2}O)]·3H{sub 2}O (3) and [Cu(HL)(L{sub 1})]·5H{sub 2}O (4) were synthesized by reactions of the corresponding metal(II) salts with semirigid polycarboxylate ligand (5-((4-carboxypiperidin-1-yl)methyl)isophthalic acid hydrochloride, H{sub 3}L·HCl) or auxiliary ligand (1,4-di(1H-imidazol-4-yl)benzene, L{sub 1}). The structures of the compounds were characterized by elemental analysis, FT-IR spectroscopy and single-crystal X-ray diffraction. The use of auxiliary ligand L{sub 1} has great influence on the structures of two pairs of complexes 1, 2 and 3, 4. Complex 1 is a uninodal 3-connected rare 2-fold interpenetrating ZnSc net with a Point (Schlafli) symbolmore » of (10{sup 3}) while 2 is a one-dimensional (1D) ladder structure. Compound 3 features a two-dimensional (2D) honeycomb network with typical 6{sup 3}-hcb topology, while 4 is 2D network with (4, 4) sql topology based on binuclear Cu{sup II} subunits. The non-covalent bonding interactions such as hydrogen bonds, π···π stacking and C–H···π exist in complexes 1–4, which contributes to stabilize crystal structure and extend the low-dimensional entities into high-dimensional frameworks. And the photoluminescent property of 1 and 2 and gas sorption property of 4 have been investigated. - Graphical abstract: Four new coordination polymers have been obtained and their photoluminescent and gas sorption properties have also been investigated. - Highlights: • Two pairs of Zn{sup II}/ Cu{sup II} compounds have been synthesized. • Auxiliary ligand-controlled assembly of the complexes is reported. • The luminescent properties of complexes 1–2 were investigated. • The gas sorption property of 4 has been investigated.« less
Zhou, Hua; Li, Lexin
2014-01-01
Summary Modern technologies are producing a wealth of data with complex structures. For instance, in two-dimensional digital imaging, flow cytometry and electroencephalography, matrix-type covariates frequently arise when measurements are obtained for each combination of two underlying variables. To address scientific questions arising from those data, new regression methods that take matrices as covariates are needed, and sparsity or other forms of regularization are crucial owing to the ultrahigh dimensionality and complex structure of the matrix data. The popular lasso and related regularization methods hinge on the sparsity of the true signal in terms of the number of its non-zero coefficients. However, for the matrix data, the true signal is often of, or can be well approximated by, a low rank structure. As such, the sparsity is frequently in the form of low rank of the matrix parameters, which may seriously violate the assumption of the classical lasso. We propose a class of regularized matrix regression methods based on spectral regularization. A highly efficient and scalable estimation algorithm is developed, and a degrees-of-freedom formula is derived to facilitate model selection along the regularization path. Superior performance of the method proposed is demonstrated on both synthetic and real examples. PMID:24648830
X-ray diffraction study of Penicillium Vitale catalase in the complex with aminotriazole
DOE Office of Scientific and Technical Information (OSTI.GOV)
Borovik, A. A.; Grebenko, A. I.; Melik-Adamyan, V. R., E-mail: mawr@ns.crys.ras.ru
2011-07-15
The three-dimensional structure of the enzyme catalase from Penicillium vitale in a complex with the inhibitor aminotriazole was solved and refined by protein X-ray crystallography methods. An analysis of the three-dimensional structure of the complex showed that the inhibition of the enzyme occurs as a result of the covalent binding of aminotriazole to the amino-acid residue His64 in the active site of the enzyme. An investigation of the three-dimensional structure of the complex resulted in the amino-acid residues being more precisely identified. The binding sites of saccharide residues and calcium ions in the protein molecule were found.
Diverse Supramolecular Nanofiber Networks Assembled by Functional Low-Complexity Domains.
An, Bolin; Wang, Xinyu; Cui, Mengkui; Gui, Xinrui; Mao, Xiuhai; Liu, Yan; Li, Ke; Chu, Cenfeng; Pu, Jiahua; Ren, Susu; Wang, Yanyi; Zhong, Guisheng; Lu, Timothy K; Liu, Cong; Zhong, Chao
2017-07-25
Self-assembling supramolecular nanofibers, common in the natural world, are of fundamental interest and technical importance to both nanotechnology and materials science. Despite important advances, synthetic nanofibers still lack the structural and functional diversity of biological molecules, and the controlled assembly of one type of molecule into a variety of fibrous structures with wide-ranging functional attributes remains challenging. Here, we harness the low-complexity (LC) sequence domain of fused in sarcoma (FUS) protein, an essential cellular nuclear protein with slow kinetics of amyloid fiber assembly, to construct random copolymer-like, multiblock, and self-sorted supramolecular fibrous networks with distinct structural features and fluorescent functionalities. We demonstrate the utilities of these networks in the templated, spatially controlled assembly of ligand-decorated gold nanoparticles, quantum dots, nanorods, DNA origami, and hybrid structures. Owing to the distinguishable nanoarchitectures of these nanofibers, this assembly is structure-dependent. By coupling a modular genetic strategy with kinetically controlled complex supramolecular self-assembly, we demonstrate that a single type of protein molecule can be used to engineer diverse one-dimensional supramolecular nanostructures with distinct functionalities.
NASA Astrophysics Data System (ADS)
Hao, Hong-Jun; Du, Ming-Yue; Wang, Dan-Feng; Sun, Cheng-Jie; Wang, Zhan-Hui; Huang, Rong-Bin; Zheng, Lan-Sun
2013-09-01
Four Zn(II) coordination complexes, namely {[Zn(pmbm)2(tpa)]·H2O}n (1), {[Zn(pmbm)(phda)]·2(H2O)}n (2), [Zn(pmbm)(aze)]n (3), {[Zn(pmbm)(1,4-ndc)]·2(CH3OH)}n (4) [pmbm = 1-(4-pyridylmethyl)-benzimidazole, H2tpa = terephthalic acid, H2phda = phenylenediacetic acid, H2aze = azelaic acid, 1,4-ndcH2 = 1,4-naphthalenedicarboxylic acid] have been synthesized by solution phase ultrasonic reactions of Zn(AC)2·2H2O with pmbm and various dicarboxylates ligands under the ammoniacal condition. All the complexes have been characterized by elemental analyses, IR spectra and X-ray diffraction. Complexes 1 and 2 exhibit one-dimensional chains structure and complex 3 and 4 are two-dimensional sheets structure with (4,4) topology. Complexes 1-4 spanning from one-dimensional chains to two-dimensional sheets suggest that dicarboxylates play significant roles in the formation of such coordination architectures. The photoluminescences of the complexes were also investigated in the solid state at room temperature.
One-step volumetric additive manufacturing of complex polymer structures
Shusteff, Maxim; Browar, Allison E. M.; Kelly, Brett E.; Henriksson, Johannes; Weisgraber, Todd H.; Panas, Robert M.; Fang, Nicholas X.; Spadaccini, Christopher M.
2017-01-01
Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s. PMID:29230437
One-step volumetric additive manufacturing of complex polymer structures.
Shusteff, Maxim; Browar, Allison E M; Kelly, Brett E; Henriksson, Johannes; Weisgraber, Todd H; Panas, Robert M; Fang, Nicholas X; Spadaccini, Christopher M
2017-12-01
Two limitations of additive manufacturing methods that arise from layer-based fabrication are slow speed and geometric constraints (which include poor surface quality). Both limitations are overcome in the work reported here, introducing a new volumetric additive fabrication paradigm that produces photopolymer structures with complex nonperiodic three-dimensional geometries on a time scale of seconds. We implement this approach using holographic patterning of light fields, demonstrate the fabrication of a variety of structures, and study the properties of the light patterns and photosensitive resins required for this fabrication approach. The results indicate that low-absorbing resins containing ~0.1% photoinitiator, illuminated at modest powers (~10 to 100 mW), may be successfully used to build full structures in ~1 to 10 s.
Low-order modeling of internal heat transfer in biomass particle pyrolysis
Wiggins, Gavin M.; Daw, C. Stuart; Ciesielski, Peter N.
2016-05-11
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. Here, we conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulatemore » biomass particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less
Low-Order Modeling of Internal Heat Transfer in Biomass Particle Pyrolysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wiggins, Gavin M.; Ciesielski, Peter N.; Daw, C. Stuart
2016-06-16
We present a computationally efficient, one-dimensional simulation methodology for biomass particle heating under conditions typical of fast pyrolysis. Our methodology is based on identifying the rate limiting geometric and structural factors for conductive heat transport in biomass particle models with realistic morphology to develop low-order approximations that behave appropriately. Comparisons of transient temperature trends predicted by our one-dimensional method with three-dimensional simulations of woody biomass particles reveal good agreement, if the appropriate equivalent spherical diameter and bulk thermal properties are used. We conclude that, for particle sizes and heating regimes typical of fast pyrolysis, it is possible to simulate biomassmore » particle heating with reasonable accuracy and minimal computational overhead, even when variable size, aspherical shape, anisotropic conductivity, and complex, species-specific internal pore geometry are incorporated.« less
NASA Astrophysics Data System (ADS)
Kim, Duckhoe; Sahin, Ozgur
2015-03-01
Scanning probe microscopes can be used to image and chemically characterize surfaces down to the atomic scale. However, the localized tip-sample interactions in scanning probe microscopes limit high-resolution images to the topmost atomic layer of surfaces, and characterizing the inner structures of materials and biomolecules is a challenge for such instruments. Here, we show that an atomic force microscope can be used to image and three-dimensionally reconstruct chemical groups inside a protein complex. We use short single-stranded DNAs as imaging labels that are linked to target regions inside a protein complex, and T-shaped atomic force microscope cantilevers functionalized with complementary probe DNAs allow the labels to be located with sequence specificity and subnanometre resolution. After measuring pairwise distances between labels, we reconstruct the three-dimensional structure formed by the target chemical groups within the protein complex using simple geometric calculations. Experiments with the biotin-streptavidin complex show that the predicted three-dimensional loci of the carboxylic acid groups of biotins are within 2 Å of their respective loci in the corresponding crystal structure, suggesting that scanning probe microscopes could complement existing structural biological techniques in solving structures that are difficult to study due to their size and complexity.
The importance of spatial ability and mental models in learning anatomy
NASA Astrophysics Data System (ADS)
Chatterjee, Allison K.
As a foundational course in medical education, gross anatomy serves to orient medical and veterinary students to the complex three-dimensional nature of the structures within the body. Understanding such spatial relationships is both fundamental and crucial for achievement in gross anatomy courses, and is essential for success as a practicing professional. Many things contribute to learning spatial relationships; this project focuses on a few key elements: (1) the type of multimedia resources, particularly computer-aided instructional (CAI) resources, medical students used to study and learn; (2) the influence of spatial ability on medical and veterinary students' gross anatomy grades and their mental models; and (3) how medical and veterinary students think about anatomy and describe the features of their mental models to represent what they know about anatomical structures. The use of computer-aided instruction (CAI) by gross anatomy students at Indiana University School of Medicine (IUSM) was assessed through a questionnaire distributed to the regional centers of the IUSM. Students reported using internet browsing, PowerPoint presentation software, and email on a daily bases to study gross anatomy. This study reveals that first-year medical students at the IUSM make limited use of CAI to study gross anatomy. Such studies emphasize the importance of examining students' use of CAI to study gross anatomy prior to development and integration of electronic media into the curriculum and they may be important in future decisions regarding the development of alternative learning resources. In order to determine how students think about anatomical relationships and describe the features of their mental models, personal interviews were conducted with select students based on students' ROT scores. Five typologies of the characteristics of students' mental models were identified and described: spatial thinking, kinesthetic approach, identification of anatomical structures, problem solving strategies, and study methods. Students with different levels of spatial ability visualize and think about anatomy in qualitatively different ways, which is reflected by the features of their mental models. Low spatial ability students thought about and used two-dimensional images from the textbook. They possessed basic two-dimensional models of anatomical structures; they placed emphasis on diagrams and drawings in their studies; and they re-read anatomical problems many times before answering. High spatial ability students thought fully in three-dimensional and imagined rotation and movement of the structures; they made use of many types of images and text as they studied and solved problems. They possessed elaborate three-dimensional models of anatomical structures which they were able to manipulate to solve problems; and they integrated diagrams, drawings, and written text in their studies. Middle spatial ability students were a mix between both low and high spatial ability students. They imagined two-dimensional images popping out of the flat paper to become more three-dimensional, but still relied on drawings and diagrams. Additionally, high spatial ability students used a higher proportion of anatomical terminology than low spatial ability or middle spatial ability students. This provides additional support to the premise that high spatial students' mental models are a complex mixture of imagistic representations and propositional representations that incorporate correct anatomical terminology. Low spatial ability students focused on the function of structures and ways to group information primarily for the purpose of recall. This supports the theory that low spatial students' mental models will be characterized by more on imagistic representations that are general in nature. (Abstract shortened by UMI.)
A knowledge-based object recognition system for applications in the space station
NASA Technical Reports Server (NTRS)
Dhawan, Atam P.
1988-01-01
A knowledge-based three-dimensional (3D) object recognition system is being developed. The system uses primitive-based hierarchical relational and structural matching for the recognition of 3D objects in the two-dimensional (2D) image for interpretation of the 3D scene. At present, the pre-processing, low-level preliminary segmentation, rule-based segmentation, and the feature extraction are completed. The data structure of the primitive viewing knowledge-base (PVKB) is also completed. Algorithms and programs based on attribute-trees matching for decomposing the segmented data into valid primitives were developed. The frame-based structural and relational descriptions of some objects were created and stored in a knowledge-base. This knowledge-base of the frame-based descriptions were developed on the MICROVAX-AI microcomputer in LISP environment. The simulated 3D scene of simple non-overlapping objects as well as real camera data of images of 3D objects of low-complexity have been successfully interpreted.
A Fast, Open EEG Classification Framework Based on Feature Compression and Channel Ranking
Han, Jiuqi; Zhao, Yuwei; Sun, Hongji; Chen, Jiayun; Ke, Ang; Xu, Gesen; Zhang, Hualiang; Zhou, Jin; Wang, Changyong
2018-01-01
Superior feature extraction, channel selection and classification methods are essential for designing electroencephalography (EEG) classification frameworks. However, the performance of most frameworks is limited by their improper channel selection methods and too specifical design, leading to high computational complexity, non-convergent procedure and narrow expansibility. In this paper, to remedy these drawbacks, we propose a fast, open EEG classification framework centralized by EEG feature compression, low-dimensional representation, and convergent iterative channel ranking. First, to reduce the complexity, we use data clustering to compress the EEG features channel-wise, packing the high-dimensional EEG signal, and endowing them with numerical signatures. Second, to provide easy access to alternative superior methods, we structurally represent each EEG trial in a feature vector with its corresponding numerical signature. Thus, the recorded signals of many trials shrink to a low-dimensional structural matrix compatible with most pattern recognition methods. Third, a series of effective iterative feature selection approaches with theoretical convergence is introduced to rank the EEG channels and remove redundant ones, further accelerating the EEG classification process and ensuring its stability. Finally, a classical linear discriminant analysis (LDA) model is employed to classify a single EEG trial with selected channels. Experimental results on two real world brain-computer interface (BCI) competition datasets demonstrate the promising performance of the proposed framework over state-of-the-art methods. PMID:29713262
Muhammad, Saqib; Han, Shengli; Xie, Xiaoyu; Wang, Sicen; Aziz, Muhammad Majid
2017-01-01
Cell membrane chromatography is a simple, specific, and time-saving technique for studying drug-receptor interactions, screening of active components from complex mixtures, and quality control of traditional Chinese medicines. However, the short column life, low sensitivity, low column efficiency (so cannot resolve satisfactorily mixture of compounds), low peak capacity, and inefficient in structure identification were bottleneck in its application. Combinations of cell membrane chromatography with multidimensional chromatography such as two-dimensional liquid chromatography and high sensitivity detectors like mass have significantly reduced many of the above-mentioned shortcomings. This paper provides an overview of the current advances in online two-dimensional-based cell membrane chromatography for screening target components from traditional Chinese medicines with particular emphasis on the instrumentation, preparation of cell membrane stationary phase, advantages, and disadvantages compared to alternative approaches. The last section of the review summarizes the applications of the online two-dimensional high-performance liquid chromatography based cell membrane chromatography reported since its emergence to date (2010-June 2016). © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Feinberg, Adam
We demonstrate the additive manufacturing of complex three-dimensional (3D) structures using soft protein and polysaccharide hydrogels that are challenging or impossible to create using traditional fabrication approaches. These structures are built by embedding the printed hydrogel within a secondary hydrogel that serves as a temporary, thermoreversible, and biocompatible support. This process, termed freeform reversible embedding of suspended hydrogels (FRESH), enables 3D printing of hydrated materials with an elastic modulus less than 500 kPa including alginate, collagen, hyaluronic acid and fibrin. A range of crosslinking mechanisms can be used depending on the polymer being printed, including ionic, enzymatic, pH, thermal and light based approaches. CAD models of 3D optical, computed tomography, and magnetic resonance imaging data can be 3D printed at a resolution of 100 μm and at low cost by leveraging open-source hardware and software tools. Proof-of-concept structures based on femurs, branched coronary arteries, trabeculated embryonic hearts, and human brains are mechanically robust and recreate complex 3D internal and external anatomical architectures. Recent advances have improved the resolution and broadened the range of materials that can be FRESH 3D printed. This work was supported in part by the NIH Director's New Innovator Award (DP2HL117750) and the NSF CAREER Award (1454248).
McGuigan, Megan; Waite, J Hunter; Imanaka, Hiroshi; Sacks, Richard D
2006-11-03
The reddish brown haze that surrounds Titan, Saturn's largest moon, is thought to consist of tholin-like organic aerosols. Tholins are complex materials of largely unknown structure. The very high peak capacity and structured chromatograms obtained from comprehensive two-dimensional GC (GC x GC) are attractive attributes for the characterization of tholin pyrolysis products. In this report, GC x GC with time-of-flight MS detection and a flash pyrolysis inlet is used to characterize tholin pyrolysis products. Identified pyrolysis products include low-molecular-weight nitriles, alkyl substituted pyrroles, linear and branched hydrocarbons, alkyl-substituted benzenes and PAH compounds. The pyrolysis of standards found in tholin pyrolysate showed that little alteration occurred and thus these structures are likely present in the tholin material.
The Complexity of Human Walking: A Knee Osteoarthritis Study
Kotti, Margarita; Duffell, Lynsey D.; Faisal, Aldo A.; McGregor, Alison H.
2014-01-01
This study proposes a framework for deconstructing complex walking patterns to create a simple principal component space before checking whether the projection to this space is suitable for identifying changes from the normality. We focus on knee osteoarthritis, the most common knee joint disease and the second leading cause of disability. Knee osteoarthritis affects over 250 million people worldwide. The motivation for projecting the highly dimensional movements to a lower dimensional and simpler space is our belief that motor behaviour can be understood by identifying a simplicity via projection to a low principal component space, which may reflect upon the underlying mechanism. To study this, we recruited 180 subjects, 47 of which reported that they had knee osteoarthritis. They were asked to walk several times along a walkway equipped with two force plates that capture their ground reaction forces along 3 axes, namely vertical, anterior-posterior, and medio-lateral, at 1000 Hz. Data when the subject does not clearly strike the force plate were excluded, leaving 1–3 gait cycles per subject. To examine the complexity of human walking, we applied dimensionality reduction via Probabilistic Principal Component Analysis. The first principal component explains 34% of the variance in the data, whereas over 80% of the variance is explained by 8 principal components or more. This proves the complexity of the underlying structure of the ground reaction forces. To examine if our musculoskeletal system generates movements that are distinguishable between normal and pathological subjects in a low dimensional principal component space, we applied a Bayes classifier. For the tested cross-validated, subject-independent experimental protocol, the classification accuracy equals 82.62%. Also, a novel complexity measure is proposed, which can be used as an objective index to facilitate clinical decision making. This measure proves that knee osteoarthritis subjects exhibit more variability in the two-dimensional principal component space. PMID:25232949
NASA Astrophysics Data System (ADS)
Ren, Yixia; Zhou, Shanhong; Wang, Zhixiang; Zhang, Meili; Wang, Jijiang; Cao, Jia
2017-11-01
Four new Cd(II) complexes have been prepared based on 1,2,4-trimellitic acid (H3tma) and monosodium 2-sulfoterephthalate (2-NaH2stp), formulated as [Cd2(Htma)2 (dpp)2(H2O)] (1), [Cd3 (tma)2 (2,4-bipy)4(H2O)2] (2), [Cd (2-Hstp) (2,2'-bipy)2]·2H2O (3) and [Cd (2-Hstp) (2,4-bipy) (H2O)2] (4) (dpp = dipyrido [3,2-a:2‧,3'-c] phenazine, 2,4-bipy = 2,4-bipyridine, 2,2'-bipy = 2,2'- bipyridine) by hydrothermal method. X-ray diffraction structural analyses show all these complexes crystallized in triclinic crystal system of Pī space group, but their structures are diverse. Complex 1 exhibits an infinite one-dimensional chain featuring the left- and right-handed stranded chains interweaved each other. For 2, the two-dimensional network is constructed by one-dimensional ladder-like chain linked by Cd2 ions. In complex 3, the cadmium ion is surrounded with one 2-Hstp2- anion and two 2,2'-bipy molecules. Complex 4 is also a discrete structure based on a metallic dimer unit. In all these complexes, the N-donor co-ligands take the important roles in the assembly of three-dimensional supramolecular structures. The fluorescence properties of complexes 1-4 could be assigned to the π - π* transition of organic ligands.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Arıcı, Mürsel; Yeşilel, Okan Zafer, E-mail: yesilel@ogu.edu.tr; Keskin, Seda
2014-02-15
Two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Thermal properties of the complexes showed that both complexes were stable over 320 °C. Simulation studies demonstrated that complexmore » 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. - Graphical abstract: In this study, two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. Display Omitted - Highlights: • Two new coordination polymers with 5-nitroisophthalate and 1,2-bis(4-pyridyl)ethane. • Atomically detailed simulation studies of the complexes. • Complex 2 can be proposed as molecular sieve to separate CO{sub 2} from CH{sub 4} at low pressures.« less
Visualization of molecular structures using HoloLens-based augmented reality
Hoffman, MA; Provance, JB
2017-01-01
Biological molecules and biologically active small molecules are complex three dimensional structures. Current flat screen monitors are limited in their ability to convey the full three dimensional characteristics of these molecules. Augmented reality devices, including the Microsoft HoloLens, offer an immersive platform to change how we interact with molecular visualizations. We describe a process to incorporate the three dimensional structures of small molecules and complex proteins into the Microsoft HoloLens using aspirin and the human leukocyte antigen (HLA) as examples. Small molecular structures can be introduced into the HoloStudio application, which provides native support for rotating, resizing and performing other interactions with these molecules. Larger molecules can be imported through the Unity gaming development platform and then Microsoft Visual Developer. The processes described here can be modified to import a wide variety of molecular structures into augmented reality systems and improve our comprehension of complex structural features. PMID:28815109
From tissue to silicon to plastic: three-dimensional printing in comparative anatomy and physiology
Lauridsen, Henrik; Hansen, Kasper; Nørgård, Mathias Ørum; Wang, Tobias; Pedersen, Michael
2016-01-01
Comparative anatomy and physiology are disciplines related to structures and mechanisms in three-dimensional (3D) space. For the past centuries, scientific reports in these fields have relied on written descriptions and two-dimensional (2D) illustrations, but in recent years 3D virtual modelling has entered the scene. However, comprehending complex anatomical structures is hampered by reproduction on flat inherently 2D screens. One way to circumvent this problem is in the production of 3D-printed scale models. We have applied computed tomography and magnetic resonance imaging to produce digital models of animal anatomy well suited to be printed on low-cost 3D printers. In this communication, we report how to apply such technology in comparative anatomy and physiology to aid discovery, description, comprehension and communication, and we seek to inspire fellow researchers in these fields to embrace this emerging technology. PMID:27069653
NASA Astrophysics Data System (ADS)
Hinatsu, Yukio; Doi, Yoshihiro
2013-02-01
Ternary rare-earth osmates Ln3OsO7 (Ln=Pr, Tb) have been prepared. They crystallize in an ortho-rhombic superstructure of cubic fluorite with space group Cmcm. Both of these compounds undergo a structural phase transition at 130 K (Ln=Pr) and 580 K (Ln=Tb). These compounds show complex magnetic behavior at low temperatures. Pr3OsO7 exhibits magnetic transitions at 8 and 73 K, and Tb3OsO7 magnetically orders at 8 and 60 K. The Os moments become one-dimensionally ordered, and when the temperature is furthermore decreased, it provokes the ordering in the Ln3+ sublattice that simultaneously becomes three-dimensionally ordered with the Os sublattice.
NASA Astrophysics Data System (ADS)
Anokhina, Ekaterina V.
Low-dimensional and open-framework materials containing transition metals have a wide range of applications in redox catalysis, solid-state batteries, and electronic and magnetic devices. This dissertation reports on research carried out with the goal to develop a strategy for the preparation of low-dimensional and open-framework materials using octahedral metal clusters as building blocks. Our approach takes its roots from crystal engineering principles where the desired framework topologies are achieved through building block design. The key idea of this work is to induce directional bonding preferences in the cluster units using a combination of ligands with a large difference in charge density. This investigation led to the preparation and characterization of a new family of niobium oxychloride cluster compounds with original structure types exhibiting 1ow-dimensional or open-framework character. Most of these materials have framework topologies unprecedented in compounds containing octahedral clusters. Comparative analysis of their structural features indicates that the novel cluster connectivity patterns in these systems are the result of complex interplay between the effects of anisotropic ligand arrangement in the cluster unit and optimization of ligand-counterion electrostatic interactions. The important role played by these factors sets niobium oxychloride systems apart from cluster compounds with one ligand type or statistical ligand distribution where the main structure-determining factor is the total number of ligands. These results provide a blueprint for expanding the ligand combination strategy to other transition metal cluster systems and for the future rational design of cluster-based materials.
NASA Astrophysics Data System (ADS)
Wang, X.-L.; Chen, Yongqiang; Liu, Guocheng; Lin, Hongyan; Zhang, Jinxia
2009-09-01
Two novel metal-organic coordination polymers [Cu(PIP)(bpea)(H 2O)]·H 2O ( 1) and [Cu(PIP)(1,4-bdc)] ( 2) have been obtained from hydrothermal reaction of copper(II) with the mixed ligands [biphenylethene-4,4'-dicarboxylic acid (bpea) for 1, benzene-1,4-dicarboxylic acid (1,4-H 2bdc) for 2, and 2-phenylimidazo[4,5- f]1,10-phenanthroline (PIP)]. Both complexes have been structurally characterized by elemental analyses, IR and single-crystal X-ray diffraction analyses. Structural analyses reveal that complex 1 possesses infinite one-dimensional zigzag chain, 2 exhibits a two-dimensional (4,4) network, both of which are extended into three-dimensional supramolecular network by weak interactions. The different structures of the title complexes illustrate the influence of the flexibility (the spacer length of carboxyl groups and the structural rigidity of the spacer) of organic dicarboxylate ligands on the formation of such coordination architectures. Moreover, the thermal properties and the voltammetric behavior of complexes 1 and 2 have been reported.
Encounter complexes and dimensionality reduction in protein-protein association.
Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor
2014-04-08
An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein-protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001.
Encounter complexes and dimensionality reduction in protein–protein association
Kozakov, Dima; Li, Keyong; Hall, David R; Beglov, Dmitri; Zheng, Jiefu; Vakili, Pirooz; Schueler-Furman, Ora; Paschalidis, Ioannis Ch; Clore, G Marius; Vajda, Sandor
2014-01-01
An outstanding challenge has been to understand the mechanism whereby proteins associate. We report here the results of exhaustively sampling the conformational space in protein–protein association using a physics-based energy function. The agreement between experimental intermolecular paramagnetic relaxation enhancement (PRE) data and the PRE profiles calculated from the docked structures shows that the method captures both specific and non-specific encounter complexes. To explore the energy landscape in the vicinity of the native structure, the nonlinear manifold describing the relative orientation of two solid bodies is projected onto a Euclidean space in which the shape of low energy regions is studied by principal component analysis. Results show that the energy surface is canyon-like, with a smooth funnel within a two dimensional subspace capturing over 75% of the total motion. Thus, proteins tend to associate along preferred pathways, similar to sliding of a protein along DNA in the process of protein-DNA recognition. DOI: http://dx.doi.org/10.7554/eLife.01370.001 PMID:24714491
Estimating the functional dimensionality of neural representations.
Ahlheim, Christiane; Love, Bradley C
2018-06-07
Recent advances in multivariate fMRI analysis stress the importance of information inherent to voxel patterns. Key to interpreting these patterns is estimating the underlying dimensionality of neural representations. Dimensions may correspond to psychological dimensions, such as length and orientation, or involve other coding schemes. Unfortunately, the noise structure of fMRI data inflates dimensionality estimates and thus makes it difficult to assess the true underlying dimensionality of a pattern. To address this challenge, we developed a novel approach to identify brain regions that carry reliable task-modulated signal and to derive an estimate of the signal's functional dimensionality. We combined singular value decomposition with cross-validation to find the best low-dimensional projection of a pattern of voxel-responses at a single-subject level. Goodness of the low-dimensional reconstruction is measured as Pearson correlation with a test set, which allows to test for significance of the low-dimensional reconstruction across participants. Using hierarchical Bayesian modeling, we derive the best estimate and associated uncertainty of underlying dimensionality across participants. We validated our method on simulated data of varying underlying dimensionality, showing that recovered dimensionalities match closely true dimensionalities. We then applied our method to three published fMRI data sets all involving processing of visual stimuli. The results highlight three possible applications of estimating the functional dimensionality of neural data. Firstly, it can aid evaluation of model-based analyses by revealing which areas express reliable, task-modulated signal that could be missed by specific models. Secondly, it can reveal functional differences across brain regions. Thirdly, knowing the functional dimensionality allows assessing task-related differences in the complexity of neural patterns. Copyright © 2018 The Authors. Published by Elsevier Inc. All rights reserved.
Three-dimensional modeling of the Nevada Test Site and vicinity from teleseismic P-wave residuals
Monfort, Mary E.; Evans, John R.
1982-01-01
A teleseismic P-wave travel-time residual study is described which reveals the regional compressional-velocity structure of southern Nevada and neighboring parts of California to a depth of 280 km. During 1980, 98 teleseismic events were recorded at as many as 53 sites in this area. P-wave residuals were calculated relative to a network-wide average residual for each event and are displayed on maps of the stations for each of four event-azimuth quadrants. Fluctuations in these map-patterns of residuals with approach azimuth combined with results of linear, three-dimensional inversions of some 2887 residuals indicate the following characteristics of the velocity structure of the southern Nevada region: 1) a low-velocity body exists in the upper crust 50 km northeast of Beatty, Nevada, near the Miocene Timber Mountain-Silent Canyon caldera complex. Another highly-localized low-velocity anomaly occurs near the southwest corner of the Nevada Test Site (NTS). These two anomalies seem to be part of a low-velocity trough extending from Death Valley, California, to about 50 km north of NTS. 2) There is a high-velocity body in the mantle between 81 and 131 km deep centered about i0 km north of the edge of the Timber Mountain caldera, 3) a broad low-velocity body is delineated between 81 and 131 km deep centered about 30 km north of Las Vegas, 4) there is a monotonic increase in travel-time delays from west to east across the region, probably indicating an eastward decrease in velocity, and lower than average velocities in southeastern Nevada below 31 km, and 5) considerable complexity in three-dimensional velocity structure exists in this part of the southern Great Basin. Inversions of teleseismic P-wave travel-time residuals were also performed on data from 12 seismometers in the immediate vicinity of the Nevada Test Site to make good use of the closer station spacing i in that area. Results of these inversions show more details of the velocity structure but generally the same features as those found in the regional study.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Yaru; Xing, Zhiyan; Zhang, Xiao
To systematically explore the influence of inorganic anions on building coordination complexes, five novel complexes based on 1-(benzotriazole-1-methyl)−2-propylimidazole (bpmi), [Cu(bpmi){sub 2}(Ac){sub 2}]·H{sub 2}O (1), [Cu(bpmi){sub 2}(H{sub 2}O){sub 2}]·2NO{sub 3}·2H{sub 2}O (2), [Cu(bpmi)(N{sub 3}){sub 2}] (3), [Ag(bpmi)(NO{sub 3})] (4) and [Cu{sub 3}(bpmi){sub 2}(SCN){sub 4}(DMF)] (5) (Ac{sup −}=CH{sub 3}COO{sup −}, DMF=N,N-Dimethylformamide) are synthesized through rationally introducing Cu(II) salts and Ag(I) salt with different inorganic anions. X-ray single-crystal analyses reveal that these complexes show interesting structural features from mononuclear (1), one-dimensional (2 and 3), two-dimensional (4) to three-dimensional (5) under the influence of inorganic anions with different basicities. The structural variation can bemore » explained by the hard-soft-acid-base (HSAB) theory. Magnetic susceptibility measurement indicates that complex 3 exhibits an antiferromagnetic coupling between adjacent Cu(II) ions. - Graphical abstract: Five new Cu(II)/Ag(I) complexes show interesting structural features from mononuclear, one-dimension, two-dimension to three-dimension under the influence of inorganic anions. The structural variation can be explained by the HSAB theory. - Highlights: • Five inorganic anion-dependent complexes are synthesized. • Structural variation can be explained by the hard-soft-acid-base (HSAB) theory. • The magnetic property of complex has been studied.« less
Plasma sheath structure surrounding a large powered spacecraft
NASA Technical Reports Server (NTRS)
Mandell, M. J.; Jongeward, G. A.; Katz, I.
1984-01-01
Various factors determining the floating potential of a highly biased (about 4-kV) spacecraft in low earth orbit are discussed. While the common rule of thumb (90 percent negative; 10 percent positive) is usually a good guide, different biasing and grounding patterns can lead to high positive potentials. The NASCAP/LEO code can be used to predict spacecraft floating potential for complex three-dimensional spacecraft.
Structure and Liquid Fragility in Sodium Carbonate.
Wilson, Mark; Ribeiro, Mauro C C; Wilding, Martin C; Benmore, Chris; Weber, J K R; Alderman, Oliver; Tamalonis, Anthony; Parise, J B
2018-02-01
The relationship between local structure and dynamics is explored for molten sodium carbonate. A flexible fluctuating-charge model, which allows for changes in the shape and charge distribution of the carbonate molecular anion, is developed. The system shows the evolution of highly temperature-dependent complex low-dimensional structures which control the dynamics (and hence the liquid fragility). By varying the molecular anion charge distribution, the key interactions responsible for the formation of these structures can be identified and rationalized. An increase in the mean charge separation within the carbonate ions increases the connectivity of the emerging structures and leads to an increase in the system fragility.
Asynchronous oscillations of rigid rods drive viscous fluid to swirl
NASA Astrophysics Data System (ADS)
Hayashi, Rintaro; Takagi, Daisuke
2017-12-01
We present a minimal system for generating flow at low Reynolds number by oscillating a pair of rigid rods in silicone oil. Experiments show that oscillating them in phase produces no net flow, but a phase difference alone can generate rich flow fields. Tracer particles follow complex trajectory patterns consisting of small orbital movements every cycle and then drifting or swirling in larger regions after many cycles. Observations are consistent with simulations performed using the method of regularized Stokeslets, which reveal complex three-dimensional flow structures emerging from simple oscillatory actuation. Our findings reveal the basic underlying flow structure around oscillatory protrusions such as hairs and legs as commonly featured on living and nonliving bodies.
Efficient statistically accurate algorithms for the Fokker-Planck equation in large dimensions
NASA Astrophysics Data System (ADS)
Chen, Nan; Majda, Andrew J.
2018-02-01
Solving the Fokker-Planck equation for high-dimensional complex turbulent dynamical systems is an important and practical issue. However, most traditional methods suffer from the curse of dimensionality and have difficulties in capturing the fat tailed highly intermittent probability density functions (PDFs) of complex systems in turbulence, neuroscience and excitable media. In this article, efficient statistically accurate algorithms are developed for solving both the transient and the equilibrium solutions of Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures. The algorithms involve a hybrid strategy that requires only a small number of ensembles. Here, a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious non-parametric Gaussian kernel density estimation in the remaining low-dimensional subspace. Particularly, the parametric method provides closed analytical formulae for determining the conditional Gaussian distributions in the high-dimensional subspace and is therefore computationally efficient and accurate. The full non-Gaussian PDF of the system is then given by a Gaussian mixture. Different from traditional particle methods, each conditional Gaussian distribution here covers a significant portion of the high-dimensional PDF. Therefore a small number of ensembles is sufficient to recover the full PDF, which overcomes the curse of dimensionality. Notably, the mixture distribution has significant skill in capturing the transient behavior with fat tails of the high-dimensional non-Gaussian PDFs, and this facilitates the algorithms in accurately describing the intermittency and extreme events in complex turbulent systems. It is shown in a stringent set of test problems that the method only requires an order of O (100) ensembles to successfully recover the highly non-Gaussian transient PDFs in up to 6 dimensions with only small errors.
The X-ray corona and the photospheric magnetic field.
NASA Technical Reports Server (NTRS)
Krieger, A. S.; Vaiana, G. S.; Van Speybroeck, L. P.
1971-01-01
Soft X-ray photographs of the solar corona have been obtained on four flights of a rocket-borne grazing incidence telescope having a resolution of a few arc sec. The configuration of the X-ray emitting structures in the corona has been compared to the magnetic field distribution measured by photospheric longitudinal magnetograms. The X-ray structures trace the three-dimensional configuration of the magnetic field through the lower corona. Active regions in the corona take the form of tubular structures connecting regions of opposite magnetic polarity within the same or adjacent chromospheric active regions. Higher, larger structures link widely separated active regions into complexes of activity covering substantial fractions of the disk. The complexes are separated by areas of low average field in the photosphere. Interconnections across the solar equator appear to originate over areas of preceding polarity.
Band warping, band non-parabolicity, and Dirac points in electronic and lattice structures
NASA Astrophysics Data System (ADS)
Resca, Lorenzo; Mecholsky, Nicholas A.; Pegg, Ian L.
2017-10-01
We illustrate at a fundamental level the physical and mathematical origins of band warping and band non-parabolicity in electronic and vibrational structures. We point out a robust presence of pairs of topologically induced Dirac points in a primitive-rectangular lattice using a p-type tight-binding approximation. We analyze two-dimensional primitive-rectangular and square Bravais lattices with implications that are expected to generalize to more complex structures. Band warping is shown to arise at the onset of a singular transition to a crystal lattice with a larger symmetry group, which allows the possibility of irreducible representations of higher dimensions, hence band degeneracy, at special symmetry points in reciprocal space. Band warping is incompatible with a multi-dimensional Taylor series expansion, whereas band non-parabolicities are associated with multi-dimensional Taylor series expansions to all orders. Still band non-parabolicities may merge into band warping at the onset of a larger symmetry group. Remarkably, while still maintaining a clear connection with that merging, band non-parabolicities may produce pairs of conical intersections at relatively low-symmetry points. Apparently, such conical intersections are robustly maintained by global topology requirements, rather than any local symmetry protection. For two p-type tight-binding bands, we find such pairs of conical intersections drifting along the edges of restricted Brillouin zones of primitive-rectangular Bravais lattices as lattice constants vary relatively to each other, until these conical intersections merge into degenerate warped bands at high-symmetry points at the onset of a square lattice. The conical intersections that we found appear to have similar topological characteristics as Dirac points extensively studied in graphene and other topological insulators, even though our conical intersections have none of the symmetry complexity and protection afforded by the latter more complex structures.
Geostatistical three-dimensional modeling of oolite shoals, St. Louis Limestone, southwest Kansas
Qi, L.; Carr, T.R.; Goldstein, R.H.
2007-01-01
In the Hugoton embayment of southwestern Kansas, reservoirs composed of relatively thin (<4 m; <13.1 ft) oolitic deposits within the St. Louis Limestone have produced more than 300 million bbl of oil. The geometry and distribution of oolitic deposits control the heterogeneity of the reservoirs, resulting in exploration challenges and relatively low recovery. Geostatistical three-dimensional (3-D) models were constructed to quantify the geometry and spatial distribution of oolitic reservoirs, and the continuity of flow units within Big Bow and Sand Arroyo Creek fields. Lithofacies in uncored wells were predicted from digital logs using a neural network. The tilting effect from the Laramide orogeny was removed to construct restored structural surfaces at the time of deposition. Well data and structural maps were integrated to build 3-D models of oolitic reservoirs using stochastic simulations with geometry data. Three-dimensional models provide insights into the distribution, the external and internal geometry of oolitic deposits, and the sedimentologic processes that generated reservoir intervals. The structural highs and general structural trend had a significant impact on the distribution and orientation of the oolitic complexes. The depositional pattern and connectivity analysis suggest an overall aggradation of shallow-marine deposits during pulses of relative sea level rise followed by deepening near the top of the St. Louis Limestone. Cemented oolitic deposits were modeled as barriers and baffles and tend to concentrate at the edge of oolitic complexes. Spatial distribution of porous oolitic deposits controls the internal geometry of rock properties. Integrated geostatistical modeling methods can be applicable to other complex carbonate or siliciclastic reservoirs in shallow-marine settings. Copyright ?? 2007. The American Association of Petroleum Geologists. All rights reserved.
Safavynia, Seyed A.
2012-01-01
Recent evidence suggests that complex spatiotemporal patterns of muscle activity can be explained with a low-dimensional set of muscle synergies or M-modes. While it is clear that both spatial and temporal aspects of muscle coordination may be low dimensional, constraints on spatial versus temporal features of muscle coordination likely involve different neural control mechanisms. We hypothesized that the low-dimensional spatial and temporal features of muscle coordination are independent of each other. We further hypothesized that in reactive feedback tasks, spatially fixed muscle coordination patterns—or muscle synergies—are hierarchically recruited via time-varying neural commands based on delayed task-level feedback. We explicitly compared the ability of spatially fixed (SF) versus temporally fixed (TF) muscle synergies to reconstruct the entire time course of muscle activity during postural responses to anterior-posterior support-surface translations. While both SF and TF muscle synergies could account for EMG variability in a postural task, SF muscle synergies produced more consistent and physiologically interpretable results than TF muscle synergies during postural responses to perturbations. Moreover, a majority of SF muscle synergies were consistent in structure when extracted from epochs throughout postural responses. Temporal patterns of SF muscle synergy recruitment were well-reconstructed by delayed feedback of center of mass (CoM) kinematics and reproduced EMG activity of multiple muscles. Consistent with the idea that independent and hierarchical low-dimensional neural control structures define spatial and temporal patterns of muscle activity, our results suggest that CoM kinematics are a task variable used to recruit SF muscle synergies for feedback control of balance. PMID:21957219
Davarcı, Derya; Gür, Rüştü; Beşli, Serap; Şenkuytu, Elif; Zorlu, Yunus
2016-06-01
The reactions of a flexible ligand hexakis(3-pyridyloxy)cyclotriphosphazene (HPCP) with a variety of silver(I) salts (AgX; X = NO3(-), PF6(-), ClO4(-), CH3PhSO3(-), BF4(-) and CF3SO3(-)) afforded six silver(I) coordination polymers, namely {[Ag2(HPCP)]·(NO3)2·H2O}n (1), {[Ag2(HPCP)(CH3CN)]·(PF6)2}n (2), {[Ag2(HPCP)(CH3CN)]·(ClO4)2}n (3), [Ag3(HPCP)(CH3PhSO3)3]n (4), [Ag2(HPCP)(CH3CN)(BF4)2]n (5) and {[Ag(HPCP)]·(CF3SO3)}n (6). All of the isolated crystalline compounds were structurally determined by X-ray crystallography. Changing the counteranions in the reactions, which were conducted under similar conditions of M/L ratio (1:1), temperature and solvent, resulted in structures with different types of topologies. In complexes (1)-(6), the ligand HPCP shows different coordination modes with Ag(I) ions giving two-dimensional layered structures and three-dimensional frameworks with different topologies. Complex (1) displays a new three-dimensional framework adopting a (3,3,6)-connected 3-nodal net with point symbol {4.6(2)}2{4(2).6(10).8(3)}. Complexes (2) and (3) are isomorphous and have a two-dimensional layered structure showing the same 3,6L60 topology with point symbol {4.2(6)}2{4(8).6(6).8}. Complex (4) is a two-dimensional structure incorporating short Ag...Ag argentophilic interactions and has a uninodal 4-connected sql/Shubnikov tetragonal plane net with {4(4).6(2)} topology. Complex (5) exhibits a novel three-dimensional framework and more suprisingly contains twofold interpenetrated honeycomb-like networks, in which the single net has a trinodal (2,3,5)-connected 3-nodal net with point symbol {6(3).8(6).12}{6(3)}{8}. Complex (6) crystallizes in a trigonal crystal system with the space group R\\bar 3 and possesses a three-dimensional polymeric structure showing a binodal (4,6)-connected fsh net with the point symbol (4(3).6(3))2.(4(6).6(6).8(3)). The effect of the counteranions on the formation of coordination polymers is discussed in this study.
Castellazzi, Giovanni; D'Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-07-28
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation.
Three-dimensional structure of homodimeric cholesterol esterase-ligand complex at 1.4 Å resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Pletnev, V.; Addlagatta, A.; Wawrzak, Z.
2010-03-08
The three-dimensional structure of a Candida cylindracea cholesterol esterase (ChE) homodimer (534 x 2 amino acids) in complex with a ligand of proposed formula C{sub 23}H{sub 48}O{sub 2} has been determined at 1.4 {angstrom} resolution in space group P1 using synchrotron low-temperature data. The structure refined to R = 0.136 and R{sub free} = 0.169 and has revealed new stereochemical details in addition to those detected for the apo- and holo-forms at 1.9 and 2.0 {angstrom} resolution, respectively [Ghosh et al. (1995), Structure, 3, 279-288]. The cholesterol esterase structure is a dimer with four spatially separated interfacial contact areas andmore » two symmetry-related pairs of openings to an internal intradimer cavity. Hydrophobic active-site gorges in each subunit face each other across a central interfacial cavity. The ChE subunits have carbohydrate chains attached to their Asn314 and Asn351 residues, with two ordered N-acetyl-D-glucosoamine moieties visible at each site. The side chains of 14 residues have two alternative conformations with occupancy values of 0.5 {+-} 0.2. For each subunit the electron density in the enzyme active-site gorge is well modeled by a C{sub 23}-chain fatty acid.« less
POD/MAC-Based Modal Basis Selection for a Reduced Order Nonlinear Response Analysis
NASA Technical Reports Server (NTRS)
Rizzi, Stephen A.; Przekop, Adam
2007-01-01
A feasibility study was conducted to explore the applicability of a POD/MAC basis selection technique to a nonlinear structural response analysis. For the case studied the application of the POD/MAC technique resulted in a substantial improvement of the reduced order simulation when compared to a classic approach utilizing only low frequency modes present in the excitation bandwidth. Further studies are aimed to expand application of the presented technique to more complex structures including non-planar and two-dimensional configurations. For non-planar structures the separation of different displacement components may not be necessary or desirable.
Structure of the nocturnal boundary layer over a complex terrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, M.J.; Raman, S.
The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentationmore » at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta`s Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.« less
Structure of the nocturnal boundary layer over a complex terrain
DOE Office of Scientific and Technical Information (OSTI.GOV)
Parker, M.J.; Raman, S.
The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 km{sup 2}, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentationmore » at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta's Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.« less
Structure of the nocturnal boundary layer over a complex terrain
NASA Astrophysics Data System (ADS)
Parker, M. J.; Raman, S.
The complex nature of the nocturnal boundary layer (NBL) has been shown extensively in the literature Project STABLE was conducted in 1988 to study NBL turbulence and diffusion over the complex terrain of the Savannah River Site (SRS) near Augusta, Georgia. The third night of the study was particularly interesting because of the unusual phenomena observed in the structure of the NBL. Further analyses of microscale and mesoscale data from this night are presented using data from SRS network of eight 61 m towers over 900 sq km, from six launches of an instrumented tethersonde, from permanent SRL meteorological instrumentation at seven levels of the 304 m (1,000 ft) WJBF-TV tower near SRS, and additional data collected at 36 m (CC) by North Carolina State University (NCSU) including a one dimensional sonic anemometer, fine wire thermocouple, and a three dimensional propeller anemometer. Also, data from the nearby Plant Vogtle nuclear power plant observation tower and the National Weather Service at Augusta's Bush Field (AGS) are presented. The passage of a mesoscale phenomenon, defined as a microfront (with an explanation of the nomenclature used), and a vertical composite schematic of the NBL which shows dual low level wind maxima, dual inversions, and a persistent, elevated turbulent layer over a complex terrain are described.
Pantea, Michael P.; Cole, James C.; Smith, Bruce D.; Faith, Jason R.; Blome, Charles D.; Smith, David V.
2008-01-01
This multimedia report shows and describes digital three-dimensional faulted geologic surfaces and volumes of the lithologic units of the Edwards aquifer in the upper Seco Creek area of Medina and Uvalde Counties in south-central Texas. This geologic framework model was produced using (1) geologic maps and interpretations of depositional environments and paleogeography; (2) lithologic descriptions, interpretations, and geophysical logs from 31 drill holes; (3) rock core and detailed lithologic descriptions from one drill hole; (4) helicopter electromagnetic geophysical data; and (5) known major and minor faults in the study area. These faults were used because of their individual and collective effects on the continuity of the aquifer-forming units in the Edwards Group. Data and information were compared and validated with each other and reflect the complex relationships of structures in the Seco Creek area of the Balcones fault zone. This geologic framework model can be used as a tool to visually explore and study geologic structures within the Seco Creek area of the Balcones fault zone and to show the connectivity of hydrologic units of high and low permeability between and across faults. The software can be used to display other data and information, such as drill-hole data, on this geologic framework model in three-dimensional space.
Winzen, A; Roidl, B; Schröder, W
2016-04-01
Low-speed aerodynamics has gained increasing interest due to its relevance for the design process of small flying air vehicles. These small aircraft operate at similar aerodynamic conditions as, e.g. birds which therefore can serve as role models of how to overcome the well-known problems of low Reynolds number flight. The flight of the barn owl is characterized by a very low flight velocity in conjunction with a low noise emission and a high level of maneuverability at stable flight conditions. To investigate the complex three-dimensional flow field and the corresponding local structural deformation in combination with their influence on the resulting aerodynamic forces, time-resolved stereoscopic particle-image velocimetry and force and moment measurements are performed on a prepared natural barn owl wing. Several spanwise positions are measured via PIV in a range of angles of attack [Formula: see text] 6° and Reynolds numbers 40 000 [Formula: see text] 120 000 based on the chord length. Additionally, the resulting forces and moments are recorded for -10° ≤ α ≤ 15° at the same Reynolds numbers. Depending on the spanwise position, the angle of attack, and the Reynolds number, the flow field on the wing's pressure side is characterized by either a region of flow separation, causing large-scale vortical structures which lead to a time-dependent deflection of the flexible wing structure or wing regions showing no instantaneous deflection but a reduction of the time-averaged mean wing curvature. Based on the force measurements the three-dimensional fluid-structure interaction is assumed to considerably impact the aerodynamic forces acting on the wing leading to a strong mechanical loading of the interface between the wing and body. These time-depending loads which result from the flexibility of the wing should be taken into consideration for the design of future small flying air vehicles using flexible wing structures.
Architectures for Cognitive Systems
2010-02-01
highly modular many- node chip was designed which addressed power efficiency to the maximum extent possible. Each node contains an Asynchronous Field...optimization to perform complex cognitive computing operations. This project focused on the design of the core and integration across a four node chip . A...follow on project will focus on creating a 3 dimensional stack of chips that is enabled by the low power usage. The chip incorporates structures to
Afanasyev, Pavel; Seer-Linnemayr, Charlotte; Ravelli, Raimond B G; Matadeen, Rishi; De Carlo, Sacha; Alewijnse, Bart; Portugal, Rodrigo V; Pannu, Navraj S; Schatz, Michael; van Heel, Marin
2017-09-01
Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the 'Einstein from random noise' problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous ('four-dimensional') cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, 'random-startup' three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external 'starting models'. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive 'ABC-4D' pipeline is based on the two-dimensional reference-free 'alignment by classification' (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure.
Dennehy, Mariana; Amo-Ochoa, Pilar; Freire, Eleonora; Suárez, Sebastián; Halac, Emilia; Baggio, Ricardo
2018-02-01
Among the potential applications of coordination polymers, electrical conductivity ranks high in technological interest. We report the synthesis, crystal structure and spectroscopic analysis of an Ag I -thiosaccharinate one-dimensional coordination polymer {systematic name: catena-poly[[[aquatetrakis(μ 3 -1,1-dioxo-1,2-benzisothiazole-3-thiolato-κ 3 N:S 3 :S 3 )tetrasilver(I)]-μ 2 -4,4'-(propane-1,3-diyl)dipyridine-κ 2 N:N'] dimethyl sulfoxide hemisolvate]}, {[Ag 4 (C 7 H 4 NO 2 S 2 ) 4 (C 13 H 14 N 2 )(H 2 O)]·0.5C 2 H 6 OS} n , with the 4,4'-(propane-1,3-diyl)dipyridine ligand acting as a spacer. A relevant feature of the structure is the presence of an unusually short Ag...Ag distance of 2.8306 (9) Å, well within the range of argentophilic interactions, confirmed experimentally as such by a Raman study on the low-frequency spectrum, and corroborated theoretically by an Atoms in Molecules (AIM) analysis of the calculated electron density. Electrical conductivity measurements show that this complex can act as a semiconductor with moderate conductivity.
A clustering algorithm for determining community structure in complex networks
NASA Astrophysics Data System (ADS)
Jin, Hong; Yu, Wei; Li, ShiJun
2018-02-01
Clustering algorithms are attractive for the task of community detection in complex networks. DENCLUE is a representative density based clustering algorithm which has a firm mathematical basis and good clustering properties allowing for arbitrarily shaped clusters in high dimensional datasets. However, this method cannot be directly applied to community discovering due to its inability to deal with network data. Moreover, it requires a careful selection of the density parameter and the noise threshold. To solve these issues, a new community detection method is proposed in this paper. First, we use a spectral analysis technique to map the network data into a low dimensional Euclidean Space which can preserve node structural characteristics. Then, DENCLUE is applied to detect the communities in the network. A mathematical method named Sheather-Jones plug-in is chosen to select the density parameter which can describe the intrinsic clustering structure accurately. Moreover, every node on the network is meaningful so there were no noise nodes as a result the noise threshold can be ignored. We test our algorithm on both benchmark and real-life networks, and the results demonstrate the effectiveness of our algorithm over other popularity density based clustering algorithms adopted to community detection.
Hydrological model parameter dimensionality is a weak measure of prediction uncertainty
NASA Astrophysics Data System (ADS)
Pande, S.; Arkesteijn, L.; Savenije, H.; Bastidas, L. A.
2015-04-01
This paper shows that instability of hydrological system representation in response to different pieces of information and associated prediction uncertainty is a function of model complexity. After demonstrating the connection between unstable model representation and model complexity, complexity is analyzed in a step by step manner. This is done measuring differences between simulations of a model under different realizations of input forcings. Algorithms are then suggested to estimate model complexity. Model complexities of the two model structures, SAC-SMA (Sacramento Soil Moisture Accounting) and its simplified version SIXPAR (Six Parameter Model), are computed on resampled input data sets from basins that span across the continental US. The model complexities for SIXPAR are estimated for various parameter ranges. It is shown that complexity of SIXPAR increases with lower storage capacity and/or higher recession coefficients. Thus it is argued that a conceptually simple model structure, such as SIXPAR, can be more complex than an intuitively more complex model structure, such as SAC-SMA for certain parameter ranges. We therefore contend that magnitudes of feasible model parameters influence the complexity of the model selection problem just as parameter dimensionality (number of parameters) does and that parameter dimensionality is an incomplete indicator of stability of hydrological model selection and prediction problems.
Ye, Shibing; Feng, Jiachun
2014-06-25
A three-dimensional hierarchical graphene/polypyrrole aerogel (GPA) has been fabricated using graphene oxide (GO) and already synthesized one-dimensional hollow polypyrrole nanotubes (PNTs) as the feedstock. The amphiphilic GO is helpful in effectively promoting the dispersion of well-defined PNTs to result in a stable, homogeneous GO/PNT complex solution, while the PNTs not only provide a large accessible surface area for fast transport of hydrate ions but also act as spacers to prevent the restacking of graphene sheets. By a simple one-step reduction self-assembly process, hierarchically structured, low-density, highly compressible GPAs are easily obtained, which favorably combine the advantages of graphene and PNTs. The supercapacitor electrodes based on such materials exhibit excellent electrochemical performance, including a high specific capacitance up to 253 F g(-1), good rate performance, and outstanding cycle stability. Moreover, this method may be feasible to prepare other graphene-based hybrid aerogels with structure-controllable nanostructures in large scale, thereby holding enormous potential in many application fields.
Baker, T. S.; Olson, N. H.; Fuller, S. D.
1999-01-01
Viruses are cellular parasites. The linkage between viral and host functions makes the study of a viral life cycle an important key to cellular functions. A deeper understanding of many aspects of viral life cycles has emerged from coordinated molecular and structural studies carried out with a wide range of viral pathogens. Structural studies of viruses by means of cryo-electron microscopy and three-dimensional image reconstruction methods have grown explosively in the last decade. Here we review the use of cryo-electron microscopy for the determination of the structures of a number of icosahedral viruses. These studies span more than 20 virus families. Representative examples illustrate the use of moderate- to low-resolution (7- to 35-Å) structural analyses to illuminate functional aspects of viral life cycles including host recognition, viral attachment, entry, genome release, viral transcription, translation, proassembly, maturation, release, and transmission, as well as mechanisms of host defense. The success of cryo-electron microscopy in combination with three-dimensional image reconstruction for icosahedral viruses provides a firm foundation for future explorations of more-complex viral pathogens, including the vast number that are nonspherical or nonsymmetrical. PMID:10585969
Evidence of an inverted hexagonal phase in self-assembled phospholipid-DNA-metal complexes
NASA Astrophysics Data System (ADS)
Francescangeli, O.; Pisani, M.; Stanic, V.; Bruni, P.; Weiss, T. M.
2004-08-01
We report the first observation of an inverted hexagonal phase of phospholipid-DNA-metal complexes. These ternary complexes are formed in a self-assembled manner when water solutions of neutral lipid dioleoylphosphatidylethanolamine (DOPE), DNA and divalent metal cations (Me2+; Me=Fe, Co, Mg, Mn) are mixed, which represents a striking example of supramolecular chemistry. The structure, derived from synchrotron X-ray diffraction, consists of cylindrical DNA strands coated by neutral lipid monolayers and arranged on a two-dimensional hexagonal lattice (HIIc). Besides the fundamental aspects, DOPE-DNA-Me2+ complexes may be of great interest as efficient nonviral delivery systems in gene therapy applications because of the low inherent cytotoxicity and the potential high transfection efficiency.
Samara, Ziyad; Fiamma, Marie-Noëlle; Bautin, Nathalie; Ranohavimparany, Anja; Le Coz, Patrick; Golmard, Jean-Louis; Darré, Pierre; Zelter, Marc; Poon, Chi-Sang; Similowski, Thomas
2011-01-01
Human ventilation at rest exhibits mathematical chaos-like complexity that can be described as long-term unpredictability mediated (in whole or in part) by some low-dimensional nonlinear deterministic process. Although various physiological and pathological situations can affect respiratory complexity, the underlying mechanisms remain incompletely elucidated. If such chaos-like complexity is an intrinsic property of central respiratory generators, it should appear or increase when these structures mature or are stimulated. To test this hypothesis, we employed the isolated tadpole brainstem model [Rana (Pelophylax) esculenta] and recorded the neural respiratory output (buccal and lung rhythms) of pre- (n = 8) and postmetamorphic tadpoles (n = 8), at physiologic (7.8) and acidic pH (7.4). We analyzed the root mean square of the cranial nerve V or VII neurograms. Development and acidosis had no effect on buccal period. Lung frequency increased with development (P < 0.0001). It also increased with acidosis, but in postmetamorphic tadpoles only (P < 0.05). The noise-titration technique evidenced low-dimensional nonlinearities in all the postmetamorphic brainstems, at both pH. Chaos-like complexity, assessed through the noise limit, increased from pH 7.8 to pH 7.4 (P < 0.01). In contrast, linear models best fitted the ventilatory rhythm in all but one of the premetamorphic preparations at pH 7.8 (P < 0.005 vs. postmetamorphic) and in four at pH 7.4 (not significant vs. postmetamorphic). Therefore, in a lower vertebrate model, the brainstem respiratory central rhythm generator accounts for ventilatory chaos-like complexity, especially in the postmetamorphic stage and at low pH. According to the ventilatory generators homology theory, this may also be the case in mammals. PMID:21325645
Straus, Christian; Samara, Ziyad; Fiamma, Marie-Noëlle; Bautin, Nathalie; Ranohavimparany, Anja; Le Coz, Patrick; Golmard, Jean-Louis; Darré, Pierre; Zelter, Marc; Poon, Chi-Sang; Similowski, Thomas
2011-05-01
Human ventilation at rest exhibits mathematical chaos-like complexity that can be described as long-term unpredictability mediated (in whole or in part) by some low-dimensional nonlinear deterministic process. Although various physiological and pathological situations can affect respiratory complexity, the underlying mechanisms remain incompletely elucidated. If such chaos-like complexity is an intrinsic property of central respiratory generators, it should appear or increase when these structures mature or are stimulated. To test this hypothesis, we employed the isolated tadpole brainstem model [Rana (Pelophylax) esculenta] and recorded the neural respiratory output (buccal and lung rhythms) of pre- (n = 8) and postmetamorphic tadpoles (n = 8), at physiologic (7.8) and acidic pH (7.4). We analyzed the root mean square of the cranial nerve V or VII neurograms. Development and acidosis had no effect on buccal period. Lung frequency increased with development (P < 0.0001). It also increased with acidosis, but in postmetamorphic tadpoles only (P < 0.05). The noise-titration technique evidenced low-dimensional nonlinearities in all the postmetamorphic brainstems, at both pH. Chaos-like complexity, assessed through the noise limit, increased from pH 7.8 to pH 7.4 (P < 0.01). In contrast, linear models best fitted the ventilatory rhythm in all but one of the premetamorphic preparations at pH 7.8 (P < 0.005 vs. postmetamorphic) and in four at pH 7.4 (not significant vs. postmetamorphic). Therefore, in a lower vertebrate model, the brainstem respiratory central rhythm generator accounts for ventilatory chaos-like complexity, especially in the postmetamorphic stage and at low pH. According to the ventilatory generators homology theory, this may also be the case in mammals.
Three-dimensional evaluation of the facet joints
NASA Astrophysics Data System (ADS)
Folio, Les R.
1990-04-01
Computerized tomography and magnetic resonance imaging nave revolurionalized analysis of vertebral anatomy and pathology. Further advances with 3-dimensional imaging have recently become an important adjunct for diagnosis and treatment in structural abnormalities. Facets are intimately related to their surrounding musculature and malalignment may cause pain directly or indirectly. High resolution 3-dimensional reformations of CT Scans give us new insight on structure and function of facet joints, since their motion and architecture are ever complex. It is well documented in the literature that facet joint biomecnanics is a partial contributor to the myriad at causes of low back The term "facet Joint syndrome" was coined in 1933 by GhorMley.3 The osteopathic lesion complex is well defined by LeRoy and McCole and comparison of roentgenographic findings before and after manipulation has teen described by Long and Lioyd.4,5 since alterations in facet biamechanics are an important aspect of osteopathic manipulative therapy (OT), 3-dimensional hign resolution imaging will prove to be a great asset in osteopathic research. Rotating the spine allows for different viewing perspectives to provide optimal and consistent measurements of the facet joint. Rotations are performed on the X, Y and 7, axis and measurements pre and post-manipulation are performed and compared on matching axis and perspectives. Rotation about the X, Y and Z axis help appreciate the 3-dimensionality of the vertebral column to project to the viewer a feeling that the spine is floating in space before them. This does give the viewer a 3-D understanding of the object however, only at a perspective at a Lime.
Entangled singularity patterns of photons in Ince-Gauss modes
NASA Astrophysics Data System (ADS)
Krenn, Mario; Fickler, Robert; Huber, Marcus; Lapkiewicz, Radek; Plick, William; Ramelow, Sven; Zeilinger, Anton
2013-01-01
Photons with complex spatial mode structures open up possibilities for new fundamental high-dimensional quantum experiments and for novel quantum information tasks. Here we show entanglement of photons with complex vortex and singularity patterns called Ince-Gauss modes. In these modes, the position and number of singularities vary depending on the mode parameters. We verify two-dimensional and three-dimensional entanglement of Ince-Gauss modes. By measuring one photon and thereby defining its singularity pattern, we nonlocally steer the singularity structure of its entangled partner, while the initial singularity structure of the photons is undefined. In addition we measure an Ince-Gauss specific quantum-correlation function with possible use in future quantum communication protocols.
Castellazzi, Giovanni; D’Altri, Antonio Maria; Bitelli, Gabriele; Selvaggi, Ilenia; Lambertini, Alessandro
2015-01-01
In this paper, a new semi-automatic procedure to transform three-dimensional point clouds of complex objects to three-dimensional finite element models is presented and validated. The procedure conceives of the point cloud as a stacking of point sections. The complexity of the clouds is arbitrary, since the procedure is designed for terrestrial laser scanner surveys applied to buildings with irregular geometry, such as historical buildings. The procedure aims at solving the problems connected to the generation of finite element models of these complex structures by constructing a fine discretized geometry with a reduced amount of time and ready to be used with structural analysis. If the starting clouds represent the inner and outer surfaces of the structure, the resulting finite element model will accurately capture the whole three-dimensional structure, producing a complex solid made by voxel elements. A comparison analysis with a CAD-based model is carried out on a historical building damaged by a seismic event. The results indicate that the proposed procedure is effective and obtains comparable models in a shorter time, with an increased level of automation. PMID:26225978
SU-8 based microdevices to study self-induced chemotaxis in 3D microenvironments
NASA Astrophysics Data System (ADS)
Ayuso, Jose; Monge, Rosa; Llamazares, Guillermo; Moreno, Marco; Agirregabiria, Maria; Berganzo, Javier; Doblaré, Manuel; Ochoa, Iñaki; Fernandez, Luis
2015-05-01
Tissues are complex three-dimensional structures in which cell behaviour is frequently guided by chemotactic signals. Although starvation and nutrient restriction induce many different chemotactic processes, the recreation of such conditions in vitro remains difficult when using standard cell culture equipment. Recently, microfluidic techniques have arisen as powerful tools to mimic such physiological conditions. In this context, microfluidic three-dimensional cell culture systems require precise control of cell/hydrogel location because samples need to be placed within a microchamber without obstruction of surrounding elements. In this article, SU-8 is studied as structural material for the fabrication of complex cell culture devices due to its good mechanical properties, low gas permeability and sensor integration capacity. In particular, this manuscript presents a SU-8 based microdevice designed to create “self-induced” medium starvation, based on the combination of nutrient restriction and natural cell metabolism. Results show a natural migratory response towards nutrient source, showing how cells adapt to their own microenvironment modifications. The presented results demonstrate the SU-8 potential for microdevice fabrication applied to cell culture.
Creating 3D Physical Models to Probe Student Understanding of Macromolecular Structure
ERIC Educational Resources Information Center
Cooper, A. Kat; Oliver-Hoyo, M. T.
2017-01-01
The high degree of complexity of macromolecular structure is extremely difficult for students to process. Students struggle to translate the simplified two-dimensional representations commonly used in biochemistry instruction to three-dimensional aspects crucial in understanding structure-property relationships. We designed four different physical…
The Next Generation of Planetary Atmospheric Probes
NASA Technical Reports Server (NTRS)
Houben, Howard
2005-01-01
Entry probes provide useful insights into the structures of planetary atmospheres, but give only one-dimensional pictures of complex four-dimensional systems that vary on all temporal and spatial scales. This makes the interpretation of the results quite challenging, especially as regards atmospheric dynamics. Here is a planetary meteorologist's vision of what the next generation of atmospheric entry probe missions should be: Dedicated sounding instruments get most of the required data from orbit. Relatively simple and inexpensive entry probes are released from the orbiter, with low entry velocities, to establish ground truth, to clarify the vertical structure, and for adaptive observations to enhance the dataset in preparation for sensitive operations. The data are assimilated onboard in real time. The products, being immediately available, are of immense benefit for scientific and operational purposes (aerobraking, aerocapture, accurate payload delivery via glider, ballooning missions, weather forecasts, etc.).
Tempest in a glass tube: A helical vortex formation in a complex plasma
NASA Astrophysics Data System (ADS)
Saitou, Yoshifumi; Ishihara, Osamu; Ishihara
2014-12-01
A collective behavior of dust particles in a complex plasma with a magnetic field (up to 4 kG) is investigated. Dust particles form a dust disk which is rotating in a horizontal plane pushed by ions rotating with the E × B drift as a trigger force. The thickness of the disk is determined by controlling the experimental conditions. The disk rotates in a horizontal plane and forms a two-dimensional thin structure when the pressure pAr is relatively high. The dust particles are ejected from near the disk center and form a rotation in the vertical plane and, hence, forms a helical vortex when the disk is thick for relatively low pAr . The reason the dust disk has the different thickness is due to the neutral pressure. Under a higher (lower) neutral gas pressure, the disk becomes two (three) dimensional due to the influence of the neutral drag force.
Attentional Bias in Human Category Learning: The Case of Deep Learning.
Hanson, Catherine; Caglar, Leyla Roskan; Hanson, Stephen José
2018-01-01
Category learning performance is influenced by both the nature of the category's structure and the way category features are processed during learning. Shepard (1964, 1987) showed that stimuli can have structures with features that are statistically uncorrelated (separable) or statistically correlated (integral) within categories. Humans find it much easier to learn categories having separable features, especially when attention to only a subset of relevant features is required, and harder to learn categories having integral features, which require consideration of all of the available features and integration of all the relevant category features satisfying the category rule (Garner, 1974). In contrast to humans, a single hidden layer backpropagation (BP) neural network has been shown to learn both separable and integral categories equally easily, independent of the category rule (Kruschke, 1993). This "failure" to replicate human category performance appeared to be strong evidence that connectionist networks were incapable of modeling human attentional bias. We tested the presumed limitations of attentional bias in networks in two ways: (1) by having networks learn categories with exemplars that have high feature complexity in contrast to the low dimensional stimuli previously used, and (2) by investigating whether a Deep Learning (DL) network, which has demonstrated humanlike performance in many different kinds of tasks (language translation, autonomous driving, etc.), would display human-like attentional bias during category learning. We were able to show a number of interesting results. First, we replicated the failure of BP to differentially process integral and separable category structures when low dimensional stimuli are used (Garner, 1974; Kruschke, 1993). Second, we show that using the same low dimensional stimuli, Deep Learning (DL), unlike BP but similar to humans, learns separable category structures more quickly than integral category structures. Third, we show that even BP can exhibit human like learning differences between integral and separable category structures when high dimensional stimuli (face exemplars) are used. We conclude, after visualizing the hidden unit representations, that DL appears to extend initial learning due to feature development thereby reducing destructive feature competition by incrementally refining feature detectors throughout later layers until a tipping point (in terms of error) is reached resulting in rapid asymptotic learning.
Dimensionality reduction of collective motion by principal manifolds
NASA Astrophysics Data System (ADS)
Gajamannage, Kelum; Butail, Sachit; Porfiri, Maurizio; Bollt, Erik M.
2015-01-01
While the existence of low-dimensional embedding manifolds has been shown in patterns of collective motion, the current battery of nonlinear dimensionality reduction methods is not amenable to the analysis of such manifolds. This is mainly due to the necessary spectral decomposition step, which limits control over the mapping from the original high-dimensional space to the embedding space. Here, we propose an alternative approach that demands a two-dimensional embedding which topologically summarizes the high-dimensional data. In this sense, our approach is closely related to the construction of one-dimensional principal curves that minimize orthogonal error to data points subject to smoothness constraints. Specifically, we construct a two-dimensional principal manifold directly in the high-dimensional space using cubic smoothing splines, and define the embedding coordinates in terms of geodesic distances. Thus, the mapping from the high-dimensional data to the manifold is defined in terms of local coordinates. Through representative examples, we show that compared to existing nonlinear dimensionality reduction methods, the principal manifold retains the original structure even in noisy and sparse datasets. The principal manifold finding algorithm is applied to configurations obtained from a dynamical system of multiple agents simulating a complex maneuver called predator mobbing, and the resulting two-dimensional embedding is compared with that of a well-established nonlinear dimensionality reduction method.
Generating a 2D Representation of a Complex Data Structure
NASA Technical Reports Server (NTRS)
James, Mark
2006-01-01
A computer program, designed to assist in the development and debugging of other software, generates a two-dimensional (2D) representation of a possibly complex n-dimensional (where n is an integer >2) data structure or abstract rank-n object in that other software. The nature of the 2D representation is such that it can be displayed on a non-graphical output device and distributed by non-graphical means.
Muraki, Michiro
2016-01-01
Human Fas ligand extracellular domain has been investigated as an important target protein in the field of medical biotechnology. In a recent study, the author developed an effective method to produce biologically active human Fas ligand extracellular domain derivatives using site-specific chemical modifications. A human Fas ligand extracellular domain derivative containing a reactive cysteine residue within its N-terminal tag sequence, which locates not proximal to the binding interface between the ligand and the receptor in terms of the three-dimensional structure, was modified by Fluorescein-5-Maleimide without impairing the specific binding activity toward human Fas receptor extracellular domain. The purified protein sample free of low molecular-weight contaminants showed a characteristic fluorescence spectrum derived from the attached Fluorescein moieties, and formed a stable binding complex with human Fas receptor extracellular domain-human IgG1 Fc domain fusion protein in solution. The conjugation number of the fluorochrome was estimated to be 2.5 per a single human Fas ligand extracellular domain trimer from the ratio of the absorbance value at 280 nm to that at 495 nm. A functional fluorescent human Fas ligand extracellular domain derivative was prepared via a site-specific conjugation of fluorochrome, which was guided by the three-dimensional structure information on the ligand-receptor complex. Fluorescent derivatives created by this method may contribute to the development of an improved diagnosis system for the diseases related to Fas receptor.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkov, A. A., E-mail: alashkov83@gmail.com; Sotnichenko, S. E.; Mikhailov, A. M.
2013-03-15
Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis (YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search formore » and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to {alpha}/{beta} proteins, and its topology is a three-layer {alpha}/{beta}/{alpha} sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% {beta} strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium (StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli (EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).« less
NASA Astrophysics Data System (ADS)
Lashkov, A. A.; Sotnichenko, S. E.; Mikhailov, A. M.
2013-03-01
Pseudotuberculosis is an acute infectious disease characterized by a lesion of the gastrointestinal tract. A positive therapeutic effect can be achieved by selectively suppressing the activity of uridine phosphorylase from the causative agent of the disease Yersinia pseudotuberculosis. The synergistic effect of a combination of the chemotherapeutic agent 5-fluorouracil and antimicrobial drugs, which block the synthesis of pyrimidine bases, on the cells of pathogenic protozoa and bacteria is described in the literature. The three-dimensional structures of uridine phosphorylase from Yersinia pseudotuberculosis ( YptUPh) both in the ligand-free state and in complexes with pharmacological agents are unknown, which hinders the search for and design of selective inhibitors of YptUPh. The three-dimensional structure of the ligand-free homodimer of YptUPh was determined by homology-based molecular modeling. The three-dimensional structure of the subunit of the YptUPh molecule belongs to α/β proteins, and its topology is a three-layer α/β/α sandwich. The subunit monomer of the YptUPh molecule consists of 38% helices and 24% β strands. A model of the homodimer structure of YptUPh in a complex with 5-FU was obtained by the molecular docking. The position of 5-FU in the active site of the molecule is very consistent with the known data on the X-ray diffraction structures of other bacterial uridine phosphorylases (the complex of uridine phosphorylase from Salmonella typhimurium ( StUPh) with 5-FU, ID PDB: 4E1V and the complex of uridine phosphorylase from Escherichia coli ( EcUPh) with 5-FU and ribose 1-phosphate, ID PDB: 1RXC).
NASA Astrophysics Data System (ADS)
Cammarata, Antonio; Rondinelli, James
2012-02-01
Transition-metal oxides within the perovskite crystal family exhibit strong electron--electron correlation effects that coexist with complex structural distortions, leading to metal-insulator (MI) transitions. Using first-principles density functional calculations, we investigate the effects of cooperative octahedral rotations and dilations/contractions on the charge-ordering MI-transition in CaFeO3. By calculating the evolution in the lattice phonons, which describe the different octahedral distortions present in the low-symmetry monoclinic phase of CaFeO3 with increasing electron correlation, we show that the MI-transition results from a complex interplay between these modes and correlation effects. We combine this study with group theoretical tools to disentangle the electron--lattice interactions by computing the evolution in the low-energy electronic band structure with the lattice phonons, demonstrating the MI-transition in CaFeO3 proceeds through a symmetry-lowering transition driven by a cooperative three-dimensional octahedral dilation/contraction pattern. Finally, we suggest a possible route by which to control the charge ordering by fine-tuning the electron--lattice coupling.
BI-sparsity pursuit for robust subspace recovery
Bian, Xiao; Krim, Hamid
2015-09-01
Here, the success of sparse models in computer vision and machine learning in many real-world applications, may be attributed in large part, to the fact that many high dimensional data are distributed in a union of low dimensional subspaces. The underlying structure may, however, be adversely affected by sparse errors, thus inducing additional complexity in recovering it. In this paper, we propose a bi-sparse model as a framework to investigate and analyze this problem, and provide as a result , a novel algorithm to recover the union of subspaces in presence of sparse corruptions. We additionally demonstrate the effectiveness ofmore » our method by experiments on real-world vision data.« less
Efficient Statistically Accurate Algorithms for the Fokker-Planck Equation in Large Dimensions
NASA Astrophysics Data System (ADS)
Chen, N.; Majda, A.
2017-12-01
Solving the Fokker-Planck equation for high-dimensional complex turbulent dynamical systems is an important and practical issue. However, most traditional methods suffer from the curse of dimensionality and have difficulties in capturing the fat tailed highly intermittent probability density functions (PDFs) of complex systems in turbulence, neuroscience and excitable media. In this article, efficient statistically accurate algorithms are developed for solving both the transient and the equilibrium solutions of Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures. The algorithms involve a hybrid strategy that requires only a small number of ensembles. Here, a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious non-parametric Gaussian kernel density estimation in the remaining low-dimensional subspace. Particularly, the parametric method, which is based on an effective data assimilation framework, provides closed analytical formulae for determining the conditional Gaussian distributions in the high-dimensional subspace. Therefore, it is computationally efficient and accurate. The full non-Gaussian PDF of the system is then given by a Gaussian mixture. Different from the traditional particle methods, each conditional Gaussian distribution here covers a significant portion of the high-dimensional PDF. Therefore a small number of ensembles is sufficient to recover the full PDF, which overcomes the curse of dimensionality. Notably, the mixture distribution has a significant skill in capturing the transient behavior with fat tails of the high-dimensional non-Gaussian PDFs, and this facilitates the algorithms in accurately describing the intermittency and extreme events in complex turbulent systems. It is shown in a stringent set of test problems that the method only requires an order of O(100) ensembles to successfully recover the highly non-Gaussian transient PDFs in up to 6 dimensions with only small errors.
NASA Astrophysics Data System (ADS)
Burns, J. H. R.; Delparte, D.
2017-02-01
Structural complexity in ecosystems creates an assortment of microhabitat types and has been shown to support greater diversity and abundance of associated organisms. The 3D structure of an environment also directly affects important ecological parameters such as habitat provisioning and light availability and can therefore strongly influence ecosystem function. Coral reefs are architecturally complex 3D habitats, whose structure is intrinsically linked to the ecosystem biodiversity, productivity, and function. The field of coral ecology has, however, been primarily limited to using 2-dimensional (2D) planar survey techniques for studying the physical structure of reefs. This conventional approach fails to capture or quantify the intricate structural complexity of corals that influences habitat facilitation and biodiversity. A 3-dimensional (3D) approach can obtain accurate measurements of architectural complexity, topography, rugosity, volume, and other structural characteristics that affect biodiversity and abundance of reef organisms. Structurefrom- Motion (SfM) photogrammetry is an emerging computer vision technology that provides a simple and cost-effective method for 3D reconstruction of natural environments. SfM has been used in several studies to investigate the relationship between habitat complexity and ecological processes in coral reef ecosystems. This study compared two commercial SfM software packages, Agisoft Photoscan Pro and Pix4Dmapper Pro 3.1, in order to assess the cpaability and spatial accuracy of these programs for conducting 3D modeling of coral reef habitats at three spatial scales.
Binder, Harald; Porzelius, Christine; Schumacher, Martin
2011-03-01
Analysis of molecular data promises identification of biomarkers for improving prognostic models, thus potentially enabling better patient management. For identifying such biomarkers, risk prediction models can be employed that link high-dimensional molecular covariate data to a clinical endpoint. In low-dimensional settings, a multitude of statistical techniques already exists for building such models, e.g. allowing for variable selection or for quantifying the added value of a new biomarker. We provide an overview of techniques for regularized estimation that transfer this toward high-dimensional settings, with a focus on models for time-to-event endpoints. Techniques for incorporating specific covariate structure are discussed, as well as techniques for dealing with more complex endpoints. Employing gene expression data from patients with diffuse large B-cell lymphoma, some typical modeling issues from low-dimensional settings are illustrated in a high-dimensional application. First, the performance of classical stepwise regression is compared to stage-wise regression, as implemented by a component-wise likelihood-based boosting approach. A second issues arises, when artificially transforming the response into a binary variable. The effects of the resulting loss of efficiency and potential bias in a high-dimensional setting are illustrated, and a link to competing risks models is provided. Finally, we discuss conditions for adequately quantifying the added value of high-dimensional gene expression measurements, both at the stage of model fitting and when performing evaluation. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Cheng, Wei-Qin; Li, Guo-Ling; Zhang, Ran; Ni, Zhong-Hai; Wang, Wen-Feng; Sato, Osamu
2015-05-01
A linear-chain cobalt coordination polymer, [Co(2,3-LH2)2(4,4‧-bipy)]ṡ2H2Oṡ4,4‧-bipy]n (1) (2,3-LH2 = 2,3-tetrahydroxy-9,10-dimethyl-9,10-dihydro- 9,10-ethanoanthracene, 4,4‧-bipy = 4,4‧-bipyridine), has been synthesized and structurally characterized. Single-crystal X-ray analysis reveals that complex 1 is a chiral polymer assemblied from achiral components. The complex 1 crystallizes in the chiral space group P3221 and the central Co ion has a slightly distorted octahedral coordination environment. The temperature dependence of magnetic susceptibility indicates that the complex 1 undergoes valence tautomeric interconversion between low-spin ls-[CoIII(2,3-LH2Cat)(2,3-LH2SQ)] and high-spin hs-[CoII(2,3-LH2SQ)2] (2,3-LH2Cat = 2,3-LH2catecholate, 2,3-LH2SQ = 2,3-LH2semiquinone).
Laser-etch patterning of metal oxide coated carbon nanotube 3D architectures.
Aksu, Cemile; Ingram, Wade; Bradford, Philip D; Jur, Jesse S
2018-08-17
This paper describes a way to fabricate novel hybrid low density nanostructures containing both carbon nanotubes (CNTs) and ceramic nanotubes. Using atomic layer deposition, a thin film of aluminum oxide was conformally deposited on aligned multiwall CNT foams in which the CNTs make porous, three-dimensional interconnected networks. A CO 2 laser was used to etch pure alumina nanotube structures by burning out the underlying CNT substrate in discrete locations via the printed laser pattern. Structural and morphological transitions during the calcination process of aluminum oxide coated CNTs were investigated through in situ transmission electron microscopy and high-resolution scanning electron microscopy. Laser parameters were optimized to etch the CNT away (i.e. etching speed, power and focal length) while minimizing damage to the alumina nanotubes due to overheating. This study opens a new route for fabricating very low density three dimensionally patterned materials with areas of dissimilar materials and properties. To demonstrate the attributes of these structures, the etched areas were used toward anisotropic microfluidic liquid flow. The demonstration used the full thickness of the material to make complex pathways for the liquid flow in the structure. Through tuning of processing conditions, the alumina nanotube (etched) regions became hydrophilic while the bulk material remained hydrophobic and electrically conductive.
Hamamci Alisir, Sevim; Dege, Necmi
2016-12-01
Ag I -containing coordination complexes have attracted attention because of their photoluminescence properties and antimicrobial activities and, in principle, these properties depend on the nature of the structural topologies. A novel two-dimensional silver(I) complex with the anti-inflammatory diclofenac molecule, namely bis{μ-2-[2-(2,6-dichloroanilino)phenyl]acetato-κ 3 O,O':O}bis(μ-2,5-dimethylpyrazine-κ 2 N:N')silver(I), [Ag 2 (C 14 H 10 Cl 2 NO 2 ) 2 (C 6 H 8 N 2 )] n , (I), has been synthesized and characterized by single-crystal X-ray diffraction, revealing that the Ag I ions are chelated by the carboxylate groups of the anionic 2-[2-(2,6-dichloroanilino)phenyl]acetate (dicl) ligand in a μ 3 -η 1 :η 2 coordination mode. Each dicl ligand links three Ag I atoms to generate a one-dimensional infinite chain. Adjacent chains are connected through 2,5-dimethylpyrazine (dmpyz) ligands to form a two-dimensional layer structure parallel to the crystallographic bc plane. The layers are further connected by C-H...π interactions to generate a three-dimensional supramolecular structure. Additionally, the most striking feature is that the structure contains an intramolecular C-H ...Ag anagostic interaction. Furthermore, the title complex has been tested for its in vitro antibacterial activity and is determined to be highly effective on the studied microorganisms.
Rydzewski, J; Nowak, W
2016-04-12
In this work we propose an application of a nonlinear dimensionality reduction method to represent the high-dimensional configuration space of the ligand-protein dissociation process in a manner facilitating interpretation. Rugged ligand expulsion paths are mapped into 2-dimensional space. The mapping retains the main structural changes occurring during the dissociation. The topological similarity of the reduced paths may be easily studied using the Fréchet distances, and we show that this measure facilitates machine learning classification of the diffusion pathways. Further, low-dimensional configuration space allows for identification of residues active in transport during the ligand diffusion from a protein. The utility of this approach is illustrated by examination of the configuration space of cytochrome P450cam involved in expulsing camphor by means of enhanced all-atom molecular dynamics simulations. The expulsion trajectories are sampled and constructed on-the-fly during molecular dynamics simulations using the recently developed memetic algorithms [ Rydzewski, J.; Nowak, W. J. Chem. Phys. 2015 , 143 ( 12 ), 124101 ]. We show that the memetic algorithms are effective for enforcing the ligand diffusion and cavity exploration in the P450cam-camphor complex. Furthermore, we demonstrate that machine learning techniques are helpful in inspecting ligand diffusion landscapes and provide useful tools to examine structural changes accompanying rare events.
Processing-Induced Electrically Active Defects in Black Silicon Nanowire Devices.
Carapezzi, Stefania; Castaldini, Antonio; Mancarella, Fulvio; Poggi, Antonella; Cavallini, Anna
2016-04-27
Silicon nanowires (Si NWs) are widely investigated nowadays for implementation in advanced energy conversion and storage devices, as well as many other possible applications. Black silicon (BSi)-NWs are dry etched NWs that merge the advantages related to low-dimensionality with the special industrial appeal connected to deep reactive ion etching (RIE). In fact, RIE is a well established technique in microelectronics manufacturing. However, RIE processing could affect the electrical properties of BSi-NWs by introducing deep states into their forbidden gap. This work applies deep level transient spectroscopy (DLTS) to identify electrically active deep levels and the associated defects in dry etched Si NW arrays. Besides, the successful fitting of DLTS spectra of BSi-NWs-based Schottky barrier diodes is an experimental confirmation that the same theoretical framework of dynamic electronic behavior of deep levels applies in bulk as well as in low dimensional structures like NWs, when quantum confinement conditions do not occur. This has been validated for deep levels associated with simple pointlike defects as well as for deep levels associated with defects with richer structures, whose dynamic electronic behavior implies a more complex picture.
Thin-film Sb2Se3 photovoltaics with oriented one-dimensional ribbons and benign grain boundaries
NASA Astrophysics Data System (ADS)
Zhou, Ying; Wang, Liang; Chen, Shiyou; Qin, Sikai; Liu, Xinsheng; Chen, Jie; Xue, Ding-Jiang; Luo, Miao; Cao, Yuanzhi; Cheng, Yibing; Sargent, Edward H.; Tang, Jiang
2015-06-01
Solar cells based on inorganic absorbers, such as Si, GaAs, CdTe and Cu(In,Ga)Se2, permit a high device efficiency and stability. The crystals’ three-dimensional structure means that dangling bonds inevitably exist at the grain boundaries (GBs), which significantly degrades the device performance via recombination losses. Thus, the growth of single-crystalline materials or the passivation of defects at the GBs is required to address this problem, which introduces an added processing complexity and cost. Here we report that antimony selenide (Sb2Se3)—a simple, non-toxic and low-cost material with an optimal solar bandgap of ˜1.1 eV—exhibits intrinsically benign GBs because of its one-dimensional crystal structure. Using a simple and fast (˜1 μm min-1) rapid thermal evaporation process, we oriented crystal growth perpendicular to the substrate, and produced Sb2Se3 thin-film solar cells with a certified device efficiency of 5.6%. Our results suggest that the family of one-dimensional crystals, including Sb2Se3, SbSeI and Bi2S3, show promise in photovoltaic applications.
Low-Dimensional Organic-Inorganic Halide Perovskite: Structure, Properties, and Applications.
Misra, Ravi K; Cohen, Bat-El; Iagher, Lior; Etgar, Lioz
2017-10-09
Three-dimensional (3 D) perovskite has attracted a lot of attention owing to its success in photovoltaic (PV) solar cells. However, one of its major crucial issues lies in its stability, which has limited its commercialization. An important property of organic-inorganic perovskite is the possibility of forming a layered material by using long organic cations that do not fit into the octahedral cage. These long organic cations act as a "barrier" that "caps" 3 D perovskite to form the layered material. Controlling the number of perovskite layers could provide a confined structure with chemical and physical properties that are different from those of 3 D perovskite. This opens up a whole new batch of interesting materials with huge potential for optoelectronic applications. This Minireview presents the synthesis, properties, and structural orientation of low-dimensional perovskite. It also discusses the progress of low-dimensional perovskite in PV solar cells, which, to date, have performance comparable to that of 3 D perovskite but with enhanced stability. Finally, the use of low-dimensional perovskite in light-emitting diodes (LEDs) and photodetectors is discussed. The low-dimensional perovskites are promising candidates for LED devices, mainly because of their high radiative recombination as a result of the confined low-dimensional quantum well. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
An existence criterion for low-dimensional materials
NASA Astrophysics Data System (ADS)
Chen, Jiapeng; Wang, Biao; Hu, Yangfan
2017-10-01
The discovery of graphene and other two-dimensional (2-D) materials has stimulated a general interest in low-dimensional (low-D) materials. Whereas long time ago, Peierls (1935) and Landau's (1937) theoretical work demonstrated that any one- and two-dimensional materials could not exist in any finite temperature environment. Then, two basic issues became a central concern for many researchers: How can stable low-D materials exist? What kind of low-D materials are stable? Here, we establish an energy stability criterion for low-D materials, which seeks to provide a clear answer to these questions. For a certain kind of element, the stability of its specific low-D structure is determined by several derivatives of its interatomic potential. This atomistic-based approach is then applied to study any straight/planar, low-D, equal-bond-length elemental materials. We found that 1-D monatomic chains, 2-D honeycomb lattices, square lattices, and triangular lattices are the only four permissible structures, and the stability of these structures can only be understood by assuming multi-body interatomic potentials. Using this approach, the stable existence of graphene, silicene and germanene can be explained.
Self-running and self-floating two-dimensional actuator using near-field acoustic levitation
NASA Astrophysics Data System (ADS)
Chen, Keyu; Gao, Shiming; Pan, Yayue; Guo, Ping
2016-09-01
Non-contact actuators are promising technologies in metrology, machine-tools, and hovercars, but have been suffering from low energy efficiency, complex design, and low controllability. Here we report a new design of a self-running and self-floating actuator capable of two-dimensional motion with an unlimited travel range. The proposed design exploits near-field acoustic levitation for heavy object lifting, and coupled resonant vibration for generation of acoustic streaming for non-contact motion in designated directions. The device utilizes resonant vibration of the structure for high energy efficiency, and adopts a single piezo element to achieve both levitation and non-contact motion for a compact and simple design. Experiments demonstrate that the proposed actuator can reach a 1.65 cm/s or faster moving speed and is capable of transporting a total weight of 80 g under 1.2 W power consumption.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi
A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures thatmore » can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.« less
Popova, Evdokia; Rodgers, Theron M.; Gong, Xinyi; ...
2017-03-13
A novel data science workflow is developed and demonstrated to extract process-structure linkages (i.e., reduced-order model) for microstructure evolution problems when the final microstructure depends on (simulation or experimental) processing parameters. Our workflow consists of four main steps: data pre-processing, microstructure quantification, dimensionality reduction, and extraction/validation of process-structure linkages. These methods that can be employed within each step vary based on the type and amount of available data. In this paper, this data-driven workflow is applied to a set of synthetic additive manufacturing microstructures obtained using the Potts-kinetic Monte Carlo (kMC) approach. Additive manufacturing techniques inherently produce complex microstructures thatmore » can vary significantly with processing conditions. Using the developed workflow, a low-dimensional data-driven model was established to correlate process parameters with the predicted final microstructure. In addition, the modular workflows developed and presented in this work facilitate easy dissemination and curation by the broader community.« less
NASA Astrophysics Data System (ADS)
Loeblein, Manuela; Bruno, Annalisa; Loh, G. C.; Bolker, Asaf; Saguy, Cecile; Antila, Liisa; Tsang, Siu Hon; Teo, Edwin Hang Tong
2017-10-01
Dye-sensitized solar cells (DSSCs) offer an optimal trade-off between conversion-efficiency and low-cost fabrication. However, since all its electrodes need to fulfill stringent work-function requirements, its materials have remained unchanged since DSSC's first report early-90s. Here we describe a new material, oxidized-three-dimensional-graphene (o-3D-C), with a band gap of 0.2 eV and suitable electronic band-structure as alternative metal-free material for DSSCs-anodes. o-3D-C/dye-complex has a strong chemical bonding via carboxylic-group chemisorption with full saturation after 12 sec at capacity of ∼450 mg/g (600x faster and 7x higher than optimized metal surfaces). Furthermore, fluorescence quenching of life-time by 28-35% was measured demonstrating charge-transfer from dye to o-3D-C.
NASA Astrophysics Data System (ADS)
Ren, Guanghui; Yudistira, Didit; Nguyen, Thach G.; Khodasevych, Iryna; Schoenhardt, Steffen; Berean, Kyle J.; Hamm, Joachim M.; Hess, Ortwin; Mitchell, Arnan
2017-07-01
Nanoscale plasmonic structures can offer unique functionality due to extreme sub-wavelength optical confinement, but the realization of complex plasmonic circuits is hampered by high propagation losses. Hybrid approaches can potentially overcome this limitation, but only few practical approaches based on either single or few element arrays of nanoantennas on dielectric nanowire have been experimentally demonstrated. In this paper, we demonstrate a two dimensional hybrid photonic plasmonic crystal interfaced with a standard silicon photonic platform. Off resonance, we observe low loss propagation through our structure, while on resonance we observe strong propagation suppression and intense concentration of light into a dense lattice of nanoscale hot-spots on the surface providing clear evidence of a hybrid photonic plasmonic crystal bandgap. This fully integrated approach is compatible with established silicon-on-insulator (SOI) fabrication techniques and constitutes a significant step toward harnessing plasmonic functionality within SOI photonic circuits.
Three dimensional electron microscopy and in silico tools for macromolecular structure determination
Borkotoky, Subhomoi; Meena, Chetan Kumar; Khan, Mohammad Wahab; Murali, Ayaluru
2013-01-01
Recently, structural biology witnessed a major tool - electron microscopy - in solving the structures of macromolecules in addition to the conventional techniques, X-ray crystallography and nuclear magnetic resonance (NMR). Three dimensional transmission electron microscopy (3DTEM) is one of the most sophisticated techniques for structure determination of molecular machines. Known to give the 3-dimensional structures in its native form with literally no upper limit on size of the macromolecule, this tool does not need the crystallization of the protein. Combining the 3DTEM data with in silico tools, one can have better refined structure of a desired complex. In this review we are discussing about the recent advancements in three dimensional electron microscopy and tools associated with it. PMID:27092033
Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian
2018-01-01
Background and aim As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Methods Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. Results The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. Conclusion These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects. PMID:29416332
Song, Yue; Lin, Kaifeng; He, Shu; Wang, Chunmei; Zhang, Shuaishuai; Li, Donglin; Wang, Jimeng; Cao, Tianqing; Bi, Long; Pei, Guoxian
2018-01-01
As a newly emerging three-dimensional (3D) printing technology, low-temperature robocasting can be used to fabricate geometrically complex ceramic scaffolds at low temperatures. Here, we aimed to fabricate 3D printed ceramic scaffolds composed of nano-biphasic calcium phosphate (BCP), polyvinyl alcohol (PVA), and platelet-rich fibrin (PRF) at a low temperature without the addition of toxic chemicals. Corresponding nonprinted scaffolds were prepared using a freeze-drying method. Compared with the nonprinted scaffolds, the printed scaffolds had specific shapes and well-connected internal structures. The incorporation of PRF enabled both the sustained release of bioactive factors from the scaffolds and improved biocompatibility and biological activity toward bone marrow-derived mesenchymal stem cells (BMSCs) in vitro. Additionally, the printed BCP/PVA/PRF scaffolds promoted significantly better BMSC adhesion, proliferation, and osteogenic differentiation in vitro than the printed BCP/PVA scaffolds. In vivo, the printed BCP/PVA/PRF scaffolds induced a greater extent of appropriate bone formation than the printed BCP/PVA scaffolds and nonprinted scaffolds in a critical-size segmental bone defect model in rabbits. These experiments indicate that low-temperature robocasting could potentially be used to fabricate 3D printed BCP/PVA/PRF scaffolds with desired shapes and internal structures and incorporated bioactive factors to enhance the repair of segmental bone defects.
Trans-Dimensional Bayesian Imaging of 3-D Crustal and Upper Mantle Structure in Northeast Asia
NASA Astrophysics Data System (ADS)
Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.
2016-12-01
Imaging 3-D structures using stepwise inversions of ambient noise and receiver function data is now a routine work. Here, we carry out the inversion in the trans-dimensional and hierarchical extension of the Bayesian framework to obtain rigorous estimates of uncertainty and high-resolution images of crustal and upper mantle structures beneath Northeast (NE) Asia. The methods inherently account for data sensitivities by means of using adaptive parameterizations and treating data noise as free parameters. Therefore, parsimonious results from the methods are balanced out between model complexity and data fitting. This allows fully exploiting data information, preventing from over- or under-estimation of the data fit, and increases model resolution. In addition, the reliability of results is more rigorously checked through the use of Bayesian uncertainties. It is shown by various synthetic recovery tests that complex and spatially variable features are well resolved in our resulting images of NE Asia. Rayleigh wave phase and group velocity tomograms (8-70 s), a 3-D shear-wave velocity model from depth inversions of the estimated dispersion maps, and regional 3-D models (NE China, the Korean Peninsula, and the Japanese islands) from joint inversions with receiver function data of dense networks are presented. High-resolution models are characterized by a number of tectonically meaningful features. We focus our interpretation on complex patterns of sub-lithospheric low velocity structures that extend from back-arc regions to continental margins. We interpret the anomalies in conjunction with distal and distributed intraplate volcanoes in NE Asia. Further discussion on other imaged features will be presented.
Investigations of photosynthetic light harvesting by two-dimensional electronic spectroscopy
NASA Astrophysics Data System (ADS)
Read, Elizabeth Louise
Photosynthesis begins with the harvesting of sunlight by antenna pigments, organized in a network of pigment-protein complexes that rapidly funnel energy to photochemical reaction centers. The intricate design of these systems---the widely varying structural motifs of pigment organization within proteins and protein organization within a larger, cooperative network---underlies the remarkable speed and efficiency of light harvesting. Advances in femtosecond laser spectroscopy have enabled researchers to follow light energy on its course through the energetic levels of photosynthetic systems. Now, newly-developed femtosecond two-dimensional electronic spectroscopy reveals deeper insight into the fundamental molecular interactions and dynamics that emerge in these structures. The following chapters present investigations of a number of natural light-harvesting complexes using two-dimensional electronic spectroscopy. These studies demonstrate the various types of information contained in experimental two-dimensional spectra, and they show that the technique makes it possible to probe pigment-protein complexes on the length- and time-scales relevant to their functioning. New methods are described that further extend the capabilities of two-dimensional electronic spectroscopy, for example, by independently controlling the excitation laser pulse polarizations. The experiments, coupled with theoretical simulation, elucidate spatial pathways of energy flow, unravel molecular and electronic structures, and point to potential new quantum mechanical mechanisms of light harvesting.
3-dimensional structure of the Indian Ocean inferred from long period surface waves
NASA Astrophysics Data System (ADS)
Montagner, Jean-Paul
1986-04-01
To improve the lateral resolution of the first global 3 - dimensional models of seismic wave velocities, regional studies have to be undertaken. The dispersion of Rayleigh waves along 86 paths across the Indian Ocean and surrounding regions is investigated in the period range 40 - 300 s. The regionalization of group velocity according to the age of the sea floor shows an increase of velocity with age up to 150 s only, similar to the results in the Pacific Ocean. But here, this relationship vanishes more quickly at long period. Therefore the correlation of the deep structure with surface tectonics seems to be shallower in the Indian Ocean than in the Pacific Ocean. A tomographic method is applied to compute the geographical distributions of group velocity and azimuthal anisotropy and then the 3-D structure of S-wave velocity. Horizontal wavelengths of 2000 km for velocity and 3000 km for azimuthal anisotropy distribution can be resolved. Except for the central part of the South East Indian ridge which displays high velocities at all depths, the inversion corroborates a good correlation between lithospheric structure down to 120 km and surface tectonics: low velocities along the central and southeast Indian ridges, velocity increasing with the age of the sea floor, high velocities under African, Indian and Australian shields. At greater depths, the low velocity zones under the Gulf of Aden and the western part of the Southeast Indian ridges hold but the low velocity anomaly of the Central Indian ridge is offset eastward. The low velocity anomalies suggest uprising material and complex plate boundary.
Quasiparticle dynamics and spin-orbital texture of the SrTiO3 two-dimensional electron gas.
King, P D C; McKeown Walker, S; Tamai, A; de la Torre, A; Eknapakul, T; Buaphet, P; Mo, S-K; Meevasana, W; Bahramy, M S; Baumberger, F
2014-02-27
Two-dimensional electron gases (2DEGs) in SrTiO3 have become model systems for engineering emergent behaviour in complex transition metal oxides. Understanding the collective interactions that enable this, however, has thus far proved elusive. Here we demonstrate that angle-resolved photoemission can directly image the quasiparticle dynamics of the d-electron subband ladder of this complex-oxide 2DEG. Combined with realistic tight-binding supercell calculations, we uncover how quantum confinement and inversion symmetry breaking collectively tune the delicate interplay of charge, spin, orbital and lattice degrees of freedom in this system. We reveal how they lead to pronounced orbital ordering, mediate an orbitally enhanced Rashba splitting with complex subband-dependent spin-orbital textures and markedly change the character of electron-phonon coupling, co-operatively shaping the low-energy electronic structure of the 2DEG. Our results allow for a unified understanding of spectroscopic and transport measurements across different classes of SrTiO3-based 2DEGs, and yield new microscopic insights on their functional properties.
Ong, Luvena L; Ke, Yonggang
2017-01-01
DNA nanostructures are a useful technology for precisely organizing and manipulating nanomaterials. The DNA bricks method is a modular and versatile platform for applications requiring discrete or periodic structures with complex three-dimensional features. Here, we describe how structures are designed from the fundamental strand architecture through assembly and characterization of the formed structures.
Feng, Yingang
2017-01-01
The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy.
2017-01-01
The use of NMR methods to determine the three-dimensional structures of carbohydrates and glycoproteins is still challenging, in part because of the lack of standard protocols. In order to increase the convenience of structure determination, the topology and parameter files for carbohydrates in the program Crystallography & NMR System (CNS) were investigated and new files were developed to be compatible with the standard simulated annealing protocols for proteins and nucleic acids. Recalculating the published structures of protein-carbohydrate complexes and glycosylated proteins demonstrates that the results are comparable to the published structures which employed more complex procedures for structure calculation. Integrating the new carbohydrate parameters into the standard structure calculation protocol will facilitate three-dimensional structural study of carbohydrates and glycosylated proteins by NMR spectroscopy. PMID:29232406
Nanoimprint of a 3D structure on an optical fiber for light wavefront manipulation.
Calafiore, Giuseppe; Koshelev, Alexander; Allen, Frances I; Dhuey, Scott; Sassolini, Simone; Wong, Edward; Lum, Paul; Munechika, Keiko; Cabrini, Stefano
2016-09-16
Integration of complex photonic structures onto optical fiber facets enables powerful platforms with unprecedented optical functionalities. Conventional nanofabrication technologies, however, do not permit viable integration of complex photonic devices onto optical fibers owing to their low throughput and high cost. In this paper we report the fabrication of a three-dimensional structure achieved by direct nanoimprint lithography on the facet of an optical fiber. Nanoimprint processes and tools were specifically developed to enable a high lithographic accuracy and coaxial alignment of the optical device with respect to the fiber core. To demonstrate the capability of this new approach, a 3D beam splitter has been designed, imprinted and optically characterized. Scanning electron microscopy and optical measurements confirmed the good lithographic capabilities of the proposed approach as well as the desired optical performance of the imprinted structure. The inexpensive solution presented here should enable advancements in areas such as integrated optics and sensing, achieving enhanced portability and versatility of fiber optic components.
New infinite-dimensional hidden symmetries for heterotic string theory
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gao Yajun
The symmetry structures of two-dimensional heterotic string theory are studied further. A (2d+n)x(2d+n) matrix complex H-potential is constructed and the field equations are extended into a complex matrix formulation. A pair of Hauser-Ernst-type linear systems are established. Based on these linear systems, explicit formulations of new hidden symmetry transformations for the considered theory are given and then these symmetry transformations are verified to constitute infinite-dimensional Lie algebras: the semidirect product of the Kac-Moody o(d,d+n-circumflex) and Virasoro algebras (without center charges). These results demonstrate that the heterotic string theory under consideration possesses more and richer symmetry structures than previously expected.
NASA Astrophysics Data System (ADS)
Yamauchi, Toyohiko; Iwai, Hidenao; Yamashita, Yutaka
2013-03-01
We succeeded in utilizing our low-coherent quantitative phase microscopy (LC-QPM) to achieve label-free and three-dimensional imaging of string-like structures bridging the free-space between live cells. In past studies, three dimensional morphology of the string-like structures between cells had been investigated by electron microscopies and fluorescence microscopies and these structures were called "membrane nanotubes" or "tunneling nanotubes." However, use of electron microscopy inevitably kills these cells and fluorescence microscopy is itself a potentially invasive method. To achieve noninvasive imaging of live cells, we applied our LC-QPM which is a reflection-type, phase resolved and full-field interference microscope employing a low-coherent light source. LC-QPM is able to visualize the three-dimensional morphology of live cells without labeling by means of low-coherence interferometry. The lateral (diffraction limit) and longitudinal (coherence-length) spatial resolution of LC-QPM were respectively 0.49 and 0.93 micrometers and the repeatability of the phase measurement was 0.02 radians (1.0 nm). We successfully obtained three-dimensional morphology of live cultured epithelial cells (cell type: HeLa, derived from cervix cancer) and were able to clearly observe the individual string-like structures interconnecting the cells. When we performed volumetric imaging, a 80 micrometer by 60 micrometer by 6.5 micrometer volume was scanned every 5.67 seconds and 70 frames of a three-dimensional movie were recorded for a duration of 397 seconds. Moreover, the optical phase images gave us detailed information about the three-dimensional morphology of the string-like structure at sub-wavelength resolution. We believe that our LC-QPM will be a useful tool for the study of three-dimensional morphology of live cells.
NASA Astrophysics Data System (ADS)
Xie, Y. C.; Cheng, Q. R.; Pan, Z. Q.
2018-02-01
New magnesium phosphonates Mg(H2L)31 (H4L = 2,5-dimethylbenzene-1,4 -diylbis(methylene)diphosphonic acid) and Ca(H2L)·2H2O 2 have been hydrothermally synthesized from H4L and the corresponding metal salts. Complex 1 and 2 have been characterized by IR, powder and single-crystal X-ray diffraction methods. Complex 1 crystallizes in trigonal space group R-3c and complex 2 belongs to the triclinic space group. The complexes both form two-dimensional (2D) network structure and show three-dimensional (3D) network through hydrogen bonds. Thermal stability of complex 1 and 2 have also been investigated. CCDC: 1534599 for 1; 1536423 for 2.
NASA Astrophysics Data System (ADS)
Plumb, Nicholas C.; Radović, Milan
2017-11-01
Over the last decade, conducting states embedded in insulating transition metal oxides (TMOs) have served as gateways to discovering and probing surprising phenomena that can emerge in complex oxides, while also opening opportunities for engineering advanced devices. These states are commonly realized at thin film interfaces, such as the well-known case of LaAlO3 (LAO) grown on SrTiO3 (STO). In recent years, the use of angle-resolved photoemission spectroscopy (ARPES) to investigate the k-space electronic structure of such materials led to the discovery that metallic states can also be formed on the bare surfaces of certain TMOs. In this topical review, we report on recent studies of low-dimensional metallic states confined at insulating oxide surfaces and interfaces as seen from the perspective of ARPES, which provides a direct view of the occupied band structure. While offering a fairly broad survey of progress in the field, we draw particular attention to STO, whose surface is so far the best-studied, and whose electronic structure is probably of the most immediate interest, given the ubiquitous use of STO substrates as the basis for conducting oxide interfaces. The ARPES studies provide crucial insights into the electronic band structure, orbital character, dimensionality/confinement, spin structure, and collective excitations in STO surfaces and related oxide surface/interface systems. The obtained knowledge increases our understanding of these complex materials and gives new perspectives on how to manipulate their properties.
Three-dimensional imaging of the craniofacial complex.
Nguyen, Can X.; Nissanov, Jonathan; Öztürk, Cengizhan; Nuveen, Michiel J.; Tuncay, Orhan C.
2000-02-01
Orthodontic treatment requires the rearrangement of craniofacial complex elements in three planes of space, but oddly the diagnosis is done with two-dimensional images. Here we report on a three-dimensional (3D) imaging system that employs the stereoimaging method of structured light to capture the facial image. The images can be subsequently integrated with 3D cephalometric tracings derived from lateral and PA films (www.clinorthodres.com/cor-c-070). The accuracy of the reconstruction obtained with this inexpensive system is about 400 µ.
Inertial objects in complex flows
NASA Astrophysics Data System (ADS)
Syed, Rayhan; Ho, George; Cavas, Samuel; Bao, Jialun; Yecko, Philip
2017-11-01
Chaotic Advection and Finite Time Lyapunov Exponents both describe stirring and transport in complex and time-dependent flows, but FTLE analysis has been largely limited to either purely kinematic flow models or high Reynolds number flow field data. The neglect of dynamic effects in FTLE and Lagrangian Coherent Structure studies has stymied detailed information about the role of pressure, Coriolis effects and object inertia. We present results of laboratory and numerical experiments on time-dependent and multi-gyre Stokes flows. In the lab, a time-dependent effectively two-dimensional low Re flow is used to distinguish transport properties of passive tracer from those of small paramagnetic spheres. Companion results of FTLE calculations for inertial particles in a time-dependent multi-gyre flow are presented, illustrating the critical roles of density, Stokes number and Coriolis forces on their transport. Results of Direct Numerical Simulations of fully resolved inertial objects (spheroids) immersed in a three dimensional (ABC) flow show the role of shape and finite size in inertial transport at small finite Re. We acknowledge support of NSF DMS-1418956.
Preventing Data Ambiguity in Infectious Diseases with Four-Dimensional and Personalized Evaluations
Iandiorio, Michelle J.; Fair, Jeanne M.; Chatzipanagiotou, Stylianos; Ioannidis, Anastasios; Trikka-Graphakos, Eleftheria; Charalampaki, Nikoletta; Sereti, Christina; Tegos, George P.; Hoogesteijn, Almira L.; Rivas, Ariel L.
2016-01-01
Background Diagnostic errors can occur, in infectious diseases, when anti-microbial immune responses involve several temporal scales. When responses span from nanosecond to week and larger temporal scales, any pre-selected temporal scale is likely to miss some (faster or slower) responses. Hoping to prevent diagnostic errors, a pilot study was conducted to evaluate a four-dimensional (4D) method that captures the complexity and dynamics of infectious diseases. Methods Leukocyte-microbial-temporal data were explored in canine and human (bacterial and/or viral) infections, with: (i) a non-structured approach, which measures leukocytes or microbes in isolation; and (ii) a structured method that assesses numerous combinations of interacting variables. Four alternatives of the structured method were tested: (i) a noise-reduction oriented version, which generates a single (one data point-wide) line of observations; (ii) a version that measures complex, three-dimensional (3D) data interactions; (iii) a non-numerical version that displays temporal data directionality (arrows that connect pairs of consecutive observations); and (iv) a full 4D (single line-, complexity-, directionality-based) version. Results In all studies, the non-structured approach revealed non-interpretable (ambiguous) data: observations numerically similar expressed different biological conditions, such as recovery and lack of recovery from infections. Ambiguity was also found when the data were structured as single lines. In contrast, two or more data subsets were distinguished and ambiguity was avoided when the data were structured as complex, 3D, single lines and, in addition, temporal data directionality was determined. The 4D method detected, even within one day, changes in immune profiles that occurred after antibiotics were prescribed. Conclusions Infectious disease data may be ambiguous. Four-dimensional methods may prevent ambiguity, providing earlier, in vivo, dynamic, complex, and personalized information that facilitates both diagnostics and selection or evaluation of anti-microbial therapies. PMID:27411058
A Multi-Resolution Data Structure for Two-Dimensional Morse Functions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bremer, P-T; Edelsbrunner, H; Hamann, B
2003-07-30
The efficient construction of simplified models is a central problem in the field of visualization. We combine topological and geometric methods to construct a multi-resolution data structure for functions over two-dimensional domains. Starting with the Morse-Smale complex we build a hierarchy by progressively canceling critical points in pairs. The data structure supports mesh traversal operations similar to traditional multi-resolution representations.
Two-photon polymerization of a three dimensional structure using beams with orbital angular momentum
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, Shi-Jie; Li, Yan, E-mail: li@pku.edu.cn; Liu, Zhao-Pei
The focus of a beam with orbital angular momentum exhibits internal structure instead of an elliptical intensity distribution of a Gaussian beam, and the superposition of Gauss-Laguerre beams realized by two-dimensional phase modulation can generate a complex three-dimensional (3D) focus. By taking advantage of the flexibility of this 3D focus tailoring, we have fabricated a 3D microstructure with high resolution by two-photon polymerization with a single exposure. Furthermore, we have polymerized an array of double-helix structures that demonstrates optical chirality.
Uncovering low dimensional macroscopic chaotic dynamics of large finite size complex systems
NASA Astrophysics Data System (ADS)
Skardal, Per Sebastian; Restrepo, Juan G.; Ott, Edward
2017-08-01
In the last decade, it has been shown that a large class of phase oscillator models admit low dimensional descriptions for the macroscopic system dynamics in the limit of an infinite number N of oscillators. The question of whether the macroscopic dynamics of other similar systems also have a low dimensional description in the infinite N limit has, however, remained elusive. In this paper, we show how techniques originally designed to analyze noisy experimental chaotic time series can be used to identify effective low dimensional macroscopic descriptions from simulations with a finite number of elements. We illustrate and verify the effectiveness of our approach by applying it to the dynamics of an ensemble of globally coupled Landau-Stuart oscillators for which we demonstrate low dimensional macroscopic chaotic behavior with an effective 4-dimensional description. By using this description, we show that one can calculate dynamical invariants such as Lyapunov exponents and attractor dimensions. One could also use the reconstruction to generate short-term predictions of the macroscopic dynamics.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gabdulkhakov, A. G., E-mail: azat@vega.protes.ru; Dontsova, M. V.; Saenger, W.
Photosystem II is a key component of the photosynthetic pathway producing oxygen at the thylakoid membrane of cyanobacteria, green algae, and plants. The three-dimensional structure of photosystem II from the cyanobacterium Thermosynechococcus elongates in a complex with herbicide terbutryn (a photosynthesis inhibitor) was determined for the first time by X-ray diffraction and refined at 3.2 Angstrom-Sign resolution (R{sub factor} = 26.9%, R{sub free} = 29.9%, rmsd for bond lengths is 0.013 Angstrom-Sign , and rmsd for bond angles is 2.2 Degree-Sign ). The terbutryn molecule was located in the binding pocket of the mobile plastoquinone. The atomic coordinates of themore » refined structure of photosystem II in a complex with terbutryn were deposited in the Protein Data Bank.« less
NASA Astrophysics Data System (ADS)
Zhao, Yan-Ming; Tang, Gui-Mei; Wang, Yong-Tao; Cui, Yue-Zhi; Ng, Seik Weng
2018-03-01
Three new chiral metal coordination complexes, namely, [Cu(FZ)2(CH3COO)2(H2O)]·2H2O (1), [Cu(FZ)2(NO3)2] (2), and [Cu2(FZ)2 (H2O)8](SO4)2·4H2O (3) [FZ = (2R,3S)-2-(2,4-difluorophenyl)-3-(5-fluoro-4-pyrimidiny)-1-(1H-1,2,4-triazol-1-yl)-2-butanol) (Voriconazole)] have been obtained by the reaction of Cu(II) salts and the free ligand FZ at room temperature. Complexes 1-3 were structurally characterized by X-ray single-crystal diffraction, IR, UV-vis, powder X-ray diffraction (PXRD), and thermogravimetric analysis (TGA). Complex 1 crystallizes in the chiral space group C2, which exhibits a mono-nuclear structure. Both complexes 2 and 3 display a one-dimensional (1D) tape structure, which crystallize in chiral space group P21212 and P212121, respectively. Among these complexes, there exist a variety of hydrogen bonds and stacking interactions, through which a three-dimensional supramolecular architecture will be generated. Compared with the standard (Voriconazole), these Cu-based complexes show the more potent inhibiting efficiency against the species of Candida and Aspergillus. Moreover, among these complexes, complex 1 shows the most excellent efficiency.
Fitting Multimeric Protein Complexes into Electron Microscopy Maps Using 3D Zernike Descriptors
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2012-01-01
A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root mean square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases. PMID:22417139
Fitting multimeric protein complexes into electron microscopy maps using 3D Zernike descriptors.
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2012-06-14
A novel computational method for fitting high-resolution structures of multiple proteins into a cryoelectron microscopy map is presented. The method named EMLZerD generates a pool of candidate multiple protein docking conformations of component proteins, which are later compared with a provided electron microscopy (EM) density map to select the ones that fit well into the EM map. The comparison of docking conformations and the EM map is performed using the 3D Zernike descriptor (3DZD), a mathematical series expansion of three-dimensional functions. The 3DZD provides a unified representation of the surface shape of multimeric protein complex models and EM maps, which allows a convenient, fast quantitative comparison of the three-dimensional structural data. Out of 19 multimeric complexes tested, near native complex structures with a root-mean-square deviation of less than 2.5 Å were obtained for 14 cases while medium range resolution structures with correct topology were computed for the additional 5 cases.
A wave-bending structure at Ka-band using 3D-printed metamaterial
NASA Astrophysics Data System (ADS)
Wu, Junqiang; Liang, Min; Xin, Hao
2018-03-01
Three-dimensional printing technologies enable metamaterials of complex structures with arbitrary inhomogeneity. In this work, a 90° wave-bending structure at the Ka-band (26.5-40 GHz) based on 3D-printed metamaterials is designed, fabricated, and measured. The wave-bending effect is realized through a spatial distribution of varied effective dielectric constants. Based on the effective medium theory, different effective dielectric constants are accomplished by special, 3D-printable unit cells, which allow different ratios of dielectric to air at the unit cell level. In contrast to traditional, metallic-structure-included metamaterial designs, the reported wave-bending structure here is all dielectric and implemented by the polymer-jetting technique, which features rapid, low-cost, and convenient prototyping. Both simulation and experiment results demonstrate the effectiveness of the wave-bending structure.
Low Dimensionality Effects in Complex Magnetic Oxides
NASA Astrophysics Data System (ADS)
Kelley, Paula J. Lampen
Complex magnetic oxides represent a unique intersection of immense technological importance and fascinating physical phenomena originating from interwoven structural, electronic and magnetic degrees of freedom. The resulting energetically close competing orders can be controllably selected through external fields. Competing interactions and disorder represent an additional opportunity to systematically manipulate the properties of pure magnetic systems, leading to frustration, glassiness, and other novel phenomena while finite sample dimension plays a similar role in systems with long-range cooperative effects or large correlation lengths. A rigorous understanding of these effects in strongly correlated oxides is key to manipulating their functionality and device performance, but remains a challenging task. In this dissertation, we examine a number of problems related to intrinsic and extrinsic low dimensionality, disorder, and competing interactions in magnetic oxides by applying a unique combination of standard magnetometry techniques and unconventional magnetocaloric effect and transverse susceptibility measurements. The influence of dimensionality and disorder on the nature and critical properties of phase transitions in manganites is illustrated in La0.7 Ca0.3MnO3, in which both size reduction to the nanoscale and chemically-controlled quenched disorder are observed to induce a progressive weakening of the first-order nature of the transition, despite acting through the distinct mechanisms of surface effects and site dilution. In the second-order material La0.8Ca0.2MnO3, a strong magnetic field is found to drive the system toward its tricritical point as competition between exchange interactions in the inhomogeneous ground state is suppressed. In the presence of large phase separation stabilized by chemical disorder and long-range strain, dimensionality has a profound effect. With the systematic reduction of particle size in microscale-phase-separated (La, Pr, Ca)MnO3 we observe a disruption of the long-range glassy strains associated with the charge-ordered phase in the bulk, lowering the field and pressure threshold for charge-order melting and increasing the ferromagnetic volume fraction as particle size is decreased. The long-range charge-ordered phase becomes completely suppressed when the particle size falls below 100 nm. In contrast, low dimensionality in the geometrically frustrated pseudo-1D spin chain compound Ca3Co2O6 is intrinsic, arising from the crystal lattice. We establish a comprehensive phase diagram for this exotic system consistent with recent reports of an incommensurate ground state and identify new sub-features of the ferrimagnetic phase. When defects in the form of grain boundaries are incorporated into the system the low-temperature slow-dynamic state is weakened, and new crossover phenomena emerge in the spin relaxation behavior along with an increased distribution of relaxation times. The presence of both disorder and randomness leads to a spin-glass-like state, as observed in gammaFe2O3 hollow nanoparticles, where freezing of surface spins at low temperature generates an irreversible magnetization component and an associated exchange-biasing effect. Our results point to distinct dynamic behaviors on the inner and outer surfaces of the hollow structures. Overall, these studies yield new physical insights into the role of dimensionality and disorder in these complex oxide systems and highlight the sensitivity of their manifested magnetic ground states to extrinsic factors, leading in many cases to crossover behaviors where the balance between competing phases is altered, or to the emergence of entirely new magnetic phenomena.
Chromosome organizaton in simple and complex unicellular organisms.
O'Sullivan, Justin M
2011-01-01
The genomes of unicellular organisms form complex 3-dimensional structures. This spatial organization is hypothesized to have a significant role in genomic function. Spatial organization is not limited solely to the three-dimensional folding of the chromosome(s) in genomes but also includes genome positioning, and the folding and compartmentalization of any additional genetic material (e.g. episomes) present within complex genomes. In this comment, I will highlight similarities in the spatial organization of eukaryotic and prokaryotic unicellular genomes.
On the Cohomology of Almost Complex Manifolds
NASA Astrophysics Data System (ADS)
Fino, Anna; Tomassini, Adriano
2010-07-01
We review some properties of two special types of almost complex structures, introduced by T.-J. Li and W. Zhang in [11], in relation to the existence of compatible symplectic structures and to the Hard Lefschetz condition. The two types of almost complex structures are defined respectively in terms of differential forms and currents. The paper is based on the results obtained in [9]. We give a new example of an 8-dimensional compact solvmanifold endowed with a C∞ pure and full almost complex structure calibrated by a symplectic form satisfying the Hard Lefschetz condition.
Krivov, Sergei V
2011-07-01
Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game--the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.
NASA Astrophysics Data System (ADS)
Krivov, Sergei V.
2011-07-01
Dimensionality reduction is ubiquitous in the analysis of complex dynamics. The conventional dimensionality reduction techniques, however, focus on reproducing the underlying configuration space, rather than the dynamics itself. The constructed low-dimensional space does not provide a complete and accurate description of the dynamics. Here I describe how to perform dimensionality reduction while preserving the essential properties of the dynamics. The approach is illustrated by analyzing the chess game—the archetype of complex dynamics. A variable that provides complete and accurate description of chess dynamics is constructed. The winning probability is predicted by describing the game as a random walk on the free-energy landscape associated with the variable. The approach suggests a possible way of obtaining a simple yet accurate description of many important complex phenomena. The analysis of the chess game shows that the approach can quantitatively describe the dynamics of processes where human decision-making plays a central role, e.g., financial and social dynamics.
Phase space interrogation of the empirical response modes for seismically excited structures
NASA Astrophysics Data System (ADS)
Paul, Bibhas; George, Riya C.; Mishra, Sudib K.
2017-07-01
Conventional Phase Space Interrogation (PSI) for structural damage assessment relies on exciting the structure with low dimensional chaotic waveform, thereby, significantly limiting their applicability to large structures. The PSI technique is presently extended for structure subjected to seismic excitations. The high dimensionality of the phase space for seismic response(s) are overcome by the Empirical Mode Decomposition (EMD), decomposing the responses to a number of intrinsic low dimensional oscillatory modes, referred as Intrinsic Mode Functions (IMFs). Along with their low dimensionality, a few IMFs, retain sufficient information of the system dynamics to reflect the damage induced changes. The mutually conflicting nature of low-dimensionality and the sufficiency of dynamic information are taken care by the optimal choice of the IMF(s), which is shown to be the third/fourth IMFs. The optimal IMF(s) are employed for the reconstruction of the Phase space attractor following Taken's embedding theorem. The widely referred Changes in Phase Space Topology (CPST) feature is then employed on these Phase portrait(s) to derive the damage sensitive feature, referred as the CPST of the IMFs (CPST-IMF). The legitimacy of the CPST-IMF is established as a damage sensitive feature by assessing its variation with a number of damage scenarios benchmarked in the IASC-ASCE building. The damage localization capability, remarkable tolerance to noise contamination and the robustness under different seismic excitations of the feature are demonstrated.
Seer-Linnemayr, Charlotte; Ravelli, Raimond B. G.; Matadeen, Rishi; De Carlo, Sacha; Alewijnse, Bart; Portugal, Rodrigo V.; Pannu, Navraj S.; Schatz, Michael; van Heel, Marin
2017-01-01
Single-particle cryogenic electron microscopy (cryo-EM) can now yield near-atomic resolution structures of biological complexes. However, the reference-based alignment algorithms commonly used in cryo-EM suffer from reference bias, limiting their applicability (also known as the ‘Einstein from random noise’ problem). Low-dose cryo-EM therefore requires robust and objective approaches to reveal the structural information contained in the extremely noisy data, especially when dealing with small structures. A reference-free pipeline is presented for obtaining near-atomic resolution three-dimensional reconstructions from heterogeneous (‘four-dimensional’) cryo-EM data sets. The methodologies integrated in this pipeline include a posteriori camera correction, movie-based full-data-set contrast transfer function determination, movie-alignment algorithms, (Fourier-space) multivariate statistical data compression and unsupervised classification, ‘random-startup’ three-dimensional reconstructions, four-dimensional structural refinements and Fourier shell correlation criteria for evaluating anisotropic resolution. The procedures exclusively use information emerging from the data set itself, without external ‘starting models’. Euler-angle assignments are performed by angular reconstitution rather than by the inherently slower projection-matching approaches. The comprehensive ‘ABC-4D’ pipeline is based on the two-dimensional reference-free ‘alignment by classification’ (ABC) approach, where similar images in similar orientations are grouped by unsupervised classification. Some fundamental differences between X-ray crystallography versus single-particle cryo-EM data collection and data processing are discussed. The structure of the giant haemoglobin from Lumbricus terrestris at a global resolution of ∼3.8 Å is presented as an example of the use of the ABC-4D procedure. PMID:28989723
Three-dimensional structure of E. Coli purine nucleoside phosphorylase at 0.99 Å resolution
DOE Office of Scientific and Technical Information (OSTI.GOV)
Timofeev, V. I., E-mail: tostars@mail.ru; Abramchik, Yu. A., E-mail: ugama@yandex.ru; Zhukhlistova, N. E., E-mail: inna@ns.crys.ras.ru
2016-03-15
Purine nucleoside phosphorylases (PNPs) catalyze the reversible phosphorolysis of nucleosides and are key enzymes involved in nucleotide metabolism. They are essential for normal cell function and can catalyze the transglycosylation. Crystals of E. coli PNP were grown in microgravity by the capillary counterdiffusion method through a gel layer. The three-dimensional structure of the enzyme was determined by the molecular-replacement method at 0.99 Å resolution. The structural features are considered, and the structure of E. coli PNP is compared with the structures of the free enzyme and its complexes with purine base derivatives established earlier. A comparison of the environment ofmore » the purine base in the complex of PNP with formycin A and of the pyrimidine base in the complex of uridine phosphorylase with thymidine revealed the main structural features of the base-binding sites. Coordinates of the atomic model determined with high accuracy were deposited in the Protein Data Bank (PDB-ID: 4RJ2).« less
Modeling of protein binary complexes using structural mass spectrometry data
Kamal, J.K. Amisha; Chance, Mark R.
2008-01-01
In this article, we describe a general approach to modeling the structure of binary protein complexes using structural mass spectrometry data combined with molecular docking. In the first step, hydroxyl radical mediated oxidative protein footprinting is used to identify residues that experience conformational reorganization due to binding or participate in the binding interface. In the second step, a three-dimensional atomic structure of the complex is derived by computational modeling. Homology modeling approaches are used to define the structures of the individual proteins if footprinting detects significant conformational reorganization as a function of complex formation. A three-dimensional model of the complex is constructed from these binary partners using the ClusPro program, which is composed of docking, energy filtering, and clustering steps. Footprinting data are used to incorporate constraints—positive and/or negative—in the docking step and are also used to decide the type of energy filter—electrostatics or desolvation—in the successive energy-filtering step. By using this approach, we examine the structure of a number of binary complexes of monomeric actin and compare the results to crystallographic data. Based on docking alone, a number of competing models with widely varying structures are observed, one of which is likely to agree with crystallographic data. When the docking steps are guided by footprinting data, accurate models emerge as top scoring. We demonstrate this method with the actin/gelsolin segment-1 complex. We also provide a structural model for the actin/cofilin complex using this approach which does not have a crystal or NMR structure. PMID:18042684
Drawing the PDB: Protein-Ligand Complexes in Two Dimensions.
Stierand, Katrin; Rarey, Matthias
2010-12-09
The two-dimensional representation of molecules is a popular communication medium in chemistry and the associated scientific fields. Computational methods for drawing small molecules with and without manual investigation are well-established and widely spread in terms of numerous software tools. Concerning the planar depiction of molecular complexes, there is considerably less choice. We developed the software PoseView, which automatically generates two-dimensional diagrams of macromolecular complexes, showing the ligand, the interactions, and the interacting residues. All depicted molecules are drawn on an atomic level as structure diagrams; thus, the output plots are clearly structured and easily readable for the scientist. We tested the performance of PoseView in a large-scale application on nearly all druglike complexes of the PDB (approximately 200000 complexes); for more than 92% of the complexes considered for drawing, a layout could be computed. In the following, we will present the results of this application study.
Li, Qing; Jin, Wang; Chu, Manman; Zhang, Wei; Gu, Jianmin; Shahid, Bilal; Chen, Aibing; Yu, Yifeng; Qiao, Shanlin; Zhao, Yong Sheng
2018-03-08
Low-dimensional organic materials have given rise to tremendous interest in optoelectronic applications, owing to their controllable photonic properties. However, the controlled-synthesis approaches for organic nano-/micro-architectures are very difficult to attain, because the weak interaction (van der Waals force) between the organic molecules cannot dominate the kinetic process of crystal growth. We report a simple method, which involves selective adhesion to the organic crystal plane by hydrogen-bonding interaction for modulating the crystal growth process, which leads either to the self-assembly of one organic molecule into two-dimensional (2D) microsheets with an obvious asymmetric light propagation or one-dimensional (1D) microrods with low propagation loss. The method of tailoring the structures and photonic properties for fabricating different micro-structures would provide enlightenment for the development of tailor-made mini-sized devices for photonic integrated circuits.
Low-dimensional quantum magnetism in Cu (NCS) 2: A molecular framework material
NASA Astrophysics Data System (ADS)
Cliffe, Matthew J.; Lee, Jeongjae; Paddison, Joseph A. M.; Schott, Sam; Mukherjee, Paromita; Gaultois, Michael W.; Manuel, Pascal; Sirringhaus, Henning; Dutton, Siân E.; Grey, Clare P.
2018-04-01
Low-dimensional magnetic materials with spin-1/2 moments can host a range of exotic magnetic phenomena due to the intrinsic importance of quantum fluctuations to their behavior. Here, we report the structure, magnetic structure, and magnetic properties of copper ii thiocyanate, Cu(NCS ) 2, a one-dimensional coordination polymer which displays low-dimensional quantum magnetism. Magnetic susceptibility, electron paramagnetic resonance spectroscopy, 13C magic-angle spinning nuclear magnetic resonance spectroscopy, and density functional theory investigations indicate that Cu(NCS ) 2 behaves as a two-dimensional array of weakly coupled antiferromagnetic spin chains [J2=133 (1 ) K , α =J1/J2=0.08 ] . Powder neutron-diffraction measurements confirm that Cu(NCS ) 2 orders as a commensurate antiferromagnet below TN=12 K , with a strongly reduced ordered moment (0.3 μB ) due to quantum fluctuations.
Jinek, Martin; Eulalio, Ana; Lingel, Andreas; Helms, Sigrun; Conti, Elena; Izaurralde, Elisa
2008-10-01
The removal of the 5' cap structure by the DCP1-DCP2 decapping complex irreversibly commits eukaryotic mRNAs to degradation. In human cells, the interaction between DCP1 and DCP2 is bridged by the Ge-1 protein. Ge-1 contains an N-terminal WD40-repeat domain connected by a low-complexity region to a conserved C-terminal domain. It was reported that the C-terminal domain interacts with DCP2 and mediates Ge-1 oligomerization and P-body localization. To understand the molecular basis for these functions, we determined the three-dimensional crystal structure of the most conserved region of the Drosophila melanogaster Ge-1 C-terminal domain. The region adopts an all alpha-helical fold related to ARM- and HEAT-repeat proteins. Using structure-based mutants we identified an invariant surface residue affecting P-body localization. The conservation of critical surface and structural residues suggests that the C-terminal region adopts a similar fold with conserved functions in all members of the Ge-1 protein family.
Perceptual integration of kinematic components in the recognition of emotional facial expressions.
Chiovetto, Enrico; Curio, Cristóbal; Endres, Dominik; Giese, Martin
2018-04-01
According to a long-standing hypothesis in motor control, complex body motion is organized in terms of movement primitives, reducing massively the dimensionality of the underlying control problems. For body movements, this low-dimensional organization has been convincingly demonstrated by the learning of low-dimensional representations from kinematic and EMG data. In contrast, the effective dimensionality of dynamic facial expressions is unknown, and dominant analysis approaches have been based on heuristically defined facial "action units," which reflect contributions of individual face muscles. We determined the effective dimensionality of dynamic facial expressions by learning of a low-dimensional model from 11 facial expressions. We found an amazingly low dimensionality with only two movement primitives being sufficient to simulate these dynamic expressions with high accuracy. This low dimensionality is confirmed statistically, by Bayesian model comparison of models with different numbers of primitives, and by a psychophysical experiment that demonstrates that expressions, simulated with only two primitives, are indistinguishable from natural ones. In addition, we find statistically optimal integration of the emotion information specified by these primitives in visual perception. Taken together, our results indicate that facial expressions might be controlled by a very small number of independent control units, permitting very low-dimensional parametrization of the associated facial expression.
Low Reynolds number flow near tiny leaves, stems, and trichomes
NASA Astrophysics Data System (ADS)
Strickland, Christopher; Pasour, Virginia; Miller, Laura
2016-11-01
In terrestrial and aquatic environments such as forest canopies, grass fields, and seagrass beds, the density and shape of trunks, branches, stems, leaves and trichomes (the hairs or fine outgrowths on plants) can drastically alter both the average wind speed and profile through these environments and near each plant. While many studies of flow in these environments have focused on bulk properties of the flow at scales on the order of meters, the low Reynolds number flow close to vegetative structures is especially complex and relevant to nutrient exchange. Using three-dimensional immersed boundary simulations, we resolve the flow around trichomes and small leaves and quantify velocities, shear stresses, and mixing while varying the height and density of idealized structures. National Science Foundation Grant DMS-1127914 to the Statistical and Applied Mathematical Sciences Institute, and the Army Research Office.
Parallel computation of three-dimensional aeroelastic fluid-structure interaction
NASA Astrophysics Data System (ADS)
Sadeghi, Mani
This dissertation presents a numerical method for the parallel computation of aeroelasticity (ParCAE). A flow solver is coupled to a structural solver by use of a fluid-structure interface method. The integration of the three-dimensional unsteady Navier-Stokes equations is performed in the time domain, simultaneously to the integration of a modal three-dimensional structural model. The flow solution is accelerated by using a multigrid method and a parallel multiblock approach. Fluid-structure coupling is achieved by subiteration. A grid-deformation algorithm is developed to interpolate the deformation of the structural boundaries onto the flow grid. The code is formulated to allow application to general, three-dimensional, complex configurations with multiple independent structures. Computational results are presented for various configurations, such as turbomachinery blade rows and aircraft wings. Investigations are performed on vortex-induced vibrations, effects of cascade mistuning on flutter, and cases of nonlinear cascade and wing flutter.
Three-dimensional electron diffraction of plant light-harvesting complex
Wang, Da Neng; Kühlbrandt, Werner
1992-01-01
Electron diffraction patterns of two-dimensional crystals of light-harvesting chlorophyll a/b-protein complex (LHC-II) from photosynthetic membranes of pea chloroplasts, tilted at different angles up to 60°, were collected to 3.2 Å resolution at -125°C. The reflection intensities were merged into a three-dimensional data set. The Friedel R-factor and the merging R-factor were 21.8 and 27.6%, respectively. Specimen flatness and crystal size were critical for recording electron diffraction patterns from crystals at high tilts. The principal sources of experimental error were attributed to limitations of the number of unit cells contributing to an electron diffraction pattern, and to the critical electron dose. The distribution of strong diffraction spots indicated that the three-dimensional structure of LHC-II is less regular than that of other known membrane proteins and is not dominated by a particular feature of secondary structure. ImagesFIGURE 1FIGURE 2 PMID:19431817
Complexity of free energy landscapes of peptides revealed by nonlinear principal component analysis.
Nguyen, Phuong H
2006-12-01
Employing the recently developed hierarchical nonlinear principal component analysis (NLPCA) method of Saegusa et al. (Neurocomputing 2004;61:57-70 and IEICE Trans Inf Syst 2005;E88-D:2242-2248), the complexities of the free energy landscapes of several peptides, including triglycine, hexaalanine, and the C-terminal beta-hairpin of protein G, were studied. First, the performance of this NLPCA method was compared with the standard linear principal component analysis (PCA). In particular, we compared two methods according to (1) the ability of the dimensionality reduction and (2) the efficient representation of peptide conformations in low-dimensional spaces spanned by the first few principal components. The study revealed that NLPCA reduces the dimensionality of the considered systems much better, than did PCA. For example, in order to get the similar error, which is due to representation of the original data of beta-hairpin in low dimensional space, one needs 4 and 21 principal components of NLPCA and PCA, respectively. Second, by representing the free energy landscapes of the considered systems as a function of the first two principal components obtained from PCA, we obtained the relatively well-structured free energy landscapes. In contrast, the free energy landscapes of NLPCA are much more complicated, exhibiting many states which are hidden in the PCA maps, especially in the unfolded regions. Furthermore, the study also showed that many states in the PCA maps are mixed up by several peptide conformations, while those of the NLPCA maps are more pure. This finding suggests that the NLPCA should be used to capture the essential features of the systems. (c) 2006 Wiley-Liss, Inc.
The bifurcations of nearly flat origami
NASA Astrophysics Data System (ADS)
Santangelo, Christian
Self-folding origami structures provide one means of fabricating complex, three-dimensional structures from a flat, two-dimensional sheet. Self-folding origami structures have been fabricated on scales ranging from macroscopic to microscopic and can have quite complicated structures with hundreds of folds arranged in complex patterns. I will describe our efforts to understand the mechanics and energetics of self-folding origami structures. Though the dimension of the configuration space of an origami structure scales with the size of the boundary and not with the number of vertices in the interior of the structure, a typical origami structure is also floppy in the sense that there are many possible ways to assign fold angles consistently. I will discuss our theoretical progress in understanding the geometry of the configuration space of origami. For random origami, the number of possible bifurcations grows surprisingly quickly even when the dimension of the configuration space is small. EFRI ODISSEI-1240441, DMR-0846582.
Wang, Xiangfei; Yang, Fang; Tang, Meng; Yuan, Limin; Liu, Wenlong
2015-07-01
The hydrothermal synthesis of the novel complex poly[aqua(μ4-benzene-1,2,3-tricarboxylato)[μ2-4,4'-(hydrazine-1,2-diylidenedimethanylylidene)dipyridine](μ3-hydroxido)dizinc(II)], [Zn(C9H3O6)(OH)(C12H10N4)(H2O)]n, is described. The benzene-1,2,3-tricarboxylate ligand connects neighbouring Zn4(OH)2 secondary building units (SBUs) producing an infinite one-dimensional chain. Adjacent one-dimensional chains are connected by the N,N'-bis[(pyridin-4-yl)methylidene]hydrazine ligand, forming a two-dimensional layered structure. Adjacent layers are stacked to generate a three-dimensional supramolecular architecture via O-H...O hydrogen-bond interactions. The thermal stability of this complex is described and the complex also appears to have potential for application as a luminescent material.
Numerical simulation of synthesis gas incineration
NASA Astrophysics Data System (ADS)
Kazakov, A. V.; Khaustov, S. A.; Tabakaev, R. B.; Belousova, Y. A.
2016-04-01
The authors have analysed the expediency of the suggested low-grade fuels application method. Thermal processing of solid raw materials in the gaseous fuel, called synthesis gas, is investigated. The technical challenges concerning the applicability of the existing gas equipment developed and extensively tested exclusively for natural gas were considered. For this purpose computer simulation of three-dimensional syngas-incinerating flame dynamics was performed by means of the ANSYS Multiphysics engineering software. The subjects of studying were: a three-dimensional aerodynamic flame structure, heat-release and temperature fields, a set of combustion properties: a flare range and the concentration distribution of burnout reagents. The obtained results were presented in the form of a time-averaged pathlines with color indexing. The obtained results can be used for qualitative and quantitative evaluation of complex multicomponent gas incineration singularities.
Study of genetic direct search algorithms for function optimization
NASA Technical Reports Server (NTRS)
Zeigler, B. P.
1974-01-01
The results are presented of a study to determine the performance of genetic direct search algorithms in solving function optimization problems arising in the optimal and adaptive control areas. The findings indicate that: (1) genetic algorithms can outperform standard algorithms in multimodal and/or noisy optimization situations, but suffer from lack of gradient exploitation facilities when gradient information can be utilized to guide the search. (2) For large populations, or low dimensional function spaces, mutation is a sufficient operator. However for small populations or high dimensional functions, crossover applied in about equal frequency with mutation is an optimum combination. (3) Complexity, in terms of storage space and running time, is significantly increased when population size is increased or the inversion operator, or the second level adaptation routine is added to the basic structure.
Gardner, Jameson K.; Herbst-Kralovetz, Melissa M.
2016-01-01
The key to better understanding complex virus-host interactions is the utilization of robust three-dimensional (3D) human cell cultures that effectively recapitulate native tissue architecture and model the microenvironment. A lack of physiologically-relevant animal models for many viruses has limited the elucidation of factors that influence viral pathogenesis and of complex host immune mechanisms. Conventional monolayer cell cultures may support viral infection, but are unable to form the tissue structures and complex microenvironments that mimic host physiology and, therefore, limiting their translational utility. The rotating wall vessel (RWV) bioreactor was designed by the National Aeronautics and Space Administration (NASA) to model microgravity and was later found to more accurately reproduce features of human tissue in vivo. Cells grown in RWV bioreactors develop in a low fluid-shear environment, which enables cells to form complex 3D tissue-like aggregates. A wide variety of human tissues (from neuronal to vaginal tissue) have been grown in RWV bioreactors and have been shown to support productive viral infection and physiological meaningful host responses. The in vivo-like characteristics and cellular features of the human 3D RWV-derived aggregates make them ideal model systems to effectively recapitulate pathophysiology and host responses necessary to conduct rigorous basic science, preclinical and translational studies. PMID:27834891
Dynamics of influence and social balance in spatially-embedded regular and random networks
NASA Astrophysics Data System (ADS)
Singh, P.; Sreenivasan, S.; Szymanski, B.; Korniss, G.
2015-03-01
Structural balance - the tendency of social relationship triads to prefer specific states of polarity - can be a fundamental driver of beliefs, behavior, and attitudes on social networks. Here we study how structural balance affects deradicalization in an otherwise polarized population of leftists and rightists constituting the nodes of a low-dimensional social network. Specifically, assuming an externally moderating influence that converts leftists or rightists to centrists with probability p, we study the critical value p =pc , below which the presence of metastable mixed population states exponentially delay the achievement of centrist consensus. Above the critical value, centrist consensus is the only fixed point. Complementing our previously shown results for complete graphs, we present results for the process on low-dimensional networks, and show that the low-dimensional embedding of the underlying network significantly affects the critical value of probability p. Intriguingly, on low-dimensional networks, the critical value pc can show non-monotonicity as the dimensionality of the network is varied. We conclude by analyzing the scaling behavior of temporal variation of unbalanced triad density in the network for different low-dimensional network topologies. Supported in part by ARL NS-CTA, ONR, and ARO.
Diffusion in higher dimensional SYK model with complex fermions
NASA Astrophysics Data System (ADS)
Cai, Wenhe; Ge, Xian-Hui; Yang, Guo-Hong
2018-01-01
We construct a new higher dimensional SYK model with complex fermions on bipartite lattices. As an extension of the original zero-dimensional SYK model, we focus on the one-dimension case, and similar Hamiltonian can be obtained in higher dimensions. This model has a conserved U(1) fermion number Q and a conjugate chemical potential μ. We evaluate the thermal and charge diffusion constants via large q expansion at low temperature limit. The results show that the diffusivity depends on the ratio of free Majorana fermions to Majorana fermions with SYK interactions. The transport properties and the butterfly velocity are accordingly calculated at low temperature. The specific heat and the thermal conductivity are proportional to the temperature. The electrical resistivity also has a linear temperature dependence term.
Ding, Jiarui; Condon, Anne; Shah, Sohrab P
2018-05-21
Single-cell RNA-sequencing has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. However, dimension reduction to interpret structure in single-cell sequencing data remains a challenge. Existing algorithms are either not able to uncover the clustering structures in the data or lose global information such as groups of clusters that are close to each other. We present a robust statistical model, scvis, to capture and visualize the low-dimensional structures in single-cell gene expression data. Simulation results demonstrate that low-dimensional representations learned by scvis preserve both the local and global neighbor structures in the data. In addition, scvis is robust to the number of data points and learns a probabilistic parametric mapping function to add new data points to an existing embedding. We then use scvis to analyze four single-cell RNA-sequencing datasets, exemplifying interpretable two-dimensional representations of the high-dimensional single-cell RNA-sequencing data.
Geometrical structure of Neural Networks: Geodesics, Jeffrey's Prior and Hyper-ribbons
NASA Astrophysics Data System (ADS)
Hayden, Lorien; Alemi, Alex; Sethna, James
2014-03-01
Neural networks are learning algorithms which are employed in a host of Machine Learning problems including speech recognition, object classification and data mining. In practice, neural networks learn a low dimensional representation of high dimensional data and define a model manifold which is an embedding of this low dimensional structure in the higher dimensional space. In this work, we explore the geometrical structure of a neural network model manifold. A Stacked Denoising Autoencoder and a Deep Belief Network are trained on handwritten digits from the MNIST database. Construction of geodesics along the surface and of slices taken from the high dimensional manifolds reveal a hierarchy of widths corresponding to a hyper-ribbon structure. This property indicates that neural networks fall into the class of sloppy models, in which certain parameter combinations dominate the behavior. Employing this information could prove valuable in designing both neural network architectures and training algorithms. This material is based upon work supported by the National Science Foundation Graduate Research Fellowship under Grant No . DGE-1144153.
Conradie, Jeanet; Patra, Ashis K; Harrop, Todd C; Ghosh, Abhik
2015-02-16
Density functional theory (in the form of the PW91, BP86, OLYP, and B3LYP exchange-correlation functionals) has been used to map out the low-energy states of a series of eight-coordinate square-antiprismatic (D2d) first-row transition metal complexes, involving Mn(II), Fe(II), Co(II), Ni(II), and Cu(II), along with a pair of tetradentate N4 ligands. Of the five complexes, the Mn(II) and Fe(II) complexes have been synthesized and characterized structurally and spectroscopically, whereas the other three are as yet unknown. Each N4 ligand consists of a pair of terminal imidazole units linked by an o-phenylenediimine unit. The imidazole units are the strongest ligands in these complexes and dictate the spatial disposition of the metal three-dimensional orbitals. Thus, the dx(2)-y(2) orbital, whose lobes point directly at the coordinating imidazole nitrogens, has the highest orbital energy among the five d orbitals, whereas the dxy orbital has the lowest orbital energy. In general, the following orbital ordering (in order of increasing orbital energy) was found to be operative: dxy < dxz = dyz ≤ dz(2) < dx(2)-y(2). The square-antiprism geometry does not lead to large energy gaps between the d orbitals, which leads to an S = 2 ground state for the Fe(II) complex. Nevertheless, the dxy orbital has significantly lower energy relative to that of the dxz and dyz orbitals. Accordingly, the ground state of the Fe(II) complex corresponds unambiguously to a dxy(2)dxz(1)dyz(1)dz(2)(1)dx(2)-y(2)(1) electronic configuration. Unsurprisingly, the Mn(II) complex has an S = 5/2 ground state and no low-energy d-d excited states within 1.0 eV of the ground state. The Co(II) complex, on the other hand, has both a low-lying S = 1/2 state and multiple low-energy S = 3/2 states. Very long metal-nitrogen bonds are predicted for the Ni(II) and Cu(II) complexes; these bonds may be too fragile to survive in solution or in the solid state, and the complexes may therefore not be isolable. Overall, the different exchange-correlation functionals provided a qualitatively consistent and plausible picture of the low-energy d-d excited states of the complexes.
Thawani, Jayesh P; Singh, Nickpreet; Pisapia, Jared M; Abdullah, Kalil G; Parker, Drew; Pukenas, Bryan A; Zager, Eric L; Verma, Ragini; Brem, Steven
2017-04-01
Diffuse low-grade gliomas (DLGGs) represent several pathological entities that infiltrate and invade cortical and subcortical structures in the brain. To describe methods for rapid prototyping of DLGGs and surgically relevant anatomy. Using high-definition imaging data and rapid prototyping technologies, we were able to generate 3 patient DLGGs to scale and represent the associated white matter tracts in 3 dimensions using advanced diffusion tensor imaging techniques. This report represents a novel application of 3-dimensional (3-D) printing in neurosurgery and a means to model individualized tumors in 3-D space with respect to subcortical white matter tract anatomy. Faculty and resident evaluations of this technology were favorable at our institution. Developing an understanding of the anatomic relationships existing within individuals is fundamental to successful neurosurgical therapy. Imaging-based rapid prototyping may improve on our ability to plan for and treat complex neuro-oncologic pathology. Copyright © 2017 by the Congress of Neurological Surgeons
Three-Dimensional Printing Articular Cartilage: Recapitulating the Complexity of Native Tissue.
Guo, Ting; Lembong, Josephine; Zhang, Lijie Grace; Fisher, John P
2017-06-01
In the past few decades, the field of tissue engineering combined with rapid prototyping (RP) techniques has been successful in creating biological substitutes that mimic tissues. Its applications in regenerative medicine have drawn efforts in research from various scientific fields, diagnostics, and clinical translation to therapies. While some areas of therapeutics are well developed, such as skin replacement, many others such as cartilage repair can still greatly benefit from tissue engineering and RP due to the low success and/or inefficiency of current existing, often surgical treatments. Through fabrication of complex scaffolds and development of advanced materials, RP provides a new avenue for cartilage repair. Computer-aided design and three-dimensional (3D) printing allow the fabrication of modeled cartilage scaffolds for repair and regeneration of damaged cartilage tissues. Specifically, the various processes of 3D printing will be discussed in details, both cellular and acellular techniques, covering the different materials, geometries, and operational printing conditions for the development of tissue-engineered articular cartilage. Finally, we conclude with some insights on future applications and challenges related to this technology, especially using 3D printing techniques to recapitulate the complexity of native structure for advanced cartilage regeneration.
Harnessing Sparse and Low-Dimensional Structures for Robust Clustering of Imagery Data
ERIC Educational Resources Information Center
Rao, Shankar Ramamohan
2009-01-01
We propose a robust framework for clustering data. In practice, data obtained from real measurement devices can be incomplete, corrupted by gross errors, or not correspond to any assumed model. We show that, by properly harnessing the intrinsic low-dimensional structure of the data, these kinds of practical problems can be dealt with in a uniform…
Low temperature exciton dynamics and structural changes in perylene bisimide aggregates
NASA Astrophysics Data System (ADS)
Wolter, Steffen; Magnus Westphal, Karl; Hempel, Magdalena; Würthner, Frank; Kühn, Oliver; Lochbrunner, Stefan
2017-09-01
The temperature dependent exciton dynamics of J-aggregates formed by a perylene bisimide dye is investigated down to liquid nitrogen temperature (77 K) by femtosecond pump-probe spectroscopy. The analysis of the transient absorption data using a diffusion model for the excitons does not only reveal an overall decrease of the exciton mobility, but also a change in the dimensionality of the exciton transport at low temperatures. This change in dimensionality is further investigated by kinetic Monte Carlo simulations, identifying weakly interlinked one-dimensional aggregate chains as the most likely structure at low temperatures. This causes the exciton transport to be highly anisotropic.
ERIC Educational Resources Information Center
Hodis, Eran; Prilusky, Jaime, Sussman, Joel L.
2010-01-01
Protein structures are hard to represent on paper. They are large, complex, and three-dimensional (3D)--four-dimensional if conformational changes count! Unlike most of their substrates, which can easily be drawn out in full chemical formula, drawing every atom in a protein would usually be a mess. Simplifications like showing only the surface of…
Shape component analysis: structure-preserving dimension reduction on biological shape spaces.
Lee, Hao-Chih; Liao, Tao; Zhang, Yongjie Jessica; Yang, Ge
2016-03-01
Quantitative shape analysis is required by a wide range of biological studies across diverse scales, ranging from molecules to cells and organisms. In particular, high-throughput and systems-level studies of biological structures and functions have started to produce large volumes of complex high-dimensional shape data. Analysis and understanding of high-dimensional biological shape data require dimension-reduction techniques. We have developed a technique for non-linear dimension reduction of 2D and 3D biological shape representations on their Riemannian spaces. A key feature of this technique is that it preserves distances between different shapes in an embedded low-dimensional shape space. We demonstrate an application of this technique by combining it with non-linear mean-shift clustering on the Riemannian spaces for unsupervised clustering of shapes of cellular organelles and proteins. Source code and data for reproducing results of this article are freely available at https://github.com/ccdlcmu/shape_component_analysis_Matlab The implementation was made in MATLAB and supported on MS Windows, Linux and Mac OS. geyang@andrew.cmu.edu. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.
NASA Technical Reports Server (NTRS)
Stagliano, T. R.; Witmer, E. A.; Rodal, J. J. A.
1979-01-01
Finite element modeling alternatives as well as the utility and limitations of the two dimensional structural response computer code CIVM-JET 4B for predicting the transient, large deflection, elastic plastic, structural responses of two dimensional beam and/or ring structures which are subjected to rigid fragment impact were investigated. The applicability of the CIVM-JET 4B analysis and code for the prediction of steel containment ring response to impact by complex deformable fragments from a trihub burst of a T58 turbine rotor was studied. Dimensional analysis considerations were used in a parametric examination of data from engine rotor burst containment experiments and data from sphere beam impact experiments. The use of the CIVM-JET 4B computer code for making parametric structural response studies on both fragment-containment structure and fragment-deflector structure was illustrated. Modifications to the analysis/computation procedure were developed to alleviate restrictions.
Zhou, Jian-Liang; An, Jing-Jing; Li, Ping; Li, Hui-Jun; Jiang, Yan; Cheng, Jie-Fei
2009-03-20
We present herein a novel bioseparation/chemical analysis strategy for protein-ligand screening and affinity ranking in compound mixtures, designed to increase screening rates and improve sensitivity and ruggedness in performance. The strategy is carried out by combining on-line two-dimensional turbulent flow chromatography (2D-TFC) with liquid chromatography-mass spectrometry (LC-MS), and accomplished through the following steps: (1) a reversed-phase TFC stage to separate the protein/ligand complex from the unbound free molecules, (2) an on-line dissociation process to release the bound ligands from the complexes, and (3) a second mixed-mode cation-exchange/reversed-phase TFC stage to trap the bound ligands and to remove the proteins and salts, followed by LC-MS analysis for identification and determination of the binding affinities. The technique can implement an ultra-fast isolation of protein/ligand complex with the retention time of a complex peak in about 5s, and on-line prepare the "clean" sample to be directly compatible with the LC-MS analysis. The improvement in performance of this 2D-TFC/LC-MS approach over the conventional approach has been demonstrated by determining affinity-selected ligands of the target proteins acetylcholinesterase and butyrylcholinesterase from a small library with known binding affinities and a steroidal alkaloid library composed of structurally similar compounds. Our results show that 2D-TFC/LC-MS is a generic and efficient tool for high-throughput screening of ligands with low-to-high binding affinities, and structure-activity relationship evaluation.
NASA Astrophysics Data System (ADS)
Newman, James Charles, III
1997-10-01
The first two steps in the development of an integrated multidisciplinary design optimization procedure capable of analyzing the nonlinear fluid flow about geometrically complex aeroelastic configurations have been accomplished in the present work. For the first step, a three-dimensional unstructured grid approach to aerodynamic shape sensitivity analysis and design optimization has been developed. The advantage of unstructured grids, when compared with a structured-grid approach, is their inherent ability to discretize irregularly shaped domains with greater efficiency and less effort. Hence, this approach is ideally suited for geometrically complex configurations of practical interest. In this work the time-dependent, nonlinear Euler equations are solved using an upwind, cell-centered, finite-volume scheme. The discrete, linearized systems which result from this scheme are solved iteratively by a preconditioned conjugate-gradient-like algorithm known as GMRES for the two-dimensional cases and a Gauss-Seidel algorithm for the three-dimensional; at steady-state, similar procedures are used to solve the accompanying linear aerodynamic sensitivity equations in incremental iterative form. As shown, this particular form of the sensitivity equation makes large-scale gradient-based aerodynamic optimization possible by taking advantage of memory efficient methods to construct exact Jacobian matrix-vector products. Various surface parameterization techniques have been employed in the current study to control the shape of the design surface. Once this surface has been deformed, the interior volume of the unstructured grid is adapted by considering the mesh as a system of interconnected tension springs. Grid sensitivities are obtained by differentiating the surface parameterization and the grid adaptation algorithms with ADIFOR, an advanced automatic-differentiation software tool. To demonstrate the ability of this procedure to analyze and design complex configurations of practical interest, the sensitivity analysis and shape optimization has been performed for several two- and three-dimensional cases. In twodimensions, an initially symmetric NACA-0012 airfoil and a high-lift multielement airfoil were examined. For the three-dimensional configurations, an initially rectangular wing with uniform NACA-0012 cross-sections was optimized; in addition, a complete Boeing 747-200 aircraft was studied. Furthermore, the current study also examines the effect of inconsistency in the order of spatial accuracy between the nonlinear fluid and linear shape sensitivity equations. The second step was to develop a computationally efficient, high-fidelity, integrated static aeroelastic analysis procedure. To accomplish this, a structural analysis code was coupled with the aforementioned unstructured grid aerodynamic analysis solver. The use of an unstructured grid scheme for the aerodynamic analysis enhances the interaction compatibility with the wing structure. The structural analysis utilizes finite elements to model the wing so that accurate structural deflections may be obtained. In the current work, parameters have been introduced to control the interaction of the computational fluid dynamics and structural analyses; these control parameters permit extremely efficient static aeroelastic computations. To demonstrate and evaluate this procedure, static aeroelastic analysis results for a flexible wing in low subsonic, high subsonic (subcritical), transonic (supercritical), and supersonic flow conditions are presented.
Dimensionality reduction in epidemic spreading models
NASA Astrophysics Data System (ADS)
Frasca, M.; Rizzo, A.; Gallo, L.; Fortuna, L.; Porfiri, M.
2015-09-01
Complex dynamical systems often exhibit collective dynamics that are well described by a reduced set of key variables in a low-dimensional space. Such a low-dimensional description offers a privileged perspective to understand the system behavior across temporal and spatial scales. In this work, we propose a data-driven approach to establish low-dimensional representations of large epidemic datasets by using a dimensionality reduction algorithm based on isometric features mapping (ISOMAP). We demonstrate our approach on synthetic data for epidemic spreading in a population of mobile individuals. We find that ISOMAP is successful in embedding high-dimensional data into a low-dimensional manifold, whose topological features are associated with the epidemic outbreak. Across a range of simulation parameters and model instances, we observe that epidemic outbreaks are embedded into a family of closed curves in a three-dimensional space, in which neighboring points pertain to instants that are close in time. The orientation of each curve is unique to a specific outbreak, and the coordinates correlate with the number of infected individuals. A low-dimensional description of epidemic spreading is expected to improve our understanding of the role of individual response on the outbreak dynamics, inform the selection of meaningful global observables, and, possibly, aid in the design of control and quarantine procedures.
Pathophysiology of Degenerative Mitral Regurgitation: New 3-Dimensional Imaging Insights.
Antoine, Clemence; Mantovani, Francesca; Benfari, Giovanni; Mankad, Sunil V; Maalouf, Joseph F; Michelena, Hector I; Enriquez-Sarano, Maurice
2018-01-01
Despite its high prevalence, little is known about mechanisms of mitral regurgitation in degenerative mitral valve disease apart from the leaflet prolapse itself. Mitral valve is a complex structure, including mitral annulus, mitral leaflets, papillary muscles, chords, and left ventricular walls. All these structures are involved in physiological and pathological functioning of this valvuloventricular complex but up to now were difficult to analyze because of inherent limitations of 2-dimensional imaging. The advent of 3-dimensional echocardiography, computed tomography, and cardiac magnetic resonance imaging overcoming these limitations provides new insights into mechanistic analysis of degenerative mitral regurgitation. This review will detail the contribution of quantitative and qualitative dynamic analysis of mitral annulus and mitral leaflets by new imaging methods in the understanding of degenerative mitral regurgitation pathophysiology. © 2018 American Heart Association, Inc.
Processing bulk natural wood into a high-performance structural material.
Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H; Bruck, Hugh A; Zhu, J Y; Vellore, Azhar; Li, Heng; Minus, Marilyn L; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing
2018-02-07
Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na 2 SO 3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.
Processing bulk natural wood into a high-performance structural material
NASA Astrophysics Data System (ADS)
Song, Jianwei; Chen, Chaoji; Zhu, Shuze; Zhu, Mingwei; Dai, Jiaqi; Ray, Upamanyu; Li, Yiju; Kuang, Yudi; Li, Yongfeng; Quispe, Nelson; Yao, Yonggang; Gong, Amy; Leiste, Ulrich H.; Bruck, Hugh A.; Zhu, J. Y.; Vellore, Azhar; Li, Heng; Minus, Marilyn L.; Jia, Zheng; Martini, Ashlie; Li, Teng; Hu, Liangbing
2018-02-01
Synthetic structural materials with exceptional mechanical performance suffer from either large weight and adverse environmental impact (for example, steels and alloys) or complex manufacturing processes and thus high cost (for example, polymer-based and biomimetic composites). Natural wood is a low-cost and abundant material and has been used for millennia as a structural material for building and furniture construction. However, the mechanical performance of natural wood (its strength and toughness) is unsatisfactory for many advanced engineering structures and applications. Pre-treatment with steam, heat, ammonia or cold rolling followed by densification has led to the enhanced mechanical performance of natural wood. However, the existing methods result in incomplete densification and lack dimensional stability, particularly in response to humid environments, and wood treated in these ways can expand and weaken. Here we report a simple and effective strategy to transform bulk natural wood directly into a high-performance structural material with a more than tenfold increase in strength, toughness and ballistic resistance and with greater dimensional stability. Our two-step process involves the partial removal of lignin and hemicellulose from the natural wood via a boiling process in an aqueous mixture of NaOH and Na2SO3 followed by hot-pressing, leading to the total collapse of cell walls and the complete densification of the natural wood with highly aligned cellulose nanofibres. This strategy is shown to be universally effective for various species of wood. Our processed wood has a specific strength higher than that of most structural metals and alloys, making it a low-cost, high-performance, lightweight alternative.
Yin, Ningbei; Wu, Jiajun; Chen, Bo; Song, Tao; Ma, Hengyuan; Zhao, Zhenmin; Wang, Yongqian; Li, Haidong; Wu, Di
2015-03-01
Plastic surgeons have attempted various ways to rebuild the aesthetic subunits of the upper lip in patients with cleft lip with less than perfect results in most cases. We propose that repairing the 3 muscle tension line groups in the nasolabial complex will have improved aesthetic results. Micro-computed tomographic scans were performed on the nasolabial tissues of 5 normal aborted fetuses and used to construct a 3-dimensional model to study the nasolabial muscle complex structure. The micro-computed tomographic (CT) scans showed the close relationship and interaction between the muscle fibers of nasalis, pars peripheralis, levator labii superioris, and pars marginalis. Based on the 2-dimensional images obtained from the micro-computed tomographic scans, we suggest the concept of nasolabial muscle complex and muscle tension line group theory: there is a close relationship among the alar part of the nasalis, depressor septi muscle, orbicularis oris muscle, and levator labii superioris alaeque nasi. The tension line groups are 3 tension line structures in the nasolabial muscle complex that interlock with each other at the intersections and maintain the specific shape and aesthetics of the lip and nose.
Complex network view of evolving manifolds
NASA Astrophysics Data System (ADS)
da Silva, Diamantino C.; Bianconi, Ginestra; da Costa, Rui A.; Dorogovtsev, Sergey N.; Mendes, José F. F.
2018-03-01
We study complex networks formed by triangulations and higher-dimensional simplicial complexes representing closed evolving manifolds. In particular, for triangulations, the set of possible transformations of these networks is restricted by the condition that at each step, all the faces must be triangles. Stochastic application of these operations leads to random networks with different architectures. We perform extensive numerical simulations and explore the geometries of growing and equilibrium complex networks generated by these transformations and their local structural properties. This characterization includes the Hausdorff and spectral dimensions of the resulting networks, their degree distributions, and various structural correlations. Our results reveal a rich zoo of architectures and geometries of these networks, some of which appear to be small worlds while others are finite dimensional with Hausdorff dimension equal or higher than the original dimensionality of their simplices. The range of spectral dimensions of the evolving triangulations turns out to be from about 1.4 to infinity. Our models include simplicial complexes representing manifolds with evolving topologies, for example, an h -holed torus with a progressively growing number of holes. This evolving graph demonstrates features of a small-world network and has a particularly heavy-tailed degree distribution.
Nacre biomimetic design--a possible approach to prepare low infrared emissivity composite coatings.
Zhang, Weigang; Xu, Guoyue; Ding, Ruya; Duan, Kaige; Qiao, Jialiang
2013-01-01
Mimicking the highly organized brick-and-mortar structure of nacre, a kind of nacre-like organic-inorganic composite material of polyurethane (PU)/flaky bronze composite coatings with low infrared emissivity was successfully designed and prepared by using PU and flaky bronze powders as adhesives and pigments, respectively. The infrared emissivity and microstructure of the coatings were systematically investigated by infrared emissometer and scanning electron microscopy, respectively, and the cause of low infrared emissivity of the coatings was discussed by using the theories of one-dimensional photonic structure. The results show that the infrared emissivity of the nacre-like PU/flaky bronze composite coatings can be as low as 0.206 at the bronze content of 60 wt. %, and it is significantly lower than the value of PU/sphere bronze composite coatings. Microstructure observation illustrated that the nacre-like PU/flaky bronze composite coatings have similar one-dimensional photonic structural characteristics. The low infrared emissivity of PU/flaky bronze composite coatings is derived from the similar one-dimensional photonic structure in the coatings. Copyright © 2012 Elsevier B.V. All rights reserved.
Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids
NASA Astrophysics Data System (ADS)
Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.; Lashkov, A. A.
2012-05-01
Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized by interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.
Two-dimensional pH distributions and dynamics in bioturbated marine sediments
NASA Astrophysics Data System (ADS)
Zhu, Qingzhi; Aller, Robert C.; Fan, Yanzhen
2006-10-01
The seafloor is the site of intense biogeochemical and mineral dissolution-precipitation reactions which generate strong gradients in pH near the sediment-overlying water interface. These gradients are usually measured in one-dimension vertically with depth. Two-dimensional pH distributions in marine sediments were examined at high resolution (65 × 65 μm pixel) and analytical precision over areas of ˜150 to 225 cm 2 using a newly developed pH planar fluorosensor. Dramatic three-dimensional gradients, complex heterogeneity, and dynamic changes of pH occur in the surficial zone of deposits inhabited by macrofauna. pH can vary by ±2 units horizontally as well as vertically over millimeter scales. pH minima zones often form in association with redoxclines within a few millimeters of inner burrow walls, and become more pronounced with time if burrows remain stable and irrigated for extended periods. Microenvironmental pH minima also form locally around decaying biomass and relict burrow tracks, and dissipate with time (˜5 d). H + concentrations and fluxes in sandy mud show complex acid-base reaction distributions with net H + fluxes around burrows up to ˜12 nmol cm -2 d -1 and maximum net reaction rates varying between -90 (consumption) to 120 (production) μM d -1 (˜90 nmol cm -1 d -1 burrow length). Acid producing zones that surround irrigated burrows are largely balanced by acid titration zones along inner burrow walls and outer radial boundaries. The geometry and scaling of pH microenvironments are functions of diagenetic reaction rates and three-dimensional transport patterns determined by sediment properties, such as diffusive tortuosity, and by benthic community characteristics such as the abundance, mobility, and size of infauna. Previously, undocumented biogeochemical phenomena such as low pH regions associated with in-filled relict biogenic structures and burrowing tracks are readily demonstrated by two-dimensional and time-dependent images of pH and sedimentary structure.
Two-dimensional infrared spectroscopy reveals the complex behaviour of an amyloid fibril inhibitor
NASA Astrophysics Data System (ADS)
Middleton, Chris T.; Marek, Peter; Cao, Ping; Chiu, Chi-Cheng; Singh, Sadanand; Woys, Ann Marie; de Pablo, Juan J.; Raleigh, Daniel P.; Zanni, Martin T.
2012-05-01
Amyloid formation has been implicated in the pathology of over 20 human diseases, but the rational design of amyloid inhibitors is hampered by a lack of structural information about amyloid-inhibitor complexes. We use isotope labelling and two-dimensional infrared spectroscopy to obtain a residue-specific structure for the complex of human amylin (the peptide responsible for islet amyloid formation in type 2 diabetes) with a known inhibitor (rat amylin). Based on its sequence, rat amylin should block formation of the C-terminal β-sheet, but at 8 h after mixing, rat amylin blocks the N-terminal β-sheet instead. At 24 h after mixing, rat amylin blocks neither β-sheet and forms its own β-sheet, most probably on the outside of the human fibrils. This is striking, because rat amylin is natively disordered and not previously known to form amyloid β-sheets. The results show that even seemingly intuitive inhibitors may function by unforeseen and complex structural processes.
Mi, Xue-Ya; Yu, Xiaoxiang; Yao, Kai-Lun; Huang, Xiaoming; Yang, Nuo; Lü, Jing-Tao
2015-08-12
Low-dimensional electronic and glassy phononic transport are two important ingredients of highly efficient thermoelectric materials, from which two branches of thermoelectric research have emerged. One focuses on controlling electronic transport in the low dimension, while the other focuses on multiscale phonon engineering in the bulk. Recent work has benefited much from combining these two approaches, e.g., phonon engineering in low-dimensional materials. Here we propose to employ the low-dimensional electronic structure in bulk phonon-glass crystals as an alternative way to increase the thermoelectric efficiency. Through first-principles electronic structure calculations and classical molecular dynamics simulations, we show that the π-π-stacking bis(dithienothiophene) molecular crystal is a natural candidate for such an approach. This is determined by the nature of its chemical bonding. Without any optimization of the material parameters, we obtained a maximum room-temperature figure of merit, ZT, of 1.48 at optimal doping, thus validating our idea.
Four experimental demonstrations of active vibration control for flexible structures
NASA Technical Reports Server (NTRS)
Phillips, Doug; Collins, Emmanuel G., Jr.
1990-01-01
Laboratory experiments designed to test prototype active-vibration-control systems under development for future flexible space structures are described, summarizing previously reported results. The control-synthesis technique employed for all four experiments was the maximum-entropy optimal-projection (MEOP) method (Bernstein and Hyland, 1988). Consideration is given to: (1) a pendulum experiment on large-amplitude LF dynamics; (2) a plate experiment on broadband vibration suppression in a two-dimensional structure; (3) a multiple-hexagon experiment combining the factors studied in (1) and (2) to simulate the complexity of a large space structure; and (4) the NASA Marshall ACES experiment on a lightweight deployable 45-foot beam. Extensive diagrams, drawings, graphs, and photographs are included. The results are shown to validate the MEOP design approach, demonstrating that good performance is achievable using relatively simple low-order decentralized controllers.
A review of materials for spectral design coatings in signature management applications
NASA Astrophysics Data System (ADS)
Andersson, Kent E.; Škerlind, Christina
2014-10-01
The current focus in Swedish policy towards national security and high-end technical systems, together with a rapid development in multispectral sensor technology, adds to the utility of developing advanced materials for spectral design in signature management applications. A literature study was performed probing research databases for advancements. Qualitative text analysis was performed using a six-indicator instrument: spectrally selective reflectance; low gloss; low degree of polarization; low infrared emissivity; non-destructive properties in radar and in general controllability of optical properties. Trends are identified and the most interesting materials and coating designs are presented with relevant performance metrics. They are sorted into categories in the order of increasing complexity: pigments and paints, one-dimensional structures, multidimensional structures (including photonic crystals), and lastly biomimic and metamaterials. The military utility of the coatings is assessed qualitatively. The need for developing a framework for assessing the military utility of incrementally increasing the performance of spectrally selective coatings is identified.
Structural study of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} single crystals
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ishii, Yuto; Matsushita, Yoshitaka; Oda, Migaku
Single crystals of quasi-one-dimensional vanadium pyroxene LiVSi{sub 2}O{sub 6} were synthesized and the crystal structures at 293 K and 113 K were studied using X-ray diffraction experiments. We found a structural phase transition from the room-temperature crystal structure with space group C2/c to a low-temperature structure with space group P2{sub 1}/c, resulting from a rotational displacement of SiO{sub 4} tetrahedra. The temperature dependence of magnetic susceptibility shows a broad maximum around 116 K, suggesting an opening of the Haldane gap expected for one-dimensional antiferromagnets with S=1. However, an antiferromagnetic long-range order was developed below 24 K, probably caused by amore » weak inter-chain magnetic coupling in the compound. - Graphical abstract: Low temperature crystal structure of LiVSi{sub 2}O{sub 6} and an orbital arrangement within the V-O zig-zag chain along the c-axis. - Highlights: • A low temperature structure of LiVSi{sub 2}O{sub 6} was determined by single crystal X-ray diffraction measurements. • The origin of the structural transition is a rotational displacement of SiO{sub 4} tetrahedra. • The uniform orbital overlap in the V-O zigzag chain makes the system a quasi one-dimensional antiferromagnet.« less
NASA Astrophysics Data System (ADS)
Timofeev, V. I.; Abramchik, Yu. A.; Fateev, I. V.; Zhukhlistova, N. E.; Murav'eva, T. I.; Kuranova, I. P.; Esipov, R. S.
2013-11-01
The three-dimensional structures of thymidine phosphorylase from E. coli containing the bound sulfate ion in the phosphate-binding site and of the complex of thymidine phosphorylase with sulfate in the phosphate-binding site and the inhibitor 3'-azido-2'-fluoro-2',3'-dideoxyuridine (N3F-ddU) in the nucleoside-binding site were determined at 1.55 and 1.50 Å resolution, respectively. The amino-acid residues involved in the ligand binding and the hydrogen-bond network in the active site occupied by a large number of bound water molecules are described. A comparison of the structure of thymidine phosphorylase in complex with N3F-ddU with the structure of pyrimidine nucleoside phosphorylase from St. Aureus in complex with the natural substrate thymidine (PDB_ID: 3H5Q) shows that the substrate and the inhibitor in the nucleoside-binding pocket have different orientations. It is suggested that the position of N3F-ddU can be influenced by the presence of the azido group, which prefers a hydrophobic environment. In both structures, the active sites of the subunits are in the open conformation.
Low Mass-Damping Vortex-Induced Vibrations of a Single Cylinder at Moderate Reynolds Number.
Jus, Y; Longatte, E; Chassaing, J-C; Sagaut, P
2014-10-01
The feasibility and accuracy of large eddy simulation is investigated for the case of three-dimensional unsteady flows past an elastically mounted cylinder at moderate Reynolds number. Although these flow problems are unconfined, complex wake flow patterns may be observed depending on the elastic properties of the structure. An iterative procedure is used to solve the structural dynamic equation to be coupled with the Navier-Stokes system formulated in a pseudo-Eulerian way. A moving mesh method is involved to deform the computational domain according to the motion of the fluid structure interface. Numerical simulations of vortex-induced vibrations are performed for a freely vibrating cylinder at Reynolds number 3900 in the subcritical regime under two low mass-damping conditions. A detailed physical analysis is provided for a wide range of reduced velocities, and the typical three-branch response of the amplitude behavior usually reported in the experiments is exhibited and reproduced by numerical simulation.
Protein Modelling: What Happened to the “Protein Structure Gap”?
Schwede, Torsten
2013-01-01
Computational modeling and prediction of three-dimensional macromolecular structures and complexes from their sequence has been a long standing vision in structural biology as it holds the promise to bypass part of the laborious process of experimental structure solution. Over the last two decades, a paradigm shift has occurred: starting from a situation where the “structure knowledge gap” between the huge number of protein sequences and small number of known structures has hampered the widespread use of structure-based approaches in life science research, today some form of structural information – either experimental or computational – is available for the majority of amino acids encoded by common model organism genomes. Template based homology modeling techniques have matured to a point where they are now routinely used to complement experimental techniques. With the scientific focus of interest moving towards larger macromolecular complexes and dynamic networks of interactions, the integration of computational modeling methods with low-resolution experimental techniques allows studying large and complex molecular machines. Computational modeling and prediction techniques are still facing a number of challenges which hamper the more widespread use by the non-expert scientist. For example, it is often difficult to convey the underlying assumptions of a computational technique, as well as the expected accuracy and structural variability of a specific model. However, these aspects are crucial to understand the limitations of a model, and to decide which interpretations and conclusions can be supported. PMID:24010712
Chen, Nan; Majda, Andrew J
2017-12-05
Solving the Fokker-Planck equation for high-dimensional complex dynamical systems is an important issue. Recently, the authors developed efficient statistically accurate algorithms for solving the Fokker-Planck equations associated with high-dimensional nonlinear turbulent dynamical systems with conditional Gaussian structures, which contain many strong non-Gaussian features such as intermittency and fat-tailed probability density functions (PDFs). The algorithms involve a hybrid strategy with a small number of samples [Formula: see text], where a conditional Gaussian mixture in a high-dimensional subspace via an extremely efficient parametric method is combined with a judicious Gaussian kernel density estimation in the remaining low-dimensional subspace. In this article, two effective strategies are developed and incorporated into these algorithms. The first strategy involves a judicious block decomposition of the conditional covariance matrix such that the evolutions of different blocks have no interactions, which allows an extremely efficient parallel computation due to the small size of each individual block. The second strategy exploits statistical symmetry for a further reduction of [Formula: see text] The resulting algorithms can efficiently solve the Fokker-Planck equation with strongly non-Gaussian PDFs in much higher dimensions even with orders in the millions and thus beat the curse of dimension. The algorithms are applied to a [Formula: see text]-dimensional stochastic coupled FitzHugh-Nagumo model for excitable media. An accurate recovery of both the transient and equilibrium non-Gaussian PDFs requires only [Formula: see text] samples! In addition, the block decomposition facilitates the algorithms to efficiently capture the distinct non-Gaussian features at different locations in a [Formula: see text]-dimensional two-layer inhomogeneous Lorenz 96 model, using only [Formula: see text] samples. Copyright © 2017 the Author(s). Published by PNAS.
Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines
2012-10-01
use of high-order numerical methods can also be a powerful tool in the analysis of such complex flows, but we need to understand the interaction of...computational physics, 43(2):357372, 1981. [47] B. Einfeldt. On godunov-type methods for gas dynamics . SIAM Journal on Numerical Analysis , pages 294...dimensional effects with complex reaction kinetics, the simple one-dimensional detonation structure provides a rich spectrum of dynamical features which are
Semiclassical description of resonance-assisted tunneling in one-dimensional integrable models
NASA Astrophysics Data System (ADS)
Le Deunff, Jérémy; Mouchet, Amaury; Schlagheck, Peter
2013-10-01
Resonance-assisted tunneling is investigated within the framework of one-dimensional integrable systems. We present a systematic recipe, based on Hamiltonian normal forms, to construct one-dimensional integrable models that exhibit resonance island chain structures with accurately controlled sizes and positions of the islands. Using complex classical trajectories that evolve along suitably defined paths in the complex time domain, we construct a semiclassical theory of the resonance-assisted tunneling process. This semiclassical approach yields a compact analytical expression for tunnelling-induced level splittings which is found to be in very good agreement with the exact splittings obtained through numerical diagonalization.
Three-dimensional macro-structures of two-dimensional nanomaterials.
Shehzad, Khurram; Xu, Yang; Gao, Chao; Duan, Xiangfeng
2016-10-21
If two-dimensional (2D) nanomaterials are ever to be utilized as components of practical, macroscopic devices on a large scale, there is a complementary need to controllably assemble these 2D building blocks into more sophisticated and hierarchical three-dimensional (3D) architectures. Such a capability is key to design and build complex, functional devices with tailored properties. This review provides a comprehensive overview of the various experimental strategies currently used to fabricate the 3D macro-structures of 2D nanomaterials. Additionally, various approaches for the decoration of the 3D macro-structures with organic molecules, polymers, and inorganic materials are reviewed. Finally, we discuss the applications of 3D macro-structures, especially in the areas of energy, environment, sensing, and electronics, and describe the existing challenges and the outlook for this fast emerging field.
Three-dimensional nanomagnetism
Fernandez-Pacheco, Amalio; Streubel, Robert; Fruchart, Olivier; ...
2017-06-09
Magnetic nanostructures are being developed for use in many aspects of our daily life, spanning areas such as data storage, sensing and biomedicine. Whereas patterned nanomagnets are traditionally two-dimensional planar structures, recent work is expanding nanomagnetism into three dimensions; a move triggered by the advance of unconventional synthesis methods and the discovery of new magnetic effects. In three-dimensional nanomagnets more complex magnetic configurations become possible, many with unprecedented properties. Here we review the creation of these structures and their implications for the emergence of new physics, the development of instrumentation and computational methods, and exploitation in numerous applications.
Low- Z polymer sample supports for fixed-target serial femtosecond X-ray crystallography
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feld, Geoffrey K.; Heymann, Michael; Benner, W. Henry
X-ray free-electron lasers (XFELs) offer a new avenue to the structural probing of complex materials, including biomolecules. Delivery of precious sample to the XFEL beam is a key consideration, as the sample of interest must be serially replaced after each destructive pulse. The fixed-target approach to sample delivery involves depositing samples on a thin-film support and subsequent serial introduction via a translating stage. Some classes of biological materials, including two-dimensional protein crystals, must be introduced on fixed-target supports, as they require a flat surface to prevent sample wrinkling. A series of wafer and transmission electron microscopy (TEM)-style grid supports constructedmore » of low- Z plastic have been custom-designed and produced. Aluminium TEM grid holders were engineered, capable of delivering up to 20 different conventional or plastic TEM grids using fixed-target stages available at the Linac Coherent Light Source (LCLS). As proof-of-principle, X-ray diffraction has been demonstrated from two-dimensional crystals of bacteriorhodopsin and three-dimensional crystals of anthrax toxin protective antigen mounted on these supports at the LCLS. In conclusion, the benefits and limitations of these low- Z fixed-target supports are discussed; it is the authors' belief that they represent a viable and efficient alternative to previously reported fixed-target supports for conducting diffraction studies with XFELs.« less
Conformational divergence in the HA-33/HA-17 trimer of serotype C and D botulinum toxin complex.
Sagane, Yoshimasa; Hayashi, Shintaro; Akiyama, Tomonori; Matsumoto, Takashi; Hasegawa, Kimiko; Yamano, Akihito; Suzuki, Tomonori; Niwa, Koichi; Watanabe, Toshihiro; Yajima, Shunsuke
2016-08-05
Clostridium botulinum produces a large toxin complex (L-TC) comprising botulinum neurotoxin associated with auxiliary nontoxic proteins. A complex of 33- and 17-kDa hemagglutinins (an HA-33/HA-17 trimer) enhances L-TC transport across the intestinal epithelial cell layer via binding HA-33 to a sugar on the cell surface. At least two subtypes of serotype C/D HA-33 exhibit differing preferences for the sugars sialic acid and galactose. Here, we compared the three-dimensional structures of the galactose-binding HA-33 and HA-33/HA-17 trimers produced by the C-Yoichi strain. Comparisons of serotype C/D HA-33 sequences reveal a variable region with relatively low sequence similarity across the C. botulinum strains; the variability of this region may influence the manner of sugar-recognition by HA-33. Crystal structures of sialic acid- and galactose-binding HA-33 are broadly similar in appearance. However, small-angle X-ray scattering revealed distinct solution structures for HA-33/HA-17 trimers. A structural change in the C-terminal variable region of HA-33 might cause a dramatic shift in the conformation and sugar-recognition mode of HA-33/HA-17 trimer. Copyright © 2016 Elsevier Inc. All rights reserved.
Harris, M E; Kazantsev, A V; Chen, J L; Pace, N R
1997-01-01
Bacterial ribonuclease P (RNase P), an endonuclease involved in tRNA maturation, is a ribonucleoprotein containing a catalytic RNA. The secondary structure of this ribozyme is well-established, and a low-resolution model of the three-dimensional structure of the ribozyme-substrate complex has been proposed based on site-specific crosslinking and phylogenetic comparative data [Harris ME et al., 1994 EMBO J 13:3953-3963]. However, several substructures of that model were poorly constrained by the available data. In the present analysis, additional constraints between elements within the Escherichia coli RNase P RNA-pre-tRNA complex were determined by intra- and intermolecular crosslinking experiments. Circularly permuted RNase P RNAs were used to position an azidophenacyl photoactive crosslinking agent specifically at strategic sites within the ribozyme-substrate complex. Crosslink sites were mapped by primer extension and confirmed by analysis of the mobility of the crosslinked RNA lariats on denaturing acrylamide gels relative to circular and linear RNA standards. Crosslinked species generally retained significant catalytic activity, indicating that the results reflect the native ribozyme structure. The crosslinking results support the general configuration of the structure model and predicate new positions and orientations for helices that were previously poorly constrained by the data set. The expanded library of crosslinking constraints was used, together with secondary and tertiary structure identified by phylogenetic sequence comparisons, to refine significantly the model of RNase P RNA with bound substrate pre-tRNA. The crosslinking results and data from chemical-modification and mutational studies are discussed in the context of the current structural perspective on this ribozyme. PMID:9174092
One-Dimensional Photonic Crystal Superprisms
NASA Technical Reports Server (NTRS)
Ting, David
2005-01-01
Theoretical calculations indicate that it should be possible for one-dimensional (1D) photonic crystals (see figure) to exhibit giant dispersions known as the superprism effect. Previously, three-dimensional (3D) photonic crystal superprisms have demonstrated strong wavelength dispersion - about 500 times that of conventional prisms and diffraction gratings. Unlike diffraction gratings, superprisms do not exhibit zero-order transmission or higher-order diffraction, thereby eliminating cross-talk problems. However, the fabrication of these 3D photonic crystals requires complex electron-beam substrate patterning and multilayer thin-film sputtering processes. The proposed 1D superprism is much simpler in structural complexity and, therefore, easier to design and fabricate. Like their 3D counterparts, the 1D superprisms can exhibit giant dispersions over small spectral bands that can be tailored by judicious structure design and tuned by varying incident beam direction. Potential applications include miniature gas-sensing devices.
Martínez-Martínez, Narcisa; Martínez-Alonso, Emma; Tomás, Mónica; Neumüller, Josef; Pavelka, Margit
2017-01-01
Principal epididymal cells have one of the largest and more developed Golgi complex of mammalian cells. In the present study, we have used this cell as model for the study of the three-dimensional architecture of the Golgi complex of highly secretory and endocytic cells. Electron tomography demonstrated the presence in this cell type of some unknown or very unusual Golgi structures such as branched cisternae, pocket-like cisternal invaginations or tubular connections. In addition, we have used this methodology and immunoelectron microscopy to analyze the close relationship between this organelle and both the endoplasmic reticulum and microtubules, and to describe in detail how these elements interact with compact and non-compact regions of the ribbon. PMID:28957389
Synthesis and spectral and redox properties of three triply bridged complexes of ruthenium
Llobet, A.; Curry, M.E.; Evans, H.T.; Meyer, T.J.
1989-01-01
Syntheses are described for the ligand-bridged complexes [(tpm)RuIII(??-O)(??-L)2RuIII(tpm) n+ (L = O2P(O)(OH), n = 0 (1); L = O2CO, n = 0 (2); L = O2CCH3, n = 2 (3); tpm is the tridentate, facial ligand tris(1-pyrazolyl)methane. The X-ray crystal structure of [(tpm)Ru(??-O)(??-O2P(O)(OH))2Ru(tpm)]??8H 2O was determined from three-dimensional X-ray counter data. The complex crystallizes in the trigonal space group P3221 with three molecules in a cell of dimensions a = 18.759 (4) A?? and c = 9.970 (6) A??. The structure was refined to a weighted R factor of 0.042 based on 1480 independent reflections with I ??? 3??(I). The structure reveals that the complex consists of two six-coordinate ruthenium atoms that are joined by a ??-oxo bridge (rRU-O = 1.87 A??; ???RuORu = 124.6??) and two ??-hydrogen phosphato bridges (average rRu-O = 2.07 A??) which are capped by two tpm ligands. The results of cyclic voltammetric and coulometric experiments show that the complexes undergo both oxidative and reductive processes in solution. Upon reduction, the ligand-bridged structure is lost and the monomer [(tpm)Ru(H2O)3]2+ appears quantitatively. All three complexes are diamagnetic in solution. The diamagnetism is a consequence of strong electronic coupling between the low-spin d5 Ru(III) metal ions through the oxo bridge and the relatively small Ru-O-Ru angle. ?? 1989 American Chemical Society.
Structural and congenital heart disease interventions: the role of three-dimensional printing.
Meier, L M; Meineri, M; Qua Hiansen, J; Horlick, E M
2017-02-01
Advances in catheter-based interventions in structural and congenital heart disease have mandated an increased demand for three-dimensional (3D) visualisation of complex cardiac anatomy. Despite progress in 3D imaging modalities, the pre- and periprocedural visualisation of spatial anatomy is relegated to two-dimensional flat screen representations. 3D printing is an evolving technology based on the concept of additive manufacturing, where computerised digital surface renders are converted into physical models. Printed models replicate complex structures in tangible forms that cardiovascular physicians and surgeons can use for education, preprocedural planning and device testing. In this review we discuss the different steps of the 3D printing process, which include image acquisition, segmentation, printing methods and materials. We also examine the expanded applications of 3D printing in the catheter-based treatment of adult patients with structural and congenital heart disease while highlighting the current limitations of this technology in terms of segmentation, model accuracy and dynamic capabilities. Furthermore, we provide information on the resources needed to establish a hospital-based 3D printing laboratory.
Sun, Yongfu; Gao, Shan; Xie, Yi
2014-01-21
Atomically-thick two-dimensional crystals can provide promising opportunities to satisfy people's requirement of next-generation flexible and transparent nanodevices. However, the characterization of these low-dimensional structures and the understanding of their clear structure-property relationship encounter many great difficulties, owing to the lack of long-range order in the third dimensionality. In this review, we survey the recent progress in fine structure characterization by X-ray absorption fine structure spectroscopy and also overview electronic structure modulation by density-functional calculations in the ultrathin two-dimensional crystals. In addition, we highlight their structure-property relationship, transparent and flexible device construction as well as wide applications in photoelectrochemical water splitting, photodetectors, thermoelectric conversion, touchless moisture sensing, supercapacitors and lithium ion batteries. Finally, we outline the major challenges and opportunities that face the atomically-thick two-dimensional crystals. It is anticipated that the present review will deepen people's understanding of this field and hence contribute to guide the future design of high-efficiency energy-related devices.
NASA Technical Reports Server (NTRS)
Newman, James C., III
1995-01-01
The limiting factor in simulating flows past realistic configurations of interest has been the discretization of the physical domain on which the governing equations of fluid flow may be solved. In an attempt to circumvent this problem, many Computational Fluid Dynamic (CFD) methodologies that are based on different grid generation and domain decomposition techniques have been developed. However, due to the costs involved and expertise required, very few comparative studies between these methods have been performed. In the present work, the two CFD methodologies which show the most promise for treating complex three-dimensional configurations as well as unsteady moving boundary problems are evaluated. These are namely the structured-overlapped and the unstructured grid schemes. Both methods use a cell centered, finite volume, upwind approach. The structured-overlapped algorithm uses an approximately factored, alternating direction implicit scheme to perform the time integration, whereas, the unstructured algorithm uses an explicit Runge-Kutta method. To examine the accuracy, efficiency, and limitations of each scheme, they are applied to the same steady complex multicomponent configurations and unsteady moving boundary problems. The steady complex cases consist of computing the subsonic flow about a two-dimensional high-lift multielement airfoil and the transonic flow about a three-dimensional wing/pylon/finned store assembly. The unsteady moving boundary problems are a forced pitching oscillation of an airfoil in a transonic freestream and a two-dimensional, subsonic airfoil/store separation sequence. Accuracy was accessed through the comparison of computed and experimentally measured pressure coefficient data on several of the wing/pylon/finned store assembly's components and at numerous angles-of-attack for the pitching airfoil. From this study, it was found that both the structured-overlapped and the unstructured grid schemes yielded flow solutions of comparable accuracy for these simulations. This study also indicated that, overall, the structured-overlapped scheme was slightly more CPU efficient than the unstructured approach.
Structural Characterization of Myotoxic Ecarpholin S From Echis carinatus Venom
Zhou, Xingding; Tan, Tien-Chye; Valiyaveettil, S.; Go, Mei Lin; Kini, R. Manjunatha; Velazquez-Campoy, Adrian; Sivaraman, J.
2008-01-01
Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmon resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes. PMID:18586854
Structural Characterization of Myotoxic Ecarpholin S From Echis carinatus Venom
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhou, X.; Tan, T; Valiyaveettil, S
2008-01-01
Phospholipase A2 (PLA2), a common toxic component of snake venom, has been implicated in various pharmacological effects. Ecarpholin S, isolated from the venom of the snake Echis carinatus sochureki, is a phospholipase A2 (PLA2) belonging to the Ser49-PLA2 subgroup. It has been characterized as having low enzymatic but potent myotoxic activities. The crystal structures of native ecarpholin S and its complexes with lauric acid, and its inhibitor suramin, were elucidated. This is the first report of the structure of a member of the Ser49-PLA2 subgroup. We also examined interactions of ecarpholin S with phosphatidylglycerol and lauric acid, using surface plasmonmore » resonance, and of suramin with isothermal titration calorimetry. Most Ca2+-dependent PLA2 enzymes have Asp in position 49, which plays a crucial role in Ca2+ binding. The three-dimensional structure of ecarpholin S reveals a unique conformation of the Ca2+-binding loop that is not favorable for Ca2+ coordination. Furthermore, the endogenously bound fatty acid (lauric acid) in the hydrophobic channel may also interrupt the catalytic cycle. These two observations may account for the low enzymatic activity of ecarpholin S, despite full retention of the catalytic machinery. These observations may also be applicable to other non-Asp49-PLA2 enzymes. The interaction of suramin in its complex with ecarpholin S is quite different from that reported for the Lys49-PLA2/suramin complex, where the interfacial recognition face (i-face), C-terminal region, and N-terminal region of ecarpholin S play important roles. This study provides significant structural and functional insights into the myotoxic activity of ecarpholin S and, in general, of non-Asp49-PLA2 enzymes.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lashkov, A. A.; Zhukhlistova, N. E.; Sotnichenko, S. E.
2010-01-15
The three-dimensional structures of three complexes of Salmonella typhimurium uridine phosphorylase with the inhibitor 2,2'-anhydrouridine, the substrate PO{sub 4}, and with both the inhibitor 2,2'-anhydrouridine and the substrate PO{sub 4} (a binary complex) were studied in detail by X-ray diffraction. The structures of the complexes were refined at 2.38, 1.5, and 1.75 A resolution, respectively. Changes in the three-dimensional structure of the subunits in different crystal structures are considered depending on the presence or absence of the inhibitor molecule and (or) the phosphate ion in the active site of the enzyme. The presence of the phosphate ion in the phosphate-bindingmore » site was found to substantially change the orientations of the side chains of the amino-acid residues Arg30, Arg91, and Arg48 coordinated to this ion. A comparison showed that the highly flexible loop L9 is unstable. The atomic coordinates of the refined structures of the complexes and the corresponding structure factors were deposited in the Protein Data Bank (their PDB ID codes are 3DD0 and 3C74). The experimental data on the spatial reorganization of the active site caused by changes in its functional state from the unligated to the completely inhibited state suggest the structural basis for the mechanism of inhibition of Salmonella typhimurium uridine phosphorylase.« less
NASA Astrophysics Data System (ADS)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; Otani, Minoru; Wood, Brandon C.
2015-03-01
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic "quantum capacitance" of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulating charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.
Thurber, C.; Zhang, H.; Brocher, T.; Langenheim, V.
2009-01-01
We present a three-dimensional (3D) tomographic model of the P wave velocity (Vp) structure of northern California. We employed a regional-scale double-difference tomography algorithm that incorporates a finite-difference travel time calculator and spatial smoothing constraints. Arrival times from earthquakes and travel times from controlled-source explosions, recorded at network and/or temporary stations, were inverted for Vp on a 3D grid with horizontal node spacing of 10 to 20 km and vertical node spacing of 3 to 8 km. Our model provides an unprecedented, comprehensive view of the regional-scale structure of northern California, putting many previously identified features into a broader regional context and improving the resolution of a number of them and revealing a number of new features, especially in the middle and lower crust, that have never before been reported. Examples of the former include the complex subducting Gorda slab, a steep, deeply penetrating fault beneath the Sacramento River Delta, crustal low-velocity zones beneath Geysers-Clear Lake and Long Valley, and the high-velocity ophiolite body underlying the Great Valley. Examples of the latter include mid-crustal low-velocity zones beneath Mount Shasta and north of Lake Tahoe. Copyright 2009 by the American Geophysical Union.
Helical structures in vertically aligned dust particle chains in a complex plasma
NASA Astrophysics Data System (ADS)
Hyde, Truell W.; Kong, Jie; Matthews, Lorin S.
2013-05-01
Self-assembly of structures from vertically aligned, charged dust particle bundles within a glass box placed on the lower, powered electrode of a Gaseous Electronics Conference rf reference cell were produced and examined experimentally. Self-organized formation of one-dimensional vertical chains, two-dimensional zigzag structures, and three-dimensional helical structures of triangular, quadrangular, pentagonal, hexagonal, and heptagonal symmetries are shown to occur. System evolution is shown to progress from a one-dimensional chain structure, through a zigzag transition to a two-dimensional, spindlelike structure, and then to various three-dimensional, helical structures exhibiting multiple symmetries. Stable configurations are found to be dependent upon the system confinement, γ2=ω0h/ω0v2 (where ω0h,v are the horizontal and vertical dust resonance frequencies), the total number of particles within a bundle, and the rf power. For clusters having fixed numbers of particles, the rf power at which structural phase transitions occur is repeatable and exhibits no observable hysteresis. The critical conditions for these structural phase transitions as well as the basic symmetry exhibited by the one-, two-, and three-dimensional structures that subsequently develop are in good agreement with the theoretically predicted configurations of minimum energy determined employing molecular dynamics simulations for charged dust particles confined in a prolate, spheroidal potential as presented theoretically by Kamimura and Ishihara [Kamimura and Ishihara, Phys. Rev. EPLEEE81063-651X10.1103/PhysRevE.85.016406 85, 016406 (2012)].
Extension of vibrational power flow techniques to two-dimensional structures
NASA Technical Reports Server (NTRS)
Cuschieri, Joseph M.
1988-01-01
In the analysis of the vibration response and structure-borne vibration transmission between elements of a complex structure, statistical energy analysis (SEA) or finite element analysis (FEA) are generally used. However, an alternative method is using vibrational power flow techniques which can be especially useful in the mid frequencies between the optimum frequency regimes for SEA and FEA. Power flow analysis has in general been used on 1-D beam-like structures or between structures with point joints. In this paper, the power flow technique is extended to 2-D plate-like structures joined along a common edge without frequency or spatial averaging the results, such that the resonant response of the structure is determined. The power flow results are compared to results obtained using FEA results at low frequencies and SEA at high frequencies. The agreement with FEA results is good but the power flow technique has an improved computational efficiency. Compared to the SEA results the power flow results show a closer representation of the actual response of the structure.
Complexity and dynamics of topological and community structure in complex networks
NASA Astrophysics Data System (ADS)
Berec, Vesna
2017-07-01
Complexity is highly susceptible to variations in the network dynamics, reflected on its underlying architecture where topological organization of cohesive subsets into clusters, system's modular structure and resulting hierarchical patterns, are cross-linked with functional dynamics of the system. Here we study connection between hierarchical topological scales of the simplicial complexes and the organization of functional clusters - communities in complex networks. The analysis reveals the full dynamics of different combinatorial structures of q-th-dimensional simplicial complexes and their Laplacian spectra, presenting spectral properties of resulting symmetric and positive semidefinite matrices. The emergence of system's collective behavior from inhomogeneous statistical distribution is induced by hierarchically ordered topological structure, which is mapped to simplicial complex where local interactions between the nodes clustered into subcomplexes generate flow of information that characterizes complexity and dynamics of the full system.
NASA Astrophysics Data System (ADS)
Han, Lei; Zhou, Yan; Wang, Xiu-Teng; Li, Xing; Tong, Ming-Liang
2009-04-01
A novel three-dimensional metal-organic framework, [Mn 2(hfipbb) 2(bpy)] n ( 1) (H 2hfipbb = 4,4'-(hexafluoroisopropylidene)bis(benzoic acid), bpy = 4,4'-bipyridine), has been hydrothermally synthesized and structurally characterized. The complex consists of metal carboxylate chains, which are cross-linked to six adjacent chains through organic moieties forming extended three-dimensional networks. Complex 1 exhibits high thermal stability (450 °C) and antiferromagnetic properties.
Hysteretic magnetoresistance and unconventional anomalous Hall effect in the frustrated magnet TmB 4
Sunku, Sai Swaroop; Kong, Tai; Ito, Toshimitsu; ...
2016-05-11
We study TmB 4, a frustrated magnet on the Archimedean Shastry-Sutherland lattice, through magnetization and transport experiments. The lack of anisotropy in resistivity shows that TmB4 is an electronically three-dimensional system. The magnetoresistance (MR) is hysteretic at low temperature even though a corresponding hysteresis in magnetization is absent. The Hall resistivity shows unconventional anomalous Hall effect (AHE) and is linear above saturation despite a large MR. In conclusion, we propose that complex structures at magnetic domain walls may be responsible for the hysteretic MR and may also lead to the AHE.
Use of High Fidelity Methods in Multidisciplinary Optimization-A Preliminary Survey
NASA Technical Reports Server (NTRS)
Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)
2002-01-01
Multidisciplinary optimization is a key element of design process. To date multidiscipline optimization methods that use low fidelity methods are well advanced. Optimization methods based on simple linear aerodynamic equations and plate structural equations have been applied to complex aerospace configurations. However, use of high fidelity methods such as the Euler/ Navier-Stokes for fluids and 3-D (three dimensional) finite elements for structures has begun recently. As an activity of Multidiscipline Design Optimization Technical Committee (MDO TC) of AIAA (American Institute of Aeronautics and Astronautics), an effort was initiated to assess the status of the use of high fidelity methods in multidisciplinary optimization. Contributions were solicited through the members MDO TC committee. This paper provides a summary of that survey.
Seidel, Dominik
2018-01-01
The three-dimensional forest structure affects many ecosystem functions and services provided by forests. As forests are made of trees it seems reasonable to approach their structure by investigating individual tree structure. Based on three-dimensional point clouds from laser scanning, a newly developed holistic approach is presented that enables to calculate the box dimension as a measure of structural complexity of individual trees using fractal analysis. It was found that the box dimension of trees was significantly different among the tested species, among trees belonging to the same species but exposed to different growing conditions (at gap vs. forest interior) or to different kinds of competition (intraspecific vs. interspecific). Furthermore, it was shown that the box dimension is positively related to the trees' growth rate. The box dimension was identified as an easy to calculate measure that integrates the effect of several external drivers of tree structure, such as competition strength and type, while simultaneously providing information on structure-related properties, like tree growth.
Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R
2016-07-22
Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.
Gold nanocrystals with DNA-directed morphologies.
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P; Kwon, Young Jik; Sim, Sang Jun
2016-09-16
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Gold nanocrystals with DNA-directed morphologies
NASA Astrophysics Data System (ADS)
Ma, Xingyi; Huh, June; Park, Wounjhang; Lee, Luke P.; Kwon, Young Jik; Sim, Sang Jun
2016-09-01
Precise control over the structure of metal nanomaterials is important for developing advanced nanobiotechnology. Assembly methods of nanoparticles into structured blocks have been widely demonstrated recently. However, synthesis of nanocrystals with controlled, three-dimensional structures remains challenging. Here we show a directed crystallization of gold by a single DNA molecular regulator in a sequence-independent manner and its applications in three-dimensional topological controls of crystalline nanostructures. We anchor DNA onto gold nanoseed with various alignments to form gold nanocrystals with defined topologies. Some topologies are asymmetric including pushpin-, star- and biconcave disk-like structures, as well as more complex jellyfish- and flower-like structures. The approach of employing DNA enables the solution-based synthesis of nanocrystals with controlled, three-dimensional structures in a desired direction, and expands the current tools available for designing and synthesizing feature-rich nanomaterials for future translational biotechnology.
Improved finite element methodology for integrated thermal structural analysis
NASA Technical Reports Server (NTRS)
Dechaumphai, P.; Thornton, E. A.
1982-01-01
An integrated thermal-structural finite element approach for efficient coupling of thermal and structural analysis is presented. New thermal finite elements which yield exact nodal and element temperatures for one dimensional linear steady state heat transfer problems are developed. A nodeless variable formulation is used to establish improved thermal finite elements for one dimensional nonlinear transient and two dimensional linear transient heat transfer problems. The thermal finite elements provide detailed temperature distributions without using additional element nodes and permit a common discretization with lower order congruent structural finite elements. The accuracy of the integrated approach is evaluated by comparisons with analytical solutions and conventional finite element thermal structural analyses for a number of academic and more realistic problems. Results indicate that the approach provides a significant improvement in the accuracy and efficiency of thermal stress analysis for structures with complex temperature distributions.
The emerging structure of vacuolar ATPases.
Drory, Omri; Nelson, Nathan
2006-10-01
Bioenergetics and physiology of primary pumps have been revitalized by new insights into the mechanism of energizing biomembranes. Structural information is becoming available, and the three-dimensional structure of F-ATPase is being resolved. The growing understanding of the fundamental mechanism of energy coupling may revolutionize our view of biological processes. The F- and V-ATPases (vacuolar-type ATPase) exhibit a common mechanical design in which nucleotide-binding on the catalytic sector, through a cycle of conformation changes, drives the transmembrane passage of protons by turning a membrane-embedded rotor. This motor can run in forward or reverse directions, hydrolyzing ATP as it pumps protons uphill or creating ATP as protons flow downhill. In contrast to F-ATPases, whose primary function in eukaryotic cells is to form ATP at the expense of the proton-motive force (pmf), V-ATPases function exclusively as an ATP-dependent proton pump. The pmf generated by V-ATPases in organelles and membranes of eukaryotic cells is utilized as a driving force for numerous secondary transport processes. V- and F-ATPases have similar structure and mechanism of action, and several of their subunits evolved from common ancestors. Electron microscopy studies of V-ATPase revealed its general structure at low resolution. Recently, several structures of V-ATPase subunits, solved by X-ray crystallography with atomic resolution, were published. This, together with electron microscopy low-resolution maps of the whole complex, and biochemistry cross-linking experiments, allows construction of a structural model for a part of the complex that may be used as a working hypothesis for future research.
Getmanskii, Iliya V.; Steglenko, Dmitrii V.; Koval, Vitaliy V.; Zaitsev, Stanislav A.
2017-01-01
Abstract With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two‐ and three‐dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two‐ and three‐layer systems resulted in the construction of a three‐dimensional supertetrahedral borane crystal structure. The two‐dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three‐dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm−3) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. PMID:28402596
Learning multivariate distributions by competitive assembly of marginals.
Sánchez-Vega, Francisco; Younes, Laurent; Geman, Donald
2013-02-01
We present a new framework for learning high-dimensional multivariate probability distributions from estimated marginals. The approach is motivated by compositional models and Bayesian networks, and designed to adapt to small sample sizes. We start with a large, overlapping set of elementary statistical building blocks, or "primitives," which are low-dimensional marginal distributions learned from data. Each variable may appear in many primitives. Subsets of primitives are combined in a Lego-like fashion to construct a probabilistic graphical model; only a small fraction of the primitives will participate in any valid construction. Since primitives can be precomputed, parameter estimation and structure search are separated. Model complexity is controlled by strong biases; we adapt the primitives to the amount of training data and impose rules which restrict the merging of them into allowable compositions. The likelihood of the data decomposes into a sum of local gains, one for each primitive in the final structure. We focus on a specific subclass of networks which are binary forests. Structure optimization corresponds to an integer linear program and the maximizing composition can be computed for reasonably large numbers of variables. Performance is evaluated using both synthetic data and real datasets from natural language processing and computational biology.
NASA Astrophysics Data System (ADS)
Farahani, Pooria; Lundberg, Marcus; Karlsson, Hans O.
2013-11-01
The SN2 substitution reactions at phosphorus play a key role in organic and biological processes. Quantum molecular dynamics simulations have been performed to study the prototype reaction Cl-+PH2Cl→ClPH2+Cl-, using one and two-dimensional models. A potential energy surface, showing an energy well for a transition complex, was generated using ab initio electronic structure calculations. The one-dimensional model is essentially reflection free, whereas the more realistic two-dimensional model displays involved resonance structures in the reaction probability. The reaction rate is almost two orders of magnitude smaller for the two-dimensional compared to the one-dimensional model. Energetic errors in the potential energy surface is estimated to affect the rate by only a factor of two. This shows that for these types of reactions it is more important to increase the dimensionality of the modeling than to increase the accuracy of the electronic structure calculation.
Linking dynamics of the inhibitory network to the input structure
Komarov, Maxim
2017-01-01
Networks of inhibitory interneurons are found in many distinct classes of biological systems. Inhibitory interneurons govern the dynamics of principal cells and are likely to be critically involved in the coding of information. In this theoretical study, we describe the dynamics of a generic inhibitory network in terms of low-dimensional, simplified rate models. We study the relationship between the structure of external input applied to the network and the patterns of activity arising in response to that stimulation. We found that even a minimal inhibitory network can generate a great diversity of spatio-temporal patterning including complex bursting regimes with non-trivial ratios of burst firing. Despite the complexity of these dynamics, the network’s response patterns can be predicted from the rankings of the magnitudes of external inputs to the inhibitory neurons. This type of invariant dynamics is robust to noise and stable in densely connected networks with strong inhibitory coupling. Our study predicts that the response dynamics generated by an inhibitory network may provide critical insights about the temporal structure of the sensory input it receives. PMID:27650865
Empirical modeling ENSO dynamics with complex-valued artificial neural networks
NASA Astrophysics Data System (ADS)
Seleznev, Aleksei; Gavrilov, Andrey; Mukhin, Dmitry
2016-04-01
The main difficulty in empirical reconstructing the distributed dynamical systems (e.g. regional climate systems, such as El-Nino-Southern Oscillation - ENSO) is a huge amount of observational data comprising time-varying spatial fields of several variables. An efficient reduction of system's dimensionality thereby is essential for inferring an evolution operator (EO) for a low-dimensional subsystem that determines the key properties of the observed dynamics. In this work, to efficient reduction of observational data sets we use complex-valued (Hilbert) empirical orthogonal functions which are appropriate, by their nature, for describing propagating structures unlike traditional empirical orthogonal functions. For the approximation of the EO, a universal model in the form of complex-valued artificial neural network is suggested. The effectiveness of this approach is demonstrated by predicting both the Jin-Neelin-Ghil ENSO model [1] behavior and real ENSO variability from sea surface temperature anomalies data [2]. The study is supported by Government of Russian Federation (agreement #14.Z50.31.0033 with the Institute of Applied Physics of RAS). 1. Jin, F.-F., J. D. Neelin, and M. Ghil, 1996: El Ni˜no/Southern Oscillation and the annual cycle: subharmonic frequency locking and aperiodicity. Physica D, 98, 442-465. 2. http://iridl.ldeo.columbia.edu/SOURCES/.KAPLAN/.EXTENDED/.v2/.ssta/
Airfoil-Wake Modification with Gurney Flap at Low Reynolds Number
NASA Astrophysics Data System (ADS)
Gopalakrishnan Meena, Muralikrishnan; Taira, Kunihiko; Asai, Keisuke
2018-04-01
The complex wake modifications produced by a Gurney flap on symmetric NACA airfoils at low Reynolds number are investigated. Two-dimensional incompressible flows over NACA 0000 (flat plate), 0006, 0012 and 0018 airfoils at a Reynolds number of $Re = 1000$ are analyzed numerically to examine the flow modifications generated by the flaps for achieving lift enhancement. While high lift can be attained by the Gurney flap on airfoils at high angles of attack, highly unsteady nature of the aerodynamic forces are also observed. Analysis of the wake structures along with the lift spectra reveals four characteristic wake modes (steady, 2S, P and 2P), influencing the aerodynamic performance. The effects of the flap over wide range of angles of attack and flap heights are considered to identify the occurrence of these wake modes, and are encapsulated in a wake classification diagram. Companion three-dimensional simulations are also performed to examine the influence of three-dimensionality on the wake regimes. The spanwise instabilities that appear for higher angles of attack are found to suppress the emergence of the 2P mode. The use of the wake classification diagram as a guidance for Gurney flap selection at different operating conditions to achieve the required aerodynamic performance is discussed.
Euclidean chemical spaces from molecular fingerprints: Hamming distance and Hempel's ravens.
Martin, Eric; Cao, Eddie
2015-05-01
Molecules are often characterized by sparse binary fingerprints, where 1s represent the presence of substructures and 0s represent their absence. Fingerprints are especially useful for similarity calculations, such as database searching or clustering, generally measuring similarity as the Tanimoto coefficient. In other cases, such as visualization, design of experiments, or latent variable regression, a low-dimensional Euclidian "chemical space" is more useful, where proximity between points reflects chemical similarity. A temptation is to apply principal components analysis (PCA) directly to these fingerprints to obtain a low dimensional continuous chemical space. However, Gower has shown that distances from PCA on bit vectors are proportional to the square root of Hamming distance. Unlike Tanimoto similarity, Hamming similarity (HS) gives equal weight to shared 0s as to shared 1s, that is, HS gives as much weight to substructures that neither molecule contains, as to substructures which both molecules contain. Illustrative examples show that proximity in the corresponding chemical space reflects mainly similar size and complexity rather than shared chemical substructures. These spaces are ill-suited for visualizing and optimizing coverage of chemical space, or as latent variables for regression. A more suitable alternative is shown to be Multi-dimensional scaling on the Tanimoto distance matrix, which produces a space where proximity does reflect structural similarity.
NASA Astrophysics Data System (ADS)
Tikhonov, Mikhail; Monasson, Remi
2018-01-01
Much of our understanding of ecological and evolutionary mechanisms derives from analysis of low-dimensional models: with few interacting species, or few axes defining "fitness". It is not always clear to what extent the intuition derived from low-dimensional models applies to the complex, high-dimensional reality. For instance, most naturally occurring microbial communities are strikingly diverse, harboring a large number of coexisting species, each of which contributes to shaping the environment of others. Understanding the eco-evolutionary interplay in these systems is an important challenge, and an exciting new domain for statistical physics. Recent work identified a promising new platform for investigating highly diverse ecosystems, based on the classic resource competition model of MacArthur. Here, we describe how the same analytical framework can be used to study evolutionary questions. Our analysis illustrates how, at high dimension, the intuition promoted by a one-dimensional (scalar) notion of fitness can become misleading. Specifically, while the low-dimensional picture emphasizes organism cost or efficiency, we exhibit a regime where cost becomes irrelevant for survival, and link this observation to generic properties of high-dimensional geometry.
Characterizing complex networks through statistics of Möbius transformations
NASA Astrophysics Data System (ADS)
Jaćimović, Vladimir; Crnkić, Aladin
2017-04-01
It is well-known now that dynamics of large populations of globally (all-to-all) coupled oscillators can be reduced to low-dimensional submanifolds (WS transformation and OA ansatz). Marvel et al. (2009) described an intriguing algebraic structure standing behind this reduction: oscillators evolve by the action of the group of Möbius transformations. Of course, dynamics in complex networks of coupled oscillators is highly complex and not reducible. Still, closer look unveils that even in complex networks some (possibly overlapping) groups of oscillators evolve by Möbius transformations. In this paper, we study properties of the network by identifying Möbius transformations in the dynamics of oscillators. This enables us to introduce some new (statistical) concepts that characterize the network. In particular, the notion of coherence of the network (or subnetwork) is proposed. This conceptual approach is meaningful for the broad class of networks, including those with time-delayed, noisy or mixed interactions. In this paper, several simple (random) graphs are studied illustrating the meaning of the concepts introduced in the paper.
Optofluidic fabrication for 3D-shaped particles
NASA Astrophysics Data System (ADS)
Paulsen, Kevin S.; di Carlo, Dino; Chung, Aram J.
2015-04-01
Complex three-dimensional (3D)-shaped particles could play unique roles in biotechnology, structural mechanics and self-assembly. Current methods of fabricating 3D-shaped particles such as 3D printing, injection moulding or photolithography are limited because of low-resolution, low-throughput or complicated/expensive procedures. Here, we present a novel method called optofluidic fabrication for the generation of complex 3D-shaped polymer particles based on two coupled processes: inertial flow shaping and ultraviolet (UV) light polymerization. Pillars within fluidic platforms are used to deterministically deform photosensitive precursor fluid streams. The channels are then illuminated with patterned UV light to polymerize the photosensitive fluid, creating particles with multi-scale 3D geometries. The fundamental advantages of optofluidic fabrication include high-resolution, multi-scalability, dynamic tunability, simple operation and great potential for bulk fabrication with full automation. Through different combinations of pillar configurations, flow rates and UV light patterns, an infinite set of 3D-shaped particles is available, and a variety are demonstrated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jasper, Ahren W.; Gruey, Zackery B.; Harding, Lawrence B.
Monte Carlo phase space integration (MCPSI) is used to compute full dimensional and fully anharmonic, but classical, rovibrational partition functions for 22 small- and medium-sized molecules and radicals. Several of the species considered here feature multiple minima and low-frequency nonlocal motions, and efficiently sampling these systems is facilitated using curvilinear (stretch, bend, and torsion) coordinates. The curvilinear coordinate MCPSI method is demonstrated to be applicable to the treatment of fluxional species with complex rovibrational structures and as many as 21 fully coupled rovibrational degrees of freedom. Trends in the computed anharmonicity corrections are discussed. For many systems, rovibrational anharmonicities atmore » elevated temperatures are shown to vary consistently with the number of degrees of freedom and with temperature once rovibrational coupling and torsional anharmonicity are accounted for. Larger corrections are found for systems with complex vibrational structures, such as systems with multiple large-amplitude modes and/or multiple minima.« less
NASA Astrophysics Data System (ADS)
Matveev, A. D.
2016-11-01
To calculate the three-dimensional elastic body of heterogeneous structure under static loading, a method of multigrid finite element is provided, when implemented on the basis of algorithms of finite element method (FEM), using homogeneous and composite threedimensional multigrid finite elements (MFE). Peculiarities and differences of MFE from the currently available finite elements (FE) are to develop composite MFE (without increasing their dimensions), arbitrarily small basic partition of composite solids consisting of single-grid homogeneous FE of the first order can be used, i.e. in fact, to use micro approach in finite element form. These small partitions allow one to take into account in MFE, i.e. in the basic discrete models of composite solids, complex heterogeneous and microscopically inhomogeneous structure, shape, the complex nature of the loading and fixation and describe arbitrarily closely the stress and stain state by the equations of three-dimensional elastic theory without any additional simplifying hypotheses. When building the m grid FE, m of nested grids is used. The fine grid is generated by a basic partition of MFE, the other m —1 large grids are applied to reduce MFE dimensionality, when m is increased, MFE dimensionality becomes smaller. The procedures of developing MFE of rectangular parallelepiped, irregular shape, plate and beam types are given. MFE generate the small dimensional discrete models and numerical solutions with a high accuracy. An example of calculating the laminated plate, using three-dimensional 3-grid FE and the reference discrete model is given, with that having 2.2 milliards of FEM nodal unknowns.
NASA Astrophysics Data System (ADS)
Chruściel, Piotr T.; Delay, Erwann; Klinger, Paul
2018-02-01
We use an elliptic system of equations with complex coefficients for a set of complex-valued tensor fields as a tool to construct infinite-dimensional families of non-singular stationary black holes, real-valued Lorentzian solutions of the Einstein–Maxwell-dilaton-scalar fields-Yang–Mills–Higgs–Chern–Simons-f(R) equations with a negative cosmological constant. The families include an infinite-dimensional family of solutions with the usual AdS conformal structure at conformal infinity.
NASA Astrophysics Data System (ADS)
Zheng, Xiang-Jun; Jin, Lin-Pei
2003-07-01
Three supramolecular lanthanum coordination compounds of amino acids, with 1,10-phenanthroline (phen), [La 2(APA) 6(phen) 2(H 2O) 2](ClO 4) 6(phen) 4·2H 2O ( 1), [La 2(ABA) 6(phen) 2(H 2O) 2](ClO 4) 6 (phen) 6·4H 2O ( 2), and [La 2(AHA) 4(phen) 4](ClO 4) 6(phen) 4·2H 2O ( 3) (APA=3-aminopropionic acid; ABA=4-aminobutanoic acid; AHA=6-aminohexanoic acid) were synthesized and characterized by single crystal X-ray diffraction. The results show that the three coordination compounds are all composed of binuclear coordination cations built by metal-ligand coordination. Through hydrogen bonding and π-π stacking interactions, complex 1 forms a two-dimensional supramolecular sheet structure extending in the (001) plane, complex 2 forms a three-dimensional supramolecular network with many cavities occupied by ClO 4- and lattice H 2O molecules, and complex 3 forms a two-dimensional supramolecular lamellar structure in the (100) plane.
Bioclogging in Porous Media: Preferential Flow Paths and Anomalous Transport
NASA Astrophysics Data System (ADS)
Holzner, M.; Carrel, M.; Morales, V.; Derlon, N.; Beltran, M. A.; Morgenroth, E.; Kaufmann, R.
2016-12-01
Biofilms are sessile communities of microorganisms held together by an extracellular polymeric substance that enables surface colonization. In porous media (e.g. soils, trickling filters etc.) biofilm growth has been shown to affect the hydrodynamics in a complex fashion at the pore-scale by clogging individual pores and enhancing preferential flow pathways and anomalous transport. These phenomena are a direct consequence of microbial growth and metabolism, mass transfer processes and complex flow velocity fields possibly exhibiting pronounced three-dimensional features. Despite considerable past work, however, it is not fully understood how bioclogging interacts with flow and mass transport processes in porous media. In this work we use imaging techniques to determine the flow velocities and the distribution of biofilm in a porous medium. Three-dimensional millimodels are packed with a transparent porous medium and a glucose solution to match the optical refractive index. The models are inoculated with planktonic wildtype bacteria and biofilm cultivated for 60 h under a constant flow and nutrient conditions. The pore flow velocities in the increasingly bioclogged medium are measured using 3D particle tracking velocimetry (3D-PTV). The three-dimensional spatial distribution of the biofilm within the pore space is assessed by imaging the model with X-Ray microtomography. We find that biofilm growth increases the complexity of the pore space, leading to the formation of preferential flow pathways and "dead" pore zones. The probability of persistent high and low velocity regions (within preferential paths resp. stagnant flow regions) thus increases upon biofilm growth, leading to an enhancement of anomalous transport. The structural data seems to indicate that the largest pores are not getting clogged and carry the preferential flow, whereas intricated structures develop in the smallest pores, where the flow becomes almost stagnant. These findings may be relevant for applications such as bioremediation of contaminated aquifers, groundwater injection wells for geothermal or drinking water purposes, tertiary oil recovery.
A Low-Complexity and High-Performance 2D Look-Up Table for LDPC Hardware Implementation
NASA Astrophysics Data System (ADS)
Chen, Jung-Chieh; Yang, Po-Hui; Lain, Jenn-Kaie; Chung, Tzu-Wen
In this paper, we propose a low-complexity, high-efficiency two-dimensional look-up table (2D LUT) for carrying out the sum-product algorithm in the decoding of low-density parity-check (LDPC) codes. Instead of employing adders for the core operation when updating check node messages, in the proposed scheme, the main term and correction factor of the core operation are successfully merged into a compact 2D LUT. Simulation results indicate that the proposed 2D LUT not only attains close-to-optimal bit error rate performance but also enjoys a low complexity advantage that is suitable for hardware implementation.
Nonlinear dimensionality reduction of data lying on the multicluster manifold.
Meng, Deyu; Leung, Yee; Fung, Tung; Xu, Zongben
2008-08-01
A new method, which is called decomposition-composition (D-C) method, is proposed for the nonlinear dimensionality reduction (NLDR) of data lying on the multicluster manifold. The main idea is first to decompose a given data set into clusters and independently calculate the low-dimensional embeddings of each cluster by the decomposition procedure. Based on the intercluster connections, the embeddings of all clusters are then composed into their proper positions and orientations by the composition procedure. Different from other NLDR methods for multicluster data, which consider associatively the intracluster and intercluster information, the D-C method capitalizes on the separate employment of the intracluster neighborhood structures and the intercluster topologies for effective dimensionality reduction. This, on one hand, isometrically preserves the rigid-body shapes of the clusters in the embedding process and, on the other hand, guarantees the proper locations and orientations of all clusters. The theoretical arguments are supported by a series of experiments performed on the synthetic and real-life data sets. In addition, the computational complexity of the proposed method is analyzed, and its efficiency is theoretically analyzed and experimentally demonstrated. Related strategies for automatic parameter selection are also examined.
Complete pulpodentin complex regeneration by modulating the stiffness of biomimetic matrix.
Qu, Tiejun; Jing, Junjun; Ren, Yinshi; Ma, Chi; Feng, Jian Q; Yu, Qing; Liu, Xiaohua
2015-04-01
Dental caries is one of the most prevalent chronic diseases in all populations. The regeneration of dentin-pulp tissues (pulpodentin) using a scaffold-based tissue engineering strategy is a promising approach to replacing damaged dental structures and restoring their biological functions. However, the current scaffolding design for pulpodentin regeneration does not take into account the distinct difference between pulp and dentin, therefore, is incapable of regenerating a complete tooth-like pulpodentin complex. In this study, we determined that scaffolding stiffness is a crucial biophysical cue to modulate dental pulp stem cell (DPSC) differentiation. The DPSCs on a high-stiffness three-dimensional (3D) nanofibrous gelatin (NF-gelatin) scaffold had more organized cytoskeletons and a larger spreading area than on a low-stiffness NF-gelatin scaffold. In the same differentiation medium, a high-stiffness NF-gelatin facilitated DPSC differentiation to form a mineralized tissue, while a low-stiffness NF-gelatin promoted a soft pulp-like tissue formation from the DPSCs. A facile method was then developed to integrate the low- and high-stiffness gelatin matrices into a single scaffold (S-scaffold) for pulpodentin complex regeneration. A 4-week in vitro experiment showed that biomineralization took place only in the high-stiffness peripheral area and formed a ring-like structure surrounding the non-mineralized central area of the DPSC/S-scaffold construct. A complete pulpodentin complex similar to natural pulpodentin was successfully regenerated after subcutaneous implantation of the DPSC/S-scaffold in nude mice for 4weeks. Histological staining showed a significant amount of extracellular matrix (ECM) formation in the newly formed pulpodentin complex, and a number of blood vessels were observed in the pulp tissue. Taken together, this work shows that modulating the stiffness of the NF-gelatin scaffold is a successful approach to regenerating a complete tooth-like pulpodentin complex. Published by Elsevier Ltd.
Machine-learned cluster identification in high-dimensional data.
Ultsch, Alfred; Lötsch, Jörn
2017-02-01
High-dimensional biomedical data are frequently clustered to identify subgroup structures pointing at distinct disease subtypes. It is crucial that the used cluster algorithm works correctly. However, by imposing a predefined shape on the clusters, classical algorithms occasionally suggest a cluster structure in homogenously distributed data or assign data points to incorrect clusters. We analyzed whether this can be avoided by using emergent self-organizing feature maps (ESOM). Data sets with different degrees of complexity were submitted to ESOM analysis with large numbers of neurons, using an interactive R-based bioinformatics tool. On top of the trained ESOM the distance structure in the high dimensional feature space was visualized in the form of a so-called U-matrix. Clustering results were compared with those provided by classical common cluster algorithms including single linkage, Ward and k-means. Ward clustering imposed cluster structures on cluster-less "golf ball", "cuboid" and "S-shaped" data sets that contained no structure at all (random data). Ward clustering also imposed structures on permuted real world data sets. By contrast, the ESOM/U-matrix approach correctly found that these data contain no cluster structure. However, ESOM/U-matrix was correct in identifying clusters in biomedical data truly containing subgroups. It was always correct in cluster structure identification in further canonical artificial data. Using intentionally simple data sets, it is shown that popular clustering algorithms typically used for biomedical data sets may fail to cluster data correctly, suggesting that they are also likely to perform erroneously on high dimensional biomedical data. The present analyses emphasized that generally established classical hierarchical clustering algorithms carry a considerable tendency to produce erroneous results. By contrast, unsupervised machine-learned analysis of cluster structures, applied using the ESOM/U-matrix method, is a viable, unbiased method to identify true clusters in the high-dimensional space of complex data. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Investigating the Interaction of a Supersonic Single Expansion Ramp Nozzle and Sonic Wall Jet
NASA Astrophysics Data System (ADS)
Berry, Matthew G.
For nearly 80 years, the jet engine has set the pace for aviation technology around the world. Complexity of design has compounded upon each iteration of nozzle development, while the rate of fundamental fluids knowledge struggles to keep up. The increase in velocities associated with supersonic jets, have exacerbated the need for flow physics research. Supersonic flight remains the standard for military aircraft and is being rediscovered for commercial use. With the addition of multiple streams, complex nozzle geometries, and airframe integration in modern aircraft, the flow physics rapidly become more difficult. As performance capabilities increase, so do the noise producing mechanisms and unsteady dynamics. This has prompted an experimental investigation into the flow field and turbulence quantities of a modern jet nozzle configuration. A rectangular supersonic multi-stream nozzle with aft deck is characterized using time-resolved schlieren imaging, stereo PIV measurements, deck mounted pressure transducers, and far-field microphones. These experiments are performed at the Skytop Turbulence Laboratory at Syracuse University. LES data by The Ohio State University are paired with these experiments and give valuable insight into regions of the flow unable to be probed. By decomposing this complex flow field into two canonical flows, a supersonic rectangular nozzle and a sonic wall jet, a fundamental approach is taken to observe how these two jets interact. Thorough investigations of the highly turbulent flow field are being performed. Current analytical techniques employed are statistical quantities, turbulence properties, and low-dimensional models. Results show a dominant high frequency structure that propagates through the entire field and is observable in all experimental methods. The structures emanate from the interaction point of the supersonic jet and sonic wall jet. Additionally, the propagation paths are directionally dependent. Further, spanwise PIV measurements observe the asymmetric nozzle to be relatively two-dimensional across half of the jet span. An investigation into the effect of the aft deck has shown that the jet plume deflection depended on the aft deck length. This deflection is tied to separation and reattachment caused by reflecting oblique shocks. Additionally, low-dimensional models in the form of POD and DMD observe the most energetic and periodic structures in the turbulent flow field. Finally, these experimental results are paired with LES using data fusion techniques to form a more complete view of the flow. The comprehensive dataset will help validate computational models and create a basis for future SERN and aft deck designs.
Low-dimensional materials for organic electronic applications
NASA Astrophysics Data System (ADS)
Beniwal, Sumit
This thesis explores the self-assembly, surface interactions and electronic properties of functional molecules that have potential applications in electronics. Three classes of molecules - organic ferroelectric, spin-crossover complex, and molecules that assemble into a 2D semiconductor, have been studied through scanning tunneling microscopy and surfacesensitive spectroscopic methods. The scientific goal of this thesis is to understand the self-assembly of these molecules in low-dimensional (2D) configurations and the influence of substrate on their properties.
Petti, Megan K; Lomont, Justin P; Maj, Michał; Zanni, Martin T
2018-02-15
Two-dimensional spectroscopy is a powerful tool for extracting structural and dynamic information from a wide range of chemical systems. We provide a brief overview of the ways in which two-dimensional visible and infrared spectroscopies are being applied to elucidate fundamental details of important processes in biological and materials science. The topics covered include amyloid proteins, photosynthetic complexes, ion channels, photovoltaics, batteries, as well as a variety of promising new methods in two-dimensional spectroscopy.
A new solution chemical method to make low dimensional thermoelectric materials
NASA Astrophysics Data System (ADS)
Ding, Zhongfen
2001-11-01
Bismuth telluride and its alloys are currently the best thermoelectric materials known at room temperature and are therefore used for portable solid-state refrigeration. If the thermal electric figure of merit ZT could be improved by a factor of about 3, quiet and rugged solid-state devices could eventually replace conventional compressor based cooling systems. In order to test a theory that improved one-dimensional or two-dimensional materials could enhance ZT due to lower thermal conductivity, we are developing solution processing methods to make low dimensional materials. Bismuth telluride and its p-type and n-type alloys have layered structures consisting of 5 atom thick Te-Bi-Te-Bi-Te sheets, each sheet about 10 A thick. Lithium ions are intercalated into the layered materials using liquid ammonia. The lithium-intercalated materials are then exfoliated in water to form colloidal suspensions with narrow particle size distributions and are stable for more than 24 hours. The layers are then deposited on substrates, which after annealing at low temperatures, form highly c-axis oriented thin films. The exfoliated layers can potentially be restacked with other ions or layered materials in between the sheets to form novel structures. The restacked layers when treated with nitric acid and sonication form high yield nanorod structured materials. This new intercalation and exfoliation followed by sonication method could potentially be used for many other layered materials to make nanorod structured materials. The low dimensional materials are characterized by powder X-ray diffraction, atomic force microscopy (AFM), transmission electron microscopy (TEM), scanning electron microscopy (SEM), inductively coupled plasma (ICP) and dynamic light scattering.
Zheng, X; Xue, Q; Mittal, R; Beilamowicz, S
2010-11-01
A new flow-structure interaction method is presented, which couples a sharp-interface immersed boundary method flow solver with a finite-element method based solid dynamics solver. The coupled method provides robust and high-fidelity solution for complex flow-structure interaction (FSI) problems such as those involving three-dimensional flow and viscoelastic solids. The FSI solver is used to simulate flow-induced vibrations of the vocal folds during phonation. Both two- and three-dimensional models have been examined and qualitative, as well as quantitative comparisons, have been made with established results in order to validate the solver. The solver is used to study the onset of phonation in a two-dimensional laryngeal model and the dynamics of the glottal jet in a three-dimensional model and results from these studies are also presented.
NASA Astrophysics Data System (ADS)
Szczęśniak, Dominik; Ennaoui, Ahmed; Ahzi, Saïd
2016-09-01
Recently, the transition metal dichalcogenides have attracted renewed attention due to the potential use of their low-dimensional forms in both nano- and opto-electronics. In such applications, the electronic and transport properties of monolayer transition metal dichalcogenides play a pivotal role. The present paper provides a new insight into these essential properties by studying the complex band structures of popular transition metal dichalcogenide monolayers (MX 2, where M = Mo, W; X = S, Se, Te) while including spin-orbit coupling effects. The conducted symmetry-based tight-binding calculations show that the analytical continuation from the real band structures to the complex momentum space leads to nonlinear generalized eigenvalue problems. Herein an efficient method for solving such a class of nonlinear problems is presented and yields a complete set of physically relevant eigenvalues. Solutions obtained by this method are characterized and classified into propagating and evanescent states, where the latter states manifest not only monotonic but also oscillatory decay character. It is observed that some of the oscillatory evanescent states create characteristic complex loops at the direct band gap of MX 2 monolayers, where electrons can directly tunnel between the band gap edges. To describe these tunneling currents, decay behavior of electronic states in the forbidden energy region is elucidated and their importance within the ballistic transport regime is briefly discussed.
Low-Dimensional Organic Tin Bromide Perovskites and Their Photoinduced Structural Transformation.
Zhou, Chenkun; Tian, Yu; Wang, Mingchao; Rose, Alyssa; Besara, Tiglet; Doyle, Nicholas K; Yuan, Zhao; Wang, Jamie C; Clark, Ronald; Hu, Yanyan; Siegrist, Theo; Lin, Shangchao; Ma, Biwu
2017-07-24
Hybrid organic-inorganic metal halide perovskites possess exceptional structural tunability, with three- (3D), two- (2D), one- (1D), and zero-dimensional (0D) structures on the molecular level all possible. While remarkable progress has been realized in perovskite research in recent years, the focus has been mainly on 3D and 2D structures, with 1D and 0D structures significantly underexplored. The synthesis and characterization of a series of low-dimensional organic tin bromide perovskites with 1D and 0D structures is reported. Using the same organic and inorganic components, but at different ratios and reaction conditions, both 1D (C 4 N 2 H 14 )SnBr 4 and 0D (C 4 N 2 H 14 Br) 4 SnBr 6 can be prepared in high yields. Moreover, photoinduced structural transformation from 1D to 0D was investigated experimentally and theoretically in which photodissociation of 1D metal halide chains followed by structural reorganization leads to the formation of a more thermodynamically stable 0D structure. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.
Precise DOA Estimation Using SAGE Algorithm with a Cylindrical Array
NASA Astrophysics Data System (ADS)
Takanashi, Masaki; Nishimura, Toshihiko; Ogawa, Yasutaka; Ohgane, Takeo
A uniform circular array (UCA) is a well-known array configuration which can accomplish estimation of 360° field of view with identical accuracy. However, a UCA cannot estimate coherent signals because we cannot apply the SSP owing to the structure of UCA. Although a variety of studies on UCA in coherent multipath environments have been done, it is impossible to estimate the DOA of coherent signals with different incident polar angles. Then, we have proposed Root-MUSIC algorithm with a cylindrical array. However, the estimation performance is degraded when incident signals arrive with close polar angles. To solve this problem, in the letter, we propose to use SAGE algorithm with a cylindrical array. Here, we adopt a CLA Root-MUSIC for the initial estimation and decompose two-dimensional search to double one-dimensional search to reduce the calculation load. The results show that the proposal achieves high resolution with low complexity.
NASA Astrophysics Data System (ADS)
Jiang, De Bin; Yuan, Yunsong; Zhao, Deqiang; Tao, Kaiming; Xu, Xuan; Zhang, Yu Xin
2018-05-01
In this work, we demonstrate a novel and simple approach for fabrication of the complex three-dimensional (3D) diatomite/manganese silicate nanosheet composite (DMSNs). The manganese silicate nanosheets are uniformly grown on the inner and outer surface of diatomite with controllable morphology using a hydrothermal method. Such structural features enlarged the specific surface area, resulting in more catalytic active sites. In the heterogeneous Fenton-like reaction, the DMSNs exhibited excellent catalytic capability for the degradation of malachite green (MG). Under optimum condition, 500 mg/L MG solution was nearly 93% decolorized at 70 min in the reaction. The presented results show an enhanced catalytic behavior of the DMSNs prepared by the low-cost natural diatomite material and simple controllable process, which indicates their potential for environmental remediation applications. [Figure not available: see fulltext.
Vortex knots in tangled quantum eigenfunctions
Taylor, Alexander J.; Dennis, Mark R.
2016-01-01
Tangles of string typically become knotted, from macroscopic twine down to long-chain macromolecules such as DNA. Here, we demonstrate that knotting also occurs in quantum wavefunctions, where the tangled filaments are vortices (nodal lines/phase singularities). The probability that a vortex loop is knotted is found to increase with its length, and a wide gamut of knots from standard tabulations occur. The results follow from computer simulations of random superpositions of degenerate eigenstates of three simple quantum systems: a cube with periodic boundaries, the isotropic three-dimensional harmonic oscillator and the 3-sphere. In the latter two cases, vortex knots occur frequently, even in random eigenfunctions at relatively low energy, and are constrained by the spatial symmetries of the modes. The results suggest that knotted vortex structures are generic in complex three-dimensional wave systems, establishing a topological commonality between wave chaos, polymers and turbulent Bose–Einstein condensates. PMID:27468801
NASA Astrophysics Data System (ADS)
Hull, Tony; Westerhoff, Thomas; Weidmann, Gunter
2015-09-01
A key consideration in defining a space telescope mission is definition of the optical materials. This selection defines both the performance of the system and system complexity and cost. Optimal material selection for system stability must consider the thermal environment and its variation. Via numerical simulations, we compare the thermal and structural-mechanical behavior of ZERODUR® and SiC as mirror substrates for telescope assemblies in space. SiC has significantly larger CTE values then ZERODUR®, but also its thermal diffusivity k/(ρcp) is larger, and that helps to homogenize thermal gradients in the mirror. Therefore it is not obvious at first glance which material performs with better dimensional stability under realistic unsteady, inhomogeneous thermal loads. We specifically examine the telescope response to transient, gradient driving, thermal environments representative of low- and high-earth- orbits.
Structural aspects of catalytic mechanisms of endonucleases and their binding to nucleic acids
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhukhlistova, N. E.; Balaev, V. V.; Lyashenko, A. V.
2012-05-15
Endonucleases (EC 3.1) are enzymes of the hydrolase class that catalyze the hydrolytic cleavage of deoxyribonucleic and ribonucleic acids at any region of the polynucleotide chain. Endonucleases are widely used both in biotechnological processes and in veterinary medicine as antiviral agents. Medical applications of endonucleases in human cancer therapy hold promise. The results of X-ray diffraction studies of the spatial organization of endonucleases and their complexes and the mechanism of their action are analyzed and generalized. An analysis of the structural studies of this class of enzymes showed that the specific binding of enzymes to nucleic acids is characterized bymore » interactions with nitrogen bases and the nucleotide backbone, whereas the nonspecific binding of enzymes is generally characterized by interactions only with the nucleic-acid backbone. It should be taken into account that the specificity can be modulated by metal ions and certain low-molecular-weight organic compounds. To test the hypotheses about specific and nonspecific nucleic-acid-binding proteins, it is necessary to perform additional studies of atomic-resolution three-dimensional structures of enzyme-nucleic-acid complexes by methods of structural biology.« less
Silicone elastomers capable of large isotropic dimensional change
Lewicki, James; Worsley, Marcus A.
2017-07-18
Described herein is a highly effective route towards the controlled and isotropic reduction in size-scale, of complex 3D structures using silicone network polymer chemistry. In particular, a class of silicone structures were developed that once patterned and cured can `shrink` micron scale additive manufactured and lithographically patterned structures by as much as 1 order of magnitude while preserving the dimensions and integrity of these parts. This class of silicone materials is compatible with existing additive manufacture and soft lithographic fabrication processes and will allow access to a hitherto unobtainable dimensionality of fabrication.
Spider-web inspired multi-resolution graphene tactile sensor.
Liu, Lu; Huang, Yu; Li, Fengyu; Ma, Ying; Li, Wenbo; Su, Meng; Qian, Xin; Ren, Wanjie; Tang, Kanglai; Song, Yanlin
2018-05-08
Multi-dimensional accurate response and smooth signal transmission are critical challenges in the advancement of multi-resolution recognition and complex environment analysis. Inspired by the structure-activity relationship between discrepant microstructures of the spiral and radial threads in a spider web, we designed and printed graphene with porous and densely-packed microstructures to integrate into a multi-resolution graphene tactile sensor. The three-dimensional (3D) porous graphene structure performs multi-dimensional deformation responses. The laminar densely-packed graphene structure contributes excellent conductivity with flexible stability. The spider-web inspired printed pattern inherits orientational and locational kinesis tracking. The multi-structure construction with homo-graphene material can integrate discrepant electronic properties with remarkable flexibility, which will attract enormous attention for electronic skin, wearable devices and human-machine interactions.
Three-Dimensional Bioprinting for Regenerative Dentistry and Craniofacial Tissue Engineering.
Obregon, F; Vaquette, C; Ivanovski, S; Hutmacher, D W; Bertassoni, L E
2015-09-01
Craniofacial tissues are organized with complex 3-dimensional (3D) architectures. Mimicking such 3D complexity and the multicellular interactions naturally occurring in craniofacial structures represents one of the greatest challenges in regenerative dentistry. Three-dimensional bioprinting of tissues and biological structures has been proposed as a promising alternative to address some of these key challenges. It enables precise manufacture of various biomaterials with complex 3D architectures, while being compatible with multiple cell sources and being customizable to patient-specific needs. This review describes different 3D bioprinting methods and summarizes how different classes of biomaterials (polymer hydrogels, ceramics, composites, and cell aggregates) may be used for 3D biomanufacturing of scaffolds, as well as craniofacial tissue analogs. While the fabrication of scaffolds upon which cells attach, migrate, and proliferate is already in use, printing of all the components that form a tissue (living cells and matrix materials together) to produce tissue constructs is still in its early stages. In summary, this review seeks to highlight some of the key advantages of 3D bioprinting technology for the regeneration of craniofacial structures. Additionally, it stimulates progress on the development of strategies that will promote the translation of craniofacial tissue engineering from the laboratory bench to the chair side. © International & American Associations for Dental Research 2015.
Thermodynamic Control of Two-Dimensional Molecular Ionic Nanostructures on Metal Surfaces
Jeon, Seokmin; Doak, Peter W.; Sumpter, Bobby G.; ...
2016-07-26
Bulk molecular ionic solids exhibit fascinating electronic properties, including electron correlations, phase transitions and superconducting ground states. In contrast, few of these phenomena have so far been observed in low-dimensional molecular structures, including thin films, nanoparticles and molecular blends, not in the least because most of such structures have so far been composed of nearly closed-shell molecules. It is therefore desirable to develop low-dimensional molecular structures of ionic molecules toward fundamental studies and potential applications. Here we present detailed analysis of monolayer-thick structures of the canonical TTF-TCNQ (tetrathiafulvalene 7,7,8,8-tetracyanoquinodimethane) system grown on low-index gold and silver surfaces. The most distinctivemore » property of the epitaxial growth is the wide abundance of stable TTF/TCNQ ratios, in sharp contrast to the predominance of 1:1 ratio in the bulk. We propose the existence of the surface phase-diagram that controls the structures of TTF-TCNQ on the surfaces, and demonstrate phase-transitions that occur upon progressively increasing the density of TCNQ while keeping the surface coverage of TTF fixed. Based on direct observations, we propose the binding motif behind the stable phases and infer the dominant interactions that enable the existence of the rich spectrum of surface structures. Finally, we also show that the surface phase diagram will control the epitaxy beyond monolayer coverage. Multiplicity of stable surface structures, the corollary rich phase diagram and the corresponding phase-transitions present an interesting opportunity for low-dimensional molecular systems, particularly if some of the electronic properties of the bulk can be preserved or modified in the surface phases.« less
pH-Dependent Assembly and Conversions of Six Cadmium(II)-Based Coordination Complexes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fang, Hua-Cai; Zhu, Ji-Qin; Zhou, Li-Jiang
2010-07-07
Six cadmium(II) complexes containing N2O2 donor tetradentate asymmetrical Schiff base ligand 2-{[2-(dimethylamino)ethylimino]methyl}-6-methoxyphenol (HL5), namely, [(Cd3L52Cl4)2]•CH3OH•H2O (1), [Cd(L5)Cl]2•CH3OH (2), [Cd2(HL5)Cl4]n (3), {[Cd3(H2L5)2Cl8]•2H2O}n (4), [(H2L5)2]2+•[CdCl4]2-•H2O (5), and [(H2L5)2]2+•[CdCl4]2- (6), have been synthesized using cadmium(II) chloride and asymmetrical Schiff base ligand HL5 under different pH conditions at room temperature. The diverse structures show the marked sensitivity of the structural chemistry of the tetradentate asymmetrical Schiff base ligand HL5. Complex 1 formed at pH = 10 exhibits a rare zero- dimensional structure of trinuclear cadmium (II). At pH = 8-9, a dinuclear cadmium (II) complex 2 is formed. The reaction at pH = 5-7more » leads to two one-dimensional structures of 3 and 4. A further decrease of the pH to 3-5 results in a zero-dimensional structure 5. Owing to the departure of lattice water molecules in the crystal, complex 5 at room temperature can gradually undergo single-crystal-to-single-crystal transformation to result complex 6. The results further show that conversions of complex 1 to 5 can also be achieved by adjusting the pH value of the reaction solution, 1→2pH=8→5pH=3 and 3→4pH=5. Comparing these experimental results, it is clear that the pH plays a crucial role in the formation of the resulting structures, which simultaneously provide very effective strategies for constructing the CdII compounds with N2O2 donor tetradentate asymmetrical Schiff base ligand. The strong fluorescent emissions of the six compounds (1-6) make them potentially useful photoactive materials. Furthermore, six Schiff base cadmium complexes (1–6), with DPPH (2,2-dipheny1-1-picrylhydrazy1) as a co-oxidant exhibited the stronger scavenging activity.« less
Photonic polymer-blend structures and method for making
Barnes, Michael D.
2004-06-29
The present invention comprises the formation of photonic polymer-blend structures having tunable optical and mechanical properties. The photonic polymer-blend structures comprise monomer units of spherical microparticles of a polymer-blend material wherein the spherical microparticles have surfaces partially merged with one another in a robust inter-particle bond having a tunable inter-particle separation or bond length sequentially attached in a desired and programmable architecture. The photonic polymer-blend structures of the present invention can be linked by several hundred individual particles sequentially linked to form complex three-dimensional structures or highly ordered two-dimensional arrays of 3D columns with 2D spacing.
Data-Driven Modeling of Complex Systems by means of a Dynamical ANN
NASA Astrophysics Data System (ADS)
Seleznev, A.; Mukhin, D.; Gavrilov, A.; Loskutov, E.; Feigin, A.
2017-12-01
The data-driven methods for modeling and prognosis of complex dynamical systems become more and more popular in various fields due to growth of high-resolution data. We distinguish the two basic steps in such an approach: (i) determining the phase subspace of the system, or embedding, from available time series and (ii) constructing an evolution operator acting in this reduced subspace. In this work we suggest a novel approach combining these two steps by means of construction of an artificial neural network (ANN) with special topology. The proposed ANN-based model, on the one hand, projects the data onto a low-dimensional manifold, and, on the other hand, models a dynamical system on this manifold. Actually, this is a recurrent multilayer ANN which has internal dynamics and capable of generating time series. Very important point of the proposed methodology is the optimization of the model allowing us to avoid overfitting: we use Bayesian criterion to optimize the ANN structure and estimate both the degree of evolution operator nonlinearity and the complexity of nonlinear manifold which the data are projected on. The proposed modeling technique will be applied to the analysis of high-dimensional dynamical systems: Lorenz'96 model of atmospheric turbulence, producing high-dimensional space-time chaos, and quasi-geostrophic three-layer model of the Earth's atmosphere with the natural orography, describing the dynamics of synoptical vortexes as well as mesoscale blocking systems. The possibility of application of the proposed methodology to analyze real measured data is also discussed. The study was supported by the Russian Science Foundation (grant #16-12-10198).
One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy
NASA Astrophysics Data System (ADS)
Sahoo, Prasana K.; Memaran, Shahriar; Xin, Yan; Balicas, Luis; Gutiérrez, Humberto R.
2018-01-01
Two-dimensional heterojunctions of transition-metal dichalcogenides have great potential for application in low-power, high-performance and flexible electro-optical devices, such as tunnelling transistors, light-emitting diodes, photodetectors and photovoltaic cells. Although complex heterostructures have been fabricated via the van der Waals stacking of different two-dimensional materials, the in situ fabrication of high-quality lateral heterostructures with multiple junctions remains a challenge. Transition-metal-dichalcogenide lateral heterostructures have been synthesized via single-step, two-step or multi-step growth processes. However, these methods lack the flexibility to control, in situ, the growth of individual domains. In situ synthesis of multi-junction lateral heterostructures does not require multiple exchanges of sources or reactors, a limitation in previous approaches as it exposes the edges to ambient contamination, compromises the homogeneity of domain size in periodic structures, and results in long processing times. Here we report a one-pot synthetic approach, using a single heterogeneous solid source, for the continuous fabrication of lateral multi-junction heterostructures consisting of monolayers of transition-metal dichalcogenides. The sequential formation of heterojunctions is achieved solely by changing the composition of the reactive gas environment in the presence of water vapour. This enables selective control of the water-induced oxidation and volatilization of each transition-metal precursor, as well as its nucleation on the substrate, leading to sequential edge-epitaxy of distinct transition-metal dichalcogenides. Photoluminescence maps confirm the sequential spatial modulation of the bandgap, and atomic-resolution images reveal defect-free lateral connectivity between the different transition-metal-dichalcogenide domains within a single crystal structure. Electrical transport measurements revealed diode-like responses across the junctions. Our new approach offers greater flexibility and control than previous methods for continuous growth of transition-metal-dichalcogenide-based multi-junction lateral heterostructures. These findings could be extended to other families of two-dimensional materials, and establish a foundation for the development of complex and atomically thin in-plane superlattices, devices and integrated circuits.
NASA Astrophysics Data System (ADS)
Bucheli, D.; Caprara, S.; Castellani, C.; Grilli, M.
2013-02-01
Motivated by recent experimental data on thin film superconductors and oxide interfaces, we propose a random-resistor network apt to describe the occurrence of a metal-superconductor transition in a two-dimensional electron system with disorder on the mesoscopic scale. We consider low-dimensional (e.g. filamentary) structures of a superconducting cluster embedded in the two-dimensional network and we explore the separate effects and the interplay of the superconducting structure and of the statistical distribution of local critical temperatures. The thermal evolution of the resistivity is determined by a numerical calculation of the random-resistor network and, for comparison, a mean-field approach called effective medium theory (EMT). Our calculations reveal the relevance of the distribution of critical temperatures for clusters with low connectivity. In addition, we show that the presence of spatial correlations requires a modification of standard EMT to give qualitative agreement with the numerical results. Applying the present approach to an LaTiO3/SrTiO3 oxide interface, we find that the measured resistivity curves are compatible with a network of spatially dense but loosely connected superconducting islands.
Kerfriden, P.; Schmidt, K.M.; Rabczuk, T.; Bordas, S.P.A.
2013-01-01
We propose to identify process zones in heterogeneous materials by tailored statistical tools. The process zone is redefined as the part of the structure where the random process cannot be correctly approximated in a low-dimensional deterministic space. Such a low-dimensional space is obtained by a spectral analysis performed on pre-computed solution samples. A greedy algorithm is proposed to identify both process zone and low-dimensional representative subspace for the solution in the complementary region. In addition to the novelty of the tools proposed in this paper for the analysis of localised phenomena, we show that the reduced space generated by the method is a valid basis for the construction of a reduced order model. PMID:27069423
DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015
NASA Astrophysics Data System (ADS)
Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano
2016-09-01
Structure-based drug design (SBDD) has matured within the last two decades as a valuable tool for the optimization of low molecular weight lead compounds to highly potent drugs. The key step in SBDD requires knowledge of the three-dimensional structure of the target-ligand complex, which is usually determined by X-ray crystallography. In the absence of structural information for the complex, SBDD relies on the generation of plausible molecular docking models. However, molecular docking protocols suffer from inaccuracies in the description of the interaction energies between the ligand and the target molecule, and often fail in the prediction of the correct binding mode. In this context, the appropriate selection of the most accurate docking protocol is absolutely relevant for the final molecular docking result, even if addressing this point is absolutely not a trivial task. D3R Grand Challenge 2015 has represented a precious opportunity to test the performance of DockBench, an integrate informatics platform to automatically compare RMDS-based molecular docking performances of different docking/scoring methods. The overall performance resulted in the blind prediction are encouraging in particular for the pose prediction task, in which several complex were predicted with a sufficient accuracy for medicinal chemistry purposes.
DockBench as docking selector tool: the lesson learned from D3R Grand Challenge 2015.
Salmaso, Veronica; Sturlese, Mattia; Cuzzolin, Alberto; Moro, Stefano
2016-09-01
Structure-based drug design (SBDD) has matured within the last two decades as a valuable tool for the optimization of low molecular weight lead compounds to highly potent drugs. The key step in SBDD requires knowledge of the three-dimensional structure of the target-ligand complex, which is usually determined by X-ray crystallography. In the absence of structural information for the complex, SBDD relies on the generation of plausible molecular docking models. However, molecular docking protocols suffer from inaccuracies in the description of the interaction energies between the ligand and the target molecule, and often fail in the prediction of the correct binding mode. In this context, the appropriate selection of the most accurate docking protocol is absolutely relevant for the final molecular docking result, even if addressing this point is absolutely not a trivial task. D3R Grand Challenge 2015 has represented a precious opportunity to test the performance of DockBench, an integrate informatics platform to automatically compare RMDS-based molecular docking performances of different docking/scoring methods. The overall performance resulted in the blind prediction are encouraging in particular for the pose prediction task, in which several complex were predicted with a sufficient accuracy for medicinal chemistry purposes.
Crystal and Magnetic Structures in Layered, Transition Metal Dihalides and Trihalides
McGuire, Michael A.
2017-04-27
Materials composed of two dimensional layers bonded to one another through weak van der Waals interactions often exhibit strongly anisotropic behaviors and can be cleaved into very thin specimens and sometimes into monolayer crystals. Interest in such materials is driven by the study of low dimensional physics and the design of functional heterostructures. Binary compounds with the compositions MX 2 and MX 3 where M is a metal cation and X is a halogen anion often form such structures. Magnetism can be incorporated by choosing a transition metal with a partially filled d-shell for M, enabling ferroic responses for enhancedmore » functionality. Here we give a brief overview of binary transition metal dihalides and trihalides, summarizing their crystallographic properties and long-range-ordered magnetic structures, focusing on those materials with layered crystal structures and partially filled d-shells required for combining low dimensionality and cleavability with magnetism.« less
NASA Astrophysics Data System (ADS)
Smith, Jarrod Anson
2D homonuclear 1H NMR methods and restrained molecular dynamics (rMD) calculations have been applied to determining the three-dimensional structures of DNA and minor groove-binding ligand-DNA complexes in solution. The structure of the DNA decamer sequence d(GCGTTAACGC)2 has been solved both with a distance-based rMD protocol and an NOE relaxation matrix backcalculation-based protocol in order to probe the relative merits of the different refinement methods. In addition, three minor groove binding ligand-DNA complexes have been examined. The solution structure of the oligosaccharide moiety of the antitumor DNA scission agent calicheamicin γ1I has been determined in complex with a decamer duplex containing its high affinity 5'-TCCT- 3' binding sequence. The structure of the complex reinforces the belief that the oligosaccharide moiety is responsible for the sequence selective minor-groove binding activity of the agent, and critical intermolecular contacts are revealed. The solution structures of both the (+) and (-) enantiomers of the minor groove binding DNA alkylating agent duocarmycin SA have been determined in covalent complex with the undecamer DNA duplex d(GACTAATTGTC).d(GAC AATTAGTC). The results support the proposal that the alkylation activity of the duocarmycin antitumor antibiotics is catalyzed by a binding-induced conformational change in the ligand which activates the cyclopropyl group for reaction with the DNA. Comparisons between the structures of the two enantiomers covalently bound to the same DNA sequence at the same 5'-AATTA-3 ' site have provided insight into the binding orientation and site selectivity, as well as the relative rates of reactivity of these two agents.
Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof
2018-01-01
We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.
Transition Manifolds of Complex Metastable Systems
NASA Astrophysics Data System (ADS)
Bittracher, Andreas; Koltai, Péter; Klus, Stefan; Banisch, Ralf; Dellnitz, Michael; Schütte, Christof
2018-04-01
We consider complex dynamical systems showing metastable behavior, but no local separation of fast and slow time scales. The article raises the question of whether such systems exhibit a low-dimensional manifold supporting its effective dynamics. For answering this question, we aim at finding nonlinear coordinates, called reaction coordinates, such that the projection of the dynamics onto these coordinates preserves the dominant time scales of the dynamics. We show that, based on a specific reducibility property, the existence of good low-dimensional reaction coordinates preserving the dominant time scales is guaranteed. Based on this theoretical framework, we develop and test a novel numerical approach for computing good reaction coordinates. The proposed algorithmic approach is fully local and thus not prone to the curse of dimension with respect to the state space of the dynamics. Hence, it is a promising method for data-based model reduction of complex dynamical systems such as molecular dynamics.
From SHAPE Signatures to 3-D Structures | Center for Cancer Research
RNAs undergo extensive folding to form sophisticated based-paired secondary structures that are, in part, indicators of more complex three-dimensional structures. These 3-D shapes are an integral part of the cellular gene-expression machinery. Deconstructing these structures is no small matter, yet it is critical to understanding their function.
Three-dimensional geologic model of the southeastern Espanola Basin, Santa Fe County, New Mexico
Pantea, Michael P.; Hudson, Mark R.; Grauch, V.J.S.; Minor, Scott A.
2011-01-01
This multimedia model and report show and describe digital three-dimensional faulted surfaces and volumes of lithologic units that confine and constrain the basin-fill aquifers within the Espanola Basin of north-central New Mexico. These aquifers are the primary groundwater resource for the cities of Santa Fe and Espanola, six Pueblo nations, and the surrounding areas. The model presented in this report is a synthesis of geologic information that includes (1) aeromagnetic and gravity data and seismic cross sections; (2) lithologic descriptions, interpretations, and geophysical logs from selected drill holes; (3) geologic maps, geologic cross sections, and interpretations; and (4) mapped faults and interpreted faults from geophysical data. Modeled faults individually or collectively affect the continuity of the rocks that contain the basin aquifers; they also help define the form of this rift basin. Structure, trend, and dip data not previously published were added; these structures are derived from interpretations of geophysical information and recent field observations. Where possible, data were compared and validated and reflect the complex relations of structures in this part of the Rio Grande rift. This interactive geologic framework model can be used as a tool to visually explore and study geologic structures within the Espanola Basin, to show the connectivity of geologic units of high and low permeability between and across faults, and to show approximate dips of the lithologic units. The viewing software can be used to display other data and information, such as drill-hole data, within this geologic framework model in three-dimensional space.
Resonant scattering from a two-dimensional honeycomb PT dipole structure
NASA Astrophysics Data System (ADS)
Markoš, P.; Kuzmiak, V.
2018-05-01
We studied numerically the electromagnetic response of the finite periodic structure consisting of the PT dipoles represented by two infinitely long, parallel cylinders with the opposite sign of the imaginary part of a refractive index, which are centered at the positions of a two-dimensional honeycomb lattice. We observed that the total scattered energy reveals a series of sharp resonances at which the energy increases by two orders of magnitude and an incident wave is scattered only in a few directions given by spatial symmetry of the periodic structure. We explain this behavior by analysis of the complex frequency spectra associated with an infinite honeycomb array of the PT dipoles and identify the lowest resonance with the broken PT -symmetry mode formed by a doubly degenerate pair with complex conjugate eigenfrequencies corresponding to the K point of the reciprocal lattice.
Small Artery Elastin Distribution and Architecture-Focus on Three Dimensional Organization.
Hill, Michael A; Nourian, Zahra; Ho, I-Lin; Clifford, Philip S; Martinez-Lemus, Luis; Meininger, Gerald A
2016-11-01
The distribution of ECM proteins within the walls of resistance vessels is complex both in variety of proteins and structural arrangement. In particular, elastin exists as discrete fibers varying in orientation across the adventitia and media as well as often resembling a sheet-like structure in the case of the IEL. Adding to the complexity is the tissue heterogeneity that exists in these structural arrangements. For example, small intracranial cerebral arteries lack adventitial elastin while similar sized arteries from skeletal muscle and intestinal mesentery exhibit a complex adventitial network of elastin fibers. With regard to the IEL, several vascular beds exhibit an elastin sheet with punctate holes/fenestrae while in others the IEL is discontinuous and fibrous in appearance. Importantly, these structural patterns likely sub-serve specific functional properties, including mechanosensing, control of external forces, mechanical properties of the vascular wall, cellular positioning, and communication between cells. Of further significance, these processes are altered in vascular disorders such as hypertension and diabetes mellitus where there is modification of ECM. This brief report focuses on the three-dimensional wall structure of small arteries and considers possible implications with regard to mechanosensing under physiological and pathophysiological conditions. © 2016 John Wiley & Sons Ltd.
A Library of the Nanoscale Self-Assembly of Amino Acids on Metal Surfaces
NASA Astrophysics Data System (ADS)
Iski, Erin; Yitamben, Esmeralda; Guisinger, Nathan
2012-02-01
The investigation of the hierarchical self-assembly of amino acids on surfaces represents a unique test-bed for the origin of enantio-favoritism in biology and the transmission of chirality from single molecules to complete surface layers. These chiral systems, in particular the assembly of isoleucine and alanine on Cu(111), represent a direct link to the understanding of certain biological processes, specifically the preference for some amino acids to form alpha helices vs. beta-pleated sheets in the secondary structure of proteins. Low temperature, ultra-high vacuum, scanning tunneling microscopy (LT UHV-STM) is used to study the hierarchical self-assembly of different amino acids on a Cu(111) single crystal in an effort to build a library of their two-dimensional structure with molecular-scale resolution for enhanced protein and peptide studies. Both enantiopure and racemic structures are studied in order to elucidate how chirality can affect the self-assembly of the amino acids. In some cases, density functional theory (DFT) models can be used to confirm the experimental structure. The advent of such a library with fully resolved, two-dimensional structures at different molecular coverages would address some of the complex questions surrounding the preferential formation of alpha helices vs. beta-pleated sheets in proteins and lead to a better understanding of the key role played by these amino acids in protein sequencing.
NASA Astrophysics Data System (ADS)
Oliveira, F. C.; Denadai, A. M. L.; Guerra, L. D. L.; Fulgêncio, F. H.; Windmöller, D.; Santos, G. C.; Fernandes, N. G.; Yoshida, M. I.; Donnici, C. L.; Magalhães, W. F.; Machado, J. C.
2013-04-01
Hydrogen bond formation in the triphenylphosphine oxide (TPPO), acetanilide (ACN) supramolecular heterosynton system, named [TPPO0.5·ACN0.5], has been studied by Positron Annihilation Lifetime Spectroscopy (PALS) and supported by several analytical techniques. In toluene solution, Isothermal Titration Calorimetry (ITC) presented a 1:1 stoichiometry and indicated that the complexation process is driven by entropy, with low enthalpy contribution. X-ray structure determination showed the existence of a three-dimensional network of hydrogen bonds, allowing also the confirmation of the existence of a 1:1 crystalline molecular complex in solid state. The results of thermal analysis (TGA, DTA and DSC) and FTIR spectroscopy showed that the interactions in the complex are relatively weaker than those found in pure precursors, leading to a higher positronium formation probability at [TPPO0.5·ACN0.5]. These weak interactions in the complex enhance the possibility of the n- and π-electrons to interact with positrons and consequently, the probability of positronium formation is higher. Through the present work is shown that PALS is a sensible powerful tool to investigate intermolecular interactions in solid heterosynton supramolecular systems.
Transport of phase space densities through tetrahedral meshes using discrete flow mapping
NASA Astrophysics Data System (ADS)
Bajars, Janis; Chappell, David J.; Søndergaard, Niels; Tanner, Gregor
2017-01-01
Discrete flow mapping was recently introduced as an efficient ray based method determining wave energy distributions in complex built up structures. Wave energy densities are transported along ray trajectories through polygonal mesh elements using a finite dimensional approximation of a ray transfer operator. In this way the method can be viewed as a smoothed ray tracing method defined over meshed surfaces. Many applications require the resolution of wave energy distributions in three-dimensional domains, such as in room acoustics, underwater acoustics and for electromagnetic cavity problems. In this work we extend discrete flow mapping to three-dimensional domains by propagating wave energy densities through tetrahedral meshes. The geometric simplicity of the tetrahedral mesh elements is utilised to efficiently compute the ray transfer operator using a mixture of analytic and spectrally accurate numerical integration. The important issue of how to choose a suitable basis approximation in phase space whilst maintaining a reasonable computational cost is addressed via low order local approximations on tetrahedral faces in the position coordinate and high order orthogonal polynomial expansions in momentum space.
Frequency mode excitations in two-dimensional Hindmarsh-Rose neural networks
NASA Astrophysics Data System (ADS)
Tabi, Conrad Bertrand; Etémé, Armand Sylvin; Mohamadou, Alidou
2017-05-01
In this work, we explicitly show the existence of two frequency regimes in a two-dimensional Hindmarsh-Rose neural network. Each of the regimes, through the semi-discrete approximation, is shown to be described by a two-dimensional complex Ginzburg-Landau equation. The modulational instability phenomenon for the two regimes is studied, with consideration given to the coupling intensities among neighboring neurons. Analytical solutions are also investigated, along with their propagation in the two frequency regimes. These waves, depending on the coupling strength, are identified as breathers, impulses and trains of soliton-like structures. Although the waves in two regimes appear in some common regions of parameters, some phase differences are noticed and the global dynamics of the system is highly influenced by the values of the coupling terms. For some values of such parameters, the high-frequency regime displays modulated trains of waves, while the low-frequency dynamics keeps the original asymmetric character of action potentials. We argue that in a wide range of pathological situations, strong interactions among neurons can be responsible for some pathological states, including schizophrenia and epilepsy.
Ingram, M; Techy, G B; Saroufeem, R; Yazan, O; Narayan, K S; Goodwin, T J; Spaulding, G F
1997-06-01
Growth patterns of a number of human tumor cell lines that from three-dimensional structures of various architectures when cultured without carrier beads in a NASA rotary cell culture system are described and illustrated. The culture system, which was designed to mimic microgravity, maintained cells in suspension under very low-shear stress throughout culture. Spheroid (particulate) production occurred within a few hours after culture was started, and spheroids increased in size by cell division and fusion of small spheroids, usually stabilizing at a spheroid diameter of about 0.5 mm. Architecture of spheroids varied with cell type. Cellular interactions that occurred in spheroids resulted in conformation and shape changes of cells, and some cell lines produced complex, epithelial-like architectures. Expression of the cell adhesion molecules, CD44 and E cadherin, was upregulated in the three-dimensional constructs. Coculture of fibroblast spheroids with PC3 prostate cancer cells induced tenascin expression by the fibroblasts underlying the adherent prostate epithelial cells. Invasion of the fibroblast spheroids by the malignant epithelium was also demonstrated.
Argyros, A; Manos, S; Large, M C J; McKenzie, D R; Cox, G C; Dwarte, D M
2002-01-01
A combination of transmission electron tomography and computer modelling has been used to determine the three-dimensional structure of the photonic crystals found in the wing-scales of the Kaiser-I-Hind butterfly (Teinopalpus imperialis). These scales presented challenges for electron microscopy because the periodicity of the structure was comparable to the thickness of a section and because of the complex connectivity of the object. The structure obtained has been confirmed by taking slices of the three-dimensional computer model constructed from the tomography and comparing these with transmission electron microscope (TEM) images of microtomed sections of the actual scale. The crystal was found to have chiral tetrahedral repeating units packed in a triclinic lattice.
RNA-Puzzles: A CASP-like evaluation of RNA three-dimensional structure prediction
Cruz, José Almeida; Blanchet, Marc-Frédérick; Boniecki, Michal; Bujnicki, Janusz M.; Chen, Shi-Jie; Cao, Song; Das, Rhiju; Ding, Feng; Dokholyan, Nikolay V.; Flores, Samuel Coulbourn; Huang, Lili; Lavender, Christopher A.; Lisi, Véronique; Major, François; Mikolajczak, Katarzyna; Patel, Dinshaw J.; Philips, Anna; Puton, Tomasz; Santalucia, John; Sijenyi, Fredrick; Hermann, Thomas; Rother, Kristian; Rother, Magdalena; Serganov, Alexander; Skorupski, Marcin; Soltysinski, Tomasz; Sripakdeevong, Parin; Tuszynska, Irina; Weeks, Kevin M.; Waldsich, Christina; Wildauer, Michael; Leontis, Neocles B.; Westhof, Eric
2012-01-01
We report the results of a first, collective, blind experiment in RNA three-dimensional (3D) structure prediction, encompassing three prediction puzzles. The goals are to assess the leading edge of RNA structure prediction techniques; compare existing methods and tools; and evaluate their relative strengths, weaknesses, and limitations in terms of sequence length and structural complexity. The results should give potential users insight into the suitability of available methods for different applications and facilitate efforts in the RNA structure prediction community in ongoing efforts to improve prediction tools. We also report the creation of an automated evaluation pipeline to facilitate the analysis of future RNA structure prediction exercises. PMID:22361291
Flame propagation in two-dimensional solids: Particle-resolved studies with complex plasmas
NASA Astrophysics Data System (ADS)
Yurchenko, S. O.; Yakovlev, E. V.; Couëdel, L.; Kryuchkov, N. P.; Lipaev, A. M.; Naumkin, V. N.; Kislov, A. Yu.; Ovcharov, P. V.; Zaytsev, K. I.; Vorob'ev, E. V.; Morfill, G. E.; Ivlev, A. V.
2017-10-01
Using two-dimensional (2D) complex plasmas as an experimental model system, particle-resolved studies of flame propagation in classical 2D solids are carried out. Combining experiments, theory, and molecular dynamics simulations, we demonstrate that the mode-coupling instability operating in 2D complex plasmas reveals all essential features of combustion, such as an activated heat release, two-zone structure of the self-similar temperature profile ("flame front"), as well as thermal expansion of the medium and temperature saturation behind the front. The presented results are of relevance for various fields ranging from combustion and thermochemistry, to chemical physics and synthesis of materials.
Sikowitz, Megan D; Shome, Brateen; Zhang, Yang; Begley, Tadhg P; Ealick, Steven E
2013-11-05
Thiaminases are responsible for the degradation of thiamin and its metabolites. Two classes of thiaminases have been identified based on their three-dimensional structures and their requirements for a nucleophilic second substrate. Although the reactions of several thiaminases have been characterized, the physiological role of thiamin degradation is not fully understood. We have determined the three-dimensional X-ray structure of an inactive C143S mutant of Clostridium botulinum (Cb) thiaminase I with bound thiamin at 2.2 Å resolution. The C143S/thiamin complex provides atomic level details of the orientation of thiamin upon binding to Cb-thiaminase I and the identity of active site residues involved in substrate binding and catalysis. The specific roles of active site residues were probed by using site directed mutagenesis and kinetic analyses, leading to a detailed mechanism for Cb-thiaminase I. The structure of Cb-thiaminase I is also compared to the functionally similar but structurally distinct thiaminase II.
Getmanskii, Iliya V; Minyaev, Ruslan M; Steglenko, Dmitrii V; Koval, Vitaliy V; Zaitsev, Stanislav A; Minkin, Vladimir I
2017-08-14
With help of the DFT calculations and imposing of periodic boundary conditions the geometrical and electronic structures were investigated of two- and three-dimensional boron systems designed on the basis of graphane and diamond lattices in which carbons were replaced with boron tetrahedrons. The consequent studies of two- and three-layer systems resulted in the construction of a three-dimensional supertetrahedral borane crystal structure. The two-dimensional supertetrahedral borane structures with less than seven layers are dynamically unstable. At the same time the three-dimensional superborane systems were found to be dynamically stable. Lack of the forbidden electronic zone for the studied boron systems testifies that these structures can behave as good conductors. The low density of the supertetrahedral borane crystal structures (0.9 g cm -3 ) is close to that of water, which offers the perspective for their application as aerospace and cosmic materials. © 2017 The Authors. Published by Wiley-VCH Verlag GmbH & Co. KGaA.
Agudo-Adriani, Esteban A; Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo
2016-01-01
In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts.
Cappelletto, Jose; Cavada-Blanco, Francoise; Croquer, Aldo
2016-01-01
In the past decade, significant efforts have been made to describe fish-habitat associations. However, most studies have oversimplified actual connections between fish assemblages and their habitats by using univariate correlations. The purpose of this study was to identify the features of habitat forming corals that facilitate and influences assemblages of associated species such as fishes. For this we developed three-dimensional models of colonies of Acropora cervicornis to estimate geometry (length and height), structural complexity (i.e., volume, density of branches, etc.) and biological features of the colonies (i.e., live coral tissue, algae). We then correlated these colony characteristics with the associated fish assemblage using multivariate analyses. We found that geometry and complexity were better predictors of the structure of fish community, compared to other variables such as percentage of live coral tissue or algae. Combined, the geometry of each colony explained 40% of the variability of the fish assemblage structure associated with this coral species; 61% of the abundance and 69% of fish richness, respectively. Our study shows that three-dimensional reconstructions of discrete colonies of Acropora cervicornis provides a useful description of the colonial structural complexity and may explain a great deal of the variance in the structure of the associated coral reef fish community. This demonstration of the strongly trait-dependent ecosystem role of this threatened species has important implications for restoration and conservation efforts. PMID:27069801
Microfluidic 3D cell culture: potential application for tissue-based bioassays
Li, XiuJun (James); Valadez, Alejandra V.; Zuo, Peng; Nie, Zhihong
2014-01-01
Current fundamental investigations of human biology and the development of therapeutic drugs, commonly rely on two-dimensional (2D) monolayer cell culture systems. However, 2D cell culture systems do not accurately recapitulate the structure, function, physiology of living tissues, as well as highly complex and dynamic three-dimensional (3D) environments in vivo. The microfluidic technology can provide micro-scale complex structures and well-controlled parameters to mimic the in vivo environment of cells. The combination of microfluidic technology with 3D cell culture offers great potential for in vivo-like tissue-based applications, such as the emerging organ-on-a-chip system. This article will review recent advances in microfluidic technology for 3D cell culture and their biological applications. PMID:22793034
Host-guest capability of a three-dimensional heterometallic macrocycle.
Fan, Qi-Jia; Lin, Yue-Jian; Hahn, F Ekkehardt; Jin, Guo-Xin
2018-02-13
A three-dimensional heterometallic coordination macrocycle is found to be capable of encapsulating planar pyrene (G1), coronene (G4) and non-planar corannulene (G2) guest molecules in high yields, giving rise to 1 : 1 host-guest complexes. The bowl-shaped guest corannulene is found to be significantly flattened upon inclusion within the cavity. However, macrocyclic compounds with larger cavity sizes, which form 1 : 1 stoichiometry assemblies with a naphthalene bisimide planar molecule (G3), are more inclined to form infinite sandwich structures. Furthermore, these heterometallic coordination macrocycles can be destroyed in the presence of a soft base to form hexanuclear triangular prism complexes. These structures are unambiguously revealed by single-crystal X-ray analysis.
The magnetotelluric response over 2D media with resistivity frequency dispersion
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mauriello, P.; Patella, D.; Siniscalchi, A.
1996-09-01
The authors investigate the magnetotelluric response of two-dimensional bodies, characterized by the presence of low-frequency dispersion phenomena of the electrical parameters. The Cole-Cole dispersion model is assumed to represent the frequency dependence of the impedivity complex function, defined as the inverse of Stoyer`s admittivity complex parameter. To simulate real geological situations, they consider three structural models, representing a sedimentary basin, a geothermal system and a magma chamber, assumed to be partially or totally dispersive. From a detailed study of the frequency and space behaviors of the magnetotelluric parameters, taking known non-dispersive results as reference, they outline the main peculiarities ofmore » the local distortion effects, caused by the presence of dispersion in the target media. Finally, they discuss the interpretive errors which can be made by neglecting the dispersion phenomena. The apparent dispersion function, which was defined in a previous paper to describe similar effects in the one-dimensional case, is again used as a reliable indicator of location, shape and spatial extent of the dispersive bodies. The general result of this study is a marked improvement in the resolution power of the magnetotelluric method.« less
Improved disparity map analysis through the fusion of monocular image segmentations
NASA Technical Reports Server (NTRS)
Perlant, Frederic P.; Mckeown, David M.
1991-01-01
The focus is to examine how estimates of three dimensional scene structure, as encoded in a scene disparity map, can be improved by the analysis of the original monocular imagery. The utilization of surface illumination information is provided by the segmentation of the monocular image into fine surface patches of nearly homogeneous intensity to remove mismatches generated during stereo matching. These patches are used to guide a statistical analysis of the disparity map based on the assumption that such patches correspond closely with physical surfaces in the scene. Such a technique is quite independent of whether the initial disparity map was generated by automated area-based or feature-based stereo matching. Stereo analysis results are presented on a complex urban scene containing various man-made and natural features. This scene contains a variety of problems including low building height with respect to the stereo baseline, buildings and roads in complex terrain, and highly textured buildings and terrain. The improvements are demonstrated due to monocular fusion with a set of different region-based image segmentations. The generality of this approach to stereo analysis and its utility in the development of general three dimensional scene interpretation systems are also discussed.
Three-dimensional compound comparison methods and their application in drug discovery.
Shin, Woong-Hee; Zhu, Xiaolei; Bures, Mark Gregory; Kihara, Daisuke
2015-07-16
Virtual screening has been widely used in the drug discovery process. Ligand-based virtual screening (LBVS) methods compare a library of compounds with a known active ligand. Two notable advantages of LBVS methods are that they do not require structural information of a target receptor and that they are faster than structure-based methods. LBVS methods can be classified based on the complexity of ligand structure information utilized: one-dimensional (1D), two-dimensional (2D), and three-dimensional (3D). Unlike 1D and 2D methods, 3D methods can have enhanced performance since they treat the conformational flexibility of compounds. In this paper, a number of 3D methods will be reviewed. In addition, four representative 3D methods were benchmarked to understand their performance in virtual screening. Specifically, we tested overall performance in key aspects including the ability to find dissimilar active compounds, and computational speed.
Tian, Feifei; Tan, Rui; Guo, Tailin; Zhou, Peng; Yang, Li
2013-07-01
Domain-peptide recognition and interaction are fundamentally important for eukaryotic signaling and regulatory networks. It is thus essential to quantitatively infer the binding stability and specificity of such interaction based upon large-scale but low-accurate complex structure models which could be readily obtained from sophisticated molecular modeling procedure. In the present study, a new method is described for the fast and reliable prediction of domain-peptide binding affinity with coarse-grained structure models. This method is designed to tolerate strong random noises involved in domain-peptide complex structures and uses statistical modeling approach to eliminate systematic bias associated with a group of investigated samples. As a paradigm, this method was employed to model and predict the binding behavior of various peptides to four evolutionarily unrelated peptide-recognition domains (PRDs), i.e. human amph SH3, human nherf PDZ, yeast syh GYF and yeast bmh 14-3-3, and moreover, we explored the molecular mechanism and biological implication underlying the binding of cognate and noncognate peptide ligands to their domain receptors. It is expected that the newly proposed method could be further used to perform genome-wide inference of domain-peptide binding at three-dimensional structure level. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Feldbrugge, Job; van de Weygaert, Rien; Hidding, Johan; Feldbrugge, Joost
2018-05-01
We present a general formalism for identifying the caustic structure of a dynamically evolving mass distribution, in an arbitrary dimensional space. The identification of caustics in fluids with Hamiltonian dynamics, viewed in Lagrangian space, corresponds to the classification of singularities in Lagrangian catastrophe theory. On the basis of this formalism we develop a theoretical framework for the dynamics of the formation of the cosmic web, and specifically those aspects that characterize its unique nature: its complex topological connectivity and multiscale spinal structure of sheetlike membranes, elongated filaments and compact cluster nodes. Given the collisionless nature of the gravitationally dominant dark matter component in the universe, the presented formalism entails an accurate description of the spatial organization of matter resulting from the gravitationally driven formation of cosmic structure. The present work represents a significant extension of the work by Arnol'd et al. [1], who classified the caustics that develop in one- and two-dimensional systems that evolve according to the Zel'dovich approximation. His seminal work established the defining role of emerging singularities in the formation of nonlinear structures in the universe. At the transition from the linear to nonlinear structure evolution, the first complex features emerge at locations where different fluid elements cross to establish multistream regions. Involving a complex folding of the 6-D sheetlike phase-space distribution, it manifests itself in the appearance of infinite density caustic features. The classification and characterization of these mass element foldings can be encapsulated in caustic conditions on the eigenvalue and eigenvector fields of the deformation tensor field. In this study we introduce an alternative and transparent proof for Lagrangian catastrophe theory. This facilitates the derivation of the caustic conditions for general Lagrangian fluids, with arbitrary dynamics. Most important in the present context is that it allows us to follow and describe the full three-dimensional geometric and topological complexity of the purely gravitationally evolving nonlinear cosmic matter field. While generic and statistical results can be based on the eigenvalue characteristics, one of our key findings is that of the significance of the eigenvector field of the deformation field for outlining the entire spatial structure of the caustic skeleton emerging from a primordial density field. In this paper we explicitly consider the caustic conditions for the three-dimensional Zel'dovich approximation, extending earlier work on those for one- and two-dimensional fluids towards the full spatial richness of the cosmic web. In an accompanying publication, we apply this towards a full three-dimensional study of caustics in the formation of the cosmic web and evaluate in how far it manages to outline and identify the intricate skeletal features in the corresponding N-body simulations.
Viscoelastic and Functional Properties of Cod-Bone Gelatin in the Presence of Xylitol and Stevioside
NASA Astrophysics Data System (ADS)
Nian, Linyu; Cao, Ailing; Wang, Jing; Tian, Hongyu; Liu, Yongguo; Gong, Lingxiao; Cai, Luyun; Wang, Yuhao
2018-05-01
The physical, rheological, structural and functional properties of cod bone gelatin (CBG) with various concentrations (0, 2, 4, 6, 10 and 15%) of low-calorie sweeteners (xylitol (X) and stevioside (S)) to form gels were investigated. The gel strength of CBGX increased with increased xylitol due presumably to hydrogen bonds between xylitol and gelatin, but with CBGS the highest gel strength occurred when S concentration was 4%. Viscosity of CBGS samples were higher than CBGX due to S’s high molecular mass. The viscoelasticity (G' and G″), foaming capacity and fat binding capacity of CBGX were higher while foam stability was lower. The emulsion activity and emulsion stability of CBGX were a little lower than CBGS at the same concentration. The structure of X is linear making it easier to form a dense three-dimensional network structure, while the complex cyclic structure of S had more difficulty forming a network structure with cod bone gelatin. Therefore, X may be a better choice for sweetening gelatin gels.
Nian, Linyu; Cao, Ailing; Wang, Jing; Tian, Hongyu; Liu, Yongguo; Gong, Lingxiao; Cai, Luyun; Wang, Yuhao
2018-01-01
The physical, rheological, structural and functional properties of cod bone gelatin (CBG) with various concentrations (0, 2, 4, 6, 10, and 15%) of low-calorie sweeteners [xylitol (X) and stevioside (S)] to form gels were investigated. The gel strength of CBGX increased with increased xylitol due presumably to hydrogen bonds between xylitol and gelatin, but with CBGS the highest gel strength occurred when S concentration was 4%. Viscosity of CBGS samples were higher than CBGX due to S's high molecular mass. The viscoelasticity (G' and G''), foaming capacity and fat binding capacity of CBGX were higher while foam stability was lower. The emulsion activity and emulsion stability of CBGX were a little lower than CBGS at the same concentration. The structure of X is linear making it easier to form a dense three-dimensional network structure, while the complex cyclic structure of S had more difficulty forming a network structure with cod bone gelatin. Therefore, X may be a better choice for sweetening gelatin gels.
Sampling-Based Coverage Path Planning for Complex 3D Structures
2012-09-01
one such task, in which a single robot must sweep its end effector over the entirety of a known workspace. For two-dimensional environments, optimal...structures. First, we introduce a new algorithm for planning feasible coverage paths. It is more computationally efficient in problems of complex geometry...iteratively shortens and smooths a feasible coverage path; robot configurations are adjusted without violating any coverage con- straints. Third, we propose
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mu, Bao; Li, Qian; Lv, Lei
2015-03-15
The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H{sub 3}ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H{sub 2}O)] (1), [M(H{sub 2}ImDC){sub 2}(H{sub 2}O){sub 2}]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn{sub 3}(ImDC){sub 2}(bpe)(H{sub 2}O)]·3H{sub 2}O (5) and [Cd(H{sub 2}ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O–H∙∙∙O and O–H∙∙∙N). Complexes 2–4 and 6 are isomorphous, andmore » they display the mononuclear structures. In these complexes, the O–H∙∙∙O and O–H∙∙∙N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (10{sup 3}) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1–7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K. - Graphical abstract: Seven new complexes based on different structural characteristics have been hydrothermally synthesized by the mixed ligands. The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated. - Highlights: • The semi-rigid ligand with C=C bonds and imidazole dicarboxylates with some advantages have been used. • A series of new complexes with different structural characteristics have been discussed in detail. • The fluorescent properties, the magnetic property and the water vapor adsorption have been investigated.« less
NASA Astrophysics Data System (ADS)
Mu, Bao; Li, Qian; Lv, Lei; Yang, Dan-Dan; Wang, Qing; Huang, Ru-Dan
2015-03-01
The hydrothermal reaction of transition metals, 1H-imidazole-4,5-dicarboxylic acid (H3ImDC) and 1,2-bi(pyridin-4-yl)ethene (bpe) affords a series of new complexes, namely, [Mn(HImDC)(bpe)(H2O)] (1), [M(H2ImDC)2(H2O)2]·(bpe) (M=Fe(2), Co(3), Zn(4), Cd(6)), [Zn3(ImDC)2(bpe)(H2O)]·3H2O (5) and [Cd(H2ImDC)(bpe)] (7), which are characterized by elemental analyses, IR, TG, XRPD and single crystal X-ray diffraction. Complex 1 exhibits a one dimensional (1D) zigzag chain with two types of irregular rings, and the 1D chains are linked to form a three dimensional (3D) supramolecular framework by the hydrogen bonding interactions (O-H•••O and O-H•••N). Complexes 2-4 and 6 are isomorphous, and they display the mononuclear structures. In these complexes, the O-H•••O and O-H•••N hydrogen bonds play an important role in sustaining the whole 3D supramolecular frameworks. Complex 5 shows a (3,3)-connected 3D framework with (103) topology, and the lattice water molecules as guest molecules exist in the 3D framework. Complex 7 is a wave-like two dimensional (2D) structure, in which the adjacent 1D chains point at the opposite directions. Moreover, the fluorescent properties of complexes 1-7 and the magnetic property of 1 have been investigated. The water vapor adsorption for complex 5 has been researched at 298 K.
1976-06-01
and End-Cuts Program ( PLEC ). A special program to aid in fabrication of complex three-dimensional pipe structures, which is of special interest to...LENGTH AND END-CUTS PROGRAM ( PL E C) PROGRAM DESCRIPTION 1. PROGRAM CAPABILITIES The Pipe Length and End- Cuts ( PLEC ) Development Program allows the...required categories: a. Definition Input This type of input by the ’ PLEC ’ Program can be divided in two is used to define a three-dimensional structure
G-structures and domain walls in heterotic theories
NASA Astrophysics Data System (ADS)
Lukas, Andre; Matti, Cyril
2011-01-01
We consider heterotic string solutions based on a warped product of a four-dimensional domain wall and a six-dimensional internal manifold, preserving two supercharges. The constraints on the internal manifolds with SU(3) structure are derived. They are found to be generalized half-flat manifolds with a particular pattern of torsion classes and they include half-flat manifolds and Strominger's complex non-Kahler manifolds as special cases. We also verify that previous heterotic compactifications on half-flat mirror manifolds are based on this class of solutions.
Three-dimensional reconstruction of frozen and thawed plant tissues from microscopic images
USDA-ARS?s Scientific Manuscript database
Histological analysis of frozen and thawed plants has been conducted for many years but the observation of individual sections only provides a 2 dimensional representation of a 3 dimensional phenomenon. Most techniques for viewing internal plant structure in 3 dimensions is either low in resolution...
Chemical mapping of pharmaceutical cocrystals using terahertz spectroscopic imaging.
Charron, Danielle M; Ajito, Katsuhiro; Kim, Jae-Young; Ueno, Yuko
2013-02-19
Terahertz (THz) spectroscopic imaging is a promising technique for distinguishing pharmaceuticals of similar molecular composition but differing crystal structures. Physicochemical properties, for instance bioavailability, are manipulated by altering a drug's crystal structure through methods such as cocrystallization. Cocrystals are molecular complexes having crystal structures different from those of their pure components. A technique for identifying the two-dimensional distribution of these alternate forms is required. Here we present the first demonstration of THz spectroscopic imaging of cocrystals. THz spectra of caffeine-oxalic acid cocrystal measured at low temperature exhibit sharp peaks, enabling us to visualize the cocrystal distribution in nonuniform tablets. The cocrystal distribution was clearly identified using THz spectroscopic data, and the cocrystal concentration was calculated with 0.3-1.3% w/w error from the known total concentration. From this result, THz spectroscopy allows quantitative chemical mapping of cocrystals and offers researchers and drug developers a new analytical tool.
Combustion and Magnetohydrodynamic Processes in Advanced Pulse Detonation Rocket Engines
NASA Astrophysics Data System (ADS)
Cole, Lord Kahil
A number of promising alternative rocket propulsion concepts have been developed over the past two decades that take advantage of unsteady combustion waves in order to produce thrust. These concepts include the Pulse Detonation Rocket Engine (PDRE), in which repetitive ignition, propagation, and reflection of detonations and shocks can create a high pressure chamber from which gases may be exhausted in a controlled manner. The Pulse Detonation Rocket Induced Magnetohydrodynamic Ejector (PDRIME) is a modification of the basic PDRE concept, developed by Cambier (1998), which has the potential for performance improvements based on magnetohydrodynamic (MHD) thrust augmentation. The PDRIME has the advantage of both low combustion chamber seeding pressure, per the PDRE concept, and efficient energy distribution in the system, per the rocket-induced MHD ejector (RIME) concept of Cole, et al. (1995). In the initial part of this thesis, we explore flow and performance characteristics of different configurations of the PDRIME, assuming quasi-one-dimensional transient flow and global representations of the effects of MHD phenomena on the gas dynamics. By utilizing high-order accurate solvers, we thus are able to investigate the fundamental physical processes associated with the PDRIME and PDRE concepts and identify potentially promising operating regimes. In the second part of this investigation, the detailed coupling of detonations and electric and magnetic fields are explored. First, a one-dimensional spark-ignited detonation with complex reaction kinetics is fully evaluated and the mechanisms for the different instabilities are analyzed. It is found that complex kinetics in addition to sufficient spatial resolution are required to be able to quantify high frequency as well as low frequency detonation instability modes. Armed with this quantitative understanding, we then examine the interaction of a propagating detonation and the applied MHD, both in one-dimensional and two-dimensional transient simulations. The dynamics of the detonation are found to be affected by the application of magnetic and electric fields. We find that the regularity of one-dimensional cesium-seeded detonations can be significantly altered by reasonable applied magnetic fields (Bz ≤ 8T), but that it takes a stronger applied field (Bz > 16T) to significantly alter the cellular structure and detonation velocity of a two-dimensional detonation in the time in which these phenomena were observed. This observation is likely attributed to the additional coupling of the two-dimensional detonation with the transverse waves, which are not captured in the one-dimensional simulations. Future studies involving full ionization kinetics including collisional-radiative processes, will be used to examine these processes in further detail.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
Radin, Maxwell D.; Ogitsu, Tadashi; Biener, Juergen; ...
2015-03-11
Understanding the impact of interfacial electric fields on electronic structure is crucial to improving the performance of materials in applications based on charged interfaces. Supercapacitors store energy directly in the strong interfacial field between a solid electrode and a liquid electrolyte; however, the complex interplay between the two is often poorly understood, particularly for emerging low-dimensional electrode materials that possess unconventional electronic structure. Typical descriptions tend to neglect the specific electrode-electrolyte interaction, approximating the intrinsic “quantum capacitance” of the electrode in terms of a fixed electronic density of states. Instead, we introduce a more accurate first-principles approach for directly simulatingmore » charge storage in model capacitors using the effective screening medium method, which implicitly accounts for the presence of the interfacial electric field. Applying this approach to graphene supercapacitor electrodes, we find that results differ significantly from the predictions of fixed-band models, leading to improved consistency with experimentally reported capacitive behavior. The differences are traced to two key factors: the inhomogeneous distribution of stored charge due to poor electronic screening and interfacial contributions from the specific interaction with the electrolyte. Lastly, our results are used to revise the conventional definition of quantum capacitance and to provide general strategies for improving electrochemical charge storage, particularly in graphene and similar low-dimensional materials.« less
Rate-distortion optimized tree-structured compression algorithms for piecewise polynomial images.
Shukla, Rahul; Dragotti, Pier Luigi; Do, Minh N; Vetterli, Martin
2005-03-01
This paper presents novel coding algorithms based on tree-structured segmentation, which achieve the correct asymptotic rate-distortion (R-D) behavior for a simple class of signals, known as piecewise polynomials, by using an R-D based prune and join scheme. For the one-dimensional case, our scheme is based on binary-tree segmentation of the signal. This scheme approximates the signal segments using polynomial models and utilizes an R-D optimal bit allocation strategy among the different signal segments. The scheme further encodes similar neighbors jointly to achieve the correct exponentially decaying R-D behavior (D(R) - c(o)2(-c1R)), thus improving over classic wavelet schemes. We also prove that the computational complexity of the scheme is of O(N log N). We then show the extension of this scheme to the two-dimensional case using a quadtree. This quadtree-coding scheme also achieves an exponentially decaying R-D behavior, for the polygonal image model composed of a white polygon-shaped object against a uniform black background, with low computational cost of O(N log N). Again, the key is an R-D optimized prune and join strategy. Finally, we conclude with numerical results, which show that the proposed quadtree-coding scheme outperforms JPEG2000 by about 1 dB for real images, like cameraman, at low rates of around 0.15 bpp.
NASA Technical Reports Server (NTRS)
2005-01-01
Gas-Tolerant Device Senses Electrical Conductivity of Liquid Nanoactuators Based on Electrostatic Forces on Dielectrics Replaceable Microfluidic Cartridges for a PCR Biosensor CdZnTe Image Detectors for Hard-X-Ray Telescopes High-Aperture-Efficiency Horn Antenna Full-Circle Resolver-to-Linear-Analog Converter Continuous, Full-Circle Arctangent Circuit Advanced Three-Dimensional Display System Automatic Focus Adjustment of a Microscope Topics covered include: FastScript3D - A Companion to Java 3D; Generating Mosaics of Astronomical Images; Simulating Descent and Landing of a Spacecraft; Simulating Vibrations in a Complex Loaded Structure; Rover Sequencing and Visualization Program; Software Template for Instruction in Mathematics; Support for User Interfaces for Distributed Systems; Nanostructured MnO2-Based Cathodes for Li-Ion/Polymer Cells; Multi-Layer Laminated Thin Films for Inflatable Structures; Two-Step Laser Ranging for Precise Tracking of a Spacecraft; Growing Aligned Carbon Nanotubes for Interconnections in ICs; Multilayer Composite Pressure Vessels; Texturing Blood-Glucose-Monitoring Optics Using Oxygen Beams; Fault-Tolerant Heat Exchanger; Atomic Clock Based on Opto-Electronic Oscillator; Microfocus/Polycapillary-Optic Crystallographic X-Ray Sys; Depth-Penetrating Luminescence Thermography of Thermal- Barrier Coatings; One-Dimensional Photonic Crystal Superprisms; Measuring Low-Order Aberrations in a Segmented Telescope; Mapping From an Instrumented Glove to a Robot Hand; Application of the Hilbert-Huang Transform to Financial Data; Optimizing Parameters for Deep-Space Optical Communication; and Low-Shear Microencapsulation and Electrostatic Coating.
NASA Astrophysics Data System (ADS)
Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino
2013-12-01
Collective variables (CVs) are low-dimensional representations of the state of a complex system, which help us rationalize molecular conformations and sample free energy landscapes with molecular dynamics simulations. Given their importance, there is need for systematic methods that effectively identify CVs for complex systems. In recent years, nonlinear manifold learning has shown its ability to automatically characterize molecular collective behavior. Unfortunately, these methods fail to provide a differentiable function mapping high-dimensional configurations to their low-dimensional representation, as required in enhanced sampling methods. We introduce a methodology that, starting from an ensemble representative of molecular flexibility, builds smooth and nonlinear data-driven collective variables (SandCV) from the output of nonlinear manifold learning algorithms. We demonstrate the method with a standard benchmark molecule, alanine dipeptide, and show how it can be non-intrusively combined with off-the-shelf enhanced sampling methods, here the adaptive biasing force method. We illustrate how enhanced sampling simulations with SandCV can explore regions that were poorly sampled in the original molecular ensemble. We further explore the transferability of SandCV from a simpler system, alanine dipeptide in vacuum, to a more complex system, alanine dipeptide in explicit water.
Hashemian, Behrooz; Millán, Daniel; Arroyo, Marino
2013-12-07
Collective variables (CVs) are low-dimensional representations of the state of a complex system, which help us rationalize molecular conformations and sample free energy landscapes with molecular dynamics simulations. Given their importance, there is need for systematic methods that effectively identify CVs for complex systems. In recent years, nonlinear manifold learning has shown its ability to automatically characterize molecular collective behavior. Unfortunately, these methods fail to provide a differentiable function mapping high-dimensional configurations to their low-dimensional representation, as required in enhanced sampling methods. We introduce a methodology that, starting from an ensemble representative of molecular flexibility, builds smooth and nonlinear data-driven collective variables (SandCV) from the output of nonlinear manifold learning algorithms. We demonstrate the method with a standard benchmark molecule, alanine dipeptide, and show how it can be non-intrusively combined with off-the-shelf enhanced sampling methods, here the adaptive biasing force method. We illustrate how enhanced sampling simulations with SandCV can explore regions that were poorly sampled in the original molecular ensemble. We further explore the transferability of SandCV from a simpler system, alanine dipeptide in vacuum, to a more complex system, alanine dipeptide in explicit water.
Stereo Science Results at Solar Minimum
NASA Technical Reports Server (NTRS)
Christian, Eric R.; Kaiser, Michael L.; Kucera Therese A.; St. Cyr, O. C.; van Driel-Gesztelyi, Lidia; Mandrini, Cristina H.
2009-01-01
The magnetic fields that drive solar activity are complex and inherently three-dimensional structures. Twisted flux ropes, magnetic reconnection and the initiation of solar storms, as well as space weather propagation through the heliosphere, are just a few of the topics that cannot properly be observed or modeled in only two dimensions. Examination of this three-dimensional complex has been hampered by the fact that solar remote sensing observations have occurred only from the Earth-Sun line, and in situ observations, while available from a greater variety of locations, have been sparse throughout the heliosphere.
Olejník, Peter; Nosal, Matej; Havran, Tomas; Furdova, Adriana; Cizmar, Maros; Slabej, Michal; Thurzo, Andrej; Vitovic, Pavol; Klvac, Martin; Acel, Tibor; Masura, Jozef
2017-01-01
To evaluate the accuracy of the three-dimensional (3D) printing of cardiovascular structures. To explore whether utilisation of 3D printed heart replicas can improve surgical and catheter interventional planning in patients with complex congenital heart defects. Between December 2014 and November 2015 we fabricated eight cardiovascular models based on computed tomography data in patients with complex spatial anatomical relationships of cardiovascular structures. A Bland-Altman analysis was used to assess the accuracy of 3D printing by comparing dimension measurements at analogous anatomical locations between the printed models and digital imagery data, as well as between printed models and in vivo surgical findings. The contribution of 3D printed heart models for perioperative planning improvement was evaluated in the four most representative patients. Bland-Altman analysis confirmed the high accuracy of 3D cardiovascular printing. Each printed model offered an improved spatial anatomical orientation of cardiovascular structures. Current 3D printers can produce authentic copies of patients` cardiovascular systems from computed tomography data. The use of 3D printed models can facilitate surgical or catheter interventional procedures in patients with complex congenital heart defects due to better preoperative planning and intraoperative orientation.
NASA Astrophysics Data System (ADS)
Leria, M.; Ferrandez, C.; Ruiz-Ortega, M.
2012-12-01
Scientific illustration is a fundamental tool for transmitting scientific knowledge because it allows to define aspects that cannot be appreciated just by text description, or by means of photography. This study is based on the collection of illustrations created by the paleontologist Lukas Hottinger (1933-2011) during his extensive career. Hottinger studied, described and illustrated foraminifera for more than fifty years. The use of illustration is essential for studying, describing and clasifying these marine microfossils. Foraminifera are a constituent of marine sedimentary rocks; the study of their internal anatomy often is made from thin sections of rocks, a destructive technique which provides only two dimensional sections. The internal three-dimensional morphology of a species must be interpreted and reconstructed from numerous random two-dimensional sections. New technologies, such as SEM or more recently X-ray Microtomography provided progressively better images of the internal structure but this information, while useful, is still insufficient to explain with simplicity and efficacy what an illustration of a synthetic 3D model shows at a glance. This study is based on a review of 78 publications by Lukas Hottinger on foraminiferal inner structure. In addition, up to 150 illustrations by Hottinger were analyzed, as well as other works written by his colleagues during the same years (1956-2009). Hottinger's work includes several reference papers on the structure and systematics of different groups of larger foraminifera in which his three dimensional models play a fundamental role in synthesizing and making understandable the complexity of these shells. Illustrations of 3D models were particularly selected because of their conceptual complexity. They do not represent a view of the foraminiferal structure that can be observe directly, but a synthetic abstraction constructed from the observation and interpretation of many random two-dimensional sections of diverse individuals. We also analyzed the evolution of the method and techniques of representation through the different papers, coming to the conclusion that they changed according to the printing methods and the current technology (e.g. computer drawing software), but the basic concept of drawings has not been highly modified. The preliminary results demonstrate that illustrations are a necessary and fundamental element in the study of foraminiferal structure, and that it is beneficial for the scientist to have a good knowledge of the various skills involved in drawing and illustration, in order to better disseminate the results of his research with clarity and make complexity comprehensible.
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers.
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-07-12
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers.
High- and low-level hierarchical classification algorithm based on source separation process
NASA Astrophysics Data System (ADS)
Loghmari, Mohamed Anis; Karray, Emna; Naceur, Mohamed Saber
2016-10-01
High-dimensional data applications have earned great attention in recent years. We focus on remote sensing data analysis on high-dimensional space like hyperspectral data. From a methodological viewpoint, remote sensing data analysis is not a trivial task. Its complexity is caused by many factors, such as large spectral or spatial variability as well as the curse of dimensionality. The latter describes the problem of data sparseness. In this particular ill-posed problem, a reliable classification approach requires appropriate modeling of the classification process. The proposed approach is based on a hierarchical clustering algorithm in order to deal with remote sensing data in high-dimensional space. Indeed, one obvious method to perform dimensionality reduction is to use the independent component analysis process as a preprocessing step. The first particularity of our method is the special structure of its cluster tree. Most of the hierarchical algorithms associate leaves to individual clusters, and start from a large number of individual classes equal to the number of pixels; however, in our approach, leaves are associated with the most relevant sources which are represented according to mutually independent axes to specifically represent some land covers associated with a limited number of clusters. These sources contribute to the refinement of the clustering by providing complementary rather than redundant information. The second particularity of our approach is that at each level of the cluster tree, we combine both a high-level divisive clustering and a low-level agglomerative clustering. This approach reduces the computational cost since the high-level divisive clustering is controlled by a simple Boolean operator, and optimizes the clustering results since the low-level agglomerative clustering is guided by the most relevant independent sources. Then at each new step we obtain a new finer partition that will participate in the clustering process to enhance semantic capabilities and give good identification rates.
Network geometry with flavor: From complexity to quantum geometry
NASA Astrophysics Data System (ADS)
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d -dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s =-1 ,0 ,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d . In d =1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d >1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t . Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ -dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ .
Network geometry with flavor: From complexity to quantum geometry.
Bianconi, Ginestra; Rahmede, Christoph
2016-03-01
Network geometry is attracting increasing attention because it has a wide range of applications, ranging from data mining to routing protocols in the Internet. At the same time advances in the understanding of the geometrical properties of networks are essential for further progress in quantum gravity. In network geometry, simplicial complexes describing the interaction between two or more nodes play a special role. In fact these structures can be used to discretize a geometrical d-dimensional space, and for this reason they have already been widely used in quantum gravity. Here we introduce the network geometry with flavor s=-1,0,1 (NGF) describing simplicial complexes defined in arbitrary dimension d and evolving by a nonequilibrium dynamics. The NGF can generate discrete geometries of different natures, ranging from chains and higher-dimensional manifolds to scale-free networks with small-world properties, scale-free degree distribution, and nontrivial community structure. The NGF admits as limiting cases both the Bianconi-Barabási models for complex networks, the stochastic Apollonian network, and the recently introduced model for complex quantum network manifolds. The thermodynamic properties of NGF reveal that NGF obeys a generalized area law opening a new scenario for formulating its coarse-grained limit. The structure of NGF is strongly dependent on the dimensionality d. In d=1 NGFs grow complex networks for which the preferential attachment mechanism is necessary in order to obtain a scale-free degree distribution. Instead, for NGF with dimension d>1 it is not necessary to have an explicit preferential attachment rule to generate scale-free topologies. We also show that NGF admits a quantum mechanical description in terms of associated quantum network states. Quantum network states evolve by a Markovian dynamics and a quantum network state at time t encodes all possible NGF evolutions up to time t. Interestingly the NGF remains fully classical but its statistical properties reveal the relation to its quantum mechanical description. In fact the δ-dimensional faces of the NGF have generalized degrees that follow either the Fermi-Dirac, Boltzmann, or Bose-Einstein statistics depending on the flavor s and the dimensions d and δ.
Complex Chemical Reaction Networks from Heuristics-Aided Quantum Chemistry.
Rappoport, Dmitrij; Galvin, Cooper J; Zubarev, Dmitry Yu; Aspuru-Guzik, Alán
2014-03-11
While structures and reactivities of many small molecules can be computed efficiently and accurately using quantum chemical methods, heuristic approaches remain essential for modeling complex structures and large-scale chemical systems. Here, we present a heuristics-aided quantum chemical methodology applicable to complex chemical reaction networks such as those arising in cell metabolism and prebiotic chemistry. Chemical heuristics offer an expedient way of traversing high-dimensional reactive potential energy surfaces and are combined here with quantum chemical structure optimizations, which yield the structures and energies of the reaction intermediates and products. Application of heuristics-aided quantum chemical methodology to the formose reaction reproduces the experimentally observed reaction products, major reaction pathways, and autocatalytic cycles.
NASA Astrophysics Data System (ADS)
Shi, Jingwen; Lan, Wenlong; Ren, Yanjie; Liu, Qingyun; Liu, Hui; Dong, Yunhui; Zhang, Daopeng
2018-04-01
Four pyridinecarboxamide trans-dicyanideiron(III) building blocks and one macrocyclic copper(II) compound have been employed to assemble cyanide-bridged heterometallic complexes, resulting in a serials of cyanide-bridged FeIII-CuII complexes with different structure types. The series of complexes can be formulated as: {[Cu(Cyclam)][Fe(bpb)(CN)2]2}·4H2O (1), {{[Cu(Cyclam)][Fe(bpb)(CN)2]}ClO4}n·nH2O (2), and {[Cu(Cyclam)][Fe(bpmb)(CN)2]2}·4H2O (3), {[Cu(Cyclam)][Fe(bpClb)(CN)2]2}·4H2O (4) and {{[Cu(Cyclam)][Fe(bpdmb)(CN)2]}ClO4}n·2nCH3OH (5) (bpb2- = 1,2-bis(pyridine-2-carboxamido)benzenate, bpmb2- = 1,2-bis(pyridine-2-carboxamido)-4-methyl-benzenate, bpClb2- = 1,2-bis(pyridine-2-carboxamido)-4-chloro-benzenate, bpdmb2- = 1,2-bis(pyridine-2-carboxamido)-4,5-dimethyl-benzenate, Cyclam = 1,4,8,11-tetraazacyclotetradecane). All the complexes have been characterized by elemental analysis, IR spectra and structural determination. Single X-ray diffraction analysis shows the similar neutral sandwich-like structures for complexes 1, 3 and 4, in which the two cyano precursors acting as monodentate ligand through one of their two cyanide groups were coordinated face to face to central Cu(II) ion. The complexes 2 and 5 can be structurally characterized as one-dimensional cationic single chain consisting of alternating units of [Cu(Cyclam)]2+ and [Fe(bpb/bpdmb)(CN)2]- with free ClO4- as balanced anion. Investigation over magnetic properties of the whole serials of complexes reveals the antiferromagnetic magnetic coupling between the neighboring cyanide-bridged Fe(III) and Cu(II) ions in complexes 3 and 4 and the ferromagnetic interaction in complexes 1, 2 and 5, respectively.
Reduced basis ANOVA methods for partial differential equations with high-dimensional random inputs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liao, Qifeng, E-mail: liaoqf@shanghaitech.edu.cn; Lin, Guang, E-mail: guanglin@purdue.edu
2016-07-15
In this paper we present a reduced basis ANOVA approach for partial deferential equations (PDEs) with random inputs. The ANOVA method combined with stochastic collocation methods provides model reduction in high-dimensional parameter space through decomposing high-dimensional inputs into unions of low-dimensional inputs. In this work, to further reduce the computational cost, we investigate spatial low-rank structures in the ANOVA-collocation method, and develop efficient spatial model reduction techniques using hierarchically generated reduced bases. We present a general mathematical framework of the methodology, validate its accuracy and demonstrate its efficiency with numerical experiments.
NASA Astrophysics Data System (ADS)
Özaydın, Sinan; Bülent Tank, Sabri; Karaş, Mustafa; Sandvol, Eric
2017-04-01
Wide-band magnetotelluric (MT) (360 Hz - 1860 sec) data were acquired at 25 sites along a north - south aligned profile cutting across the Central Pontides, which are made up of highly metamorphosed formations and their tectonic boundaries including: a Lower Cretaceous-aged turbidite sequence, Central Pontides Metamorphic Supercomplex (CPMS), North Anatolian Fault Zone (NAFZ) and Izmir-Ankara-Erzincan Suture Zone (IAESZ). Dimensionality analyses over all observation points demonstrated high electrical anisotropy, which indicates complex geological and tectonic structures. This dimensional complexity and presence of the electrically conductive Black Sea augmented the requirement for a three-dimensional analysis. Inverse modeling routines, ModEM (Egbert and Kelbert, 2012) and WSINV3DMT (Siripunvaraporn et al., 2005) were utilized to reveal the geo-electrical implications over this unusually complicated region. Interpretations of the resultant models are summarized as follows: (i) Çangaldaǧ and Domuzdaǧ complexes appear as highly resistive bodies bounded by north dipping faults. (ii) Highly conductive Tosya Basin sediments overlain the ophiolitic materials as a thin cover located at the south of the NAFZ. (iii) North Anatolian Fault and some auxiliary faults within the system exhibit conductive-resistive interfaces that reach to lower crustal levels. (iv) IAESZ is a clear feature marked by the resistivity contrast between NAFZ-related sedimentary basins and Neo-Tethyan ophiolites.
Three-dimensional nanoscale imaging by plasmonic Brownian microscopy
NASA Astrophysics Data System (ADS)
Labno, Anna; Gladden, Christopher; Kim, Jeongmin; Lu, Dylan; Yin, Xiaobo; Wang, Yuan; Liu, Zhaowei; Zhang, Xiang
2017-12-01
Three-dimensional (3D) imaging at the nanoscale is a key to understanding of nanomaterials and complex systems. While scanning probe microscopy (SPM) has been the workhorse of nanoscale metrology, its slow scanning speed by a single probe tip can limit the application of SPM to wide-field imaging of 3D complex nanostructures. Both electron microscopy and optical tomography allow 3D imaging, but are limited to the use in vacuum environment due to electron scattering and to optical resolution in micron scales, respectively. Here we demonstrate plasmonic Brownian microscopy (PBM) as a way to improve the imaging speed of SPM. Unlike photonic force microscopy where a single trapped particle is used for a serial scanning, PBM utilizes a massive number of plasmonic nanoparticles (NPs) under Brownian diffusion in solution to scan in parallel around the unlabeled sample object. The motion of NPs under an evanescent field is three-dimensionally localized to reconstruct the super-resolution topology of 3D dielectric objects. Our method allows high throughput imaging of complex 3D structures over a large field of view, even with internal structures such as cavities that cannot be accessed by conventional mechanical tips in SPM.
Low energy dislocation structures in epitaxy
NASA Technical Reports Server (NTRS)
Van Der Merwe, Jan H.; Woltersdorf, J.; Jesser, W. A.
1986-01-01
The principle of minimum energy was applied to epitaxial interfaces to show the interrelationship beteen misfit, overgrowth thickness and misfit dislocation spacing. The low energy dislocation configurations were presented for selected interfacial geometries. A review of the interfacial energy calculations was made and a critical assessment of the agreement between theory and experiment was presented. Modes of misfit accommodation were presented with emphasis on the distinction between kinetic effects and equilibrium conditions. Two-dimensional and three-dimensional overgrowths were treated together with interdiffusion-modified interfaces, and several models of interfacial structure were treated including the classical and the current models. The paper is concluded by indicating areas of needed investigation into interfacial structure.
Tools to Understand Structural Property Relationships for Wood Cell Walls
Joseph E. Jakes; Daniel J. Yelle; Charles R. Frihart
2011-01-01
Understanding structure-property relationships for wood cell walls has been hindered by the complex polymeric structures comprising these cell walls and the difficulty in assessing meaningful mechanical property measurements of individual cell walls. To help overcome these hindrances, we have developed two experimental methods: 1) two-dimensional solution state nuclear...
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying
By using a rigid dicarboxylate ligand, 4,5-di(4′-carboxylphenyl)benzene (H{sub 2}L), two complexes formulated as SrL(DMF)(H{sub 2}O)·(CH{sub 3}CN) (DMF=N,N′-dimethylformamide) (1) and BaL(H{sub 2}O){sub 2} (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV–vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density thanmore » complex 1. The Mott–Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations. - Graphical abstract: Two alkaline earth metal(II) complexes with 2D layer structures are p-type semiconductors, they possess different band structures and density of states. And the Ba(II) complex 2 exhibits much higher photocurrent density than the Sr(II) complex 1.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yeon, Jeongho; Smith, Mark D.; Tapp, Joshua
Two new uranium(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} (1) and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} (2), were synthesized through an in situ mild hydrothermal route, and were structurally characterized by single crystal X-ray diffraction. The compounds exhibit complex crystal structures composed of corner- or edge-shared UF{sub 9} and MF{sub 6} (M=Mg, Mn) polyhedra, forming hexagonal channels in the three-dimensional framework, in which ordered or disordered divalent metal and sodium atoms reside. The large hexagonal voids contain the nearly regular M(II)F{sub 6} octahedra and sodium ions, whereas the small hexagonal cavities include M(II) and sodium ions on a mixed-occupied site.more » Magnetic susceptibility measurements yielded effective magnetic moments of 8.36 and 11.6 µ{sub B} for 1 and 2, respectively, confirming the presence and oxidation states of U(IV) and Mn(II). The large negative Weiss constants indicate the spin gap between a triplet and a singlet state in the U(IV). Magnetization data as a function of applied fields revealed that 2 exhibits paramagnetic behavior due to the nonmagnetic singlet ground state of U(IV) at low temperature. UV–vis diffuse reflectance and X-ray photoelectron spectroscopy data were also analyzed. - Graphical abstract: Two new quaternary U(IV) fluorides, Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30}, were crystallized via an in situ reduction step of U(VI) to U(IV) under mild hydrothermal conditions. The compounds show complex crystal structures based on the 3-D building block of U{sub 6}F{sub 30}. Magnetic property measurements revealed that the U(IV) exhibits a nonmagnetic singlet ground state at low temperature with a spin gap. - Highlights: • Na{sub 3.13}Mg{sub 1.43}U{sub 6}F{sub 30} and Na{sub 2.50}Mn{sub 1.75}U{sub 6}F{sub 30} have been synthesized and characterized. • The U(IV) fluorides exhibit complex three-dimensional crystal structures. • The optical properties were investigated. • Magnetic susceptibility data were collected.« less
NASA Astrophysics Data System (ADS)
Meng, Jiang Ping; Yan, Zhi Shuo; Long, Ji Ying; Gong, Yun; Lin, Jian Hua
2017-01-01
By using a rigid dicarboxylate ligand, 4,5-di(4‧-carboxylphenyl)benzene (H2L), two complexes formulated as SrL(DMF)(H2O)·(CH3CN) (DMF=N,N‧-dimethylformamide) (1) and BaL(H2O)2 (2) were solvothermally synthesized and structurally characterized by single-crystal X-ray diffraction. Complexes 1 and 2 display two-dimensional (2D) layer structures. The two complexes exhibit different electrochemical and photoelectrochemical properties. Their thermal stabilities, cyclic voltammograms, UV-vis absorption and diffuse reflectance spectra and photoluminescence properties have been investigated. The band structures, the total density of states (TDOS) and partial density of states (PDOS) of the two complexes were calculated by CASTEP program. Complex 2 exhibits much higher photocurrent density than complex 1. The Mott-Schottky plots reveal that complexes 1 and 2 both are p-type semiconductors, which are in agreement with their band structure calculations.
Experimental, Theoretical, and Computational Investigation of Separated Nozzle Flows
NASA Technical Reports Server (NTRS)
Hunter, Craig A.
2004-01-01
A detailed experimental, theoretical, and computational study of separated nozzle flows has been conducted. Experimental testing was performed at the NASA Langley 16-Foot Transonic Tunnel Complex. As part of a comprehensive static performance investigation, force, moment, and pressure measurements were made and schlieren flow visualization was obtained for a sub-scale, non-axisymmetric, two-dimensional, convergent- divergent nozzle. In addition, two-dimensional numerical simulations were run using the computational fluid dynamics code PAB3D with two-equation turbulence closure and algebraic Reynolds stress modeling. For reference, experimental and computational results were compared with theoretical predictions based on one-dimensional gas dynamics and an approximate integral momentum boundary layer method. Experimental results from this study indicate that off-design overexpanded nozzle flow was dominated by shock induced boundary layer separation, which was divided into two distinct flow regimes; three- dimensional separation with partial reattachment, and fully detached two-dimensional separation. The test nozzle was observed to go through a marked transition in passing from one regime to the other. In all cases, separation provided a significant increase in static thrust efficiency compared to the ideal prediction. Results indicate that with controlled separation, the entire overexpanded range of nozzle performance would be within 10% of the peak thrust efficiency. By offering savings in weight and complexity over a conventional mechanical exhaust system, this may allow a fixed geometry nozzle to cover an entire flight envelope. The computational simulation was in excellent agreement with experimental data over most of the test range, and did a good job of modeling internal flow and thrust performance. An exception occurred at low nozzle pressure ratios, where the two-dimensional computational model was inconsistent with the three-dimensional separation observed in the experiment. In general, the computation captured the physics of the shock boundary layer interaction and shock induced boundary layer separation in the nozzle, though there were some differences in shock structure compared to experiment. Though minor, these differences could be important for studies involving flow control or thrust vectoring of separated nozzles. Combined with other observations, this indicates that more detailed, three-dimensional computational modeling needs to be conducted to more realistically simulate shock-separated nozzle flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Kawai, Kotaro, E-mail: s135016@stn.nagaokaut.ac.jp; Sakamoto, Moritsugu; Noda, Kohei
2016-03-28
A diffractive optical element with a three-dimensional liquid crystal (LC) alignment structure for advanced control of polarized beams was fabricated by a highly efficient one-step photoalignment method. This study is of great significance because different two-dimensional continuous and complex alignment patterns can be produced on two alignment films by simultaneously irradiating an empty glass cell composed of two unaligned photocrosslinkable polymer LC films with three-beam polarized interference beam. The polarization azimuth, ellipticity, and rotation direction of the diffracted beams from the resultant LC grating widely varied depending on the two-dimensional diffracted position and the polarization states of the incident beams.more » These polarization diffraction properties are well explained by theoretical analysis based on Jones calculus.« less
NASA Astrophysics Data System (ADS)
Zhao, M.; Canales, J.
2009-12-01
The Trans-Atlantic Geotraverse (TAG) segment of the Mid-Atlantic Ridge (MAR) (25°55'N-26°20'N) is characterized by massive active and relict high-temperature hydrothermal deposits. Previous geological and geophysical studies indicate that the active TAG hydrothermal mound sits on the hanging wall of an active detachment fault. The STAG microseismicity study revealed that seismicity associated to detachment faulting extends deep into the crust/uppermost mantle (>6 km), forming an arcuate band (in plan view) extending along ~25 km of the rift valley floor (deMartin et al., Geology, 35, 711-714, 2007). Two-dimensional analysis of the STAG seismic refraction data acquired with ocean bottom seismometers (OBSs) showed that the eastern rift valley wall is associated with high P-wave velocities (>7 km/s) at shallow levels (>1 km depth), indicating uplift of lower crustal and/or upper mantle rocks along the detachment fault (Canales et al., Geochem., Geophys., Geosyst., 8, Q08004, doi:08010.01029/02007GC001629, 2008). Here we present a three-dimensional (3D) seismic tomography analysis of the complete STAG seismic refraction OBS dataset to illuminate the 3D crustal architecture of the TAG segment. Our new results provide, for the first time, a detailed picture of the complex, dome-shaped geometry and structure of a nascent oceanic core complex being exhumed by a detachment fault. Our results show a relatively low-velocity anomaly embedded within the high-velocity body forming the footwall of the detachment fault. The low velocity sits 2-3 km immediately beneath the active TAG hydrothermal mound. Although velocities within the low-velocity zone are too high (6 km/s) to represent partial melt, we speculate that this low velocity zone is intimately linked to hydrothermal processes taking place at TAG. We consider three possible scenarios for its origin: (1) a highly fissured zone produced by extensional stresses during footwall exhumation that may help localize fluid flow; (2) a hot -perhaps partially molten- gabbro pluton intruding the detachment fault footwall, which could provide some of the heat driving hydrothermal circulation at TAG; or (3) serpenitized peridotite, with hydration of the footwall being enhanced by hydrothermal fluid flow. This research was granted by the US-NSF (OCE-0137329) and the Chinese National Natural Science Foundation (40776025). M. Zhao was supported by China Scholarship Council (CSC) for 6 months of cooperative research at WHOI.
Structure and interactions in biomaterials based on membrane-biopolymer self-assembly
NASA Astrophysics Data System (ADS)
Koltover, Ilya
Physical and chemical properties of artificial pure lipid membranes have been extensively studied during the last two decades and are relatively well understood. However, most real membrane systems of biological and biotechnological importance incorporate macromolecules either embedded into the membranes or absorbed onto their surfaces. We have investigated three classes of self-assembled membrane-biopolymer biomaterials: (i) Structure, interactions and stability of the two-dimensional crystals of the integral membrane protein bacteriorhodopsin (bR). We have conducted a synchrotron x-ray diffraction study of oriented bR multilayers. The important findings were as follows: (1) the protein 2D lattice exhibited diffraction patterns characteristic of a 2D solid with power-law decay of in-plane positional correlations, which allowed to measure the elastic constants of protein crystal; (2) The crystal melting temperature was a function of the multilayer hydration, reflecting the effect of inter-membrane repulsion on the stability of protein lattice; (3) Preparation of nearly perfect (mosaicity < 0.04° ) multilayers of fused bR membranes permitted, for the first time, application of powerful interface-sensitive x-ray scattering techniques to a membrane-protein system. (ii) Interactions between the particles chemically attached or absorbed onto the surfaces of flexible giant phospholipid vesicles. Using video-enhanced light microscopy we have observed a membrane-distortion induced attraction between the particles with the interaction range of the order of particle diameter. Fluid membranes decorated with many particles exhibited: (i) a finite-sized two-dimensional closed packed aggregates and (ii) a one-dimensional ring-like aggregates. (iii) Structure, stability and interactions in the cationic lipid-DNA complexes. Cationic liposomes complexed with DNA are among the most promising synthetic non-viral carriers of DNA vectors currently used in gene therapy applications. We have established that DNA complexes with cationic lipid (DOTAP) and a neutral lipid (DOPC) have a compact multilayer liquid crystalline structure ( L ca ) with DNA intercalated between the lipid bilayers in a periodic 2D smectic phase. Furthermore, a different 2D columnar phase of complexes was found in mixtures with a transfectionen-hancing lipid DOPE. This structure ( HcII ) derived from synchrotron x-ray diffraction consists of DNA coated by cationic lipid monolayers and arranged on a two-dimensional hexagonal lattice. Optical microscopy revealed that the L ca complexes bind stably to anionic vesicles (models of cellular membranes), whereas the more transfectant HcII complexes are unstable, rapidly fusing and releasing DNA upon adhering to anionic vesicles.
Complex structures from patterned cell sheets
Misra, M.; Audoly, B.; Shvartsman, S. Y.
2017-01-01
The formation of three-dimensional structures from patterned epithelial sheets plays a key role in tissue morphogenesis. An important class of morphogenetic mechanisms relies on the spatio-temporal control of apical cell contractility, which can result in the localized bending of cell sheets and in-plane cell rearrangements. We have recently proposed a modified vertex model that can be used to systematically explore the connection between the two-dimensional patterns of cell properties and the emerging three-dimensional structures. Here we review the proposed modelling framework and illustrate it through the computational analysis of the vertex model that captures the salient features of the formation of the dorsal appendages during Drosophila oogenesis. This article is part of the themed issue ‘Systems morphodynamics: understanding the development of tissue hardware’. PMID:28348251
Age-related differences in the structural complexity of subcortical and ventricular structures.
Madan, Christopher R; Kensinger, Elizabeth A
2017-02-01
It has been well established that the volume of several subcortical structures decreases in relation to age. Different metrics of cortical structure (e.g., volume, thickness, surface area, and gyrification) have been shown to index distinct characteristics of interindividual differences; thus, it is important to consider the relation of age to multiple structural measures. Here, we compare age-related differences in subcortical and ventricular volume to those differences revealed with a measure of structural complexity, quantified as fractal dimensionality. Across 3 large data sets, totaling nearly 900 individuals across the adult lifespan (aged 18-94 years), we found greater age-related differences in complexity than volume for the subcortical structures, particularly in the caudate and thalamus. The structural complexity of ventricular structures was not more strongly related to age than volume. These results demonstrate that considering shape-related characteristics improves sensitivity to detect age-related differences in subcortical structures. Copyright © 2016 Elsevier Inc. All rights reserved.
Constrained Low-Rank Learning Using Least Squares-Based Regularization.
Li, Ping; Yu, Jun; Wang, Meng; Zhang, Luming; Cai, Deng; Li, Xuelong
2017-12-01
Low-rank learning has attracted much attention recently due to its efficacy in a rich variety of real-world tasks, e.g., subspace segmentation and image categorization. Most low-rank methods are incapable of capturing low-dimensional subspace for supervised learning tasks, e.g., classification and regression. This paper aims to learn both the discriminant low-rank representation (LRR) and the robust projecting subspace in a supervised manner. To achieve this goal, we cast the problem into a constrained rank minimization framework by adopting the least squares regularization. Naturally, the data label structure tends to resemble that of the corresponding low-dimensional representation, which is derived from the robust subspace projection of clean data by low-rank learning. Moreover, the low-dimensional representation of original data can be paired with some informative structure by imposing an appropriate constraint, e.g., Laplacian regularizer. Therefore, we propose a novel constrained LRR method. The objective function is formulated as a constrained nuclear norm minimization problem, which can be solved by the inexact augmented Lagrange multiplier algorithm. Extensive experiments on image classification, human pose estimation, and robust face recovery have confirmed the superiority of our method.
Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge
2014-03-24
Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.
NASA Astrophysics Data System (ADS)
Pang, Yuepeng; Liu, Yongfeng; Gao, Mingxia; Ouyang, Liuzhang; Liu, Jiangwen; Wang, Hui; Zhu, Min; Pan, Hongge
2014-03-01
Nanoscale hydrides desorb and absorb hydrogen at faster rates and lower temperatures than bulk hydrides because of their high surface areas, abundant grain boundaries and short diffusion distances. No current methods exist for the direct fabrication of nanoscale complex hydrides (for example, alanates, borohydrides) with unique morphologies because of their extremely high reducibility, relatively low thermodynamic stability and complicated elemental composition. Here, we demonstrate a mechanical-force-driven physical vapour deposition procedure for preparing nanoscale complex hydrides without scaffolds or supports. Magnesium alanate nanorods measuring 20-40 nm in diameter and lithium borohydride nanobelts measuring 10-40 nm in width are successfully synthesised on the basis of the one-dimensional structure of the corresponding organic coordination polymers. The dehydrogenation kinetics of the magnesium alanate nanorods are improved, and the nanorod morphology persists through the dehydrogenation-hydrogenation process. Our findings may facilitate the fabrication of such hydrides with improved hydrogen storage properties for practical applications.
An intermediate-scale model for thermal hydrology in low-relief permafrost-affected landscapes
Jan, Ahmad; Coon, Ethan T.; Painter, Scott L.; ...
2017-07-10
Integrated surface/subsurface models for simulating the thermal hydrology of permafrost-affected regions in a warming climate have recently become available, but computational demands of those new process-rich simu- lation tools have thus far limited their applications to one-dimensional or small two-dimensional simulations. We present a mixed-dimensional model structure for efficiently simulating surface/subsurface thermal hydrology in low-relief permafrost regions at watershed scales. The approach replaces a full three-dimensional system with a two-dimensional overland thermal hydrology system and a family of one-dimensional vertical columns, where each column represents a fully coupled surface/subsurface thermal hydrology system without lateral flow. The system is then operatormore » split, sequentially updating the overland flow system without sources and the one-dimensional columns without lateral flows. We show that the app- roach is highly scalable, supports subcycling of different processes, and compares well with the corresponding fully three-dimensional representation at significantly less computational cost. Those advances enable recently developed representations of freezing soil physics to be coupled with thermal overland flow and surface energy balance at scales of 100s of meters. Furthermore developed and demonstrated for permafrost thermal hydrology, the mixed-dimensional model structure is applicable to integrated surface/subsurface thermal hydrology in general.« less
An Object-Oriented Serial DSMC Simulation Package
NASA Astrophysics Data System (ADS)
Liu, Hongli; Cai, Chunpei
2011-05-01
A newly developed three-dimensional direct simulation Monte Carlo (DSMC) simulation package, named GRASP ("Generalized Rarefied gAs Simulation Package"), is reported in this paper. This package utilizes the concept of simulation engine, many C++ features and software design patterns. The package has an open architecture which can benefit further development and maintenance of the code. In order to reduce the engineering time for three-dimensional models, a hybrid grid scheme, combined with a flexible data structure compiled by C++ language, are implemented in this package. This scheme utilizes a local data structure based on the computational cell to achieve high performance on workstation processors. This data structure allows the DSMC algorithm to be very efficiently parallelized with domain decomposition and it provides much flexibility in terms of grid types. This package can utilize traditional structured, unstructured or hybrid grids within the framework of a single code to model arbitrarily complex geometries and to simulate rarefied gas flows. Benchmark test cases indicate that this package has satisfactory accuracy for complex rarefied gas flows.
Spatiotemporal Permutation Entropy as a Measure for Complexity of Cardiac Arrhythmia
NASA Astrophysics Data System (ADS)
Schlemmer, Alexander; Berg, Sebastian; Lilienkamp, Thomas; Luther, Stefan; Parlitz, Ulrich
2018-05-01
Permutation entropy (PE) is a robust quantity for measuring the complexity of time series. In the cardiac community it is predominantly used in the context of electrocardiogram (ECG) signal analysis for diagnoses and predictions with a major application found in heart rate variability parameters. In this article we are combining spatial and temporal PE to form a spatiotemporal PE that captures both, complexity of spatial structures and temporal complexity at the same time. We demonstrate that the spatiotemporal PE (STPE) quantifies complexity using two datasets from simulated cardiac arrhythmia and compare it to phase singularity analysis and spatial PE (SPE). These datasets simulate ventricular fibrillation (VF) on a two-dimensional and a three-dimensional medium using the Fenton-Karma model. We show that SPE and STPE are robust against noise and demonstrate its usefulness for extracting complexity features at different spatial scales.
Haspel, Nurit; Geisbrecht, Brian V; Lambris, John; Kavraki, Lydia
2010-03-01
We present a novel multi-level methodology to explore and characterize the low energy landscape and the thermodynamics of proteins. Traditional conformational search methods typically explore only a small portion of the conformational space of proteins and are hard to apply to large proteins due to the large amount of calculations required. In our multi-scale approach, we first provide an initial characterization of the equilibrium state ensemble of a protein using an efficient computational conformational sampling method. We then enrich the obtained ensemble by performing short Molecular Dynamics (MD) simulations on selected conformations from the ensembles as starting points. To facilitate the analysis of the results, we project the resulting conformations on a low-dimensional landscape to efficiently focus on important interactions and examine low energy regions. This methodology provides a more extensive sampling of the low energy landscape than an MD simulation starting from a single crystal structure as it explores multiple trajectories of the protein. This enables us to obtain a broader view of the dynamics of proteins and it can help in understanding complex binding, improving docking results and more. In this work, we apply the methodology to provide an extensive characterization of the bound complexes of the C3d fragment of human Complement component C3 and one of its powerful bacterial inhibitors, the inhibitory domain of Staphylococcus aureus extra-cellular fibrinogen-binding domain (Efb-C) and two of its mutants. We characterize several important interactions along the binding interface and define low free energy regions in the three complexes. Proteins 2010. (c) 2009 Wiley-Liss, Inc.
Sequence co-evolution gives 3D contacts and structures of protein complexes
Hopf, Thomas A; Schärfe, Charlotta P I; Rodrigues, João P G L M; Green, Anna G; Kohlbacher, Oliver; Sander, Chris; Bonvin, Alexandre M J J; Marks, Debora S
2014-01-01
Protein–protein interactions are fundamental to many biological processes. Experimental screens have identified tens of thousands of interactions, and structural biology has provided detailed functional insight for select 3D protein complexes. An alternative rich source of information about protein interactions is the evolutionary sequence record. Building on earlier work, we show that analysis of correlated evolutionary sequence changes across proteins identifies residues that are close in space with sufficient accuracy to determine the three-dimensional structure of the protein complexes. We evaluate prediction performance in blinded tests on 76 complexes of known 3D structure, predict protein–protein contacts in 32 complexes of unknown structure, and demonstrate how evolutionary couplings can be used to distinguish between interacting and non-interacting protein pairs in a large complex. With the current growth of sequences, we expect that the method can be generalized to genome-wide elucidation of protein–protein interaction networks and used for interaction predictions at residue resolution. DOI: http://dx.doi.org/10.7554/eLife.03430.001 PMID:25255213
NASA Astrophysics Data System (ADS)
Choi, W. H.; Koh, H.; Rotenberg, E.; Yeom, H. W.
2007-02-01
Dense Pb overlayers on Si(111) are important as the wetting layer for anomalous Pb island growth as well as for their own complex “devil’s-staircase” phases. The electronic structures of dense Pb overlayers on Si(111) were investigated in detail by angle-resolved photoemission. Among the series of ordered phases found recently above one monolayer, the low-coverage 7×3 and the high-coverage 14×3 phases are studied; they are well ordered and form reproducibly in large areas. The band dispersions and Fermi surfaces of the two-dimensional (2D) electronic states of these overlayers are mapped out. A number of metallic surface-state bands are identified for both phases with complex Fermi contours. The basic features of the observed Fermi contours can be explained by overlapping 2D free-electron-like Fermi circles. This analysis reveals that the 2D electrons near the Fermi level of the 7×3 and 14×3 phases are mainly governed by strong 1×1 and 3×3 potentials, respectively. The origins of the 2D electronic states and their apparent Fermi surface shapes are discussed based on recent structure models.
Dhifaoui, Selma; Harhouri, Wafa; Bujacz, Anna; Nasri, Habib
2016-01-01
In the title compound, [Fe(II)(C44H24Cl4N4)(C6H5CH2NH2)2]·C6H14 or [Fe(II)(TPP-Cl)(BzNH2)2]·n-hexane [where TPP-Cl and BzNH2 are 5,10,15,20-tetra-kis-(4-chloro-phen-yl)porphyrinate and benzyl-amine ligands, respectively], the Fe(II) cation lies on an inversion centre and is octa-hedrally coordinated by the four pyrrole N atoms of the porphyrin ligand in the equatorial plane and by two amine N atoms of the benzyl-amine ligand in the axial sites. The crystal structure also contains one inversion-symmetric n-hexane solvent mol-ecule per complex mol-ecule. The average Fe-Npyrrole bond length [1.994 (3) Å] indicates a low-spin complex. The crystal packing is sustained by N-H⋯Cl and C-H⋯Cl hydrogen-bonding inter-actions and by C-H⋯π inter-molecular inter-actions, leading to a three-dimensional network structure.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chen, Yong-Qiang, E-mail: chenjzxy@126.com; Tian, Yuan
2017-03-15
Three Pb(II) complexes ([Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]·H{sub 2}O){sub n} (1), ([Pb{sub 4}(BOABA){sub 2}(µ{sub 4}-O)(H{sub 2}O){sub 2}]·H{sub 2}O){sub n} (2), and [Pb{sub 3}(BOABA){sub 2}(H{sub 2}O)]{sub n} (3) (H{sub 3}BOABA=3,5-bis-oxyacetate-benzoic acid) were obtained under the same reaction systems with different temperatures. Complexes 1 and 2 are two dimensional (2D) networks based on Pb-BOABA chains and Pb{sub 4}(µ{sub 4}-O)(COO){sub 6} SBUs, respectively. Complex 3 presents an interesting three dimensional (3D) framework, was obtained by increasing the reaction temperature. Structural transition of the crystallization products is largely dependent on the reaction temperature. Moreover, the fluorescence properties of complexes 1–3 have been investigated. - Graphicalmore » abstract: Three Pb(II) coordination polymers were obtained under the same reaction systems with different temperatures. Both of complexes 1 and 2 are 2D network. 3 presents a 3D framework based on Pb–O–C rods SBUs. The 2D to 3D structures transition between three complexes was achieved successfully by temperature control. - Highlights: • Three Pb(II) complexes were obtained under the same reaction systems with different temperatures. • Structural transition of the crystallization products is largely dependent on the reaction temperature. • The luminescence properties studies reveal that three complexes exhibit yellow fluorescence emission behavior, which might be good candidates for obtaining photoluminescent materials.« less
Dagil, Robert; O'Shea, Charlotte; Nykjær, Anders; Bonvin, Alexandre M. J. J.; Kragelund, Birthe B.
2013-01-01
Gentamicin is an aminoglycoside widely used in treatments of, in particular, enterococcal, mycobacterial, and severe Gram-negative bacterial infections. Large doses of gentamicin cause nephrotoxicity and ototoxicity, entering the cell via the receptor megalin. Until now, no structural information has been available to describe the interaction with gentamicin in atomic detail, and neither have any three-dimensional structures of domains from the human megalin receptor been solved. To address this gap in our knowledge, we have solved the NMR structure of the 10th complement type repeat of human megalin and investigated its interaction with gentamicin. Using NMR titration data in HADDOCK, we have generated a three-dimensional model describing the complex between megalin and gentamicin. Gentamicin binds to megalin with low affinity and exploits the common ligand binding motif previously described (Jensen, G. A., Andersen, O. M., Bonvin, A. M., Bjerrum-Bohr, I., Etzerodt, M., Thogersen, H. C., O'Shea, C., Poulsen, F. M., and Kragelund, B. B. (2006) J. Mol. Biol. 362, 700–716) utilizing the indole side chain of Trp-1126 and the negatively charged residues Asp-1129, Asp-1131, and Asp-1133. Binding to megalin is highly similar to gentamicin binding to calreticulin. We discuss the impact of this novel insight for the future structure-based design of gentamicin antagonists. PMID:23275343
Zhang, Lu; Li, Dongyue; Luo, Shuqian
2011-02-25
Early detection of lung cancer is known to improve the chances of successful treatment. However, lungs are soft tissues with complex three-dimensional configuration. Conventional X-ray imaging is based purely on absorption resulting in very low contrast when imaging soft tissues without contrast agents. It is difficult to obtain adequate information of lung lesions from conventional X-ray imaging. In this study, a recently emerged imaging technique, in-line X-ray phase contrast imaging (IL-XPCI) was used. This powerful technique enabled high-resolution investigations of soft tissues without contrast agents. We applied IL-XPCI to observe the lungs in an intact mouse for the purpose of defining quantitatively the micro-structures in lung. The three-dimensional model of the lung was successfully established, which provided an excellent view of lung airways. We highlighted the use of IL-XPCI in the visualization and assessment of alveoli which had rarely been studied in three dimensions (3D). The precise view of individual alveolus was achieved. The morphological parameters, such as diameter and alveolar surface area were measured. These parameters were of great importance in the diagnosis of diseases related to alveolus and alveolar scar. Our results indicated that IL-XPCI had the ability to represent complex anatomical structures in lung. This offered a new perspective on the diagnosis of respiratory disease and may guide future work in the study of respiratory mechanism on the alveoli level.
(PS)2: protein structure prediction server version 3.0.
Huang, Tsun-Tsao; Hwang, Jenn-Kang; Chen, Chu-Huang; Chu, Chih-Sheng; Lee, Chi-Wen; Chen, Chih-Chieh
2015-07-01
Protein complexes are involved in many biological processes. Examining coupling between subunits of a complex would be useful to understand the molecular basis of protein function. Here, our updated (PS)(2) web server predicts the three-dimensional structures of protein complexes based on comparative modeling; furthermore, this server examines the coupling between subunits of the predicted complex by combining structural and evolutionary considerations. The predicted complex structure could be indicated and visualized by Java-based 3D graphics viewers and the structural and evolutionary profiles are shown and compared chain-by-chain. For each subunit, considerations with or without the packing contribution of other subunits cause the differences in similarities between structural and evolutionary profiles, and these differences imply which form, complex or monomeric, is preferred in the biological condition for the subunit. We believe that the (PS)(2) server would be a useful tool for biologists who are interested not only in the structures of protein complexes but also in the coupling between subunits of the complexes. The (PS)(2) is freely available at http://ps2v3.life.nctu.edu.tw/. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.
Low voltage electrowetting lenticular lens by using multilayer dielectric structure
NASA Astrophysics Data System (ADS)
Lee, Junsik; Kim, Junoh; Kim, Cheoljoong; Shin, Dooseub; Koo, Gyohyun; Sim, Jee Hoon; Won, Yong Hyub
2017-02-01
Lenticular type multi-view display is one of the most popular ways for implementing three dimensional display. This method has a simple structure and exhibits a high luminance. However, fabricating the lenticular lens is difficult because it requires optically complex calculations. 2D-3D conversion is also impossible due to the fixed shape of the lenticular lens. Electrowetting based liquid lenticular lens has a simple fabrication process compared to the solid lenticular lens and the focal length of the liquid lenticular lens can be changed by applying the voltage. 3D and 2D images can be observed with a convex and a flat lens state respectively. Despite these advantages, the electrowetting based liquid lenticular lens demands high driving voltage and low breakdown voltage with a single dielectric layer structure. A certain degree of thickness of the dielectric layer is essential for a uniform operation and a low degradation over time. This paper presents multilayer dielectric structure which results in low driving voltage and the enhanced dielectric breakdown. Aluminum oxide (Al2O3), silicon oxide (SiO2) and parylene C were selected as the multilayer insulators. The total thickness of the dielectric layer of all samples was the same. This method using the multilayer dielectric structure can achieve the lower operating voltage than when using the single dielectric layer. We compared the liquid lenticular lens with three kinds of the multilayer dielectric structure to one with the parylene C single dielectric layer in regard to operational characteristics such as the driving voltage and the dielectric breakdown.
Programmable self-assembly of three-dimensional nanostructures from 10,000 unique components
NASA Astrophysics Data System (ADS)
Ong, Luvena L.; Hanikel, Nikita; Yaghi, Omar K.; Grun, Casey; Strauss, Maximilian T.; Bron, Patrick; Lai-Kee-Him, Josephine; Schueder, Florian; Wang, Bei; Wang, Pengfei; Kishi, Jocelyn Y.; Myhrvold, Cameron; Zhu, Allen; Jungmann, Ralf; Bellot, Gaetan; Ke, Yonggang; Yin, Peng
2017-12-01
Nucleic acids (DNA and RNA) are widely used to construct nanometre-scale structures with ever increasing complexity, with possible application in fields such as structural biology, biophysics, synthetic biology and photonics. The nanostructures are formed through one-pot self-assembly, with early kilodalton-scale examples containing typically tens of unique DNA strands. The introduction of DNA origami, which uses many staple strands to fold one long scaffold strand into a desired structure, has provided access to megadalton-scale nanostructures that contain hundreds of unique DNA strands. Even larger DNA origami structures are possible, but manufacturing and manipulating an increasingly long scaffold strand remains a challenge. An alternative and more readily scalable approach involves the assembly of DNA bricks, which each consist of four short binding domains arranged so that the bricks can interlock. This approach does not require a scaffold; instead, the short DNA brick strands self-assemble according to specific inter-brick interactions. First-generation bricks used to create three-dimensional structures are 32 nucleotides long, consisting of four eight-nucleotide binding domains. Protocols have been designed to direct the assembly of hundreds of distinct bricks into well formed structures, but attempts to create larger structures have encountered practical challenges and had limited success. Here we show that DNA bricks with longer, 13-nucleotide binding domains make it possible to self-assemble 0.1-1-gigadalton, three-dimensional nanostructures from tens of thousands of unique components, including a 0.5-gigadalton cuboid containing about 30,000 unique bricks and a 1-gigadalton rotationally symmetric tetramer. We also assembled a cuboid that contains around 10,000 bricks and about 20,000 uniquely addressable, 13-base-pair ‘voxels’ that serves as a molecular canvas for three-dimensional sculpting. Complex, user-prescribed, three-dimensional cavities can be produced within this molecular canvas, enabling the creation of shapes such as letters, a helicoid and a teddy bear. We anticipate that with further optimization of structure design, strand synthesis and assembly procedure even larger structures could be accessible, which could be useful for applications such as positioning functional components.
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M; Graham, Matthew J; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z D
2010-05-28
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with beta-cyclodextrin (beta-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state (13)C NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the beta-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in (13)C solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after beta-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of beta-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that beta-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using (1)H NMR, and a 3:1 (PO unit to beta-CD) was found for all inclusion complexes, which indicated that the number of threaded beta-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the beta-CD in the inclusion complex formed a channel-like structure that is different from the pure beta-CD crystal structure.
NASA Astrophysics Data System (ADS)
Tsai, Chi-Chun; Zhang, Wen-Bin; Wang, Chien-Lung; Van Horn, Ryan M.; Graham, Matthew J.; Huang, Jing; Chen, Yongming; Guo, Mingming; Cheng, Stephen Z. D.
2010-05-01
A series of inclusion complexes of poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ethylene oxide) (PEO-b-PPO-b-PEO) with β-cyclodextrin (β-CD) was prepared. Their formation, structure, and dynamics were investigated by solution two-dimensional rotating-frame Overhauser effect spectroscopy (2D ROESY) and one-dimensional (1D) and 2D solid-state C13 NMR. The inclusion complexes between the PEO-b-PPO-b-PEO copolymers and the β-CDs were formed in aqueous solution and detected by 2D ROESY. The high efficiency of cross polarization and spin diffusion experiments in C13 solid-state NMR showed that the mobility of the PPO blocks dramatically decreases after β-CD complexation, indicating that they are selectively incorporated onto the PPO blocks. The hydrophobic cavities of β-CD restrict the PPO block mobility, which is evidence of the formation of inclusion complexes in the solid state. The 2D wide-line separation NMR experiments suggested that β-CDs only thread onto the PPO blocks while forming the inclusion complexes. The stoichiometry of inclusion complexes was studied using H1 NMR, and a 3:1 (PO unit to β-CD) was found for all inclusion complexes, which indicated that the number of threaded β-CDs was only dependent on the molecular weight of the PPO blocks. 1D wide angle x-ray diffraction studies demonstrated that the β-CD in the inclusion complex formed a channel-like structure that is different from the pure β-CD crystal structure.
Modeling and simulation of high dimensional stochastic multiscale PDE systems at the exascale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zabaras, Nicolas J.
2016-11-08
Predictive Modeling of multiscale and Multiphysics systems requires accurate data driven characterization of the input uncertainties, and understanding of how they propagate across scales and alter the final solution. This project develops a rigorous mathematical framework and scalable uncertainty quantification algorithms to efficiently construct realistic low dimensional input models, and surrogate low complexity systems for the analysis, design, and control of physical systems represented by multiscale stochastic PDEs. The work can be applied to many areas including physical and biological processes, from climate modeling to systems biology.
Semi-automatic mapping for identifying complex geobodies in seismic images
NASA Astrophysics Data System (ADS)
Domínguez-C, Raymundo; Romero-Salcedo, Manuel; Velasquillo-Martínez, Luis G.; Shemeretov, Leonid
2017-03-01
Seismic images are composed of positive and negative seismic wave traces with different amplitudes (Robein 2010 Seismic Imaging: A Review of the Techniques, their Principles, Merits and Limitations (Houten: EAGE)). The association of these amplitudes together with a color palette forms complex visual patterns. The color intensity of such patterns is directly related to impedance contrasts: the higher the contrast, the higher the color intensity. Generally speaking, low impedance contrasts are depicted with low tone colors, creating zones with different patterns whose features are not evident for a 3D automated mapping option available on commercial software. In this work, a workflow for a semi-automatic mapping of seismic images focused on those areas with low-intensity colored zones that may be associated with geobodies of petroleum interest is proposed. The CIE L*A*B* color space was used to perform the seismic image processing, which helped find small but significant differences between pixel tones. This process generated binary masks that bound color regions to low-intensity colors. The three-dimensional-mask projection allowed the construction of 3D structures for such zones (geobodies). The proposed method was applied to a set of digital images from a seismic cube and tested on four representative study cases. The obtained results are encouraging because interesting geobodies are obtained with a minimum of information.
Shoji, Mitsuo; Isobe, Hiroshi; Tanaka, Ayako; Fukushima, Yoshimasa; Kawakami, Keisuke; Umena, Yasufumi; Kamiya, Nobuo; Nakajima, Takahito
2017-01-01
Abstract Tanaka et al. (J. Am. Chem. Soc., 2017, 139, 1718) recently reported the three‐dimensional (3D) structure of the oxygen evolving complex (OEC) of photosystem II (PSII) by X‐ray diffraction (XRD) using extremely low X‐ray doses of 0.03 and 0.12 MGy. They observed two different 3D structures of the CaMn4O5 cluster with different hydrogen‐bonding interactions in the S1 state of OEC keeping the surrounding polypeptide frameworks of PSII the same. Our Jahn–Teller (JT) deformation formula based on large‐scale quantum mechanics/molecular mechanics (QM/MM) was applied for these low‐dose XRD structures, elucidating important roles of JT effects of the MnIII ion for subtle geometric distortions of the CaMn4O5 cluster in OEC of PSII. The JT deformation formula revealed the similarity between the low‐dose XRD and damage‐free serial femtosecond X‐ray diffraction (SFX) structures of the CaMn4O5 cluster in the dark stable state. The extremely low‐dose XRD structures were not damaged by X‐ray irradiation. Implications of the present results are discussed in relation to recent SFX results and a blue print for the design of artificial photocatalysts for water oxidation. PMID:29577075
Li, Xiaoyan; Hao, Zhongkai; Zhang, Fang; Li, Hexing
2016-05-18
A sodium benzenesulfonate (PhSO3Na)-functionalized reduced graphene oxide was synthesized via a two-step aryl diazonium coupling and subsequent NaCl ion-exchange procedure, which was used as a support to immobilize tris(bipyridine)ruthenium(II) complex (Ru(bpy)3Cl2) by coordination reaction. This elaborated Ru(bpy)3-rGO catalyst exhibited excellent catalytic efficiency in visible-light-driven reductive dehalogenation reactions under mild conditions, even for ary chloride. Meanwhile, it showed the comparable reactivity with the corresponding homogeneous Ru(bpy)3Cl2 catalyst. This high catalytic performance could be attributed to the unique two-dimensional sheet-like structure of Ru(bpy)3-rGO, which efficiently diminished diffusion resistance of the reactants. Meanwhile, the nonconjugated PhSO3Na-linkage between Ru(II) complex and the support and the very low electrical conductivity of the catalyst inhibited energy/electron transfer from Ru(II) complex to rGO support, resulting in the decreased support-induced quenching effect. Furthermore, it could be easily recycled at least five times without significant loss of catalytic reactivity.
Growth and Development of Three-Dimensional Plant Form.
Whitewoods, Christopher D; Coen, Enrico
2017-09-11
Plants can generate a spectacular array of complex shapes, many of which exhibit elaborate curvature in three dimensions, illustrated for example by orchid flowers and pitcher-plant traps. All of these structures arise through differential growth. Recent findings provide fresh mechanistic insights into how regional cell behaviours may lead to tissue deformations, including anisotropies and curvatures, which shape growing volumes and sheets of cells. Here were review our current understanding of how genes, growth, mechanics, and evolution interact to generate diverse structures. We illustrate problems and approaches with the complex three-dimensional trap of the bladderwort, Utricularia gibba, to show how a multidisciplinary approach can be extended to new model systems to understand how diverse plant shapes can develop and evolve. Copyright © 2017 Elsevier Ltd. All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lee, Hyun Jung; McDonnell, Kevin T.; Zelenyuk, Alla
2014-03-01
Although the Euclidean distance does well in measuring data distances within high-dimensional clusters, it does poorly when it comes to gauging inter-cluster distances. This significantly impacts the quality of global, low-dimensional space embedding procedures such as the popular multi-dimensional scaling (MDS) where one can often observe non-intuitive layouts. We were inspired by the perceptual processes evoked in the method of parallel coordinates which enables users to visually aggregate the data by the patterns the polylines exhibit across the dimension axes. We call the path of such a polyline its structure and suggest a metric that captures this structure directly inmore » high-dimensional space. This allows us to better gauge the distances of spatially distant data constellations and so achieve data aggregations in MDS plots that are more cognizant of existing high-dimensional structure similarities. Our MDS plots also exhibit similar visual relationships as the method of parallel coordinates which is often used alongside to visualize the high-dimensional data in raw form. We then cast our metric into a bi-scale framework which distinguishes far-distances from near-distances. The coarser scale uses the structural similarity metric to separate data aggregates obtained by prior classification or clustering, while the finer scale employs the appropriate Euclidean distance.« less
NASA Astrophysics Data System (ADS)
Parker, Robert L.; Booker, John R.
1996-12-01
The properties of the log of the admittance in the complex frequency plane lead to an integral representation for one-dimensional magnetotelluric (MT) apparent resistivity and impedance phase similar to that found previously for complex admittance. The inverse problem of finding a one-dimensional model for MT data can then be solved using the same techniques as for complex admittance, with similar results. For instance, the one-dimensional conductivity model that minimizes the χ2 misfit statistic for noisy apparent resistivity and phase is a series of delta functions. One of the most important applications of the delta function solution to the inverse problem for complex admittance has been answering the question of whether or not a given set of measurements is consistent with the modeling assumption of one-dimensionality. The new solution allows this test to be performed directly on standard MT data. Recently, it has been shown that induction data must pass the same one-dimensional consistency test if they correspond to the polarization in which the electric field is perpendicular to the strike of two-dimensional structure. This greatly magnifies the utility of the consistency test. The new solution also allows one to compute the upper and lower bounds permitted on phase or apparent resistivity at any frequency given a collection of MT data. Applications include testing the mutual consistency of apparent resistivity and phase data and placing bounds on missing phase or resistivity data. Examples presented demonstrate detection and correction of equipment and processing problems and verification of compatibility with two-dimensional B-polarization for MT data after impedance tensor decomposition and for continuous electromagnetic profiling data.
Production and perception rules underlying visual patterns: effects of symmetry and hierarchy.
Westphal-Fitch, Gesche; Huber, Ludwig; Gómez, Juan Carlos; Fitch, W Tecumseh
2012-07-19
Formal language theory has been extended to two-dimensional patterns, but little is known about two-dimensional pattern perception. We first examined spontaneous two-dimensional visual pattern production by humans, gathered using a novel touch screen approach. Both spontaneous creative production and subsequent aesthetic ratings show that humans prefer ordered, symmetrical patterns over random patterns. We then further explored pattern-parsing abilities in different human groups, and compared them with pigeons. We generated visual plane patterns based on rules varying in complexity. All human groups tested, including children and individuals diagnosed with autism spectrum disorder (ASD), were able to detect violations of all production rules tested. Our ASD participants detected pattern violations with the same speed and accuracy as matched controls. Children's ability to detect violations of a relatively complex rotational rule correlated with age, whereas their ability to detect violations of a simple translational rule did not. By contrast, even with extensive training, pigeons were unable to detect orientation-based structural violations, suggesting that, unlike humans, they did not learn the underlying structural rules. Visual two-dimensional patterns offer a promising new formally-grounded way to investigate pattern production and perception in general, widely applicable across species and age groups.
Production and perception rules underlying visual patterns: effects of symmetry and hierarchy
Westphal-Fitch, Gesche; Huber, Ludwig; Gómez, Juan Carlos; Fitch, W. Tecumseh
2012-01-01
Formal language theory has been extended to two-dimensional patterns, but little is known about two-dimensional pattern perception. We first examined spontaneous two-dimensional visual pattern production by humans, gathered using a novel touch screen approach. Both spontaneous creative production and subsequent aesthetic ratings show that humans prefer ordered, symmetrical patterns over random patterns. We then further explored pattern-parsing abilities in different human groups, and compared them with pigeons. We generated visual plane patterns based on rules varying in complexity. All human groups tested, including children and individuals diagnosed with autism spectrum disorder (ASD), were able to detect violations of all production rules tested. Our ASD participants detected pattern violations with the same speed and accuracy as matched controls. Children's ability to detect violations of a relatively complex rotational rule correlated with age, whereas their ability to detect violations of a simple translational rule did not. By contrast, even with extensive training, pigeons were unable to detect orientation-based structural violations, suggesting that, unlike humans, they did not learn the underlying structural rules. Visual two-dimensional patterns offer a promising new formally-grounded way to investigate pattern production and perception in general, widely applicable across species and age groups. PMID:22688636
Image processing for cryogenic transmission electron microscopy of symmetry-mismatched complexes.
Huiskonen, Juha T
2018-02-08
Cryogenic transmission electron microscopy (cryo-TEM) is a high-resolution biological imaging method, whereby biological samples, such as purified proteins, macromolecular complexes, viral particles, organelles and cells, are embedded in vitreous ice preserving their native structures. Due to sensitivity of biological materials to the electron beam of the microscope, only relatively low electron doses can be applied during imaging. As a result, the signal arising from the structure of interest is overpowered by noise in the images. To increase the signal-to-noise ratio, different image processing-based strategies that aim at coherent averaging of signal have been devised. In such strategies, images are generally assumed to arise from multiple identical copies of the structure. Prior to averaging, the images must be grouped according to the view of the structure they represent and images representing the same view must be simultaneously aligned relatively to each other. For computational reconstruction of the three-dimensional structure, images must contain different views of the original structure. Structures with multiple symmetry-related substructures are advantageous in averaging approaches because each image provides multiple views of the substructures. However, the symmetry assumption may be valid for only parts of the structure, leading to incoherent averaging of the other parts. Several image processing approaches have been adapted to tackle symmetry-mismatched substructures with increasing success. Such structures are ubiquitous in nature and further computational method development is needed to understanding their biological functions. ©2018 The Author(s).
Quantitative three-dimensional low-speed wake surveys
NASA Technical Reports Server (NTRS)
Brune, G. W.
1992-01-01
Theoretical and practical aspects of conducting three-dimensional wake measurements in large wind tunnels are reviewed with emphasis on applications in low-speed aerodynamics. Such quantitative wake surveys furnish separate values for the components of drag, such as profile drag and induced drag, but also measure lift without the use of a balance. In addition to global data, details of the wake flowfield as well as spanwise distributions of lift and drag are obtained. The paper demonstrates the value of this measurement technique using data from wake measurements conducted by Boeing on a variety of low-speed configurations including the complex high-lift system of a transport aircraft.
Effects of sentence-structure complexity on speech initiation time and disfluency.
Tsiamtsiouris, Jim; Cairns, Helen Smith
2013-03-01
There is general agreement that stuttering is caused by a variety of factors, and language formulation and speech motor control are two important factors that have been implicated in previous research, yet the exact nature of their effects is still not well understood. Our goal was to test the hypothesis that sentences of high structural complexity would incur greater processing costs than sentences of low structural complexity and these costs would be higher for adults who stutter than for adults who do not stutter. Fluent adults and adults who stutter participated in an experiment that required memorization of a sentence classified as low or high structural complexity followed by production of that sentence upon a visual cue. Both groups of speakers initiated most sentences significantly faster in the low structural complexity condition than in the high structural complexity condition. Adults who stutter were over-all slower in speech initiation than were fluent speakers, but there were no significant interactions between complexity and group. However, adults who stutter produced significantly more disfluencies in sentences of high structural complexity than in those of low complexity. After reading this article, the learner will be able to: (a) identify integral parts of all well-known models of adult sentence production; (b) summarize the way that sentence structure might negatively influence the speech production processes; (c) discuss whether sentence structure influences speech initiation time and disfluencies. Copyright © 2012 Elsevier Inc. All rights reserved.
Farley Three-Dimensional-Braiding Machine
NASA Technical Reports Server (NTRS)
Farley, Gary L.
1991-01-01
Process and device known as Farley three-dimensional-braiding machine conceived to fabricate dry continuous fiber-reinforced preforms of complex three-dimensional shapes for subsequent processing into composite structures. Robotic fiber supply dispenses yarn as it traverses braiding surface. Combines many attributes of weaving and braiding processes with other attributes and capabilities. Other applications include decorative cloths, rugs, and other domestic textiles. Concept could lead to large variety of fiber layups and to entirely new products as well as new fiber-reinforcing applications.
Three-dimensional co-culture process
NASA Technical Reports Server (NTRS)
Wolf, David A. (Inventor); Goodwin, Thomas J. (Inventor)
1992-01-01
The present invention relates to a 3-dimensional co-culture process, more particularly to methods or co-culturing at least two types of cells in a culture environment, either in space or in unit gravity, with minimum shear stress, freedom for 3-dimensional spatial orientation of the suspended particles and localization of particles with differing or similar sedimentation properties in a similar spatial region to form 3-dimensional tissue-like structures. Several examples of multicellular 3-dimensional experiences are included. The protocol and procedure are also set forth. The process allows simultaneous culture of multiple cell types and supporting substrates in a manner which does not disrupt the 3-dimensional spatial orientation of these components. The co-cultured cells cause a mutual induction effect which mimics the natural hormonal signals and cell interactions found in the intact organism. This causes the tissues to differentiate and form higher 3-dimensional structures such as glands, junctional complexes polypoid geometries, and microvilli which represent the corresponding in-vitro structures to a greater degree than when the cell types are cultured individually or by conventional processes. This process was clearly demonstrated for the case of two epithelial derived colon cancer lines, each co-cultured with normal human fibroblasts and with microcarrier bead substrates. The results clearly demonstrate increased 3-dimensional tissue-like structure and biochemical evidence of an increased differentiation state. With the present invention a variety of cells may be co-cultured to produce tissue which has 3-dimensionality and has some of the characteristics of in-vitro tissue. The process provides enhanced 3-dimensional tissue which create a multicellular organoid differentiation model.
Evaluation of Deep Learning Representations of Spatial Storm Data
NASA Astrophysics Data System (ADS)
Gagne, D. J., II; Haupt, S. E.; Nychka, D. W.
2017-12-01
The spatial structure of a severe thunderstorm and its surrounding environment provide useful information about the potential for severe weather hazards, including tornadoes, hail, and high winds. Statistics computed over the area of a storm or from the pre-storm environment can provide descriptive information but fail to capture structural information. Because the storm environment is a complex, high-dimensional space, identifying methods to encode important spatial storm information in a low-dimensional form should aid analysis and prediction of storms by statistical and machine learning models. Principal component analysis (PCA), a more traditional approach, transforms high-dimensional data into a set of linearly uncorrelated, orthogonal components ordered by the amount of variance explained by each component. The burgeoning field of deep learning offers two potential approaches to this problem. Convolutional Neural Networks are a supervised learning method for transforming spatial data into a hierarchical set of feature maps that correspond with relevant combinations of spatial structures in the data. Generative Adversarial Networks (GANs) are an unsupervised deep learning model that uses two neural networks trained against each other to produce encoded representations of spatial data. These different spatial encoding methods were evaluated on the prediction of severe hail for a large set of storm patches extracted from the NCAR convection-allowing ensemble. Each storm patch contains information about storm structure and the near-storm environment. Logistic regression and random forest models were trained using the PCA and GAN encodings of the storm data and were compared against the predictions from a convolutional neural network. All methods showed skill over climatology at predicting the probability of severe hail. However, the verification scores among the methods were very similar and the predictions were highly correlated. Further evaluations are being performed to determine how the choice of input variables affects the results.
Passive micromixers with dual helical channels
NASA Astrophysics Data System (ADS)
Liu, Keyin; Yang, Qing; Chen, Feng; Zhao, Yulong; Meng, Xiangwei; Shan, Chao; Li, Yanyang
2015-02-01
In this study, a three-dimensional (3D) micromixer with cross-linked double helical microchannels is studied to achieve rapid mixing of fluids at low Reynolds numbers (Re). The 3D micromixer takes full advantages of the chaotic advection model with helical microchannels; meanwhile, the proposed crossing structure of double helical microchannels enables two flow patterns of repelling flow and straight flow in the fluids to promote the agitation effect. The complex 3D micromixer is realized by an improved femtosecond laser wet etching (FLWE) technology embedded in fused silica. The mixing results show that cross-linked double helical microchannels can achieve excellent mixing within 3 cycles (300 μm) over a wide range of low Re (1.5×10-3~600), which compare well with the conventional passive micromixers. This highly-effective micromixer is hoped to contribute to the integration of microfluidic systems.
Numerical studies of incompressible flow around delta and double-delta wings
NASA Technical Reports Server (NTRS)
Krause, E.; Liu, C. H.
1989-01-01
The subject has been jointly investigated at NASA Langley Research Center and the Aerodynamisches Institut of the RWTH Aachen over a substantial period. The aim of this investigation has been to develop numerical integration procedures for the Navier-Stokes equations - particularly for incompressible three-dimensional viscous flows about simple and double delta wings - and to study the low speed flow behavior, with its complex vortex structures on the leeward side of the wing. The low speed flight regime poses unusual problems because high incidence flight conditions may, for example, encounter symmetric and asymmetric vortex breakdown. Because of the many difficulties to be expected in solving the problem, it was divided into two - analysis of the flow without vortex breakdown and analysis of the breakdown of isolated vortices. The major results obtained so far on the two topics are briefly described.
Generating Neuron Geometries for Detailed Three-Dimensional Simulations Using AnaMorph.
Mörschel, Konstantin; Breit, Markus; Queisser, Gillian
2017-07-01
Generating realistic and complex computational domains for numerical simulations is often a challenging task. In neuroscientific research, more and more one-dimensional morphology data is becoming publicly available through databases. This data, however, only contains point and diameter information not suitable for detailed three-dimensional simulations. In this paper, we present a novel framework, AnaMorph, that automatically generates water-tight surface meshes from one-dimensional point-diameter files. These surface triangulations can be used to simulate the electrical and biochemical behavior of the underlying cell. In addition to morphology generation, AnaMorph also performs quality control of the semi-automatically reconstructed cells coming from anatomical reconstructions. This toolset allows an extension from the classical dimension-reduced modeling and simulation of cellular processes to a full three-dimensional and morphology-including method, leading to novel structure-function interplay studies in the medical field. The developed numerical methods can further be employed in other areas where complex geometries are an essential component of numerical simulations.
Large-scale structure of randomly jammed spheres
NASA Astrophysics Data System (ADS)
Ikeda, Atsushi; Berthier, Ludovic; Parisi, Giorgio
2017-05-01
We numerically analyze the density field of three-dimensional randomly jammed packings of monodisperse soft frictionless spherical particles, paying special attention to fluctuations occurring at large length scales. We study in detail the two-point static structure factor at low wave vectors in Fourier space. We also analyze the nature of the density field in real space by studying the large-distance behavior of the two-point pair correlation function, of density fluctuations in subsystems of increasing sizes, and of the direct correlation function. We show that such real space analysis can be greatly improved by introducing a coarse-grained density field to disentangle genuine large-scale correlations from purely local effects. Our results confirm that both Fourier and real space signatures of vanishing density fluctuations at large scale are absent, indicating that randomly jammed packings are not hyperuniform. In addition, we establish that the pair correlation function displays a surprisingly complex structure at large distances, which is however not compatible with the long-range negative correlation of hyperuniform systems but fully compatible with an analytic form for the structure factor. This implies that the direct correlation function is short ranged, as we also demonstrate directly. Our results reveal that density fluctuations in jammed packings do not follow the behavior expected for random hyperuniform materials, but display instead a more complex behavior.
On Galactic Density Modeling in the Presence of Dust Extinction
NASA Astrophysics Data System (ADS)
Bovy, Jo; Rix, Hans-Walter; Green, Gregory M.; Schlafly, Edward F.; Finkbeiner, Douglas P.
2016-02-01
Inferences about the spatial density or phase-space structure of stellar populations in the Milky Way require a precise determination of the effective survey volume. The volume observed by surveys such as Gaia or near-infrared spectroscopic surveys, which have good coverage of the Galactic midplane region, is highly complex because of the abundant small-scale structure in the three-dimensional interstellar dust extinction. We introduce a novel framework for analyzing the importance of small-scale structure in the extinction. This formalism demonstrates that the spatially complex effect of extinction on the selection function of a pencil-beam or contiguous sky survey is equivalent to a low-pass filtering of the extinction-affected selection function with the smooth density field. We find that the angular resolution of current 3D extinction maps is sufficient for analyzing Gaia sub-samples of millions of stars. However, the current distance resolution is inadequate and needs to be improved by an order of magnitude, especially in the inner Galaxy. We also present a practical and efficient method for properly taking the effect of extinction into account in analyses of Galactic structure through an effective selection function. We illustrate its use with the selection function of red-clump stars in APOGEE using and comparing a variety of current 3D extinction maps.
NASA Astrophysics Data System (ADS)
Wu, Zi Liang; Moshe, Michael; Greener, Jesse; Therien-Aubin, Heloise; Nie, Zhihong; Sharon, Eran; Kumacheva, Eugenia
2013-03-01
Although Nature has always been a common source of inspiration in the development of artificial materials, only recently has the ability of man-made materials to produce complex three-dimensional (3D) structures from two-dimensional sheets been explored. Here we present a new approach to the self-shaping of soft matter that mimics fibrous plant tissues by exploiting small-scale variations in the internal stresses to form three-dimensional morphologies. We design single-layer hydrogel sheets with chemically distinct, fibre-like regions that exhibit differential shrinkage and elastic moduli under the application of external stimulus. Using a planar-to-helical three-dimensional shape transformation as an example, we explore the relation between the internal architecture of the sheets and their transition to cylindrical and conical helices with specific structural characteristics. The ability to engineer multiple three-dimensional shape transformations determined by small-scale patterns in a hydrogel sheet represents a promising step in the development of programmable soft matter.
Carey, Tian; Cacovich, Stefania; Divitini, Giorgio; Ren, Jiesheng; Mansouri, Aida; Kim, Jong M; Wang, Chaoxia; Ducati, Caterina; Sordan, Roman; Torrisi, Felice
2017-10-31
Fully printed wearable electronics based on two-dimensional (2D) material heterojunction structures also known as heterostructures, such as field-effect transistors, require robust and reproducible printed multi-layer stacks consisting of active channel, dielectric and conductive contact layers. Solution processing of graphite and other layered materials provides low-cost inks enabling printed electronic devices, for example by inkjet printing. However, the limited quality of the 2D-material inks, the complexity of the layered arrangement, and the lack of a dielectric 2D-material ink able to operate at room temperature, under strain and after several washing cycles has impeded the fabrication of electronic devices on textile with fully printed 2D heterostructures. Here we demonstrate fully inkjet-printed 2D-material active heterostructures with graphene and hexagonal-boron nitride (h-BN) inks, and use them to fabricate all inkjet-printed flexible and washable field-effect transistors on textile, reaching a field-effect mobility of ~91 cm 2 V -1 s -1 , at low voltage (<5 V). This enables fully inkjet-printed electronic circuits, such as reprogrammable volatile memory cells, complementary inverters and OR logic gates.
Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution.
Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M Eugenia; Molteni, Carla
2017-04-14
The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.
Mapping the conformational free energy of aspartic acid in the gas phase and in aqueous solution
NASA Astrophysics Data System (ADS)
Comitani, Federico; Rossi, Kevin; Ceriotti, Michele; Sanz, M. Eugenia; Molteni, Carla
2017-04-01
The conformational free energy landscape of aspartic acid, a proteogenic amino acid involved in a wide variety of biological functions, was investigated as an example of the complexity that multiple rotatable bonds produce even in relatively simple molecules. To efficiently explore such a landscape, this molecule was studied in the neutral and zwitterionic forms, in the gas phase and in water solution, by means of molecular dynamics and the enhanced sampling method metadynamics with classical force-fields. Multi-dimensional free energy landscapes were reduced to bi-dimensional maps through the non-linear dimensionality reduction algorithm sketch-map to identify the energetically stable conformers and their interconnection paths. Quantum chemical calculations were then performed on the minimum free energy structures. Our procedure returned the low energy conformations observed experimentally in the gas phase with rotational spectroscopy [M. E. Sanz et al., Phys. Chem. Chem. Phys. 12, 3573 (2010)]. Moreover, it provided information on higher energy conformers not accessible to experiments and on the conformers in water. The comparison between different force-fields and quantum chemical data highlighted the importance of the underlying potential energy surface to accurately capture energy rankings. The combination of force-field based metadynamics, sketch-map analysis, and quantum chemical calculations was able to produce an exhaustive conformational exploration in a range of significant free energies that complements the experimental data. Similar protocols can be applied to larger peptides with complex conformational landscapes and would greatly benefit from the next generation of accurate force-fields.
Discovering Structure in High-Dimensional Data Through Correlation Explanation
2014-12-08
transforming complex data into simpler, more meaningful forms goes under the rubric of representation learning [2] which shares many goals with...Zhivotovsky, and M.W. Feldman. Genetic structure of human populations. Science, 298(5602):2381–2385, 2002. [14] K. Bache and M. Lichman. UCI machine
2D Automatic body-fitted structured mesh generation using advancing extraction method
USDA-ARS?s Scientific Manuscript database
This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...
2D automatic body-fitted structured mesh generation using advancing extraction method
USDA-ARS?s Scientific Manuscript database
This paper presents an automatic mesh generation algorithm for body-fitted structured meshes in Computational Fluids Dynamics (CFD) analysis using the Advancing Extraction Method (AEM). The method is applicable to two-dimensional domains with complex geometries, which have the hierarchical tree-like...
Chromosome structure inside the nucleus.
Swedlow, J R; Agard, D A; Sedat, J W
1993-06-01
Recent in situ three-dimensional structural studies have provided a new model for the 30 nm chromatin fiber. In addition, research during the past year has revealed some of the molecular complexity of non-histone chromosomal proteins. Still to come is the unification of molecular insights with chromosomal architecture.
Harvey, Miguel Angel; Suarez, Sebastián; Zolotarev, Pavel N; Proserpio, Davide M; Baggio, Ricardo
2018-03-01
A nickel(II) coordination complex, bis[2,6-bis(1H-benzimidazol-2-yl-κN 3 )pyridine-κN]nickel(II) sulfate, [Ni(C 19 H 13 N 5 ) 2 ]SO 4 or [Ni(H 2 L) 2 ]SO 4 , having four peripheral tetrahedrally oriented N-H donor units, combines with sulfate bridges to create hydrogen-bonded structures of varied dimensionality. The three crystal structures reported herein in the space groups P2 1 2 1 2 1 , I-4 and Pccn are defined solely by strong charge-assisted N-H...O hydrogen bonds and contain disordered guests (water and dimethylformamide) that vary in size, shape and degree of hydrophilicity. Two of the compounds are channelled solids with three-dimensional structures, while the third is one-dimensional in nature. In spite of their differences, all three present a striking resemblance to the previously reported anhydrous relative [Guo et al. (2011). Chin. J. Inorg. Chem. 27, 1517-1520], which is considered as the reference framework from which all three title compounds are derived. The hydrogen-bonded frameworks are described and compared using crystallographic and topological approaches.
The Numerical Simulation of Time Dependent Flow Structures Over a Natural Gravel Surface.
NASA Astrophysics Data System (ADS)
Hardy, R. J.; Lane, S. N.; Ferguson, R. I.; Parsons, D. R.
2004-05-01
Research undertaken over the last few years has demonstrated the importance of the structure of gravel river beds for understanding the interaction between fluid flow and sediment transport processes. This includes the observation of periodic high-speed fluid wedges interconnected by low-speed flow regions. Our understanding of these flows has been enhanced significantly through a series of laboratory experiments and supported by field observations. However, the potential of high resolution three dimensional Computational Fluid Dynamics (CFD) modeling has yet to be fully developed. This is largely the result of the problems of designing numerically stable meshes for use with complex bed topographies and that Reynolds averaged turbulence schemes are applied. This paper develops two novel techniques for dealing with these issues. The first is the development and validation of a method for representing the complex surface topography of gravel-bed rivers in high resolution three-dimensional computational fluid dynamic models. This is based upon a porosity treatment with a regular structured grid and the application of a porosity modification to the mass conservation equation in which: fully blocked cells are assigned a porosity of zero; fully unblocked cells are assigned a porosity of one; and partly blocked cells are assigned a porosity of between 0 and 1, according to the percentage of the cell volume that is blocked. The second is the application of Large Eddy Simulation (LES) which enables time dependent flow structures to be numerically predicted over the complex bed topographies. The regular structured grid with the embedded porosity algorithm maintains a constant grid cell size throughout the domain implying a constant filter scale for the LES simulation. This enables the prediction of coherent structures, repetitive quasi-cyclic large-scale turbulent motions, over the gravel surface which are of a similar magnitude and frequency to those previously observed in both flume and field studies. These structures are formed by topographic forcing within the domain and are scaled with the flow depth. Finally, this provides the numerical framework for the prediction of sediment transport within a time dependent framework. The turbulent motions make a significant contribution to the turbulent shear stress and the pressure fluctuations which significantly affect the forces acting on the bed and potentially control sediment motion.
Three-dimensional periodic dielectric structures having photonic Dirac points
Bravo-Abad, Jorge; Joannopoulos, John D.; Soljacic, Marin
2015-06-02
The dielectric, three-dimensional photonic materials disclosed herein feature Dirac-like dispersion in quasi-two-dimensional systems. Embodiments include a face-centered cubic (fcc) structure formed by alternating layers of dielectric rods and dielectric slabs patterned with holes on respective triangular lattices. This fcc structure also includes a defect layer, which may comprise either dielectric rods or a dielectric slab with patterned with holes. This defect layer introduces Dirac cone dispersion into the fcc structure's photonic band structure. Examples of these fcc structures enable enhancement of the spontaneous emission coupling efficiency (the .beta.-factor) over large areas, contrary to the conventional wisdom that the .beta.-factor degrades as the system's size increases. These results enable large-area, low-threshold lasers; single-photon sources; quantum information processing devices; and energy harvesting systems.
3D Measurements of coupled freestream turbulence and secondary flow effects on film cooling
NASA Astrophysics Data System (ADS)
Ching, David S.; Xu, Haosen H. A.; Elkins, Christopher J.; Eaton, John K.
2018-06-01
The effect of freestream turbulence on a single round film cooling hole is examined at two turbulence levels of 5 and 8% and compared to a baseline low freestream turbulence case. The hole is inclined at 30° and has length to diameter ratio L/D=4 and unity blowing ratio. Turbulence is generated with grid upstream of the hole in the main channel. The three-dimensional, three-component mean velocity field is acquired with magnetic resonance velocimetry (MRV) and the three-dimensional temperature field is acquired with magnetic resonance thermometry (MRT). The 8% turbulence grid produces weak mean secondary flows in the mainstream (peak crossflow velocities are 7% of U_bulk) which push the jet close to the wall and significantly change the adiabatic effectiveness distribution. By contrast, the 5% grid has a simpler structure and does not produce a measurable secondary flow structure. The grid turbulence causes little change to the temperature field, indicating that the turbulence generated in the shear layers around the jet dominates the freestream turbulence. The results suggest that secondary flows induced by complex turbulence generators may have caused some of the contradictory results in previous works.
Organization of the resting TCR in nanoscale oligomers.
Schamel, Wolfgang W A; Alarcón, Balbino
2013-01-01
Despite the low affinity of the T-cell antigen receptor (TCR) for its peptide/major histocompatibility complex (pMHC) ligand, T cells are very sensitive to their antigens. This paradox can be resolved if we consider that the TCR may be organized into pre-existing oligomers or nanoclusters. Such structures could improve antigen recognition by increasing the functional affinity (avidity) of the TCR-pMHC interaction and by allowing cooperativity between individual TCRs. Up to approximately 20 TCRs become tightly apposed in these nanoclusters, often in a linear manner, and such structures could reflect a relatively generalized phenomenon: the non-random concentration of membrane receptors in specific areas of the plasma membrane known as protein islands. The association of TCRs into nanoclusters can explain the enhanced kinetics of the pMHC-TCR interaction in two dimensional versus three dimensional systems, but also their existence calls for a revision of the TCR triggering models based on pMHC-induced TCR clustering. Interestingly, the B-cell receptor and the FcεRI have also been shown to form nanoclusters, suggesting that the formation of pre-existing receptor oligomers could be widely used in the immune system. © 2012 John Wiley & Sons A/S. Published by Blackwell Publishing Ltd.
Kurata, Ryuichiro; Futaki, Sugiko; Nakano, Itsuko; Fujita, Fumitaka; Tanemura, Atsushi; Murota, Hiroyuki; Katayama, Ichiro; Okada, Fumihiro
2017-01-01
Because sweat secretion is facilitated by mechanical contraction of sweat gland structures, understanding their structure-function relationship could lead to more effective treatments for patients with sweat gland disorders such as heat stroke. Conventional histological studies have shown that sweat glands are three-dimensionally coiled tubular structures consisting of ducts and secretory portions, although their detailed structural anatomy remains unclear. To better understand the details of the three-dimensional (3D) coiled structures of sweat glands, a whole-mount staining method was employed to visualize 3D coiled gland structures with sweat gland markers for ductal luminal, ductal basal, secretory luminal, and myoepithelial cells. Imaging the 3D coiled gland structures demonstrated that the ducts and secretory portions were comprised of distinct tubular structures. Ductal tubules were occasionally bent, while secretory tubules were frequently bent and formed a self-entangled coiled structure. Whole-mount staining of complex coiled gland structures also revealed the detailed 3D cellular arrangements in the individual sweat gland compartments. Ducts were composed of regularly arranged cuboidal shaped cells, while secretory portions were surrounded by myoepithelial cells longitudinally elongated along entangled secretory tubules. Whole-mount staining was also used to visualize the spatial arrangement of blood vessels and nerve fibers, both of which facilitate sweat secretion. The blood vessels ran longitudinally parallel to the sweat gland tubules, while nerve fibers wrapped around secretory tubules, but not ductal tubules. Taken together, whole-mount staining of sweat glands revealed the 3D cell shapes and arrangements of complex coiled gland structures and provides insights into the mechanical contraction of coiled gland structures during sweat secretion. PMID:28636607
[Research progress of three-dimensional digital model for repair and reconstruction of knee joint].
Tong, Lu; Li, Yanlin; Hu, Meng
2013-01-01
To review recent advance in the application and research of three-dimensional digital knee model. The recent original articles about three-dimensional digital knee model were extensively reviewed and analyzed. The digital three-dimensional knee model can simulate the knee complex anatomical structure very well. Based on this, there are some developments of new software and techniques, and good clinical results are achieved. With the development of computer techniques and software, the knee repair and reconstruction procedure has been improved, the operation will be more simple and its accuracy will be further improved.
Keith M. Slauson; William J. Zielinski
2007-01-01
The physical structure of vegetation is an important predictor of habitat for wildlife species. The coastal forests of the Redwood region are highly productive, supporting structurally-diverse forest habitats. The major elements of structural diversity in these forests include trees, shrubs, and herbaceous plants, which together create three-dimensional complexity. In...
Breuer, Tobias; Witte, Gregor
2013-10-09
A variety of low dimensional C60 structures has been grown on supporting pentacene multilayers. By choice of substrate temperature during growth the effective diffusion length of evaporated fullerenes and their nucleation at terraces or step edges can be precisely controlled. AFM and SEM measurements show that this enables the fabrication of either 2D adlayers or solely 1D chains decorating substrate steps, while at elevated growth temperature continuous wetting of step edges is prohibited and instead the formation of separated C60 clusters pinned at the pentacene step edges occurs. Remarkably, all structures remain thermally stable at room temperature once they are formed. In addition the various fullerene structures have been overgrown by an additional pentacene capping layer. Utilizing the different probe depth of XRD and NEXAFS, we found that no contiguous pentacene film is formed on the 2D C60 structure, whereas an encapsulation of the 1D and 0D structures with uniformly upright oriented pentacene is achieved, hence allowing the fabrication of low dimensional buried organic heterostructures.
NASA Astrophysics Data System (ADS)
Akyüz, Sevim; Akyüz, Tanil; Eric, J.; Davies, D.
1992-01-01
The FT-IR and laser-Raman spectra of five new complexes of the formula ML 2Ni(CN) 4 (where MMn, Fe, Ni, Zn or Cd; L3-chloropyridine) are reported. The complexes are shown to have a structure consisting of two dimensional polymeric layers formed with Ni(CN) 4 ions bridged by ML 2 cations. For a given series of isomorphous complexes, the effects of metal ligand bond formation on the ligand vibrational modes are examined and the metal-sensitivity sequence of the ligand frequencies is found to be Mn≈Cd
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, an extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
NASA Technical Reports Server (NTRS)
Steger, Joseph L.
1989-01-01
Hyperbolic grid generation procedures are described which have been used in external flow simulations about complex configurations. For many practical applications a single well-ordered (i.e., structured) grid can be used to mesh an entire configuration, in other problems, composite or unstructured grid procedures are needed. Although the hyperbolic partial differential equation grid generation procedure has mainly been utilized to generate structured grids, extension of the procedure to semiunstructured grids is briefly described. Extensions of the methodology are also described using two-dimensional equations.
Zhang, Wenrui; Li, Mingtao; Chen, Aiping; Li, Leigang; Zhu, Yuanyuan; Xia, Zhenhai; Lu, Ping; Boullay, Philippe; Wu, Lijun; Zhu, Yimei; MacManus-Driscoll, Judith L; Jia, Quanxi; Zhou, Honghui; Narayan, Jagdish; Zhang, Xinghang; Wang, Haiyan
2016-07-06
Study of layered complex oxides emerge as one of leading topics in fundamental materials science because of the strong interplay among intrinsic charge, spin, orbital, and lattice. As a fundamental basis of heteroepitaxial thin film growth, interfacial strain can be used to design materials that exhibit new phenomena beyond their conventional forms. Here, we report a strain-driven self-assembly of bismuth-based supercell (SC) with a two-dimensional (2D) layered structure. With combined experimental analysis and first-principles calculations, we investigated the full SC structure and elucidated the fundamental growth mechanism achieved by the strain-enabled self-assembled atomic layer stacking. The unique SC structure exhibits room-temperature ferroelectricity, enhanced magnetic responses, and a distinct optical bandgap from the conventional double perovskite structure. This study reveals the important role of interfacial strain modulation and atomic rearrangement in self-assembling a layered singe-phase multiferroic thin film, which opens up a promising avenue in the search for and design of novel 2D layered complex oxides with enormous promise.
Rational redesign of inhibitors of furin/kexin processing proteases by electrostatic mutations.
Cai, Xiao-hui; Zhang, Qing; Ding, Da-fu
2004-12-01
To model the three-dimensional structure and investigate the interaction mechanism of the proprotein convertase furin/kexin and their inhibitors (eglin c mutants). The three-dimensional complex structures of furin/kexin with its inhibitors, eglin c mutants, were generated by modeller program using the newly published X-ray crystallographical structures of mouse furin and yeast kexin as templates. The electrostatic interaction energy of each complex was calculated and the results were compared with the experimentally determined inhibition constants to find the correlation between them. High quality models of furin/kexin-eglin c mutants were obtained and used for calculation of the electrostatic interaction energies between the proteases and their inhibitors. The calculated electrostatic energies of interaction showed a linear correlation to the experimental inhibition constants. The modeled structures give good explanations of the specificity of eglin c mutants to furin/kexin. The electrostatic interactions play important roles in inhibitory activity of eglin c mutants to furin/kexin. The results presented here provided quantitative structural and functional information concerning the role of the charge-charge interactions in the binding of furin/kexin and their inhibitors.
Gauged supergravities from M-theory reductions
NASA Astrophysics Data System (ADS)
Katmadas, Stefanos; Tomasiello, Alessandro
2018-04-01
In supergravity compactifications, there is in general no clear prescription on how to select a finite-dimensional family of metrics on the internal space, and a family of forms on which to expand the various potentials, such that the lower-dimensional effective theory is supersymmetric. We propose a finite-dimensional family of deformations for regular Sasaki-Einstein seven-manifolds M 7, relevant for M-theory compactifications down to four dimensions. It consists of integrable Cauchy-Riemann structures, corresponding to complex deformations of the Calabi-Yau cone M 8 over M 7. The non-harmonic forms we propose are the ones contained in one of the Kohn-Rossi cohomology groups, which is finite-dimensional and naturally controls the deformations of Cauchy-Riemann structures. The same family of deformations can be also described in terms of twisted cohomology of the base M 6, or in terms of Milnor cycles arising in deformations of M 8. Using existing results on SU(3) structure compactifications, we briefly discuss the reduction of M-theory on our class of deformed Sasaki-Einstein manifolds to four-dimensional gauged supergravity.
NASA Astrophysics Data System (ADS)
Akuhara, T.; Nakahigashi, K.; Shinohara, M.; Yamada, T.; Yamashita, Y.; Shiobara, H.; Mochizuki, K.
2017-12-01
The Yamato Basin, located at the southeast of the Japan Sea, has been formed by the back-arc opening of the Japan Sea. Wide-angle reflection surveys have revealed that the basin has anomalously thickened crust compared with a normal oceanic crust [e.g., Nakahigashi et al., 2013] while deeper lithospheric structure has not known so far. Revealing the lithospheric structure of the Yamato Basin will lead to better understanding of the formation process of the Japan Sea and thus the Japanese island. In this study, as a first step toward understanding the lithospheric structure, we aim to detect the lithosphere-asthenosphere boundary (LAB) using receiver functions (RFs). We use teleseismic P waveforms recorded by broad-band ocean-bottom seismometers (BBOBS) deployed at the Yamato Basin. We calculated radial-component RFs using the data with the removal of water reverberations from the vertical-component records [Akuhara et al., 2016]. The resultant RFs are more complicated than those calculated at an on-land station, most likely due to sediment-related reverberations. This complexity does not allow either direct detection of a Ps conversion from the LAB or forward modeling by a simple structure composed of a handful number of layers. To overcome this difficulty, we conducted trans-dimensional Markov Chain Monte Carlo inversion of RFs, where we do not need to assume the number of layers in advance [e.g., Bodin et al., 2012; Sambridge et al., 2014]. Our preliminary results show abrupt velocity reduction at 70 km depth, far greater depth than the expected LAB depth from the age of the lithosphere ( 20 Ma, although still debated). If this low-velocity jump truly reflects the LAB, the anomalously thickened lithosphere will provide a new constraint on the complex formation history of the Japan Sea. Further study, however, is required to deny the possibility that the obtained velocity jump is an artificial brought by the overfitting of noisy data.
Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira Mei; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, JunGoo; Güntert, Peter; Aceti, David J.; Markley, John L.; Kainosho, Masatsune
2009-01-01
The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme, myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniformly 13C/15N labeling methods, we used our stereo-array isotope labeling (SAIL) technology to prepare an optimally 2H/13C/15N-labeled sample. NMR data sets collected with the SAIL-protein enabled us to assign 1H, 13C and 15N chemical shifts to 95.5% of all atoms, even at the low concentration (0.2 mM) of the protein product. We collected additional NOESY data and solved the three-dimensional structure with the CYANA software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent, but similar, lectin-fold domains composed of three β-sheets. PMID:19021763
Takeda, Mitsuhiro; Sugimori, Nozomi; Torizawa, Takuya; Terauchi, Tsutomu; Ono, Akira M; Yagi, Hirokazu; Yamaguchi, Yoshiki; Kato, Koichi; Ikeya, Teppei; Jee, Jungoo; Güntert, Peter; Aceti, David J; Markley, John L; Kainosho, Masatsune
2008-12-01
The product of gene At3g16450.1 from Arabidopsis thaliana is a 32 kDa, 299-residue protein classified as resembling a myrosinase-binding protein (MyroBP). MyroBPs are found in plants as part of a complex with the glucosinolate-degrading enzyme myrosinase, and are suspected to play a role in myrosinase-dependent defense against pathogens. Many MyroBPs and MyroBP-related proteins are composed of repeated homologous sequences with unknown structure. We report here the three-dimensional structure of the At3g16450.1 protein from Arabidopsis, which consists of two tandem repeats. Because the size of the protein is larger than that amenable to high-throughput analysis by uniform (13)C/(15)N labeling methods, we used stereo-array isotope labeling (SAIL) technology to prepare an optimally (2)H/(13)C/(15)N-labeled sample. NMR data sets collected using the SAIL protein enabled us to assign (1)H, (13)C and (15)N chemical shifts to 95.5% of all atoms, even at a low concentration (0.2 mm) of protein product. We collected additional NOESY data and determined the three-dimensional structure using the cyana software package. The structure, the first for a MyroBP family member, revealed that the At3g16450.1 protein consists of two independent but similar lectin-fold domains, each composed of three beta-sheets.
Canopy structural complexity predicts forest canopy light absorption at continental scales
NASA Astrophysics Data System (ADS)
Atkins, J. W.; Fahey, R. T.; Hardiman, B. S.; Gough, C. M.
2017-12-01
Understanding how the physical structure of forest canopies influence light acquisition is a long-standing area of inquiry fundamental to advancing understanding of many areas of the physical sciences, including the modeling and interpretation of biogeochemical cycles. Conventional measures of forest canopy structure employed in earth system models are often limited to leaf area index (LAI)—a measure of the quantity of leaves in the canopy. However, more novel multi-dimensional measures of canopy structural complexity (CSC) that describe the arrangement of vegetation are now possible because of technological advances, and may improve modeled estimates of canopy light absorption. During 2016 and 2017, we surveyed forests at sites from across the eastern, southern, and midwestern United States using portable canopy LiDAR (PCL). This survey included 14 National Ecological Observation Network (NEON), Long-Term Ecological Research Network (LTER,) Ameriflux, and University affiliated sites. Our findings show that a composite model including CSC parameters and LAI explains 96.8% of the variance in light acquisition, measured as the fraction of photosynthetically absorbed radiation (fPAR) at the continental scale, and improvement of 12% over an LAI only model. Under high light sky conditions, measures of CSC are more strongly coupled with light acquisition than under low light, possibly because light scattering partially decouples CSC from canopy light absorption under low, predominately diffuse light conditions. We conclude that scalable estimates of CSC metrics may improve continent-wide estimates of canopy light absorption and, therefore, carbon uptake, with implications for remote sensing and earth system modeling.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Avdontceva, Margarita S.; Zolotarev, Andrey A.; Krivovichev, Sergey V., E-mail: s.krivovichev@spbu.ru
High-temperature phase transition of synthetic kogarkoite, Na{sub 3}SO{sub 4}F, has been studied by high-temperature X-ray powder and single-crystal diffraction. The temperature of the phase transition can be estimated as 112.5±12.5 °C. The low-temperature phase, α-Na{sub 3}SO{sub 4}F, at 293 K, is monoclinic, P2{sub 1}/m, a=18.065(3), b=6.958(1), c=11.446(1) Å, β=107.711(1)°, Z=12. The structure contains thirteen symmetrically independent Na sites with coordination numbers varying from 6 to 8, and six independent S sites. The high-temperature β-phase at 423 K is rhombohedral, R-3m, a=6.94(1), c=24.58(4) Å, Z=9. The crystal structure of both polymorphs of Na{sub 3}SO{sub 4}F can be described as a 9Rmore » antiperovskite polytype based upon triplets of face-sharing [FNa{sub 6}] octahedra linked into a three-dimensional framework by sharing corners. In the α-modification, the SO{sub 4} tetrahedra are completely ordered and located in the framework cavities. In the β-modification, there are only two symmetrically independent Na atoms in the structure. The main difference between the structures of the α- and β-phases is the degree of ordering of the SO{sub 4} tetrahedra: in the α-modification, they are completely ordered, whereas, in the β-modification, the complete disorder is observed, which is manifested in a number of low-occupied O sites around fully occupied S sites. The phase transition is therefore has an order–disorder character and is associated with the decrease of structural complexity measured as an information content per unit cell [577.528 bits for the low- (α) and 154.830 bits for the high- (β) temperature modifications]. - Graphical abstract: High-temperature phase transition of synthetic kogarkoite, Na{sub 3}SO{sub 4}F, revealed the existence of the monoclinic-to-rhombohedral phase transition at 112.5±12.5 °C. The phase transition has an order–disorder character and is associated with the decrease of structural complexity. - Highlights: • Phase transition in Na{sub 3}SO{sub 4}F (kogarkoite) has an order–disorder character. • Antiperovskite framework of F-centered octahedra has a high stability. • Information-based structural complexity decreases across the phase transition.« less
Low-Dimensional Network Formation in Molten Sodium Carbonate
Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.; Benmore, Chris; Weber, J. K. R.; Parise, John B.; Tamalonis, Anthony; Skinner, Lawrie
2016-01-01
Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (Fx(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) are obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example ~55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions. PMID:27080401
L. Linsen; B.J. Karis; E.G. McPherson; B. Hamann
2005-01-01
In computer graphics, models describing the fractal branching structure of trees typically exploit the modularity of tree structures. The models are based on local production rules, which are applied iteratively and simultaneously to create a complex branching system. The objective is to generate three-dimensional scenes of often many realistic- looking and non-...
On low-energy effective action in three-dimensional = 2 and = 4 supersymmetric electrodynamics
NASA Astrophysics Data System (ADS)
Buchbinder, I. L.; Merzlikin, B. S.; Samsonov, I. B.
2013-11-01
We discuss general structure of low-energy effective actions in = 2 and = 4 three-dimensional supersymmetric electrodynamics (SQED) in gauge superfield sector. There are specific terms in the effective action having no four-dimensional analogs. Some of these terms are responsible for the moduli space metric in the Coulomb branch of the theory. We find two-loop quantum corrections to the moduli space metric in the = 2 SQED and show that in the = 4 SQED the moduli space does not receive two-loop quantum corrections.
Arneodo, Ezequiel M; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform.
Architecture of chaotic attractors for flows in the absence of any singular point
DOE Office of Scientific and Technical Information (OSTI.GOV)
Letellier, Christophe; Malasoma, Jean-Marc
2016-06-15
Some chaotic attractors produced by three-dimensional dynamical systems without any singular point have now been identified, but explaining how they are structured in the state space remains an open question. We here want to explain—in the particular case of the Wei system—such a structure, using one-dimensional sets obtained by vanishing two of the three derivatives of the flow. The neighborhoods of these sets are made of points which are characterized by the eigenvalues of a 2 × 2 matrix describing the stability of flow in a subspace transverse to it. We will show that the attractor is spiralling and twisted in themore » neighborhood of one-dimensional sets where points are characterized by a pair of complex conjugated eigenvalues. We then show that such one-dimensional sets are also useful in explaining the structure of attractors produced by systems with singular points, by considering the case of the Lorenz system.« less
Two dimensional Blue Native-/SDS-PAGE analysis of SLP family adaptor protein complexes.
Swamy, Mahima; Kulathu, Yogesh; Ernst, Sandra; Reth, Michael; Schamel, Wolfgang W A
2006-04-15
SH2 domain containing leukocyte protein (SLP) adaptor proteins serve a central role in the antigen-mediated activation of lymphocytes by organizing multiprotein signaling complexes. Here, we use two dimensional native-/SDS-gel electrophoresis to study the number, size and relative abundance of protein complexes containing SLP family proteins. In non-stimulated T cells all SLP-76 proteins are in a approximately 400 kDa complex with the small adaptor protein Grb2-like adaptor protein downstream of Shc (Gads), whereas half of Gads is monomeric. This constitutive SLP-76/Gads complex could be reconstituted in Drosophila S2 cells expressing both components, suggesting that it might not contain additional subunits. In contrast, in B cells SLP-65 exists in a 180 kDa complex as well as in monomeric form. Since the complex was not found in S2 cells expressing only SLP-65, it was not di/trimeric SLP-65. Upon antigen-stimulation only the complexed SLP-65 was phosphorylated. Surprisingly, stimulation-induced alteration of SLP complexes could not be detected, suggesting that active signaling complexes form only transiently, and are of low abundance.
Topological Landscapes: A Terrain Metaphor for ScientificData
DOE Office of Scientific and Technical Information (OSTI.GOV)
Weber, Gunther H.; Bremer, Peer-Timo; Pascucci, Valerio
2007-08-01
Scientific visualization and illustration tools are designed to help people understand the structure and complexity of scientific data with images that are as informative and intuitive as possible. In this context, the use of metaphors plays an important role, since they make complex information easily accessible by using commonly known concepts. In this paper we propose a new metaphor, called 'Topological Landscapes', which facilitates understanding the topological structure of scalar functions. The basic idea is to construct a terrain with the same topology as a given dataset and to display the terrain as an easily understood representation of the actualmore » input data. In this projection from an n-dimensional scalar function to a two-dimensional (2D) model we preserve function values of critical points, the persistence (function span) of topological features, and one possible additional metric property (in our examples volume). By displaying this topologically equivalent landscape together with the original data we harness the natural human proficiency in understanding terrain topography and make complex topological information easily accessible.« less
Apparatus for electrohydrodynamically assembling patterned colloidal structures
NASA Technical Reports Server (NTRS)
Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)
2000-01-01
A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.
Micrometer-scale fabrication of complex three dimensional lattice + basis structures in silicon
Burckel, D. Bruce; Resnick, Paul J.; Finnegan, Patrick S.; ...
2015-01-01
A complementary metal oxide semiconductor (CMOS) compatible version of membrane projection lithography (MPL) for fabrication of micrometer-scale three-dimensional structures is presented. The approach uses all inorganic materials and standard CMOS processing equipment. In a single layer, MPL is capable of creating all 5 2D-Bravais lattices. Furthermore, standard semiconductor processing steps can be used in a layer-by-layer approach to create fully three dimensional structures with any of the 14 3D-Bravais lattices. The unit cell basis is determined by the projection of the membrane pattern, with many degrees of freedom for defining functional inclusions. Here we demonstrate several unique structural motifs, andmore » characterize 2D arrays of unit cells with split ring resonators in a silicon matrix. The structures exhibit strong polarization dependent resonances and, for properly oriented split ring resonators (SRRs), coupling to the magnetic field of a normally incident transverse electromagnetic wave, a response unique to 3D inclusions.« less
Method for electrohydrodynamically assembling patterned colloidal structures
NASA Technical Reports Server (NTRS)
Trau, Mathias (Inventor); Aksay, Ilhan A. (Inventor); Saville, Dudley A. (Inventor)
1999-01-01
A method apparatus is provided for electrophoretically depositing particles onto an electrode, and electrohydrodynamically assembling the particles into crystalline structures. Specifically, the present method and apparatus creates a current flowing through a solution to cause identically charged electrophoretically deposited colloidal particles to attract each other over very large distances (<5 particle diameters) on the surface of electrodes to form two-dimensional colloidal crystals. The attractive force can be created with both DC and AC fields and can modulated by adjusting either the field strength or frequency of the current. Modulating this lateral attraction between the particles causes the reversible formation of two-dimensional fluid and crystalline colloidal states on the electrode surface. Further manipulation allows for the formation of two or three-dimensional colloidal crystals, as well as more complex designed structures. Once the required structures are formed, these three-dimension colloidal crystals can be permanently frozen or glued by controlled coagulation induced by to the applied field to form a stable crystalline structure.
Graph-based analysis of kinetics on multidimensional potential-energy surfaces.
Okushima, T; Niiyama, T; Ikeda, K S; Shimizu, Y
2009-09-01
The aim of this paper is twofold: one is to give a detailed description of an alternative graph-based analysis method, which we call saddle connectivity graph, for analyzing the global topography and the dynamical properties of many-dimensional potential-energy landscapes and the other is to give examples of applications of this method in the analysis of the kinetics of realistic systems. A Dijkstra-type shortest path algorithm is proposed to extract dynamically dominant transition pathways by kinetically defining transition costs. The applicability of this approach is first confirmed by an illustrative example of a low-dimensional random potential. We then show that a coarse-graining procedure tailored for saddle connectivity graphs can be used to obtain the kinetic properties of 13- and 38-atom Lennard-Jones clusters. The coarse-graining method not only reduces the complexity of the graphs, but also, with iterative use, reveals a self-similar hierarchical structure in these clusters. We also propose that the self-similarity is common to many-atom Lennard-Jones clusters.
Wei, Xuelei; Dong, Fuhui
2011-12-01
To review recent advance in the research and application of computer aided forming techniques for constructing bone tissue engineering scaffolds. The literature concerning computer aided forming techniques for constructing bone tissue engineering scaffolds in recent years was reviewed extensively and summarized. Several studies over last decade have focused on computer aided forming techniques for bone scaffold construction using various scaffold materials, which is based on computer aided design (CAD) and bone scaffold rapid prototyping (RP). CAD include medical CAD, STL, and reverse design. Reverse design can fully simulate normal bone tissue and could be very useful for the CAD. RP techniques include fused deposition modeling, three dimensional printing, selected laser sintering, three dimensional bioplotting, and low-temperature deposition manufacturing. These techniques provide a new way to construct bone tissue engineering scaffolds with complex internal structures. With rapid development of molding and forming techniques, computer aided forming techniques are expected to provide ideal bone tissue engineering scaffolds.
NASA Astrophysics Data System (ADS)
Llordés, Anna; Wang, Yang; Fernandez-Martinez, Alejandro; Xiao, Penghao; Lee, Tom; Poulain, Agnieszka; Zandi, Omid; Saez Cabezas, Camila A.; Henkelman, Graeme; Milliron, Delia J.
2016-12-01
Amorphous transition metal oxides are recognized as leading candidates for electrochromic window coatings that can dynamically modulate solar irradiation and improve building energy efficiency. However, their thin films are normally prepared by energy-intensive sputtering techniques or high-temperature solution methods, which increase manufacturing cost and complexity. Here, we report on a room-temperature solution process to fabricate electrochromic films of niobium oxide glass (NbOx) and `nanocrystal-in-glass’ composites (that is, tin-doped indium oxide (ITO) nanocrystals embedded in NbOx glass) via acid-catalysed condensation of polyniobate clusters. A combination of X-ray scattering and spectroscopic characterization with complementary simulations reveals that this strategy leads to a unique one-dimensional chain-like NbOx structure, which significantly enhances the electrochromic performance, compared to a typical three-dimensional NbOx network obtained from conventional high-temperature thermal processing. In addition, we show how self-assembled ITO-in-NbOx composite films can be successfully integrated into high-performance flexible electrochromic devices.
Localized oscillatory states in magnetoconvection.
Buckley, Matthew C; Bushby, Paul J
2013-02-01
Localized states are found in many pattern forming systems. The aim of this paper is to investigate the occurrence of oscillatory localized states in two-dimensional Boussinesq magnetoconvection. Initially considering an idealized model, in which the vertical structure of the system has been simplified by a projection onto a small number of Fourier modes, we find that these states are restricted to the low ζ regime (where ζ represents the ratio of the magnetic to thermal diffusivities). These states always exhibit bistability with another nontrivial solution branch; in other words, they show no evidence of subcritical behavior. This is due to the weak flux expulsion that is exhibited by these time-dependent solutions. Using the results of this parameter survey, we locate corresponding states in a fully resolved two-dimensional system, although the mode of oscillation is more complex in this case. This is the first time that a localized oscillatory state, of this kind, has been found in a fully resolved magnetoconvection simulation.
NASA Astrophysics Data System (ADS)
Tellander, Felix; Berggren, Karl-Fredrik
2017-04-01
In this paper we use numerical simulations to study a two-dimensional (2D) quantum dot (cavity) with two leads for passing currents (electrons, photons, etc.) through the system. By introducing an imaginary potential in each lead the system is made symmetric under parity-time inversion (PT symmetric). This system is experimentally realizable in the form of, e.g., quantum dots in low-dimensional semiconductors, optical and electromagnetic cavities, and other classical wave analogs. The computational model introduced here for studying spectra, exceptional points (EPs), wave-function symmetries and morphology, and current flow includes thousands of interacting states. This supplements previous analytic studies of few interacting states by providing more detail and higher resolution. The Hamiltonian describing the system is non-Hermitian; thus, the eigenvalues are, in general, complex. The structure of the wave functions and probability current densities are studied in detail at and in between EPs. The statistics for EPs is evaluated, and reasons for a gradual dynamical crossover are identified.
Fabrication of Nanovoid-Imbedded Bismuth Telluride with Low Dimensional System
NASA Technical Reports Server (NTRS)
Chu, Sang-Hyon (Inventor); Choi, Sang H. (Inventor); Kim, Jae-Woo (Inventor); Park, Yeonjoon (Inventor); Elliott, James R. (Inventor); King, Glen C. (Inventor); Stoakley, Diane M. (Inventor)
2013-01-01
A new fabrication method for nanovoids-imbedded bismuth telluride (Bi--Te) material with low dimensional (quantum-dots, quantum-wires, or quantum-wells) structure was conceived during the development of advanced thermoelectric (TE) materials. Bismuth telluride is currently the best-known candidate material for solid-state TE cooling devices because it possesses the highest TE figure of merit at room temperature. The innovative process described here allows nanometer-scale voids to be incorporated in Bi--Te material. The final nanovoid structure such as void size, size distribution, void location, etc. can be also controlled under various process conditions.
Observation of a two-dimensional Fermi surface and Dirac dispersion in YbMnSb2
NASA Astrophysics Data System (ADS)
Kealhofer, Robert; Jang, Sooyoung; Griffin, Sinéad M.; John, Caolan; Benavides, Katherine A.; Doyle, Spencer; Helm, T.; Moll, Philip J. W.; Neaton, Jeffrey B.; Chan, Julia Y.; Denlinger, J. D.; Analytis, James G.
2018-01-01
We present the crystal structure, electronic structure, and transport properties of the material YbMnSb2, a candidate system for the investigation of Dirac physics in the presence of magnetic order. Our measurements reveal that this system is a low-carrier-density semimetal with a two-dimensional Fermi surface arising from a Dirac dispersion, consistent with the predictions of density-functional-theory calculations of the antiferromagnetic system. The low temperature resistivity is very large, suggesting that scattering in this system is highly efficient at dissipating momentum despite its Dirac-like nature.
Kuzu, Guray; Keskin, Ozlem; Nussinov, Ruth; Gursoy, Attila
2016-10-01
The structures of protein assemblies are important for elucidating cellular processes at the molecular level. Three-dimensional electron microscopy (3DEM) is a powerful method to identify the structures of assemblies, especially those that are challenging to study by crystallography. Here, a new approach, PRISM-EM, is reported to computationally generate plausible structural models using a procedure that combines crystallographic structures and density maps obtained from 3DEM. The predictions are validated against seven available structurally different crystallographic complexes. The models display mean deviations in the backbone of <5 Å. PRISM-EM was further tested on different benchmark sets; the accuracy was evaluated with respect to the structure of the complex, and the correlation with EM density maps and interface predictions were evaluated and compared with those obtained using other methods. PRISM-EM was then used to predict the structure of the ternary complex of the HIV-1 envelope glycoprotein trimer, the ligand CD4 and the neutralizing protein m36.
Ukleja, Marta; Valpuesta, José María; Dziembowski, Andrzej; Cuellar, Jorge
2016-10-01
Large protein assemblies are usually the effectors of major cellular processes. The intricate cell homeostasis network is divided into numerous interconnected pathways, each controlled by a set of protein machines. One of these master regulators is the CCR4-NOT complex, which ultimately controls protein expression levels. This multisubunit complex assembles around a scaffold platform, which enables a wide variety of well-studied functions from mRNA synthesis to transcript decay, as well as other tasks still being identified. Solving the structure of the entire CCR4-NOT complex will help to define the distribution of its functions. The recently published three-dimensional reconstruction of the complex, in combination with the known crystal structures of some of the components, has begun to address this. Methodological improvements in structural biology, especially in cryoelectron microscopy, encourage further structural and protein-protein interaction studies, which will advance our comprehension of the gene expression machinery. © 2016 WILEY Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Boal, David
2012-01-01
Preface; List of symbols; 1. Introduction to the cell; 2. Soft materials and fluids; Part I. Rods and Ropes: 3. Polymers; 4. Complex filaments; 5. Two-dimensional networks; 6. Three-dimensional networks; Part II. Membranes: 7. Biomembranes; 8. Membrane undulations; 9. Intermembrane and electrostatic forces; Part III. The Whole Cell: 10. Structure of the simplest cells; 11. Dynamic filaments; 12. Growth and division; 13. Signals and switches; Appendixes; Glossary; References; Index.
Evolution of ferromagnetism in two-dimensional electron gas of LaTiO3/SrTiO3
NASA Astrophysics Data System (ADS)
Wen, Fangdi; Cao, Yanwei; Liu, Xiaoran; Pal, B.; Middey, S.; Kareev, M.; Chakhalian, J.
2018-03-01
Understanding, creating, and manipulating spin polarization of two-dimensional electron gases at complex oxide interfaces present an experimental challenge. For example, despite almost a decade long research effort, the microscopic origin of ferromagnetism in LaAlO3/SrTiO3 heterojunctions is still an open question. Here, by using a prototypical two-dimensional electron gas (2DEG) which emerges at the interface between band insulator SrTiO3 and antiferromagnetic Mott insulator LaTiO3, the experiment reveals the evidence for magnetic phase separation in a hole-doped Ti d1 t2g system, resulting in spin-polarized 2DEG. The details of electronic and magnetic properties of the 2DEG were investigated by temperature-dependent d.c. transport, angle-dependent X-ray photoemission spectroscopy, and temperature-dependent magnetoresistance. The observation of clear hysteresis in magnetotransport at low magnetic fields implies spin-polarization from magnetic islands in the hole rich LaTiO3 near the interface. These findings emphasize the role of magnetic instabilities in doped Mott insulators, thus providing another path for designing all-oxide structures relevant to spintronic applications.
NASA Astrophysics Data System (ADS)
Hosseinzadeh-Nik, Zahra; Regele, Jonathan D.
2015-11-01
Dense compressible particle-laden flow, which has a complex nature, exists in various engineering applications. Shock waves impacting a particle cloud is a canonical problem to investigate this type of flow. It has been demonstrated that large flow unsteadiness is generated inside the particle cloud from the flow induced by the shock passage. It is desirable to develop models for the Reynolds stress to capture the energy contained in vortical structures so that volume-averaged models with point particles can be simulated accurately. However, the previous work used Euler equations, which makes the prediction of vorticity generation and propagation innacurate. In this work, a fully resolved two dimensional (2D) simulation using the compressible Navier-Stokes equations with a volume penalization method to model the particles has been performed with the parallel adaptive wavelet-collocation method. The results still show large unsteadiness inside and downstream of the particle cloud. A 1D model is created for the unclosed terms based upon these 2D results. The 1D model uses a two-phase simple low dissipation AUSM scheme (TSLAU) developed by coupled with the compressible two phase kinetic energy equation.
NASA Astrophysics Data System (ADS)
Benjankar, R. M.; Sohrabi, M.; Tonina, D.; McKean, J. A.
2013-12-01
Aquatic habitat models utilize flow variables which may be predicted with one-dimensional (1D) or two-dimensional (2D) hydrodynamic models to simulate aquatic habitat quality. Studies focusing on the effects of hydrodynamic model dimensionality on predicted aquatic habitat quality are limited. Here we present the analysis of the impact of flow variables predicted with 1D and 2D hydrodynamic models on simulated spatial distribution of habitat quality and Weighted Usable Area (WUA) for fall-spawning Chinook salmon. Our study focuses on three river systems located in central Idaho (USA), which are a straight and pool-riffle reach (South Fork Boise River), small pool-riffle sinuous streams in a large meadow (Bear Valley Creek) and a steep-confined plane-bed stream with occasional deep forced pools (Deadwood River). We consider low and high flows in simple and complex morphologic reaches. Results show that 1D and 2D modeling approaches have effects on both the spatial distribution of the habitat and WUA for both discharge scenarios, but we did not find noticeable differences between complex and simple reaches. In general, the differences in WUA were small, but depended on stream type. Nevertheless, spatially distributed habitat quality difference is considerable in all streams. The steep-confined plane bed stream had larger differences between aquatic habitat quality defined with 1D and 2D flow models compared to results for streams with well defined macro-topographies, such as pool-riffle bed forms. KEY WORDS: one- and two-dimensional hydrodynamic models, habitat modeling, weighted usable area (WUA), hydraulic habitat suitability, high and low discharges, simple and complex reaches
NASA Astrophysics Data System (ADS)
Pachhai, Surya; Dettmer, Jan; Tkalčić, Hrvoje
2015-11-01
Ultra-low velocity zones (ULVZs) are small-scale structures in the Earth's lowermost mantle inferred from the analysis of seismological observations. These structures exhibit a strong decrease in compressional (P)-wave velocity, shear (S)-wave velocity, and an increase in density. Quantifying the elastic properties of ULVZs is crucial for understanding their physical origin, which has been hypothesized either as partial melting, iron enrichment, or a combination of the two. Possible disambiguation of these hypotheses can lead to a better understanding of the dynamic processes of the lowermost mantle, such as, percolation, stirring and thermochemical convection. To date, ULVZs have been predominantly studied by forward waveform modelling of seismic waves that sample the core-mantle boundary region. However, ULVZ parameters (i.e. velocity, density, and vertical and lateral extent) obtained through forward modelling are poorly constrained because inferring Earth structure from seismic observations is a non-linear inverse problem with inherent non-uniqueness. To address these issues, we developed a trans-dimensional hierarchical Bayesian inversion that enables rigorous estimation of ULVZ parameter values and their uncertainties, including the effects of model selection. The model selection includes treating the number of layers and the vertical extent of the ULVZ as unknowns. The posterior probability density (solution to the inverse problem) of the ULVZ parameters is estimated by reversible jump Markov chain Monte Carlo sampling that employs parallel tempering to improve efficiency/convergence. First, we apply our method to study the resolution of complex ULVZ structure (including gradually varying structure) by probabilistically inverting simulated noisy waveforms. Then, two data sets sampling the CMB beneath the Philippine and Tasman Seas are considered in the inversion. Our results indicate that both ULVZs are more complex than previously suggested. For the Philippine Sea data, we find a strong decrease in S-wave velocity, which indicates the presence of iron-rich material, albeit this result is accompanied with larger parameter uncertainties than in a previous study. For the Tasman Sea data, our analysis yields a well-constrained S-wave velocity that gradually decreases with depth. We conclude that this ULVZ represents a partial melt of iron-enriched material with higher melt content near its bottom.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Francis, R.J.; Halasyamani, P.S.; Bee, J.S.
Recently, low temperature (T < 300 C) hydrothermal reactions of inorganic precursors in the presence of organic cations have proven highly productive for the synthesis of novel solid-state materials. Interest in these materials is driven by the astonishingly diverse range of structures produced, as well as by their many potential materials chemistry applications. This report describes the high yield, phase pure hydrothermal syntheses of three new uranium fluoride phases with unprecedented structure types. Through the systematic control of the synthesis conditions the authors have successfully controlled the architecture and dimensionality of the phase formed and selectively synthesized novel zero-, one-,more » and two-dimensional materials.« less
Ogura, Hiroshi; Evans, John P; Peng, Dungeng; Satterlee, James D; Ortiz de Montellano, Paul R; La Mar, Gerd N
2009-04-14
The active site electronic structure of the azide complex of substrate-bound human heme oxygenase 1 (hHO) has been investigated by (1)H NMR spectroscopy to shed light on the orbital/spin ground state as an indicator of the unique distal pocket environment of the enzyme. Two-dimensional (1)H NMR assignments of the substrate and substrate-contact residue signals reveal a pattern of substrate methyl contact shifts that places the lone iron pi-spin in the d(xz) orbital, rather than the d(yz) orbital found in the cyanide complex. Comparison of iron spin relaxivity, magnetic anisotropy, and magnetic susceptibilities argues for a low-spin, (d(xy))(2)(d(yz),d(xz))(3), ground state in both azide and cyanide complexes. The switch from singly occupied d(yz) for the cyanide to d(xz) for the azide complex of hHO is shown to be consistent with the orbital hole determined by the azide pi-plane in the latter complex, which is approximately 90 degrees in-plane rotated from that of the imidazole pi-plane. The induction of the altered orbital ground state in the azide relative to the cyanide hHO complex, as well as the mean low-field bias of methyl hyperfine shifts and their paramagnetic relaxivity relative to those in globins, indicates that azide exerts a stronger ligand field in hHO than in the globins, or that the distal H-bonding to azide is weaker in hHO than in globins. The Asp140 --> Ala hHO mutant that abolishes activity retains the unusual WT azide complex spin/orbital ground state. The relevance of our findings for other HO complexes and the HO mechanism is discussed.
NASA Astrophysics Data System (ADS)
Grady, Maxwell
For some time there has been interest in the fundamental physical properties of low- dimensional material systems. The discovery of graphene as a stable two-dimensional form of solid carbon lead to an exponential increase in research in two-dimensional and other re- duced dimensional systems. It is now known that there is a wide range of materials which are stable in two-dimensional form. These materials span a large configuration space of struc- tural, mechanical, and electronic properties, which results in the potential to create novel electronic devices from nano-scale heterostructures with exactly tailored device properties. Understanding the material properties at the nanoscale level requires specialized tools to probe materials with atomic precision. Here I present the growth and analysis of a novel graphene-ruthenium system which exhibits unique polymorphism in its surface structure, hereby referred to as polymorphic graphene. Scanning Tunneling Microscopy (STM) investigations of the polymorphic graphene surface reveal a periodically rippled structure with a vast array of domains, each exhibiting xvia unique moire period. The majority of moire domains found in this polymorphic graphene system are previously unreported in past studies of the structure of graphene on ruthenium. To better understand many of the structural properties of this system, characterization methods beyond those available at the UNH surface science lab are employed. Further investigation using Low Energy Electron Microscopy (LEEM) has been carried out at Sandia National Laboratory's Center for Integrated Nanotechnology and the Brookhaven National Laboratory Center for Functional Nanomaterials. To aid in analysis of the LEEM data, I have developed an open source software package to automate extraction of electron reflectivity curves from real space and reciprocal space data sets. This software has been used in the study of numerous other two-dimensional materials beyond graphene. When combined with computational modeling, the analysis of electron I(V) curves presents a method to quantify structural parameters in a material with angstrom level precision. While many materials studied in this thesis offer unique electronic properties, my work focuses primarily on their structural aspects, as well as the instrumentation required to characterize the structure with ultra high resolution.
Current systems of coronal loops in 3D MHD simulations
NASA Astrophysics Data System (ADS)
Warnecke, J.; Chen, F.; Bingert, S.; Peter, H.
2017-11-01
Aims: We study the magnetic field and current structure associated with a coronal loop. Through this we investigate to what extent the assumptions of a force-free magnetic field break down and where they might be justified. Methods: We analyze a three-dimensional (3D) magnetohydrodynamic (MHD) model of the solar corona in an emerging active region with the focus on the structure of the forming coronal loops. The lower boundary of this simulation is taken from a model of an emerging active region. As a consequence of the emerging magnetic flux and the horizontal motions at the surface a coronal loop forms self-consistently. We investigate the current density along magnetic field lines inside (and outside) this loop and study the magnetic and plasma properties in and around this loop. The loop is defined as the bundle of field lines that coincides with enhanced emission in extreme UV. Results: We find that the total current along the emerging loop changes its sign from being antiparallel to parallel to the magnetic field. This is caused by the inclination of the loop together with the footpoint motion. Around the loop, the currents form a complex non-force-free helical structure. This is directly related to a bipolar current structure at the loop footpoints at the base of the corona and a local reduction of the background magnetic field (I.e., outside the loop) caused by the plasma flow into and along the loop. Furthermore, the locally reduced magnetic pressure in the loop allows the loop to sustain a higher density, which is crucial for the emission in extreme UV. The action of the flow on the magnetic field hosting the loop turns out to also be responsible for the observed squashing of the loop. Conclusions: The complex magnetic field and current system surrounding it can only be modeled in 3D MHD models where the magnetic field has to balance the plasma pressure. A one-dimensional coronal loop model or a force-free extrapolation cannot capture the current system and the complex interaction of the plasma and the magnetic field in the coronal loop, despite the fact that the loop is under low-β conditions.
NASA Astrophysics Data System (ADS)
Coniglio, Michael Charles
Common large-scale environments associated with the development of derecho-producing convective systems from a large number of events are identified using statistical clustering of the 500-mb geopotential heights as guidance. The majority of the events (72%) fall into three main patterns that include a well-defined upstream trough (40%), a ridge (20%), and a zonal, low-amplitude flow (12%), which is defined as an additional warm-season pattern that is not identified in past studies of derecho environments. Through an analysis of proximity soundings, discrepancies are found in both low-level and deep-tropospheric shear parameters between observations and the shear profiles considered favorable for strong, long-lived convective systems in idealized simulations. To explore the role of upper-level shear in derecho environments, a set of two-dimensional simulations of density currents within a dry, neutrally stable environment are used to examine the ability of a cold pool to lift environmental air within a vertically sheared flow. The results confirm that the addition of upper-level shear to a wind profile with weak to moderate low-level shear increases the vertical displacement of low-level parcels despite a decrease in the vertical velocity along the cold pool interface, as suggested by previous studies. Parcels that are elevated above the surface (1-2 km) overturn and are responsible for the deep lifting in the deep-shear environments. This deep overturning caused by the upper-level shear helps to maintain the tilt of the convective systems in more complex two-dimensional and three dimensional simulations. The overturning also is shown to greatly increase the size of the convective systems in the three-dimensional simulations by facilitating the initiation and maintenance of convective cells along the cold pool. When combined with estimates of the cold pool motion and the storm-relative hodograph, these results may best be used for the prediction of the demise of strong, linear mesoscale convective systems (MCSs) and may provide a conceptual model for the persistence of strong MCSs above a surface nocturnal inversion in situations that are not forced by a low-level jet.
Cañadillas-Delgado, Laura; Pasan, Jorge; Fabelo, Oscar; Hernandez-Molina, María; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina
2006-12-25
Four gadolinium(III) complexes with dicarboxylate ligands of formulas [Gd2(mal)3(H2O)5]n.2nH2O (1), [Gd2(mal)3(H2O)6]n (2), [NaGd(mal)(ox)(H2O)3]n (3), and [Gd2(ox)3(H2O)6]n.2.5nH2O (4) (mal = malonate; ox = oxalate) have been prepared, and their magnetic properties have been investigated as a function of the temperature. The structures of 1-3 have been determined by X-ray diffraction methods. The crystal structure of 4 was already known, and it is made of hexagonal layers of Gd atoms that are bridged by bis-bidentate oxalate. Compound 1 is isostructural with the europium(III) malonate complex [Eu2(mal)3(H2O)5]n.2nH2O,1 whose structure was reported elsewhere. The Gd atoms in 1 define a two-dimensional network where a terminal bidentate and bridging bidentate/bis-monodentate and tris-bidentate coordination modes of malonate occur. Compound 2 has a three-dimensional structure with a structural phase transition at 226 K, which involves a change of the space group from I2/a to Ia. Although its structure at room temperature was already known, that below 226 K was not. Pairs of Gd atoms with a double oxo-carboxylate bridge occur in both phases, and the main differences between both structures deal with the Gd environment and the H-bond pattern. 3 is also a three-dimensional compound, and it was obtained by reacting Gd(III) ions with malonic acid in a silica gel medium. Oxalic acid results as an oxidized product of the malonic acid, and single crystals of the heteroleptic complex were produced. The Gd atoms in 3 are connected through bis-bidentate oxalate and carboxylate-malonate bridges in the anti-anti and anti-syn coordination modes. Compounds 1 and 2 exhibit weak but significant ferromagnetic couplings between the Gd(III) ions through the single (1) and double (2) oxo-carboxylate bridges, whereas antiferromagnetic interactions across the bis-bidentate oxalate account for the overall antiferromagnetic behavior observed in 3 and 4.
2004-04-15
Like many chemicals in the body, the three-dimensional structure of insulin is extremely complex. When grown on the ground, insulin crystals do not grow as large or as ordered as researchers desire--obscuring the blueprint of the insulin molecules.
NASA Astrophysics Data System (ADS)
Xu, Sheng; Yan, Zheng; Jang, Kyung-In; Huang, Wen; Fu, Haoran; Kim, Jeonghyun; Wei, Zijun; Flavin, Matthew; McCracken, Joselle; Wang, Renhan; Badea, Adina; Liu, Yuhao; Xiao, Dongqing; Zhou, Guoyan; Lee, Jungwoo; Chung, Ha Uk; Cheng, Huanyu; Ren, Wen; Banks, Anthony; Li, Xiuling; Paik, Ungyu; Nuzzo, Ralph G.; Huang, Yonggang; Zhang, Yihui; Rogers, John A.
2015-01-01
Complex three-dimensional (3D) structures in biology (e.g., cytoskeletal webs, neural circuits, and vasculature networks) form naturally to provide essential functions in even the most basic forms of life. Compelling opportunities exist for analogous 3D architectures in human-made devices, but design options are constrained by existing capabilities in materials growth and assembly. We report routes to previously inaccessible classes of 3D constructs in advanced materials, including device-grade silicon. The schemes involve geometric transformation of 2D micro/nanostructures into extended 3D layouts by compressive buckling. Demonstrations include experimental and theoretical studies of more than 40 representative geometries, from single and multiple helices, toroids, and conical spirals to structures that resemble spherical baskets, cuboid cages, starbursts, flowers, scaffolds, fences, and frameworks, each with single- and/or multiple-level configurations.
Hikone, Yuya; Hirai, Go; Mishima, Masaki; Inomata, Kohsuke; Ikeya, Teppei; Arai, Souichiro; Shirakawa, Masahiro; Sodeoka, Mikiko; Ito, Yutaka
2016-10-01
Structural analyses of proteins under macromolecular crowding inside human cultured cells by in-cell NMR spectroscopy are crucial not only for explicit understanding of their cellular functions but also for applications in medical and pharmaceutical sciences. In-cell NMR experiments using human cultured cells however suffer from low sensitivity, thus pseudocontact shifts from protein-tagged paramagnetic lanthanoid ions, analysed using sensitive heteronuclear two-dimensional correlation NMR spectra, offer huge potential advantage in obtaining structural information over conventional NOE-based approaches. We synthesised a new lanthanoid-chelating tag (M8-CAM-I), in which the eight-fold, stereospecifically methylated DOTA (M8) scaffold was retained, while a stable carbamidemethyl (CAM) group was introduced as the functional group connecting to proteins. M8-CAM-I successfully fulfilled the requirements for in-cell NMR: high-affinity to lanthanoid, low cytotoxicity and the stability under reducing condition inside cells. Large PCSs for backbone N-H resonances observed for M8-CAM-tagged human ubiquitin mutant proteins, which were introduced into HeLa cells by electroporation, demonstrated that this approach readily provides the useful information enabling the determination of protein structures, relative orientations of domains and protein complexes within human cultured cells.
Quantum melting of a two-dimensional Wigner crystal
NASA Astrophysics Data System (ADS)
Dolgopolov, V. T.
2017-10-01
The paper reviews theoretical predictions about the behavior of two-dimensional low-density electron systems at nearly absolute zero temperatures, including the formation of an electron (Wigner) crystal, crystal melting at a critical electron density, and transitions between crystal modifications in more complex (for example, two-layer) systems. The paper presents experimental results obtained from real two-dimensional systems in which the nonconducting (solid) state of the electronic system with indications of collective localization is actually realized. Experimental methods for detecting a quantum liquid-solid phase interface are discussed.
Development of a Localized Low-Dimensional Approach to Turbulence Simulation
NASA Astrophysics Data System (ADS)
Juttijudata, Vejapong; Rempfer, Dietmar; Lumley, John
2000-11-01
Our previous study has shown that the localized low-dimensional model derived from a projection of Navier-Stokes equations onto a set of one-dimensional scalar POD modes, with boundary conditions at y^+=40, can predict wall turbulence accurately for short times while failing to give a stable long-term solution. The structures obtained from the model and later studies suggest our boundary conditions from DNS are not consistent with the solution from the localized model resulting in an injection of energy at the top boundary. In the current study, we develop low-dimensional models using one-dimensional scalar POD modes derived from an explicitly filtered DNS. This model problem has exact no-slip boundary conditions at both walls while the locality of the wall layer is still retained. Furthermore, the interaction between wall and core region is attenuated via an explicit filter which allows us to investigate the quality of the model without requiring complicated modeling of the top boundary conditions. The full-channel model gives reasonable wall turbulence structures as well as long-term turbulent statistics while still having difficulty with the prediction of the mean velocity profile farther from the wall. We also consider a localized model with modified boundary conditions in the last part of our study.
Moroz, Olga V.; Maranta, Michelle; Shaghasi, Tarana; Harris, Paul V.; Wilson, Keith S.; Davies, Gideon J.
2015-01-01
The enzymatic degradation of plant cell-wall cellulose is central to many industrial processes, including second-generation biofuel production. Key players in this deconstruction are the fungal cellobiohydrolases (CBHs), notably those from family GH7 of the carbohydrate-active enzymes (CAZY) database, which are generally known as CBHI enzymes. Here, three-dimensional structures are reported of the Aspergillus fumigatus CBHI Cel7A solved in uncomplexed and disaccharide-bound forms at resolutions of 1.8 and 1.5 Å, respectively. The product complex with a disaccharide in the +1 and +2 subsites adds to the growing three-dimensional insight into this family of industrially relevant biocatalysts. PMID:25615982
Bonding-restricted structure search for novel 2D materials with dispersed C2 dimers
Zhang, Cunzhi; Zhang, Shunhong; Wang, Qian
2016-01-01
Currently, the available algorithms for unbiased structure searches are primarily atom-based, where atoms are manipulated as the elementary units, and energy is used as the target function without any restrictions on the bonding of atoms. In fact, in many cases such as nanostructure-assembled materials, the structural units are nanoclusters. We report a study of a bonding-restricted structure search method based on the particle swarm optimization (PSO) for finding the stable structures of two-dimensional (2D) materials containing dispersed C2 dimers rather than individual C atoms. The C2 dimer can be considered as a prototype of nanoclusters. Taking Si-C, B-C and Ti-C systems as test cases, our method combined with density functional theory and phonon calculations uncover new ground state geometrical structures for SiC2, Si2C2, BC2, B2C2, TiC2, and Ti2C2 sheets and their low-lying energy allotropes, as well as their electronic structures. Equally important, this method can be applied to other complex systems even containing f elements and other molecular dimers such as S2, N2, B2 and Si2, where the complex orbital orientations require extensive search for finding the optimal orientations to maximize the bonding with the dimers, predicting new 2D materials beyond MXenes (a family of transition metal carbides or nitrides) and dichalcogenide monolayers. PMID:27403589
NASA Astrophysics Data System (ADS)
Saito, Theodore T.; Langenbeck, Sharon L.; Al-Jamily, Ghanim; Arnold, Joe; Barbee, Troy; Coulter, Dan; Dolgin, Ben; Fichter, Buck; George, Patricia; Gorenstein, Paul
1992-08-01
Materials and structures technology covers a wide range of technical areas. Some of the most pertinent issues for the Astrotech 21 missions include dimensionally stable structural materials, advanced composites, dielectric coatings, optical metallic coatings for low scattered light applications, low scattered light surfaces, deployable and inflatable structures (including optical), support structures in 0-g and 1-g environments, cryogenic optics, optical blacks, contamination hardened surfaces, radiation hardened glasses and crystals, mono-metallic telescopes and instruments, and materials characterization. Some specific examples include low coefficients of thermal expansion (CTE) structures (0.01 ppm/K), lightweight thermally stable mirror materials, thermally stable optical assemblies, high reliability/accuracy (1 micron) deployable structures, and characterization of nanometer level behavior of materials/structures for interferometry concepts. Large filled-aperture concepts will require materials with CTE's of 10(exp 9) at 80 K, anti-contamination coatings, deployable and erectable structures, composite materials with CTE's less than 0.01 ppm/K and thermal hysteresis, 0.001 ppm/K. Gravitational detection systems such as LAGOS will require rigid/deployable structures, dimensionally stable components, lightweight materials with low conductivity, and high stability optics. The Materials and Structures panel addressed these issues and the relevance of the Astrotech 21 mission requirements by dividing materials and structures technology into five categories. These categories, the necessary development, and applicable mission/program development phasing are summarized. For each of these areas, technology assessments were made and development plans were defined.
Versatile low-Reynolds-number swimmer with three-dimensional maneuverability.
Jalali, Mir Abbas; Alam, Mohammad-Reza; Mousavi, SeyyedHossein
2014-11-01
We design and simulate the motion of a swimmer, the Quadroar, with three-dimensional translation and reorientation capabilities in low-Reynolds-number conditions. The Quadroar is composed of an I-shaped frame whose body link is a simple linear actuator and four disks that can rotate about the axes of flange links. The time symmetry is broken by a combination of disk rotations and the one-dimensional expansion or contraction of the body link. The Quadroar propels on forward and transverse straight lines and performs full three-dimensional reorientation maneuvers, which enable it to swim along arbitrary trajectories. We find continuous operation modes that propel the swimmer on planar and three-dimensional periodic and quasiperiodic orbits. Precessing quasiperiodic orbits consist of slow lingering phases with cardioid or multiloop turns followed by directional propulsive phases. Quasiperiodic orbits allow the swimmer to access large parts of its neighboring space without using complex control strategies. We also discuss the feasibility of fabricating a nanoscale Quadroar by photoactive molecular rotors.
Entropic Barriers for Two-Dimensional Quantum Memories
NASA Astrophysics Data System (ADS)
Brown, Benjamin J.; Al-Shimary, Abbas; Pachos, Jiannis K.
2014-03-01
Comprehensive no-go theorems show that information encoded over local two-dimensional topologically ordered systems cannot support macroscopic energy barriers, and hence will not maintain stable quantum information at finite temperatures for macroscopic time scales. However, it is still well motivated to study low-dimensional quantum memories due to their experimental amenability. Here we introduce a grid of defect lines to Kitaev's quantum double model where different anyonic excitations carry different masses. This setting produces a complex energy landscape which entropically suppresses the diffusion of excitations that cause logical errors. We show numerically that entropically suppressed errors give rise to superexponential inverse temperature scaling and polynomial system size scaling for small system sizes over a low-temperature regime. Curiously, these entropic effects are not present below a certain low temperature. We show that we can vary the system to modify this bound and potentially extend the described effects to zero temperature.
Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Álvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime
2010-01-01
Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism. PMID:20056599
Albert, Armando; Yunta, Cristina; Arranz, Rocío; Peña, Alvaro; Salido, Eduardo; Valpuesta, José María; Martín-Benito, Jaime
2010-02-26
Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism.
Yang, Bichao; Xin, Huaxia; Wang, Feier; Cai, Jianfeng; Liu, Yanfang; Fu, Qing; Jin, Yu; Liang, Xinmiao
2017-08-01
As a common traditional Chinese medicine, Fructus Arctii has important clinical medical values. Its main components are lignans, which are difficult to separate and analyze because of the complex composition, similar chemical structures, and close properties. In this study, an off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method, as well as an effective sample pretreatment method based on hydrophilic interaction chromatography material, was developed to enrich the minor lignan fractions and obtain high-purity compounds. In total, 12 high-purity compounds were isolated from Fructus Arctii. Their structures were identified by using high-resolution mass spectrometry and nuclear magnetic resonance spectroscopy, which showed that all were lignans and that most of them were isomers. The results demonstrated the effective off-line two-dimensional supercritical fluid chromatography/reversed-phase liquid chromatography method for the purification of lignans from Fructus Arctii. The separation protocol established here will be beneficial for the separation of complex samples from other kinds of natural products. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
NASA Astrophysics Data System (ADS)
Zhang, Wenyu; Yang, Yushu; Zhang, Shuai; Yu, Dejian; Chen, Yong
2018-05-01
With the growing complexity of customer requirements and the increasing scale of manufacturing services, how to select and combine the single services to meet the complex demand of the customer has become a growing concern. This paper presents a new manufacturing service composition method to solve the multi-objective optimization problem based on quality of service (QoS). The proposed model not only presents different methods for calculating the transportation time and transportation cost under various structures but also solves the three-dimensional composition optimization problem, including service aggregation, service selection, and service scheduling simultaneously. Further, an improved Flower Pollination Algorithm (IFPA) is proposed to solve the three-dimensional composition optimization problem using a matrix-based representation scheme. The mutation operator and crossover operator of the Differential Evolution (DE) algorithm are also used to extend the basic Flower Pollination Algorithm (FPA) to improve its performance. Compared to Genetic Algorithm, DE, and basic FPA, the experimental results confirm that the proposed method demonstrates superior performance than other meta heuristic algorithms and can obtain better manufacturing service composition solutions.
Burkholder, Thomas J; van Antwerp, Keith W
2013-02-01
Statistical decomposition, including non-negative matrix factorization (NMF), is a convenient tool for identifying patterns of structured variability within behavioral motor programs, but it is unclear how the resolved factors relate to actual neural structures. Factors can be extracted from a uniformly sampled, low-dimension command space. In practical application, the command space is limited, either to those activations that perform some task(s) successfully or to activations induced in response to specific perturbations. NMF was applied to muscle activation patterns synthesized from low dimensional, synergy-like control modules mimicking simple task performance or feedback activation from proprioceptive signals. In the task-constrained paradigm, the accuracy of control module recovery was highly dependent on the sampled volume of control space, such that sampling even 50% of control space produced a substantial degradation in factor accuracy. In the feedback paradigm, NMF was not capable of extracting more than four control modules, even in a mechanical model with seven internal degrees of freedom. Reduced access to the low-dimensional control space imposed by physical constraints may result in substantial distortion of an existing low dimensional controller, such that neither the dimensionality nor the composition of the recovered/extracted factors match the original controller.
Two novel mixed-ligand complexes containing organosulfonate ligands.
Li, Mingtian; Huang, Jun; Zhou, Xuan; Fang, Hua; Ding, Liyun
2008-07-01
The structures reported herein, viz. bis(4-aminonaphthalene-1-sulfonato-kappaO)bis(4,5-diazafluoren-9-one-kappa(2)N,N')copper(II), [Cu(C(10)H(8)NO(3)S)(2)(C(11)H(6)N(2)O)(2)], (I), and poly[[[diaquacadmium(II)]-bis(mu-4-aminonaphthalene-1-sulfonato)-kappa(2)O:N;kappa(2)N:O] dihydrate], {[Cd(C(10)H(8)NO(3)S)(2)(H(2)O)(2)].2H(2)O}(n), (II), are rare examples of sulfonate-containing complexes where the anion does not fulfill a passive charge-balancing role, but takes an active part in coordination as a monodentate and/or bridging ligand. Monomeric complex (I) possesses a crystallographic inversion center at the Cu(II) atom, and the asymmetric unit contains one-half of a Cu atom, one complete 4-aminonaphthalene-1-sulfonate (ans) ligand and one 4,5-diazafluoren-9-one (DAFO) ligand. The Cu(II) atom has an elongated distorted octahedral coordination geometry formed by two O atoms from two monodentate ans ligands and by four N atoms from two DAFO molecules. Complex (II) is polymeric and its crystal structure is built up by one-dimensional chains and solvent water molecules. Here also the cation (a Cd(II) atom) lies on a crystallographic inversion center and adopts a slightly distorted octahedral geometry. Each ans anion serves as a bridging ligand linking two Cd(II) atoms into one-dimensional infinite chains along the [010] direction, with each Cd(II) center coordinated by four ans ligands via O and N atoms and by two aqua ligands. In both structures, there are significant pi-pi stacking interactions between adjacent ligands and hydrogen bonds contribute to the formation of two- and three-dimensional networks.
Improving performance of DS-CDMA systems using chaotic complex Bernoulli spreading codes
NASA Astrophysics Data System (ADS)
Farzan Sabahi, Mohammad; Dehghanfard, Ali
2014-12-01
The most important goal of spreading spectrum communication system is to protect communication signals against interference and exploitation of information by unintended listeners. In fact, low probability of detection and low probability of intercept are two important parameters to increase the performance of the system. In Direct Sequence Code Division Multiple Access (DS-CDMA) systems, these properties are achieved by multiplying the data information in spreading sequences. Chaotic sequences, with their particular properties, have numerous applications in constructing spreading codes. Using one-dimensional Bernoulli chaotic sequence as spreading code is proposed in literature previously. The main feature of this sequence is its negative auto-correlation at lag of 1, which with proper design, leads to increase in efficiency of the communication system based on these codes. On the other hand, employing the complex chaotic sequences as spreading sequence also has been discussed in several papers. In this paper, use of two-dimensional Bernoulli chaotic sequences is proposed as spreading codes. The performance of a multi-user synchronous and asynchronous DS-CDMA system will be evaluated by applying these sequences under Additive White Gaussian Noise (AWGN) and fading channel. Simulation results indicate improvement of the performance in comparison with conventional spreading codes like Gold codes as well as similar complex chaotic spreading sequences. Similar to one-dimensional Bernoulli chaotic sequences, the proposed sequences also have negative auto-correlation. Besides, construction of complex sequences with lower average cross-correlation is possible with the proposed method.
The Thiamine-Pyrophosphate-Motif
NASA Technical Reports Server (NTRS)
Ciszak, Ewa; Dominiak, Paulina
2004-01-01
Thiamin pyrophosphate (TPP), a derivative of vitamin B1, is a cofactor for enzymes performing catalysis in pathways of energy production including the well known decarboxylation of a-keto acid dehydrogenases followed by transketolation. TPP-dependent enzymes constitute a structurally and functionally diverse group exhibiting multimeric subunit organization, multiple domains and two chemically equivalent catalytic centers. Annotation of functional TPP-dependcnt enzymes, therefore, has not been trivial due to low sequence similarity related to this complex organization. Our approach to analysis of structures of known TPP-dependent enzymes reveals for the first time features common to this group, which we have termed the TPP-motif. The TPP-motif consists of specific spatial arrangements of structural elements and their specific contacts to provide for a flip-flop, or alternate site, enzymatic mechanism of action. Analysis of structural elements entrained in the flip-flop action displayed by TPP-dependent enzymes reveals a novel definition of the common amino acid sequences. These sequences allow for annotation of TPP-dependent enzymes, thus advancing functional proteomics. Further details of three-dimensional structures of TPP-dependent enzymes will be discussed.
SASS: A symmetry adapted stochastic search algorithm exploiting site symmetry
NASA Astrophysics Data System (ADS)
Wheeler, Steven E.; Schleyer, Paul v. R.; Schaefer, Henry F.
2007-03-01
A simple symmetry adapted search algorithm (SASS) exploiting point group symmetry increases the efficiency of systematic explorations of complex quantum mechanical potential energy surfaces. In contrast to previously described stochastic approaches, which do not employ symmetry, candidate structures are generated within simple point groups, such as C2, Cs, and C2v. This facilitates efficient sampling of the 3N-6 Pople's dimensional configuration space and increases the speed and effectiveness of quantum chemical geometry optimizations. Pople's concept of framework groups [J. Am. Chem. Soc. 102, 4615 (1980)] is used to partition the configuration space into structures spanning all possible distributions of sets of symmetry equivalent atoms. This provides an efficient means of computing all structures of a given symmetry with minimum redundancy. This approach also is advantageous for generating initial structures for global optimizations via genetic algorithm and other stochastic global search techniques. Application of the SASS method is illustrated by locating 14 low-lying stationary points on the cc-pwCVDZ ROCCSD(T) potential energy surface of Li5H2. The global minimum structure is identified, along with many unique, nonintuitive, energetically favorable isomers.
Ramsland, Paul A.; Farrugia, William; Bradford, Tessa M.; Tan Sardjono, Caroline; Esparon, Sandra; Trist, Halina M.; Powell, Maree S.; Szee Tan, Peck; Cendron, Angela C.; Wines, Bruce D.; Scott, Andrew M.; Hogarth, P. Mark
2012-01-01
The interaction of Abs with their specific FcRs is of primary importance in host immune effector systems involved in infection and inflammation, and are the target for immune evasion by pathogens. FcγRIIa is a unique and the most widespread activating FcR in humans that through avid binding of immune complexes potently triggers inflammation. Polymorphisms of FcγRIIa (high responder/low responder [HR/LR]) are linked to susceptibility to infections, autoimmune diseases, and the efficacy of therapeutic Abs. In this article, we define the three-dimensional structure of the complex between the HR (arginine, R134) allele of FcγRIIa (FcγRIIa-HR) and the Fc region of a humanized IgG1 Ab, hu3S193. The structure suggests how the HR/LR polymorphism may influence FcγRIIa interactions with different IgG subclasses and glycoforms. In addition, mutagenesis defined the basis of the epitopes detected by FcR blocking mAbs specific for FcγRIIa (IV.3), FcγRIIb (X63-21), and a pan FcγRII Ab (8.7). The epitopes detected by these Abs are distinct, but all overlap with residues defined by crystallography to contact IgG. Finally, crystal structures of LR (histidine, H134) allele of FcγRIIa and FcγRIIa-HR reveal two distinct receptor dimers that may represent quaternary states on the cell surface. A model is presented whereby a dimer of FcγRIIa-HR binds Ag–Ab complexes in an arrangement that possibly occurs on the cell membrane as part of a larger signaling assembly. PMID:21856937
Complexity: an internet resource for analysis of DNA sequence complexity
Orlov, Y. L.; Potapov, V. N.
2004-01-01
The search for DNA regions with low complexity is one of the pivotal tasks of modern structural analysis of complete genomes. The low complexity may be preconditioned by strong inequality in nucleotide content (biased composition), by tandem or dispersed repeats or by palindrome-hairpin structures, as well as by a combination of all these factors. Several numerical measures of textual complexity, including combinatorial and linguistic ones, together with complexity estimation using a modified Lempel–Ziv algorithm, have been implemented in a software tool called ‘Complexity’ (http://wwwmgs.bionet.nsc.ru/mgs/programs/low_complexity/). The software enables a user to search for low-complexity regions in long sequences, e.g. complete bacterial genomes or eukaryotic chromosomes. In addition, it estimates the complexity of groups of aligned sequences. PMID:15215465
A new fabrication technique for complex refractive micro-optical systems
NASA Astrophysics Data System (ADS)
Tormen, Massimo; Carpentiero, Alessandro; Ferrari, Enrico; Cabrini, Stefano; Cojoc, Dan; Di Fabrizio, Enzo
2006-01-01
We present a new method that allows to fabricate structures with tightly controlled three-dimensional profiles in the 10 nm to 100 μm scale range. This consists of a sequence of lithographic steps such as Electron Beam (EB) or Focused Ion Beam (FIB) lithography, alternated with isotropic wet etching processes performed on a quartz substrate. Morphological characterization by SEM and AFM shows that 3D structures with very accurate shape control and nanometer scale surface roughness can be realized. Quartz templates have been employed as complex system of micromirrors after metal coating of the patterned surface or used as stamps in nanoimprint, hot embossing or casting processes to shape complex plastic elements. Compared to other 3D micro and nanostructuring methods, in which a hard material is directly "sculptured" by energetic beams, our technique requires a much less intensive use of expensive lithographic equipments, for comparable volumes of structured material, resulting in dramatic increase of throughput. Refractive micro-optical elements have been fabricated and characterized in transmission and reflection modes with white and monochromatic light. The elements produce a distribution of sharp focal spots and lines in the three dimensional space, opening the route for applications of image reconstruction based on refractive optics.
Casting a Wider Net: Rational Synthesis Design of Low-Dimensional Bulk Materials.
Benavides, Katherine A; Oswald, Iain W H; Chan, Julia Y
2018-01-16
The discovery of novel magnetic and electronic properties in low-dimensional materials has led to the pursuit of hierarchical materials with specific substructures. Low-dimensional solids are highly anisotropic by nature and show promise in new quantum materials leading to exotic physical properties not realized in three-dimensional materials. We have the opportunity to extend our synthetic strategy of the flux-growth method to designing single crystalline low-dimensional materials in bulk. The goal of this Account is to highlight the synthesis and physical properties of several low-dimensional intermetallic compounds containing specific structural motifs that are linked to desirable magnetic and electrical properties. We turned our efforts toward intermetallic compounds consisting of antimony nets because they are closely linked to properties such as high carrier mobility (the velocity of an electron moving through a material under a magnetic field) and large magnetoresistance (the change in resistivity with an applied magnetic field), both of which are desirable properties for technological applications. The SmSb 2 structure type is of particular interest because it is comprised of rectangular antimony nets and rare earth ions stacked between the antimony nets in a square antiprismatic environment. LnSb 2 (Ln = La-Nd, Sm) have been shown to be highly anisotropic with SmSb 2 exhibiting magnetoresistance of over 50000% for H∥c axis and ∼2400% for H∥ab. Using this structure type as an initial building block, we envision the insertion of transition metal substructures into the SmSb 2 structure type to produce ternary materials. We describe compounds adopting the HfCuSi 2 structure type as an insertion of a tetrahedral transition metal-antimony subunit into the LnSb 2 host structure. We studied LnNi 1-x Sb 2 (Ln = Y, Gd-Er), where positive magnetoresistance reaching above 100% was found for the Y, Gd, and Ho analogues. We investigated the influence of the transition metal sublattice by substituting Ni into Ce(Cu 1-x Ni x ) y Sb 2 (y < 0.8) and found that the material is highly anisotropic and metamagnetic transitions appear at ∼0.5 and 1 T in compounds with higher Ni concentration. Metamagnetism is characterized by a sharp increase in the magnetic response of a material with increasing applied magnetic field, which was also observed in LnSb 2 (Ln = Ce-Nd). We also endeavored to study materials that possess a transition metal sublattice with the potential for geometric frustration. An example is the La 2 Fe 4 Sb 5 structure type, which consists of antimony square nets and an iron-based network arranged in nearly equilateral triangles, a feature found in magnetically frustrated systems. We discovered spin glass behavior in Ln 2 Fe 4 Sb 5 (Ln = La-Nd, Sm) and evidence that the transition metal sublattice contributes to the magnetic interactions of Ln 2 Fe 4 Sb 5 . We investigated the magnetic properties of Pr 2 Fe 4-x Co x Sb 5 (x < 2.3) and found that as the Co concentration increases, a second magnetic transition leads from a localized to an itinerant system. The La 2 Fe 4 Sb 5 structure type is quite robust and allows for the incorporation of other transition metals, thereby making it an excellent candidate to study competing magnetic interactions in lanthanide-containing intermetallic compounds. In this manuscript, we aim to share our experiences of bulk intermetallic compounds to inspire the development of new low-dimensional materials.
Qualitative-Modeling-Based Silicon Neurons and Their Networks
Kohno, Takashi; Sekikawa, Munehisa; Li, Jing; Nanami, Takuya; Aihara, Kazuyuki
2016-01-01
The ionic conductance models of neuronal cells can finely reproduce a wide variety of complex neuronal activities. However, the complexity of these models has prompted the development of qualitative neuron models. They are described by differential equations with a reduced number of variables and their low-dimensional polynomials, which retain the core mathematical structures. Such simple models form the foundation of a bottom-up approach in computational and theoretical neuroscience. We proposed a qualitative-modeling-based approach for designing silicon neuron circuits, in which the mathematical structures in the polynomial-based qualitative models are reproduced by differential equations with silicon-native expressions. This approach can realize low-power-consuming circuits that can be configured to realize various classes of neuronal cells. In this article, our qualitative-modeling-based silicon neuron circuits for analog and digital implementations are quickly reviewed. One of our CMOS analog silicon neuron circuits can realize a variety of neuronal activities with a power consumption less than 72 nW. The square-wave bursting mode of this circuit is explained. Another circuit can realize Class I and II neuronal activities with about 3 nW. Our digital silicon neuron circuit can also realize these classes. An auto-associative memory realized on an all-to-all connected network of these silicon neurons is also reviewed, in which the neuron class plays important roles in its performance. PMID:27378842
NASA Technical Reports Server (NTRS)
Abdul-Aziz, Ali; Baaklini, George Y.; Bhatt, Ramakrishna T.
2003-01-01
Most reverse engineering approaches involve imaging or digitizing an object and then creating a computerized reconstruction that can be integrated, in three dimensions, into a particular design environment. The rapid prototyping technique builds high-quality physical prototypes directly from computer-aided design files. This fundamental technique for interpreting and interacting with large data sets is being used here via Velocity2 (an integrated image-processing software, ref. 1) using computed tomography (CT) data to produce a prototype three-dimensional test specimen model for analyses. A study at the NASA Glenn Research Center proposes to use these capabilities to conduct a combined nondestructive evaluation (NDE) and finite element analysis (FEA) to screen pretest and posttest structural anomalies in structural components. A tensile specimen made of silicon nitrite (Si3N4) ceramic matrix composite was considered to evaluate structural durability and deformity. Ceramic matrix composites are being sought as candidate materials to replace nickel-base superalloys for turbine engine applications. They have the unique characteristics of being able to withstand higher operating temperatures and harsh combustion environments. In addition, their low densities relative to metals help reduce component mass (ref. 2). Detailed three-dimensional volume rendering of the tensile test specimen was successfully carried out with Velocity2 (ref. 1) using two-dimensional images that were generated via computed tomography. Subsequent, three-dimensional finite element analyses were performed, and the results obtained were compared with those predicted by NDE-based calculations and experimental tests. It was shown that Velocity2 software can be used to render a three-dimensional object from a series of CT scan images with a minimum level of complexity. The analytical results (ref. 3) show that the high-stress regions correlated well with the damage sites identified by the CT scans and the experimental data. Furthermore, modeling of the voids collected via NDE offered an analytical advantage that resulted in more accurate assessments of the material s structural strength. The top figure shows a CT scan image of the specimen test section illustrating various hidden structural entities in the material and an optical image of the test specimen considered in this study. The bottom figure represents the stress response predicted from the finite element analyses (ref .3 ) for a selected CT slice where it clearly illustrates the correspondence of the high stress risers due to voids in the material with those predicted by the NDE. This study is continuing, and efforts are concentrated on improving the modeling capabilities to imitate the structural anomalies as detected.
Bursting as a source of non-linear determinism in the firing patterns of nigral dopamine neurons
Jeong, Jaeseung; Shi, Wei-Xing; Hoffman, Ralph; Oh, Jihoon; Gore, John C.; Bunney, Benjamin S.; Peterson, Bradley S.
2012-01-01
Nigral dopamine (DA) neurons in vivo exhibit complex firing patterns consisting of tonic single-spikes and phasic bursts that encode information for certain types of reward-related learning and behavior. Non-linear dynamical analysis has previously demonstrated the presence of a non-linear deterministic structure in complex firing patterns of DA neurons, yet the origin of this non-linear determinism remains unknown. In this study, we hypothesized that bursting activity is the primary source of non-linear determinism in the firing patterns of DA neurons. To test this hypothesis, we investigated the dimension complexity of inter-spike interval data recorded in vivo from bursting and non-bursting DA neurons in the chloral hydrate-anesthetized rat substantia nigra. We found that bursting DA neurons exhibited non-linear determinism in their firing patterns, whereas non-bursting DA neurons showed truly stochastic firing patterns. Determinism was also detected in the isolated burst and inter-burst interval data extracted from firing patterns of bursting neurons. Moreover, less bursting DA neurons in halothane-anesthetized rats exhibited higher dimensional spiking dynamics than do more bursting DA neurons in chloral hydrate-anesthetized rats. These results strongly indicate that bursting activity is the main source of low-dimensional, non-linear determinism in the firing patterns of DA neurons. This finding furthermore suggests that bursts are the likely carriers of meaningful information in the firing activities of DA neurons. PMID:22831464
Electrospun Fibrous Scaffolds for Tissue Engineering: Viewpoints on Architecture and Fabrication.
Jun, Indong; Han, Hyung-Seop; Edwards, James R; Jeon, Hojeong
2018-03-06
Electrospinning has been used for the fabrication of extracellular matrix (ECM)-mimicking fibrous scaffolds for several decades. Electrospun fibrous scaffolds provide nanoscale/microscale fibrous structures with interconnecting pores, resembling natural ECM in tissues, and showing a high potential to facilitate the formation of artificial functional tissues. In this review, we summarize the fundamental principles of electrospinning processes for generating complex fibrous scaffold geometries that are similar in structural complexity to the ECM of living tissues. Moreover, several approaches for the formation of three-dimensional fibrous scaffolds arranged in hierarchical structures for tissue engineering are also presented.
NASA Astrophysics Data System (ADS)
Merheb, B.; Deymier, P. A.; Jain, M.; Aloshyna-Lesuffleur, M.; Mohanty, S.; Berker, A.; Greger, R. W.
2008-09-01
The transmission of acoustic waves through centimeter-scale elastic and viscoelastic two-dimensional silicone rubber/air phononic crystal structures is investigated theoretically and experimentally. We introduce a finite difference time domain method for two-dimensional elastic and viscoelastic composite structures. Elastic fluid-solid phononic crystals composed of a two-dimensional array of cylindrical air inclusions in a solid rubber matrix, as well as an array of rubber cylinders in an air matrix, are shown to behave similarly to fluid-fluid composite structures. These systems exhibit very wide band gaps in their transmission spectra that extend to frequencies in the audible range of the spectrum. This effect is associated with the very low value of the transverse speed of sound in rubber compared to that of the longitudinal polarization. The difference in transmission between elastic and viscoelastic rubber/air crystals results from attenuation of transmission over a very wide frequency range, leaving only narrow passing bands at very low frequencies. These phononic crystals demonstrate the practical design of elastic or viscoelastic solid rubber/air acoustic band gap sound barriers with small dimensions.
Modeling Smoke Plume-Rise and Dispersion from Southern United States Prescribed Burns with Daysmoke
G L Achtemeier; S L Goodrick; Y Liu; F Garcia-Menendez; Y Hu; M. Odman
2011-01-01
We present Daysmoke, an empirical-statistical plume rise and dispersion model for simulating smoke from prescribed burns. Prescribed fires are characterized by complex plume structure including multiple-core updrafts which makes modeling with simple plume models difficult. Daysmoke accounts for plume structure in a three-dimensional veering/sheering atmospheric...
Amazon forest structure generates diurnal and seasonal variability in light utilization
Douglas C. Morton; Jeremy Rubio; Bruce D. Cook; Jean-Philippe Gastellu-Etchegorry; Marcos Longo; Hyeungu Choi; Maria Hunter; Michael Keller
2016-01-01
The complex three-dimensional (3-D) structure of tropical forests generates a diversity of light environments for canopy and understory trees. Understanding diurnal and seasonal changes in light availability is critical for interpreting measurements of net ecosystem exchange and improving ecosystem models. Here, we used the Discrete Anisotropic Radiative Transfer (DART...
NASA Astrophysics Data System (ADS)
Catanzaro, Michael J.; Chernyak, Vladimir Y.; Klein, John R.
2016-12-01
Driven Langevin processes have appeared in a variety of fields due to the relevance of natural phenomena having both deterministic and stochastic effects. The stochastic currents and fluxes in these systems provide a convenient set of observables to describe their non-equilibrium steady states. Here we consider stochastic motion of a (k - 1) -dimensional object, which sweeps out a k-dimensional trajectory, and gives rise to a higher k-dimensional current. By employing the low-temperature (low-noise) limit, we reduce the problem to a discrete Markov chain model on a CW complex, a topological construction which generalizes the notion of a graph. This reduction allows the mean fluxes and currents of the process to be expressed in terms of solutions to the discrete Supersymmetric Fokker-Planck (SFP) equation. Taking the adiabatic limit, we show that generic driving leads to rational quantization of the generated higher dimensional current. The latter is achieved by implementing the recently developed tools, coined the higher-dimensional Kirchhoff tree and co-tree theorems. This extends the study of motion of extended objects in the continuous setting performed in the prequel (Catanzaro et al.) to this manuscript.
Automated and fast building of three-dimensional RNA structures.
Zhao, Yunjie; Huang, Yangyu; Gong, Zhou; Wang, Yanjie; Man, Jianfen; Xiao, Yi
2012-01-01
Building tertiary structures of non-coding RNA is required to understand their functions and design new molecules. Current algorithms of RNA tertiary structure prediction give satisfactory accuracy only for small size and simple topology and many of them need manual manipulation. Here, we present an automated and fast program, 3dRNA, for RNA tertiary structure prediction with reasonable accuracy for RNAs of larger size and complex topology.
Fabrication of three-dimensional collagen scaffold using an inverse mould-leaching process.
Ahn, SeungHyun; Lee, SuYeon; Cho, Youngseok; Chun, Wook; Kim, GeunHyung
2011-09-01
Natural biopolymers, such as collagen or chitosan, are considered ideal for biomedical scaffolds. However, low processability of the materials has hindered the fabrication of designed pore structures controlled by various solid freeform-fabrication methods. A new technique to fabricate a biomedical three-dimensional collagen scaffold, supplemented with a sacrificial poly(ethylene oxide) mould is proposed. The fabricated collagen scaffold shows a highly porous surface and a three-dimensional structure with high porosity as well as mechanically stable structure. To show its feasibility for biomedical applications, fibroblasts/keratinocytes were co-cultured on the scaffold, and the cell proliferation and cell migration of the scaffold was more favorable than that obtained with a spongy-type collagen scaffold.
NASA Technical Reports Server (NTRS)
Kennedy, Ronald; Padovan, Joe
1987-01-01
In a three-part series of papers, a generalized finite element solution strategy is developed to handle traveling load problems in rolling, moving and rotating structure. The main thrust of this section consists of the development of three-dimensional and shell type moving elements. In conjunction with this work, a compatible three-dimensional contact strategy is also developed. Based on these modeling capabilities, extensive analytical and experimental benchmarking is presented. Such testing includes traveling loads in rotating structure as well as low- and high-speed rolling contact involving standing wave-type response behavior. These point to the excellent modeling capabilities of moving element strategies.
NASA Technical Reports Server (NTRS)
Hada, Megumi; Cucinotta, Francis; Wu, Honglu
2009-01-01
The advantage of the multicolor banding in situ hybridization (mBAND) technique is its ability to identify both inter- (translocation to unpainted chromosomes) and intra- (inversions and deletions within a single painted chromosome) chromosome aberrations simultaneously. To study the detailed rearrangement of low- and high-LET radiation induced chromosome aberrations in human epithelial cells (CH184B5F5/M10) in vitro, we performed a series of experiments with Cs-137 gamma rays of both low and high dose rates, neutrons of low dose rate and 600 MeV/u Fe ions of high dose rate, with chromosome 3 painted with multi-binding colors. We also compared the chromosome aberrations in both 2- and 3-dimensional cell cultures. Results of these experiments revealed the highest chromosome aberration frequencies after low dose rate neutron exposures. However, detailed analysis of the radiation induced inversions revealed that all three radiation types induced a low incidence of simple inversions. Most of the inversions in gamma-ray irradiated samples were accompanied by other types of intra-chromosomal aberrations but few inversions were accompanied by inter-chromosomal aberrations. In contrast, neutrons and Fe ions induced a significant fraction of inversions that involved complex rearrangements of both inter- and intrachromosomal exchanges. The location of the breaks involved in chromosome exchanges was analyzed along the painted chromosome. The breakpoint distribution was found to be randomly localized on chromosome 3 after neutron or Fe ion exposure, whereas non-random distribution with clustering breakpoints was observed after -ray exposure. Our comparison of chromosome aberration yields between 2- and 3-dimensional cell cultures indicated a significant difference for gamma exposures, but not for Fe ion exposures. These experimental results indicated that the track structure of the radiation and the cellular/chromosome structure can both affect radiation-induced chromosome aberrations.
Fabrication of dielectric elastomer stack transducers (DEST) by liquid deposition modeling
NASA Astrophysics Data System (ADS)
Klug, Florian; Solano-Arana, Susana; Mößinger, Holger; Förster-Zügel, Florentine; Schlaak, Helmut F.
2017-04-01
Established fabrication methods for dielectric elastomer stack transducers (DEST) are mostly based on twodimensional thin-film technology. Because of this, DEST are based on simple two-dimensionally structured shapes. For certain applications, like valves or Braille displays, these structures are suited well enough. However, a more flexible fabrication method allows for more complex actuator designs, which would otherwise require extra processing steps. Fabrication methods with the possibility of three-dimensional structuring allow e.g. the integration of electrical connections, cavities, channels, sensor and other structural elements during the fabrication. This opens up new applications, as well as the opportunity for faster prototype production of individually designed DEST for a given application. In this work, a manufacturing system allowing three dimensional structuring is described. It enables the production of multilayer and three-dimensional structured DEST by liquid deposition modelling. The system is based on a custom made dual extruder, connected to a commercial threeaxis positioning system. It allows a computer controlled liquid deposition of two materials. After tuning the manufacturing parameters the production of thin layers with at thickness of less than 50 μm, as well as stacking electrode and dielectric materials is feasible. With this setup a first DEST with dielectric layer thickness less than 50 μm is build successfully and its performance is evaluated.
Correlated multielectron dynamics in mid-infrared laser pulse interactions with neon atoms.
Tang, Qingbin; Huang, Cheng; Zhou, Yueming; Lu, Peixiang
2013-09-09
The multielectron dynamics in nonsequential triple ionization (NSTI) of neon atoms driven by mid-infrared (MIR) laser pulses is investigated with the three-dimensional classical ensemble model. In consistent with the experimental result, our numerical result shows that in the MIR regime, the triply charged ion longitudinal momentum spectrum exhibits a pronounced double-hump structure at low laser intensity. Back analysis reveals that as the intensity increases, the responsible triple ionization channels transform from direct (e, 3e) channel to the various mixed channels. This transformation of the NSTI channels leads to the results that the shape of ion momentum spectra becomes narrow and the distinct maxima shift towards low momenta with the increase of the laser intensity. By tracing the triply ionized trajectories, the various ionization channels at different laser intensities are clearly identified and these results provide an insight into the complex dynamics of the correlated three electrons in NSTI.
Characterization of low thermal conductivity PAN-based carbon fibers
NASA Technical Reports Server (NTRS)
Katzman, Howard A.; Adams, P. M.; Le, T. D.; Hemminger, Carl S.
1992-01-01
The microstructure and surface chemistry of eight low thermal conductivity (LTC) PAN-based carbon fibers were determined and compared with PAN-based fibers heat treated to higher temperatures. Based on wide-angle x ray diffraction, the LTC PAN fibers all appear to have a similar turbostratic structure with large 002 d-spacings, small crystallite sizes, and moderate preferred orientation. Limited small-angle x ray scattering (SAXS) results indicate that, with the exception of LTC fibers made by BASF, the LTC fibers do not have well developed pores. Transmission electron microscopy shows that the texture of the two LTC PAN-based fibers studied (Amoco T350/23X and /25X) consists of multiple sets of parallel, wavy, bent layers that interweave with each other forming a complex three dimensional network oriented randomly around the fiber axis. X ray photoelectron spectroscopy (XPS) analysis finds correlations between heat treated temperatures and the surface composition chemistry of the carbon fiber samples.
NASA Astrophysics Data System (ADS)
Rybakin, B.; Bogatencov, P.; Secrieru, G.; Iliuha, N.
2013-10-01
The paper deals with a parallel algorithm for calculations on multiprocessor computers and GPU accelerators. The calculations of shock waves interaction with low-density bubble results and the problem of the gas flow with the forces of gravity are presented. This algorithm combines a possibility to capture a high resolution of shock waves, the second-order accuracy for TVD schemes, and a possibility to observe a low-level diffusion of the advection scheme. Many complex problems of continuum mechanics are numerically solved on structured or unstructured grids. To improve the accuracy of the calculations is necessary to choose a sufficiently small grid (with a small cell size). This leads to the drawback of a substantial increase of computation time. Therefore, for the calculations of complex problems it is reasonable to use the method of Adaptive Mesh Refinement. That is, the grid refinement is performed only in the areas of interest of the structure, where, e.g., the shock waves are generated, or a complex geometry or other such features exist. Thus, the computing time is greatly reduced. In addition, the execution of the application on the resulting sequence of nested, decreasing nets can be parallelized. Proposed algorithm is based on the AMR method. Utilization of AMR method can significantly improve the resolution of the difference grid in areas of high interest, and from other side to accelerate the processes of the multi-dimensional problems calculating. Parallel algorithms of the analyzed difference models realized for the purpose of calculations on graphic processors using the CUDA technology [1].
Molecular engineering of chiral colloidal liquid crystals using DNA origami
NASA Astrophysics Data System (ADS)
Siavashpouri, Mahsa; Wachauf, Christian H.; Zakhary, Mark J.; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir
2017-08-01
Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Furthermore, it also enables robust assembly of one-dimensional twisted ribbons, which behave as effective supramolecular polymers whose structure and elastic properties can be precisely tuned by controlling the geometry of the elemental building blocks. Our results demonstrate the potential synergy between DNA origami technology and colloidal science, in which the former allows for rapid and robust synthesis of complex particles, and the latter can be used to assemble such particles into bulk materials.
Molecular engineering of chiral colloidal liquid crystals using DNA origami.
Siavashpouri, Mahsa; Wachauf, Christian H; Zakhary, Mark J; Praetorius, Florian; Dietz, Hendrik; Dogic, Zvonimir
2017-08-01
Establishing precise control over the shape and the interactions of the microscopic building blocks is essential for design of macroscopic soft materials with novel structural, optical and mechanical properties. Here, we demonstrate robust assembly of DNA origami filaments into cholesteric liquid crystals, one-dimensional supramolecular twisted ribbons and two-dimensional colloidal membranes. The exquisite control afforded by the DNA origami technology establishes a quantitative relationship between the microscopic filament structure and the macroscopic cholesteric pitch. Furthermore, it also enables robust assembly of one-dimensional twisted ribbons, which behave as effective supramolecular polymers whose structure and elastic properties can be precisely tuned by controlling the geometry of the elemental building blocks. Our results demonstrate the potential synergy between DNA origami technology and colloidal science, in which the former allows for rapid and robust synthesis of complex particles, and the latter can be used to assemble such particles into bulk materials.
Experimental and Numerical Study of Ammonium Perchlorate Counterflow Diffusion Flames
NASA Technical Reports Server (NTRS)
Smooke, M. D.; Yetter, R. A.; Parr, T. P.; Hanson-Parr, D. M.; Tanoff, M. A.
1999-01-01
Many solid rocket propellants are based on a composite mixture of ammonium perchlorate (AP) oxidizer and polymeric binder fuels. In these propellants, complex three-dimensional diffusion flame structures between the AP and binder decomposition products, dependent upon the length scales of the heterogeneous mixture, drive the combustion via heat transfer back to the surface. Changing the AP crystal size changes the burn rate of such propellants. Large AP crystals are governed by the cooler AP self-deflagration flame and burn slowly, while small AP crystals are governed more by the hot diffusion flame with the binder and burn faster. This allows control of composite propellant ballistic properties via particle size variation. Previous measurements on these diffusion flames in the planar two-dimensional sandwich configuration yielded insight into controlling flame structure, but there are several drawbacks that make comparison with modeling difficult. First, the flames are two-dimensional and this makes modeling much more complex computationally than with one-dimensional problems, such as RDX self- and laser-supported deflagration. In addition, little is known about the nature, concentration, and evolution rates of the gaseous chemical species produced by the various binders as they decompose. This makes comparison with models quite difficult. Alternatively, counterflow flames provide an excellent geometric configuration within which AP/binder diffusion flames can be studied both experimentally and computationally.
Chaos and generalised multistability in a mesoscopic model of the electroencephalogram
NASA Astrophysics Data System (ADS)
Dafilis, Mathew P.; Frascoli, Federico; Cadusch, Peter J.; Liley, David T. J.
2009-06-01
We present evidence for chaos and generalised multistability in a mesoscopic model of the electroencephalogram (EEG). Two limit cycle attractors and one chaotic attractor were found to coexist in a two-dimensional plane of the ten-dimensional volume of initial conditions. The chaotic attractor was found to have a moderate value of the largest Lyapunov exponent (3.4 s -1 base e) with an associated Kaplan-Yorke (Lyapunov) dimension of 2.086. There are two different limit cycles appearing in conjunction with this particular chaotic attractor: one multiperiodic low amplitude limit cycle whose largest spectral peak is within the alpha band (8-13 Hz) of the EEG; and another multiperiodic large-amplitude limit cycle which may correspond to epilepsy. The cause of the coexistence of these structures is explained with a one-parameter bifurcation analysis. Each attractor has a basin of differing complexity: the large-amplitude limit cycle has a basin relatively uncomplicated in its structure while the small-amplitude limit cycle and chaotic attractor each have much more finely structured basins of attraction, but none of the basin boundaries appear to be fractal. The basins of attraction for the chaotic and small-amplitude limit cycle dynamics apparently reside within each other. We briefly discuss the implications of these findings in the context of theoretical attempts to understand the dynamics of brain function and behaviour.
In silico modeling of the Moniliophthora perniciosa Atg8 protein.
Pereira, A C F; Cardoso, T H S; Brendel, M; Pungartnik, C
2013-12-11
Autophagy is defined as an intracellular system of lysosomal degradation in eukaryotic cells, and the genes involved in this process are conserved from yeast to humans. Among these genes, ATG8 encodes a ubiquitin-like protein that is conjugated to a phosphatidylethanolamine (PE) membrane by the ubiquitination system. The Atg8p-PE complex is important in initiating the formation of the autophagosome and thus plays a critical role in autophagy. In silico modeling of Atg8p of Moniliophthora perniciosa revealed its three-dimensional structure and enabled comparison with its Saccharomyces cerevisiae homologue ScAtg8p. Some common and distinct features were observed between these two proteins, including the conservation of residues required to allow the interaction of α-helix1 with the ubiquitin core. However, the electrostatic potential surfaces of these helices differ, implying particular roles in selecting specific binding partners. The proposed structure was validated by the programs PROCHECK 3.4, ANOLEA, and QMEAN, which demonstrated 100% of amino acids located in favorable regions with low total energy. Our results showed that MpAtg8p contains the same functional domains (3 α-helices and 4 β-sheets) and is similar in structure as the ScAtg8p yeast. Both proteins have many conserved sequences in common, and therefore, their proposed three-dimensional models show similar configuration.
Double interpenetration in a chiral three-dimensional magnet with a (10,3)-a structure.
Grancha, Thais; Mon, Marta; Lloret, Francesc; Ferrando-Soria, Jesús; Journaux, Yves; Pasán, Jorge; Pardo, Emilio
2015-09-21
A unique chiral three-dimensional magnet with an overall racemic double-interpenetrated (10,3)-a structure of the formula [(S)-(1-PhEt)Me3N]4[Mn4Cu6(Et2pma)12](DMSO)3]·3DMSO·5H2O (1; Et2pma = N-2,6-diethylphenyloxamate) has been synthesized by the self-assembly of a mononuclear copper(II) complex acting as a metalloligand toward Mn(II) ions in the presence of a chiral cationic auxiliary, constituting the first oxamato-based chiral coordination polymer exhibiting long-range magnetic ordering.
Kumar, Girijesh; Gupta, Rajeev
2013-10-07
The present work shows the utilization of Co(3+) complexes appended with either para- or meta-arylcarboxylic acid groups as the molecular building blocks for the construction of three-dimensional {Co(3+)-Zn(2+)} and {Co(3+)-Cd(2+)} heterobimetallic networks. The structural characterizations of these networks show several interesting features including well-defined pores and channels. These networks function as heterogeneous and reusable catalysts for the regio- and stereoselective ring-opening reactions of various epoxides and size-selective cyanation reactions of assorted aldehydes.
Centrality measures in temporal networks with time series analysis
NASA Astrophysics Data System (ADS)
Huang, Qiangjuan; Zhao, Chengli; Zhang, Xue; Wang, Xiaojie; Yi, Dongyun
2017-05-01
The study of identifying important nodes in networks has a wide application in different fields. However, the current researches are mostly based on static or aggregated networks. Recently, the increasing attention to networks with time-varying structure promotes the study of node centrality in temporal networks. In this paper, we define a supra-evolution matrix to depict the temporal network structure. With using of the time series analysis, the relationships between different time layers can be learned automatically. Based on the special form of the supra-evolution matrix, the eigenvector centrality calculating problem is turned into the calculation of eigenvectors of several low-dimensional matrices through iteration, which effectively reduces the computational complexity. Experiments are carried out on two real-world temporal networks, Enron email communication network and DBLP co-authorship network, the results of which show that our method is more efficient at discovering the important nodes than the common aggregating method.
Parametric embedding for class visualization.
Iwata, Tomoharu; Saito, Kazumi; Ueda, Naonori; Stromsten, Sean; Griffiths, Thomas L; Tenenbaum, Joshua B
2007-09-01
We propose a new method, parametric embedding (PE), that embeds objects with the class structure into a low-dimensional visualization space. PE takes as input a set of class conditional probabilities for given data points and tries to preserve the structure in an embedding space by minimizing a sum of Kullback-Leibler divergences, under the assumption that samples are generated by a gaussian mixture with equal covariances in the embedding space. PE has many potential uses depending on the source of the input data, providing insight into the classifier's behavior in supervised, semisupervised, and unsupervised settings. The PE algorithm has a computational advantage over conventional embedding methods based on pairwise object relations since its complexity scales with the product of the number of objects and the number of classes. We demonstrate PE by visualizing supervised categorization of Web pages, semisupervised categorization of digits, and the relations of words and latent topics found by an unsupervised algorithm, latent Dirichlet allocation.
Unconventional magnetisation texture in graphene/cobalt hybrids
Vu, A. D.; Coraux, J.; Chen, G.; ...
2016-04-26
Magnetic domain structure and spin-dependent reflectivity measurements on cobalt thin films intercalated at the graphene/Ir(111) interface are investigated using spin-polarised low-energy electron microscopy. We find that graphene-covered cobalt films have surprising magnetic properties. Vectorial imaging of magnetic domains reveals an unusually gradual thickness-dependent spin reorientation transition, in which magnetisation rotates from out-of-the-film plane to the in-plane direction by less than 10° per cobalt monolayer. During this transition, cobalt films have a meandering spin texture, characterised by a complex, three-dimensional, wavy magnetisation pattern. In addition, spectroscopy measurements suggest that the electronic band structure of the unoccupied states is essentially spin-independent alreadymore » a few electron-Volts above the vacuum level. These properties strikingly differ from those of pristine cobalt films and could open new prospects in surface magnetism.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.
Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less
Mayer, Brian P.; Kennedy, Daniel J.; Lau, Edmond Y.; ...
2016-02-04
Cyclodextrins (CDs) are investigated for their ability to form inclusion complexes with the analgesic fentanyl and three similar molecules: acetylfentanyl, thiofentanyl, and acetylthiofentanyl. Stoichiometry, binding strength, and complex structure are revealed through nuclear magnetic resonance (NMR) techniques and discussed in terms of molecular dynamics (MD) simulations. It was found that β-cyclodextrin is generally capable of forming the strongest complexes with the fentanyl panel. Two-dimensional NMR data and computational chemical calculations are used to derive solution-state structures of the complexes. Binding of the fentanyls to the CDs occurs at the amide phenyl ring, leaving the majority of the molecule solvated bymore » water, an observation common to all four fentanyls. This finding suggests a universal binding behavior, as the vast majority of previously synthesized fentanyl analogues contain this structural moiety. Furthermore, this baseline study serves as the most complete work on CD:fentanyl complexes to date and provides the insights into strategies for producing future generations of designer cyclodextrins capable of stronger and more selective complexation of fentanyl and its analogues.« less
Integrated three-dimensional optical MEMS for chip-based fluorescence detection
NASA Astrophysics Data System (ADS)
Hung, Kuo-Yung; Tseng, Fan-Gang; Khoo, Hwa-Seng
2009-04-01
This paper presents a novel fluorescence sensing chip for parallel protein microarray detection in the context of a 3-in-1 protein chip system. This portable microchip consists of a monolithic integration of CMOS-based avalanche photo diodes (APDs) combined with a polymer micro-lens, a set of three-dimensional (3D) inclined mirrors for separating adjacent light signals and a low-noise transformer-free dc-dc boost mini-circuit to power the APDs (ripple below 1.28 mV, 0-5 V input, 142 V and 12 mA output). We fabricated our APDs using the planar CMOS process so as to facilitate the post-CMOS integration of optical MEMS components such as the lenses. The APD arrays were arranged in unique circular patterns appropriate for detecting the specific fluorescently labelled protein spots in our study. The array-type APDs were designed so as to compensate for any alignment error as detected by a positional error signal algorithm. The condenser lens was used as a structure for light collection to enhance the fluorescent signals by about 25%. This element also helped to reduce the light loss due to surface absorption. We fabricated an inclined mirror to separate two adjacent fluorescent signals from different specimens. Excitation using evanescent waves helped reduce the interference of the excitation light source. This approach also reduced the number of required optical lenses and minimized the complexity of the structural design. We achieved detection floors for anti-rabbit IgG and Cy5 fluorescent dye as low as 0.5 ng/µl (~3.268 nM). We argue that the intrinsic nature of point-to-point and batch-detection methods as showcased in our chip offers advantages over the serial-scanning approach used in traditional scanner systems. In addition, our system is low cost and lightweight.
Ghasemi-Varnamkhasti, Mahdi; Amiri, Zahra Safari; Tohidi, Mojtaba; Dowlati, Majid; Mohtasebi, Seyed Saeid; Silva, Adenilton C; Fernandes, David D S; Araujo, Mário C U
2018-01-01
Cumin is a plant of the Apiaceae family (umbelliferae) which has been used since ancient times as a medicinal plant and as a spice. The difference in the percentage of aromatic compounds in cumin obtained from different locations has led to differentiation of some species of cumin from other species. The quality and price of cumin vary according to the specie and may be an incentive for the adulteration of high value samples with low quality cultivars. An electronic nose simulates the human olfactory sense by using an array of sensors to distinguish complex smells. This makes it an alternative for the identification and classification of cumin species. The data, however, may have a complex structure, difficult to interpret. Given this, chemometric tools can be used to manipulate data with two-dimensional structure (sensor responses in time) obtained by using electronic nose sensors. In this study, an electronic nose based on eight metal oxide semiconductor sensors (MOS) and 2D-LDA (two-dimensional linear discriminant analysis), U-PLS-DA (Partial least square discriminant analysis applied to the unfolded data) and PARAFAC-LDA (Parallel factor analysis with linear discriminant analysis) algorithms were used in order to identify and classify different varieties of both cultivated and wild black caraway and cumin. The proposed methodology presented a correct classification rate of 87.1% for PARAFAC-LDA and 100% for 2D-LDA and U-PLS-DA, indicating a promising strategy for the classification different varieties of cumin, caraway and other seeds. Copyright © 2017 Elsevier B.V. All rights reserved.
Tolkatchev, Dmitri; Shaykhutdinov, Rustem; Xu, Ping; Plamondon, Josée; Watson, David C; Young, N Martin; Ni, Feng
2006-10-01
A putative low molecular weight protein tyrosine phosphatase (LMW-PTP) was identified in the genome sequence of the bacterial pathogen, Campylobacter jejuni. This novel gene, cj1258, has sequence homology with a distinctive class of phosphatases widely distributed among prokaryotes and eukaryotes. We report here the solution structure of Cj1258 established by high-resolution NMR spectroscopy using NOE-derived distance restraints, hydrogen bond data, and torsion angle restraints. The three-dimensional structure consists of a central four-stranded parallel beta-sheet flanked by five alpha-helices, revealing an overall structural topology similar to those of the eukaryotic LMW-PTPs, such as human HCPTP-A, bovine BPTP, and Saccharomyces cerevisiae LTP1, and to those of the bacterial LMW-PTPs MPtpA from Mycobacterium tuberculosis and YwlE from Bacillus subtilis. The active site of the enzyme is flexible in solution and readily adapts to the binding of ligands, such as the phosphate ion. An NMR-based screen was carried out against a number of potential inhibitors and activators, including phosphonomethylphenylalanine, derivatives of the cinnamic acid, 2-hydroxy-5-nitrobenzaldehyde, cinnamaldehyde, adenine, and hypoxanthine. Despite its bacterial origin, both the three-dimensional structure and ligand-binding properties of Cj1258 suggest that this novel phosphatase may have functional roles close to those of eukaryotic and mammalian tyrosine phosphatases. The three-dimensional structure along with mapping of small-molecule binding will be discussed in the context of developing high-affinity inhibitors of this novel LMW-PTP.
Mechanical low-frequency filter via modes separation in 3D periodic structures
NASA Astrophysics Data System (ADS)
D'Alessandro, L.; Belloni, E.; Ardito, R.; Braghin, F.; Corigliano, A.
2017-12-01
This work presents a strategy to design three-dimensional elastic periodic structures endowed with complete bandgaps, the first of which is ultra-wide, where the top limits of the first two bandgaps are overstepped in terms of wave transmission in the finite structure. Thus, subsequent bandgaps are merged, approaching the behaviour of a three-dimensional low-pass mechanical filter. This result relies on a proper organization of the modal characteristics, and it is validated by performing numerical and analytical calculations over the unit cell. A prototype of the analysed layout, made of Nylon by means of additive manufacturing, is experimentally tested to assess the transmission spectrum of the finite structure, obtaining good agreement with numerical predictions. The presented strategy paves the way for the development of a class of periodic structures to be used in robust and reliable wave attenuation over a wide frequency band.
Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho
2016-03-11
This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility.
Lee, Hyoseong; Rhee, Huinam; Oh, Jae Hong; Park, Jin Ho
2016-01-01
This paper deals with an improved methodology to measure three-dimensional dynamic displacements of a structure by digital close-range photogrammetry. A series of stereo images of a vibrating structure installed with targets are taken at specified intervals by using two daily-use cameras. A new methodology is proposed to accurately trace the spatial displacement of each target in three-dimensional space. This method combines the correlation and the least-square image matching so that the sub-pixel targeting can be obtained to increase the measurement accuracy. Collinearity and space resection theory are used to determine the interior and exterior orientation parameters. To verify the proposed method, experiments have been performed to measure displacements of a cantilevered beam excited by an electrodynamic shaker, which is vibrating in a complex configuration with mixed bending and torsional motions simultaneously with multiple frequencies. The results by the present method showed good agreement with the measurement by two laser displacement sensors. The proposed methodology only requires inexpensive daily-use cameras, and can remotely detect the dynamic displacement of a structure vibrating in a complex three-dimensional defection shape up to sub-pixel accuracy. It has abundant potential applications to various fields, e.g., remote vibration monitoring of an inaccessible or dangerous facility. PMID:26978366
Structural, energetic, and electronic trends in low-dimensional late-transition-metal systems
NASA Astrophysics Data System (ADS)
Hu, C. H.; Chizallet, C.; Toulhoat, H.; Raybaud, P.
2009-05-01
Using first-principles calculations, we present a comprehensive investigation of the structural trends of low dimensionality late 4d (from Tc to Ag) and 5d (from Re to Au) transition-metal systems including 13-atom clusters. Energetically favorable clusters not being reported previously are discovered by molecular-dynamics simulation based on the simulated annealing method. They allow a better agreement between experiments and theory for their magnetic properties. The structural periodic trend exhibits a nonmonotonic variation of the ratio of square to triangular facets for the two rows, with a maximum for Rh13 and Ir13 . By a comparative analysis of the relevant energetic and electronic properties performed on other metallic systems with reduced dimensionalities such as four-atom planar clusters, one-dimensional (1D) scales, double scales, 1D cylinders, monatomic films, two and seven layer slabs, we highlight that this periodic trend can be generalized. Hence, it appears that 1D-metallic nanocylinders or 1D-double nanoscales (with similar binding energies as TM13 ) also favor square facets for Rh and Ir. We finally propose an interpretation based on the evolution of the width of the valence band and of the Coulombic repulsions of the bonding basins.
Gravity profiles across the Uyaijah Ring structure, Kingdom of Saudi Arabia
Gettings, M.E.; Andreasen, G.E.
1987-01-01
The resulting structural model, based on profile fits to gravity responses of three-dimensional models and excess-mass calculations, gives a depth estimate to the base of the complex of 4.75 km. The contacts of the complex are inferred to be steeply dipping inward along the southwest margin of the structure. To the north and east, however, the basal contact of the complex dips more gently inward (about 30 degrees). The ring structure appears to be composed of three laccolith-shaped plutons; two are granitic in composition and make up about 85 percent of the volume of the complex, and one is granodioritic and comprises the remaining 15 percent. The source area for the plutons appears to be in the southwest quadrant of the Uyaijah ring structure. A northwest-trending shear zone cuts the northern half of the structure and contains mafic dikes that have a small but identifiable gravity-anomaly response. The structural model agrees with models derived from geological interpretation except that the estimated depth to which the structure extends is decreased considerably by the gravity results.
Mechanism of polymer drag reduction using a low-dimensional model.
Roy, Anshuman; Morozov, Alexander; van Saarloos, Wim; Larson, Ronald G
2006-12-08
Using a retarded-motion expansion to describe the polymer stress, we derive a low-dimensional model to understand the effects of polymer elasticity on the self-sustaining process that maintains the coherent wavy streamwise vortical structures underlying wall-bounded turbulence. Our analysis shows that at small Weissenberg numbers, Wi, elasticity enhances the coherent structures. At higher Wi, however, polymer stresses suppress the streamwise vortices (rolls) by calming down the instability of the streaks that regenerates the rolls. We show that this behavior can be attributed to the nonmonotonic dependence of the biaxial extensional viscosity on Wi, and identify it as the key rheological property controlling drag reduction.
Three-dimensional P-wave velocity structure of Mt. Etna, Italy
Villasenor, A.; Benz, H.M.; Filippi, L.; De Luca, G.; Scarpa, R.; Patane, G.; Vinciguerra, S.
1998-01-01
The three-dimensional P-wave velocity structure of Mt. Etna is determined to depths of 15 km by tomographic inversion of first arrival times from local earthquakes recorded by a network of 29 permanent and temporary seismographs. Results show a near-vertical low-velocity zone that extends from beneath the central craters to a depth of 10 km. This low-velocity region is coincident with a band of steeply-dipping seismicity, suggesting a magmatic conduit that feeds the summit eruptions. The most prominent structure is an approximately 8-km-diameter high-velocity body located between 2 and 12 km depth below the southeast flank of the volcano. This high-velocity body is interpreted as a remnant mafic intrusion that is an important structural feature influencing both volcanism and east flank slope stability and faulting.
Low-Dimensional Network Formation in Molten Sodium Carbonate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wilding, Martin C.; Wilson, Mark; Alderman, Oliver L. G.
2016-04-15
Molten carbonates are highly inviscid liquids characterized by low melting points and high solubility of rare earth elements and volatile molecules. An understanding of the structure and related properties of these intriguing liquids has been limited to date. We report the results of a study of molten sodium carbonate (Na2CO3) which combines high energy X-ray diffraction, containerless techniques and computer simulation to provide insight into the liquid structure. Total structure factors (F-x(Q)) are collected on the laser-heated carbonate spheres suspended in flowing gases of varying composition in an aerodynamic levitation furnace. The respective partial structure factor contributions to Fx(Q) aremore » obtained by performing molecular dynamics simulations treating the carbonate anions as flexible entities. The carbonate liquid structure is found to be heavily temperature-dependent. At low temperatures a low-dimensional carbonate chain network forms, at T = 1100 K for example similar to 55% of the C atoms form part of a chain. The mean chain lengths decrease as temperature is increased and as the chains become shorter the rotation of the carbonate anions becomes more rapid enhancing the diffusion of Na+ ions.« less
Quantum mechanical characterization of the He4ICl weakly bound complex.
Valdés, Álvaro; Prosmiti, Rita
2013-08-15
Vibrational calculations are performed for the 12-dimensional He4ICl van der Waals complex using the multiconfiguration time-dependent Hartree (MCTDH) method. The potential energy surface of the cluster is represented as a sum of the triatomic He-ICl ab initio parametrized terms plus the He-He interactions. The topology of the potential presents higher anisotropy compared to the one with a homonuclear dopant, and this is clearly reflected in the structure and energetics of the low-lying conformers of the system. In order to take advantage of the MCTDH method, natural potential fits are employed for the potential energy operator, and also, a mode combination scheme is introduced in order to speed up the computations. Zero-point energy, binding energies, and vibrationally averaged structures of different isomers of the He4ICl cluster are obtained. The present results predict that the (3,1,0) structure, involving three He atoms in the near T-shaped and one He atom in the linear configurations, to be the most stable one in accord with recent experimental findings. Comparisons with previous theoretical and experimental data are presented, and the stability of the high-order conformers is discussed in connection with the multiple minima (global and local) of the underlying potential surface.
Jensen, Jan K.; Malmendal, Anders; Schiøtt, Birgit; Skeldal, Sune; Pedersen, Katrine E.; Celik, Leyla; Nielsen, Niels Chr.; Andreasen, Peter A.; Wind, Troels
2006-01-01
The functions of the serpin PAI-1 (plasminogen activator inhibitor-1) are based on molecular interactions with its target proteases uPA and tPA (urokinase-type and tissue-type plasminogen activator respectively), with vitronectin and with endocytosis receptors of the low-density-lipoprotein family. Understanding the significance of these interactions would be facilitated by the ability to block them individually. Using phage display, we have identified the disulfide-constrained peptide motif CFGWC with affinity for natural human PAI-1. The three-dimensional structure of a peptide containing this motif (DVPCFGWCQDA) was determined by liquid-state NMR spectroscopy. A binding site in the so-called flexible joint region of PAI-1 was suggested by molecular modelling and validated through binding studies with various competitors and site-directed mutagenesis of PAI-1. The peptide with an N-terminal biotin inhibited the binding of the uPA–PAI-1 complex to the endocytosis receptors low-density-lipoprotein-receptor-related protein 1A (LRP-1A) and very-low-density-lipoprotein receptor (VLDLR) in vitro and inhibited endocytosis of the uPA–PAI-1 complex in U937 cells. We conclude that the isolated peptide represents a novel approach to pharmacological interference with the functions of PAI-1 based on inhibition of one specific molecular interaction. PMID:16813566
Marsh, Brad J; Pavelka, Margit
2013-01-01
Historically, ultrastructural investigations, which have focused on elucidating the biological idiosyncrasies of the Golgi apparatus, have tended towards oversimplified or fallacious hypotheses when postulating how the Golgi apparatus reorganizes itself both structurally and functionally to fulfill the plethora of cellular processes underpinned by this complex organelle. Key questions are still unanswered with regard to how changes in Golgi architecture correlate so reproducibly to changes in its functional priorities under different physiological conditions or experimental perturbations. This fact alone serves to highlight how the technical limitations associated with conventional two-dimensional imaging approaches employed in the past failed to adequately capture the extraordinary complexity of the Golgi's three-dimensional (3D) structure-now a hallmark of this challenging organelle. Consequently, this has hampered progress towards developing a clear understanding of how changes in its structure and function typically occur in parallel. In this chapter, we highlight but a few of the significant new insights regarding variations in the Golgi's structure-function relationships that have been afforded over recent years through advanced electron microscopic techniques for 3D image reconstruction, commonly referred to as electron tomography. Copyright © 2013 Elsevier Inc. All rights reserved.
The three-dimensional structures of bacterial reaction centers.
Olson, T L; Williams, J C; Allen, J P
2014-05-01
This review presents a broad overview of the research that enabled the structure determination of the bacterial reaction centers from Blastochloris viridis and Rhodobacter sphaeroides, with a focus on the contributions from Duysens, Clayton, and Feher. Early experiments performed in the laboratory of Duysens and others demonstrated the utility of spectroscopic techniques and the presence of photosynthetic complexes in both oxygenic and anoxygenic photosynthesis. The laboratories of Clayton and Feher led efforts to isolate and characterize the bacterial reaction centers. The availability of well-characterized preparations of pure and stable reaction centers allowed the crystallization and subsequent determination of the structures using X-ray diffraction. The three-dimensional structures of reaction centers revealed an overall arrangement of two symmetrical branches of cofactors surrounded by transmembrane helices from the L and M subunits, which also are related by the same twofold symmetry axis. The structure has served as a framework to address several issues concerning bacterial photosynthesis, including the directionality of electron transfer, the properties of the reaction center-cytochrome c 2 complex, and the coupling of proton and electron transfer. Together, these research efforts laid the foundation for ongoing efforts to address an outstanding question in oxygenic photosynthesis, namely the molecular mechanism of water oxidation.
Arneodo, Ezequiel M.; Perl, Yonatan Sanz; Goller, Franz; Mindlin, Gabriel B.
2012-01-01
Because of the parallels found with human language production and acquisition, birdsong is an ideal animal model to study general mechanisms underlying complex, learned motor behavior. The rich and diverse vocalizations of songbirds emerge as a result of the interaction between a pattern generator in the brain and a highly nontrivial nonlinear periphery. Much of the complexity of this vocal behavior has been understood by studying the physics of the avian vocal organ, particularly the syrinx. A mathematical model describing the complex periphery as a nonlinear dynamical system leads to the conclusion that nontrivial behavior emerges even when the organ is commanded by simple motor instructions: smooth paths in a low dimensional parameter space. An analysis of the model provides insight into which parameters are responsible for generating a rich variety of diverse vocalizations, and what the physiological meaning of these parameters is. By recording the physiological motor instructions elicited by a spontaneously singing muted bird and computing the model on a Digital Signal Processor in real-time, we produce realistic synthetic vocalizations that replace the bird's own auditory feedback. In this way, we build a bio-prosthetic avian vocal organ driven by a freely behaving bird via its physiologically coded motor commands. Since it is based on a low-dimensional nonlinear mathematical model of the peripheral effector, the emulation of the motor behavior requires light computation, in such a way that our bio-prosthetic device can be implemented on a portable platform. PMID:22761555
A universal indicator of critical state transitions in noisy complex networked systems
Liang, Junhao; Hu, Yanqing; Chen, Guanrong; Zhou, Tianshou
2017-01-01
Critical transition, a phenomenon that a system shifts suddenly from one state to another, occurs in many real-world complex networks. We propose an analytical framework for exactly predicting the critical transition in a complex networked system subjected to noise effects. Our prediction is based on the characteristic return time of a simple one-dimensional system derived from the original higher-dimensional system. This characteristic time, which can be easily calculated using network data, allows us to systematically separate the respective roles of dynamics, noise and topology of the underlying networked system. We find that the noise can either prevent or enhance critical transitions, playing a key role in compensating the network structural defect which suffers from either internal failures or environmental changes, or both. Our analysis of realistic or artificial examples reveals that the characteristic return time is an effective indicator for forecasting the sudden deterioration of complex networks. PMID:28230166
Toward atomic-scale bright-field electron tomography for the study of fullerene-like nanostructures.
Bar Sadan, Maya; Houben, Lothar; Wolf, Sharon G; Enyashin, Andrey; Seifert, Gotthard; Tenne, Reshef; Urban, Knut
2008-03-01
We present the advancement of electron tomography for three-dimensional structure reconstruction of fullerene-like particles toward atomic-scale resolution. The three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is achieved by the combination of low voltage operation of the electron microscope with aberration-corrected phase contrast imaging. The method enables the study of defects and irregularities in the three-dimensional structure of individual fullerene-like particles on the scale of 2-3 A. Control over shape, size, and atomic architecture is a key issue in synthesis and design of functional nanoparticles. Transmission electron microscopy (TEM) is the primary technique to characterize materials down to the atomic level, albeit the images are two-dimensional projections of the studied objects. Recent advancements in aberration-corrected TEM have demonstrated single atom sensitivity for light elements at subångström resolution. Yet, the resolution of tomographic schemes for three-dimensional structure reconstruction has not surpassed 1 nm3, preventing it from becoming a powerful tool for characterization in the physical sciences on the atomic scale. Here we demonstrate that negative spherical aberration imaging at low acceleration voltage enables tomography down to the atomic scale at reduced radiation damage. First experimental data on the three-dimensional reconstruction of nested molybdenum disulfide nanooctahedra is presented. The method is applicable to the analysis of the atomic architecture of a wide range of nanostructures where strong electron channeling is absent, in particular to carbon fullerenes and inorganic fullerenes.
De Sa Peixoto, Paulo; Laurent, Guillaume; Azaïs, Thierry; Mosser, Gervaise
2013-01-01
In vivo, collagen I, the major structural protein in human body, is found assembled into fibrils. In the present work, we study a high concentrated collagen sample in its soluble, fibrillar, and denatured states using one and two dimensional {1H}-13C solid-state NMR spectroscopy. We interpret 13C chemical shift variations in terms of dihedral angle conformation changes. Our data show that fibrillogenesis increases the side chain and backbone structural complexity. Nevertheless, only three to five rotameric equilibria are found for each amino acid residue, indicating a relatively low structural heterogeneity of collagen upon fibrillogenesis. Using side chain statistical data, we calculate equilibrium constants for a great number of amino acid residues. Moreover, based on a 13C quantitative spectrum, we estimate the percentage of residues implicated in each equilibrium. Our data indicate that fibril formation greatly affects hydroxyproline and proline prolyl pucker ring conformation. Finally, we discuss the implication of these structural data and propose a model in which the attractive force of fibrillogenesis comes from a structural reorganization of 10 to 15% of the amino acids. These results allow us to further understand the self-assembling process and fibrillar structure of collagen. PMID:23341452