Sample records for complex low-level waste

  1. Journey to the Nevada Test Site Radioactive Waste Management Complex

    ScienceCinema

    None

    2018-01-16

    Journey to the Nevada Test Site Radioactive Waste Management Complex begins with a global to regional perspective regarding the location of low-level and mixed low-level waste disposal at the Nevada Test Site. For decades, the Nevada National Security Site (NNSS) has served as a vital disposal resource in the nation-wide cleanup of former nuclear research and testing facilities. State-of-the-art waste management sites at the NNSS offer a safe, permanent disposal option for U.S. Department of Energy/U.S. Department of Defense facilities generating cleanup-related radioactive waste.

  2. 1st Quarter Transportation Report FY2017: Waste Shipments To and From the Nevada National Security Site (NNSS), Radioactive Waste Management Complex

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. This report summarizes the 1st quarter of fiscal year (FY) 2017 low-level radioactive waste (LLW), mixed low-level radioactive waste (MLLW) and classified non-radioactive (CNR) shipments. There were no shipments sent for offsite treatment from a NNSS facility and returned to the NNSS this quarter of FY2017.

  3. The NGA-DOE grant to examine critical issues related to radioactive waste and materials disposition involving DOE facilities. Quarterly report, October 1--December 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Beauchesne, A.M.

    1997-12-31

    Topics explored through this project include: decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites in the complex; changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis; interstate waste and materials shipments; and reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes.more » The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE`s proposed National Dialogue.« less

  4. License restrictions at Barnwell

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Autry, V.R.

    1991-12-31

    The State of South Carolina was delegated the authority by the US Nuclear Regulatory Commission to regulate the receipt, possession, use and disposal of radioactive material as an Agreement State. Since 1970, the state has been the principal regulatory authority for the Barnwell Low-Level Waste Disposal Facility operated by Chem-Nuclear Systems, Inc. The radioactive material license issued authorizing the receipt and disposal of low-level waste contains numerous restrictions to ensure environmental protection and compliance with shallow land disposal performance criteria. Low-level waste has evolved from minimally contaminated items to complex waste streams containing high concentrations of radionuclides and processing chemicalsmore » which necessitated these restrictions. Additionally, some waste with their specific radionuclides and concentration levels, many classified as low-level radioactive waste, are not appropriate for shallow land disposal unless additional precautions are taken. This paper will represent a number of these restrictions, the rationale for them, and how they are being dealt with at the Barnwell disposal facility.« less

  5. RESULTS OF THE ENVIRONMENTAL MANAGEMENT (EM) CORPORATE PROJECT TEAM DISPOSING WASTE & REDUCING RISK

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SHRADER, T.A.; KNERR, R.

    2005-01-31

    In 2002, the US Department of Energy's (DOE) Office of Environmental Management (EM) released the Top-To-Bottom Review of cognizant clean-up activities around the DOE Complex. The review contained a number of recommendations for changing the way EM operates in order to reduce environmental risk by significantly accelerating clean-up at the DOE-EM sites. In order to develop and implement these recommendations, a number of corporate project teams were formed to identify, evaluate, and initiate implementation of alternatives for the different aspects of clean-up. In August 2002, a corporate team was formed to review all aspects of the management, treatment, and disposalmore » of low level radioactive waste (LLW), mixed low level radioactive waste (MLLW), transuranic waste (TRU), and hazardous waste (HW). Over the next 21 months, the Corporate Project Team: Disposing Waste, Reducing Risk, developed a number of alternatives for implementing the recommendations of the Top-To-Bottom Review based on information developed during numerous site visits and interviews with complex and industry personnel. With input from over a dozen EM sites at various stages of clean-up, the team identified the barriers to the treatment and disposal of low level waste, mixed low level waste, and transuranic waste. Once identified, preliminary design alternatives were developed and presented to the Acquisition Authority (for this project, the Assistant Secretary for Environmental Management) for review and approval. Once the preliminary design was approved, the team down selected to seven key alternatives which were subsequently fully developed in the Project Execution Plan. The seven most viable alternatives were: (1) creation of an Executive Waste Disposal Board; (2) projectizing the disposal of low level waste and mixed low level waste; (3) creation of a National Consolidation and Acceleration Facility for waste; (4) improvements to the Broad Spectrum contract; (5) improvements to the Toxic Substance Control Act (TSCA) Incinerator contract and operations; (6) development of a policy for load management of waste shipments to the Waste Isolation Pilot Plant (WIPP); and (7) development of a complex-wide fee incentive for transuranic waste disposal. The alternatives were further refined and a plan developed for institutionalizing the alternatives in various site contracts. In order to focus the team's efforts, all team activities were conducted per the principles of DOE Order 413.3, Program and Project Management for the Acquisition of Capital Assets. Although the Order was developed for construction projects, the principles were adapted for use on this ''soft'' project in which the deliverables were alternatives for the way work was performed. The results of the team's investigation and the steps taken during the project are presented along with lessons learned.« less

  6. Functional specifications for a radioactive waste decision support system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Westrom, G.B.; Kurrasch, E.R.; Carlton, R.E.

    1989-09-01

    It is generally recognized that decisions relative to the treatment, handling, transportation and disposal of low-level wastes produced in nuclear power plants involve a complex array of many inter-related elements or considerations. Complex decision processes can be aided through the use of computer-based expert systems which are based on the knowledge of experts and the inferencing of that knowledge to provide advice to an end-user. To determine the feasibility of developing and applying an expert system in nuclear plant low level waste operations, a Functional Specification for a Radwaste Decision Support System (RDSS) was developed. All areas of radwaste management,more » from the point of waste generation to the disposition of the waste in the final disposal location were considered for inclusion within the scope of the RDSS. 27 figs., 8 tabs.« less

  7. Radioactive Waste Management Complex low-level waste radiological performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maheras, S.J.; Rood, A.S.; Magnuson, S.O.

    This report documents the projected radiological dose impacts associated with the disposal of radioactive low-level waste at the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory. This radiological performance assessment was conducted to evaluate compliance with applicable radiological criteria of the US Department of Energy and the US Environmental Protection Agency for protection of the public and the environment. The calculations involved modeling the transport of radionuclides from buried waste, to surface soil and subsurface media, and eventually to members of the public via air, groundwater, and food chain pathways. Projections of doses were made for both offsitemore » receptors and individuals inadvertently intruding onto the site after closure. In addition, uncertainty and sensitivity analyses were performed. The results of the analyses indicate compliance with established radiological criteria and provide reasonable assurance that public health and safety will be protected.« less

  8. Stabilization and disposal of Argonne-West low-level mixed wastes in ceramicrete waste forms.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Barber, D. B.; Singh, D.; Strain, R. V.

    1998-02-17

    The technology of room-temperature-setting phosphate ceramics or Ceramicrete{trademark} technology, developed at Argonne National Laboratory (ANL)-East is being used to treat and dispose of low-level mixed wastes through the Department of Energy complex. During the past year, Ceramicrete{trademark} technology was implemented for field application at ANL-West. Debris wastes were treated and stabilized: (a) Hg-contaminated low-level radioactive crushed light bulbs and (b) low-level radioactive Pb-lined gloves (part of the MWIR {number_sign} AW-W002 waste stream). In addition to hazardous metals, these wastes are contaminated with low-level fission products. Initially, bench-scale waste forms with simulated and actual waste streams were fabricated by acid-base reactionsmore » between mixtures of magnesium oxide powders and an acid phosphate solution, and the wastes. Size reduction of Pb-lined plastic glove waste was accomplished by cryofractionation. The Ceramicrete{trademark} process produces dense, hard ceramic waste forms. Toxicity Characteristic Leaching Procedure (TCLP) results showed excellent stabilization of both Hg and Pb in the waste forms. The principal advantage of this technology is that immobilization of contaminants is the result of both chemical stabilization and subsequent microencapsulation of the reaction products. Based on bench-scale studies, Ceramicrete{trademark} technology has been implemented in the fabrication of 5-gal waste forms at ANL-West. Approximately 35 kg of real waste has been treated. The TCLP is being conducted on the samples from the 5-gal waste forms. It is expected that because the waste forms pass the limits set by the EPAs Universal Treatment Standard, they will be sent to a radioactive-waste disposal facility.« less

  9. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the EM 2006 cleanup plans and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1997 through December 31, 1997, under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE activities in the area of the Hazardous Waste Identification Rule, and DOE's proposed National Dialogue.« less

  10. Characterization and Disposition of Legacy Low-Level Waste at the Y-12 National Security Complex - 12133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tharp, Tim; Donnelly, Jim

    2012-07-01

    The Y-12 National Security Complex (Y-12) is concluding a multi-year program to characterize and dispose of all legacy low-level waste (LLW). The inventory of legacy waste at Y-12 has been reduced from over 3500 containers in Fiscal Year (FY) 2000 to 6 containers at the end of FY2011. In addition, the site recently eliminated the inventory of other low-level waste that is greater than 365 days old (i.e., >365-Day LLW), to be in full compliance with DOE Order 435.1. A consistent technical characterization approach emerged for both of these populations of backlogged waste: (1) compile existing historical data and processmore » knowledge and conduct interviews with site personnel; (2) inspect the containers and any tags, labels, or other markings to confirm or glean additional data; (3) with appropriate monitoring, open the container, visually inspect and photograph the contents while obtaining preliminary radiological surveys; (4) obtain gross weight and field non-destructive assay (NDA) data as needed; (5) use the non-public Oak Ridge Reservation Haul Road to ship the container to a local offsite vendor for waste sorting and segregation; (6) sort, drain, sample, and remove prohibited items; and (7) compile final data and prepare for shipment to disposal. After disposing of this backlog, the focus has now turned to avoiding the recurrence of this situation by maintaining low inventories of low-level waste and shortening the duration between waste generation and disposal. An enhanced waste tracking system and monthly metric charts are used to monitor and report progress to contractor and federal site office management. During the past 2 years, the average age of LLW onsite at Y-12 has decreased from more than 180 days to less than 60 days. (authors)« less

  11. 4th Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis

    2014-12-02

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. There was one shipment of two drums sent for offsite treatment and disposal. This report summarizes the 4th quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annualmore » summaries for FY 2014.« less

  12. Calcium sulfoaluminate cement blended with OPC: A potential binder to encapsulate low-level radioactive slurries of complex chemistry

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cau Dit Coumes, Celine; Courtois, Simone; Peysson, Sandrine

    Investigations were carried out in order to solidify in cement a low-level radioactive waste of complex chemistry obtained by mixing two process streams, a slurry produced by ultra-filtration and an evaporator concentrate with a salinity of 600 gxL{sup -1}. Direct cementation with Portland cement (OPC) was not possible due to a very long setting time of cement resulting from borates and phosphates contained in the waste. According to a classical approach, this difficulty could be solved by pre-treating the waste to reduce adverse cement-waste interactions. A two-stage process was defined, including precipitation of phosphates and sulfates at 60 deg. Cmore » by adding calcium and barium hydroxide to the waste stream, and encapsulation with a blend of OPC and calcium aluminate cement (CAC) to convert borates into calcium quadriboroaluminate. The material obtained with a 30% waste loading complied with specifications. However, the pre-treatment step made the process complex and costly. A new alternative was then developed: the direct encapsulation of the waste with a blend of OPC and calcium sulfoaluminate cement (CSA) at room temperature. Setting inhibition was suppressed, which probably resulted from the fact that, when hydrating, CSA cement formed significant amounts of ettringite and calcium monosulfoaluminate hydrate which incorporated borates into their structure. As a consequence, the waste loading could be increased to 56% while keeping acceptable properties at the laboratory scale.« less

  13. Geohydrologic aspects for siting and design of low-level radioactive-waste disposal

    USGS Publications Warehouse

    Bedinger, M.S.

    1989-01-01

    The objective for siting and design of low-level radioactive-waste repository sites is to isolate the waste from the biosphere until the waste no longer poses an unacceptable hazard as a result of radioactive decay. Low-level radioactive waste commonly is isolated at shallow depths with various engineered features to stabilize the waste and to reduce its dissolution and transport by ground water. The unsaturated zone generally is preferred for isolating the waste. Low-level radioactive waste may need to be isolated for 300 to 500 years. Maintenance and monitoring of the repository site are required by Federal regulations for only the first 100 years. Therefore, geohydrology of the repository site needs to provide natural isolation of the waste for the hazardous period following maintenance of the site. Engineering design of the repository needs to be compatible with the natural geohydrologic conditions at the site. Studies at existing commercial and Federal waste-disposal sites provide information on the problems encountered and the basis for establishing siting guidelines for improved isolation of radioactive waste, engineering design of repository structures, and surveillance needs to assess the effectiveness of the repositories and to provide early warning of problems that may require remedial action.Climate directly affects the hydrology of a site and probably is the most important single factor that affects the suitability of a site for shallow-land burial of low-level radioactive waste. Humid and subhumid regions are not well suited for shallow isolation of low-level radioactive waste in the unsaturated zone; arid regions with zero to small infiltration from precipitation, great depths to the water table, and long flow paths to natural discharge areas are naturally well suited to isolation of the waste. The unsaturated zone is preferred for isolation of low-level radioactive waste. The guiding rationale is to minimize contact of water with the waste and to minimize transport of waste from the repository. The hydrology of a flow system containing a repository is greatly affected by the engineering of the repository site. Prediction of the performance of the repository is a complex problem, hampered by problems of characterizing the natural and manmade features of the flow system and by the limitations of models to predict flow and geochemical processes in the saturated and unsaturated zones. Disposal in low-permeability unfractured clays in the saturated zone may be feasible where the radionuclide transport is controlled by diffusion rather than advection.

  14. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA, JUNE 2006

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION NEVADA SITE OFFICE

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  15. Nevada Test Site Waste Acceptance Criteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office

    This document establishes the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site (NTS) will accept low-level radioactive (LLW) and mixed waste (MW) for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the NTS Area 3 and Area 5 Radioactive Waste Management Complex (RWMC) for storage or disposal.

  16. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-04-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from December 31, 1997 through April 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions in preparation for the March 30-31, 1998 NGA Federal Facilities Compliance Task Force Meeting with DOE. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less

  17. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    1999-04-30

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from February 1, 1999, through April 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less

  18. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-07-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in DOE's Accelerating Cleanup: Paths to Closure strategy and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from April 30, 1998 through June 30, 1998 under the NGA project. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; and provided ongoing support to state-DOE interactions. maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, DOE's Environmental Management Budget, and DOE's proposed Intersite Discussions.« less

  19. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann B. Beauchesne

    1998-09-30

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect onmore » individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from June 1, 1998 through September 30, 1998, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less

  20. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    1999-07-30

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from May 1, 1999, through July 30, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and Secretary Richardson.« less

  1. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    1999-01-31

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: (1) Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; (2) Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; (3) Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect onmore » individual sites in the complex; (4) Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; (5) Interstate waste and materials shipments; and (6) Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the quarter from October 1, 1998 through January 31, 1999, under the NGA grant. The work accomplished by the NGA project team during the past four months can be categorized as follows: (1) maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; (2) maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and EM Integration activities; and (3) continued to serve as a liaison between the NGA FFCA Task Force states and the Department.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, W.T.

    DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site.

  3. Melter feed viscosity during conversion to glass: Comparison between low-activity waste and high-level waste feeds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, Tongan; Chun, Jaehun; Dixon, Derek R.

    During nuclear waste vitrification, a melter feed (generally a slurry-like mixture of a nuclear waste and various glass forming and modifying additives) is charged into the melter where undissolved refractory constituents are suspended together with evolved gas bubbles from complex reactions. Knowledge of flow properties of various reacting melter feeds is necessary to understand their unique feed-to-glass conversion processes occurring within a floating layer of melter feed called a cold cap. The viscosity of two low-activity waste (LAW) melter feeds were studied during heating and correlated with volume fractions of undissolved solid phase and gas phase. In contrast to themore » high-level waste (HLW) melter feed, the effects of undissolved solid and gas phases play comparable roles and are required to represent the viscosity of LAW melter feeds. This study can help bring physical insights to feed viscosity of reacting melter feeds with different compositions and foaming behavior in nuclear waste vitrification.« less

  4. 1st Quarter Transportation Report FY 2015: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis

    2015-02-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to and from the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 1st quarter of Fiscal Year (FY) 2015 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. Tabular summaries are provided which include the following: Sources of and carriers for LLW and MLLW shipments tomore » and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report include minor volumes of non-radioactive classified waste/material that were approved for disposal (non-radioactive classified or nonradioactive classified hazardous). Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to rounding conventions for volumetric conversions from cubic meters to cubic feet.« less

  5. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Goldston, W.

    On April 21, 2009, the Energy Facilities Contractors Group (EFCOG) Waste Management Working Group (WMWG) provided a recommendation to the Department of Energy's Environmental Management program (DOE-EM) concerning supplemental guidance on blending methodologies to use to classify waste forms to determine if the waste form meets the definition of Transuranic (TRU) Waste or can be classified as Low-Level Waste (LLW). The guidance provides specific examples and methods to allow DOE and its Contractors to properly classify waste forms while reducing the generation of TRU wastes. TRU wastes are much more expensive to characterize at the generator's facilities, ship, and thenmore » dispose at the Waste Isolation Pilot Plant (WIPP) than Low-Level Radioactive Waste's disposal. Also the reduction of handling and packaging of LLW is inherently less hazardous to the nuclear workforce. Therefore, it is important to perform the characterization properly, but in a manner that minimizes the generation of TRU wastes if at all possible. In fact, the generation of additional volumes of radioactive wastes under the ARRA programs, this recommendation should improve the cost effective implementation of DOE requirements while properly protecting human health and the environment. This paper will describe how the message of appropriate, less expensive, less hazardous blending of radioactive waste is the 'right' thing to do in many cases, but can be confused with inappropriate 'dilution' that is frowned upon by regulators and stakeholders in the public. A proposal will be made in this paper on how to communicate this very complex and confusing technical issue to regulatory bodies and interested stakeholders to gain understanding and approval of the concept. The results of application of the proposed communication method and attempt to change the regulatory requirements in this area will be discussed including efforts by DOE and the NRC on this very complex subject.« less

  6. 2nd Quarter Transportation Report FY 2014

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, L.

    2014-07-01

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the second quarter of fiscal year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet (ft3) generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less

  7. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ann M. Beauchesne

    2000-01-01

    Through the National Governors Association (NGA) project ``Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials; Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities; Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex; Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis; Interstate waste and materials shipments; and Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from October 1, 1999 through January 31, 2000, under the NGA grant. The work accomplished by the NGA project team during the past three months can be categorized as follows: maintained open communication with DOE on a variety of activities and issues within the DOE environmental management complex; convened and facilitated the October 6--8 NGA FFCA Task Force Meeting in Oak Ridge, Tennessee; maintained communication with NGA Federal Facilities Compliance Task Force members regarding DOE efforts to formulate a configuration for mixed low-level waste and low-level treatment and disposal, external regulation of DOE; and continued to facilitate interactions between the states and DOE to develop a foundation for an ongoing substantive relationship between the Governors of key states and the Department.« less

  8. Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings

    USGS Publications Warehouse

    Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    In the United States, low-level radioactive waste is disposed by shallow-land burial. Low-level radioactive waste generated by non-Federal facilities has been buried at six commercially operated sites; low-level radioactive waste generated by Federal facilities has been buried at eight major and several minor Federally operated sites (fig. 1). Generally, low-level radioactive waste is somewhat imprecisely defined as waste that does not fit the definition of high-level radioactive waste and does not exceed 100 nCi/g in the concentration of transuranic elements. Most low-level radioactive waste generated by non-Federal facilities is generated at nuclear powerplants; the remainder is generated primarily at research laboratories, hospitals, industrial facilities, and universities. On the basis of half lives and concentrations of radionuclides in low-level radioactive waste, the hazard associated with burial of such waste generally lasts for about 500 years. Studies made at several of the commercially and Federally operated low-level radioactive-waste repository sites indicate that some of these sites have not provided containment of waste nor the expected protection of the environment.

  9. 77 FR 64361 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-19

    ... Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... 15, ``Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level... for low-level waste. DATES: Submit comments by November 15, 2012. Comments received after this date...

  10. DC graphite arc furnace, a simple system to reduce mixed waste volume

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wittle, J.K.; Hamilton, R.A.; Trescot, J.

    1995-12-31

    The volume of low-level radioactive waste can be reduced by the high temperature in a DC Graphite Arc Furnace. This volume reduction can take place with the additional benefit of having the solid residue being stabilized by the vitrified product produced in the process. A DC Graphite Arc Furnace is a simple system in which electricity is used to generate heat to vitrify the material and thermally decompose any organic matter in the waste stream. Examples of this type of waste are protective clothing, resins, and grit blast materials produced in the nuclear industry. The various Department of Energy (DOE)more » complexes produce similar low-level waste streams. Electro-Pyrolysis, Inc. and Svedala/Kennedy Van Saun are engineering and building small 50-kg batch and up to 3,000 kg/hr continuous feed DC furnaces for the remediation, pollution prevention, and decontamination and decommissioning segments of the treatment community. This process has been demonstrated under DOE sponsorship at several facilities and has been shown to produce stable waste forms from surrogate waste materials.« less

  11. 3rd Quarter Transportation Report FY 2014: Radioactive Waste Shipments to and from the Nevada National Security Site (NNSS)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gregory, Louis

    2014-09-20

    This report satisfies the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Field Office (NNSA/NFO) commitment to prepare a quarterly summary report of radioactive waste shipments to the Nevada National Security Site (NNSS) Radioactive Waste Management Complex (RWMC) at Area 5. There were no shipments sent for offsite treatment and returned to the NNSS this quarter. This report summarizes the 3rd quarter of Fiscal Year (FY) 2014 low-level radioactive waste (LLW) and mixed low-level radioactive waste (MLLW) shipments. This report also includes annual summaries for FY 2014 in Tables 4 and 5. Tabular summaries are provided which includemore » the following: Sources of and carriers for LLW and MLLW shipments to and from the NNSS; Number and external volume of LLW and MLLW shipments; Highway routes used by carriers; and Incident/accident data applicable to LLW and MLLW shipments. In this report shipments are accounted for upon arrival at the NNSS, while disposal volumes are accounted for upon waste burial. The disposal volumes presented in this report do not include minor volumes of non-radioactive materials that were approved for disposal. Volume reports showing cubic feet generated using the Low-Level Waste Information System may vary slightly due to differing rounding conventions.« less

  12. [Substantiation of a complex of radiation-hygienic approaches to the management of very low-level waste].

    PubMed

    Korenkov, I P; Lashchenova, T N; Shandala, N K

    2015-01-01

    In the article there are presented materials on radiation-hygienic approaches to the treatment of very low level radioactive waste (VLLW) and industrial waste containing radionuclides. There is done detailed information on radiation-hygienic principles and criteria for the assurance ofradiation safety in the collection, transportation, storage and processing of VLLW as a category of radioactive waste.. Particular attention is paid to the problem of designing VLLW landfill site choice, system of radiation monitoring in operation and decommissioning of the landfill. There are presented data about the criteria for the release of VLLW buried at the site, from regulatory control. Also there are considered in detail the radiation-hygienic requirements for radiation safety of industrial waste containing radionuclides for which there is assumed unlimited and limited use of solid materials in economic activity, based on the requirements ofthe revised Basic Sanitary Rules for Radiation Safety - 99/2010. There are considered basic requirements for the organization of industrial waste landfill. As an example, there-are presented the hygiene requirements for industrial waste management and results of waste categorization in Northern Federal Enterprise for Radioactive Waste Management.

  13. Selecting reasonable future land use scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allred, W.E.; Smith, R.W.

    1995-12-31

    This paper examines a process to help select the most reasonable future land use scenarios for hazardous waste and/or low-level radioactive waste disposal sites. The process involves evaluating future land use scenarios by applying selected criteria currently used by commercial mortgage companies to determine the feasibility of obtaining a loan for purchasing such land. The basis for the process is that only land use activities for which a loan can be obtained will be considered. To examine the process, a low-level radioactive waste site, the Radioactive Waste Management Complex at the Idaho National Engineering Laboratory, is used as an example.more » The authors suggest that the process is a very precise, comprehensive, and systematic (common sense) approach for determining reasonable future use of land. Implementing such a process will help enhance the planning, decisionmaking, safe management, and cleanup of present and future disposal facilities.« less

  14. Pathways for Disposal of Commercially-Generated Tritiated Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Halverson, Nancy V.

    From a waste disposal standpoint, tritium is a major challenge. Because it behaves like hydrogen, tritium exchanges readily with hydrogen in the ground water and moves easily through the ground. Land disposal sites must control the tritium activity and mobility of incoming wastes to protect human health and the environment. Consequently, disposal of tritiated low-level wastes is highly regulated and disposal options are limited. The United States has had eight operating commercial facilities licensed for low-level radioactive waste disposal, only four of which are currently receiving waste. Each of these is licensed and regulated by its state. Only two ofmore » these sites accept waste from states outside of their specified regional compact. For waste streams that cannot be disposed directly at one of the four active commercial low-level waste disposal facilities, processing facilities offer various forms of tritiated low-level waste processing and treatment, and then transport and dispose of the residuals at a disposal facility. These processing facilities may remove and recycle tritium, reduce waste volume, solidify liquid waste, remove hazardous constituents, or perform a number of additional treatments. Waste brokers also offer many low-level and mixed waste management and transportation services. These services can be especially helpful for small-quantity tritiated-waste generators, such as universities, research institutions, medical facilities, and some industries. The information contained in this report covers general capabilities and requirements for the various disposal/processing facilities and brokerage companies, but is not considered exhaustive. Typically, each facility has extensive waste acceptance criteria and will require a generator to thoroughly characterize their wastes. Then a contractual agreement between the waste generator and the disposal/processing/broker entity must be in place before waste is accepted. Costs for tritiated waste transportation, processing and disposal vary based a number of factors. In many cases, wastes with very low radioactivity are priced primarily based on weight or volume. For higher activities, costs are based on both volume and activity, with the activity-based charges usually being much larger than volume-based charges. Other factors affecting cost include location, waste classification and form, other hazards in the waste, etc. Costs may be based on general guidelines used by an individual disposal or processing site, but final costs are established by specific contract with each generator. For this report, seven hypothetical waste streams intended to represent commercially-generated tritiated waste were defined in order to calculate comparative costs. Ballpark costs for disposition of these hypothetical waste streams were calculated. These costs ranged from thousands to millions of dollars. Due to the complexity of the cost-determining factors mentioned above, the costs calculated in this report should be understood to represent very rough cost estimates for the various hypothetical wastes. Actual costs could be higher or could be lower due to quantity discounts or other factors.« less

  15. Groundwater monitoring in the Savannah River Plant Low Level Waste Burial Ground

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carlton, W.H.

    1983-12-31

    This document describes chemical mechanisms that may affect trace-level radionuclide migration through acidic sandy clay soils in a humid environment, and summarizes the extensive chemical and radiochemical analyses of the groundwater directly below the SRP Low-Level Waste (LLW) Burial Ground (643-G). Anomalies were identified in the chemistry of individual wells which appear to be related to small amounts of fission product activity that have reached the water table. The chemical properties which were statistically related to trace level transport of Cs-137 and Sr-90 were iron, potassium, sodium and calcium. Concentrations on the order of 100 ppM appear sufficient to affectmore » nuclide migration. Several complexation mechanisms for plutonium migration were investigated.« less

  16. Iron Phosphate Glass-Containing Hanford Waste Simulant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sevigny, Gary J.; Kimura, Marcia L.; Fischer, Christopher M.

    2012-01-18

    Resolution of the nation's high-level tank waste legacy requires the design, construction, and operation of large and technically complex one-of-a-kind processing waste treatment and vitrification facilities. While the ultimate limits for waste loading and melter efficiency have yet to be defined or realized, significant reductions in glass volumes for disposal and mission life may be possible with advancements in melter technologies and/or glass formulations. This test report describes the experimental results from a small-scale test using the research-scale melter (RSM) at Pacific Northwest National Laboratory (PNNL) to demonstrate the viability of iron-phosphate-based glass with a selected waste composition that ismore » high in sulfate (4.37 wt% SO3). The primary objective of the test was to develop data to support a cost-benefit analysis related to the implementation of phosphate-based glasses for Hanford low-activity waste (LAW) and/or other high-level waste streams within the U.S. Department of Energy complex. The testing was performed by PNNL and supported by Idaho National Laboratory, Savannah River National Laboratory, Missouri University of Science and Technology, and Mo-Sci Corporation.« less

  17. 78 FR 1155 - Low-Level Waste Disposal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-01-08

    ... NUCLEAR REGULATORY COMMISSION 10 CFR Part 61 [NRC-2011-0012] RIN 3150-AI92 Low-Level Waste... correcting a document appearing in the Federal Register on December 7, 2012 entitled, ``Low-Level Waste... and Submitting Comments, ``Regulatory Analysis for Proposed Revisions to Low-Level Waste Disposal...

  18. Waste Sampling & Characterization Facility (WSCF) Complex Safety Analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MELOY, R.T.

    2002-04-01

    This document was prepared to analyze the Waste Sampling and Characterization Facility for safety consequences by: Determining radionuclide and highly hazardous chemical inventories; Comparing these inventories to the appropriate regulatory limits; Documenting the compliance status with respect to these limits; and Identifying the administrative controls necessary to maintain this status. The primary purpose of the Waste Sampling and Characterization Facility (WSCF) is to perform low-level radiological and chemical analyses on various types of samples taken from the Hanford Site. These analyses will support the fulfillment of federal, Washington State, and Department of Energy requirements.

  19. Operational Strategies for Low-Level Radioactive Waste Disposal Site in Egypt - 13513

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mohamed, Yasser T.

    The ultimate aims of treatment and conditioning is to prepare waste for disposal by ensuring that the waste will meet the waste acceptance criteria of a disposal facility. Hence the purpose of low-level waste disposal is to isolate the waste from both people and the environment. The radioactive particles in low-level waste emit the same types of radiation that everyone receives from nature. Most low-level waste fades away to natural background levels of radioactivity in months or years. Virtually all of it diminishes to natural levels in less than 300 years. In Egypt, The Hot Laboratories and Waste Management Centermore » has been established since 1983, as a waste management facility for LLW and ILW and the disposal site licensed for preoperational in 2005. The site accepts the low level waste generated on site and off site and unwanted radioactive sealed sources with half-life less than 30 years for disposal and all types of sources for interim storage prior to the final disposal. Operational requirements at the low-level (LLRW) disposal site are listed in the National Center for Nuclear Safety and Radiation Control NCNSRC guidelines. Additional procedures are listed in the Low-Level Radioactive Waste Disposal Facility Standards Manual. The following describes the current operations at the LLRW disposal site. (authors)« less

  20. Thirteenth annual U.S. DOE low-level radioactive waste management conference: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-12-31

    The 40 papers in this document comprise the proceedings of the Department of Energy`s Thirteenth Annual Low-Level Radioactive Waste Management Conference that was held in Atlanta, Georgia, on November 19--21, 1991. General subjects addressed during the conference included: disposal facility design; greater-than-class C low-level waste; public acceptance considerations; waste certification; site characterization; performance assessment; licensing and documentation; emerging low-level waste technologies; waste minimization; mixed waste; tracking and transportation; storage; and regulatory changes. Papers have been processed separately for inclusion on the data base.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    GOLDSTON, WELFORD T.; SMITH, WINCHESTER IV

    DOE issued Order 435.1, ''Radioactive Waste Management,'' on July 9, 1999 for immediate implementation. The requirements for Low Level Mixed, Transuranic, and High Level Waste have been completely rewritten. The entire DOE complex has been struggling with how to implement these new requirements within the one year required timeframe. This paper will chronicle the implementation strategy and actual results of the work to carry out that strategy at the Savannah River Site. DOE-SR and the site contractors worked closely together to implement each of the new requirements across the SRS, crossing many barriers and providing innovative solutions to the manymore » problems that surfaced throughout the year. The results are that SRS declared compliance with all of the requirements of the Order within the prescribed timeframe. The challenge included all waste types in SRS facilities and programs that handle LLW, MLLW, TRU, and HLW. This paper will describe the implementation details for development of Radioactive Waste Management Basis for each facility, Identification of Wastes with No Path to Disposal, Waste Incidental to Reprocessing Determinations, Low Level Waste 90-Day Staging and One Year Limits for Storage Programs, to name a few of the requirements that were addressed by the SRS 435.1 Implementation Team. This paper will trace the implementation, problems (both technical and administrative), and the current pushback efforts associated with the DOE ''Top-to-Bottom'' review.« less

  2. Benzene destruction in aqueous waste—I. Bench-scale gamma irradiation experiments

    NASA Astrophysics Data System (ADS)

    Cooper, William J.; Dougal, Roger A.; Nickelsen, Michael G.; Waite, Thomas D.; Kurucz, Charles N.; Lin, Kaijin; Bibler, Jane P.

    1996-07-01

    Destruction of the benzene component of a simulated low-level mixed aqueous waste stream by high energy irradiation was explored. This work was motivated by the fact that mixed waste, containing both radionuclides and regulated (non-radioactive) chemicals, is more difficult and more expensive to dispose of than only radioactive waste. After the benzene is destroyed, the waste can then be listed only as radiological waste instead of mixed waste, simplifying its disposal. This study quantifies the removal of benzene, and the formation and destruction of reaction products in a relatively complex waste stream matrix consisting of NO 3-, SO 42-, PO 43-, Fe 2+ and detergent at a pH of 3. All of the experiments were conducted at a bench scale using a 60Co gamma source.

  3. 76 FR 58543 - Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-21

    ...-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Reopening of comment... for public comment a draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management that updates the 1981 Policy Statement on Low-Level Waste Volume Reduction. The revised Policy...

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The papers in this document comprise the proceedings of the Department of Energy's Twelfth Annual Low-Level Radioactive Waste Management Conference, which was held in Chicago, Illinois, on August 28 and 29, 1990. General subjects addressed during the conference included: mixed waste, low-level radioactive waste tracking and transportation, public involvement, performance assessment, waste stabilization, financial assurance, waste minimization, licensing and environmental documentation, below-regulatory-concern waste, low-level radioactive waste temporary storage, current challenges, and challenges beyond 1990.

  5. Radioactive waste management complex low-level waste radiological composite analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McCarthy, J.M.; Becker, B.H.; Magnuson, S.O.

    1998-05-01

    The composite analysis estimates the projected cumulative impacts to future members of the public from the disposal of low-level radioactive waste (LLW) at the Idaho National Engineering and Environmental Laboratory (INEEL) Radioactive Waste Management Complex (RWMC) and all other sources of radioactive contamination at the INEEL that could interact with the LLW disposal facility to affect the radiological dose. Based upon the composite analysis evaluation, waste buried in the Subsurface Disposal Area (SDA) at the RWMC is the only source at the INEEL that will significantly interact with the LLW facility. The source term used in the composite analysis consistsmore » of all historical SDA subsurface disposals of radionuclides as well as the authorized LLW subsurface disposal inventory and projected LLW subsurface disposal inventory. Exposure scenarios evaluated in the composite analysis include all the all-pathways and groundwater protection scenarios. The projected dose of 58 mrem/yr exceeds the composite analysis guidance dose constraint of 30 mrem/yr; therefore, an options analysis was conducted to determine the feasibility of reducing the projected annual dose. Three options for creating such a reduction were considered: (1) lowering infiltration of precipitation through the waste by providing a better cover, (2) maintaining control over the RWMC and portions of the INEEL indefinitely, and (3) extending the period of institutional control beyond the 100 years assumed in the composite analysis. Of the three options investigated, maintaining control over the RWMC and a small part of the present INEEL appears to be feasible and cost effective.« less

  6. Final Environmental Impact Statement for Treating Transuranic (TRU)/Alpha Low-level Waste at the Oak Ridge National Laboratory Oak Ridge, Tennessee

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    N /A

    2000-06-30

    The DOE proposes to construct, operate, and decontaminate/decommission a TRU Waste Treatment Facility in Oak Ridge, Tennessee. The four waste types that would be treated at the proposed facility would be remote-handled TRU mixed waste sludge, liquid low-level waste associated with the sludge, contact-handled TRU/alpha low-level waste solids, and remote-handled TRU/alpha low-level waste solids. The mixed waste sludge and some of the solid waste contain metals regulated under the Resource Conservation and Recovery Act and may be classified as mixed waste. This document analyzes the potential environmental impacts associated with five alternatives--No Action, the Low-Temperature Drying Alternative (Preferred Alternative), themore » Vitrification Alternative, the Cementation Alternative, and the Treatment and Waste Storage at Oak Ridge National Laboratory (ORNL) Alternative.« less

  7. Solid Waste Management Plan. Revision 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1995-04-26

    The waste types discussed in this Solid Waste Management Plan are Municipal Solid Waste, Hazardous Waste, Low-Level Mixed Waste, Low-Level Radioactive Waste, and Transuranic Waste. The plan describes for each type of solid waste, the existing waste management facilities, the issues, and the assumptions used to develop the current management plan.

  8. 10 CFR 62.2 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    .... Emergency access means access to an operating non-Federal or regional low-level radioactive waste disposal... regional low-level radioactive waste disposal facility or facilities for a period not to exceed 180 days... waste. Non-Federal disposal facility means a low-level radioactive waste disposal facility that is...

  9. 77 FR 72997 - Low-Level Waste Disposal

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-12-07

    ...-2011-0012] RIN 3150-AI92 Low-Level Waste Disposal AGENCY: Nuclear Regulatory Commission. ACTION... Regulatory Commission (NRC) is proposing to amend its regulations that govern low-level radioactive waste... development of criteria for waste acceptance based on the results of these analyses. These amendments will...

  10. Topic I: Induced changes in hydrology at low-level radioactive waste repository sites: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Prudic, David E.; Dennehy, Kevin F.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Engineering practices, including the excavation of trenches, placement of waste, nature of waste forms, backfilling procedures and materials, and trench-cover construction and materials at low-level radioactive-waste repository sites greatly affect the geohydrology of the sites. Engineering practices are dominant factors in eventual stability and isolation of the waste. The papers presented relating to Topic I were discussions of the hydrogeologic setting at existing low-level radioactive-waste repository sites and changes in the hydrology induced by site operations. Papers summarizing detailed studies presented at this workshop include those at sites near Sheffield, Ill.; Oak Ridge National Laboratory, Tenn.; West Valley, N.Y.; Maxey Flats, Ky.; Barnwell, S.C.; and Beatty, Nev. 

  11. 77 FR 25760 - Low-Level Radioactive Waste Management and Volume Reduction

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-05-01

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0183] Low-Level Radioactive Waste Management and Volume.... Nuclear Regulatory Commission (NRC or the Commission) is revising its 1981 Policy Statement on Low-Level..., the NRC staff issued SECY-10-0043, ``Blending of Low-Level Radioactive Waste'' (ADAMS Accession No...

  12. Liquid and Gaseous Waste Operations Department annual operating report CY 1996

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Maddox, J.J.; Scott, C.B.

    1997-03-01

    This annual report summarizes operating activities dealing with the process waste system, the liquid low-level waste system, and the gaseous waste system. It also describes upgrade activities dealing with the process and liquid low-level waste systems, the cathodic protection system, a stack ventilation system, and configuration control. Maintenance activities are described dealing with nonradiological wastewater treatment plant, process waste treatment plant and collection system, liquid low-level waste system, and gaseous waste system. Miscellaneous activities include training, audits/reviews/tours, and environmental restoration support.

  13. Special Analysis for Disposal of High-Concentration I-129 Waste in the Intermediate-Level Vaults at the E-Area Low-Level Waste Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collard, L.B.

    2000-09-26

    This revision was prepared to address comments from DOE-SR that arose following publication of revision 0. This Special Analysis (SA) addresses disposal of wastes with high concentrations of I-129 in the Intermediate-Level (IL) Vaults at the operating, low-level radioactive waste disposal facility (the E-Area Low-Level Waste Facility or LLWF) on the Savannah River Site (SRS). This SA provides limits for disposal in the IL Vaults of high-concentration I-129 wastes, including activated carbon beds from the Effluent Treatment Facility (ETF), based on their measured, waste-specific Kds.

  14. 10 CFR 62.12 - Contents of a request for emergency access: General information.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...) Certification that the radioactive waste for which emergency access is requested is low-level radioactive waste...

  15. National low-level waste management program radionuclide report series, Volume 15: Uranium-238

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adams, J.P.

    1995-09-01

    This report, Volume 15 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of uranium-238 ({sup 238}U). The purpose of the National Low-Level Waste Management Program Radionuclide Report Series is to provide information to state representatives and developers of low-level radioactive waste disposal facilities about the radiological, chemical, and physical characteristics of selected radionuclides and their behavior in the waste disposal facility environment. This report also includes discussions about waste types and forms in which {sup 238}U can be found, and {sup 238}U behavior in the environment and in the human body.

  16. 10 CFR 62.13 - Contents of a request for emergency access: Alternatives.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... following: (1) Storage of low-level radioactive waste at the site of generation; (2) Storage of low-level... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense...

  17. Hydrogeologic factors in the selection of shallow land burial sites for the disposal of low-level radioactive waste

    USGS Publications Warehouse

    Fischer, John N.

    1986-01-01

    In the United States, low-level radioactive waste is disposed of by shallow land burial. Commercial low-level radioactive waste has been buried at six sites, and low-level radioactive waste generated by the Federal Government has been buried at nine major and several minor sites. Several existing low-level radioactive waste sites have not provided expected protection of the environment. These shortcomings are related, at least in part, to an inadequate understanding of site hydrogeology at the time the sites were selected. To better understand the natural systems and the effect of hydrogeologic factors on long-term site performance, the U.S. Geological Survey has conducted investigations at five of the six commercial low-level radioactive waste sites and at three Federal sites. These studies, combined with those of other Federal and State agencies, have identified and confirmed important hydrogeologic factors in the effective disposal of low-level radioactive waste by shallow land burial. These factors include precipitation, surface drainage, topography, site stability, geology, thickness of the host soil-rock horizon, soil and sediment permeability, soil and water chemistry, and depth to the water table.

  18. Environmental Management

    ScienceCinema

    None

    2018-01-16

    Another key aspect of the NNSS mission is Environmental Management program, which addresses the environmental legacy from historic nuclear weapons related activities while also ensuring the health and safety of present day workers, the public, and the environment as current and future missions are completed. The Area 5 Radioactive Waste Management site receives low-level and mixed low-level waste from some 28 different generators from across the DOE complex in support of the legacy clean-up DOE Environmental Management project. Without this capability, the DOE would not be able to complete the clean up and proper disposition of these wastes. The program includes environmental protection, compliance, and monitoring of the air, water, plants, animals, and cultural resources at the NNSS. Investigation and implementation of appropriate corrective actions to address the contaminated ground water facilities and soils resulting from historic nuclear testing activities, the demolition of abandoned nuclear facilities, as well as installation of ground water wells to identify and monitor the extent of ground water contamination.

  19. 40 CFR 266.220 - What does a storage and treatment conditional exemption do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage... exemption exempts your low-level mixed waste from the regulatory definition of hazardous waste in 40 CFR 261...

  20. 10 CFR 1800.10 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.10 Purpose and scope. Pursuant to Articles IV.i.(1), (7), (15), and VII.e. of the Northeast Interstate Low-Level Radioactive Waste Compact...

  1. 10 CFR 1800.10 - Purpose and scope.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.10 Purpose and scope. Pursuant to Articles IV.i.(1), (7), (15), and VII.e. of the Northeast Interstate Low-Level Radioactive Waste Compact...

  2. Session 35 - Panel: Remaining US Disposition Issues for Orphan or Small Volume Low Level and Low Level Mixed Waste Streams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blauvelt, Richard; Small, Ken; Gelles, Christine

    2006-07-01

    Faced with closure schedules as a driving force, significant progress has been made during the last 2 years on the disposition of DOE mixed waste streams thought previously to be problematic. Generators, the Department of Energy and commercial vendors have combined to develop unique disposition paths for former orphan streams. Recent successes and remaining issues will be discussed. The session will also provide an opportunity for Federal agencies to share lessons learned on low- level and mixed low-level waste challenges and identify opportunities for future collaboration. This panel discussion was organized by PAC member Dick Blauvelt, Navarro Research and Engineeringmore » Inc who served as co-chair along with Dave Eaton from INL. In addition, George Antonucci, Duratek Barnwell and Rich Conley, AFSC were invited members of the audience, prepared to contribute the Barnwell and DOD perspective to the issues as needed. Mr. Small provide information regarding the five year 20K M3 window of opportunity at the Nevada Test Site for DOE contractors to dispose of mixed waste that cannot be received at the Energy Solutions (Envirocare) site in Utah because of activity levels. He provided a summary of the waste acceptance criteria and the process sites must follow to be certified to ship. When the volume limit or time limit is met, the site will undergo a RCRA closure. Ms. Gelles summarized the status of the orphan issues, commercial options and the impact of the EM reorganization on her program. She also announced that there would be a follow-on meeting in 2006 to the very successful St. Louis meeting of last year. It will probably take place in Chicago in July. Details to be announced. Mr. McKenney discussed progress made at the Hanford Reservation regarding disposal of their mixed waste inventory. The news is good for the Hanford site but not good for the rest of the DOE complex since shipment for out of state of both low level and low level mixed waste will continue to be prohibited until the completion of a new NEPA study. This is anticipated to take several years. Bill Franz from Portsmouth and Dave Eaton representing the INL provided the audience with information regarding some of the problematic mixed waste streams at their respective sites. Portsmouth has some unique radiological issues with isotopes such as Tc-99 while the INL is trying to deal with mixed waste in the 10-100 nCi/g range. Kaylin Loveland spoke of the new,Energy Solutions organization and provided information on mixed waste treatment capabilities at the Clive site. Mike Lauer described the licensing activities at the WCS site in Texas where they are trying to eventually have disposal capabilities for Class A, B and C mixed waste from both DOE and the commercial sector. The audience included about 75 WM'06 attendees who asked some excellent questions and provided an active and informative exchange of information on the topic. (authors)« less

  3. Low-Level Radioactive Waste Management in the United States: What Have We Wrought? The Richard S. Hodes, M.D. Honor Lecture Award - 12222

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jacobi, Lawrence R.

    2012-07-01

    In 1979, radioactive waste disposal was an important national issue. State governors were closing the gates on the existing low-level radioactive waste disposal sites and the ultimate disposition of spent fuel was undecided. A few years later, the United States Congress thought they had solved both problems by passing the Low-Level Radioactive Waste Policy Act of 1981, which established a network of regional compacts for low-level radioactive waste disposal, and by passing the Nuclear Waste Policy Act of 1982 to set out how a final resting place for high-level waste would be determined. Upon passage of the acts, State, Regionalmore » and Federal officials went to work. Here we are some 30 years later with little to show for our combined effort. The envisioned national repository for high-level radioactive waste has not materialized. Efforts to develop the Yucca Mountain high-level radioactive waste disposal facility were abandoned after spending $13 billion on the failed project. Recently, the Blue Ribbon Commission on America's Nuclear Future issued its draft report that correctly concludes the existing policy toward high-level nuclear waste is 'all but completely broken down'. A couple of new low-level waste disposal facilities have opened since 1981, but neither were the result of efforts under the act. What the Act has done is interject a system of interstate compacts with a byzantine interstate import and export system to complicate the handling of low-level radioactive waste, with attendant costs. As this paper is being written in the fourth-quarter of 2011, after 30 years of political and bureaucratic turmoil, a new comprehensive low-level waste disposal facility at Andrews Texas is approaching its initial operating date. The Yucca Mountain project might be completed or it might not. The US Nuclear Regulatory Commission is commencing a review of their 1981 volume reduction policy statement. The Department of Energy after 26 years has yet to figure out how to implement its obligations under the 1985 amendments to the Low-Level Radioactive Waste Policy Act. But, the last three decades have not been a total loss. A great deal has been learned about radioactive waste disposal since 1979 and the efforts of the public and private sector have shaped and focused the work to be done in the future. So, this lecturer asks the question: 'What have we wrought?' to which he provides his perspective and his recommendations for radioactive waste management policy for the next 30 years. (author)« less

  4. New Jersey State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The New Jersey state Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in New Jersey. The profile is the result of a survey of NRC licensees in New Jersey. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in New Jersey.« less

  5. Mississippi State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    The Mississippi State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state an federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Mississippi. The profile is the result of a survey of NRC licensees in Mississippi. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Mississippi.« less

  6. North Carolina State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The North Carolina State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in North Carolina. The profile is the result of a survey of NRC licensees in North Carolina. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in North Carolina.« less

  7. Wyoming State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Wyoming State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Wyoming. The profile is the result of a survey of NRC licensees in Wyoming. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Wyoming.« less

  8. Kansas State Briefing Book on low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-01

    The Kansas State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Kansas. The profile is the result of a survey of radioactive material licensees in Kansas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Kansas.« less

  9. Puerto Rico State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Puerto Rico State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Puerto Rico. The profile is the result of a survey of NRC licensees in Puerto Rico. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessmentmore » was developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Puerto Rico.« less

  10. Ohio State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    The Ohio State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Ohio. The profile is the result of a survey of NRC licensees in Ohio. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Ohio.« less

  11. Massachusetts State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-03-12

    The Massachusetts State Briefing Book is one of a series of State briefing books on low-level radioactive waste management practices. It has been prepared to assist State and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Massachusetts. The profile is the result of a survey of NRC licensees in Massachusetts. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Massachusetts.« less

  12. Texas State Briefing Book for low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-01

    The Texas State Briefing Book is one of a series of state briefing books on low-level radioactivee waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Texas. The profile is the result of a survey of NRC licensees in Texas. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment was developed throughmore » personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may impact waste management practices in Texas.« less

  13. Vermont State Briefing Book on low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-07-01

    The Vermont State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Vermont. The profile is the result of a survey of Nuclear Regulatory Commission licensees in Vermont. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested parties including industry, government, the media, and interest groups. The assessment wasmore » developed through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant government agencies and activities, all of which may affect waste management practices in Vermont.« less

  14. 77 FR 58591 - Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-21

    ... NUCLEAR REGULATORY COMMISSION [NRC-2010-0362] Report on Waste Burial Charges: Changes in Decommissioning Waste Disposal Costs at Low-Level Waste Burial Facilities AGENCY: Nuclear Regulatory Commission... Commission) has issued for public comment a document entitled: NUREG-1307 Revision 15, ``Report on Waste...

  15. 10 CFR 62.1 - Purpose and scope.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... (42 U.S.C. 2021) to any non-Federal or regional low-level radioactive waste (LLW) disposal facility or... regional or non-Federal low-level radioactive waste disposal facilities and who submit a request to the... LOW-LEVEL WASTE DISPOSAL FACILITIES General Provisions § 62.1 Purpose and scope. (a) The regulations...

  16. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination.

    PubMed

    Kyne, Dean; Bolin, Bob

    2016-07-12

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives.

  17. 40 CFR 60.50c - Applicability and delegation of authority.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... later than December 1, 2008; or (2) For which modification is commenced after March 16, 1998 but no... during periods when only pathological waste, low-level radioactive waste, and/or chemotherapeutic waste... when only pathological waste, low-level radioactivewaste and/or chemotherapeutic waste is burned. (c...

  18. THE NGA-DOE GRANT TO EXAMINE CRITICAL ISSUES RELATED TO RADIOACTIVE WASTE AND MATERIALS DISPOSITION INVOLVING DOE FACILITIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ethan W. Brown

    2001-09-01

    Through the National Governors' Association (NGA) project ''Critical Issues Related to Radioactive Waste and Materials Disposition Involving DOE Facilities'' NGA brings together Governors' policy advisors, state regulators, and DOE officials to examine critical issues related to the cleanup and operation of DOE nuclear weapons and research facilities. Topics explored through this project include: Decisions involving disposal of mixed, low-level, and transuranic (TRU) waste and disposition of nuclear materials. Decisions involving DOE budget requests and their effect on environmental cleanup and compliance at DOE facilities. Strategies to treat mixed, low-level, and transuranic (TRU) waste and their effect on individual sites inmore » the complex. Changes to the FFCA site treatment plans as a result of proposals in the Department's Accelerating Cleanup: Paths to Closure plan and contractor integration analysis. Interstate waste and materials shipments. Reforms to existing RCRA and CERCLA regulations/guidance to address regulatory overlap and risks posed by DOE wastes. The overarching theme of this project is to help the Department improve coordination of its major program decisions with Governors' offices and state regulators and to ensure such decisions reflect input from these key state officials and stakeholders. This report summarizes activities conducted during the period from April 1, 2001 through June 30, 2001, under the NGA grant.« less

  19. SUBGRADE MONOLITHIC ENCASEMENT STABILIZATION OF CATEGORY 3 LOW LEVEL WASTE (LLW)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    PHILLIPS, S.J.

    2004-02-03

    A highly efficient and effective technology has been developed and is being used for stabilization of Hazard Category 3 low-level waste at the U.S. Department of Energy's Hanford Site. Using large, structurally interconnected monoliths, which form one large monolith that fills a waste disposal trench, the patented technology can be used for final internment of almost any hazardous, radioactive, or toxic waste or combinations of these waste materials packaged in a variety of sizes, shapes, and volumes within governmental regulatory limits. The technology increases waste volumetric loading by 100 percent, area use efficiency by 200 percent, and volumetric configuration efficiencymore » by more than 500 percent over past practices. To date, in excess of 2,010 m{sup 3} of contact-handled and remote-handled low-level radioactive waste have been interned using this patented technology. Additionally, in excess of 120 m{sup 3} of low-level radioactive waste requiring stabilization in low-diffusion coefficient waste encasement matrix has been disposed using this technology. Greater than five orders of magnitude in radiation exposure reduction have been noted using this method of encasement of Hazard Category 3 waste. Additionally, exposure monitored at all monolith locations produced by the slip form technology is less than 1.29 x E-07 C {center_dot} kg{sup -1}. Monolithic encasement of Hazard Category 3 low-level waste and other waste category materials may be successfully accomplished using this technology at nominally any governmental or private sector waste disposal facility. Additionally, other waste materials consisting of hazardous, radioactive, toxic, or mixed waste materials can be disposed of using the monolithic slip form encasement technology.« less

  20. Using Downhole Probes to Locate and Characterize Buried Transuranic and Mixed Low Level Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Steinman, Donald K; Bramblett, Richard L; Hertzog, Russel C

    2012-06-25

    Borehole logging probes were developed and tested to locate and quantify transuranic elements in subsurface disposal areas and in contaminated sites at USDOE Weapons Complex sites. A new method of measuring very high levels of chlroine in the subsurface was developed using pulsed neutron technology from oilfield applications. The probes were demonstrated at the Hanford site in wells containing plutonium and other contaminants.

  1. 78 FR 53793 - Request To Amend a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to... (Class A total of 5,500 ``Foreign Suppliers.'' No IW022/04 radioactive tons of low- other changes to the existing 11005700 waste). level waste). license which authorizes the import of low-level waste for...

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K. M.

    The U.S. Department of Energy (DOE), Office of Environmental Management (EM) is sponsoring an international, collaborative project to develop a fundamental model for sulfate solubility in nuclear waste glass. The solubility of sulfate has a significant impact on the achievable waste loading for nuclear waste forms within the DOE complex. These wastes can contain relatively high concentrations of sulfate, which has low solubility in borosilicate glass. This is a significant issue for low-activity waste (LAW) glass and is projected to have a major impact on the Hanford Tank Waste Treatment and Immobilization Plant (WTP). Sulfate solubility has also been amore » limiting factor for recent high level waste (HLW) sludge processed at the Savannah River Site (SRS) Defense Waste Processing Facility (DWPF). The low solubility of sulfate in glass, along with melter and off-gas corrosion constraints, dictate that the waste be blended with lower sulfate concentration waste sources or washed to remove sulfate prior to vitrification. The development of enhanced borosilicate glass compositions with improved sulfate solubility will allow for higher waste loadings and accelerate mission completion.The objective of the current scope being pursued by SHU is to mature the sulfate solubility model to the point where it can be used to guide glass composition development for DWPF and WTP, allowing for enhanced waste loadings and waste throughput at these facilities. A series of targeted glass compositions was selected to resolve data gaps in the model and is identified as Stage III. SHU fabricated these glasses and sent samples to SRNL for chemical composition analysis. SHU will use the resulting data to enhance the sulfate solubility model and resolve any deficiencies. In this report, SRNL provides chemical analyses for the Stage III, simulated HLW glasses fabricated by SHU in support of the sulfate solubility model development.« less

  3. Process for treating waste water having low concentrations of metallic contaminants

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Looney, Brian B; Millings, Margaret R; Nichols, Ralph L

    A process for treating waste water having a low level of metallic contaminants by reducing the toxicity level of metallic contaminants to an acceptable level and subsequently discharging the treated waste water into the environment without removing the treated contaminants.

  4. Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion

    PubMed Central

    You, Yaqi; Silbergeld, Ellen K.

    2014-01-01

    Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance (AMR). Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including AMR determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering AMR as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level. PMID:24959164

  5. Learning from agriculture: understanding low-dose antimicrobials as drivers of resistome expansion.

    PubMed

    You, Yaqi; Silbergeld, Ellen K

    2014-01-01

    Antimicrobial resistance is a growing public health challenge worldwide, with agricultural use of antimicrobials being one major contributor to the emergence and dissemination of antimicrobial resistance (AMR). Globally, most antimicrobials are used in industrial food animal production, a major context for microbiomes encountering low-doses or subtherapeutic-levels of antimicrobial agents from all mechanistic classes. This modern practice exerts broad eco-evolutionary effects on the gut microbiome of food animals, which is subsequently transferred to animal waste. This waste contains complex constituents that are challenging to treat, including AMR determinants and low-dose antimicrobials. Unconfined storage or land deposition of a large volume of animal waste causes its wide contact with the environment and drives the expansion of the environmental resistome through mobilome facilitated horizontal genet transfer. The expanded environmental resistome, which encompasses both natural constituents and anthropogenic inputs, can persist under multiple stressors from agriculture and may re-enter humans, thus posing a public health risk to humans. For these reasons, this review focuses on agricultural antimicrobial use as a laboratory for understanding low-dose antimicrobials as drivers of resistome expansion, briefly summarizes current knowledge on this topic, highlights the importance of research specifically on environmental microbial ecosystems considering AMR as environmental pollution, and calls attention to the needs for longitudinal studies at the systems level.

  6. Maine State Briefing Book on low-level radioactive waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1981-08-01

    The Maine State Briefing Book is one of a series of state briefing books on low-level radioactive waste management practices. It has been prepared to assist state and Federal agency officials in planning for safe low-level radioactive waste disposal. The report contains a profile of low-level radioactive waste generators in Maine. The profile is the result of a survey of radioactive material licensees in Maine. The briefing book also contains a comprehensive assessment of low-level radioactive waste management issues and concerns as defined by all major interested partices including industry, government, the media, and interest groups. The assessment was developedmore » through personal communications with representatives of interested parties, and through a review of media sources. Lastly, the briefing book provides demographic and socioeconomic data and a discussion of relevant goverment agencies and activities, all of which may impact management practices in Maine.« less

  7. Radiation streaming and skyshine evaluation for a proposed low-level radioactive waste assured isolation facility.

    PubMed

    Arno, Matthew; Hamilton, Ian S

    2003-10-01

    Texas is investigating the idea of building a long term waste storage facility, also known as an Assured Isolation Facility. This is an above-ground, retrievable low-level radioactive waste storage facility. A preliminary, scoping-level analysis has been extended to consider more complex scenarios of radiation streaming and skyshine by using MCNP to model the facility in greater detail. Using bounding source term assumptions, the radiation doses and dose rates are found to exceed applicable limits by an order of magnitude. By altering the facility design to fill in the hollow cores of the prefabricated concrete slabs used in the roof over the "high-gamma" rooms where the waste with greatest gamma radiation intensity is stored, dose rates outside the facility decrease by an order of magnitude. With the modified design, the annual dose at the site fenceline is less than the 1 mSv annual limit for exposure of the public. Within the site perimeter, modifying the roof results in an order of magnitude drop in the dose rate for personnel outside the facility and on the facility roof, as well as a significant drop inside the facility. Radiation streaming inside the facility can be lowered almost two orders of magnitude by placing operational restrictions to keep at least two rows of waste containers in front of the high-gamma room to cut down on the size of the path for streaming.

  8. Radionuclide Migration through Sediment and Concrete: 16 Years of Investigations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovich, Elizabeth C.; Mattigod, Shas V.; Snyder, Michelle MV

    The Waste Management Project provides safe, compliant, and cost-effective waste management services for the Hanford Site and the U.S. Department of Energy (DOE) complex. Part of these services includes safe disposal of low-level waste and mixed low-level waste at the Hanford Low-Level Waste Burial Grounds in accordance with the requirements of DOE Order 435.1, Radioactive Waste Management. To partially satisfy these requirements, performance assessment analyses were completed and approved. DOE Order 435.1 also requires continuing data collection to increase confidence in the critical assumptions used in these analyses to characterize the operational features of the disposal facility that are reliedmore » on to satisfy the performance objectives identified in the order. Cement-based solidification and stabilization is considered for hazardous waste disposal because it is easily done and cost-efficient. One critical assumption is that concrete will be used as a waste form or container material at the Hanford Site to control and minimize the release of radionuclide constituents in waste into the surrounding environment. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. The radionuclides iodine-129, selenium-75, technetium-99, and uranium-238 have been identified as long-term dose contributors (Mann et al. 2001; Wood et al. 1995). Because of their anionic nature in aqueous solutions, these constituents of potential concern may be released from the encased concrete by mass flow and/or diffusion and migrate into the surrounding subsurface environment (Serne et al. 1989; 1992; 1993a, b; 1995). Therefore, it is necessary to assess the performance of the concrete encasement structure and the ability of the surrounding soil to retard radionuclide migration. Each of the test methods performed throughout the lifetime of the project has focused on different aspects of the concrete waste form weathering process. Diffusion of different analytes [technetium-99 (Tc-99), iodine-125 (I-125), stable iodine (I), uranium (U), and rhenium (Re)] has been quantified from experiments under both saturated and unsaturated conditions. The water-saturated conditions provide a conservative estimate of the concrete’s performance in situ, and the unsaturated conditions provide a more accurate estimate of the diffusion of contaminants from the concrete.« less

  9. The low-level waste handbook: A user's guide to the Low-Level Radioactive Waste Policy Amendments Act of 1985. [Contains glossary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brown, H.

    1986-11-01

    This report provides a detailed, section-by-section analysis of the Low-Level Radioactive Waste Policy Amendments Act of 1985. Appendices include lists of relevant law and legislation, relevant Congressional committees, members of Congress mentioned in the report, and exact copies of the 1980 and 1985 Acts. (TEM)

  10. Operating Experience and Lessons Learned in the Use of Soft-Sided Packaging for Transportation and Disposal of Low Activity Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kapoor, A.; Gordon, S.; Goldston, W.

    2013-07-08

    This paper describes the operating experience and lessons learned at U.S. Department of Energy (DOE) sites as a result of an evaluation of potential trailer contamination and soft-sided packaging integrity issues related to the disposal of low-level and mixed low-level (LLW/MLLW) radioactive waste shipments. Nearly 4.3 million cubic meters of LLW/MLLW will have been generated and disposed of during fiscal year (FY) 2010 to FY 2015—either at commercial disposal sites or disposal sites owned by DOE. The LLW/MLLW is packaged in several different types of regulatory compliant packaging and transported via highway or rail to disposal sites safely and efficientlymore » in accordance with federal, state, and local regulations and DOE orders. In 1999, DOE supported the development of LLW containers that are more volumetrically efficient, more cost effective, and easier to use as compared to metal or wooden containers that existed at that time. The DOE Idaho National Engineering and Environmental Laboratory (INEEL), working in conjunction with the plastic industry, tested several types of soft-sided waste packaging systems that meet U.S. Department of Transportation requirements for transport of low specific activity and surface contaminated objects. Since then, soft-sided packaging of various capacities have been used successfully by the decontamination and decommissioning (D&D) projects to package, transport, and dispose D&D wastes throughout the DOE complex. The joint team of experts assembled by the Energy Facility Contractors Group from DOE waste generating sites, DOE and commercial waste disposal facilities, and soft-sided packaging suppliers conducted the review of soft-sided packaging operations and transportation of these packages to the disposal sites. As a result of this evaluation, the team developed several recommendations and best practices to prevent or minimize the recurrences of equipment contamination issues and proper use of soft-sided packaging for transport and disposal of waste.« less

  11. [Purification of complicated industrial organic waste gas by complex absorption].

    PubMed

    Chen, Ding-Sheng; Cen, Chao-Ping; Tang, Zhi-Xiong; Fang, Ping; Chen, Zhi-Hang

    2011-12-01

    Complicated industrial organic waste gas with the characteristics of low concentration,high wind volume containing inorganic dust and oil was employed the research object by complex absorption. Complex absorption mechanism, process flow, purification equipment and engineering application were studied. Three different surfactants were prepared for the composite absorbent to purify exhaust gas loaded with toluene and butyl acetate, respectively. Results show that the low surface tension of the composite absorbent can improve the removal efficiency of toluene and butyl acetate. With the advantages of the water film, swirl plate and fill absorption device, efficient absorption equipment was developed for the treatment of complicated industrial organic waste gas. It is with superiorities of simple structure, small size, anti-jam and high mass transfer. Based on absorption technology, waste gas treatment process integrated with heating stripping, burning and anaerobic and other processes, so that emissions of waste gas and absorption solution could meet the discharge standards. The technology has been put into practice, such as manufacturing and spraying enterprises.

  12. Geohydrology of the near-surface unsaturated zone adjacent to the disposal site for low-level radioactive waste near Beatty, Nevada: A section in Safe disposal of radionuclides in low-level radioactive-waste repository sites; Low-level radioactive-waste disposal workshop, U.S. Geological Survey, July 11-16, 1987, Big Bear Lake, Calif., Proceedings (Circular 1036)

    USGS Publications Warehouse

    Fisher, Jeffrey M.; Bedinger, Marion S.; Stevens, Peter R.

    1990-01-01

    Shallow-land burial in arid areas is considered the best method for isolating low-level radioactive waste from the environment (Nichols and Goode, this report; Mercer and others, 1983). A major threat to waste isolation in shallow trenches is ground-water percolation. Repository sites in arid areas are believed to minimize the risk of ground-water contamination because such sites receive minimal precipitation and are underlain by thick unsaturated zones. Unfortunately, few data are available on rates of water percolation in an arid environment.

  13. Low-Level Waste Forum notes and summary reports for 1994. Volume 9, Number 3, May-June 1994

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1994-06-01

    This issue includes the following articles: Vermont ratifies Texas compact; Pennsylvania study on rates of decay for classes of low-level radioactive waste; South Carolina legislature adjourns without extending access to Barnwell for out-of-region generators; Southeast Compact Commission authorizes payments for facility development, also votes on petitions, access contracts; storage of low-level radioactive waste at Rancho Seco removed from consideration; plutonium estimates for Ward Valley, California; judgment issued in Ward Valley lawsuits; Central Midwest Commission questions court`s jurisdiction over surcharge rebates litigation; Supreme Court decides commerce clause case involving solid waste; parties voluntarily dismiss Envirocare case; appellate court affirms dismissal ofmore » suit against Central Commission; LLW Forum mixed waste working group meets; US EPA Office of Radiation and Indoor Air rulemakings; EPA issues draft radiation site cleanup regulation; EPA extends mixed waste enforcement moratorium; and NRC denies petition to amend low-level radioactive waste classification regulations.« less

  14. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1986-1990

    USGS Publications Warehouse

    Trask, N.J.; Stevens, P.R.

    1991-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research efforts are categorized according to whether they are related most directly to: (1) high-level wastes, (2) transuranic wastes, (3) low-level and mixed low-level and hazardous wastes, or (4) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, to development of techniques and methods for characterizing disposal sites, and to studies of geologic and hydrologic processes related to the transport and/or retention of waste radionuclides.

  15. Emerging Environmental Justice Issues in Nuclear Power and Radioactive Contamination

    PubMed Central

    Kyne, Dean; Bolin, Bob

    2016-01-01

    Nuclear hazards, linked to both U.S. weapons programs and civilian nuclear power, pose substantial environment justice issues. Nuclear power plant (NPP) reactors produce low-level ionizing radiation, high level nuclear waste, and are subject to catastrophic contamination events. Justice concerns include plant locations and the large potentially exposed populations, as well as issues in siting, nuclear safety, and barriers to public participation. Other justice issues relate to extensive contamination in the U.S. nuclear weapons complex, and the mining and processing industries that have supported it. To approach the topic, first we discuss distributional justice issues of NPP sites in the U.S. and related procedural injustices in siting, operation, and emergency preparedness. Then we discuss justice concerns involving the U.S. nuclear weapons complex and the ways that uranium mining, processing, and weapons development have affected those living downwind, including a substantial American Indian population. Next we examine the problem of high-level nuclear waste and the risk implications of the lack of secure long-term storage. The handling and deposition of toxic nuclear wastes pose new transgenerational justice issues of unprecedented duration, in comparison to any other industry. Finally, we discuss the persistent risks of nuclear technologies and renewable energy alternatives. PMID:27420080

  16. Environmental analysis burial of offsite low-level waste at SRP

    NASA Astrophysics Data System (ADS)

    Poe, W. L.; Moyer, R. A.

    1980-12-01

    The environmental effects of receipt and burial of low level naval waste are assessed. This low level waste was sent to the NRC-licensed burial ground operated by Chem-Nuclear Systems, Inc., at Barnwell, South Carolina. The DOE announced that DOE-generated low level waste would no longer be buried at commercial waste burial sites. The SRP was selected to receive the Naval waste described in this analysis. Receipt and burial of these wastes will have a negligible effect on SRP's environment and increase only sightly the environmental effects of the SRP operations discussed in the EIS on SRP waste management operations. The environmental effects of burial of this waste at Chem-Nuclear Burial Ground or at the SRP Burial Ground are described in this environmental analysis to permit assessment of incremental effects caused by the decision to bury this Naval waste in the SRP Burial Ground rather than in the Barnwell Burial Ground. The radiological effects from burial of this waste in either the SRP or Chem-Nuclear Burial Ground are very small when compared to those from natural background radiation or to the annual population dose commitment from operation of SRP. The environmental effects of burial at SRP to dose commitments normally received by the population surrounding SRP are compared.

  17. Presentation of the 2007 Richard S. Hodes, M.D. Honor Lecture Award

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McNamara, L.

    Perma-Fix Environmental Services, Inc. Chief Operating Officer Larry McNamara is the 2007 recipient of the distinguished Richard S. Hodes, M.D. Honor Lecture Award from the Southeast Compact Commission for Low-Level Radioactive Waste Management. This award recognizes Mr. McNamara's innovation in the commercialization of mixed waste treatment processes for the nuclear industry, and the significant role that these innovations have played solving low-level radioactive waste (LLRW) management problems in the United States with specific emphasis on low-level mixed wastes. Low-level mixed wastes (LLMW) have historically been the most difficult wastes to treat because of the specialized equipment, permits and experience neededmore » to deal with a large variety of hazardous constituents. Prior to innovations in the mixed waste treatment industry championed by Mr. McNamara, wastes were stored at generator sites around the country in regulated storage areas, at great cost, and in many cases for decades. In this paper, Mr. McNamara shares lessons he has learned over the past seven years in developing and implementing innovative waste management solutions that have helped solve one of the nation's biggest challenges. He also describes the future challenges facing the industry. (authors)« less

  18. 75 FR 70707 - Detroit Edison Company; Environmental Assessment and Finding of No Significant Impact

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... extend the time period that can elapse during shipments of low-level radioactive waste before the... extend the time period for the licensee to receive acknowledgment that the low-level radioactive waste...-level radioactive waste are not acknowledged by the intended recipient within 20 days after transfer to...

  19. Estimating Residual Solids Volume In Underground Storage Tanks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, Jason L.; Worthy, S. Jason; Martin, Bruce A.

    2014-01-08

    The Savannah River Site liquid waste system consists of multiple facilities to safely receive and store legacy radioactive waste, treat, and permanently dispose waste. The large underground storage tanks and associated equipment, known as the 'tank farms', include a complex interconnected transfer system which includes underground transfer pipelines and ancillary equipment to direct the flow of waste. The waste in the tanks is present in three forms: supernatant, sludge, and salt. The supernatant is a multi-component aqueous mixture, while sludge is a gel-like substance which consists of insoluble solids and entrapped supernatant. The waste from these tanks is retrieved andmore » treated as sludge or salt. The high level (radioactive) fraction of the waste is vitrified into a glass waste form, while the low-level waste is immobilized in a cementitious grout waste form called saltstone. Once the waste is retrieved and processed, the tanks are closed via removing the bulk of the waste, chemical cleaning, heel removal, stabilizing remaining residuals with tailored grout formulations and severing/sealing external penetrations. The comprehensive liquid waste disposition system, currently managed by Savannah River Remediation, consists of 1) safe storage and retrieval of the waste as it is prepared for permanent disposition; (2) definition of the waste processing techniques utilized to separate the high-level waste fraction/low-level waste fraction; (3) disposition of LLW in saltstone; (4) disposition of the HLW in glass; and (5) closure state of the facilities, including tanks. This paper focuses on determining the effectiveness of waste removal campaigns through monitoring the volume of residual solids in the waste tanks. Volume estimates of the residual solids are performed by creating a map of the residual solids on the waste tank bottom using video and still digital images. The map is then used to calculate the volume of solids remaining in the waste tank. The ability to accurately determine a volume is a function of the quantity and quality of the waste tank images. Currently, mapping is performed remotely with closed circuit video cameras and still photograph cameras due to the hazardous environment. There are two methods that can be used to create a solids volume map. These methods are: liquid transfer mapping / post transfer mapping and final residual solids mapping. The task is performed during a transfer because the liquid level (which is a known value determined by a level measurement device) is used as a landmark to indicate solids accumulation heights. The post transfer method is primarily utilized after the majority of waste has been removed. This method relies on video and still digital images of the waste tank after the liquid transfer is complete to obtain the relative height of solids across a waste tank in relation to known and usable landmarks within the waste tank (cooling coils, column base plates, etc.). In order to accurately monitor solids over time across various cleaning campaigns, and provide a technical basis to support final waste tank closure, a consistent methodology for volume determination has been developed and implemented at SRS.« less

  20. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada National Security Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    2010-10-04

    The Nevada National Security Site (NNSS) is located approximately 105 km (65 mi) northwest of Las Vegas, Nevada. The U.S. Department of Energy National Nuclear Security Administration Nevada Site Office (NNSA/NSO) is the federal lands management authority for the NNSS and National Security Technologies, LLC (NSTec) is the Management and Operations contractor. Access on and off the NNSS is tightly controlled, restricted, and guarded on a 24-hour basis. The NNSS is posted with signs along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NNSS. The Area 5 Radioactive Waste Management Site (RWMS) ismore » the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NNSS (Figure 1), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. The site will be used for the disposal of regulated Asbestiform Low-Level Waste (ALLW), small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains Polychlorinated Biphenyl (PCB) Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. Waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM) and PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water. The term asbestiform is used throughout this document to describe RACM. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the DOE/NV-325, Nevada National Security Site Waste Acceptance Criteria (NNSSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, or contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, or small quantities of LLHB demolition and construction waste and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NNSSWAC.« less

  1. Improvement of Leaching Resistance of Low-level Waste Form in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, J.Y.; Lee, B.C.; Kim, C.L.

    2006-07-01

    Low-level liquid concentrate wastes including boric acid have been immobilized with paraffin wax using concentrate waste drying system in Korean nuclear power plants since 1995. Small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form and the influence of LDPE on the leaching behavior of waste form was investigated. It was observed that the leaching of nuclides immobilized within paraffin waste form remarkably reduced as the content of LDPE increased. The acceptance criteria of paraffin waste form associated with leachability index and compressive strength after the leaching test were successfullymore » satisfied with the help of LDPE. (authors)« less

  2. 10 CFR 62.11 - Filing and distribution of a determination request.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radioactive waste disposal facilities, to the Compact Commissions with operating regional low-level radioactive waste disposal facilities, and to the Governors of the States in the Compact Commissions with... ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...

  3. Multi-discipline Waste Acceptance Process at the Nevada National Security Site - 13573

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carilli, Jhon T.; Krenzien, Susan K.

    2013-07-01

    The Nevada National Security Site low-level radioactive waste disposal facility acceptance process requires multiple disciplines to ensure the protection of workers, the public, and the environment. These disciplines, which include waste acceptance, nuclear criticality, safety, permitting, operations, and performance assessment, combine into the overall waste acceptance process to assess low-level radioactive waste streams for disposal at the Area 5 Radioactive Waste Management Site. Four waste streams recently highlighted the integration of these disciplines: the Oak Ridge Radioisotope Thermoelectric Generators and Consolidated Edison Uranium Solidification Project material, West Valley Melter, and classified waste. (authors)

  4. FY 1996 solid waste integrated life-cycle forecast characteristics summary. Volumes 1 and 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, K.J.

    1996-05-23

    For the past six years, a waste volume forecast has been collected annually from onsite and offsite generators that currently ship or are planning to ship solid waste to the Westinghouse Hanford Company`s Central Waste Complex (CWC). This document provides a description of the physical waste forms, hazardous waste constituents, and radionuclides of the waste expected to be shipped to the CWC from 1996 through the remaining life cycle of the Hanford Site (assumed to extend to 2070). In previous years, forecast data has been reported for a 30-year time period; however, the life-cycle approach was adopted this year tomore » maintain consistency with FY 1996 Multi-Year Program Plans. This document is a companion report to two previous reports: the more detailed report on waste volumes, WHC-EP-0900, FY1996 Solid Waste Integrated Life-Cycle Forecast Volume Summary and the report on expected containers, WHC-EP-0903, FY1996 Solid Waste Integrated Life-Cycle Forecast Container Summary. All three documents are based on data gathered during the FY 1995 data call and verified as of January, 1996. These documents are intended to be used in conjunction with other solid waste planning documents as references for short and long-term planning of the WHC Solid Waste Disposal Division`s treatment, storage, and disposal activities over the next several decades. This document focuses on two main characteristics: the physical waste forms and hazardous waste constituents of low-level mixed waste (LLMW) and transuranic waste (both non-mixed and mixed) (TRU(M)). The major generators for each waste category and waste characteristic are also discussed. The characteristics of low-level waste (LLW) are described in Appendix A. In addition, information on radionuclides present in the waste is provided in Appendix B. The FY 1996 forecast data indicate that about 100,900 cubic meters of LLMW and TRU(M) waste is expected to be received at the CWC over the remaining life cycle of the site. Based on ranges provided by the waste generators, this baseline volume could fluctuate between a minimum of about 59,720 cubic meters and a maximum of about 152,170 cubic meters. The range is primarily due to uncertainties associated with the Tank Waste Remediation System (TWRS) program, including uncertainties regarding retrieval of long-length equipment, scheduling, and tank retrieval technologies.« less

  5. Midwest Interstate Low-Level Radioactive Waste Commission annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-08-01

    In 1980, Congress passed the Low-Level Radioactive Waste Policy Act. This Act provided for a new approach to the disposal of low-level radioactive waste. It assigned each state responsibility for the disposal of low-level radioactive waste generated within its borders, and it authorized states to enter into compacts for the purpose of operating regional disposal facilities. It also authorized compacts to restrict the use of regional disposal facilities to only member states. To meet their obligations under the Act, Indiana, Iowa, Michigan, Minnesota, Missouri, Ohio and Wisconsin formed the Midwest Interstate Low-Level Radioactive Waste Compact. The Compact was ratified bymore » each of the state legislatures and by Congress. The Compact established the Midwest Interstate Low-Level Radioactive Waste Commission, composed on one representative appointed by the Governor or Legislature of each member state. Article 3 of the compact requires that the Commission prepare an annual report regarding the activities and actions of the Commission. It also requires that the annual report be distributed to the Governors and legislative leaders in the member states. The Commission's Bylaw Article 12 requires the annual report to cover the preceding fiscal year, and to be distributed in August of each year. The Bylaw also requires that an annual audit, prepared by a certified public accountant, be included as part of the annual report. 3 figs.« less

  6. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China.

    PubMed

    Ma, Jing; Kannan, Kurunthachalam; Cheng, Jinping; Horii, Yuichi; Wu, Qian; Wang, Wenhua

    2008-11-15

    Environmental pollution arising from electronic waste (e-waste) disposal and recycling has received considerable attention in recent years. Treatment, at low temperatures, of e-wastes that contain polyvinylchloride and related polymers can release polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). Although several studies have reported trace metals and polybrominated diphenyl ethers (PBDEs) released from e-waste recycling operations, environmental contamination and human exposure to PCDD/Fs from e-waste recycling operations are less well understood. In this study, electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total PCDD/ Fs including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148000 pg/g dry weight for workshop-floor dust, and 854 to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil (44.5-531 pg/g dry wt) from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels (3.44-33.8 pg/g dry wt) of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/ Fs via soil/dust ingestion and dermal exposure (2.3 and 0.363 pg TEQ/kg bw/day for children and adults, respectively) were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site (0.021 and 0.0053 pg TEQ/kg bw/day for children and adults, respectively), implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations.

  7. 77 FR 34229 - Idaho: Final Authorization of State Hazardous Waste Management Program; Revision

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-06-11

    ... capability for the disposal of remote-handled low-level radioactive waste ((LLW) generated at the Idaho... (FONSI), for the Remote-Handled Low-Level Radioactive Waste Onsite Disposal (RHLLWOD) on an Environmental... regulating phosphate (mineral processing) plants within the state. In response to this commenter's concerns...

  8. Environmental Sciences Division annual progress report for period ending September 30, 1981

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Auerbach, S.I.; Reichle, D.E.

    1982-04-01

    Research programs from the following sections and programs are summarized: aquatic ecology, environmental resources, earth sciences, terrestrial ecology, advanced fossil energy program, toxic substances program, environmental impacts program, biomass, low-level waste research and development program, US DOE low-level waste management program, and waste isolation program.

  9. The role of organic complexants and microparticulates in the facilitated transport of radionuclides

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilk, A.J.; Robertson, D.E.; Abel, K.H.

    1996-12-01

    This progress report describes the results of ongoing radiological and geochemical investigations of the mechanisms of radionuclide transport in groundwater at two low-level waste (LLW) disposal sites within the waste management area of the Chalk River Laboratories (CRL), Ontario, Canada. These sites, the Chemical Pit liquid disposal facility and the Waste Management Area C solid LLW disposal site, have provided valuable 30- to 40-year-old field locations for characterizing the migration of radionuclides and evaluating a number of recent site performance objectives for LLW disposal facilities. This information will aid the NRC and other federal, state, and local regulators, as wellmore » as LLW disposal site developers and waste generators, in maximizing the effectiveness of existing or projected LLW disposal facilities for isolating radionuclides from the general public and thereby improving the health and safety aspects of LLW disposal.« less

  10. Coupling Legacy and Contemporary Deterministic Codes to Goldsim for Probabilistic Assessments of Potential Low-Level Waste Repository Sites

    NASA Astrophysics Data System (ADS)

    Mattie, P. D.; Knowlton, R. G.; Arnold, B. W.; Tien, N.; Kuo, M.

    2006-12-01

    Sandia National Laboratories (Sandia), a U.S. Department of Energy National Laboratory, has over 30 years experience in radioactive waste disposal and is providing assistance internationally in a number of areas relevant to the safety assessment of radioactive waste disposal systems. International technology transfer efforts are often hampered by small budgets, time schedule constraints, and a lack of experienced personnel in countries with small radioactive waste disposal programs. In an effort to surmount these difficulties, Sandia has developed a system that utilizes a combination of commercially available codes and existing legacy codes for probabilistic safety assessment modeling that facilitates the technology transfer and maximizes limited available funding. Numerous codes developed and endorsed by the United States Nuclear Regulatory Commission and codes developed and maintained by United States Department of Energy are generally available to foreign countries after addressing import/export control and copyright requirements. From a programmatic view, it is easier to utilize existing codes than to develop new codes. From an economic perspective, it is not possible for most countries with small radioactive waste disposal programs to maintain complex software, which meets the rigors of both domestic regulatory requirements and international peer review. Therefore, re-vitalization of deterministic legacy codes, as well as an adaptation of contemporary deterministic codes, provides a creditable and solid computational platform for constructing probabilistic safety assessment models. External model linkage capabilities in Goldsim and the techniques applied to facilitate this process will be presented using example applications, including Breach, Leach, and Transport-Multiple Species (BLT-MS), a U.S. NRC sponsored code simulating release and transport of contaminants from a subsurface low-level waste disposal facility used in a cooperative technology transfer project between Sandia National Laboratories and Taiwan's Institute of Nuclear Energy Research (INER) for the preliminary assessment of several candidate low-level waste repository sites. Sandia National Laboratories is a multiprogram laboratory operated by Sandia Corporation, a Lockheed Martin Company, for the United States Department of Energy under Contract DE AC04 94AL85000.

  11. Integrated Disposal Facility FY2011 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2011-09-29

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 x 10{sup 5} m{sup 3} of glass (Certa and Wells 2010). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 8.9 x 10{sup 14} Bq total activity) of long-lived radionuclides, principally {sup 99}Tc (t{sub 1/2} = 2.1 x 10{sup 5}), plannedmore » for disposal in a low-level waste (LLW) facility. Before the ILAW can be disposed, DOE must conduct a performance assessment (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2011 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses.« less

  12. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singledecker, Steven John

    The purpose of this document is to describe the waste stream from Z-Pinch Residual Waste Project that due to worker safety concerns and operational efficiency is a candidate for blending Transuranic and low level waste together and can be safely packaged as low-level waste consistent with DOE Order 435.1 requirements and NRC guidance 10 CFR 61.42. This waste stream consists of the Pu-ICE post-shot containment systems, including plutonium targets, generated from the Z Machine experiments requested by LANL and conducted by SNL/NM. In the past, this TRU waste was shipped back to LANL after Sandia sends the TRU data packagemore » to LANL to certify the characterization (by CCP), transport and disposition at WIPP (CBFO) per LANL MOU-0066. The Low Level Waste is managed, characterized, shipped and disposed of at NNSS by SNL/NM per Sandia MOU # 11-S-560.« less

  13. Public acceptance for centralized storage and repositories of low-level waste session (Panel)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lutz, H.R.

    1995-12-31

    Participants from various parts of the world will provide a summary of their particular country`s approach to low-level waste management and the cost of public acceptance for low-level waste management facilities. Participants will discuss the number, geographic location, and type of low-level waste repositories and centralized storage facilities located in their countries. Each will discuss the amount, distribution, and duration of funds to gain public acceptance of these facilities. Participants will provide an estimated $/meter for centralized storage facilities and repositories. The panel will include a brief discussion about the ethical aspects of public acceptance costs, approaches for negotiating acceptance,more » and lessons learned in each country. The audience is invited to participate in the discussion.« less

  14. Detection of chronic wasting disease prion seeding activity in deer and elk feces by real-time quaking-induced conversion

    PubMed Central

    Tennant, Joanne M.; Haley, Nicholas J.; Denkers, Nathaniel D.; Mathiason, Candace K.; Hoover, Edward A.

    2017-01-01

    Chronic wasting disease (CWD) is an emergent prion disease affecting cervid species in North America, Canada, South Korea, and recently, Norway. Detection of CWD has been advanced by techniques that rely on amplification of low levels of prion amyloid to a detectable level. However, the increased sensitivity of amplification assays is often compromised by inhibitors and/or activators in complex biologic samples including body fluids, excreta, or the environment. Here, we adapt real-time quaking-induced conversion conditions to specifically detect CWD prions in fecal samples from both experimentally infected deer and naturally infected elk and estimate environmental contamination. The results have application to detection, surveillance and management of CWD, and potentially to other protein-misfolding diseases. PMID:28703697

  15. ASSESSMENT OF RADIOACTIVE AND NON-RADIOACTIVE CONTAMINANTS FOUND IN LOW LEVEL RADIOACTIVE WASTE STREAMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    R.H. Little, P.R. Maul, J.S.S. Penfoldag

    2003-02-27

    This paper describes and presents the findings from two studies undertaken for the European Commission to assess the long-term impact upon the environment and human health of non-radioactive contaminants found in various low level radioactive waste streams. The initial study investigated the application of safety assessment approaches developed for radioactive contaminants to the assessment of nonradioactive contaminants in low level radioactive waste. It demonstrated how disposal limits could be derived for a range of non-radioactive contaminants and generic disposal facilities. The follow-up study used the same approach but undertook more detailed, disposal system specific calculations, assessing the impacts of bothmore » the non-radioactive and radioactive contaminants. The calculations undertaken indicated that it is prudent to consider non-radioactive, as well as radioactive contaminants, when assessing the impacts of low level radioactive waste disposal. For some waste streams with relatively low concentrations of radionuclides, the potential post-closure disposal impacts from non-radioactive contaminants can be comparable with the potential radiological impacts. For such waste streams there is therefore an added incentive to explore options for recycling the materials involved wherever possible.« less

  16. Demonstration of ATG Process for Stabilizing Mercury (<260 ppm) Contaminated Mixed Waste. Mixed Waste Focus Area. OST Reference # 2407

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None, None

    1999-09-01

    Mercury contaminated wastes in many forms are present at various U. S. Department of Energy (DOE) sites. Based on efforts led by the Mixed Waste Focus Area (MWFA) and its Mercury Working Group (HgWG), the inventory of wastes contaminated with <260 ppm mercury and with radionuclides stored at various DOE sites is estimated to be approximately 6,000 m 3). At least 26 different DOE sites have this type of mixed low-level waste in their storage facilities. Extraction methods are required to remove mercury from waste containing >260 ppm levels, but below 260 ppm Hg contamination levels the U. S. Environmentalmore » Protection Agency (EPA) does not require removal of mercury from the waste. Steps must still be taken, however, to ensure that the final waste form does not leach mercury in excess of the limit for mercury prescribed in the Resource Conservation and Recovery Act (RCRA) when subjected to the Toxicity Characteristic Leaching Procedure (TCLP). At this time, the limit is 0.20 mg/L. However, in the year 2000, the more stringent Universal Treatment Standard (UTS) of 0.025 mg/L will be used as the target endpoint. Mercury contamination in the wastes at DOE sites presents a challenge because it exists in various forms, such as soil, sludges, and debris, as well as in different chemical species of mercury. Stabilization is of interest for radioactively contaminated mercury waste (<260 ppm Hg) because of its success with particular wastes, such as soils, and its promise of applicability to a broad range of wastes. However, stabilization methods must be proven to be adequate to meet treatment standards. It must also be proven feasible in terms of economics, operability, and safety. To date, no standard method of stabilization has been developed and proven for such varying waste types as those within the DOE complex.« less

  17. 75 FR 76054 - Detroit Edison Company Fermi, Unit 2; Exemption

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-07

    ... licensee anticipates using rail to ship radioactive waste. From the licensee's experience with radioactive..., section III.E, to investigate and file a report to the NRC if shipments of low-level radioactive waste are... exemption would extend the time period that can elapse during shipments of low-level radioactive waste...

  18. 10 CFR 62.13 - Contents of a request for emergency access: Alternatives.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... radioactive waste in a licensed storage facility; (3) Obtaining access to a disposal facility by voluntary... disposal at a Federal low-level radioactive waste disposal facility in the case of a Federal or defense... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission...

  19. 10 CFR 62.12 - Contents of a request for emergency access: General information.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the disposal facility or facilities which had been receiving the waste stream of concern before the... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...

  20. 10 CFR 62.12 - Contents of a request for emergency access: General information.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the disposal facility or facilities which had been receiving the waste stream of concern before the... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...

  1. 10 CFR 62.12 - Contents of a request for emergency access: General information.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the disposal facility or facilities which had been receiving the waste stream of concern before the... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...

  2. 10 CFR 62.12 - Contents of a request for emergency access: General information.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... EMERGENCY ACCESS TO NON-FEDERAL AND REGIONAL LOW-LEVEL WASTE DISPOSAL FACILITIES Request for a Commission... the disposal facility or facilities which had been receiving the waste stream of concern before the... the person(s) or company(ies) generating the low-level radioactive waste for which the determination...

  3. Status of the waste assay for nonradioactive disposal (WAND) project

    NASA Astrophysics Data System (ADS)

    Arnone, Gaetano L.; Foster, Lynn A.; Foxx, Charles L.; Hagan, Roland C.; Martin, E. R.; Myers, Steven C.; Parker, Jack L.

    1999-01-01

    The WAND (Waste Assay for Nonradioactive Disposal) system scans thought-to-be-clean, low-density waste (mostly paper and plastics) to verify the absence of radioactive contaminants at very low-levels. Much of the low-density waste generated in radiologically controlled areas, formally considered `suspect' radioactive, is now disposed more cheaply at the Los Alamos County Landfill as opposed to the LANL Radioactive Waste Landfill.

  4. Vitamin supplements, socioeconomic status, and morbidity events as predictors of wasting in HIV-infected women from Tanzania.

    PubMed

    Villamor, Eduardo; Saathoff, Elmar; Manji, Karim; Msamanga, Gernard; Hunter, David J; Fawzi, Wafaie W

    2005-10-01

    Wasting is a strong independent predictor of mortality in HIV-infected persons. Vitamin supplements delay the disease progression, but their effect on wasting is not known. Data are lacking on the risk factors for wasting in African HIV-infected persons. The objectives were to examine the effect of vitamin supplements on wasting in HIV-infected women and to assess the effects of sociodemographic characteristics, morbidity events, and immunologic progression on the risk of wasting. HIV-infected women (n = 1078) from Tanzania were randomly assigned to receive 1 of 4 daily oral regimens: multivitamins (B complex, C, and E), vitamin A plus beta-carotene, multivitamins that included vitamin A plus beta-carotene, or placebo. The endpoints of the study included first episodes of a midupper arm circumference <22 cm or a body mass index (BMI; in kg/m2) <18 and the incidence of weight loss episodes during a median 5.3 y of follow-up. Multivitamins alone significantly reduced the risk of a first episode of a midupper arm circumference <22 cm (relative risk: 0.66; 95% CI: 0.47, 0.94; P = 0.02). In multivariate-adjusted Cox models, the woman's age, education level, and height were inversely related to the incidence of wasting. Episodes of diarrhea, nausea or vomiting, lower respiratory tract infections, oral ulcers, thrush, severe anemia, and low CD4+ cell counts were each significantly related to an increased risk of wasting. Vitamins C and E and the vitamin B complex have a protective effect on wasting in HIV-infected women. Prevention of diarrhea, severe respiratory tract infections, and anemia are likely to decrease the burden of wasting.

  5. Radioactive Waste.

    ERIC Educational Resources Information Center

    Blaylock, B. G.

    1978-01-01

    Presents a literature review of radioactive waste disposal, covering publications of 1976-77. Some of the studies included are: (1) high-level and long-lived wastes, and (2) release and burial of low-level wastes. A list of 42 references is also presented. (HM)

  6. Contaminated groundwater characterization at the Chalk River Laboratories, Ontario, Canada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schilk, A.J.; Robertson, D.E.; Thomas, C.W.

    1993-03-01

    The licensing requirements for the disposal of low-level radioactive waste (10 CFR 61) specify the performance objectives and technical requisites for federal and commercial land disposal facilities, the ultimate goal of which is to contain the buried wastes so that the general population is adequately protected from harmful exposure to any released radioactive materials. A major concern in the operation of existing and projected waste disposal sites is subterranean radionuclide transport by saturated or unsaturated flow, which could lead to the contamination of groundwater systems as well as uptake by the surrounding biosphere, thereby directly exposing the general public tomore » such materials. Radionuclide transport in groundwater has been observed at numerous commercial and federal waste disposal sites [including several locations within the waste management area of Chalk River Laboratories (CRL)], yet the physico-chemical processes that lead to such migration are still not completely understood. In an attempt to assist in the characterization of these processes, an intensive study was initiated at CRL to identify and quantify the mobile radionuclide species originating from three separate disposal sites: (a) the Chemical Pit, which has received aqueous wastes containing various radioisotopes, acids, alkalis, complexing agents and salts since 1956, (b) the Reactor Pit, which has received low-level aqueous wastes from a reactor rod storage bay since 1956, and (c) the Waste Management Area C, a thirty-year-old series of trenches that contains contaminated solid wastes from CRL and various regional medical facilities. Water samples were drawn downgradient from each of the above sites and passed through a series of filters and ion-exchange resins to retain any particulate and dissolved or colloidal radionuclide species, which were subsequently identified and quantified via radiochemical separations and gamma spectroscopy. These groundwaters were also analyzed for anions, trace metals, Eh, pH, alkalinity and dissolved oxygen.« less

  7. Application of Molecular Techniques To Elucidate the Influence of Cellulosic Waste on the Bacterial Community Structure at a Simulated Low-Level-Radioactive-Waste Site▿ †

    PubMed Central

    Field, Erin K.; D'Imperio, Seth; Miller, Amber R.; VanEngelen, Michael R.; Gerlach, Robin; Lee, Brady D.; Apel, William A.; Peyton, Brent M.

    2010-01-01

    Low-level-radioactive-waste (low-level-waste) sites, including those at various U.S. Department of Energy sites, frequently contain cellulosic waste in the form of paper towels, cardboard boxes, or wood contaminated with heavy metals and radionuclides such as chromium and uranium. To understand how the soil microbial community is influenced by the presence of cellulosic waste products, multiple soil samples were obtained from a nonradioactive model low-level-waste test pit at the Idaho National Laboratory. Samples were analyzed using 16S rRNA gene clone libraries and 16S rRNA gene microarray (PhyloChip) analyses. Both methods revealed changes in the bacterial community structure with depth. In all samples, the PhyloChip detected significantly more operational taxonomic units, and therefore relative diversity, than the clone libraries. Diversity indices suggest that diversity is lowest in the fill and fill-waste interface (FW) layers and greater in the wood waste and waste-clay interface layers. Principal-coordinate analysis and lineage-specific analysis determined that the Bacteroidetes and Actinobacteria phyla account for most of the significant differences observed between the layers. The decreased diversity in the FW layer and increased members of families containing known cellulose-degrading microorganisms suggest that the FW layer is an enrichment environment for these organisms. These results suggest that the presence of the cellulosic material significantly influences the bacterial community structure in a stratified soil system. PMID:20305022

  8. (Low-level waste disposal facility siting and site characterization)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mezga, L.J.; Ketelle, R.H.; Pin, F.G.

    A US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River Plant (SRP), Savannah river Laboratory (SRL), and the Department of Energy Office of Defense Waste and Byproducts Management participated in the fourth meeting held under the US/French Radioactive Waste Management Agreement between the US Department of Energy and the Commissariat a l'Energie Atomique. This meeting, held at Agence Nationale pour les Gestion des Dechets Radioactifs' (ANDRA's) Headquarters in Paris, was a detailed, technical topical workshop focusing on Low-Level Waste Disposal Facility Siting and Site Characterization.'' The meeting also included a visit to the Centre de lamore » Manche waste management facility operated by ANDRA to discuss and observe the French approach to low-level waste management. The final day of the meeting was spent at the offices of Societe Generale pour les Techniques Nouvelles (SGN) discussing potential areas of future cooperation and exchange. 20 figs.« less

  9. Department of Energy Technology Readiness Assessments - Process Guide and Training Plan

    DTIC Science & Technology

    2008-09-12

    Hanford Waste Treatment and Immobilization Plant ( WTP ) Analytical Laboratory, Low Activity Waste (LAW) Facility and Balance of Facilities (3 TRAs... WTP High-Level Waste (HLW) Facility – WTP Pre-Treatment (PT) Facility – Hanford River Protection Project Low Activity Waste Treatment Alternatives

  10. Geohydrologic conditions at the nuclear-fuels reprocessing plant and waste-management facilities at the Western New York Nuclear Service Center, Cattaraugus County, New York

    USGS Publications Warehouse

    Bergeron, M.P.; Kappel, W.M.; Yager, R.M.

    1987-01-01

    A nuclear-fuel reprocessing plant, a high-level radioactive liquid-waste tank complex, and related waste facilities occupy 100 hectares (ha) within the Western New York Nuclear Service Center near West Valley, N.Y. The facilities are underlain by glacial and postglacial deposits that fill an ancestrial bedrock valley. The main plant facilities are on an elevated plateau referred to as the north plateau. Groundwater on the north plateau moves laterally within a surficial sand and gravel from the main plant building to areas northeast, east, and southeast of the facilities. The sand and gravel ranges from 1 to 10 m thick and has a hydraulic conductivity ranging from 0.1 to 7.9 m/day. Two separate burial grounds, a 4-ha area for low-level radioactive waste disposal and a 2.9-ha area for disposal of higher-level waste are excavated into a clay-rich till that ranges from 22 to 28 m thick. Migration of an organic solvent from the area of higher level waste at shallow depth in the till suggests that a shallow, fractured, oxidized, and weathered till is a significant pathway for lateral movement of groundwater. Below this zone, groundwater moves vertically downward through the till to recharge a lacustrine silt and fine sand. Within the saturated parts of the lacustrine unit, groundwater moves laterally to the northeast toward Buttermilk Creek. Hydraulic conductivity of the till, based on field and laboratory analyses , ranges from 0.000018 to 0.000086 m/day. (USGS)

  11. A West Valley Demonstration Project Milestone - Achieving Certification to Ship Waste to the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jackson, J. P.; Pastor, R. S.

    2002-02-28

    The West Valley Demonstration Project (WVDP) has successfully pretreated and vitrified nearly all of the 600,000 gallons of liquid high-level radioactive waste that was generated at the site of the only commercial nuclear fuel reprocessing plant to have operated in the United States. Low-level waste (LLW) generated during the course of the cleanup effort now requires disposal. Currently the WVDP only ships Class A LLW for off-site disposal. It has been shipping Class A wastes to Envirocare of Utah, Inc. since 1997. However, the WVDP may also have a future need to ship Class B and Class C waste, whichmore » Envirocare is not currently authorized to accept. The Nevada Test Site (NTS), a U.S. Department of Energy (DOE) facility, can accept all three waste classifications. The WVDP set a goal to receive certification to begin shipping Class A wastes to NTS by 2001. Formal certification/approval was granted by the DOE Nevada Operations Office on July 12, 2001. This paper discusses how the WVDP contractor, West Valley Nuclear Services Company (WVNSCO), completed the activities required to achieve NTS certification in 2001 to ship waste to its facility. The information and lessons learned provided are significant because the WVDP is the only new generator receiving certification based on an NTS audit in January 2001 that resulted in no findings and only two observations--a rating that is unparalleled in the DOE Complex.« less

  12. Concentrations, profiles, and estimated human exposures for polychlorinated dibenzo-p-dioxins and dibenzofurans from electronic waste recycling facilities and a chemical industrial complex in Eastern China

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ma, J.; Kannan, K.; Cheng, J.

    2008-11-15

    Electronic shredder waste and dust from e-waste facilities, and leaves and surface soil collected in the vicinity of a large scale e-waste recycling facility in Taizhou, Eastern China, were analyzed for total dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) including 2,3,7,8-substituted congeners. We also determined PCDD/Fs in surface agricultural soils from several provinces in China for comparison with soils from e-waste facilities. Concentrations of total PCDD/Fs were high in all of the matrices analyzed and ranged from 30.9 to 11,400 pg/g for shredder waste, 3460 to 9820 pg/g dry weight for leaves, 2560 to 148,000 pg/g dry weight for workshop-floor dust, and 854more » to 10200 pg/g dry weight for soils. We also analyzed surface soils from a chemical industrial complex (a coke-oven plant, a coal-fired power plant, and a chlor-alkali plant) in Shanghai. Concentrations of total PCDD/Fs in surface soil from the chemical industrial complex were lower than the concentrations found in soils from e-waste recycling plants, but higher than the concentrations found in agricultural soils. Agricultural soils from six cities in China contained low levels of total PCDD/Fs. Profiles of dioxin toxic equivalents (TEQs) of 2,3,7,8-PCDD/Fs in soils from e-waste facilities in Taizhou differed from the profiles found in agricultural soils. The estimated daily intakes of TEQs of PCDD/Fs via soil/dust ingestion and dermal exposure were 2 orders of magnitude higher in people at e-waste recycling facilities than in people at the chemical industrial site, implying greater health risk for humans from dioxin exposures at e-waste recycling facilities. The calculated TEQ exposures for e-waste workers from dust and soil ingestion alone were 2-3 orders of magnitude greater than the exposures from soils in reference locations. 37 refs., 1 fig., 2 tabs.« less

  13. Commercial high-level-waste management: Options and economics. A comparative analysis of the ceramic and glass waste forms

    NASA Astrophysics Data System (ADS)

    McKisson, R. L.; Grantham, L. F.; Guon, J.; Recht, H. L.

    1983-02-01

    Results of an estimate of the waste management costs of the commercial high level waste from a 3000 metric ton per year reprocessing plant show that the judicious use of the ceramic waste form can save about $2 billion during a 20 year operating campaign relative to the use of the glass waste form. This assumes PWR fuel is processed and the waste is encapsulated in 0.305-m-diam canisters with ultimate emplacement in a BWIP-type horizontal-borehole repository. Waste loading and waste form density are the driving factors in that the low waste loading (25%) and relatively low density (3.1 g cu cm) characteristic of the glass form require several times as many canisters to handle a given waste throughput than is needed for the ceramic waste form whose waste loading capability exceeds 60% and whose waste density is nominally 5.2 cu cm.

  14. Low-level radioactive waste management handbook series: Low-level radioactive waste management in medical and biomedical research institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1987-03-01

    Development of this handbook began in 1982 at the request of the Radhealth Branch of the California Department of Health Services. California Assembly Bill 1513 directed the DHS to ''evaluate the technical and economic feasibility of (1) reducing the volume, reactivity, and chemical and radioactive hazard of (low-level radioactive) waste and (2) substituting nonradioactive or short-lived radioactive materials for those radionuclides which require long-term isolation from the environment. A contract awarded to the University of California at Irvine-UCI (California Std. Agreement 79902), to develop a document focusing on methods for decreasing low-level radioactive waste (LLW) generation in institutions was amore » result of that directive. In early 1985, the US Department of Energy, through EG and G Idaho, Inc., contracted with UCI to expand, update, and revise the California text for national release.« less

  15. Ground-water levels and precipitation data at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky, October 1988-September 2000

    USGS Publications Warehouse

    Zettwoch, Douglas D.

    2002-01-01

    The U.S. Geological Survey, in cooperation with the Kentucky Natural Resources and Environmental Protection Cabinet--Department for Environmental Protection--Division of Waste Management, has an ongoing program to monitor water levels at the Maxey Flats low-level radioactive waste disposal site near Morehead, Kentucky. Ground-water-level and precipitation data were collected from 112 wells and 1 rain gage at the Maxey Flats low-level radioactive waste disposal site during October 1988-September 2000. Data were collected on a semi-annual basis from 62 wells, continuously from 6 wells, and monthly or bimonthly from 44 wells (13 of which had continuous recorders installed for the period October 1998-September 2000). One tipping-bucket rain gage was used to collect data at the Maxey Flats site for the period October 1988-September 2000.

  16. National low-level waste management program radionuclide report series, Volume 14: Americium-241

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Winberg, M.R.; Garcia, R.S.

    1995-09-01

    This report, Volume 14 of the National Low-Level Waste Management Program Radionuclide Report Series, discusses the radiological and chemical characteristics of americium-241 ({sup 241}Am). This report also includes discussions about waste types and forms in which {sup 241}Am can be found and {sup 241}Am behavior in the environment and in the human body.

  17. Thirty-year solid waste generation forecast for facilities at SRS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-07-01

    The information supplied by this 30-year solid waste forecast has been compiled as a source document to the Waste Management Environmental Impact Statement (WMEIS). The WMEIS will help to select a sitewide strategic approach to managing present and future Savannah River Site (SRS) waste generated from ongoing operations, environmental restoration (ER) activities, transition from nuclear production to other missions, and decontamination and decommissioning (D&D) programs. The EIS will support project-level decisions on the operation of specific treatment, storage, and disposal facilities within the near term (10 years or less). In addition, the EIS will provide a baseline for analysis ofmore » future waste management activities and a basis for the evaluation of the specific waste management alternatives. This 30-year solid waste forecast will be used as the initial basis for the EIS decision-making process. The Site generates and manages many types and categories of waste. With a few exceptions, waste types are divided into two broad groups-high-level waste and solid waste. High-level waste consists primarily of liquid radioactive waste, which is addressed in a separate forecast and is not discussed further in this document. The waste types discussed in this solid waste forecast are sanitary waste, hazardous waste, low-level mixed waste, low-level radioactive waste, and transuranic waste. As activities at SRS change from primarily production to primarily decontamination and decommissioning and environmental restoration, the volume of each waste s being managed will change significantly. This report acknowledges the changes in Site Missions when developing the 30-year solid waste forecast.« less

  18. Chemical digestion of low level nuclear solid waste material

    DOEpatents

    Cooley, Carl R.; Lerch, Ronald E.

    1976-01-01

    A chemical digestion for treatment of low level combustible nuclear solid waste material is provided and comprises reacting the solid waste material with concentrated sulfuric acid at a temperature within the range of 230.degree.-300.degree.C and simultaneously and/or thereafter contacting the reacting mixture with concentrated nitric acid or nitrogen dioxide. In a special embodiment spent ion exchange resins are converted by this chemical digestion to noncombustible gases and a low volume noncombustible residue.

  19. Characterization and remediation of a mixed waste-contaminated site at Kirtland Air Force Base, New Mexico

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnston, J.W.; Thacker, M.S.; DeWitt, C.B.

    In the area of environmental restoration, one of the most challenging problems is the task of remediating mixed waste-contaminated sites. This paper discusses a successful Interim Corrective Measure (ICM) performed at a mixed waste-contaminated site on Kirtland Air Force Base (AFB) in Albuquerque, New Mexico. The site, known as RW-68, Cratering Area and Radium Dump/Slag Piles, was used during the late 1940s and early 1950s for the destruction and incineration of captured World War II aircraft. It contained 19 slag piles totaling approximately 150 tons of slag, ash, refractory brick, and metal debris. The piles were contaminated with radium-226 andmore » RCRA-characteristic levels of heavy metals. Therefore, the piles were considered mixed waste. To eliminate the threat to human health and the environment, an ICM of removal, segregation, stabilization, and disposal was conducted from October through December 1996. Approximately 120 cubic yards (cu yds) of mixed waste, 188 cu yds of low-level radioactive-contaminated soil, 1 cu yd of low-level radioactive-contaminated debris, 5 cu yds of RCRA-characteristic hazardous waste, and 45 tons of nonhazardous debris were stabilized and disposed of during the ICM. To render the RCRA metals and radionuclides insoluble, stabilization was performed on the mixed and RCRA-characteristic waste streams. All stabilized material was subjected to TCLP analysis to verify it no longer exhibited RCRA-characteristic properties. Radiological and geophysical surveys were conducted concurrently with site remediation activities. These surveys provided real-time documentation of site conditions during each phase of the ICM and confirmed successful cleanup of the site. The three radioactive waste streams, stabilized mixed waste, low-level radioactive-contaminated soil, and low-level radioactive-contaminated debris, were disposed of at the Envirocare low-level radioactive disposal facility.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Matlack, K. S.; Abramowitz, H.; Miller, I. S.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal.« less

  1. Waste in the U.S. Health care system: a conceptual framework.

    PubMed

    Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B

    2008-12-01

    Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that-by improving the market for health insurance and health care-will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system.

  2. SOLID WASTE INTEGRATED FORECAST TECHNICAL (SWIFT) REPORT FY2005 THRU FY2035 2005.0 VOLUME 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    BARCOT, R.A.

    This report provides up-to-date life cycle information about the radioactive solid waste expected to be managed by Hanford's Waste Management (WM) Project from onsite and offsite generators. It includes: (1) an overview of Hanford-wide solid waste to be managed by the WM Project; (2) multi-level and waste class-specific estimates; (3) background information on waste sources; and (4) comparisons to previous forecasts and other national data sources. The focus of this report is low-level waste (LLW), mixed low-level waste (MLLW), and transuranic waste, both non-mixed and mixed (TRU(M)). Some details on hazardous waste are also provided, however, this information is notmore » considered comprehensive. This report includes data requested in December, 2004 with updates through March 31,2005. The data represent a life cycle forecast covering all reported activities from FY2005 through the end of each program's life cycle and are an update of the previous FY2004.1 data version.« less

  3. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Osmanlioglu, Ahmet Erdal

    Pre-treatment of radioactive waste is the first step in waste management program that occurs after waste generation from various applications in Turkey. Pre-treatment and characterization practices are carried out in Radioactive Waste Management Unit (RWMU) at Cekmece Nuclear Research and Training Center (CNRTC) in Istanbul. This facility has been assigned to take all low-level radioactive wastes generated by nuclear applications in Turkey. The wastes are generated from research and nuclear applications mainly in medicine, biology, agriculture, quality control in metal processing and construction industries. These wastes are classified as low- level radioactive wastes. Pre-treatment practices cover several steps. In thismore » paper, main steps of pre-treatment and characterization are presented. Basically these are; collection, segregation, chemical adjustment, size reduction and decontamination operations. (author)« less

  4. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, S.; Wong, C.F.; Buckley, L.P.

    1994-11-22

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved. 1 fig.

  5. Waste treatment process for removal of contaminants from aqueous, mixed-waste solutions using sequential chemical treatment and crossflow microfiltration, followed by dewatering

    DOEpatents

    Vijayan, Sivaraman; Wong, Chi F.; Buckley, Leo P.

    1994-01-01

    In processes of this invention aqueous waste solutions containing a variety of mixed waste contaminants are treated to remove the contaminants by a sequential addition of chemicals and adsorption/ion exchange powdered materials to remove the contaminants including lead, cadmium, uranium, cesium-137, strontium-85/90, trichloroethylene and benzene, and impurities including iron and calcium. Staged conditioning of the waste solution produces a polydisperse system of size enlarged complexes of the contaminants in three distinct configurations: water-soluble metal complexes, insoluble metal precipitation complexes, and contaminant-bearing particles of ion exchange and adsorbent materials. The volume of the waste is reduced by separation of the polydisperse system by cross-flow microfiltration, followed by low-temperature evaporation and/or filter pressing. The water produced as filtrate is discharged if it meets a specified target water quality, or else the filtrate is recycled until the target is achieved.

  6. System for chemically digesting low level radioactive, solid waste material

    DOEpatents

    Cowan, Richard G.; Blasewitz, Albert G.

    1982-01-01

    An improved method and system for chemically digesting low level radioactive, solid waste material having a high through-put. The solid waste material is added to an annular vessel (10) substantially filled with concentrated sulfuric acid. Concentrated nitric acid or nitrogen dioxide is added to the sulfuric acid within the annular vessel while the sulfuric acid is reacting with the solid waste. The solid waste is mixed within the sulfuric acid so that the solid waste is substantilly fully immersed during the reaction. The off gas from the reaction and the products slurry residue is removed from the vessel during the reaction.

  7. An industry perspective on commercial radioactive waste disposal conditions and trends.

    PubMed

    Romano, Stephen A

    2006-11-01

    The United States is presently served by Class-A, -B and -C low-level radioactive waste and naturally-occurring and accelerator-produced radioactive material disposal sites in Washington and South Carolina; a Class-A and mixed waste disposal site in Utah that also accepts naturally-occurring radioactive material; and hazardous and solid waste facilities and uranium mill tailings sites that accept certain radioactive materials on a site-specific basis. The Washington site only accepts low-level radioactive waste from 11 western states due to interstate Compact restrictions on waste importation. The South Carolina site will be subject to geographic service area restrictions beginning 1 July 2008, after which only three states will have continued access. The Utah site dominates the commercial Class-A and mixed waste disposal market due to generally lower state fees than apply in South Carolina. To expand existing commercial services, an existing hazardous waste site in western Texas is seeking a Class-A, -B and -C and mixed waste disposal license. With that exception, no new Compact facilities are proposed. This fluid, uncertain situation has inspired national level rulemaking initiatives and policy studies, as well as alternative disposal practices for certain low-activity materials.

  8. Idaho Nuclear Technology and Engineering Center Low-Activity Waste Process Technology Program, FY-98 Status Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herbst, A.K.; Rogers, A.Z.; McCray, J.A.

    The Low-Activity Waste Process Technology Program at the Idaho Nuclear Technology and Engineering Center (INTEC) anticipates that large volumes of low-level/low-activity wastes will need to be grouted prior to near-surface disposal. During fiscal year 1998, three grout formulations were studied for low-activity wastes derived from INTEC liquid sodium-bearing waste. Compressive strength and leach results are presented for phosphate bonding cement, acidic grout, and alkaline grout formulations. In an additional study, grout formulations are recommended for stabilization of the INTEC underground storage tank residual heels.

  9. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory. Part 2, Chemical constituents

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  10. Mixed and low-level waste treatment project: Appendix C, Health and safety criteria for the mixed and low-level waste treatment facility at the Idaho National Engineering Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupauer, R.M.; Thurmond, S.M.

    This report contains health and safety information relating to the chemicals that have been identified in the mixed waste streams at the Waste Treatment Facility at the Idaho National Engineering Laboratory. Information is summarized in two summary sections--one for health considerations and one for safety considerations. Detailed health and safety information is presented in material safety data sheets (MSDSs) for each chemical.

  11. Environmental assessment for the construction, operation, and decommissioning of the Waste Segregation Facility at the Savannah River Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1998-01-01

    This Environmental Assessment (EA) has been prepared by the Department of Energy (DOE) to assess the potential environmental impacts associated with the construction, operation and decontamination and decommissioning (D&D) of the Waste Segregation Facility (WSF) for the sorting, shredding, and compaction of low-level radioactive waste (LLW) at the Savannah River Site (SRS) located near Aiken, South Carolina. The LLW to be processed consists of two waste streams: legacy waste which is currently stored in E-Area Vaults of SRS and new waste generated from continuing operations. The proposed action is to construct, operate, and D&D a facility to process low-activity job-controlmore » and equipment waste for volume reduction. The LLW would be processed to make more efficient use of low-level waste disposal capacity (E-Area Vaults) or to meet the waste acceptance criteria for treatment at the Consolidated Incineration Facility (CIF) at SRS.« less

  12. Management of Low-Level Radioactive Waste from Research, Hospitals and Nuclear Medical Centers in Egypt - 13469

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, M.A.; Selim, Y.T.; Lasheen, Y.F.

    2013-07-01

    The application of radioisotopes and radiation sources in medical diagnosis and therapy is an important issue. Physicians can use radioisotopes to diagnose and treat diseases. Methods of treatment, conditioning and management of low level radioactive wastes from the use of radiation sources and radioisotopes in hospitals and nuclear medicine application, are described. Solid Radioactive waste with low-level activity after accumulation, minimization, segregation and measurement, are burned or compressed in a compactor according to the international standards. Conditioned drums are transported to the interim storage site at the Egyptian Atomic Energy Authority (EAEA) represented in Hot Labs and Waste Management Centermore » (HLWMC) for storage and monitoring. (authors)« less

  13. 76 FR 54809 - Agency Information Collection Activities: Submission for the Office of Management and Budget (OMB...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-09-02

    ... disposal of low-level radioactive waste; and all generators, collectors, and processors of low-level waste...), NEOB-10202, Office of Management and Budget, Washington, DC 20503. Comments can also be e-mailed to...

  14. Proceedings of the tenth annual DOE low-level waste management conference: Session 2: Site performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1988-12-01

    This document contains twelve papers on various aspects of low-level radioactive waste management. Topics of this volume include: performance assessment methodology; remedial action alternatives; site selection and site characterization procedures; intruder scenarios; sensitivity analysis procedures; mathematical models for mixed waste environmental transport; and risk assessment methodology. Individual papers were processed separately for the database. (TEM)

  15. Waste Isolation Pilot Plant (WIPP) conceptual design report. Part I: executive summary. Part II: facilities and system

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1977-06-01

    The pilot plant is developed for ERDA low-level contact-handled transuranic waste, ERDA remote-handled intermediate-level transuranic waste, and for high-level waste experiments. All wastes placed in the WIPP arrive at the site processed and packaged; no waste processing is done at the WIPP. All wastes placed into the WIPP are retrievable. The proposed site for WIPP lies 26 miles east of Carlsbad, New Mexico. This document includes the executive summary and a detailed description of the facilities and systems. (DLC)

  16. 77 FR 40817 - Low-Level Radioactive Waste Regulatory Management Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-07-11

    ...-2011-0012] RIN-3150-AI92 Low-Level Radioactive Waste Regulatory Management Issues AGENCY: Nuclear... Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington, DC 20555... State Materials and Environmental Management Programs, U.S. Nuclear Regulatory Commission, Washington...

  17. Annual Summary of the Integrated Disposal Facility Performance Assessment 2011

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lehman, L. L.

    2012-03-12

    An annual summary of the adequacy of the Hanford Immobilized Low-Activity Waste (ILAW) Performance Assessment (PA) is required each year (DOE O 435.1 Chg 1,1 DOE M 435.1-1 Chg 1,2 DOE/ORP-2000-013). The most recently approved PA is DOE/ORP-2000-24.4 The ILAW PA evaluated the adequacy of the ILAW disposal facility, now referred to as the Integrated Disposal Facility (IDF), for the safe disposal of vitrified Hanford Site tank waste. More recently, a preliminary evaluation for the disposal of offsite low-level waste and mixed low-level waste was considered in RPP-1583.

  18. Greater-than-Class C low-level radioactive waste shipping package/container identification and requirements study. National Low-Level Waste Management Program

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tyacke, M.

    1993-08-01

    This report identifies a variety of shipping packages (also referred to as casks) and waste containers currently available or being developed that could be used for greater-than-Class C (GTCC) low-level waste (LLW). Since GTCC LLW varies greatly in size, shape, and activity levels, the casks and waste containers that could be used range in size from small, to accommodate a single sealed radiation source, to very large-capacity casks/canisters used to transport or dry-store highly radioactive spent fuel. In some cases, the waste containers may serve directly as shipping packages, while in other cases, the containers would need to be placedmore » in a transport cask. For the purpose of this report, it is assumed that the generator is responsible for transporting the waste to a Department of Energy (DOE) storage, treatment, or disposal facility. Unless DOE establishes specific acceptance criteria, the receiving facility would need the capability to accept any of the casks and waste containers identified in this report. In identifying potential casks and waste containers, no consideration was given to their adequacy relative to handling, storage, treatment, and disposal. Those considerations must be addressed separately as the capabilities of the receiving facility and the handling requirements and operations are better understood.« less

  19. Application for a Permit to Operate a Class III Solid Waste Disposal Site at the Nevada Test Site Area 5 Asbestiform Low-Level Solid Waste Disposal Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Programs

    The NTS solid waste disposal sites must be permitted by the state of Nevada Solid Waste Management Authority (SWMA). The SWMA for the NTS is the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). The U.S. Department of Energy's National Nuclear Security Administration Nevada Site Office (NNSA/NSO) as land manager (owner), and National Security Technologies (NSTec), as operator, will store, collect, process, and dispose all solid waste by means that do not create a health hazard, a public nuisance, or cause impairment of the environment. NTS disposal sites will not be included in the Nye County Solid Wastemore » Management Plan. The NTS is located approximately 105 kilometers (km) (65 miles [mi]) northwest of Las Vegas, Nevada (Figure 1). The U.S. Department of Energy (DOE) is the federal lands management authority for the NTS, and NSTec is the Management and Operations contractor. Access on and off the NTS is tightly controlled, restricted, and guarded on a 24-hour basis. The NTS has signs posted along its entire perimeter. NSTec is the operator of all solid waste disposal sites on the NTS. The Area 5 RWMS is the location of the permitted facility for the Solid Waste Disposal Site (SWDS). The Area 5 RWMS is located near the eastern edge of the NTS (Figure 2), approximately 26 km (16 mi) north of Mercury, Nevada. The Area 5 RWMS is used for the disposal of low-level waste (LLW) and mixed low-level waste. Many areas surrounding the RWMS have been used in conducting nuclear tests. A Notice of Intent to operate the disposal site as a Class III site was submitted to the state of Nevada on January 28, 1994, and was acknowledged as being received in a letter to the NNSA/NSO on August 30, 1994. Interim approval to operate a Class III SWDS for regulated asbestiform low-level waste (ALLW) was authorized on August 12, 1996 (in letter from Paul Liebendorfer to Runore Wycoff), with operations to be conducted in accordance with the ''Management Plan for the Disposal of Low-Level Waste with Regulated Asbestos Waste.'' A requirement of the authorization was that on or before October 9, 1999, a permit was required to be issued. Because of NDEP and NNSA/NSO review cycles, the final permit was issued on April 5, 2000, for the operation of the Area 5 Low-Level Waste Disposal Site, utilizing Pit 7 (P07) as the designated disposal cell. The original permit applied only to Pit 7, with a total design capacity of 5,831 cubic yards (yd{sup 3}) (157,437 cubic feet [ft{sup 3}]). NNSA/NSO is expanding the SWDS to include the adjacent Upper Cell of Pit 6 (P06), with an additional capacity of 28,037 yd{sup 3} (756,999 ft{sup 3}) (Figure 3). The proposed total capacity of ALLW in Pit 7 and P06 will be approximately 33,870 yd{sup 3} (0.9 million ft{sup 3}). The site will be used for the disposal of regulated ALLW, small quantities of low-level radioactive hydrocarbon-burdened (LLHB) media and debris, LLW, LLW that contains PCB Bulk Product Waste greater than 50 ppm that leaches at a rate of less than 10 micrograms of PCB per liter of water, and small quantities of LLHB demolition and construction waste (hereafter called permissible waste). Waste containing free liquids, or waste that is regulated as hazardous waste under the Resource Conservation and Recovery Act (RCRA) or state-of-generation hazardous waste regulations, will not be accepted for disposal at the site. The only waste regulated under the Toxic Substances Control Act (TSCA) that will be accepted at the disposal site is regulated asbestos-containing materials (RACM). The term asbestiform is used throughout this document to describe this waste. Other TSCA waste (i.e., polychlorinated biphenyls [PCBs]) will not be accepted for disposal at the SWDS. The disposal site will be used as a depository of permissible waste generated both on site and off site. All generators designated by NNSA/NSO will be eligible to dispose regulated ALLW at the Asbestiform Low-Level Waste Disposal Site in accordance with the U.S. Department of Energy, Nevada Operations Office (DOE/NV) 325, Nevada Test Site Waste Acceptance Criteria (NTSWAC, current revision). Approval will be given by NNSA/NSO to generators that have successfully demonstrated through process knowledge (PK) and/or sampling and analysis that the waste is low-level, contains asbestiform material, and does not contain prohibited waste materials. Each waste stream will be approved through the Radioactive Waste Acceptance Program (RWAP), which ensures that the waste meets acceptance requirements outlined in the NTS Class III Permit and the NTSWAC.« less

  20. Implementation of SAP Waste Management System

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Frost, M.L.; LaBorde, C.M.; Nichols, C.D.

    2008-07-01

    The Y-12 National Security Complex (Y-12) assumed responsibility for newly generated waste on October 1, 2005. To ensure effective management and accountability of newly generated waste, Y-12 has opted to utilize SAP, Y-12's Enterprise Resource Planning (ERP) tool, to track low-level radioactive waste (LLW), mixed waste (MW), hazardous waste, and non-regulated waste from generation through acceptance and disposal. SAP Waste will include the functionality of the current waste tracking system and integrate with the applicable modules of SAP already in use. The functionality of two legacy systems, the Generator Entry System (GES) and the Waste Information Tracking System (WITS), andmore » peripheral spreadsheets, databases, and e-mail/fax communications will be replaced by SAP Waste. Fundamentally, SAP Waste will promote waste acceptance for certification and disposal, not storage. SAP Waste will provide a one-time data entry location where waste generators can enter waste container information, track the status of their waste, and maintain documentation. A benefit of the new system is that it will provide a single data repository where Y-12's Waste Management organization can establish waste profiles, verify and validate data, maintain inventory control utilizing hand-held data transfer devices, schedule and ship waste, manage project accounting, and report on waste handling activities. This single data repository will facilitate the production of detailed waste generation reports for use in forecasting and budgeting, provide the data for required regulatory reports, and generate metrics to evaluate the performance of the Waste Management organization and its subcontractors. SAP Waste will replace the outdated and expensive legacy system, establish tools the site needs to manage newly generated waste, and optimize the use of the site's ERP tool for integration with related business processes while promoting disposition of waste. (authors)« less

  1. A Strategy for Maintenance of the Long-Term Performance Assessment of Immobilized Low-Activity Waste Glass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, Joseph V.; Freedman, Vicky L.

    2016-09-28

    Approximately 50 million gallons of high-level radioactive mixed waste has accumulated in 177 buried single- and double-shell tanks at the Hanford Site in southeastern Washington State as a result of the past production of nuclear materials, primarily for defense uses. The United States Department of Energy (DOE) is proceeding with plans to permanently dispose of this waste. Plans call for separating the tank waste into high-level waste (HLW) and low-activity waste (LAW) fractions, which will be vitrified at the Hanford Waste Treatment and Immobilization Plant (WTP). Principal radionuclides of concern in LAW are 99Tc, 129I, and U, while non-radioactive contaminantsmore » of concern are Cr and nitrate/nitrite. HLW glass will be sent off-site to an undetermined federal site for deep geological disposal while the much larger volume of immobilized low-activity waste will be placed in the on-site, near-surface Integrated Disposal Facility (IDF).« less

  2. (Low-level radioactive waste management techniques)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Van Hoesen, S.D.; Kennerly, J.M.; Williams, L.C.

    1988-08-08

    The US team consisting of representatives of Oak Ridge National Laboratory (ORNL), Savannah River plant (SRP), Idaho National Engineering Laboratory (INEL), and the Department of Energy, Oak Ridge Operations participated in a training program on French low-level radioactive waste (LLW) management techniques. Training in the rigorous waste characterization, acceptance and certification procedures required in France was provided at Agence Nationale pour les Gestion des Dechets Radioactif (ANDRA) offices in Paris.

  3. Improved low-level radioactive waste management practices for hospitals and research institutions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1983-07-01

    This report provides a general overview and a compendium of source material on low-level radioactive waste management practices in the institutional sector. Institutional sector refers to hospitals, universities, clinics, and research facilities that use radioactive materials in scientific research and the practice of medicine, and the manufacturers of radiopharmaceuticals and radiography devices. This report provides information on effective waste management practices for institutional waste to state policymakers, regulatory agency officials, and waste generators. It is not intended to be a handbook for actual waste management, but rather a sourcebook of general information, as well as a survey of the moremore » detailed analysis.« less

  4. 10 CFR 1800.11 - Definitions.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Definitions. 1800.11 Section 1800.11 Energy NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.11 Definitions. The definitions contained in Article II...

  5. 75 FR 65297 - Annual Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-22

    ... APPALACHIAN STATES LOW-LEVEL RADIOACTIVE WASTE COMMISSION Annual Meeting Time And Date: 10 a.m.-12:30 p.m., November 5, 2010. Place: Harrisburg Hilton and Towers, One North Second Street, Harrisburg... Commission's financial statements for fiscal year 2009-2010; (2) Review the Low- Level Radioactive Waste...

  6. 78 FR 64472 - Annual Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-10-29

    ... APPALACHIAN STATES LOW-LEVEL RADIOACTIVE WASTE COMMISSION Annual Meeting Time and Date: 10 a.m.-12 p.m. October 31, 2013. Place: Harrisburg Hilton and Towers, One North Second Street, Harrisburg, PA... Commission's financial statements for fiscal year 2012-2013; (2) Review the Low- Level Radioactive Waste...

  7. 77 FR 61737 - Annual Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-10-11

    ... APPALACHIAN STATES LOW-LEVEL RADIOACTIVE WASTE COMMISSION Annual Meeting Time and Date: 10 a.m.-12 p.m. November 2, 2012. Place: Harrisburg Hilton and Towers, One North Second Street, Harrisburg, PA... Commission's financial statements for fiscal year 2011-2012; (2) Review the Low- Level Radioactive Waste...

  8. 76 FR 64071 - Annual Meeting

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-10-17

    ... APPALACHIAN STATES LOW-LEVEL RADIOACTIVE WASTE COMMISSION Annual Meeting Time and Date: 10 a.m.-12:30 p.m. November 4, 2011. Place: Harrisburg Hilton and Towers, One North Second Street, Harrisburg... Commission's financial statements for fiscal year 2010-2011; (2) Review the Low- Level Radioactive Waste...

  9. 10 CFR 1800.11 - Definitions.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Definitions. 1800.11 Section 1800.11 Energy NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.11 Definitions. The definitions contained in Article II...

  10. From Pushing Paper to Pushing Dirt - Canada's Largest LLRW Cleanup Gets Underway - 13111

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Veen, Walter van; Lawrence, Dave

    2013-07-01

    The Port Hope Project is the larger of the two projects in the Port Hope Area Initiative (PHAI), Canada's largest low level radioactive waste (LLRW) cleanup. With a budget of approximately $1 billion, the Port Hope Project includes a broad and complex range of remedial elements from a state of the art water treatment plant, an engineered waste management facility, municipal solid waste removal, remediation of 18 major sites within the Municipality of Port Hope (MPH), sediment dredging and dewatering, an investigation of 4,800 properties (many of these homes) to identify LLRW and remediation of approximately 450 of these properties.more » This paper discusses the status of the Port Hope Project in terms of designs completed and regulatory approvals received, and sets out the scope and schedule for the remaining studies, engineering designs and remediation contracts. (authors)« less

  11. Plant species potentially suitable for cover on low-level solid nuclear waste disposal sites: a literature review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brenkert, A.L.; Parr, P.D.; Taylor, F.G.

    This report reviews available literature on soil conditions, hydrology, and climatological data and suggests plant species suitable for covering the low-level nuclear waste disposal areas in the White Oak Creek Watershed within the Oak Ridge Reservation. Literature on naturally invading species and secondary succession, on plant species used for reclamation of coal spoils and roadsides, and on horticultural species is reviewed. The potential of plant species to take up, or mine, the waste through deep rooting is assessed. The effects of vegetation cover on the water balance in a watershed are reviewed. Several conclusions are presented concerning the management ofmore » vegetation cover on low-level solid waste disposal areas. 163 references, 2 figures, 9 tables.« less

  12. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits:Interim CQA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    The Delphi Groupe, Inc., and J. A. Cesare and Associates, Inc.

    This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. This Interim Construction Quality Assurance (CQA) Report is for the 92-Acre Evapotranspiration Cover, Area 5 Waste Management Division (WMD) Retired Mixed Waste Pits, Nevada National Security Site, Nevada for the period of January 20, 2011 to May 12, 2011. Construction was approved by the Nevada Division of Environmental Protection (NDEP) under the Approval of Corrective Action Decision Document/Corrective Action Plan (CADD/CAP)more » for Corrective Action Unit (CAU) 111: Area 5 WMD Retired Mixed Waste Pits, Nevada National Security Site, Nevada, on January 6, 2011, pursuant to Subpart XII.8a of the Federal Facility Agreement and Consent Order. The project is located in Area 5 of the Radioactive Waste Management Complex (RWMC) at the Nevada National Security Site (NNSS), formerly known as the Nevada Test Site, located in southern Nevada, approximately 65 miles northwest of Las Vegas, Nevada, in Nye County. The project site, in Area 5, is located in a topographically closed basin approximately 14 additional miles north of Mercury Nevada, in the north-central part of Frenchman Flat. The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03 and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.« less

  13. Design for waste-management system

    NASA Technical Reports Server (NTRS)

    Guarneri, C. A.; Reed, A.; Renman, R.

    1973-01-01

    Study was made and system defined for water-recovery and solid-waste processing for low-rise apartment complexes. System can be modified to conform with unique requirements of community, including hydrology, geology, and climate. Reclamation is accomplished by treatment process that features reverse-osmosis membranes.

  14. National profile on commercially generated low-level radioactive mixed waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klein, J.A.; Mrochek, J.E.; Jolley, R.L.

    1992-12-01

    This report details the findings and conclusions drawn from a survey undertaken as part of a joint US Nuclear Regulatory Commission and US Environmental Protection Agency-sponsored project entitled ``National Profile on Commercially Generated Low-Level Radioactive Mixed Waste.`` The overall objective of the work was to compile a national profile on the volumes, characteristics, and treatability of commercially generated low-level mixed waste for 1990 by five major facility categories-academic, industrial, medical, and NRC-/Agreement State-licensed goverment facilities and nuclear utilities. Included in this report are descriptions of the methodology used to collect and collate the data, the procedures used to estimate themore » mixed waste generation rate for commercial facilities in the United States in 1990, and the identification of available treatment technologies to meet applicable EPA treatment standards (40 CFR Part 268) and, if possible, to render the hazardous component of specific mixed waste streams nonhazardous. The report also contains information on existing and potential commercial waste treatment facilities that may provide treatment for specific waste streams identified in the national survey. The report does not include any aspect of the Department of Energy`s (DOES) management of mixed waste and generally does not address wastes from remedial action activities.« less

  15. Greater-than-Class C low-level waste characterization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piscitella, R.R.

    1991-12-31

    In 1985, Public Law 99-240 (Low-Level Radioactive Waste Policy Amendments Act of 1985) made the Department of Energy (DOE) responsible for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW). DOE strategies for storage and disposal of GTCC LLW required characterization of volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate characteristics, project volumes, and determine radionuclide activities to the years 2035 and 2055. Twenty-year life extensions for 70% of the operating nuclear reactors were assumed to calculate the GTCC LLW available in 2055. The following categories of GTCCmore » LLW were addressed: Nuclear Utilities Waste; Potential Sealed Sources GTCC LLW; DOE-Held Potential GTCC LLW; and Other Generator Waste. It was determined that the largest volume of these wastes, approximately 57%, is generated by nuclear utilities. The Other Generator Waste category contributes approximately 10% of the total GTCC LLW volume projected to the year 2035. DOE-Held Potential GTCC LLW accounts for nearly 33% of all waste projected to the year 2035. Potential Sealed Sources GTCC LLW is less than 0.2% of the total projected volume. The base case total projected volume of GTCC LLW for all categories was 3,250 cubic meters. This was substantially less than previous estimates.« less

  16. On designing low pressure loss working spaces for a planar Stirling micromachine

    NASA Astrophysics Data System (ADS)

    Hachey, M.-A.; Léveillé, É.; Fréchette, L. G.; Formosa, F.

    2015-12-01

    In this paper, research was undertaken with the objective to design low pressure loss working spaces for a Stirling cycle micro heat engine operating from low temperature waste heat. This planar free-piston heat engine is anticipated to operate at the kHz level with mm3 displacement. Given the resonant nature of the free-piston configuration, the complexity of its working gas’ flow geometry and its projected high operating frequency, flow analysis is relatively complex. Design considerations were thus based on fast prototyping and experimentation. Results show that geometrical features, such as a sharp 90° corner between the regenerator and working spaces, are strong contributors to pressure losses. This research culminated into a promising revised working space configuration for engine start-up, as it considerably reduced total pressure losses, more than 80% at Re = 700, from the original design.

  17. Tank 19F Folding Crawler Final Evaluation, Rev. 0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nance, T.

    2000-10-25

    The Department of Energy (DOE) is committed to removing millions of gallons of high-level radioactive waste from 51 underground waste storage tanks at the Savannah River Site (SRS). The primary radioactive waste constituents are strontium, plutonium,and cesium. It is recognized that the continued storage of this waste is a risk to the public, workers, and the environment. SRS was the first site in the DOE complex to have emptied and operationally closed a high-level radioactive waste tank. The task of emptying and closing the rest of the tanks will be completed by FY28.

  18. Technical area status report for waste destruction and stabilization

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dalton, J.D.; Harris, T.L.; DeWitt, L.M.

    1993-08-01

    The Office of Environmental Restoration and Waste Management (EM) was established by the Department of Energy (DOE) to direct and coordinate waste management and site remediation programs/activities throughout the DOE complex. In order to successfully achieve the goal of properly managing waste and the cleanup of the DOE sites, the EM was divided into five organizations: the Office of Planning and Resource Management (EM-10); the Office of Environmental Quality Assurance and Resource Management (EM-20); the Office of Waste Operations (EM-30); the Office of Environmental Restoration (EM-40); and the Office of Technology and Development (EM-50). The mission of the Office ofmore » Technology Development (OTD) is to develop treatment technologies for DOE`s operational and environmental restoration wastes where current treatment technologies are inadequate or not available. The Mixed Waste Integrated Program (MWIP) was created by OTD to assist in the development of treatment technologies for the DOE mixed low-level wastes (MLLW). The MWIP has established five Technical Support Groups (TSGs) whose purpose is to identify, evaluate, and develop treatment technologies within five general technical areas representing waste treatment functions from initial waste handling through generation of final waste forms. These TSGs are: (1) Front-End Waste Handling, (2) Physical/Chemical Treatment, (3) Waste Destruction and Stabilization, (4) Second-Stage Destruction and Offgas Treatment, and (5) Final Waste Forms. This report describes the functions of the Waste Destruction and Stabilization (WDS) group. Specifically, the following items are discussed: DOE waste stream identification; summary of previous efforts; summary of WDS treatment technologies; currently funded WDS activities; and recommendations for future activities.« less

  19. Waste in the U.S. Health Care System: A Conceptual Framework

    PubMed Central

    Bentley, Tanya G K; Effros, Rachel M; Palar, Kartika; Keeler, Emmett B

    2008-01-01

    Context Health care costs in the United States are much higher than those in industrial countries with similar or better health system performance. Wasteful spending has many undesirable consequences that could be alleviated through waste reduction. This article proposes a conceptual framework to guide researchers and policymakers in evaluating waste, implementing waste-reduction strategies, and reducing the burden of unnecessary health care spending. Methods This article divides health care waste into administrative, operational, and clinical waste and provides an overview of each. It explains how researchers have used both high-level and sector- or procedure-specific comparisons to quantify such waste, and it discusses examples and challenges in both waste measurement and waste reduction. Findings Waste is caused by factors such as health insurance and medical uncertainties that encourage the production of inefficient and low-value services. Various efforts to reduce such waste have encountered challenges, such as the high costs of initial investment, unintended administrative complexities, and trade-offs among patients', payers', and providers' interests. While categorizing waste may help identify and measure general types and sources of waste, successful reduction strategies must integrate the administrative, operational, and clinical components of care, and proceed by identifying goals, changing systemic incentives, and making specific process improvements. Conclusions Classifying, identifying, and measuring waste elucidate its causes, clarify systemic goals, and specify potential health care reforms that—by improving the market for health insurance and health care—will generate incentives for better efficiency and thus ultimately decrease waste in the U.S. health care system. PMID:19120983

  20. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hulse, R.A.

    1991-08-01

    Planning for storage or disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of that waste to estimate volumes, radionuclide activities, and waste forms. Data from existing literature, disposal records, and original research were used to estimate the characteristics and project volumes and radionuclide activities to the year 2035. GTCC LLW is categorized as: nuclear utilities waste, sealed sources waste, DOE-held potential GTCC LLW; and, other generator waste. It has been determined that the largest volume of those wastes, approximately 57%, is generated by nuclear power plants. The Other Generator waste category contributes approximately 10% of the totalmore » GTCC LLW volume projected to the year 2035. Waste held by the Department of Energy, which is potential GTCC LLW, accounts for nearly 33% of all waste projected to the year 2035; however, no disposal determination has been made for that waste. Sealed sources are less than 0.2% of the total projected volume of GTCC LLW.« less

  1. Food wastes as fish feeds for polyculture of low-trophic-level fish: bioaccumulation and health risk assessments of heavy metals in the cultured fish.

    PubMed

    Cheng, Zhang; Lam, Cheung-Lung; Mo, Wing-Yin; Nie, Xiang-Ping; Choi, Wai-Ming; Man, Yu-Bon; Wong, Ming-Hung

    2016-04-01

    The major purpose of this study was to use different types of food wastes which serve as the major sources of protein to replace the fish meal used in fish feeds to produce quality fish. Two types of food waste-based feed pellets FW A (with cereals) and FW B (with cereals and meat products) and the commercial feed Jinfeng® were used to culture fingerlings of three low-trophic-level fish species: bighead carp, grass carp, and mud carp (in the ratio of 1:3:1) for 1 year period in the Sha Tau Kok Organic Farm in Hong Kong. Heavy metal concentrations in all of the fish species fed with food waste pellets and commercial pellets in Sha Tau Kok fish ponds were all below the local and international maximum permissible levels in food. Health risk assessments indicated that human consumption of the fish fed with food waste feed pellets was safe for the Hong Kong residents. The present results revealed that recycling of food waste for cultivating low-trophic-level fish (mainly herbivores and detritus feeders) is feasible, and at the same time will ease the disposal pressure of food waste, a common problem of densely populated cities like Hong Kong.

  2. Evaluation of uranium removal by Hydrilla verticillata (L.f.) Royle from low level nuclear waste under laboratory conditions.

    PubMed

    Srivastava, Sudhakar; Bhainsa, K C

    2016-02-01

    The present study evaluated uranium (U) removal ability and tolerance to low level nuclear waste (LLNW) of an aquatic weed Hydrilla verticillata. Plants were screened for growth in 10%-50% waste treatments up to 3 d. Treatments of 20% and 50% waste imposed increasing toxicity with duration assessed in terms of change in fresh weight and in the levels of photosynthetic pigments and thiobarbituric acid-reactive substances. U concentration, however, did not show a progressive increase and was about 42 μg g(-1) dw from 20% to 50% waste at 3 d. This suggested that a saturation stage was reached with respect to U removal due to increasing toxicity. However, in another experiment with 10% waste and 10% waste+10 ppm U treatments, plants showed an increase in U concentration with the maximum level approaching 426 μg g(-1) dw at 3 d without showing any toxicity as compared to that at 20% and 50% waste treatments. Hence, plants possessed significant potential to take up U and toxicity of LLNW limited their U removal ability. This implies that the use of Hydrilla plants for U removal from LLNW is feasible at low concentrations and would require repeated harvesting at short intervals. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Ground-water protection, low-level waste, and below regulatory concern: What`s the connection?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gruhlke, J.M.; Galpin, F.L.

    1991-12-31

    The Environmental Protection Agency (EPA) has a responsibility to protect ground water and drinking water under a wide variety of statutes. Each statute establishes different but specific requirements for EPA and applies to diverse environmental contaminants. Radionuclides are but one of the many contaminants subject to this regulatory matrix. Low-level radioactive waste (LLW) and below regulatory concern (BRC) are but two of many activities falling into this regulatory structure. The nation`s ground water serves as a major source of drinking water, supports sensitive ecosystems, and supplies the needs of agriculture and industry. Ground water can prove enormously expensive to cleanmore » up. EPA policy for protecting ground water has evolved considerably over the last ten years. The overall goal is to prevent adverse effects to human health, both now and in the future, and to protect the integrity of the nation`s ground-water resources. The Agency uses the Maximum Contaminant Levels (MCLs) under the Safe Drinking Water Act as reference points for protection in both prevention and remediation activities. What`s the connection? Both low-level waste management and disposal activities and the implementation of below regulatory concern related to low-level waste disposal have the potential for contaminating ground water. EPA is proposing to use the MCLs as reference points for low-level waste disposal and BRC disposal in order to define limits to the environmental contamination of ground water that is, or may be, used for drinking water.« less

  4. CHARACTERIZING CONTAINERIZED MIXED LOW-LEVEL WASTE FOR TREATMENT - A WORKSHOP PROCEEDINGS

    EPA Science Inventory

    This report is the product of a technical workshop held in May 1993 in Las Vegas, Nevada addressing Mixed Low-Level Waste (MLLW). he workshop was conducted by the Environmental Protection Agency (EPA) and the Department of Energy (DOE). ts purpose was to define the characterizati...

  5. Elevation of water table and various stratigraphic surfaces beneath e area low level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bagwell, Laura; Bennett, Patti

    2017-11-02

    This memorandum describes work that supports revision of the Radiological Performance Assessment (PA) for the E Area Low Level Radioactive Waste Disposal Facility (LLRWDF). The work summarized here addresses portions of the PA Strategic Planning Team's recommendation #148b (Butcher and Phifer, 2016).

  6. 10 CFR 1800.13 - Conditions for becoming an eligible party state.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Conditions for becoming an eligible party state. 1800.13 Section 1800.13 Energy NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.13 Conditions for...

  7. Special Analysis for the Disposal of the Lawrence Livermore National Laboratory Low Activity Beta/Gamma Sources Waste Stream at the Area 5 Radioactive Waste Management Site, Nevada National Security Site, Nye County, Nevada

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shott, Gregory J.

    This special analysis (SA) evaluates whether the Lawrence Livermore National Laboratory (LLNL) Low Activity Beta/Gamma Sources waste stream (BCLALADOEOSRP, Revision 0) is suitable for disposal by shallow land burial (SLB) at the Area 5 Radioactive Waste Management Site (RWMS) at the Nevada National Security Site (NNSS). The LLNL Low Activity Beta/Gamma Sources waste stream consists of sealed sources that are no longer needed. The LLNL Low Activity Beta/Gamma Sources waste stream required a special analysis because cobalt-60 (60Co), strontium-90 (90Sr), cesium-137 (137Cs), and radium-226 (226Ra) exceeded the NNSS Waste Acceptance Criteria (WAC) Action Levels (U.S. Department of Energy, National Nuclearmore » Security Administration Nevada Field Office [NNSA/NFO] 2015). The results indicate that all performance objectives can be met with disposal of the LLNL Low Activity Beta/Gamma Sources in a SLB trench. The LLNL Low Activity Beta/Gamma Sources waste stream is suitable for disposal by SLB at the Area 5 RWMS. However, the activity concentration of 226Ra listed on the waste profile sheet significantly exceeds the action level. Approval of the waste profile sheet could potentially allow the disposal of high activity 226Ra sources. To ensure that the generator does not include large 226Ra sources in this waste stream without additional evaluation, a control is need on the maximum 226Ra inventory. A limit based on the generator’s estimate of the total 226Ra inventory is recommended. The waste stream is recommended for approval with the control that the total 226Ra inventory disposed shall not exceed 5.5E10 Bq (1.5 Ci).« less

  8. Low-level radioactive waste technology: a selected, annotated bibliography

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fore, C.S.; Vaughan, N.D.; Hyder, L.K.

    1980-10-01

    This annotated bibliography of 447 references contains scientific, technical, economic, and regulatory information relevant to low-level radioactive waste technology. The bibliography focuses on environmental transport, disposal site, and waste treatment studies. The publication covers both domestic and foreign literature for the period 1952 to 1979. Major chapters selected are Chemical and Physical Aspects; Container Design and Performance; Disposal Site; Environmental Transport; General Studies and Reviews; Geology, Hydrology and Site Resources; Regulatory and Economic Aspects; Transportation Technology; Waste Production; and Waste Treatment. Specialized data fields have been incorporated into the data file to improve the ease and accuracy of locating pertinentmore » references. Specific radionuclides for which data are presented are listed in the Measured Radionuclides field, and specific parameters which affect the migration of these radionuclides are presented in the Measured Parameters field. In addition, each document referenced in this bibliography has been assigned a relevance number to facilitate sorting the documents according to their pertinence to low-level radioactive waste technology. The documents are rated 1, 2, 3, or 4, with 1 indicating direct applicability to low-level radioactive waste technology and 4 indicating that a considerable amount of interpretation is required for the information presented to be applied. The references within each chapter are arranged alphabetically by leading author, corporate affiliation, or title of the document. Indexes are provide for (1) author(s), (2) keywords, (3) subject category, (4) title, (5) geographic location, (6) measured parameters, (7) measured radionuclides, and (8) publication description.« less

  9. Effect of occupational safety measures on micronucleus frequency in semiconductor workers.

    PubMed

    Winker, Robert; Roos, Gerhard; Pilger, Alexander; Rüdiger, Hugo W

    2008-02-01

    To examine whether semiconductor workers exposed to complex mixtures of chemical waste show an increase in genotoxic effects, and, if so, whether occupational safety measures protect these workers. To assess chemical exposure in the workplace, air monitoring of boron trifluoride and boron trichloride was performed and urinary concentrations of fluoride were measured. The cytokinesis-block micronucleus test on isolated lymphocytes was used for the detection of genotoxic effects. Two series of monitoring have been performed in order to assess the effect of implemented protection measures. We found a significantly higher mean frequency of micronuclei in exposed workers than in controls, whereas air monitoring and measurement of urinary fluoride failed to detect chemical exposure of these workers. Twelve years after implementation of protective measures, the mean level of micronuclei in exposed individuals was found to be as low as those from controls. These findings indicate that exposed workers in the semiconductor industry may have an increased risk of genotoxic effects from complex mixtures of chemical waste products. The decline of the mean level of micronuclei in exposed workers down to the base level of controls after implementation of protective measures points to the significance of adequate safety standards to protect against chromosomal damage in semiconductor personnel.

  10. Assessment and evaluation of engineering options at a low-level radioactive waste storage site

    NASA Astrophysics Data System (ADS)

    Kanehiro, B. Y.; Guvanasen, V.

    1982-09-01

    Solutions to hydrologic and geotechnical problems associated with existing disposal sites were sought and the efficiency of engineering options that were proposed to improve the integrity of such sites were evaluated. The Weldon Spring site is generally like other low-level nuclear waste sites, except that the wastes are primarily in the form of residues and contaminated rubble from the processing of uranium and thorium ores rather than industrial isotopes or mill tailings.

  11. Disposal of low-level radioactive waste. Impact on the medical profession

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brill, D.R.; Allen, E.W.; Lutzker, L.G.

    1985-11-01

    During 1985, low-level radioactive waste disposal has become a critical concern. The issue has been forced by the threatened closure of the three commercial disposal sites. The medical community has used radioactive isotopes for decades in nuclear medicine, radiation therapy, radioimmunoassay, and biomedical research. Loss of disposal capacity for radioactive wastes generated by these activities, by the suppliers of radioisotopes, and by pharmaceutical companies will have a profound impact on the medical profession.

  12. Closure Plan for the Area 5 Radioactive Waste Management Site at the Nevada Test Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    The Area 5 Radioactive Waste Management Site (RMWS) at the Nevada Test Site (NTS) is managed and operated by National Security Technologies, LLC (NSTec), for the U.S. Department of Energy (DOE), National Nuclear Security Administration Nevada Site Office (NNSA/NSO). This document is the first update of the preliminary closure plan for the Area 5 RWMS at the NTS that was presented in the Integrated Closure and Monitoring Plan (DOE, 2005a). The major updates to the plan include a new closure schedule, updated closure inventory, updated site and facility characterization data, the Title II engineering cover design, and the closure processmore » for the 92-Acre Area of the RWMS. The format and content of this site-specific plan follows the Format and Content Guide for U.S. Department of Energy Low-Level Waste Disposal Facility Closure Plans (DOE, 1999a). This interim closure plan meets closure and post-closure monitoring requirements of the order DOE O 435.1, manual DOE M 435.1-1, Title 40 Code of Federal Regulations (CFR) Part 191, 40 CFR 265, Nevada Administrative Code (NAC) 444.743, and Resource Conservation and Recovery Act (RCRA) requirements as incorporated into NAC 444.8632. The Area 5 RWMS accepts primarily packaged low-level waste (LLW), low-level mixed waste (LLMW), and asbestiform low-level waste (ALLW) for disposal in excavated disposal cells.« less

  13. 40 CFR 266.305 - What does the transportation and disposal conditional exemption do?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level... exemption exempts your waste from the regulatory definition of hazardous waste in 40 CFR 261.3 if your waste...

  14. Investigative studies for the use of an inactive asbestos mine as a disposal site for asbestos wastes.

    PubMed

    Gidarakos, Evangelos; Anastasiadou, Kalliopi; Koumantakis, Emmanuil; Nikolaos, Stappas

    2008-05-30

    Although, according to European legislation the use of Asbestos Containing Materials is forbidden, many buildings in Greece still contain asbestos products, which must be removed at some point in the near future. Therefore, suitable disposal sites must be found within Greece, so that the unverified disposal of asbestos waste in municipal waste Landfills is brought to an end. In the present work, an innovative approach to the disposal problem of asbestos wastes in Greece has been examined, through a risk assessment analysis of the inactive asbestos mine of Northern Greece and an evaluation of its suitability as a disposal site for asbestos wastes in the future. According to the research carried out, two areas (Site 1 and Site 2) inside the mine area are suitable for the construction of a disposal site for asbestos wastes. The geological investigations showed that in Site 1 and Site 2 ultrabasic rocks of ophiolite complex were prevalent, which have been intensely serpentinized and converted into the fibrous shape of serpentine (asbestos). Concentrations of hazardous substances such as heavy metals in the soil of Site 1 and Site 2 oscillate at low levels, with the exception of the concentrations of nickel and chrome which are high. The investigative work also included the collection of meteorological data and the monitoring of the water level of the artificial lake, which has developed inside the open mine. The main aim is to safely dispose asbestos wastes inside the mine, to minimize any pollution of the wider vicinity of the mine, as well as to engage in restoration activities.

  15. Robust telerobotics - an integrated system for waste handling, characterization and sorting

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Couture, S.A.; Hurd, R.L.; Wilhelmsen, K.C.

    The Mixed Waste Management Facility (MWMF) at the Lawrence Livermore National Laboratory was designed to serve as a national testbed to demonstrate integrated technologies for the treatment of low-level organic mixed waste at a pilot-plant scale. Pilot-scale demonstration serves to bridge the gap between mature, bench-scale proven technologies and full-scale treatment facilities by providing the infrastructure needed to evaluate technologies in an integrated, front-end to back-end facility. Consistent with the intent to focus on technologies that are ready for pilot scale deployment, the front-end handling and feed preparation of incoming waste material has been designed to demonstrate the application ofmore » emerging robotic and remotely operated handling systems. The selection of telerobotics for remote handling in MWMF was made based on a number of factors - personnel protection, waste generation, maturity, cost, flexibility and extendibility. Telerobotics, or shared control of a manipulator by an operator and a computer, provides the flexibility needed to vary the amount of automation or operator intervention according to task complexity. As part of the telerobotics design effort, the technical risk of deploying the technology was reduced through focused developments and demonstrations. The work involved integrating key tools (1) to make a robust telerobotic system that operates at speeds and reliability levels acceptable to waste handling operators and, (2) to demonstrate an efficient operator interface that minimizes the amount of special training and skills needed by the operator. This paper describes the design and operation of the prototype telerobotic waste handling and sorting system that was developed for MWMF.« less

  16. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1998-10-06

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut. 8 figs.

  17. Remote vacuum compaction of compressible hazardous waste

    DOEpatents

    Coyne, Martin J.; Fiscus, Gregory M.; Sammel, Alfred G.

    1998-01-01

    A system for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  18. Row erupts over US firm's plan to import nuclear waste

    NASA Astrophysics Data System (ADS)

    Gwynne, Peter

    2008-06-01

    A controversy is brewing in the US over a plan by a firm in Utah to import, process and dispose of 20 000 tonnes of low-level radioactive waste from decommissioned nuclear reactors built in Italy by American companies. EnergySolutions intends to recycle some of this waste at a site near Oak Ridge, Tennessee, so that it can be re-used as shielding blocks in nuclear plants. The firm then wants to dispose of the remaining radioactive material at a site in Clive, Utah, where over 90% of low-level radioactive waste generated in the US is currently buried.

  19. Remote vacuum compaction of compressible hazardous waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Coyne, M.J.; Fiscus, G.M.; Sammel, A.G.

    1996-12-31

    A system is described for remote vacuum compaction and containment of low-level radioactive or hazardous waste comprising a vacuum source, a sealable first flexible container, and a sealable outer flexible container for receiving one or more first flexible containers. A method for compacting low level radioactive or hazardous waste materials at the point of generation comprising the steps of sealing the waste in a first flexible container, sealing one or more first containers within an outer flexible container, breaching the integrity of the first containers, evacuating the air from the inner and outer containers, and sealing the outer container shut.

  20. Low-level radioactive waste disposal. Study of a conceptual nuclear energy center at Green River, Utah

    NASA Astrophysics Data System (ADS)

    Card, D. H.; Hunter, P. H.; Barg, D.; Desouza, F.; Felthauser, K.; Winkler, V.; White, R.

    1982-02-01

    The ramifications of constructing a nuclear energy center in an arid western region were studied. The alternatives for disposing of the low level waste on the site are compared with the alternative of transporting the waste to the nearest commercial waste disposal site for permanent disposal. Both radiological and nonradiological impacts on the local socioeconomic infrastructure and the environment are considered. Disposal on the site was found to cost considerably less than off site disposal with only negligible impacts associated with the disposal option on either mankind or the environment.

  1. Lessons Learned from Radioactive Waste Storage and Disposal Facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Esh, David W.; Bradford, Anna H.

    2008-01-15

    The safety of radioactive waste disposal facilities and the decommissioning of complex sites may be predicated on the performance of engineered and natural barriers. For assessing the safety of a waste disposal facility or a decommissioned site, a performance assessment or similar analysis is often completed. The analysis is typically based on a site conceptual model that is developed from site characterization information, observations, and, in many cases, expert judgment. Because waste disposal facilities are sited, constructed, monitored, and maintained, a fair amount of data has been generated at a variety of sites in a variety of natural systems. Thismore » paper provides select examples of lessons learned from the observations developed from the monitoring of various radioactive waste facilities (storage and disposal), and discusses the implications for modeling of future waste disposal facilities that are yet to be constructed or for the development of dose assessments for the release of decommissioning sites. Monitoring has been and continues to be performed at a variety of different facilities for the disposal of radioactive waste. These include facilities for the disposal of commercial low-level waste (LLW), reprocessing wastes, and uranium mill tailings. Many of the lessons learned and problems encountered provide a unique opportunity to improve future designs of waste disposal facilities, to improve dose modeling for decommissioning sites, and to be proactive in identifying future problems. Typically, an initial conceptual model was developed and the siting and design of the disposal facility was based on the conceptual model. After facility construction and operation, monitoring data was collected and evaluated. In many cases the monitoring data did not comport with the original site conceptual model, leading to additional investigation and changes to the site conceptual model and modifications to the design of the facility. The following cases are discussed: commercial LLW disposal facilities; uranium mill tailings disposal facilities; and reprocessing waste storage and disposal facilities. The observations developed from the monitoring and maintenance of waste disposal and storage facilities provide valuable lessons learned for the design and modeling of future waste disposal facilities and the decommissioning of complex sites.« less

  2. Mobility of Source Zone Heavy Metals and Radionuclides: The Mixed Roles of Fermentative Activity on Fate and Transport of U and Cr. Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerlach, Robin; Peyton, Brent M.; Apel, William A.

    2014-01-29

    Various U. S. Department of Energy (DOE) low and medium-level radioactive waste sites contain mixtures of heavy metals, radionuclides and assorted organic materials. In addition, there are numerous sites around the world that are contaminated with a mixture of organic and inorganic contaminants. In most sites, over time, water infiltrates the wastes, and releases metals, radionuclides and other contaminants causing transport into the surrounding environment. We investigated the role of fermentative microorganisms in such sites that may control metal, radionuclide and organics migration from source zones. The project was initiated based on the following overarching hypothesis: Metals, radionuclides and othermore » contaminants can be mobilized by infiltration of water into waste storage sites. Microbial communities of lignocellulose degrading and fermenting microorganisms present in the subsurface of contaminated DOE sites can significantly impact migration by directly reducing and immobilizing metals and radionuclides while degrading complex organic matter to low molecular weight organic compounds. These low molecular weight organic acids and alcohols can increase metal and radionuclide mobility by chelation (i.e., certain organic acids) or decrease mobility by stimulating respiratory metal reducing microorganisms. We demonstrated that fermentative organisms capable of affecting the fate of Cr6+, U6+ and trinitrotoluene can be isolated from organic-rich low level waste sites as well as from less organic rich subsurface environments. The mechanisms, pathways and extent of contaminant transformation depend on a variety of factors related to the type of organisms present, the aqueous chemistry as well as the geochemistry and mineralogy. This work provides observations and quantitative data across multiple scales that identify and predict the coupled effects of fermentative carbon and electron flow on the transport of radionuclides, heavy metals and organic contaminants in the subsurface; a primary concern of the DOE Environmental Remediation Science Division (ERSD) and Subsurface Geochemical Research (SBR) Program.« less

  3. Final closure of a low level waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Potier, J.M.

    1995-12-31

    The low-level radioactive waste disposal facility operated by the Agence Nationale pour la Gestion des Dechets Radioactifs near La Hague, France was opened in 1969 and is scheduled for final closure in 1996. The last waste package was received in June 1994. The total volume of disposed waste is approximately 525,000 m{sup 3}. The site closure consists of covering the disposal structures with a multi-layer impervious cap system to prevent rainwater from infiltrating the waste isolation system. A monitoring system has been set up to verify the compliance of infiltration rates with hydraulic performance objectives (less than 10 liters permore » square meter and per year).« less

  4. Surrogate Indicators of Radionuclide Migration at the Amargosa Desert Research Site, Nye County, Nevada

    NASA Astrophysics Data System (ADS)

    Stonestrom, D. A.; Andraski, B. J.; Baker, R. J.; Luo, W.; Michel, R. L.

    2005-05-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey's Amargosa Desert Research Site (ADRS), adjacent to the Nation's first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Information on plume dynamics comes from an array of shallow (<2 m) and two vertical arrays of deep (5-109 m) gas-sampling ports, plus ground-water monitoring wells. Migration is dominated by lateral transport in the upper 50 m of sediments. Radiological analyses require ex-situ wet-chemical techniques, because in-situ sensors for the radionuclides of interest do not exist. As at other LLRW-disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs) and other substances. Halogenated-methanes, -ethanes, and -ethenes dominate the complex mixture of VOCs migrating from the disposal area. These compounds and their degradates provide a distinctive "fingerprint" of contamination originating from low-level radioactive waste. Carbon-dioxide and VOC anomalies provide indicator proxies for radionuclide contamination. Spatial and temporal patterns of co-disposed and byproduct constituents provide field-scale information about physical and biochemical processes involved in transport. Processes include reduction and biorespiration within trenches, and largely non-reactive, barometrically dispersed diffusion away from trenches.

  5. 10 CFR 1800.12 - Procedures for declaring a state eligible for membership in the Compact.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Procedures for declaring a state eligible for membership in the Compact. 1800.12 Section 1800.12 Energy NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE...

  6. 10 CFR 1800.14 - Modification to and enforcement of the rules in this part.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 4 2012-01-01 2012-01-01 false Modification to and enforcement of the rules in this part. 1800.14 Section 1800.14 Energy NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.14...

  7. 10 CFR 1800.14 - Modification to and enforcement of the rules in this part.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Modification to and enforcement of the rules in this part. 1800.14 Section 1800.14 Energy NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMPACT § 1800.14...

  8. 10 CFR 1800.12 - Procedures for declaring a state eligible for membership in the Compact.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 4 2010-01-01 2010-01-01 false Procedures for declaring a state eligible for membership in the Compact. 1800.12 Section 1800.12 Energy NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE COMMISSION DECLARATION OF PARTY STATE ELIGIBILITY FOR NORTHEAST INTERSTATE LOW-LEVEL RADIOACTIVE WASTE...

  9. 78 FR 41116 - Agency Information Collection Activities: Proposed Collection; Comment Request

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-07-09

    ... Agreement State regulations. All generators, collectors, and processors of low-level waste intended for... which facilitates tracking the identity of the waste generator. That tracking becomes more complicated... waste shipped from a waste processor may contain waste from several different generators. The...

  10. Compatibility Grab Sampling and Analysis Plan for FY 2000

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    SASAKI, L.M.

    1999-12-29

    This sampling and analysis plan (SAP) identifies characterization objectives pertaining to sample collection, laboratory analytical evaluation, and reporting requirements for grab samples obtained to address waste compatibility. It is written in accordance with requirements identified in Data Quality Objectives for Tank Farms Waste Compatibility Program (Mulkey et al. 1999) and Tank Farm Waste Transfer Compatibility Program (Fowler 1999). In addition to analyses to support Compatibility, the Waste Feed Delivery program has requested that tank samples obtained for Compatibility also be analyzed to confirm the high-level waste and/or low-activity waste envelope(s) for the tank waste (Baldwin 1999). The analytical requirements tomore » confirm waste envelopes are identified in Data Quality Objectives for TWRS Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for Low-Activity Waste Feed Batch X (Nguyen 1999a) and Data Quality Objectives for RPP Privatization Phase I: Confirm Tank T is an Appropriate Feed Source for High-Level Waste Feed Batch X (Nguyen 1999b).« less

  11. Low-level radioactive waste management: transitioning to off-site disposal at Los Alamos National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dorries, Alison M

    2010-11-09

    Facing the closure of nearly all on-site management and disposal capability for low-level radioactive waste (LLW), Los Alamos National Laboratory (LANL) is making ready to ship the majority of LLW off-site. In order to ship off-site, waste must meet the Treatment, Storage, and Disposal Facility's (TSDF) Waste Acceptance Criteria (WAC). In preparation, LANL's waste management organization must ensure LANL waste generators characterize and package waste compliantly and waste characterization documentation is complete and accurate. Key challenges that must be addressed to successfully make the shift to off-site disposal of LLW include improving the detail, accuracy, and quality of process knowledgemore » (PK) and acceptable knowledge (AK) documentation, training waste generators and waste management staff on the higher standard of data quality and expectations, improved WAC compliance for off-site facilities, and enhanced quality assurance throughout the process. Certification of LANL generators will allow direct off-site shipping of LLW from their facilities.« less

  12. Task 1.6 - mixed waste. Topical report, April 1, 1994--September 30, 1995

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    For fifty years, the United States was involved in a nuclear arms race of immense proportions. During the majority of this period, the push was always to design new weapons, produce more weapons, and increase the size of the arsenal, maintaining an advantage over the opposition in order to protect U.S. interests. Now that the {open_quotes}Cold War{close_quotes} is over, we are faced with the imposing tasks of dismantling, cleaning up, and remediating the wide variety of problems created by this arms race. An overview of the current status of the total remediation effort within the DOE is presented in themore » DOE publication {open_quotes}ENVIRONMENTAL MANAGEMENT 1995{close_quotes} (EM 1995). Not all radioactive waste is the same though; therefore, a system was devised to categorize the different types of radioactive waste. These categories are as follows: spent fuel; high-level waste; transuranic waste; low-level waste; mixed waste; and uranium-mill tailings. Mixed waste is defined to be material contaminated with any of these categories of radioactive material plus an organic or heavy metal component. However, for this discussion, {open_quotes}mixed waste{close_quote} will pertain only to low-level mixed waste which consists of low-level radioactive waste mixed with organic solvents and or heavy metals. The area of {open_quotes}mixed-waste characterization, treatment, and disposal{close_quotes} is listed on page 6 of the EM 1995 publication as one of five focus areas for technological development, and while no more important than the others, it has become an area of critical concern for DOE. Lacking adequate technologies for treatment and disposal, the DOE stockpiled large quantities of mixed waste during the 1970s and 1980s. Legislative changes and the need for regulatory compliance have now made it expedient to develop methods of achieving final disposition for this stockpiled mixed waste.« less

  13. Nevada National Security Site Environmental Report Summary 2016

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wills, Cathy

    This document is a summary of the full 2016 Nevada National Security Site Environmental Report (NNSSER) prepared by the U.S. Department of Energy, National Nuclear Security Administration Nevada Field Office (NNSA/ NFO). This summary provides an abbreviated and more readable version of the full NNSSER. NNSA/NFO prepares the NNSSER to provide the public an understanding of the environmental monitoring and compliance activities that are conducted on the Nevada National Security Site (NNSS) to protect the public and the environment from radiation hazards and from potential nonradiological impacts. It is a comprehensive report of environmental activities performed at the NNSS andmore » offsite facilities over the previous calendar year. The NNSS is currently the nation’s unique site for ongoing national security–related missions and high-risk operations. The NNSS is located about 65 miles northwest of Las Vegas. The approximately 1,360-square-mile site is one of the largest restricted access areas in the United States. It is surrounded by federal installations with strictly controlled access as well as by lands that are open to public entry. In 2016, National Security Technologies, LLC (NSTec), was the NNSS Management and Operations Contractor accountable for ensuring work was performed in compliance with environmental regulations. NNSS activities in 2016 continued to be diverse, with the primary goal to ensure that the existing U.S. stockpile of nuclear weapons remains safe and reliable. Other activities included weapons of mass destruction first responder training; the controlled release of hazardous material at the Nonproliferation Test and Evaluation Complex (NPTEC); remediation of legacy contamination sites; characterization of waste destined for the Waste Isolation Pilot Plant in Carlsbad, New Mexico, or the Idaho National Laboratory in Idaho Falls, Idaho; disposal of low-level and mixed low-level radioactive waste; and environmental research. Facilities and centers that support the National Security/Defense mission include the U1a Facility, Big Explosives Experimental Facility (BEEF), Device Assembly Facility (DAF), National Criticality Experiments Research Center (NCERC) located in the DAF, Joint Actinide Shock Physics Experimental Research (JASPER) Facility, Dense Plasma Focus (DPF) Facility located in the Los Alamos Technical Facility (LATF), and the Radiological/ Nuclear Countermeasures Test and Evaluation Complex (RNCTEC). Facilities that support the Environmental Management mission include the Area 5 Radioactive Waste Management Complex (RWMC) and the Area 3 Radioactive Waste Management Site (RWMS), which has been in cold standby since 2006.« less

  14. Biological intrusion of low-level-waste trench covers

    NASA Astrophysics Data System (ADS)

    Hakonson, T. E.; Gladney, E. S.

    The long-term integrity of low-level waste shallow land burialsites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. The need to consider biological processes as being potentially important in reducing the integrity of waste burial site cover treatment is demonstrated. One approach to limiting biological intrusion through the waste cover is to apply a barrier within the profile to limit root and animal penetration with depth. Experiments in the Los Alamos Experimental Engineered Test Facility were initiated to develop and evaluate biological barriers that are effective in minimizing intrusion into waste trenches. The experiments that are described employ four different candidate barrier materials of geologic origin. Experimental variables that will be evaluated, in addition to barrier type, are barrier depth and sil overburden depth.

  15. S. 1111: This Act may be cited as the Radiation Protection Act of 1991, introduced in the US Senate, One Hundred Second Congress, First Session, May 21, 1991

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1991-01-01

    This bill was introduced into the US Senate on May 21, 1991 to protect the public from health risks from radiation exposure from low-level radioactive waste. Key features of this legislation which are discussed include the following: state authority for fees or charges for waste storage and disposal facilities; and state authority to regulate disposal of low-level radioactive waste.

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Will E.; Mehta, Sunil

    The updated Hanford Site Composite Analysis will provide an all-pathways dose projection to a hypothetical future member of the public from all planned low-level radioactive waste disposal facilities and potential contributions from all other projected end-state sources of radioactive material left at Hanford following site closure. Its primary purpose is to support the decision-making process of the U.S. Department of Energy (DOE) under DOE O 435.1-1, Radioactive Waste Management (DOE, 2001), related to managing low-level waste disposal facilities at the Hanford Site.

  17. Hanford Immobilized Low Activity Waste (ILAW) Performance Assessment 2001 Version [Formerly DOE/RL-97-69] [SEC 1 & 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MANN, F.M.

    2000-08-01

    The Hanford Immobilized Low-Activity Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-activity fraction of waste presently contained in Hanford Site tanks. The tank waste is the byproduct of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste is stored in underground single- and double-shell tanks. The tank waste is to be retrieved, separated into low-activity and high-level fractions, and then immobilized by vitrification. The US. Department of Energy (DOE) plans to dispose of the low-activity fraction in the Hanford Site 200 Eastmore » Area. The high-level fraction will be stored at the Hanford Site until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to modify the current Disposal Authorization Statement for the Hanford Site that would allow the following: construction of disposal trenches; and filling of these trenches with ILAW containers and filler material with the intent to dispose of the containers.« less

  18. DOE Waste Treatability Group Guidance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kirkpatrick, T.D.

    1995-01-01

    This guidance presents a method and definitions for aggregating U.S. Department of Energy (DOE) waste into streams and treatability groups based on characteristic parameters that influence waste management technology needs. Adaptable to all DOE waste types (i.e., radioactive waste, hazardous waste, mixed waste, sanitary waste), the guidance establishes categories and definitions that reflect variations within the radiological, matrix (e.g., bulk physical/chemical form), and regulated contaminant characteristics of DOE waste. Beginning at the waste container level, the guidance presents a logical approach to implementing the characteristic parameter categories as part of the basis for defining waste streams and as the solemore » basis for assigning streams to treatability groups. Implementation of this guidance at each DOE site will facilitate the development of technically defined, site-specific waste stream data sets to support waste management planning and reporting activities. Consistent implementation at all of the sites will enable aggregation of the site-specific waste stream data sets into comparable national data sets to support these activities at a DOE complex-wide level.« less

  19. Pyramiding tumuli waste disposal site and method of construction thereof

    DOEpatents

    Golden, Martin P.

    1989-01-01

    An improved waste disposal site for the above-ground disposal of low-level nuclear waste as disclosed herein. The disposal site is formed from at least three individual waste-containing tumuli, wherein each tumuli includes a central raised portion bordered by a sloping side portion. Two of the tumuli are constructed at ground level with adjoining side portions, and a third above-ground tumulus is constructed over the mutually adjoining side portions of the ground-level tumuli. Both the floor and the roof of each tumulus includes a layer of water-shedding material such as compacted clay, and the clay layer in the roofs of the two ground-level tumuli form the compacted clay layer of the floor of the third above-ground tumulus. Each tumulus further includes a shield wall, preferably formed from a solid array of low-level handleable nuclear wate packages. The provision of such a shield wall protects workers from potentially harmful radiation when higher-level, non-handleable packages of nuclear waste are stacked in the center of the tumulus.

  20. Nuclear waste management. Semiannual progress report, October 1982-March 1983

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chikalla, T.D.; Powell, J.A.

    1983-06-01

    This document is one of a series of technical progress reports designed to report radioactive waste management programs at the Pacific Northwest Laboratory. Accomplishments in the following programs are reported: waste stabilization; Materials Characterization Center; waste isolation; low-level waste management; remedial action; and supporting studies.

  1. Estimates of low-level waste volumes and classifications at 2-Unit 1100 MWe reference plants for decommissioning scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hauf, M.J.; Vance, J.N.; James, D.

    1991-01-01

    A number of nuclear utilities and industry organizations in the United States have evaluated the requirements for reactor decommissioning. These broad scope studies have addressed the major issues of technology, methodology, safety and costs of decommissioning and have produced substantial volumes of data to describe, in detail, the issues and impacts which result. The objective of this paper to provide CECo a reasonable basis for discussion low-level waste burial volumes for the most likely decommissioning options and to show how various decontamination and VR technologies can be applied to provide additional reduction of the volumes required to be buried atmore » low-level waste burial grounds.« less

  2. Development of chemically bonded phosphate ceramics for stabilizing low-level mixed wastes

    NASA Astrophysics Data System (ADS)

    Jeong, Seung-Young

    1997-11-01

    Novel chemically bonded phosphate ceramics have been developed by acid-base reactions between magnesium oxide and an acid phosphate at room temperature for stabilizing U.S. Department of Energy's low-level mixed waste streams that include hazardous chemicals and radioactive elements. Newberyite (MgHPOsb4.3Hsb2O)-rich magnesium phosphate ceramic was formed by an acid-base reaction between phosphoric acid and magnesium oxide. The reaction slurry, formed at room-temperature, sets rapidly and forms stable mineral phases of newberyite, lunebergite, and residual MgO. Rapid setting also generates heat due to exothermic acid-base reaction. The reaction was retarded by partially neutralizing the phosphoric acid solution by adding sodium or potassium hydroxide. This reduced the rate of reaction and heat generation and led to a practical way of producing novel magnesium potassium phosphate ceramic. This ceramic was formed by reacting stoichiometric amount of monopotassium dihydrogen phosphate crystals, MgO, and water, forming pure-phase of MgKPOsb4.6Hsb2O (MKP) with moderate exothermic reaction. Using this chemically bonded phosphate ceramic matrix, low-level mixed waste streams were stabilized, and superior waste forms in a monolithic structure were developed. The final waste forms showed low open porosity and permeability, and higher compression strength than the Land Disposal Requirements (LDRs). The novel MKP ceramic technology allowed us to develop operational size waste forms of 55 gal with good physical integrity. In this improved waste form, the hazardous contaminants such as RCRA heavy metals (Hg, Pb, Cd, Cr, Ni, etc) were chemically fixed by their conversion into insoluble phosphate forms and physically encapsulated by the phosphate ceramic. In addition, chemically bonded phosphate ceramics stabilized radioactive elements such U and Pu. This was demonstrated with a detailed stabilization study on cerium used as a surrogate (chemically equivalent but nonradioactive) of U and Pu as well as on actual U-contaminated waste water. In particular, the leaching level of mercury in the Toxicity Characteristic Leaching Procedure (TCLP) test was reduced from 5000 to 0.00085 ppm, and the leaching level of cerium in the long term leaching test (ANS 16.1 test) was below the detection limit. These results show that the chemically bonded phosphate ceramics process may be a simple, inexpensive, and efficient method for stabilizing low-level mixed waste streams.

  3. Has the question of e-waste opened a Pandora's box? An overview of unpredictable issues and challenges.

    PubMed

    Bakhiyi, Bouchra; Gravel, Sabrina; Ceballos, Diana; Flynn, Michael A; Zayed, Joseph

    2018-01-01

    Despite regulatory efforts and position papers, electrical and electronic waste (e-waste) remains ill-managed as evidenced by the extremely low rates of proper e-waste recycling (e-recycling) worldwide, ongoing illegal shipments to developing countries and constantly reported human health issues and environmental pollution. The objectives of this review are, first, to expose the complexity of e-waste problems, and then to suggest possible upstream and downstream solutions. Exploring e-waste issues is akin to opening a Pandora's box. Thus, a review of prevailing e-waste management practices reveals complex and often intertwined gaps, issues and challenges. These include the absence of any consistent definition of e-waste to date, a prevalent toxic potential still involving already banned or restricted hazardous components such as heavy metals and persistent and bioaccumulative organic compounds, a relentless growth in e-waste volume fueled by planned obsolescence and unsustainable consumption, problematic e-recycling processes, a fragile formal e-recycling sector, sustained and more harmful informal e-recycling practices, and more convoluted and unpredictable patterns of illegal e-waste trade. A close examination of the e-waste legacy contamination reveals critical human health concerns, including significant occupational exposure during both formal and informal e-recycling, and persistent environmental contamination, particularly in some developing countries. However, newly detected e-waste contaminants as well as unexpected sources and environmental fates of contaminants are among the emerging issues that raise concerns. Moreover, scientific knowledge gaps remain regarding the complexity and magnitude of the e-waste legacy contamination, specifically, a comprehensive characterization of e-waste contaminants, information on the scale of legacy contamination in developing countries and on the potential environmental damage in developed countries, and a stronger body of evidence of adverse health effects specifically ascribed to e-waste contaminants. However, the knowledge accumulated to date is sufficient to raise awareness and concern among all stakeholders. Potential solutions to curb e-waste issues should be addressed comprehensively, by focusing on two fronts: upstream and downstream. Potential upstream solutions should focus on more rational and eco-oriented consumer habits in order to decrease e-waste quantities while fostering ethical and sustained commitments from manufacturers, which include a limited usage of hazardous compounds and an optimal increase in e-waste recyclability. At the downstream level, solutions should include suitable and pragmatic actions to progressively reduce the illegal e-waste trade particularly through international cooperation and coordination, better enforcement of domestic laws, and monitoring in both exporting and receiving countries, along with the supervised integration of the informal sector into the recycling system of developing countries and global expansion of formal e-waste collection and recycling activities. Downstream solutions should also introduce stronger reverse logistics, together with upgraded, more affordable, and eco-friendly and worker-friendly e-recycling technologies to ensure that benefits are derived fully and safely from the great economic potential of e-waste. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Mercury contamination and potential impacts from municipal waste incinerator on Samui Island, Thailand.

    PubMed

    Muenhor, Dudsadee; Satayavivad, Jutamaad; Limpaseni, Wongpun; Parkpian, Preeda; Delaune, R D; Gambrell, R P; Jugsujinda, Aroon

    2009-03-01

    In recent years, mercury (Hg) pollution generated by municipal waste incinerators (MWIs) has become the subject of serious public concern. On Samui Island, Thailand, a large-scale municipal waste incinerator has been in operation for over 7 years with a capacity of 140 tons/day for meeting the growing demand for municipal waste disposal. This research assessed Hg contamination in environmental matrices adjacent to the waste incinerating plant. Total Hg concentrations were determined in municipal solid waste, soil and sediment within a distance of 100 m to 5 km from the incinerator operation in both wet and dry seasons. Hg analyses conducted in municipal solid waste showed low levels of Hg ranging between 0.15-0.56 mg/kg. The low level was due to the type of waste incinerator. Waste such as electrical appliances, motors and spare parts, rubber tires and hospital wastes are not allowed to feed into the plant. As a result, low Hg levels were also found in fly and bottom ashes (0.1-0.4 mg/kg and

  5. Association of Relatively Low Serum Parathyroid Hormone with Malnutrition-Inflammation Complex and Survival in Maintenance Hemodialysis Patients

    PubMed Central

    Dukkipati, Ramanath; Kovesdy, Csaba P.; Kim, Youngmee; Colman, Sara; Budoff, Matthew J; Nissenson, Allen R.; Sprague, Stuart M.; Kopple, Joel D; Kalantar-Zadeh, Kamyar

    2011-01-01

    Background Low serum parathyroid hormone (PTH) has been implicated as a primary biochemical marker of adynamic bone disease in individuals with chronic kidney disease (CKD) who undergo maintenance hemodialysis (MHD) treatment. We hypothesized that the malnutrition-inflammation complex is associated with low PTH levels in these patients and confounds the PTH-survival association. Methods We examined 748 stable MHD outpatients in Southern California and followed them for up to 5 years (10/2001-12/2006). Results In 748 MHD patients, serum PTH <150 pg/ml was more prevalent among non-Blacks and diabetics. There was no association between serum PTH and coronary artery calcification score, bone mineral density or dietary protein or calorie intake. Low serum PTH was associated with markers of protein-energy wasting and inflammation, and this association confounded the relationship between serum PTH and alkaline phosphatase. Although 5-year crude mortality rates were similar across PTH increments, after adjustment for the case-mix and surrogates of malnutrition and inflammation, a moderately low serum PTH in 100 to 150 pg/ml range was associated with the greatest survival compared to other serum PTH levels, i.e., a death hazard ratio of 0.52 (95% confidence interval: 0.29-0.92, p<0.001) compared to PTH of 300 to 600 pg/ml (reference). Conclusions Low serum PTH may be another facet of the malnutrition-inflammation complex in CKD, and after controlling for this confounder, a moderately low PTH in 100 to 150 pg/ml range appears associated with the greatest survival. Limitations of observational studies should be considered. PMID:20199875

  6. Lead iron phosphate glass as a containment medium for disposal of high-level nuclear waste

    DOEpatents

    Boatner, Lynn A.; Sales, Brian C.

    1989-01-01

    Lead-iron phosphate glasses containing a high level of Fe.sub.2 O.sub.3 for use as a storage medium for high-level radioactive nuclear waste. By combining lead-iron phosphate glass with various types of simulated high-level nuclear waste, a highly corrosion resistant, homogeneous, easily processed glass can be formed. For corroding solutions at 90.degree. C., with solution pH values in the range between 5 and 9, the corrosion rate of the lead-iron phosphate nuclear waste glass is at least 10.sup.2 to 10.sup.3 times lower than the corrosion rate of a comparable borosilicate nuclear waste glass. The presence of Fe.sub.2 O.sub.3 in forming the lead-iron phosphate glass is critical. Lead-iron phosphate nuclear waste glass can be prepared at temperatures as low as 800.degree. C., since they exhibit very low melt viscosities in the 800.degree. to 1050.degree. C. temperature range. These waste-loaded glasses do not readily devitrify at temperatures as high as 550.degree. C. and are not adversely affected by large doses of gamma radiation in H.sub.2 O at 135.degree. C. The lead-iron phosphate waste glasses can be prepared with minimal modification of the technology developed for processing borosilicate glass nuclear wasteforms.

  7. Tc-99 Decontamination From Heat Treated Gaseous Diffusion Membrane -Phase I

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oji, L.; Wilmarth, B.; Restivo, M.

    2017-03-13

    Uranium gaseous diffusion cascades represent a significant environmental challenge to dismantle, containerize and dispose as low-level radioactive waste. Baseline technologies rely on manual manipulations involving direct access to technetium-contaminated piping and materials. There is a potential to utilize novel thermal decontamination technologies to remove the technetium and allow for on-site disposal of the very large uranium converters. Technetium entered these gaseous diffusion cascades as a hexafluoride complex in the same fashion as uranium. Technetium, as the isotope Tc-99, is an impurity that follows uranium in the first cycle of the Plutonium and Uranium Extraction (PUREX) process. The technetium speciation ormore » exact form in the gas diffusion cascades is not well defined. Several forms of Tc-99 compounds, mostly the fluorinated technetium compounds with varying degrees of volatility have been speculated by the scientific community to be present in these cascades. Therefore, there may be a possibility of using thermal desorption, which is independent of the technetium oxidation states, to perform an in situ removal of the technetium as a volatile species and trap the radionuclide on sorbent traps which could be disposed as low-level waste.« less

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Foley, M.G.; Zimmerman, D.A.; Doesburg, J.M.

    A literature review was conducted to identify methodologies that could be used to interpret paleohydrologic environments. Paleohydrology is the study of past hydrologic systems or of the past behavior of an existing hydrologic system. The purpose of the review was to evaluate how well these methodologies could be applied to the siting of low-level radioactive waste facilities. The computer literature search queried five bibliographical data bases containing over five million citations of technical journals, books, conference papers, and reports. Two data-base searches (United States Geological Survey - USGS) and a manual search were also conducted. The methodologies were examined formore » data requirements and sensitivity limits. Paleohydrologic interpretations are uncertain because of the effects of time on hydrologic and geologic systems and because of the complexity of fluvial systems. Paleoflow determinations appear in many cases to be order-of-magnitude estimates. However, the methodologies identified in this report mitigate this uncertainty when used collectively as well as independently. That is, the data from individual methodologies can be compared or combined to corroborate hydrologic predictions. In this manner, paleohydrologic methodologies are viable tools to assist in evaluating the likely future hydrology of low-level radioactive waste sites.« less

  9. Improvement of nuclide leaching resistance of paraffin waste form with low density polyethylene.

    PubMed

    Kim, Chang Lak; Park, Joo Wan; Kim, Ju Youl; Chung, Chang Hyun

    2002-01-01

    Low-level liquid borate wastes have been immobilized with paraffin wax using a concentrate waste drying system (CWDS) in Korean nuclear power plants. The possibility for improving chemical durability of paraffin waste form was suggested in this study. A small amount of low density polyethylene (LDPE) was added to increase the leaching resistance of the existing paraffin waste form. The influence of LDPE on the leaching behavior of waste form was investigated by performing leaching test according to ANSI/ANS-16.1 procedure during 325 days. It was observed that the leaching of nuclides immobilized within paraffin waste form made a marked reduction although little content of LDPE was added to waste form. The acceptance criteria of paraffin waste form associated with leachability index (LI) and compressive strength after the leaching test were fully satisfied with the help of LDPE.

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management

    The proposed Mixed Waste Storage Unit (MWSU) will be located within the Area 5 Radioactive Waste Management Complex (RWMC). Existing facilities at the RWMC will be used to store low-level mixed waste (LLMW). Storage is required to accommodate offsite-generated LLMW shipped to the Nevada Test Site (NTS) for disposal in the new Mixed Waste Disposal Unit (MWDU) currently in the design/build stage. LLMW generated at the NTS (onsite) is currently stored on the Transuranic (TRU) Pad (TP) in Area 5 under a Mutual Consent Agreement (MCA) with the Nevada Division of Environmental Protection, Bureau of Federal Facilities (NDEP/BFF). When themore » proposed MWSU is permitted, the U.S. Department of Energy (DOE) will ask that NDEP revoke the MCA and onsite-generated LLMW will fall under the MWSU permit terms and conditions. The unit will also store polychlorinated biphenyl (PCB) waste and friable and non-friable asbestos waste that meets the acceptance criteria in the Waste Analysis Plan (Exhibit 2) for disposal in the MWDU. In addition to Resource Conservation and Recovery Act (RCRA) requirements, the proposed MWSU will also be subject to Department of Energy (DOE) orders and other applicable state and federal regulations. Table 1 provides the metric conversion factors used in this application. Table 2 provides a list of existing permits. Table 3 lists operational RCRA units at the NTS and their respective regulatory status.« less

  11. 40 CFR 266.350 - What records must you keep at your facility and for how long?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... after the exempted waste is sent for disposal. (e) If you are not already subject to NRC, or NRC... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste...

  12. SUMMARY OF 2010 DOE EM INTERNATIONAL PROGRAM STUDIES OF WASTE GLASS STRUCTURE AND PROPERTIES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fox, K.; Choi, A.; Marra, J.

    2011-02-07

    Collaborative work between the Savannah River National Laboratory (SRNL) and SIA Radon in Russia was divided among three tasks for calendar year 2010. The first task focused on the study of simplified high level waste glass compositions with the objective of identifying the compositional drivers that lead to crystallization and poor chemical durability. The second task focused on detailed characterization of more complex waste glass compositions with unexpectedly poor chemical durabilities. The third task focused on determining the structure of select high level waste glasses made with varying frit compositions in order to improve models under development for predicting themore » melt rate of the Defense Waste Processing Facility (DWPF) glasses. The majority of these tasks were carried out at SIA Radon. Selection and fabrication of the glass compositions, along with chemical composition measurements and evaluations of durability were carried out at SRNL and are described in this report. SIA Radon provided three summary reports based on the outcome of the three tasks. These reports are included as appendices to this document. Briefly, the result of characterization of the Task 1 glasses may indicate that glass compositions where iron is predominantly tetrahedrally coordinated have more of a tendency to crystallize nepheline or nepheline-like phases. For the Task 2 glasses, the results suggested that the relatively low fraction of tetrahedrally coordinated boron and the relatively low concentrations of Al{sub 2}O{sub 3} available to form [BO{sub 4/2}]{sup -}Me{sup +} and [AlO{sub 4/2}]{sup -}Me{sup +} tetrahedral units are not sufficient to consume all of the alkali ions, and thus these alkali ions are easily leached from the glasses. All of the twelve Task 3 glass compositions were determined to be mainly amorphous, with some minor spinel phases. Several key structural units such as metasilicate chains and rings were identified, which confirms the current modeling approach for the silicate phase. The coordination of aluminum and iron was found to be mainly tetrahedral, with some octahedral iron ions. In all samples, trigonally-coordinated boron was determined to dominate over tetrahedrally-coordinated boron. The results further suggested that BO{sub 4} tetrahedra and BO{sub 3} triangles form complex borate units and may be present as separate constituents. However, no quantification of tetrahedral-to-trigonal boron ratio was made.« less

  13. Iron-phosphate ceramics for solidification of mixed low-level waste

    DOEpatents

    Aloy, Albert S.; Kovarskaya, Elena N.; Koltsova, Tatiana I.; Macheret, Yevgeny; Medvedev, Pavel G.; Todd, Terry

    2000-01-01

    A method of immobilizing mixed low-level waste is provided which uses low cost materials and has a relatively long hardening period. The method includes: forming a mixture of iron oxide powders having ratios, in mass %, of FeO:Fe.sub.2 O.sub.3 :Fe.sub.3 O.sub.4 equal to 25-40:40-10:35-50, or weighing a definite amount of magnetite powder. Metallurgical cinder can also be used as the source of iron oxides. A solution of the orthophosphoric acid, or a solution of the orthophosphoric acid and ferric oxide, is formed and a powder phase of low-level waste and the mixture of iron oxide powders or cinder (or magnetite powder) is also formed. The acid solution is mixed with the powder phase to form a slurry with the ratio of components (mass %) of waste:iron oxide powders or magnetite:acid solution=30-60:15-10:55-30. The slurry is blended to form a homogeneous mixture which is cured at room temperature to form the final product.

  14. Space augmentation of military high-level waste disposal

    NASA Technical Reports Server (NTRS)

    English, T.; Lees, L.; Divita, E.

    1979-01-01

    Space disposal of selected components of military high-level waste (HLW) is considered. This disposal option offers the promise of eliminating the long-lived radionuclides in military HLW from the earth. A space mission which meets the dual requirements of long-term orbital stability and a maximum of one space shuttle launch per week over a period of 20-40 years, is a heliocentric orbit about halfway between the orbits of earth and Venus. Space disposal of high-level radioactive waste is characterized by long-term predictability and short-term uncertainties which must be reduced to acceptably low levels. For example, failure of either the Orbit Transfer Vehicle after leaving low earth orbit, or the storable propellant stage failure at perihelion would leave the nuclear waste package in an unplanned and potentially unstable orbit. Since potential earth reencounter and subsequent burn-up in the earth's atmosphere is unacceptable, a deep space rendezvous, docking, and retrieval capability must be developed.

  15. Synthesis and Performance Evaluation of a New Deoiling Agent for Treatment of Waste Oil-Based Drilling Fluids

    PubMed Central

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%. PMID:25045749

  16. Synthesis and performance evaluation of a new deoiling agent for treatment of waste oil-based drilling fluids.

    PubMed

    Liu, Pingting; Huang, Zhiyu; Deng, Hao; Wang, Rongsha; Xie, Shuixiang

    2014-01-01

    Oil-based drilling fluid is used more and more in the field of oil and gas exploration. However, because of unrecyclable treating agent and hard treatment conditions, the traditional treating technologies of waste oil-based drilling fluid have some defects, such as waste of resource, bulky equipment, complex treatment processes, and low oil recovery rate. In this work, switchable deoiling agent (SDA), as a novel surfactant for treatment of waste oil-based drilling fluid, was synthesized by amine, formic acid, and formaldehyde solution. With this agent, the waste oil-based drilling fluid can be treated without complex process and expensive equipment. Furthermore, the agent used in the treatment can be recycled, which reduces waste of resource and energy. The switch performance, deoiling performance, structural characterization, and mechanisms of action are studied. The experimental results show that the oil content of the recycled oil is higher than 96% and more than 93% oil in waste oil-based drilling fluid can be recycled. The oil content of the solid residues of deoiling is less than 3%.

  17. 40 CFR 266.350 - What records must you keep at your facility and for how long?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... three years after the exempted waste is sent for disposal. (e) If you are not already subject to NRC, or... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste...

  18. 40 CFR 266.350 - What records must you keep at your facility and for how long?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... three years after the exempted waste is sent for disposal. (e) If you are not already subject to NRC, or... AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste...

  19. Development and validation of a building design waste reduction model.

    PubMed

    Llatas, C; Osmani, M

    2016-10-01

    Reduction in construction waste is a pressing need in many countries. The design of building elements is considered a pivotal process to achieve waste reduction at source, which enables an informed prediction of their wastage reduction levels. However the lack of quantitative methods linking design strategies to waste reduction hinders designing out waste practice in building projects. Therefore, this paper addresses this knowledge gap through the design and validation of a Building Design Waste Reduction Strategies (Waste ReSt) model that aims to investigate the relationships between design variables and their impact on onsite waste reduction. The Waste ReSt model was validated in a real-world case study involving 20 residential buildings in Spain. The validation process comprises three stages. Firstly, design waste causes were analyzed. Secondly, design strategies were applied leading to several alternative low waste building elements. Finally, their potential source reduction levels were quantified and discussed within the context of the literature. The Waste ReSt model could serve as an instrumental tool to simulate designing out strategies in building projects. The knowledge provided by the model could help project stakeholders to better understand the correlation between the design process and waste sources and subsequently implement design practices for low-waste buildings. Copyright © 2016 Elsevier Ltd. All rights reserved.

  20. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE PAGES

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.; ...

    2016-09-05

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased from 58% to 73% and 67% to 73%, respectively.« less

  1. Characterization of Products from Fast Micropyrolysis of Municipal Solid Waste Biomass

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Klemetsrud, Bethany; Ukaew, Suchada; Thompson, Vicki S.

    Biomass feedstock costs remain one of the largest impediments to biofuel production economics. Municipal solid waste (MSW) represents an attractive feedstock with year-round availability, an established collection infrastructure paid for by waste generators, low cost and the potential to be blended with higher cost feedstocks to reduce overall feedstock costs. Paper waste, yard waste and construction and demolition waste (C&D) were examined for their applicability in the pyrolysis conversion pathway. Paper waste consisted of non-recyclable paper such as mixed low grade paper, food and beverage packaging, kitchen paper wastes and coated paper; yard waste consisted of grass clippings and C&Dmore » wastes consisted of engineered wood products obtained from a construction waste landfill. We tested the waste materials for thermochemical conversion potential using a bench scale fast micro-pyrolysis process. Bio-oil yields were the highest for the C&D materials and lowest for the paper waste. The C&D wastes had the highest level of lignin derived compounds (phenolic and cyclics) while the paper waste had higher levels of carbohydrate derived compounds (aldehydes, organic acids, ketones, alcohols and sugar derived). But, the paper material had higher amounts of lignin derived compounds than expected based upon lignin content that is likely due to the presence of polyphenolic resins used in paper processing. The paper and yard wastes had significantly higher levels of ash content than the C&D wastes (14-15% versus 0.5-1.3%), which further correlated to higher levels of alkali and alkaline earth metals, which are known to reduce pyrolysis bio-oil yields. There appeared to be an inverse correlation of both calcium and potassium content with the amount of chromatographic product peaks, indicative of cracking reactions occurring during product formation. Furthermore the effect of acid washing was evaluated for grass clipping and waste paper and the bio-oil yield was increased from 58% to 73% and 67% to 73%, respectively.« less

  2. Investigation of some process parameters using microwave plasma technology for the treatment of radioactive waste

    NASA Astrophysics Data System (ADS)

    Trnovcevic, J.; Schneider, F.; Scherer, U. W.

    2017-02-01

    The production of nuclear energy and the application of other nuclear technologies produce large volumes of low- and intermediate-level radioactive wastes. To investigate a novel means of treating such wastes, plasma is investigated for its efficacy. Plasma treatment promises to simultaneously treat all waste types without any previous sorting or pre-treatment. Microwave-driven plasma torches have the advantage of high-energy efficiency and low-electrode wear. In small-scale experiments, several design variations of an open plasma oven were assembled in order to investigate constraints caused by the materials and oven geometry. The experimental set-up was modified several times in order to test the design characteristics and the variation of plasma-specific proprieties related to the radioactive waste treatment and in order to find a suitable solution with the minimum complexity that allows a representative reproducibility of the results obtained. A plasma torch controlled by a 2.45 GHz microwave signal of up to 200 W was used, employing air as the primary plasma gas with a flow rate of ∼2 L/min. Different organic and inorganic materials in different shapes and sizes were treated besides a standardized mixture resembling mixed wastes from nuclear plants. The results prove that the chosen microwave plasma torch is suitable for a combined combustion and melting of organic and in-organic materials. Investigation of the specimen size to be treated is influential in this process: the power is still too low to melt larger samples, but the temperature is sufficient to treat all kinds of material. When glass particles are added, materials melt together to form an amorphous substance, proving the possibility to vitrify material with this plasma torch. By optimization of the oven configuration, the time needed to combust 25 g of standard sample was reduced by ∼50%. Typical energy efficiencies were found in the range of 8-20% for melting of metal chipping, and ∼90% for melting of zinc powder.

  3. 78 FR 53793 - Request To Amend a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-08-30

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to... total of 5,500 ``Ultimate Foreign XW012/04 radioactive tons of low- Consignee(s).'' No other 11005699 waste). level waste). changes to the existing license which authorizes the export of non-conforming...

  4. Method for making a low density polyethylene waste form for safe disposal of low level radioactive material

    DOEpatents

    Colombo, P.; Kalb, P.D.

    1984-06-05

    In the method of the invention low density polyethylene pellets are mixed in a predetermined ratio with radioactive particulate material, then the mixture is fed through a screw-type extruder that melts the low density polyethylene under a predetermined pressure and temperature to form a homogeneous matrix that is extruded and separated into solid monolithic waste forms. The solid waste forms are adapted to be safely handled, stored for a short time, and safely disposed of in approved depositories.

  5. A new approach to characterize very-low-level radioactive waste produced at hadron accelerators.

    PubMed

    Zaffora, Biagio; Magistris, Matteo; Chevalier, Jean-Pierre; Luccioni, Catherine; Saporta, Gilbert; Ulrici, Luisa

    2017-04-01

    Radioactive waste is produced as a consequence of preventive and corrective maintenance during the operation of high-energy particle accelerators or associated dismantling campaigns. Their radiological characterization must be performed to ensure an appropriate disposal in the disposal facilities. The radiological characterization of waste includes the establishment of the list of produced radionuclides, called "radionuclide inventory", and the estimation of their activity. The present paper describes the process adopted at CERN to characterize very-low-level radioactive waste with a focus on activated metals. The characterization method consists of measuring and estimating the activity of produced radionuclides either by experimental methods or statistical and numerical approaches. We adapted the so-called Scaling Factor (SF) and Correlation Factor (CF) techniques to the needs of hadron accelerators, and applied them to very-low-level metallic waste produced at CERN. For each type of metal we calculated the radionuclide inventory and identified the radionuclides that most contribute to hazard factors. The methodology proposed is of general validity, can be extended to other activated materials and can be used for the characterization of waste produced in particle accelerators and research centres, where the activation mechanisms are comparable to the ones occurring at CERN. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Review of Concrete Biodeterioration in Relation to Buried Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Turick, C; Berry, C.

    Long-term storage of low level radioactive material in below ground concrete disposal units (DUs) (Saltstone Disposal Facility) is a means of depositing wastes generated from nuclear operations of the U.S. Department of Energy. Based on the currently modeled degradation mechanisms, possible microbial induced effects on the structural integrity of buried low level wastes must be addressed. Previous international efforts related to microbial impacts on concrete structures that house low level radioactive waste showed that microbial activity can play a significant role in the process of concrete degradation and ultimately structural deterioration. This literature review examines the recent research in thismore » field and is focused on specific parameters that are applicable to modeling and prediction of the fate of concrete vaults housing stored wastes and the wastes themselves. Rates of concrete biodegradation vary with the environmental conditions, illustrating a need to understand the bioavailability of key compounds involved in microbial activity. Specific parameters require pH and osmotic pressure to be within a certain range to allow for microbial growth as well as the availability and abundance of energy sources like components involved in sulfur, iron and nitrogen oxidation. Carbon flow and availability are also factors to consider in predicting concrete biodegradation. The results of this review suggest that microbial activity in Saltstone, (grouted low level radioactive waste) is unlikely due to very high pH and osmotic pressure. Biodegradation of the concrete vaults housing the radioactive waste however, is a possibility. The rate and degree of concrete biodegradation is dependent on numerous physical, chemical and biological parameters. Results from this review point to parameters to focus on for modeling activities and also, possible options for mitigation that would minimize concrete biodegradation. In addition, key chemical components that drive microbial activity on concrete surfaces are discussed.« less

  7. Annual waste reduction activities report. Issue 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1991-03-18

    This report discusses the waste minimization activities for the Pinellas Plant. The Pinellas Plant deals with low-level radioactive wastes, solvents, scrap metals and various other hazardous materials. This program has realized cost savings through recycling and reuse of materials.

  8. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cozzi, A.; Johnson, F.

    Production of Mo-99 for medical isotope use is being investigated using dissolved low enriched uranium (LEU) fissioned using an accelerator driven process. With the production and separation of Mo-99, a low level waste stream will be generated. Since the production facility is a commercial endeavor, waste disposition paths normally available for federally generated radioactive waste may not be available. Disposal sites for commercially generated low level waste are available, and consideration to the waste acceptance criteria (WAC) of the disposal site should be integral in flowsheet development for the Mo-99 production. Pending implementation of the “Uranium Lease and Take-Back Programmore » for Irradiation for Production of Molybdenum-99 for Medical Use” as directed by the American Medical Isotopes Production Act of 2012, there are limited options for disposing of the waste generated by the production of Mo-99 using an accelerator. The commission of a trade study to assist in the determination of the most favorable balance of production throughput and waste management should be undertaken. The use of a waste broker during initial operations of a facility has several benefits that can offset the cost associated with using a subcontractor. As the facility matures, the development of in-house capabilities can be expanded to incrementally reduce the dependence on a subcontractor.« less

  9. Enhanced LAW Glass Correlation - Phase 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Muller, Isabelle S.; Matlack, Keith S.; Pegg, Ian L.

    About 50 million gallons of high-level mixed waste is currently stored in underground tanks at the United States Department of Energy’s (DOE’s) Hanford site in the State of Washington. The Hanford Tank Waste Treatment and Immobilization Plant (WTP) will provide DOE’s Office of River Protection (ORP) with a means of treating this waste by vitrification for subsequent disposal. The tank waste will be separated into low- and high-activity waste fractions, which will then be vitrified respectively into Immobilized Low Activity Waste (ILAW) and Immobilized High Level Waste (IHLW) products. The ILAW product will be disposed in an engineered facility onmore » the Hanford site while the IHLW product is designed for acceptance into a national deep geological disposal facility for high-level nuclear waste. The ILAW and IHLW products must meet a variety of requirements with respect to protection of the environment before they can be accepted for disposal. Acceptable glass formulations for vitrification of Hanford low activity waste (LAW) must meet a variety of product quality, processability, and waste loading requirements. To this end, The Vitreous State Laboratory (VSL) at The Catholic University of America (CUA) developed and tested a number of glass formulations during Part A, Part B1 and Part B2 of the WTP development program. The testing resulted in the selection of target glass compositions for the processing of eight of the Phase I LAW tanks. The selected glass compositions were tested at the crucible scale to confirm their compliance with ILAW performance requirements. Duramelter 100 (DM100) and LAW Pilot Melter tests were then conducted to demonstrate the viability of these glass compositions for LAW vitrification at high processing rates.« less

  10. Significant volume reduction of tank waste by selective crystallization: 1994 Annual report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Herting, D.L.; Lunsford, T.R.

    1994-09-27

    The objective of this technology task plan is to develop and demonstrate a scaleable process of reclaim sodium nitrate (NaNO{sub 3}) from Hanford waste tanks as a clean nonradioactive salt. The purpose of the so-called Clean Salt Process is to reduce the volume of low level waste glass by as much as 70%. During the reporting period of October 1, 1993, through May 31, 1994, progress was made on four fronts -- laboratory studies, surrogate waste compositions, contracting for university research, and flowsheet development and modeling. In the laboratory, experiments with simulated waste were done to explore the effects ofmore » crystallization parameters on the size and crystal habit of product NaNO{sub 3} crystals. Data were obtained to allows prediction of decontamination factor as a function of solid/liquid separation parameters. Experiments with actual waste from tank 101-SY were done to determine the extent of contaminant occlusions in NaNO{sub 3} crystals. In preparation for defining surrogate waste compositions, single shell tanks were categorized according to the weight percent NaNO{sub 3} in each tank. A detailed process flowsheet and computer model were created using the ASPENPlus steady state process simulator. This is the same program being used by the Tank Waste Remediation System (TWRS) program for their waste pretreatment and disposal projections. Therefore, evaluations can be made of the effect of the Clean Salt Process on the low level waste volume and composition resulting from the TWRS baseline flowsheet. Calculations, using the same assumptions as used for the TWRS baseline where applicable indicate that the number of low level glass vaults would be reduced from 44 to 16 if the Clean Salt Process were incorporated into the baseline flowsheet.« less

  11. Hanford immobilized low-activity tank waste performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mann, F.M.

    1998-03-26

    The Hanford Immobilized Low-Activity Tank Waste Performance Assessment examines the long-term environmental and human health effects associated with the planned disposal of the vitrified low-level fraction of waste presently contained in Hanford Site tanks. The tank waste is the by-product of separating special nuclear materials from irradiated nuclear fuels over the past 50 years. This waste has been stored in underground single and double-shell tanks. The tank waste is to be retrieved, separated into low and high-activity fractions, and then immobilized by private vendors. The US Department of Energy (DOE) will receive the vitrified waste from private vendors and plansmore » to dispose of the low-activity fraction in the Hanford Site 200 East Area. The high-level fraction will be stored at Hanford until a national repository is approved. This report provides the site-specific long-term environmental information needed by the DOE to issue a Disposal Authorization Statement that would allow the modification of the four existing concrete disposal vaults to provide better access for emplacement of the immobilized low-activity waste (ILAW) containers; filling of the modified vaults with the approximately 5,000 ILAW containers and filler material with the intent to dispose of the containers; construction of the first set of next-generation disposal facilities. The performance assessment activity will continue beyond this assessment. The activity will collect additional data on the geotechnical features of the disposal sites, the disposal facility design and construction, and the long-term performance of the waste. Better estimates of long-term performance will be produced and reviewed on a regular basis. Performance assessments supporting closure of filled facilities will be issued seeking approval of those actions necessary to conclude active disposal facility operations. This report also analyzes the long-term performance of the currently planned disposal system as a basis to set requirements on the waste form and the facility design that will protect the long-term public health and safety and protect the environment.« less

  12. Material for electrodes of low temperature plasma generators

    DOEpatents

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich

    2008-12-09

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron: 3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, and municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  13. Material for electrodes of low temperature plasma generators

    DOEpatents

    Caplan, Malcolm; Vinogradov, Sergel Evge'evich; Ribin, Valeri Vasil'evich; Shekalov, Valentin Ivanovich; Rutberg, Philip Grigor'evich; Safronov, Alexi Anatol'evich; Shiryaev, Vasili Nikolaevich

    2010-03-02

    Material for electrodes of low temperature plasma generators. The material contains a porous metal matrix impregnated with a material emitting electrons. The material uses a mixture of copper and iron powders as a porous metal matrix and a Group IIIB metal component such as Y.sub.2O.sub.3 is used as a material emitting electrons at, for example, the proportion of the components, mass %: iron:3-30; Y.sub.2O.sub.3:0.05-1; copper: the remainder. Copper provides a high level of heat conduction and electric conductance, iron decreases intensity of copper evaporation in the process of plasma creation providing increased strength and lifetime, Y.sub.2O.sub.3 provides decreasing of electronic work function and stability of arc burning. The material can be used for producing the electrodes of low temperature AC plasma generators used for destruction of liquid organic wastes, medical wastes, municipal wastes as well as for decontamination of low level radioactive waste, the destruction of chemical weapons, warfare toxic agents, etc.

  14. Removal of Historic Low-Level Radioactive Sediment from the Port Hope Harbour - 13314

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kolberg, Mark; Case, Glenn; Ferguson Jones, Andrea

    2013-07-01

    At the Port Hope Harbour, located on the north shore of Lake Ontario, the presence of low-level radioactive sediment, resulting from a former radium and uranium refinery that operated alongside the Harbour, currently limits redevelopment and revitalization opportunities. These waste materials contain radium-226, uranium, arsenic and other contaminants. Several other on-land locations within the community of Port Hope are also affected by the low-level radioactive waste management practices of the past. The Port Hope Project is a community initiated undertaking that will result in the consolidation of an estimated 1.2 million cubic metres of the low-level radioactive waste from themore » various sites in Port Hope into a new engineered above ground long-term waste management facility. The remediation of the estimated 120,000 m{sup 3} of contaminated sediments from the Port Hope Harbour is one of the more challenging components of the Port Hope Project. Following a thorough review of various options, the proposed method of contaminated sediment removal is by dredging. The sediment from the dredge will then be pumped as a sediment-water slurry mixture into geo-synthetic containment tubes for dewatering. Due to the hard substrate below the contaminated sediment, the challenge has been to set performance standards in terms of low residual surface concentrations that are attainable in an operationally efficient manner. (authors)« less

  15. Regulatory decision with EPA/NRC/DOE/State Session (Panel)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O`Donnell, E.

    1995-12-31

    This panel will cover the Nuclear Regulatory Commission`s (NRC) proposed radiation limits in the Branch Technical Position on Low-Level Radioactive Waste Performance Assessment and the Environmental Protection Agency`s (EPA) draft regulation in Part 193. Representatives from NRC and EPA will discuss the inconsistencies in these two regulations. DOE and state representatives will discuss their perspective on how these regulations will affect low-level radioactive waste performance assessments.

  16. Sediment properties and water movement through shallow unsaturated alluvium at an arid site for disposal of low-level radioactive waste near Beatty, Nye County, Nevada

    USGS Publications Warehouse

    Fischer, Jeffrey M.

    1992-01-01

    A commercial disposal facility for low-level radioactive waste has been in operation near Beatty, Nevada, since 1962. The facility is in the arid Amargosa Desert where wastes are buried in trenches excavated into unsaturated alluvial sediments. Thick unsaturated zones in arid environments offer many potential advantages for disposal of radioactive wastes, but little is known about the natural movement of water near such facilities. Thus, a study was begun in 1982 to better define the direction and rates of water movement through the unsaturated zone in undisturbed sediments near the disposal facility. This report discusses the analyses of data collected between 1983 and 1988.

  17. 78 FR 26812 - Request To Amend a License To Export Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Export Radioactive Waste Pursuant to...; XW012/03; 11005699. A radioactive total of 5,500 Energy of Canada waste). tons of low- Limited facilities as level waste). ``Ultimate Foreign Consignee(s).'' No other changes to the existing license which...

  18. 78 FR 26813 - Request To Amend a License To Import Radioactive Waste

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-05-08

    ... NUCLEAR REGULATORY COMMISSION Request To Amend a License To Import Radioactive Waste Pursuant to..., 2013, April 23, material (Class to a maximum the licensee name 2013, IW022/03, 11005700. A radioactive total of 5,500 from ``Perma-Fix waste). tons of low- Environmental level waste). Services, Inc.'' to...

  19. 40 CFR 266.240 - How could you lose the conditional exemption for your LLMW and what action must you take?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal. Loss of Conditional Exemption § 266...

  20. 40 CFR 266.240 - How could you lose the conditional exemption for your LLMW and what action must you take?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal Loss of Conditional Exemption § 266...

  1. 40 CFR 266.240 - How could you lose the conditional exemption for your LLMW and what action must you take?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal. Loss of Conditional Exemption § 266...

  2. 40 CFR 266.240 - How could you lose the conditional exemption for your LLMW and what action must you take?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... ENVIRONMENTAL PROTECTION AGENCY (CONTINUED) SOLID WASTES (CONTINUED) STANDARDS FOR THE MANAGEMENT OF SPECIFIC HAZARDOUS WASTES AND SPECIFIC TYPES OF HAZARDOUS WASTE MANAGEMENT FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal Loss of Conditional Exemption § 266...

  3. Integrated nonthermal treatment system study

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biagi, C.; Bahar, D.; Teheranian, B.

    1997-01-01

    This report presents the results of a study of nonthermal treatment technologies. The study consisted of a systematic assessment of five nonthermal treatment alternatives. The treatment alternatives consist of widely varying technologies for safely destroying the hazardous organic components, reducing the volume, and preparing for final disposal of the contact-handled mixed low-level waste (MLLW) currently stored in the US Department of Energy complex. The alternatives considered were innovative nonthermal treatments for organic liquids and sludges, process residue, soil and debris. Vacuum desorption or various washing approaches are considered for treatment of soil, residue and debris. Organic destruction methods include mediatedmore » electrochemical oxidation, catalytic wet oxidation, and acid digestion. Other methods studied included stabilization technologies and mercury separation of treatment residues. This study is a companion to the integrated thermal treatment study which examined 19 alternatives for thermal treatment of MLLW waste. The quantities and physical and chemical compositions of the input waste are based on the inventory database developed by the US Department of Energy. The Integrated Nonthermal Treatment Systems (INTS) systems were evaluated using the same waste input (2,927 pounds per hour) as the Integrated Thermal Treatment Systems (ITTS). 48 refs., 68 figs., 37 tabs.« less

  4. Association of relatively low serum parathyroid hormone with malnutrition-inflammation complex and survival in maintenance hemodialysis patients.

    PubMed

    Dukkipati, Ramanath; Kovesdy, Csaba P; Colman, Sara; Budoff, Matthew J; Nissenson, Allen R; Sprague, Stuart M; Kopple, Joel D; Kalantar-Zadeh, Kamyar

    2010-07-01

    Low serum parathyroid hormone (PTH) has been implicated as a primary biochemical marker of adynamic bone disease in individuals with chronic kidney disease (CKD) who undergo maintenance hemodialysis (MHD) treatment. We hypothesized that the malnutrition-inflammation complex is associated with low PTH levels in these patients and confounds the PTH-survival association. We examined 748 stable MHD outpatients in southern California and followed them for up to 5 years (October 2001-December 2006). In 748 MHD patients, serum PTH <150pg/mL was more prevalent among non-blacks and diabetics. There was no association between serum PTH and coronary artery calcification score, bone mineral density, or dietary protein or calorie intake. Low serum PTH was associated with markers of protein-energy wasting and inflammation, and this association confounded the relationship between serum PTH and alkaline phosphatase. Although 5-year crude mortality rates were similar across PTH increments, after adjustment for the case-mix and surrogates of malnutrition and inflammation, a moderately low serum PTH in 100-150pg/mL range was associated with the greatest survival compared to other serum PTH levels, i.e., a death hazard ratio of 0.52 (95% confidence interval: 0.29-0.92, p<0.001) compared to PTH of 300-600pg/mL (reference). Low serum PTH may be another facet of the malnutrition-inflammation complex in CKD, and after controlling for this confounder, a moderately low PTH in 100-150pg/mL range appears associated with the greatest survival. Limitations of observational studies should be considered. Copyright 2010 National Kidney Foundation, Inc. Published by Elsevier Inc. All rights reserved.

  5. EnergySolution's Clive Disposal Facility Operational Research Model - 13475

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nissley, Paul; Berry, Joanne

    2013-07-01

    EnergySolutions owns and operates a licensed, commercial low-level radioactive waste disposal facility located in Clive, Utah. The Clive site receives low-level radioactive waste from various locations within the United States via bulk truck, containerised truck, enclosed truck, bulk rail-cars, rail boxcars, and rail inter-modals. Waste packages are unloaded, characterized, processed, and disposed of at the Clive site. Examples of low-level radioactive waste arriving at Clive include, but are not limited to, contaminated soil/debris, spent nuclear power plant components, and medical waste. Generators of low-level radioactive waste typically include nuclear power plants, hospitals, national laboratories, and various United States government operatedmore » waste sites. Over the past few years, poor economic conditions have significantly reduced the number of shipments to Clive. With less revenue coming in from processing shipments, Clive needed to keep its expenses down if it was going to maintain past levels of profitability. The Operational Research group of EnergySolutions were asked to develop a simulation model to help identify any improvement opportunities that would increase overall operating efficiency and reduce costs at the Clive Facility. The Clive operations research model simulates the receipt, movement, and processing requirements of shipments arriving at the facility. The model includes shipment schedules, processing times of various waste types, labor requirements, shift schedules, and site equipment availability. The Clive operations research model has been developed using the WITNESS{sup TM} process simulation software, which is developed by the Lanner Group. The major goals of this project were to: - identify processing bottlenecks that could reduce the turnaround time from shipment arrival to disposal; - evaluate the use (or idle time) of labor and equipment; - project future operational requirements under different forecasted scenarios. By identifying processing bottlenecks and unused equipment and/or labor, improvements to operating efficiency could be determined and appropriate cost saving measures implemented. Model runs forecasting various scenarios helped illustrate potential impacts of certain conditions (e.g. 20% decrease in shipments arrived), variables (e.g. 20% decrease in labor), or other possible situations. (authors)« less

  6. Speciation and Oxidative Stability of Alkaline Soluble, Non-Pertechnetate Technetium

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Levitskaia, Tatiana G.; Rapko, Brian M.; Anderson, Amity

    2014-09-30

    The long half-life, complex chemical behavior in tank waste, limited incorporation in mid- to high-temperature immobilization processes, and high mobility in subsurface environments make technetium (Tc) one of the most difficult contaminants to dispose of and/or remediate. Technetium exists predominantly in the liquid tank waste phase as the relatively mobile form of pertechnetate, TcO 4 -. However, based on experimentation to date a significant fraction of the soluble Tc cannot be effectively separated from the wastes and may be present as a non- pertechnetate species. The presence of a non-pertechnetate species significantly complicates disposition of low-activity waste (LAW), and themore » development of methods to either convert them to pertechnetate or to separate directly is needed. The challenge is the uncertainty regarding the chemical form of the alkaline-soluble low-valent non-pertechnetate species in the liquid tank waste. This report summarizes work done in fiscal year (FY) 2014 exploring the chemistry of a low-valence technetium(I) species, [(CO) 3Tc(H 2O) 3] +, a compound of interest due to its implication in the speciation of alkaline-soluble technetium in several Hanford tank waste supernatants.« less

  7. Improvement of non-destructive fissile mass assays in α low-level waste drums: A matrix correction method based on neutron capture gamma-rays and a neutron generator

    NASA Astrophysics Data System (ADS)

    Jallu, F.; Loche, F.

    2008-08-01

    Within the framework of radioactive waste control, non-destructive assay (NDA) methods may be employed. The active neutron interrogation (ANI) method is now well-known and effective in quantifying low α-activity fissile masses (mainly 235U, 239Pu, 241Pu) with low densities, i.e. less than about 0.4, in radioactive waste drums of volumes up to 200 l. The PROMpt Epithermal and THErmal interrogation Experiment (PROMETHEE [F. Jallu, A. Mariani, C. Passard, A.-C. Raoux, H. Toubon, Alpha low level waste control: improvement of the PROMETHEE 6 assay system performances. Nucl. Technol. 153 (January) (2006); C. Passard, A. Mariani, F. Jallu, J. Romeyer-Dherber, H. Recroix, M. Rodriguez, J. Loridon, C. Denis, PROMETHEE: an alpha low level waste assay system using passive and active neutron measurement methods. Nucl. Technol. 140 (December) (2002) 303-314]) based on ANI has been under development since 1996 to reach the incinerating α low level waste (LLW) criterion of about 50 Bq[α] per gram of crude waste (≈50 μg Pu) in 118 l drums on the date the drums are conditioned. Difficulties arise when dealing with matrices containing neutron energy moderators such as H and neutron absorbents such as Cl. These components may have a great influence on the fissile mass deduced from the neutron signal measured by ANI. For example, the calibration coefficient measured in a 118 l drum containing a cellulose matrix (density d = 0.144 g cm -3) may be 50 times higher than that obtained in a poly-vinyl-chloride matrix ( d = 0.253 g cm -3). Without any information on the matrix, the fissile mass is often overestimated due to safety procedures and by considering the most disadvantageous calibration coefficient corresponding to the most absorbing and moderating calibration matrix. The work discussed in this paper was performed at the CEA Nuclear Measurement Laboratory in France. It concerns the development of a matrix effect correction method, which consists in identifying and quantifying the matrix components by using prompt gamma-rays following neutron capture. The method aims to refine the value of the adequate calibration coefficient used for ANI analysis. This paper presents the final results obtained for 118 l waste drums with low α-activity and low density. This paper discusses the experimental and modelling studies and describes the development of correction abacuses based on gamma-ray spectrometry signals.

  8. U.S. Geological Survey research in radioactive waste disposal - Fiscal years 1983, 1984, and 1985

    USGS Publications Warehouse

    Dinwiddie, G.A.; Trask, N.J.

    1986-01-01

    The report summarizes progress on geologic and hydrologic research related to the disposal of radioactive wastes. The research is described according to whether it is related most directly to: (1) high-level and transuranic wastes, (2) low-level wastes, or (3) uranium mill tailings. Included is research applicable to the identification and geohydrologic characterization of waste-disposal sites, to investigations of specific sites where wastes have been stored, and to studies of regions or environments where waste-disposal sites might be located. A significant part of the activity is concerned with techniques and methods for characterizing disposal sites and studies of geologic and hydrologic processes related to the transport and (or) retention of waste radionuclides.

  9. Composite analysis E-area vaults and saltstone disposal facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, J.R.

    1997-09-01

    This report documents the Composite Analysis (CA) performed on the two active Savannah River Site (SRS) low-level radioactive waste (LLW) disposal facilities. The facilities are the Z-Area Saltstone Disposal Facility and the E-Area Vaults (EAV) Disposal Facility. The analysis calculated potential releases to the environment from all sources of residual radioactive material expected to remain in the General Separations Area (GSA). The GSA is the central part of SRS and contains all of the waste disposal facilities, chemical separations facilities and associated high-level waste storage facilities as well as numerous other sources of radioactive material. The analysis considered 114 potentialmore » sources of radioactive material containing 115 radionuclides. The results of the CA clearly indicate that continued disposal of low-level waste in the saltstone and EAV facilities, consistent with their respective radiological performance assessments, will have no adverse impact on future members of the public.« less

  10. Wicked Waste: Helping Numeracy in the Primary Classroom

    ERIC Educational Resources Information Center

    Yoxon, Mark

    2002-01-01

    "Wicked Waste" is a powerful teaching resource and four tools in one: (1) It complements literacy and numeracy teaching for KS2/attainment levels D & E using 20 minute interactive teaching modules; (2) It manages time and, with its intelligent programming, complexity of questions; (3) It provides diagnostic information for the…

  11. The status of LILW disposal facility construction in Korea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Min-Seok; Chung, Myung-Sub; Park, Kyu-Wan

    2013-07-01

    In this paper, we discuss the experiences during the construction of the first LILW disposal facility in South Korea. In December 2005, the South Korean Government designated Gyeongju-city as a host city of Low- and Intermediate-Level Radioactive Waste(LILW) disposal site through local referendums held in regions whose local governments had applied to host disposal facility in accordance with the site selection procedures. The LILW disposal facility is being constructed in Bongilri, Yangbuk-myeon, Gyeongju. The official name of the disposal facility is called 'Wolsong Low and Intermediate Level Radioactive Waste Disposal Center (LILW Disposal Center)'. It can dispose of 800,000 drumsmore » of radioactive wastes in a site of 2,100,000 square meters. At the first stage, LILW repository of underground silo type with disposal capacity of 100,000 drums is under construction expected to be completed by June of 2014. The Wolsong Low and Intermediate Level Radioactive Waste Disposal Center consists of surface facilities and underground facilities. The surface facilities include a reception and inspection facility, an interim storage facility, a radioactive waste treatment building, and supporting facilities such as main control center, equipment and maintenance shop. The underground facilities consist of a construction tunnel for transport of construction equipment and materials, an operation tunnel for transport of radioactive waste, an entrance shaft for workers, and six silos for final disposal of radioactive waste. As of Dec. 2012, the overall project progress rate is 93.8%. (authors)« less

  12. International Approaches for Nuclear Waste Disposal in Geological Formations: Report on Fifth Worldwide Review

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Faybishenko, Boris; Birkholzer, Jens; Persoff, Peter

    2016-08-01

    An important issue for present and future generations is the final disposal of spent nuclear fuel. Over the past over forty years, the development of technologies to isolate both spent nuclear fuel (SNF) and other high-level nuclear waste (HLW) generated at nuclear power plants and from production of defense materials, and low- and intermediate-level nuclear waste (LILW) in underground rock and sediments has been found to be a challenging undertaking. Finding an appropriate solution for the disposal of nuclear waste is an important issue for protection of the environment and public health, and it is a prerequisite for the futuremore » of nuclear power. The purpose of a deep geological repository for nuclear waste is to provide to future generations, protection against any harmful release of radioactive material, even after the memory of the repository may have been lost, and regardless of the technical knowledge of future generations. The results of a wide variety of investigations on the development of technology for radioactive waste isolation from 19 countries were published in the First Worldwide Review in 1991 (Witherspoon, 1991). The results of investigations from 26 countries were published in the Second Worldwide Review in 1996 (Witherspoon, 1996). The results from 32 countries were summarized in the Third Worldwide Review in 2001 (Witherspoon and Bodvarsson, 2001). The last compilation had results from 24 countries assembled in the Fourth Worldwide Review (WWR) on radioactive waste isolation (Witherspoon and Bodvarsson, 2006). Since publication of the last report in 2006, radioactive waste disposal approaches have continued to evolve, and there have been major developments in a number of national geological disposal programs. Significant experience has been obtained both in preparing and reviewing cases for the operational and long-term safety of proposed and operating repositories. Disposal of radioactive waste is a complex issue, not only because of the nature of the waste, but also because of the detailed regulatory structure for dealing with radioactive waste, the variety of stakeholders involved, and (in some cases) the number of regulatory entities involved.« less

  13. EM-21 Retrieval Knowledge Center: Waste Retrieval Challenges

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellinger, Andrew P.; Rinker, Michael W.; Berglin, Eric J.

    EM-21 is the Waste Processing Division of the Office of Engineering and Technology, within the U.S. Department of Energy’s (DOE) Office of Environmental Management (EM). In August of 2008, EM-21 began an initiative to develop a Retrieval Knowledge Center (RKC) to provide the DOE, high level waste retrieval operators, and technology developers with centralized and focused location to share knowledge and expertise that will be used to address retrieval challenges across the DOE complex. The RKC is also designed to facilitate information sharing across the DOE Waste Site Complex through workshops, and a searchable database of waste retrieval technology information.more » The database may be used to research effective technology approaches for specific retrieval tasks and to take advantage of the lessons learned from previous operations. It is also expected to be effective for remaining current with state-of-the-art of retrieval technologies and ongoing development within the DOE Complex. To encourage collaboration of DOE sites with waste retrieval issues, the RKC team is co-led by the Savannah River National Laboratory (SRNL) and the Pacific Northwest National Laboratory (PNNL). Two RKC workshops were held in the Fall of 2008. The purpose of these workshops was to define top level waste retrieval functional areas, exchange lessons learned, and develop a path forward to support a strategic business plan focused on technology needs for retrieval. The primary participants involved in these workshops included retrieval personnel and laboratory staff that are associated with Hanford and Savannah River Sites since the majority of remaining DOE waste tanks are located at these sites. This report summarizes and documents the results of the initial RKC workshops. Technology challenges identified from these workshops and presented here are expected to be a key component to defining future RKC-directed tasks designed to facilitate tank waste retrieval solutions.« less

  14. Ageing management program for the Spanish low and intermediate level waste disposal and spent fuel and high-level waste centralised storage facilities

    NASA Astrophysics Data System (ADS)

    Zuloaga, P.; Ordoñez, M.; Andrade, C.; Castellote, M.

    2011-04-01

    The generic design of the centralised spent fuel storage facility was approved by the Spanish Safety Authority in 2006. The planned operational life is 60 years, while the design service life is 100 years. Durability studies and surveillance of the behaviour have been considered from the initial design steps, taking into account the accessibility limitations and temperatures involved. The paper presents an overview of the ageing management program set in support of the Performance Assessment and Safety Review of El Cabril low and intermediate level waste (LILW) disposal facility. Based on the experience gained for LILW, ENRESA has developed a preliminary definition of the Ageing Management Plan for the Centralised Interim Storage Facility of spent Fuel and High Level Waste (HLW), which addresses the behaviour of spent fuel, its retrievability, the confinement system and the reinforced concrete structure. It includes tests plans and surveillance design considerations, based on the El Cabril LILW disposal facility.

  15. On-site low level radwaste storage facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Knauss, C.H.; Gardner, D.A.

    1993-12-31

    This paper will explore several storage and processing technologies that are available for the safe storage of low-level waste, their advantages and their limitations such that potential users may be able to determine which technology may be most appropriate for their particular application. Also, a brief discussion will be included on available types of shipping and disposal containers and waste forms for use in those containers when ready for ultimate disposal. For the purposes of this paper, the waste streams considered will be restricted to nuclear power plant wastes. Wastes that will be discussed are powdered and bead resins formore » cooling and reactor water clean-up, filter cartridges, solidified waste oils, and Dry Active Wastes (DAW), which consist of contaminated clothing, tools, respirator filters, etc. On-site storage methods that will be analyzed include a storage facility constructed of individual temporary shielded waste containers on a hard surface; an on-site, self contained low level radwaste facility for resins and filters; and an on-site storage and volume reduction facility for resins and filters; and an on-site DAW. Simple, warehouse-type buildings and pre-engineered metal buildings will be discussed only to a limited degree since dose rate projections can be high due to their lack of adequate shielding for radiation protection. Waste processing alternatives that will be analyzed for resins include dewatering, solidifying in Portland cement, solidifying in bituminous material, and solidifying in a vinyl ester styrene matrix. The storage methods describes will be analyzed for their ability to shield the populace from the effects of direct transmission and skyshine radiation when storing the above mentioned materials, which have been properly processed for storage and have been placed in suitable storage containers.« less

  16. Summary of Uranium Solubility Studies in Concrete Waste Forms and Vadose Zone Environments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Golovich, Elizabeth C.; Wellman, Dawn M.; Serne, R. Jeffrey

    2011-09-30

    One of the methods being considered for safely disposing of Category 3 low-level radioactive wastes is to encase the waste in concrete. Concrete encasement would contain and isolate the waste packages from the hydrologic environment and act as an intrusion barrier. The current plan for waste isolation consists of stacking low-level waste packages on a trench floor, surrounding the stacks with reinforced steel, and encasing these packages in concrete. These concrete-encased waste stacks are expected to vary in size with maximum dimensions of 6.4 m long, 2.7 m wide, and 4 m high. The waste stacks are expected to havemore » a surrounding minimum thickness of 15 cm of concrete encasement. These concrete-encased waste packages are expected to withstand environmental exposure (solar radiation, temperature variations, and precipitation) until an interim soil cover or permanent closure cover is installed and to remain largely intact thereafter. Any failure of concrete encasement may result in water intrusion and consequent mobilization of radionuclides from the waste packages. This report presents the results of investigations elucidating the uranium mineral phases controlling the long-term fate of uranium within concrete waste forms and the solubility of these phases in concrete pore waters and alkaline, circum-neutral vadose zone environments.« less

  17. Waste minimization for commercial radioactive materials users generating low-level radioactive waste. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  18. Waste minimization for commercial radioactive materials users generating low-level radioactive waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fischer, D.K.; Gitt, M.; Williams, G.A.

    1991-07-01

    The objective of this document is to provide a resource for all states and compact regions interested in promoting the minimization of low-level radioactive waste (LLW). This project was initiated by the Commonwealth of Massachusetts, and Massachusetts waste streams have been used as examples; however, the methods of analysis presented here are applicable to similar waste streams generated elsewhere. This document is a guide for states/compact regions to use in developing a system to evaluate and prioritize various waste minimization techniques in order to encourage individual radioactive materials users (LLW generators) to consider these techniques in their own independent evaluations.more » This review discusses the application of specific waste minimization techniques to waste streams characteristic of three categories of radioactive materials users: (1) industrial operations using radioactive materials in the manufacture of commercial products, (2) health care institutions, including hospitals and clinics, and (3) educational and research institutions. Massachusetts waste stream characterization data from key radioactive materials users in each category are used to illustrate the applicability of various minimization techniques. The utility group is not included because extensive information specific to this category of LLW generators is available in the literature.« less

  19. PIC-container for containment and disposal of low and intermediate level radioactive wastes

    NASA Astrophysics Data System (ADS)

    Araki, K.; Shinji, Y.; Maki, Y.; Ishizaki, K.; Minegishi, K.; Sudoh, G.

    1981-03-01

    Steel fiber reinforced polymer impregnated concrete (SFPIC) was investigated for low and intermediate level radioactive waste containers. The 60 L and 200 L containers were designed as pressure container (without equalizer) for 500 kg/square cm and 700 kg/square cm. Polymerization of impregnated methylmethacrylate monomer was performed by 60 Co-gamma ray radiation and thermal catalytic polymerization respectively. Under the loading of 500 kg/square cm and 700 kg/square cm-outside hydraulic pressure, these containers were kept in their good condition. The observed maximum strains were about .001380 and .003950 at the outside central position of container body for circumferential direction of the 60 L and 200 L container, respectively. The containers were immersed in deionized water for 400 days, nuclides were not leached from the container. The SFPIC container was suitable for containment and disposal of low and intermediate level radioactive wastes.

  20. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA

    PubMed Central

    Lapakko, Kim A.; Wenz, Zachary J.; Olson, Michael C.; Roepke, Elizabeth W.; Novak, Paige J.; Bailey, Jake V.

    2017-01-01

    ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. PMID:28600313

  1. Novel Microbial Assemblages Dominate Weathered Sulfide-Bearing Rock from Copper-Nickel Deposits in the Duluth Complex, Minnesota, USA.

    PubMed

    Jones, Daniel S; Lapakko, Kim A; Wenz, Zachary J; Olson, Michael C; Roepke, Elizabeth W; Sadowsky, Michael J; Novak, Paige J; Bailey, Jake V

    2017-08-15

    The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula , as well as from diverse clades of uncultivated Chloroflexi , Acidobacteria , and Betaproteobacteria Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits. Copyright © 2017 American Society for Microbiology.

  2. Ceramization of low and intermediate level radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fiquet, O.; Berson, X.

    1993-12-31

    A ceramic conditioning is studied for a large variety of low and intermediate level wastes. These wastes arise from several waste streams coming from all process steps of the fuel cycle. The physical properties of ceramics can advantageously be used for radioactive waste immobilization. Their chemical durability can offer a barrier against external aggression. More over, some minerals have possible host sites in their crystal structure for heavy elements which can confer the best immobilization mechanism. The general route for development studies is described giving compositions and process choices. Investigations have been conducted on clay materials and on the processmore » parameters which condition the final product properties. Two practical examples are described concerning chemical precipitation sludge resulting from liquid waste treatment and chamot used as a fluidized bed in a graphite incinerator. Important process parameters are put in evidence and the possibility of a pilot plant development is briefly mentioned. Results of investigations are promising to define a new route of conditioning.« less

  3. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, Robert C. W.

    1994-01-01

    An apparatus for incinerating wastes, including an incinerator having a combustion chamber, a fluidtight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC (about 1" WC) higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes.

  4. Apparatus for incinerating hazardous waste

    DOEpatents

    Chang, R.C.W.

    1994-12-20

    An apparatus is described for incinerating wastes, including an incinerator having a combustion chamber, a fluid-tight shell enclosing the combustion chamber, an afterburner, an off-gas particulate removal system and an emergency off-gas cooling system. The region between the inner surface of the shell and the outer surface of the combustion chamber forms a cavity. Air is supplied to the cavity and heated as it passes over the outer surface of the combustion chamber. Heated air is drawn from the cavity and mixed with fuel for input into the combustion chamber. The pressure in the cavity is maintained at least approximately 2.5 cm WC higher than the pressure in the combustion chamber. Gases cannot leak from the combustion chamber since the pressure outside the chamber (inside the cavity) is higher than the pressure inside the chamber. The apparatus can be used to treat any combustible wastes, including biological wastes, toxic materials, low level radioactive wastes, and mixed hazardous and low level transuranic wastes. 1 figure.

  5. Robotics for mixed waste operations, demonstration description

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ward, C.R.

    The Department of Energy (DOE) Office of Technology Development (OTD) is developing technology to aid in the cleanup of DOE sites. Included in the OTD program are the Robotics Technology Development Program and the Mixed Waste Integrated Program. These two programs are working together to provide technology for the cleanup of mixed waste, which is waste that has both radioactive and hazardous constituents. There are over 240,000 cubic meters of mixed low level waste accumulated at DOE sites and the cleanup is expected to generate about 900,000 cubic meters of mixed low level waste over the next five years. Thismore » waste must be monitored during storage and then treated and disposed of in a cost effective manner acceptable to regulators and the states involved. The Robotics Technology Development Program is developing robotics technology to make these tasks safer, better, faster and cheaper through the Mixed Waste Operations team. This technology will also apply to treatment of transuranic waste. The demonstration at the Savannah River Site on November 2-4, 1993, showed the progress of this technology by DOE, universities and industry over the previous year. Robotics technology for the handling, characterization and treatment of mixed waste as well robotics technology for monitoring of stored waste was demonstrated. It was shown that robotics technology can make future waste storage and waste treatment facilities better, faster, safer and cheaper.« less

  6. Technical information report: Plasma melter operation, reliability, and maintenance analysis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hendrickson, D.W.

    1995-03-14

    This document provides a technical report of operability, reliability, and maintenance of a plasma melter for low-level waste vitrification, in support of the Hanford Tank Waste Remediation System (TWRS) Low-Level Waste (LLW) Vitrification Program. A process description is provided that minimizes maintenance and downtime and includes material and energy balances, equipment sizes and arrangement, startup/operation/maintence/shutdown cycle descriptions, and basis for scale-up to a 200 metric ton/day production facility. Operational requirements are provided including utilities, feeds, labor, and maintenance. Equipment reliability estimates and maintenance requirements are provided which includes a list of failure modes, responses, and consequences.

  7. Environmental assessment, finding of no significant impact, and response to comments. Radioactive waste storage

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The Department of Energy`s (DOE) Rocky Flats Environmental Technology Site (the Site), formerly known as the Rocky Flats Plant, has generated radioactive, hazardous, and mixed waste (waste with both radioactive and hazardous constituents) since it began operations in 1952. Such wastes were the byproducts of the Site`s original mission to produce nuclear weapons components. Since 1989, when weapons component production ceased, waste has been generated as a result of the Site`s new mission of environmental restoration and deactivation, decontamination and decommissioning (D&D) of buildings. It is anticipated that the existing onsite waste storage capacity, which meets the criteria for low-levelmore » waste (LL), low-level mixed waste (LLM), transuranic (TRU) waste, and TRU mixed waste (TRUM) would be completely filled in early 1997. At that time, either waste generating activities must cease, waste must be shipped offsite, or new waste storage capacity must be developed.« less

  8. Technical and economic evaluation of controlled disposal options for very low level radioactive wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Robinson, P.J.; Vance, J.N.

    1990-08-01

    Over the past several years, there has been considerable interest by the nuclear industry in the Nuclear Regulatory Commission (NRC) explicitly defined an activity level in plant waste materials at which the radiological impacts would be so low as to be considered Below Regulatory Concern (BRC). In January 1989, Electric Power Research Institute (EPRI) completed an extensive industry research effort to develop the technical bases for establishing criteria for the disposal of very low activity wastes in ordinary disposal facilities. The Nuclear Management and Resources Council (NUMARC), with assistance from the Edison Electric Institute (EEI) and the Electric Power Researchmore » Institute (EPRI), drafted a petition titled: Petition for Rulemaking Regarding Disposal of Below Regulatory Concern Radioactive Wastes from Commercial Nuclear Power Plants.'' Subsequent to the industry making a final decision for submittal of the drafted BRC petition, EPRI was requested to evaluate the technical and economic impact of six BRC options. These options are: take no action in pursuing a BRC waste exemption, petition the NRC for authorization to disposal of any BRC waste in any ordinary disposal facility, limit disposal of BRC waste to the nuclear power plant site, limit disposal of BRC waste to the nuclear power plant site and other utility owned property, petition for a mixed waste exemption, and petition for single waste stream exemptions in sequence (i.e. soil, followed by sewage sludge, etc.). The petition and technical bases were written to support the disposal of any BRC waste type in any ordinary disposal facility. These documents do not provide all of the technical and economic information needed to completely assessment the BRC options. This report provides the technical and economic basis for a range of options concerning disposal of very low activity wastes. 3 figs., 20 tabs.« less

  9. Agricultural waste material as potential adsorbent for sequestering heavy metal ions from aqueous solutions - a review.

    PubMed

    Sud, Dhiraj; Mahajan, Garima; Kaur, M P

    2008-09-01

    Heavy metal remediation of aqueous streams is of special concern due to recalcitrant and persistency of heavy metals in environment. Conventional treatment technologies for the removal of these toxic heavy metals are not economical and further generate huge quantity of toxic chemical sludge. Biosorption is emerging as a potential alternative to the existing conventional technologies for the removal and/or recovery of metal ions from aqueous solutions. The major advantages of biosorption over conventional treatment methods include: low cost, high efficiency, minimization of chemical or biological sludge, regeneration of biosorbents and possibility of metal recovery. Cellulosic agricultural waste materials are an abundant source for significant metal biosorption. The functional groups present in agricultural waste biomass viz. acetamido, alcoholic, carbonyl, phenolic, amido, amino, sulphydryl groups etc. have affinity for heavy metal ions to form metal complexes or chelates. The mechanism of biosorption process includes chemisorption, complexation, adsorption on surface, diffusion through pores and ion exchange etc. The purpose of this review article is to provide the scattered available information on various aspects of utilization of the agricultural waste materials for heavy metal removal. Agricultural waste material being highly efficient, low cost and renewable source of biomass can be exploited for heavy metal remediation. Further these biosorbents can be modified for better efficiency and multiple reuses to enhance their applicability at industrial scale.

  10. Integrated software system for low level waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Worku, G.

    1995-12-31

    In the continually changing and uncertain world of low level waste management, many generators in the US are faced with the prospect of having to store their waste on site for the indefinite future. This consequently increases the set of tasks performed by the generators in the areas of packaging, characterizing, classifying, screening (if a set of acceptance criteria applies), and managing the inventory for the duration of onsite storage. When disposal sites become available, it is expected that the work will require re-evaluating the waste packages, including possible re-processing, re-packaging, or re-classifying in preparation for shipment for disposal undermore » the regulatory requirements of the time. In this day and age, when there is wide use of computers and computer literacy is at high levels, an important waste management tool would be an integrated software system that aids waste management personnel in conducting these tasks quickly and accurately. It has become evident that such an integrated radwaste management software system offers great benefits to radwaste generators both in the US and other countries. This paper discusses one such approach to integrated radwaste management utilizing some globally accepted radiological assessment software applications.« less

  11. Integrated data base report--1996: US spent nuclear fuel and radioactive waste inventories, projections, and characteristics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-12-01

    The Integrated Data Base Program has compiled historic data on inventories and characteristics of both commercial and U.S. Department of Energy (DOE) spent nuclear fuel (SNF) and commercial and U.S. government-owned radioactive wastes. Inventories of most of these materials are reported as of the end of fiscal year (FY) 1996, which is September 30, 1996. Commercial SNF and commercial uranium mill tailings inventories are reported on an end-of-calendar year (CY) basis. All SNF and radioactive waste data reported are based on the most reliable information available from government sources, the open literature, technical reports, and direct contacts. The information forecastedmore » is consistent with the latest DOE/Energy Information Administration (EIA) projections of U.S. commercial nuclear power growth and the expected DOE-related and private industrial and institutional activities. The radioactive materials considered, on a chapter-by-chapter basis, are SNF, high-level waste, transuranic waste, low-level waste, uranium mill tailings, DOE Environmental Restoration Program contaminated environmental media, naturally occurring and accelerator-produced radioactive material, and mixed (hazardous and radioactive) low-level waste. For most of these categories, current and projected inventories are given through FY 2030, and the radioactivity and thermal power are calculated based on reported or estimated isotopic compositions.« less

  12. IN-PACKAGE CHEMISTRY ABSTRACTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    E. Thomas

    2005-07-14

    This report was developed in accordance with the requirements in ''Technical Work Plan for Postclosure Waste Form Modeling'' (BSC 2005 [DIRS 173246]). The purpose of the in-package chemistry model is to predict the bulk chemistry inside of a breached waste package and to provide simplified expressions of that chemistry as a function of time after breach to Total Systems Performance Assessment for the License Application (TSPA-LA). The scope of this report is to describe the development and validation of the in-package chemistry model. The in-package model is a combination of two models, a batch reactor model, which uses the EQ3/6more » geochemistry-modeling tool, and a surface complexation model, which is applied to the results of the batch reactor model. The batch reactor model considers chemical interactions of water with the waste package materials, and the waste form for commercial spent nuclear fuel (CSNF) waste packages and codisposed (CDSP) waste packages containing high-level waste glass (HLWG) and DOE spent fuel. The surface complexation model includes the impact of fluid-surface interactions (i.e., surface complexation) on the resulting fluid composition. The model examines two types of water influx: (1) the condensation of water vapor diffusing into the waste package, and (2) seepage water entering the waste package as a liquid from the drift. (1) Vapor-Influx Case: The condensation of vapor onto the waste package internals is simulated as pure H{sub 2}O and enters at a rate determined by the water vapor pressure for representative temperature and relative humidity conditions. (2) Liquid-Influx Case: The water entering a waste package from the drift is simulated as typical groundwater and enters at a rate determined by the amount of seepage available to flow through openings in a breached waste package.« less

  13. Study of microbial community and biodegradation efficiency for single- and two-phase anaerobic co-digestion of brown water and food waste.

    PubMed

    Lim, J W; Chen, C-L; Ho, I J R; Wang, J-Y

    2013-11-01

    The objective of this work was to study the microbial community and reactor performance for the anaerobic co-digestion of brown water and food waste in single- and two-phase continuously stirred tank reactors (CSTRs). Bacterial and archaeal communities were analyzed after 150 days of reactor operation. As compared to single-phase CSTR, methane production in two-phase CSTR was found to be 23% higher. This was likely due to greater extent of solubilization and acidification observed in the latter. These findings could be attributed to the predominance of Firmicutes and greater bacterial diversity in two-phase CSTR, and the lack of Firmicutes in single-phase CSTR. Methanosaeta was predominant in both CSTRs and this correlated to low levels of acetate in their effluent. Insights gained from this study would enhance the understanding of microorganisms involved in co-digestion of brown water and food waste as well as the complex biochemical interactions promoting digester stability and performance. Copyright © 2013 Elsevier Ltd. All rights reserved.

  14. The Low-Level Radioactive Waste Management Office: Thirty Years of Experience in Canada - 13308

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benitez, Liliana; Gardiner, Mark J.; Zelmer, Robert L.

    2013-07-01

    This paper reviews thirty years of progress by the Low-Level Radioactive Waste Management Office (LLRWMO) in developing and implementing low-level radioactive waste (LLRW) remediation projects and environmentally safe co-existence strategies. It reports on the present status and the future of the national historic waste program in Canada. There are over two million cubic metres of historic LLRW in Canada. Historic LLRW is broadly defined as LLRW that was managed in the past in a manner that is no longer considered acceptable and for which the original owner cannot reasonably be held accountable. In many cases, the original owner can notmore » be identified or no longer exists. The LLRWMO was established in 1982 as Canada's agent to carry out the responsibilities of the federal government for the management of historic LLRW. The LLRWMO is operated by Atomic Energy of Canada Limited (AECL) through a cost-recovery agreement with Natural Resources Canada (NRCan), the federal department that provides the funding and establishes national policy for radioactive waste management in Canada. The LLRWMO expertise includes project managers, environmental remediation specialists, radiation surveyors, communications staff and administrative support staff. The LLRWMO in providing all aspects of project oversight and implementation contracts additional resources supplementing core staff capacity as project/program demands require. (authors)« less

  15. Evapotranspiration Cover for the 92-Acre Area Retired Mixed Waste Pits, Area 5 Waste Management Division, Nevada National Security Site, Final CQA Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NSTec Environmental Management; The Delphi Groupe, Inc.; J. A. Cesare and Associates, Inc.

    The report is the Final Construction Quality Assurance (CQA) Report for the 92-Acrew Evapotranspiration Cover, Area 5 Waste Management Division Retired Mixed Waste Pits, Nevada National Security Site, Nevada, for the period of January 20, 2011, to January 31, 2012 The Area 5 RWMS uses engineered shallow-land burial cells to dispose of packaged waste. The 92-Acre Area encompasses the southern portion of the Area 5 RWMS, which has been designated for the first final closure operations. This area contains 13 Greater Confinement Disposal (GCD) boreholes, 16 narrow trenches, and 9 broader pits. With the exception of two active pits (P03more » and P06), all trenches and pits in the 92-Acre Area had operational covers approximately 2.4 meters thick, at a minimum, in most areas when this project began. The units within the 92-Acre Area are grouped into the following six informal categories based on physical location, waste types and regulatory requirements: (1) Pit 3 Mixed Waste Disposal Unit (MWDU); (2) Corrective Action Unit (CAU) 111; (3) CAU 207; (4) Low-level waste disposal units; (5) Asbestiform low-level waste disposal units; and (6) One transuranic (TRU) waste trench.« less

  16. EM-31 RETRIEVAL KNOWLEDGE CENTER MEETING REPORT: MOBILIZE AND DISLODGE TANK WASTE HEELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fellinger, A.

    2010-02-16

    The Retrieval Knowledge Center sponsored a meeting in June 2009 to review challenges and gaps to retrieval of tank waste heels. The facilitated meeting was held at the Savannah River Research Campus with personnel broadly representing tank waste retrieval knowledge at Hanford, Savannah River, Idaho, and Oak Ridge. This document captures the results of this meeting. In summary, it was agreed that the challenges to retrieval of tank waste heels fell into two broad categories: (1) mechanical heel waste retrieval methodologies and equipment and (2) understanding and manipulating the heel waste (physical, radiological, and chemical characteristics) to support retrieval optionsmore » and subsequent processing. Recent successes and lessons from deployments of the Sand and Salt Mantis vehicles as well as retrieval of C-Area tanks at Hanford were reviewed. Suggestions to address existing retrieval approaches that utilize a limited set of tools and techniques are included in this report. The meeting found that there had been very little effort to improve or integrate the multiple proven or new techniques and tools available into a menu of available methods for rapid insertion into baselines. It is recommended that focused developmental efforts continue in the two areas underway (low-level mixing evaluation and pumping slurries with large solid materials) and that projects to demonstrate new/improved tools be launched to outfit tank farm operators with the needed tools to complete tank heel retrievals effectively and efficiently. This document describes the results of a meeting held on June 3, 2009 at the Savannah River Site in South Carolina to identify technology gaps and potential technology solutions to retrieving high-level waste (HLW) heels from waste tanks within the complex of sites run by the U. S. Department of Energy (DOE). The meeting brought together personnel with extensive tank waste retrieval knowledge from DOE's four major waste sites - Hanford, Savannah River, Idaho, and Oak Ridge. The meeting was arranged by the Retrieval Knowledge Center (RKC), which is a technology development project sponsored by the Office of Technology Innovation & Development - formerly the Office of Engineering and Technology - within the DOE Office of Environmental Management (EM).« less

  17. Radioactive waste management and practice in Bangladesh

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.; Rahman, M.M.

    1993-12-31

    A large amount of low- and medium-level radioactive wastes are being generated in different parts of Bangladesh. The solid wastes are being collected in steel containers and liquid wastes are collected in plastic carboys and drums. Gaseous Ar-41 is discharged into the atmosphere through the 25 m height stack under controlled conditions after proper monitoring. The solid radioactive wastes collected are approximately 5 m{sup 3} (1988--1992) with gross beta-gamma surface dose rates from 0.30 {micro}Sv/h to 250 {micro}Sv/h. The liquid radioactive wastes are approximately 200 liters (1988--1992) with gross-beta-gamma surface dose rates from 0.30 {micro}Sv/h to 1 mSv/h. The solidmore » and liquid wastes presently being collected are mostly short lived and low level and safely stored according to international safety codes of practice. Radioactive waste packages collected during the 5-yrs study totaled 16, representing a collective volume of {approximately} 7.5 m{sup 3}. The problem of management of radioactive waste in Bangladesh is not so serious at present because the wastes arising are small now. A computerized data base has been developed to document inventory of all radioactive waste arising in the country. The current practices of collection, handling, safe storage and management of the radioactive wastes are reported in this paper.« less

  18. LANL OPERATING EXPERIENCE WITH THE WAND AND HERCULES PROTOTYPE SYSTEMS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    K. M. GRUETZMACHER; C. L. FOXX; S. C. MYERS

    2000-09-01

    The Waste Assay for Nonradioactive Disposal (WAND) and the High Efficiency Radiation Counters for Ultimate Low Emission Sensitivity (HERCULES) prototype systems have been operating at Los Alamos National Laboratory's (LANL's) Solid Waste Operation's (SWO'S) non-destructive assay (NDA) building since 1997 and 1998, respectively. These systems are the cornerstone of the verification program for low-density Green is Clean (GIC) waste at the Laboratory. GIC waste includes all non-regulated waste generated in radiological controlled areas (RCAS) that has been actively segregated as clean (i.e., nonradioactive) through the use of waste generator acceptable knowledge (AK). The use of this methodology alters LANL's pastmore » practice of disposing of all room trash generated in nuclear facilities in radioactive waste landfills. Waste that is verified clean can be disposed of at the Los Alamos County Landfill. It is estimated that 50-90% of the low-density room trash from radioactive material handling areas at Los Alamos might be free of contamination. This approach avoids the high cost of disposal of clean waste at a radioactive waste landfill. It also reduces consumption of precious space in the radioactive waste landfill where disposal of this waste provides no benefit to the public or the environment. Preserving low level waste (LLW) disposal capacity for truly radioactive waste is critical in this era when expanding existing radioactive waste landfills or permitting new ones is resisted by regulators and stakeholders. This paper describes the operating experience with the WAND and HERCULES since they began operation at SWO. Waste for verification by the WAND system has been limited so far to waste from the Plutonium Facility and the Solid Waste Operations Facility. A total of461 ft3 (13.1 m3) of low-density shredded waste and paper have been verified clean by the WAND system. The HERCULES system has been used to verify waste from four Laboratory facilities. These are the Solid Waste Operations Facility, the TA-48 Chemistry Facility, the Shops Facility, and the Environmental Facility. A total of 3150 ft3 (89.3 m3) of low-density waste has been verified clean by the HERCULES system.« less

  19. Preliminary safety concept for disposal of the very low level radioactive waste in Romania.

    PubMed

    Niculae, O; Andrei, V; Ionita, G; Duliu, O G

    2009-05-01

    In Romania, there are certain nuclear installations in operation or under decommissioning, all of them representing an important source of very low level waste (VLLW). This paper presents an overview on the approach of the VLLW management in Romania, focused on those resulted from the nuclear power plants decommissioning. At the same time, the basic elements of safety concept, together with some safety evaluations concerning VLLW repository are presented and discussed too.

  20. Remote Sensing Combined with Field Spectroscopy for the Detection and Monitoring of Heavy Metal Contamination from Informal E-waste Recycling

    NASA Astrophysics Data System (ADS)

    Friedlander, L. R.; Garb, Y.

    2017-12-01

    Electronic waste (e-waste) is one of today's fastest growing waste streams. Made up of discarded electronics, e-waste disposal is complex. However, e-waste also provides economic opportunity through the processing and extraction of precious metals. Sometimes referred to as "urban mining," this recycling operates informally or illegally and is characterized by dangerous practices such as, open-pit burning, acid leaching, and burning of low value wastes. Poorly controlled e-waste recycling releases dangerous contaminants, especially heavy metals, directly to the surface environment where they can infiltrate water resources and spread through precipitation events. Despite growing recognition of the prevalence of unregulated e-waste processing, systematic data on the extent and persistence of the released contamination is still limited. In general, contamination is established through techniques that provide only a snapshot in time and in a limited geographic area. Here we present preliminary results from attempts to combine field, laboratory, and remote sensing studies toward a systematic remote sensing methodology for e-waste contamination detection and monitoring. The ongoing work utilizes a tragic "natural experiment," in which over 500 e-waste burn sites were active over more than a decade in a variety of agricultural, residential, and natural contexts. We have collected over 100 soil samples for which we have both XRF and ICP-AES measurements showing soil Pb concentrations as high as 14000 ppm. We have also collected 480 in-situ reflectance spectra with corresponding soil samples over 4 field transects of areas with long-term burn activity. The most heavily contaminated samples come from within the burn sites and are made up of ash. Field spectra of these samples reflect their dark color with low overall reflectance and shallow spectral features. These spectra are challenging to use for image classification due to their similarity with other low-reflectance parts of the image (e.g., shadows). We have begun to distinguish shadows from the dark burn site centers by automatically detecting and masking shadows. This will allow us to utilize images taken at different times and our in-situ field spectral results to develop a method for monitoring contaminant spread from these complex point sources.

  1. 40 CFR 266.345 - Whom must you notify?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... FACILITIES Conditional Exemption for Low-Level Mixed Waste Storage, Treatment, Transportation and Disposal....340 prior to disposal in order for the waste to remain exempt under the transportation and disposal...

  2. Radioactive waste management in Poland status and strategy for the future

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wlodarski, J.

    1995-12-01

    Site selection for a new radioactive waste repository in Poland has been started. The repository will contain low- and intermediate-level radioactive wastes and spent fuel. Superficial, shallow underground and deep underground disposal options were considered; 39 potential sites have been selected. Issues to be resolved regarding waste management in Poland are also outlined in this paper.

  3. Glasses for immobilization of low- and intermediate-level radioactive waste

    NASA Astrophysics Data System (ADS)

    Laverov, N. P.; Omel'yanenko, B. I.; Yudintsev, S. V.; Stefanovsky, S. V.; Nikonov, B. S.

    2013-03-01

    Reprocessing of spent nuclear fuel (SNF) for recovery of fissionable elements is a precondition of long-term development of nuclear energetics. Solution of this problem is hindered by the production of a great amount of liquid waste; 99% of its volume is low- and intermediate-level radioactive waste (LILW). The volume of high-level radioactive waste (HLW), which is characterized by high heat release, does not exceed a fraction of a percent. Solubility of glasses at an elevated temperature makes them unfit for immobilization of HLW, the insulation of which is ensured only by mineral-like matrices. At the same time, glasses are a perfect matrix for LILW, which are distinguished by low heat release. The solubility of borosilicate glass at a low temperature is so low that even a glass with relatively low resistance enables them to retain safety of under-ground LILW depositories without additional engineering barriers. The optimal technology of liquid confinement is their concentration and immobilization in borosilicate glasses, which are disposed in shallow-seated geological repositories. The vitrification of 1 m3 liquid LILW with a salt concentration of ˜300 kg/m3 leaves behind only 0.2 m3 waste, that is, 4-6 times less than by bitumen impregnation and 10 times less than by cementation. Environmental and economic advantages of LILW vitrification result from (1) low solubility of the vitrified LILW in natural water; (2) significant reduction of LILW volume; (3) possibility to dispose the vitrified waste without additional engineering barriers under shallow conditions and in diverse geological media; (4) the strength of glass makes its transportation and storage possible; and finally (5) reliable longterm safety of repositories. When the composition of the glass matrix for LILW is being chosen, attention should be paid to the factors that ensure high technological and economic efficiency of vitrification. The study of vitrified LILW from the Kursk nuclear power plant with high-power channel reactors (HPCR; equivalent Russian acronym, RBMK) and the Kalinin nuclear power plant with pressurized water reactors (PWR; equivalent Russian acronym VVER) after their 14-yr storage in the shallow-seated repository at the MosNPO Radon testing ground has confirmed the safety of repositories ensured by confinement properties of borosilicate matrix. The most efficient vitrification technology is based on cold crucible induction melting. If the content of a chemical element in waste exceeds its solubility in glass, a crystalline phase is formed in the course of vitrification, so that the glass ceramics become a matrix for such waste. Vitrified waste with high Fe; Na and Al; Na, Fe, and Al; Na and B is characterized. The composition of frit and its proportion to waste depends on waste composition. This procedure requires careful laboratory testing.

  4. 75 FR 62040 - Hazardous Waste Management System; Identification and Listing of Hazardous Waste; Proposed Exclusion

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-07

    ... on- site in the pickle acid and low level radioactive wastewater treatment systems. Support... water production waste treatment system. Once- through non-contact cooling water does not require... production (deionized and make- up non-contact cooling water) treatment system and once through non- contact...

  5. Nevada Test Site Waste Acceptance Criteria (NTSWAC)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NNSA /NSO Waste Management Project

    This document establishes the U.S. Department of Energy, National Nuclear Security Administration Nevada Site Office, Nevada Test Site Waste Acceptance Criteria (NTSWAC). The NTSWAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive (LLW) and LLW Mixed Waste (MW) for disposal.

  6. Solid Waste Information Management System (SWIMS). Data summary, fiscal year 1980

    NASA Astrophysics Data System (ADS)

    Batchelder, H. M.

    1981-05-01

    The solid waste information management system (SWIMS) maintains computerized records on a master data base. It provides a comprehensive system for cataloging and assembling data into output reports. The SWIMS data base contains information on the transuranic (TRU) and low level waste (LLW) generated, buried, or stored.

  7. 40 CFR 60.32e - Designated facilities.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... modification was commenced on or before March 16, 1998. (2) For which construction was commenced after June 20, 1996 but no later than December 1, 2008, or for which modification is commenced after March 16, 1998... only pathological waste, low-level radioactive waste, and/or chemotherapeutic waste (all defined in...

  8. Controlling changes - lessons learned from waste management facilities

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johnson, B.M.; Koplow, A.S.; Stoll, F.E.

    This paper discusses lessons learned about change control at the Waste Reduction Operations Complex (WROC) and Waste Experimental Reduction Facility (WERF) of the Idaho National Engineering Laboratory (INEL). WROC and WERF have developed and implemented change control and an as-built drawing process and have identified structures, systems, and components (SSCS) for configuration management. The operations have also formed an Independent Review Committee to minimize costs and resources associated with changing documents. WROC and WERF perform waste management activities at the INEL. WROC activities include storage, treatment, and disposal of hazardous and mixed waste. WERF provides volume reduction of solid low-levelmore » waste through compaction, incineration, and sizing operations. WROC and WERF`s efforts aim to improve change control processes that have worked inefficiently in the past.« less

  9. Fluidized bed steam reformed mineral waste form performance testing to support Hanford Supplemental Low Activity Waste Immobilization Technology Selection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jantzen, C. M.; Pierce, E. M.; Bannochie, C. J.

    This report describes the benchscale testing with simulant and radioactive Hanford Tank Blends, mineral product characterization and testing, and monolith testing and characterization. These projects were funded by DOE EM-31 Technology Development & Deployment (TDD) Program Technical Task Plan WP-5.2.1-2010-001 and are entitled “Fluidized Bed Steam Reformer Low-Level Waste Form Qualification”, Inter-Entity Work Order (IEWO) M0SRV00054 with Washington River Protection Solutions (WRPS) entitled “Fluidized Bed Steam Reforming Treatability Studies Using Savannah River Site (SRS) Low Activity Waste and Hanford Low Activity Waste Tank Samples”, and IEWO M0SRV00080, “Fluidized Bed Steam Reforming Waste Form Qualification Testing Using SRS Low Activity Wastemore » and Hanford Low Activity Waste Tank Samples”. This was a multi-organizational program that included Savannah River National Laboratory (SRNL), THOR® Treatment Technologies (TTT), Pacific Northwest National Laboratory (PNNL), Oak Ridge National Laboratory (ORNL), Office of River Protection (ORP), and Washington River Protection Solutions (WRPS). The SRNL testing of the non-radioactive pilot-scale Fluidized Bed Steam Reformer (FBSR) products made by TTT, subsequent SRNL monolith formulation and testing and studies of these products, and SRNL Waste Treatment Plant Secondary Waste (WTP-SW) radioactive campaign were funded by DOE Advanced Remediation Technologies (ART) Phase 2 Project in connection with a Work-For-Others (WFO) between SRNL and TTT.« less

  10. A new method for the determination of Gadolinium in ppq levels

    NASA Astrophysics Data System (ADS)

    Brünjes, Robert; Bichler, Andrea; Hofmann, Thilo

    2015-04-01

    The use of Gadolinium (Gd) complexes as a contrast agent in Magnetic Resonance Imaging (MRI) results in an enhanced Gd input in the aquatic environment. Gd-complexes are excreted by humans unmetabolized within 12h after application. Passing the sewage systems with almost no degradation taking place, they successively reach surface waters, which make Gd a capable tracer for surface water/groundwater (SW/GW) interactions. The natural background concentration of Gd and other rare earth elements (REE) occur at ultratrace levels [low ng/L]. Crust-normalized REE patterns show positive Gd-anomalies in surface water, groundwater, and recently also in tap water. The difference between the total concentration and its natural background concentration estimated by the REE pattern is the anthropogenic Gd. Not only densely populated areas are affected by the presence of anthropogenic Gd. Studies have shown that even in rural areas without MRI facilities, anthropogenic Gd can be detected, since people are sent home after treatment. However, low input concentrations and mixing with natural waters lead to a decrease of Gd concentration below the current limit of quantification (LOQ) [1-5ng/L]. Often anthropogenic Gd cannot be calculated, although it is present, because natural background concentration cannot be determined with current methods, in particular in areas with low waste water load (e.g. headwater catchments). A new method using an on-line preconcentration system "SeaFAST" (Elemental Scientific Inc., USA), in combination with a desolvation system "Apex Q" (Elemental Scientific Inc., USA) and a QQQ-ICP-MS instrument (Agilent Technologies, Japan) does lower the LOQ for REE by a factor of 10 to 20. The SeaFAST-system uses a resin with ethylenediaminetriacetic acid and iminodiacetic acid functional groups to preconcentrate specifically REE as they are exclusively trivalent while anions, alkali and alkaline earth cations are washed out. The Apex Q interface is also supposed to significantly lower oxide interferences. We also evaluate a pretreatment in order to degrade the complexes and reach high recoveries of anthropogenic Gd. Our method will provide a determination of REE in ppq-levels, that significantly improves the differentiation between naturally and anthropogenic Gd. This will allow the detection of less than 1% waste water in SW and GW and finally increase the areas where studies of anthropogenic Gd could be conducted. A first application of our method was conducted during a field study in November 2014.

  11. Protocol for the E-Area Low Level Waste Facility Disposal Limits Database

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Swingle, R

    2006-01-31

    A database has been developed to contain the disposal limits for the E-Area Low Level Waste Facility (ELLWF). This database originates in the form of an EXCEL{copyright} workbook. The pertinent sheets are translated to PDF format using Adobe ACROBAT{copyright}. The PDF version of the database is accessible from the Solid Waste Division web page on SHRINE. In addition to containing the various disposal unit limits, the database also contains hyperlinks to the original references for all limits. It is anticipated that database will be revised each time there is an addition, deletion or revision of any of the ELLWF radionuclidemore » disposal limits.« less

  12. E-Area Low-Level Waste Facility Vadose Zone Model: Confirmation of Water Mass Balance for Subsidence Scenarios

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dyer, J. A.

    In preparation for the next revision of the E-Area Low-Level Waste Facility (LLWF) Performance Assessment (PA), a mass balance model was developed in Microsoft Excel to confirm correct implementation of intact- and subsided-area infiltration profiles for the proposed closure cap in the PORFLOW vadose-zone model. The infiltration profiles are based on the results of Hydrologic Evaluation of Landfill Performance (HELP) model simulations for both intact and subsided cases.

  13. Lid design for low level waste container

    DOEpatents

    Holbrook, R.H.; Keener, W.E.

    1995-02-28

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame. 6 figs.

  14. Lid design for low level waste container

    DOEpatents

    Holbrook, Richard H.; Keener, Wendell E.

    1995-01-01

    A container for low level waste includes a shell and a lid. The lid has a frame to which a planar member is welded. The lid frame includes a rectangular outer portion made of square metal tubing, a longitudinal beam extending between axial ends of the rectangular outer portion, and a transverse beam extending between opposite lateral sides of the rectangular outer portion. Two pairs of diagonal braces extend between the longitudinal beam and the four corners of the rectangular outer portion of the frame.

  15. Genesis and continuity of quaternary sand and gravel in glacigenic sediment at a proposed low-level radioactive waste disposal site in east-central Illinois

    USGS Publications Warehouse

    Troost, K.G.; Curry, B. Brandon

    1991-01-01

    The Illinois Department of Nuclear Safety has characterized the Martinsville Alternative Site (MAS) for a proposed low-level radioactive waste disposal facility. The MAS is located in east-central Illinois approximately 1.6 km (1 mi) north of the city of Martinsville. Geologic investigation of the 5.5-km2 (1380-acre) site revealed a sequence of chiefly Illinoian glacigenic sediments from 6 to 60 m (20-200 ft) thick overlying two major bedrock valleys carved in Pennsylvanian strata. Relatively permeable buried units include basal, preglacial alluvium; a complex of intraglacial and subglacial sediment; englacial deposits; and supraglacial fluvial deposits. Postglacial alluvium underlies stream valleys on and adjacent to the site. In most areas, the buried sand units are confined by low-permeability till, lacustrine sediment, colluvium, and loess. The distribution and thickness of the most extensive and continuous buried sand units have been modified considerably by subglacial erosion, and their distributions have been influenced by the buried bedrock valleys. The most continuous of the various sand units were deposited as preglacial and postglacial alluvium and are the uppermost and lowermost stratigraphic units at the alternative site. Sand units that were deposited in englacial or ice-marginal environments are less continuous. Aquifer pumping tests, potentiometric head data, and groundwater geochemistry analyses indicate minimal interaction of groundwater across localized interconnections of the permeable units. ?? 1991 Springer-Verlag New York Inc.

  16. Topic III - Infiltration and Drainage: A section in Joint US Geological Survey, US Nuclear Regulatory Commission workshop on research related to low-level radioactive waste disposal, May 4-6, 1993, National Center, Reston, Virginia; Proceedings (WRI 95-4015)

    USGS Publications Warehouse

    Prudic, David E.; Gee, Glendon; Stevens, Peter R.; Nicholson, Thomas J.

    1996-01-01

    Infiltration into and drainage from facilities for the disposal of low-level radioactive wastes is considered the major process by which non-volatile contaminants are transported away from the facilities. The session included 10 papers related to the processes of infiltration and drainage, and to the simulation of flow and transport through the unsaturated zone. The first paper, presented by David Stonestrom, was an overview regarding the application of unsaturated flow theory to infiltration and drainage. Stonestrom posed three basic questions, which are:How well do we know the relevant processes affecting flow and transport?How well can we measure the parametric functions used to quantify flow and transport?How do we treat complexities inherent in field settings?The other nine papers presented during the session gave some insight to these questions. Topics included: laboratory measurement of unsaturated hydraulic conductivities at low water contents, by John Nimmo; use of environmental tracers to identify preferential flow through fractured media and to quantify drainage, by Edmund Prych and Edwin Weeks; field experiments to evaluate relevant processes affecting infiltration and drainage, by Brian Andraski, Glendon Gee, and Peter Wierenga; and the use of determinist'c and stochastic models for simulating flow and transport through heterogeneous sediments, by Richard Hills, Lynn Gelhar, and Shlomo Neuman.

  17. 76 FR 10810 - Public Workshop to Discuss Low-Level Radioactive Waste Management

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-28

    ... the environment. Development of the part 61 regulation in the early 1980s was based on several... there have been a number of developments that have called into question some of the key assumptions...-level radioactive wastes that did not exist at the time part 61 was promulgated. The developments...

  18. Preliminary technical data summary No. 3 for the Defense Waste Processing Facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Landon, L.F.

    1980-05-01

    This document presents an update on the best information presently available for the purpose of establishing the basis for the design of a Defense Waste Processing Facility. Objective of this project is to provide a facility to fix the radionuclides present in Savannah River Plant (SRP) high-level liquid waste in a high-integrity form (glass). Flowsheets and material balances reflect the alternate CAB case including the incorporation of low-level supernate in concrete. (DLC)

  19. Treatment of low level radioactive liquid waste containing appreciable concentration of TBP degraded products.

    PubMed

    Valsala, T P; Sonavane, M S; Kore, S G; Sonar, N L; De, Vaishali; Raghavendra, Y; Chattopadyaya, S; Dani, U; Kulkarni, Y; Changrani, R D

    2011-11-30

    The acidic and alkaline low level radioactive liquid waste (LLW) generated during the concentration of high level radioactive liquid waste (HLW) prior to vitrification and ion exchange treatment of intermediate level radioactive liquid waste (ILW), respectively are decontaminated by chemical co-precipitation before discharge to the environment. LLW stream generated from the ion exchange treatment of ILW contained high concentrations of carbonates, tributyl phosphate (TBP) degraded products and problematic radio nuclides like (106)Ru and (99)Tc. Presence of TBP degraded products was interfering with the co-precipitation process. In view of this a modified chemical treatment scheme was formulated for the treatment of this waste stream. By mixing the acidic LLW and alkaline LLW, the carbonates in the alkaline LLW were destroyed and the TBP degraded products got separated as a layer at the top of the vessel. By making use of the modified co-precipitation process the effluent stream (1-2 μCi/L) became dischargeable to the environment after appropriate dilution. Based on the lab scale studies about 250 m(3) of LLW was treated in the plant. The higher activity of the TBP degraded products separated was due to short lived (90)Y isotope. The cement waste product prepared using the TBP degraded product was having good chemical durability and compressive strength. Copyright © 2011 Elsevier B.V. All rights reserved.

  20. Description of waste pretreatment and interfacing systems dynamic simulation model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Garbrick, D.J.; Zimmerman, B.D.

    1995-05-01

    The Waste Pretreatment and Interfacing Systems Dynamic Simulation Model was created to investigate the required pretreatment facility processing rates for both high level and low level waste so that the vitrification of tank waste can be completed according to the milestones defined in the Tri-Party Agreement (TPA). In order to achieve this objective, the processes upstream and downstream of the pretreatment facilities must also be included. The simulation model starts with retrieval of tank waste and ends with vitrification for both low level and high level wastes. This report describes the results of three simulation cases: one based on suggestedmore » average facility processing rates, one with facility rates determined so that approximately 6 new DSTs are required, and one with facility rates determined so that approximately no new DSTs are required. It appears, based on the simulation results, that reasonable facility processing rates can be selected so that no new DSTs are required by the TWRS program. However, this conclusion must be viewed with respect to the modeling assumptions, described in detail in the report. Also included in the report, in an appendix, are results of two sensitivity cases: one with glass plant water recycle steams recycled versus not recycled, and one employing the TPA SST retrieval schedule versus a more uniform SST retrieval schedule. Both recycling and retrieval schedule appear to have a significant impact on overall tank usage.« less

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hayes, Timothy; Nelson, Roger

    The Department of Energy (DOE) and the National Nuclear Security Administration (NNSA) manages defense nuclear material that has been determined to be excess to programmatic needs and declared waste. When these wastes contain plutonium, they almost always meet the definition of defense transuranic (TRU) waste and are thus eligible for disposal at the Waste Isolation Pilot Plant (WIPP). The DOE operates the WIPP in a manner that physical protections for attractiveness level D or higher special nuclear material (SNM) are not the normal operating condition. Therefore, there is currently a requirement to terminate safeguards before disposal of these wastes atmore » the WIPP. Presented are the processes used to terminate safeguards, lessons learned during the termination process, and how these approaches might be useful for future defense TRU waste needing safeguards termination prior to shipment and disposal at the WIPP. Also described is a new criticality control container, which will increase the amount of fissile material that can be loaded per container, and how it will save significant taxpayer dollars. Retrieval, compliant packaging and shipment of retrievably stored legacy TRU waste has dominated disposal operations at WIPP since it began operations 12 years ago. But because most of this legacy waste has successfully been emplaced in WIPP, the TRU waste clean-up focus is turning to newly-generated TRU materials. A major component will be transuranic SNM, currently managed in safeguards-protected vaults around the weapons complex. As DOE and NNSA continue to consolidate and shrink the weapons complex footprint, it is expected that significant quantities of transuranic SNM will be declared surplus to the nation's needs. Safeguards termination of SNM varies due to the wide range of attractiveness level of the potential material that may be directly discarded as waste. To enhance the efficiency of shipping waste with high TRU fissile content to WIPP, DOE designed an over-pack container, similar to the pipe component, called the criticality control over-pack, which will significantly enhance the efficiency of disposal. Hundreds of shipments of transuranic SNM, suitably packaged to meet WIPP waste acceptance criteria and with safeguards terminated have been successfully emplaced at WIPP (primarily from the Rocky Flats site clean-up) since WIPP opened. DOE expects that thousands more may eventually result from SNM consolidation efforts throughout the weapons complex. (authors)« less

  2. Adherence to Healthcare Waste Management Guidelines among Nurses and Waste Handlers in Thika Sub-county- Kenya.

    PubMed

    Njue, P Mwaniki; Cheboi, K Solomon; Shadrak, Oiye

    2015-10-01

    Despite the set guidelines on Healthcare Waste Management in Kenya, mixing of different categories of waste, crude dumping and poor incineration are still a common phenomenon in public health facilities in Thika Subcounty, Kenya. Thika Subcounty generates 560 Kilograms of healthcare waste daily, which is risk to the many patients (admission rate of 26%). This may pose a potential environmental risk and be a source of disease diffusion. This research explored the adherence to healthcare waste management waste guidelines in health care facilities among the nurses and waste handlers. This was a cross sectional survey in which mixed methods were applied. A census and proportionate random sampling method were used. Quantitative data was analyzed using Statistical Package for Social Science (SPSS) version 20.0, while qualitative data was analyzed manually into themes. Full adherence to the seven waste disposal guidelines was low (16.3%). Knowledge on waste segregation, waste separation then disposal and means of transports were statistically significant in relation to adherence. The type of incinerator and burning status, protection maintenance and supply of adequate waste bins were also important to adherence level. Adherence level was low (16.3%,) and insignificantly different among nurses and waste handlers. From this finding, compliance remains a key challenge. Strategies targeted at contextualizing waste regulations and guidelines into local settings are necessary and important. Policy makers may design and implement standard incinerators across all the health facilities. This study is not exhaustive; therefore, it is necessary to carry out a study linking poor treatment and disposal of clinical waste to purported health outcomes in Kenya.

  3. Leaching Characteristics of Hanford Ferrocyanide Wastes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Edwards, Matthew K.; Fiskum, Sandra K.; Peterson, Reid A.

    2009-12-21

    A series of leach tests were performed on actual Hanford Site tank wastes in support of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The samples were targeted composite slurries of high-level tank waste materials representing major complex, radioactive, tank waste mixtures at the Hanford Site. Using a filtration/leaching apparatus, sample solids were concentrated, caustic leached, and washed under conditions representative of those planned for the Pretreatment Facility in the WTP. Caustic leaching was performed to assess the mobilization of aluminum (as gibbsite, Al[OH]3, and boehmite AlO[OH]), phosphates [PO43-], chromium [Cr3+] and, to a lesser extent, oxalates [C2O42-]). Ferrocyanidemore » waste released the solid phase 137Cs during caustic leaching; this was antithetical to the other Hanford waste types studied. Previous testing on ferrocyanide tank waste focused on the aging of the ferrocyanide salt complex and its thermal compatibilities with nitrites and nitrates. Few studies, however, examined cesium mobilization in the waste. Careful consideration should be given to the pretreatment of ferrocyanide wastes in light of this new observed behavior, given the fact that previous testing on simulants indicates a vastly different cesium mobility in this waste form. The discourse of this work will address the overall ferrocyanide leaching characteristics as well as the behavior of the 137Cs during leaching.« less

  4. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kot, Wing K.; Pegg, Ian L.; Brandys, Marek

    One of the primary roles of waste pretreatment at the Hanford Tank Waste Treatment and Immobilization Plant (WTP) is to separate the majority of the radioactive components from the majority of the nonradioactive components in retrieved tank wastes, producing a high level waste (HLW) stream and a low activity waste (LAW) stream. This separation process is a key element in the overall strategy to reduce the volume of HLW that requires vitrification and subsequent disposal in a national deep geological repository for high level nuclear waste. After removal of the radioactive constituents, the LAW stream, which has a much largermore » volume but smaller fraction of radioactivity than the HLW stream, will be immobilized and disposed of in near surface facilities at the Hanford site.« less

  5. Electrokinetic remediation of plutonium-contaminated nuclear site wastes: results from a pilot-scale on-site trial.

    PubMed

    Agnew, Kieran; Cundy, Andrew B; Hopkinson, Laurence; Croudace, Ian W; Warwick, Phillip E; Purdie, Philip

    2011-02-28

    This paper examines the field-scale application of a novel low-energy electrokinetic technique for the remediation of plutonium-contaminated nuclear site soils, using soil wastes from the Atomic Weapons Establishment (AWE) Aldermaston site, Berkshire, UK as a test medium. Soils and sediments with varying composition, contaminated with Pu through historical site operations, were electrokinetically treated at laboratory-scale with and without various soil pre-conditioning agents. Results from these bench-scale trials were used to inform a larger on-site remediation trial, using an adapted containment pack with battery power supply. 2.4 m(3) (ca. 4t onnes) of Pu-contaminated soil was treated for 60 days at a power consumption of 33 kWh/m(3), and then destructively sampled. Radiochemical data indicate mobilisation of Pu in the treated soil, and migration (probably as a negatively charged Pu-citrate complex) towards the anodic compartment of the treatment cell. Soil in the cathodic zone of the treatment unit was remediated to a level below free-release disposal thresholds (1.7 Bq/g, or <0.4 Bq/g above background activities). The data show the potential of this method as a low-cost, on-site tool for remediation of radioactively contaminated soils and wastes which can be operated remotely on working sites, with minimal disruption to site infrastructure or operations. Copyright © 2010 Elsevier B.V. All rights reserved.

  6. 40 CFR 60.2020 - What combustion units are exempt from this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 7 2013-07-01 2013-07-01 false What combustion units are exempt from... combustion units are exempt from this subpart? This subpart exempts the types of units described in... and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste...

  7. 40 CFR 60.2020 - What combustion units are exempt from this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 7 2014-07-01 2014-07-01 false What combustion units are exempt from... combustion units are exempt from this subpart? This subpart exempts the types of units described in... and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste...

  8. An Improvement to Low-Level Radioactive Waste Vitrification Processes.

    DTIC Science & Technology

    1986-05-01

    waste stream. 3 9 Sodium and Potassium tetraphenyl borates are both cited in the literature as having high cesium selectivity. 23󈧝󈧫 The thermal... Ferrate (II) Impregnated Zeolite for Cesium Removal from Radioactive Waste," Nuc. Tech., 58, p.242, ANS, La Grange Park, Illinois, (1982T. 29. F.V

  9. Geologic and hydrologic data collected during 1976-1983 at the Sheffield low-level radioactive waste disposal site and adjacent areas, Sheffield, Illinois

    USGS Publications Warehouse

    Foster, J.B.; Garklavs, George; Mackey, G.W.

    1984-01-01

    Hydrogeologic studies were conducted at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976-84. Data in this report include water levels in wells, lake stages, inorganic, organic, and radiometric chemical analyses of ground and surface water, hydraulic conductivities of glacial materials, grain-size distribution, clay and carbonate mineralogy, and cation exchange capacities of the glacial materials. Also included are results of petrographic analyses, physical measurements of wells, stratigraphy and lithology of cores collected from test wells, and horizontal coordinates of wells.

  10. Nuclear criticality safety assessment of the low level radioactive waste disposal facility trenches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kahook, S.D.

    1994-04-01

    Results of the analyses performed to evaluate the possibility of nuclear criticality in the Low Level Radioactive Waste Disposal Facility (LLRWDF) trenches are documented in this report. The studies presented in this document are limited to assessment of the possibility of criticality due to existing conditions in the LLRWDF. This document does not propose nor set limits for enriched uranium (EU) burial in the LLRWDF and is not a nuclear criticality safety evaluation nor analysis. The calculations presented in the report are Level 2 calculations as defined by the E7 Procedure 2.31, Engineering Calculations.

  11. NEVADA TEST SITE WASTE ACCEPTANCE CRITERIA

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    U.S. DEPARTMENT OF ENERGY, NATIONAL NUCLEAR SECURITY ADMINISTRATION, NEVADA SITE OFFICE

    This document establishes the U. S. Department of Energy, National Nuclear Security Administration Nevada Site Office (NNSA/NSO) waste acceptance criteria (WAC). The WAC provides the requirements, terms, and conditions under which the Nevada Test Site will accept low-level radioactive and mixed waste for disposal. Mixed waste generated within the State of Nevada by NNSA/NSO activities is accepted for disposal. It includes requirements for the generator waste certification program, characterization, traceability, waste form, packaging, and transfer. The criteria apply to radioactive waste received at the Nevada Test Site Area 3 and Area 5 Radioactive Waste Management Site for storage or disposal.

  12. Annual Status Report (FY2017): Performance Assessment for the Disposal of Low-Level Waste in the 200 East Area Burial Grounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Will E.; Mehta, S.; Nell, R. M.

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 East Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. The estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-SD-WM-TI-7301). The estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 1,2 and companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliance withmore » performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less

  13. Annual Status Report (FY2017): Performance Assessment for the Disposal of Low-Level Waste in the 200 West Area Burial Grounds.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nichols, Will E; Nell, R. M.; Mehta, S.

    This annual review provides the projected dose estimates of radionuclide inventories disposed in the active 200 West Area Low-Level Waste Burial Grounds (LLBGs) since September 26, 1988. These estimates are calculated using the original dose methodology developed in the performance assessment (PA) analysis (WHC-EP-06451). These estimates are compared with performance objectives defined in U.S. Department of Energy (DOE) requirements (DOE O 435.1 Chg 12 and its companion documents DOE M 435.1-1 Chg 13 and DOE G 435.1-14). All performance objectives are currently satisfied, and operational waste acceptance criteria (HNF-EP-00635) and waste acceptance practices continue to be sufficient to maintain compliancemore » with performance objectives. Inventory estimates and associated dose estimates from future waste disposal actions are unchanged from previous years’ evaluations, which indicate potential impacts well below performance objectives. Therefore, future compliance with DOE O 435.1 Chg 1 is expected.« less

  14. Analysis of space systems for the space disposal of nuclear waste follow-on study. Volume 1: Executive summary

    NASA Technical Reports Server (NTRS)

    1982-01-01

    The impact on space systems of three alternative waste mixes was evaluated as part of an effort to investigate the disposal of certain high-level nuclear wastes in space as a complement to mined geologic repositories. A brief overview of the study background, objectives, scope, approach and guidelines, and limitations is presented. The effects of variations in waste mixes on space system concepts were studied in order to provide data for determining relative total system risk benefits resulting from space disposal of the alternative waste mixes. Overall objectives of the NASA-DOE sustaining-level study program are to investigate space disposal concepts which can provide information to support future nuclear waste terminal storage programmatic decisions and to maintain a low level of research activity in this area to provide a baseline for future development should a decision be made to increase the emphasis on this option.

  15. The mixed low-level waste problem in BE/NWN capsule

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hensley, D.C.

    1999-07-01

    The Boh Environmental, LLC (BE) and Northwest Nuclear, LLC (NWN) program addresses the problem of diminishing capacity in the United States to store mixed waste. A lack of an alternative program has caused the US Department of Energy (DOE) to indefinitely store all of its mixed waste in Resource Conservation and Recovery Act (RCRA) compliant storage facilities. Unfortunately, this capacity is fast approaching the administrative control limit. The combination of unique BE encapsulation and NWN waste characterization technologies provides an effective solution to DOE's mixed-waste dilemma. The BE ARROW-PAK technique encapsulates mixed low-level waste (MLLW) in extra-high molecular weight, high-densitymore » polyethylene, pipe-grade resin cylinders. ARROW-PAK applications include waste treatment, disposal, transportation (per 49 CFR 173), vault encasement, and interim/long-term storage for 100 to 300 yr. One of the first demonstrations of this treatment/storage technique successfully treated 880 mixed-waste debris drums at the DOE Hanford Site in 1997. NWN, deploying the APNea neutron assay technology, provides the screening and characterization capability necessary to ensure that radioactive waste is correctly categorized as either transuranic (TRU) or LLW. MLLW resulting from D and D activities conducted at the Oak Ridge East Tennessee Technology Park will be placed into ARROW-PAK containers following comprehensive characterization of the waste by NWN. The characterized and encapsulated waste will then be shipped to a commercial disposal facility, where the shipments meet all waste acceptance criteria of the disposal facility including treatment criteria.« less

  16. Importance of geologic characterization of potential low-level radioactive waste disposal sites

    USGS Publications Warehouse

    Weibel, C.P.; Berg, R.C.

    1991-01-01

    Using the example of the Geff Alternative Site in Wayne County, Illinois, for the disposal of low-level radioactive waste, this paper demonstrates, from a policy and public opinion perspective, the importance of accurately determining site stratigraphy. Complete and accurate characterization of geologic materials and determination of site stratigraphy at potential low-level waste disposal sites provides the frame-work for subsequent hydrologic and geochemical investigations. Proper geologic characterization is critical to determine the long-term site stability and the extent of interactions of groundwater between the site and its surroundings. Failure to adequately characterize site stratigraphy can lead to the incorrect evaluation of the geology of a site, which in turn may result in a lack of public confidence. A potential problem of lack of public confidence was alleviated as a result of the resolution and proper definition of the Geff Alternative Site stratigraphy. The integrity of the investigation was not questioned and public perception was not compromised. ?? 1991 Springer-Verlag New York Inc.

  17. Performance assessment for the disposal of low-level waste in the 200 West Area Burial Grounds

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wood, M.I.; Khaleel, R.; Rittmann, P.D.

    1995-06-01

    This document reports the findings of a performance assessment (PA) analysis for the disposal of solid low-level radioactive waste (LLW) in the 200 West Area Low-Level Waste Burial Grounds (LLBG) in the northwest corner of the 200 West Area of the Hanford Site. This PA analysis is required by US Department of Energy (DOE) Order 5820.2A (DOE 1988a) to demonstrate that a given disposal practice is in compliance with a set of performance objectives quantified in the order. These performance objectives are applicable to the disposal of DOE-generated LLW at any DOE-operated site after the finalization of the order inmore » September 1988. At the Hanford Site, DOE, Richland Operations Office (RL) has issued a site-specific supplement to DOE Order 5820.2A, DOE-RL 5820.2A (DOE 1993), which provides additiona I ce objectives that must be satisfied.« less

  18. Openness initiative

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, S.S.

    1995-12-31

    Although antinuclear campaigns seem to be effective, public communication and education efforts on low-level radioactive waste have mixed results. Attempts at public information programs on low-level radioactive waste still focus on influencing public opinion. A question then is: {open_quotes}Is it preferable to have a program focus on public education that will empower individuals to make informed decisions rather than trying to influence them in their decisions?{close_quotes} To address this question, a case study with both quantitative and qualitative data will be used. The Ohio Low-Level Radioactive Waste Education Program has a goal to provide people with information they want/need tomore » make their own decisions. The program initiated its efforts by conducting a statewide survey to determine information needed by people and where they turned for that information. This presentation reports data from the survey and then explores the program development process in which programs were designed and presented using the information. Pre and post data from the programs reveal attitude and knowledge shifts.« less

  19. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassidy, Helen; Rossiter, David

    The Low Level Waste Repository (LLWR) is the primary facility for disposal of Low Level Waste (LLW) in the United Kingdom (UK), serving the UK nuclear industry and a diverse range of other sectors. Management of LLW in the UK historically was dominated by disposal to the LLWR. The value of the LLWR as a national asset was recognised by the 2007 UK Governmental Policy on management of solid LLW. At this time, analysis of the projected future demand for disposal at LLWR against facility capacity was undertaken identifying a credible risk that the capacity of LLWR would be insufficientmore » to meet future demand if existing waste management practices were perpetuated. To mitigate this risk a National Strategy for the management of LLW in the UK was developed by the Nuclear Decommissioning Authority (NDA), partnered with LLW Repository Ltd. (the organisation established in 2008 to manage the LLWR on behalf of NDA). This strategy was published in 2010 and identified three mechanisms for protection of the capacity of LLWR - application of the Waste Hierarchy by waste producers; optimised use of existing assets for LLW management; and opening of new waste treatment and disposal routes to enable diversion of waste away from the LLWR. (authors)« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bostick, W.D.; Hoffmann, D.P.; Stevenson, R.J.

    The category of sludges, filter cakes, and other waste processing residuals represent the largest volume of low-level mixed (hazardous and radioactive) wastes within the US Department of Energy (DOE) complex. Treatment of these wastes to minimize the mobility of contaminants, and to eliminate the presence of free water, is required under the Federal Facility Compliance Act agreements between DOE and the Environmental Protection Agency. In the text, we summarize the currently available data for several of the high priority mixed-waste sludge inventories within DOE. Los Alamos National Laboratory TA-50 Sludge and Rocky Flats Plant By-Pass Sludge are transuranic (TRU)-contaminated sludgesmore » that were isolated with the use of silica-based filter aids. The Oak Ridge Y-12 Plant West End Treatment Facility Sludge is predominantly calcium carbonate and biomass. The Oak Ridge K-25 Site Pond Waste is a large-volume waste stream, containing clay, silt, and other debris in addition to precipitated metal hydroxides. We formulate ``simulants`` for the waste streams described above, using cerium oxide as a surrogate for the uranium or plutonium present in the authentic material. Use of nonradiological surrogates greatly simplifies material handling requirements for initial treatability studies. The use of synthetic mixtures for initial treatability testing will facilitate compositional variation for use in conjunction with statistical design experiments; this approach may help to identify any ``operating window`` limitations. The initial treatability testing demonstrations utilizing these ``simulants`` will be based upon vitrification, although the materials are also amenable to testing grout-based and other stabilization procedures. After the feasibility of treatment and the initial evaluation of treatment performance has been demonstrated, performance must be verified using authentic samples of the candidate waste stream.« less

  1. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job M.; Bryan, Samuel A.

    2013-02-24

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source.« less

  2. Development of an Integrated Raman and Turbidity Fiber Optic Sensor for the In-Situ Analysis of High Level Nuclear Waste - 13532

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gasbarro, Christina; Bello, Job; Bryan, Samuel

    2013-07-01

    Stored nuclear waste must be retrieved from storage, treated, separated into low- and high-level waste streams, and finally put into a disposal form that effectively encapsulates the waste and isolates it from the environment for a long period of time. Before waste retrieval can be done, waste composition needs to be characterized so that proper safety precautions can be implemented during the retrieval process. In addition, there is a need for active monitoring of the dynamic chemistry of the waste during storage since the waste composition can become highly corrosive. This work describes the development of a novel, integrated fibermore » optic Raman and light scattering probe for in situ use in nuclear waste solutions. The dual Raman and turbidity sensor provides simultaneous chemical identification of nuclear waste as well as information concerning the suspended particles in the waste using a common laser excitation source. (authors)« less

  3. Unique Regulatory Approach for Licensing the Port Hope Remediation Project in Canada - 13315

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kostova, M.; Howard, D.; Elder, P.

    2013-07-01

    The Port Hope remediation project is a part of a larger initiative of the Canadian Federal Government the Port Hope Area Initiative (PHAI) which is based upon a community proposal. The Government of Canada, through Natural Resources Canada (NRCan) is investing $1.28 billion over 10 years to clean up historic low-level radioactive waste in the Port Hope Area and to provide long-term safe management of the low-level radioactive wastes in the Port Hope Area. These wastes arose from the activities of a former Federal Crown Corporation (Eldorado Nuclear) and its private sector predecessors. In Canada, historic waste are defined asmore » low-level radioactive waste that was managed in a manner no longer considered acceptable, but for which the original producer cannot reasonably be held responsible or no longer exists and for which the Federal Government has accepted responsibility. In Canada, under the current regulatory framework, the environmental remediation is not considered as a distinct phase of the nuclear cycle. The regulatory approach for dealing with existing sites contaminated with radioactive residues is defined on the basis of risk and application of existing regulations. A unique regulatory approach was taken by the Canadian Nuclear Safety Commission (CNSC) to address the various licensing issues and to set out the requirements for licensing of the Port Hope Project within the current regulatory framework. (authors)« less

  4. Copper tolerance in clones of Agrostis gigantea from a mine waste site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hogan, G.D.; Courtin, G.M.; Rauser, W.E.

    1977-04-15

    A mine waste site from Sudbury, Ontario, contaminated with heavy metals is described. The dominant vegetative cover was formed by two grasses: Agrostis gigantea Roth. and Agrostis scabra Willd. Testing of 10 clones of A. gigantea from the roast bed and an adjoining area for copper tolerance showed that two clones collected from the roast bed were tolerant to increased copper levels. Copper tolerance was found in clones growing on soils with high copper contents and low pHs. The combination of high copper content and low pH brought about a high level of extractable copper within the soil. Soils withmore » equally high copper levels but higher pHs and therefore low extractable-copper levels did not support copper-tolerant clones.« less

  5. Phytotoxicity of tin mine waste and accumulation of involved heavy metals in common buckwheat (Fagopyrum esculentum Moench).

    PubMed

    Franzaring, Jürgen; Damsohn, Walter; Fangmeier, Andreas; Schlosser, Sonja; Kurz, Hannes; Büttner, Philipp

    2018-04-16

    Extraction and processing of cassiterite (SnO 2 ) left large tailings with high concentrations of tin, tungsten, molybdenum and lithium. Information on the phytotoxicity of mine waste is important with regard to ecological hazards. Exposure studies help to identify plants useful for the stabilization of waste tips and the phytomining of metals. A greenhouse study was performed using a dilution series of mine waste and four crops, a halophytic and a metallophytic species to derive dose response curves. Based on effective doses for growth reductions, sensitivity increased in the following order: maize > common buckwheat > quinoa > garden bean. Element analyses in different species and compartments of common buckwheat grown in a mixture of standard soil and 25% of the mine waste showed that only low levels of the metals were taken up and that transfer to seed tissues was negligible. As indicated by soil metal levels prior to and after the experiment, only lithium and arsenic proved to be plant available and reached high levels in green tissues while seed levels were low. The experiment confirmed differences in the uptake of metals with regard to elements and species. Common buckwheat is a suited candidate for cultivation on metal polluted soils.

  6. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Belsher, Jeremy D.; Pierson, Kayla L.; Gimpel, Rod F.

    The Hanford site in southeast Washington contains approximately 207 million liters of radioactive and hazardous waste stored in 177 underground tanks. The U.S. Department of Energy's Office of River Protection is currently managing the Hanford waste treatment mission, which includes the storage, retrieval, treatment and disposal of the tank waste. Two recent studies, employing the modeling tools managed by the One System organization, have highlighted waste cleanup mission sensitivities. The Hanford Tank Waste Operations Simulator Sensitivity Study evaluated the impact that varying 21 different parameters had on the Hanford Tank Waste Operations Simulator model. It concluded that inaccuracies in themore » predicted phase partitioning of a few key components can result in significant changes in the waste treatment duration and in the amount of immobilized high-level waste that is produced. In addition, reducing the efficiency with which tank waste is retrieved and staged can increase mission duration. The 2012 WTP Tank Utilization Assessment concluded that flowsheet models need to include the latest low-activity waste glass algorithms or the waste treatment mission duration and the amount of low activity waste that is produced could be significantly underestimated. (authors)« less

  7. 40 CFR 60.2210 - What information must I include in my annual report?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Performance for Commercial and Industrial Solid Waste Incineration Units Recordkeeping and Reporting § 60.2210... was inoperative, except for zero (low-level) and high-level checks. (3) The date, time, and duration.... (1) The zero (low-level), mid-level (if applicable), or high-level calibration drift exceeds two...

  8. Assessment of mobility and bioavailability of contaminants in MSW incineration ash with aquatic and terrestrial bioassays.

    PubMed

    Ribé, V; Nehrenheim, E; Odlare, M

    2014-10-01

    Incineration of municipal solid waste (MSW) is a waste treatment method which can be sustainable in terms of waste volume reduction as well as a source of renewable energy. In the process fly and bottom ash is generated as a waste material. The ash residue may vary greatly in composition depending on the type of waste incinerated and it can contain elevated levels of harmful contaminants such as heavy metals. In this study, the ecotoxicity of a weathered, untreated incineration bottom ash was characterized as defined by the H14 criterion of the EU Waste Framework Directive by means of an elemental analysis, leaching tests followed by a chemical analysis and a combination of aquatic and solid-phase bioassays. The experiments were conducted to assess the mobility and bioavailability of ash contaminants. A combination of aquatic and terrestrial bioassays was used to determine potentially adverse acute effects of exposure to the solid ash and aqueous ash leachates. The results from the study showed that the bottom ash from a municipal waste incineration plant in mid-Sweden contained levels of metals such as Cu, Pb and Zn, which exceeded the Swedish EPA limit values for inert wastes. The chemical analysis of the ash leachates showed high concentrations of particularly Cr. The leachate concentration of Cr exceeded the limit value for L/S 10 leaching for inert wastes. Filtration of leachates prior to analysis may have underestimated the leachability of complex-forming metals such as Cu and Pb. The germination test of solid ash and ash leachates using T. repens showed a higher inhibition of seedling emergence of seeds exposed to the solid ash than the seeds exposed to ash leachates. This indicated a relatively low mobility of toxicants from the solid ash into the leachates, although some metals exceeded the L/S 10 leaching limit values for inert wastes. The Microtox® toxicity test showed only a very low toxic response to the ash leachate exposure, while the D. magna immobility test showed a moderately high toxic effect of the ash leachates. Overall, the results from this study showed an ecotoxic effect of the solid MSW bottom ash and the corresponding ash leachates. The material may therefore pose an environmental risk if used in construction applications. However, as the testing of the solid ash was rather limited and the ash leachate showed an unusually high leaching of Cr, further assessments are required in order to conclusively characterize the bottom ash studied herein as hazardous according to the H14 criterion. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Problems in shallow land disposal of solid low-level radioactive waste in the united states

    USGS Publications Warehouse

    Stevens, P.R.; DeBuchananne, G.D.

    1976-01-01

    Disposal of solid low-level wastes containing radionuclides by burial in shallow trenches was initiated during World War II at several sites as a method of protecting personnel from radiation and isolating the radionuclides from the hydrosphere and biosphere. Today, there are 11 principal shallow-land burial sites in the United States that contain a total of more than 1.4 million cubic meters of solid wastes contaminated with a wide variety of radionuclides. Criteria for burial sites have been few and generalized and have contained only minimal hydrogeologic considerations. Waste-management practices have included the burial of small quantities of long-lived radionuclides with large volumes of wastes contaminated with shorter-lived nuclides at the same site, thereby requiring an assurance of extremely long-time containment for the entire disposal site. Studies at 4 of the 11 sites have documented the migration of radionuclides. Other sites are being studied for evidence of containment failure. Conditions at the 4 sites are summarized. In each documented instance of containment failure, ground water has probably been the medium of transport. Migrating radionuclides that have been identified include90Sr,137Cs,106Ru,239Pu,125Sb,60Co, and3H. Shallow land burial of solid wastes containing radionuclides can be a viable practice only if a specific site satisfies adequate hydrogeologic criteria. Suggested hydrogeologic criteria and the types of hydrogeologic data necessary for an adequate evaluation of proposed burial sites are given. It is mandatory that a concomitant inventory and classification be made of the longevity, and the physical and chemical form of the waste nuclides to be buried, in order that the anticipated waste types can be matched to the containment capability of the proposed sites. Ongoing field investigations at existing sites will provide data needed to improve containment at these sites and help develop hydrogeologic criteria for new sites. These studies have necessitated the development of special drilling, sampling, well construction, and testing techniques. A recent development in borehole geophysical techniques is downhole spectral gammaray analysis which not only locates but identifies specific radionuclides in the subsurface. Field investigations are being supplemented by laboratory studies of the hydrochemistry of the transuranic elements, the kinetics of solid-liquid phase interactions, and the potential complexing of radionuclides with organic compounds and solvents which mobilize normally highly sorbable nuclides. Theoretical studies of digital predictive solute transport models are being implemented to assure their availability for application to problems and processes identified in the field and laboratory. ?? 1976 International Association of Engineering Geology.

  10. 40 CFR 63.4920 - What reports must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... organic HAP in waste materials sent or designated for shipment to a hazardous waste treatment, storage... certification or audit. (ix) The date and time that each CPMS was inoperative, except for zero (low-level) and...

  11. 40 CFR 63.4920 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... organic HAP in waste materials sent or designated for shipment to a hazardous waste treatment, storage... certification or audit. (ix) The date and time that each CPMS was inoperative, except for zero (low-level) and...

  12. Project Execution Plan for the Remote Handled Low-Level Waste Disposal Project

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Danny Anderson

    2014-07-01

    As part of ongoing cleanup activities at the Idaho National Laboratory (INL), closure of the Radioactive Waste Management Complex (RWMC) is proceeding under the Comprehensive Environmental Response, Compensation, and Liability Act (42 USC 9601 et seq. 1980). INL-generated radioactive waste has been disposed of at RWMC since 1952. The Subsurface Disposal Area (SDA) at RWMC accepted the bulk of INL’s contact and remote-handled low-level waste (LLW) for disposal. Disposal of contact-handled LLW and remote-handled LLW ion-exchange resins from the Advanced Test Reactor in the open pit of the SDA ceased September 30, 2008. Disposal of remote-handled LLW in concrete disposalmore » vaults at RWMC will continue until the facility is full or until it must be closed in preparation for final remediation of the SDA (approximately at the end of fiscal year FY 2017). The continuing nuclear mission of INL, associated ongoing and planned operations, and Naval spent fuel activities at the Naval Reactors Facility (NRF) require continued capability to appropriately dispose of contact and remote handled LLW. A programmatic analysis of disposal alternatives for contact and remote-handled LLW generated at INL was conducted by the INL contractor in Fiscal Year 2006; subsequent evaluations were completed in Fiscal Year 2007. The result of these analyses was a recommendation to the Department of Energy (DOE) that all contact-handled LLW generated after September 30, 2008, be disposed offsite, and that DOE proceed with a capital project to establish replacement remote-handled LLW disposal capability. An analysis of the alternatives for providing replacement remote-handled LLW disposal capability has been performed to support Critical Decision-1. The highest ranked alternative to provide this required capability has been determined to be the development of a new onsite remote-handled LLW disposal facility to replace the existing remote-handled LLW disposal vaults at the SDA. Several offsite DOE and commercial disposal options exist for contact-handled LLW; however, offsite disposal options are either not currently available (i.e., commercial disposal facilities), practical, or cost-effective for all remote-handled LLW streams generated at INL. Offsite disposal of all INL and tenant-generated remote-handled waste is further complicated by issues associated with transporting highly radioactive waste in commerce; and infrastructure and processing changes at the generating facilities, specifically NRF, that would be required to support offsite disposal. The INL Remote-Handled LLW Disposal Project will develop a new remote handled LLW disposal facility to meet mission-critical, remote-handled LLW disposal needs. A formal DOE decision to proceed with the project has been made in accordance with the requirements of National Environmental Policy Act (42 USC§ 4321 et seq.). Remote-handled LLW is generated from nuclear programs conducted at INL, including spent nuclear fuel handling and operations at NRF and operations at the Advanced Test Reactor. Remote-handled LLW also will be generated by new INL programs and from segregation and treatment (as necessary) of remote handled scrap and waste currently stored in the Radioactive Scrap and Waste Facility at the Materials and Fuels Complex.« less

  13. Low-level radwaste storage facility at Hope Creek and Salem Generating Stations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oyen, L.C.; Lee, K.; Bravo, R.

    Following the January 1, 1993, closure of the radwaste disposal facilities at Beatty, Nevada, and Richland, Washington (to waste generators outside the compact), only Barnwell, South Carolina, is open to waste generators in most states. Barnwell is scheduled to stay open to waste generators outside the Southeast Compact until June 30, 1994. Continued delays in opening regional radwaste disposal facilities have forced most nuclear utilities to consider on-site storage of low-level radwaste. Public Service Electric and Gas Company (PSE G) considered several different radwaste storage options before selecting the design based on the steel-frame and metal-siding building design described inmore » the Electric Power Research Institute's (EPRI's) TR-100298 Vol. 2, Project 3800 report. The storage facility will accommodate waste generated by Salem units 1 and 2 and Hope Creek unit 1 for a 5-yr period and will be located within their common protected area.« less

  14. Regulatory control of low level radioactive waste in Taiwan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, T.D.S.; Chiou, Syh-Tsong

    1996-12-31

    The commercial operation of Chinshan Nuclear Power Plant (NPP) Unit One marked the beginning of Taiwan`s nuclear power program. There are now three NPPs, each consisting of two units, in operation. This represents a generating capacity of 5,144 MWe. Nuclear power plants are sharing some 30 percent of electricity supplies in Taiwan. As far as low level radwaste (LLRW) is concerned, Taiwan Power Company (TPC) is the principal producer, contributing more than 90 percent of total volume of waste arising in Taiwan. Small producers, other than nuclear industries, medicine, research institutes, and universities, are responsible for the remaining 10 percent.more » In the paper, the LLRW management policy, organizational scheme, regulatory control over waste treatment, storage, transportation and disposal are addressed. Added to the paper in the last is how this country is managing its Naturally Occurring Radioactive Materials (NORM) waste.« less

  15. 40 CFR 63.4520 - What reports must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste materials according to § 63.4551(e)(4). You do not need to submit background data supporting these... of § 63.4551; and, if applicable, the calculation used to determine mass of organic HAP in waste... each CPMS was inoperative, except for zero (low-level) and high-level checks. (vii) The date, time, and...

  16. 40 CFR 63.3920 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... waste materials according to § 63.3951(e)(4). You do not need to submit background data supporting these... of § 63.3951; and, if applicable, the calculation used to determine mass of organic HAP in waste... each CPMS was inoperative, except for zero (low-level) and high-level checks. (vii) The date, time, and...

  17. 40 CFR 63.4720 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... HAP in waste materials according to § 63.4751(e)(4). You do not need to submit background data... applicable, the calculation used to determine mass of organic HAP in waste materials according to § 63.4751(e... inoperative, except for zero (low-level) and high-level checks. (vii) The date, time, and duration that each...

  18. 40 CFR 63.4120 - What reports must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... organic HAP in waste materials according to § 63.4151(e)(4). You do not need to submit background data... § 63.4151 and, if applicable, the calculation used to determine the mass of organic HAP in waste... CPMS was inoperative, except for zero (low-level) and high-level checks. (7) The date, time, and...

  19. 40 CFR 63.3920 - What reports must I submit?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... waste materials according to § 63.3951(e)(4). You do not need to submit background data supporting these... of § 63.3951; and, if applicable, the calculation used to determine mass of organic HAP in waste... each CPMS was inoperative, except for zero (low-level) and high-level checks. (vii) The date, time, and...

  20. 40 CFR 63.4120 - What reports must I submit?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... organic HAP in waste materials according to § 63.4151(e)(4). You do not need to submit background data... § 63.4151 and, if applicable, the calculation used to determine the mass of organic HAP in waste... CPMS was inoperative, except for zero (low-level) and high-level checks. (7) The date, time, and...

  1. PROJECT W-551 DETERMINATION DATA FOR EARLY LAW INTERIM PRETREATMENT SYSTEM SELECTION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    TEDESCHI AR

    This report provides the detailed assessment forms and data for selection of the solids separation and cesium separation technology for project W-551, Interim Pretreatment System. This project will provide early pretreated low activity waste feed to the Waste Treatment Plant to allow Waste Treatment Plan Low Activity Waste facility operation prior to construction completion of the Pretreatment and High Level Waste facilities. The candidate solids separations technologies are rotary microfiltration and crossflow filtration, and the candidate cesium separation technologies are fractional crystallization, caustic-side solvent extraction, and ion-exchange using spherical resorcinol-formaldehyde resin. This data was used to prepare a cross-cutting technologymore » summary, reported in RPP-RPT-37740.« less

  2. Guidelines for the evaluation and assessment of the sustainable use of resources and of wastes management at healthcare facilities.

    PubMed

    Townend, William K; Cheeseman, Christopher R

    2005-10-01

    This paper presents guidelines that can be used by managers of healthcare facilities to evaluate and assess the quality of resources and waste management at their facilities and enabling the principles of sustainable development to be addressed. The guidelines include the following key aspects which need to be considered when completing an assessment. They are: (a) general management; (b) social issues; (c) health and safety; (d) energy and water use; (e) purchasing and supply; (f) waste management (responsibility, segregation, storage and packaging); (g) waste transport; (h) recycling and re-use; (i) waste treatment; and (j) final disposal. They identify actions required to achieve a higher level of performance which can readily be applied to any healthcare facility, irrespective of the local level of social, economic and environmental development. The guidelines are presented, and the characteristics of facilities associated with sustainable (level 4) and unsustainable (level 0) healthcare resource and wastes management are outlined. They have been used to assess a major London hospital, and this highlighted a number of deficiencies in current practice, including a lack of control over purchasing and supply, and very low rates of segregation of municipal solid waste from hazardous healthcare waste.

  3. Human factors in waste management - potential and reality

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, J.S.

    There is enormous potential for human factors contributions in the realm of waste management. The reality, however, is very different from the potential. This is particularly true for low-level and low-level mixed-waste management. The hazards are less severe; therefore, health and safety requirements (including human factors) are not as rigorous as for high-level waste. High-level waste management presents its own unique challenges and opportunities. Waste management is strongly driven by regulatory compliance. When regulations are flexible and open to interpretation and the environment is driven so strongly by regulatory compliance, standard practice is to drop {open_quotes}nice to have{close_quotes} features, likemore » a human factors program, to save money for complying with other requirements. The challenge is to convince decision makers that human factors can help make operations efficient and cost-effective, as well as improving safety and complying with regulations. A human factors program should not be viewed as competing with compliance efforts; in fact, it should complement them and provide additional cost-effective means of achieving compliance with other regulations. Achieving this synergy of human factors with ongoing waste management operations requires educating program and facility managers and other technical specialists about human factors and demonstrating its value {open_quotes}through the back door{close_quotes} on existing efforts. This paper describes ongoing projects at Los Alamos National Laboratory (LANL) in support of their waste management groups. It includes lessons learned from hazard and risk analyses, safety analysis reports, job and task analyses, operating procedure development, personnel qualification/certification program development, and facility- and job-specific training program and course development.« less

  4. Digital modeling of radioactive and chemical waste transport in the aquifer underlying the Snake River Plain at the National Reactor Testing Station, Idaho

    USGS Publications Warehouse

    Robertson, J.B.

    1974-01-01

    Industrial and low-level radioactive liquid wastes at the National Reactor Testing Station (NRTS) in Idaho have been disposed to the Snake River Plain aquifer since 1952. Monitoring studies have indicated that tritium and chloride have dispersed over a 15-square mile (39-square kilometer) area of the aquifer in low but detectable concentrations and have only migrated as far as 5 miles (8 kilometers) downgradient from discharge points. The movement of cationic waste solutes, particularly 90Sr and 137Cs, has been significantly retarded due to sorption phenomena, principally ion exchange. 137Cs has shown no detectable migration in the aquifer and 90Sr has migrated only about 1.5 miles (2 kilometers) from the Idaho Chemical Processing Plant (ICPP) discharge well, and is detectable over an area of only 1.5 square miles ( 4 square kilometers) of the aquifer. Digital modeling techniques have been applied successfully to the analysis of the complex waste-transport system by utilizing numerical solution of the coupled equations of groundwater motion and mass transport. The model includes the effects of convective transport, flow divergence, two-dimensional hydraulic dispersion, radioactive decay, and reversible linear sorption. The hydraulic phase of the model uses the iterative, alternating direction, implicit finite-difference scheme to solve the groundwater flow equations, while the waste-transport phase uses a modified method of characteristics to solve the solute transport equations simulated by the model. The modeling results indicate that hydraulic dispersion (especially transverse) is a much more significant influence than previously suggested by earlier studies. The model has been used to estimate future waste migration patterns for varied assumed hydrological and waste conditions up through the year 2000. The hydraulic effects of recharge from the Big Lost River have an important (but not predominant) influence on the simulated future migration patterns. For the assumed conditions, the model indicates that detectable concentrations of waste chloride and tritium could move as much as 15 miles (24 kilometers) downgradient from the original discharge points by the year 2000. However, the model shows 90Sr moving only 2 to 3 miles (3 to 5 kilometers) downgradient in the same time. The model may also be used to estimate the effects of the various future waste disposal practices and hydrologic conditions on subsequent migration of waste products.

  5. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 2. Sections 4 through 9

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU's) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment and baseline human health evaluation including a toxicity assessment, and a baseline environmental evaluation.

  6. Glass Property Models, Constraints, and Formulation Approaches for Vitrification of High-Level Nuclear Wastes at the US Hanford Site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Dong-Sang

    2015-03-02

    The legacy nuclear wastes stored in underground tanks at the US Department of Energy’s Hanford site is planned to be separated into high-level waste and low-activity waste fractions and vitrified separately. Formulating optimized glass compositions that maximize the waste loading in glass is critical for successful and economical treatment and immobilization of nuclear wastes. Glass property-composition models have been developed and applied to formulate glass compositions for various objectives for the past several decades. The property models with associated uncertainties and combined with composition and property constraints have been used to develop preliminary glass formulation algorithms designed for vitrification processmore » control and waste form qualification at the planned waste vitrification plant. This paper provides an overview of current status of glass property-composition models, constraints applicable to Hanford waste vitrification, and glass formulation approaches that have been developed for vitrification of hazardous and highly radioactive wastes stored at the Hanford site.« less

  7. Effect of Crotalaria juncea Amendment on Squash Infected with Meloidogyne incognita.

    PubMed

    Wang, K-H; McSorley, R; Gallaher, R N

    2004-09-01

    Two greenhouse experiments were conducted to examine the effect of Crotalaria juncea amendment on Meloidogyne incognita population levels and growth of yellow squash (Cucurbita pepo). In the first experiment, four soils with a long history of receiving yard waste compost (YWC+), no-yard-waste compost (YWC-), conventional tillage, or no-tillage treatments were used; in the second experiment, only one recently cultivated soil was used. Half of the amount of each soil received air-dried residues of C. juncea as amendment before planting squash, whereas the other half did not. Crotalaria juncea amendment increased squash shoot and root weights in all soils tested, except in YWC+ soil where the organic matter content was high without the amendment. The amendment suppressed the numbers of M. incognita if the inoculum level was low, and when the soil contained relatively abundant nematode-antagonistic fungi. Microwaved soil resulted in greater numbers of M. incognita and free-living nematodes than frozen or untreated soil, indicating nematode-antagonistic microorganisms played a role in nematode suppression. The effects of C. juncea amendment on nutrient cycling were complex. Amendment with C. juncea increased the abundance of free-living nematodes and Harposporium anguillulae, a fungus antagonistic to them in the second experiment but not in the first experiment. Soil histories, especially long-term yard waste compost treatments that increased soil organic matter, can affect the performance of C. juncea amendment.

  8. Effect of Crotalaria juncea Amendment on Squash Infected with Meloidogyne incognita

    PubMed Central

    Wang, K.-H.; McSorley, R.; Gallaher, R. N.

    2004-01-01

    Two greenhouse experiments were conducted to examine the effect of Crotalaria juncea amendment on Meloidogyne incognita population levels and growth of yellow squash (Cucurbita pepo). In the first experiment, four soils with a long history of receiving yard waste compost (YWC+), no-yard-waste compost (YWC-), conventional tillage, or no-tillage treatments were used; in the second experiment, only one recently cultivated soil was used. Half of the amount of each soil received air-dried residues of C. juncea as amendment before planting squash, whereas the other half did not. Crotalaria juncea amendment increased squash shoot and root weights in all soils tested, except in YWC+ soil where the organic matter content was high without the amendment. The amendment suppressed the numbers of M. incognita if the inoculum level was low, and when the soil contained relatively abundant nematode-antagonistic fungi. Microwaved soil resulted in greater numbers of M. incognita and free-living nematodes than frozen or untreated soil, indicating nematode-antagonistic microorganisms played a role in nematode suppression. The effects of C. juncea amendment on nutrient cycling were complex. Amendment with C. juncea increased the abundance of free-living nematodes and Harposporium anguillulae, a fungus antagonistic to them in the second experiment but not in the first experiment. Soil histories, especially long-term yard waste compost treatments that increased soil organic matter, can affect the performance of C. juncea amendment. PMID:19262819

  9. Radioactive waste disposal fees-Methodology for calculation

    NASA Astrophysics Data System (ADS)

    Bemš, Július; Králík, Tomáš; Kubančák, Ján; Vašíček, Jiří; Starý, Oldřich

    2014-11-01

    This paper summarizes the methodological approach used for calculation of fee for low- and intermediate-level radioactive waste disposal and for spent fuel disposal. The methodology itself is based on simulation of cash flows related to the operation of system for waste disposal. The paper includes demonstration of methodology application on the conditions of the Czech Republic.

  10. 40 CFR 60.2555 - What combustion units are exempt from my State plan?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 6 2010-07-01 2010-07-01 false What combustion units are exempt from... Construction On or Before November 30, 1999 Applicability of State Plans § 60.2555 What combustion units are... combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste as defined...

  11. 40 CFR 60.2555 - What combustion units are exempt from my State plan?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 6 2011-07-01 2011-07-01 false What combustion units are exempt from... Construction On or Before November 30, 1999 Applicability of State Plans § 60.2555 What combustion units are... combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic waste as defined...

  12. WASTE TREATMENT BUILDING SYSTEM DESCRIPTION DOCUMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    F. Habashi

    2000-06-22

    The Waste Treatment Building System provides the space, layout, structures, and embedded subsystems that support the processing of low-level liquid and solid radioactive waste generated within the Monitored Geologic Repository (MGR). The activities conducted in the Waste Treatment Building include sorting, volume reduction, and packaging of dry waste, and collecting, processing, solidification, and packaging of liquid waste. The Waste Treatment Building System is located on the surface within the protected area of the MGR. The Waste Treatment Building System helps maintain a suitable environment for the waste processing and protects the systems within the Waste Treatment Building (WTB) from mostmore » of the natural and induced environments. The WTB also confines contaminants and provides radiological protection to personnel. In addition to the waste processing operations, the Waste Treatment Building System provides space and layout for staging of packaged waste for shipment, industrial and radiological safety systems, control and monitoring of operations, safeguards and security systems, and fire protection, ventilation and utilities systems. The Waste Treatment Building System also provides the required space and layout for maintenance activities, tool storage, and administrative facilities. The Waste Treatment Building System integrates waste processing systems within its protective structure to support the throughput rates established for the MGR. The Waste Treatment Building System also provides shielding, layout, and other design features to help limit personnel radiation exposures to levels which are as low as is reasonably achievable (ALARA). The Waste Treatment Building System interfaces with the Site Generated Radiological Waste Handling System, and with other MGR systems that support the waste processing operations. The Waste Treatment Building System interfaces with the General Site Transportation System, Site Communications System, Site Water System, MGR Site Layout, Safeguards and Security System, Site Radiological Monitoring System, Site Electrical Power System, Site Compressed Air System, and Waste Treatment Building Ventilation System.« less

  13. Radiologic safety assessment for low level waste storage on TRU pads

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ryan, J.P.

    1986-03-17

    The reference document (TA 2-1118) proposes to store Low Level Radioactive Solid Waste in B-25 boxes on concrete pads at the 643-G burial ground site, pending resolution of policy concernig its ultimate disposal. This analysis verifies that the reference proposal is safe, as long as it is applied to a limited material quantity of low specific activity, as described in the reference document. The predominant concern in the safety analysis is the emission of airborne activity as a result of tornados and fires. However, containment provided by B-25 boxes is sufficient to mitigate the consequences of these events sufficiently. Nevertheless,more » it is strongly recommended that any above-ground storage procedures include provisions for covering the waste containment boxes to prevent exposure to rainwater and subsequent corrosion if the storage period is to extend beyond one year.« less

  14. 75 FR 1559 - Association of State and Territorial Solid Waste Management Officials; Notice of Receipt of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-01-12

    ... recycling, or disposed of as low-level radioactive waste. The petitioner asserts that from the standpoint of... electricity. Efficient Light Emitting Diodes with backup batteries are being used where electricity is...

  15. Model tracking system for low-level radioactive waste disposal facilities: License application interrogatories and responses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Benbennick, M.E.; Broton, M.S.; Fuoto, J.S.

    This report describes a model tracking system for a low-level radioactive waste (LLW) disposal facility license application. In particular, the model tracks interrogatories (questions, requests for information, comments) and responses. A set of requirements and desired features for the model tracking system was developed, including required structure and computer screens. Nine tracking systems were then reviewed against the model system requirements and only two were found to meet all requirements. Using Kepner-Tregoe decision analysis, a model tracking system was selected.

  16. Estimation and characterization of decontamination and decommissioning solid waste expected from the Plutonium Finishing Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Millar, J.S.; Pottmeyer, J.A.; Stratton, T.J.

    1995-01-01

    Purpose of the study was to estimate the amounts of equipment and other materials that are candidates for removal and subsequent processing in a solid waste facility when the Hanford Plutonium Finishing Plant is decontaminated and decommissioned. (Building structure and soil are not covered.) Results indicate that {approximately}5,500 m{sup 3} of solid waste is expected to result from the decontamination and decommissioning of the Pu Finishing Plant. The breakdown of the volumes and percentages of waste by category is 1% dangerous solid waste, 71% low-level waste, 21% transuranic waste, 7% transuranic mixed waste.

  17. 40 CFR 60.2770 - What information must I include in my annual report?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... and Compliance Times for Commercial and Industrial Solid Waste Incineration Units Model Rule... inoperative, except for zero (low-level) and high-level checks. (3) The date, time, and duration that each... of control if any of the following occur. (1) The zero (low-level), mid-level (if applicable), or...

  18. 40 CFR 60.2770 - What information must I include in my annual report?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... and Compliance Times for Commercial and Industrial Solid Waste Incineration Units that Commenced... inoperative, except for zero (low-level) and high-level checks. (3) The date, time, and duration that each... of control if any of the following occur. (1) The zero (low-level), mid-level (if applicable), or...

  19. Final repository for Denmark's low- and intermediate level radioactive waste

    NASA Astrophysics Data System (ADS)

    Nilsson, B.; Gravesen, P.; Petersen, S. S.; Binderup, M.

    2012-12-01

    Bertel Nilsson*, Peter Gravesen, Stig A. Schack Petersen, Merete Binderup Geological Survey of Denmark and Greenland (GEUS), Øster Voldgade 10, 1350 Copenhagen, Denmark, * email address bn@geus.dk The Danish Parliament decided in 2003 that the temporal disposal of the low- and intermediate level radioactive waste at the nuclear facilities at Risø should find another location for a final repository. The Danish radioactive waste must be stored on Danish land territory (exclusive Greenland) and must hold the entire existing radioactive waste, consisting of the waste from the decommissioning of the nuclear facilities at Risø, and the radioactive waste produced in Denmark from hospitals, universities and industry. The radioactive waste is estimated to a total amount of up to 10,000 m3. The Geological Survey of Denmark and Greenland, GEUS, is responsible for the geological studies of suitable areas for the repository. The task has been to locate and recognize non-fractured Quaternary and Tertiary clays or Precambrian bedrocks with low permeability which can isolate the radioactive waste from the surroundings the coming more than 300 years. Twenty two potential areas have been located and sequential reduced to the most favorable two to three locations taking into consideration geology, hydrogeology, nature protection and climate change conditions. Further detailed environmental and geology investigations will be undertaken at the two to three potential localities in 2013 to 2015. This study together with a study of safe transport of the radioactive waste and an investigation of appropriate repository concepts in relation to geology and safety analyses will constitute the basis upon which the final decision by the Danish Parliament on repository concept and repository location. The final repository is planned to be established and in operation at the earliest 2020.

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flynn, Karen; McCormick, Matt

    Hanford's DOE offices are responsible for one of the largest nuclear cleanup efforts in the world, cleaning up the legacy of nearly five decades of nuclear weapons production. Nowhere in the DOE Complex is cleanup more challenging than at the Hanford Site in southeastern Washington. Hanford cleanup entails remediation of hundreds of large complex hazardous waste sites; disposition of nine production reactors and the preservation of one as a National Historic Landmark; demolition of hundreds of contaminated facilities including five enormous process canyons; remediation of billions of gallons of contaminated groundwater; disposition of millions of tons of low-level, mixed low-level,more » and transuranic waste; disposition of significant quantities of special nuclear material; storage and ultimate disposition of irradiated nuclear fuel; remediation of contamination deep in the soil that could impact groundwater; decontamination and decommissioning of hundreds of buildings and structures; and treatment of 56 million gallons of radioactive waste in 177 large underground tanks through the construction of a first-of-its-kind Waste Treatment Plant. Cleanup of the Hanford Site is a complex and challenging undertaking. The DOE Richland Operations Office has a vision and a strategy for completing Hanford's cleanup including the transition to post-cleanup activities. Information on the strategy is outlined in the Hanford Site Completion Framework. The framework describes three major components of cleanup - River Corridor, Central Plateau, and Tank Waste. It provides the context for individual cleanup actions by describing the key challenges and approaches for the decisions needed to complete cleanup. The U.S. Department of Energy (DOE), as regulated by the U.S. Environmental Protection Agency (EPA) and Washington State Department of Ecology (Ecology), is implementing a strategy to achieve final cleanup decisions for the River Corridor portion of the Hanford Site. The DOE Richland Operations Office (RL) and DOE Office of River Protection (ORP) have prepared this document to describe the strategy and to begin developing the approach for making cleanup decisions for the remainder of the Hanford Site. DOE's intent is that the Completion Framework document will facilitate dialogue among the Tri-Parties and with Hanford's diverse interest groups, including Tribal Nations, State of Oregon, Hanford Advisory Board, Natural Resource Trustees, and the public. Future cleanup decisions will be enhanced by an improved understanding of the challenges facing cleanup and a common understanding of the goals and approaches for cleanup completion. The overarching goals for cleanup are sevenfold. - Goal 1: Protect the Columbia River. - Goal 2: Restore groundwater to its beneficial use to protect human health, the environment, and the Columbia River. - Goal 3: Clean up River Corridor waste sites and facilities to: Protect groundwater and the Columbia River. Shrink the active cleanup footprint to the Central Plateau, and support anticipated future uses of the land. - Goal 4: Clean up Central Plateau waste sites, tank farms, and facilities to: Protect groundwater. Minimize the footprint of areas requiring long-term waste management activities. Support anticipated future uses of the land. - Goal 5: Safely manage and transfer legacy materials scheduled for off-site disposition including special nuclear material (including plutonium), spent nuclear fuel, transuranic waste, and immobilized high-level waste. - Goal 6: Consolidate waste treatment, storage, and disposal operations on the Central Plateau. - Goal 7: Develop and implement institutional controls and long-term stewardship activities that protect human health, the environment, and Hanford's unique cultural, historical and ecological resources after cleanup activities are completed. These goals embody more than 20 years of dialogue among the Tri-Party Agencies, Tribal Nations, State of Oregon, stakeholders, and the public. They carry forward key values captured in forums such as the Hanford Future Site Uses Working Group, Tank Waste Task Force, Hanford Summits, and Hanford Advisory Board Exposure Scenario Workshops, as well as more than 200 advice letters issued by the Hanford Advisory Board (http://www.hanford.gov/page.cfm/hab). These goals help guide all aspects of Hanford Site cleanup. Cleanup activities at various areas of the site support the achievement of one or more of these goals. These goals help set priorities to apply resources and sequence cleanup efforts for the greatest benefit. These goals reflect DOE's recognition that the Columbia River is a critical resource for the people and ecology of the Pacific Northwest. The 50-mile stretch of the river known as the Hanford Reach is home to the last free-flowing section of the river in the U.S. As one of the largest rivers in North America, its waters support a multitude of uses that are vital to the economic and environmental well being of the region and it is particularly important in sustaining the culture of Native Americans. Cleanup actions must protect this river. (authors)« less

  1. Phosphate Detection through a Cost-Effective Carbon Black Nanoparticle-Modified Screen-Printed Electrode Embedded in a Continuous Flow System.

    PubMed

    Talarico, Daria; Cinti, Stefano; Arduini, Fabiana; Amine, Aziz; Moscone, Danila; Palleschi, Giuseppe

    2015-07-07

    An automatable flow system for the continuous and long-term monitoring of the phosphate level has been developed using an amperometric detection method based on the use of a miniaturized sensor. This method is based on the monitoring of an electroactive complex obtained by the reaction between phosphate and molybdate that is consequently reduced at the electrode surface. The use of a screen-printed electrode modified with carbon black nanoparticles (CBNPs) leads to the quantification of the complex at low potential, because CBNPs are capable of electrocatalitically enhancing the phosphomolybdate complex reduction at +125 mV versus Ag/AgCl without fouling problems. The developed system also incorporates reagents and waste storage and is connected to a portable potentiostat for rapid detection and quantification of phosphate. Main analytical parameters, such as working potential, reagent concentration, type of cell, and flow rate, were evaluated and optimized. This system was characterized by a low detection limit (6 μM). Interference studies were carried out. Good recovery percentages comprised between 89 and 131.5% were achieved in different water sources, highlighting its suitability for field measurements.

  2. Colloidal and electrochemical aspects of copper-CMP

    NASA Astrophysics Data System (ADS)

    Sun, Yuxia

    Copper based interconnects with low dielectric constant layers are currently used to increase interconnect densities and reduce interconnect time delays in integrated circuits. The technology used to develop copper interconnects involves Chemical Mechanical Planarization (CMP) of copper films deposited on low-k layers (silica or silica based films), which is carried out using slurries containing abrasive particles. One issue using such a structure is copper contamination over dielectric layers (SiO2 film), if not reduced, this contamination will cause current leakage. In this study, the conditions conducive to copper contamination onto SiO2 films during Cu-CMP process were studied, and a post-CMP cleaning technique was discussed based on experimental results. It was found that the adsorption of copper onto a silica surface is kinetically fast (<0.5 minute). The amount of copper absorbed is pH and concentration dependent and affected by presence of H2O2, complexing agents, and copper corrosion inhibitor Benzotrazole. Based on de-sorption results, DI water alone was unable to reduce adsorbed copper to an acceptable level, especially for adsorption that takes place at a higher pH condition. The addition of complex agent, citric acid, proved effective in suppressing copper adsorption onto oxide silica during polishing or post-CMP cleaning by forming stable copper-CA complexes. Surface Complexation Modeling was used to simulate copper adsorption isotherms and predict the copper contamination levels on SiO2 surfaces. Another issue with the application of copper CMP is its environmental impact. CMP is a costly process due to its huge consumption of pure water and slurry. Additionally, Cu-CMP processing generates a waste stream containing certain amounts of copper and abrasive slurry particles. In this study, the separation technique electrocoagulation was investigated to remove both copper and abrasive slurry particles simultaneously. For effluent containing ˜40 ppm dissolved copper, it was found that ˜90% dissolved copper was removed from the waste streams through electroplating and in-situ chemical precipitation. The amount of copper removed through plating is impacted by membrane surface charge, type/amount of complexing agents, and solid content in the slurry suspension. The slurry particles can be removed ˜90% within 2 hours of EC through multiple mechanisms.

  3. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions

    PubMed Central

    Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-01-01

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents’ efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements’ removal efficiency which resulted to be in correlation with the specific adsorbents’ chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements. PMID:29495363

  4. Efficiency Evaluation of Food Waste Materials for the Removal of Metals and Metalloids from Complex Multi-Element Solutions.

    PubMed

    Massimi, Lorenzo; Giuliano, Antonella; Astolfi, Maria Luisa; Congedo, Rossana; Masotti, Andrea; Canepari, Silvia

    2018-02-26

    Recent studies have shown the potential of food waste materials as low cost adsorbents for the removal of heavy metals and toxic elements from wastewater. However, the adsorption experiments have been performed in heterogeneous conditions, consequently it is difficult to compare the efficiency of the individual adsorbents. In this study, the adsorption capacities of 12 food waste materials were evaluated by comparing the adsorbents' efficiency for the removal of 23 elements from complex multi-element solutions, maintaining homogeneous experimental conditions. The examined materials resulted to be extremely efficient for the adsorption of many elements from synthetic multi-element solutions as well as from a heavy metal wastewater. The 12 adsorbent surfaces were analyzed by Fourier transform infrared spectroscopy and showed different types and amounts of functional groups, which demonstrated to act as adsorption active sites for various elements. By multivariate statistical computations of the obtained data, the 12 food waste materials were grouped in five clusters characterized by different elements' removal efficiency which resulted to be in correlation with the specific adsorbents' chemical structures. Banana peel, watermelon peel and grape waste resulted the least selective and the most efficient food waste materials for the removal of most of the elements.

  5. Test Report for Permanganate and Cold Strontium Strike for Tank 241-AN-102

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Duncan, James B.; Huber, Heinz J.; Smalley, Colleen S.

    Tanks 241-AN-102 and 241-AN-107 supernatants contain soluble Sr-90 and transuranic elements that require removal prior to vitrification to comply with the Waste Treatment and Immobilization Plant immobilized low-activity waste specification (WTP Contract, DE-AC27-01RV 14136, Specification 2.2.2.8, "Radionuclide Concentration Limitations") and the U.S. Nuclear Regulatory Commission provisional agreement on waste incidental to reprocessing (letter, Paperiello, C. J., "Classification of Hanford Low-Activity Tank Waste Fraction"). These two tanks have high concentrations of organics and organic complexants and are referred to as complexant concentrate tanks. A precipitation process using sodium permanganate (NaMnO{sub 4}) and strontium nitrate (Sr(NO{sub 3}){sub 2}) was developed and testedmore » with tank waste samples to precipitate Sr-90 and transuranic elements from the supernate (PNWD-3141, Optimization of Sr/TRU Removal Conditions with Samples of AN-102 Tank Waste). Testing documented in this report was conducted to further evaluate the use of the strontium nitrate/sodium permanganate process in tank farms with a retention time of up to 12 months. Previous testing was focused on developing a process for deployment in the ultrafiltration vessels in the Waste Treatment and Immobilization Plant. This environment is different from tank farms in two important ways: the waste is diluted in the Waste Treatment and Immobilization Plant to ~5.5 M sodium, whereas the supernate in the tank farms is ~9 M Na. Secondly, while the Waste Treatment and Immobilization Plant allows for a maximum treatment time of hours to days, the in-tank farms treatment of tanks 241-AN102 and 241-AN-107 will result in a retention time of months (perhaps up to12 months) before processing. A comparative compilation of separation processes for Sr/transuranics has been published as RPP-RPT-48340, Evaluation of Alternative Strontium and Transuranic Separation Processes. This report also listed the testing needs for the permanganate precipitation process to be field-deployable. A more comprehensive listing of future testing needs to allow the process to be field deployable are contained in RPP-PLAN-51288, Development Test Plan for Sr/TRU Precipitation Process.« less

  6. Public Outreach of the South Texas Health Physic Society and Texas A&M University Nuclear Engineering Department

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Berry, R. O.

    In a cooperative effort of the members of the South Texas Chapter of the Heath Physics Society (STC-HPS) and the Texas A&M University Nuclear Engineering Department, great efforts have been made to reach out and provide educational opportunities to members of the general public, school age children, and specifically teachers. These efforts have taken the form of Science Teacher Workshops (STW), visits to schools all over the state of Texas, public forums, and many other educational arenas. A major motivational factor for these most recent efforts can be directly tied to the attempt of the State of Texas to sitemore » a low-level radioactive waste facility near Sierra Blanca in West Texas. When the State of Texas first proposed to site a low level radioactive waste site after the Low-Level Radioactive Waste Policy Act of 1980 was passed, many years of political struggle ensued. Finally, a site at Sierra Blanca in far West Texas was selected for study and characterization for a disposal site for waste generated in the Texas Compact states of Maine, Vermont and Texas. During this process, the outreach to and education of the local public became a paramount issue.« less

  7. HANFORD MEDIUM-LOW CURIE WASTE PRETREATMENT ALTERNATIVES PROJECT FRACTIONAL CRYSTALLIZATION PILOT SCALE TESTING FINAL REPORT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    HERTING DL

    2008-09-16

    The Fractional Crystallization Pilot Plant was designed and constructed to demonstrate that fractional crystallization is a viable way to separate the high-level and low-activity radioactive waste streams from retrieved Hanford single-shell tank saltcake. The focus of this report is to review the design, construction, and testing details of the fractional crystallization pilot plant not previously disseminated.

  8. Waste flow analysis and life cycle assessment of integrated waste management systems as planning tools: Application to optimise the system of the City of Bologna.

    PubMed

    Tunesi, Simonetta; Baroni, Sergio; Boarini, Sandro

    2016-09-01

    The results of this case study are used to argue that waste management planning should follow a detailed process, adequately confronting the complexity of the waste management problems and the specificity of each urban area and of regional/national situations. To support the development or completion of integrated waste management systems, this article proposes a planning method based on: (1) the detailed analysis of waste flows and (2) the application of a life cycle assessment to compare alternative scenarios and optimise solutions. The evolution of the City of Bologna waste management system is used to show how this approach can be applied to assess which elements improve environmental performance. The assessment of the contribution of each waste management phase in the Bologna integrated waste management system has proven that the changes applied from 2013 to 2017 result in a significant improvement of the environmental performance mainly as a consequence of the optimised integration between materials and energy recovery: Global Warming Potential at 100 years (GWP100) diminishes from 21,949 to -11,169 t CO2-eq y(-1) and abiotic resources depletion from -403 to -520 t antimony-eq. y(-1) This study analyses at great detail the collection phase. Outcomes provide specific operational recommendations to policy makers, showing the: (a) relevance of the choice of the materials forming the bags for 'door to door' collection (for non-recycled low-density polyethylene bags 22 kg CO2-eq (tonne of waste)(-1)); (b) relatively low environmental impacts associated with underground tanks (3.9 kg CO2-eq (tonne of waste)(-1)); (c) relatively low impact of big street containers with respect to plastic bags (2.6 kg CO2-eq. (tonne of waste)(-1)). © The Author(s) 2016.

  9. Trial coring in LLRW trenches at Chalk River

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Donders, R.E.; Killey, R.W.D.; Franklin, K.J.

    1996-12-31

    As part of a program to better characterize the low-hazard radioactive waste managed by AECL at Chalk River, coring techniques in waste trenches are being assessed. Trial coring has demonstrated that sampling in waste regions is possible, and that boreholes can be placed through the waste trenches. Such coring provides a valuable information gathering technique. Information available from trench coring includes: (1) trench cover depth, waste region depth, waste compaction level, and detailed stratigraphic data; (2) soil moisture content and facility drainage performance; (3) borehole gamma logs that indicate radiation levels in the region of the borehole; (4) biochemical conditionsmore » in the waste regions, vadose zone, and groundwater; (5) site specific information relevant to contaminant migration modelling or remedial actions; (6) information on contaminant releases and inventories. Boreholes through the trenches can also provide a means for early detection of potential contaminant releases.« less

  10. Food waste and the food-energy-water nexus: A review of food waste management alternatives.

    PubMed

    Kibler, Kelly M; Reinhart, Debra; Hawkins, Christopher; Motlagh, Amir Mohaghegh; Wright, James

    2018-04-01

    Throughout the world, much food produced is wasted. The resource impact of producing wasted food is substantial; however, little is known about the energy and water consumed in managing food waste after it has been disposed. Herein, we characterize food waste within the Food-Energy-Water (FEW) nexus and parse the differential FEW effects of producing uneaten food and managing food loss and waste. We find that various food waste management options, such as waste prevention, landfilling, composting, anaerobic digestion, and incineration, present variable pathways for FEW impacts and opportunities. Furthermore, comprehensive sustainable management of food waste will involve varied mechanisms and actors at multiple levels of governance and at the level of individual consumers. To address the complex food waste problem, we therefore propose a "food-waste-systems" approach to optimize resources within the FEW nexus. Such a framework may be applied to devise strategies that, for instance, minimize the amount of edible food that is wasted, foster efficient use of energy and water in the food production process, and simultaneously reduce pollution externalities and create opportunities from recycled energy and nutrients. Characterization of FEW nexus impacts of wasted food, including descriptions of dynamic feedback behaviors, presents a significant research gap and a priority for future work. Large-scale decision making requires more complete understanding of food waste and its management within the FEW nexus, particularly regarding post-disposal impacts related to water. Copyright © 2018 Elsevier Ltd. All rights reserved.

  11. Information brochure on the Department of Energy's proposed Waste Isolation Pilot Plant (WIPP) in southeastern New Mexico. Project overview

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    This project overview comprises the following: project history; WIPP fact sheet; legal actions required; major WIPP milestones; low-level waste volumes; nuclear waste transportation; WIPP site selection; and questions and answers from the Department of Energy request for public input prior to public meetings in Roswell and Hobbs, New Mexico.

  12. Guidance for Low-Level Radioactive Waste (LLRW) and Mixed Waste (MW) Treatment and Handling

    DTIC Science & Technology

    1997-06-30

    7-2 7-1 Excavation of Contaminated Soils . . . . . . . . 7-3 7-1 Excavation of Contaminated Sediments...becomes only as radioactive as natural soil . By comparison, many other potential y hazardous, but nonradioactive, chemical wastes like lead, silver...solutions and cleanup materials, engine oils and grease, epoxies and resins, laser dyes, paint residues, photo- graphic materials, soils , asphalts

  13. Conversion of transuranic waste to low level waste by decontamination: a site specific update

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Allen, R.P.; Hazelton, R.F.

    1985-09-01

    As a followup to an FY-1984 cost/benefit study, a program was conducted in FY-1985 to transfer to the relevant DOE sites the information and technology for the direct conversion of transuranic (TRU) waste to low-level waste (LLW) by decontamination. As part of this work, the economic evaluation of the various TRUW volume reduction and conversion options was updated and expanded to include site-specific factors. The results show, for the assumptions used, that size reduction, size reduction followed by decontamination, or in situ decontamination are cost effective compared with the no-processing option. The technology transfer activities included site presentations and discussionsmore » with operations and waste management personnel to identify application opportunities and site-specific considerations and constraints that could affect the implementation of TRU waste conversion principles. These discussions disclosed definite potential for the beneficial application of these principles at most of the sites, but also confirmed the existence of site-specific factors ranging from space limitations to LLW disposal restrictions that could preclude particular applications or diminish expected benefits. 8 refs., 2 figs., 4 tabs.« less

  14. WRAP low level waste (LLW) glovebox operational test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kersten, J.K.

    1998-02-19

    The Low Level Waste (LLW) Process Gloveboxes are designed to: receive a 55 gallon drum in an 85 gallon overpack in the Entry glovebox (GBIOI); and open and sort the waste from the 55 gallon drum, place the waste back into drum and relid in the Sorting glovebox (GB 102). In addition, waste which requires further examination is transferred to the LLW RWM Glovebox via the Drath and Schraeder Bagiess Transfer Port (DO-07-201) or sent to the Sample Transfer Port (STC); crush the drum in the Supercompactor glovebox (GB 104); place the resulting puck (along with other pucks) into anothermore » 85 gallon overpack in the Exit glovebox (GB 105). The status of the waste items is tracked by the Data Management System (DMS) via the Plant Control System (PCS) barcode interface. As an item is moved from the entry glovebox to the exit glovebox, the Operator will track an items location using a barcode reader and enter any required data on the DMS console. The Operational Test Procedure (OTP) will perform evolution`s (described below) using the Plant Operating Procedures (POP) in order to verify that they are sufficient and accurate for controlled glovebox operation.« less

  15. Application of computational methods to analyse and investigate physical and chemical processes of high-temperature mineralizing of condensed substances in gas stream

    NASA Astrophysics Data System (ADS)

    Markelov, A. Y.; Shiryaevskii, V. L.; Kudrinskiy, A. A.; Anpilov, S. V.; Bobrakov, A. N.

    2017-11-01

    A computational method of analysis of physical and chemical processes of high-temperature mineralizing of low-level radioactive waste in gas stream in the process of plasma treatment of radioactive waste in shaft furnaces was introduced. It was shown that the thermodynamic simulation method allows fairly adequately describing the changes in the composition of the pyrogas withdrawn from the shaft furnace at different waste treatment regimes. This offers a possibility of developing environmentally and economically viable technologies and small-sized low-cost facilities for plasma treatment of radioactive waste to be applied at currently operating nuclear power plants.

  16. Electrochemical probing of high-level radioactive waste tanks containing washed sludge and precipitates

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bickford, D.F.; Congdon, J.W.; Oblath, S.B.

    1987-01-01

    At the U.S. Department of Energy's Savannah River Plant, corrosion of carbon steel storage tanks containing alkaline, high-level radioactive waste is controlled by specification of limits on waste composition and temperature. Processes for the preparation of waste for final disposal will result in waste with low corrosion inhibitor concentrations and, in some cases, high aromatic organic concentrations, neither of which are characteristic of previous operations. Laboratory tests, conducted to determine minimum corrosion inhibitor levels indicated pitting of carbon steel near the waterline for proposed storage conditions. In situ electrochemical measurements of full-scale radioactive process demonstrations have been conducted to assessmore » the validity of laboratory tests. Probes included pH, Eh (potential relative to a standard hydrogen electrode), tank potential, and alloy coupons. In situ results are compared to those of the laboratory tests, with particular regard given to simulated solution composition.« less

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mollah, A.S.

    Low level radioactive waste (LLW) is generated from various nuclear applications in Bangladesh. The major sources of radioactive waste in the country are at present: (a) the 3 MW TRIGA Mark-II research reactor; (b) the radioisotope production facility; (c) the medical, industrial and research facilities that use radionuclides; and (d) the industrial facility for processing monazite sands. Radioactive waste needs to be safely managed because it is potentially hazardous to human health and the environment. According to Nuclear Safety and Radiation Control Act-93, the Bangladesh Atomic Energy Commission (BAEC) is the governmental body responsible for the receipt and final disposalmore » of radioactive wastes in the whole country. Waste management policy has become an important environmental, social, and economical issue for LLW in Bangladesh. Policy and strategies will serve as a basic guide for radioactive waste management in Bangladesh. The waste generator is responsible for on-site collection, conditioning and temporary storage of the waste arising from his practice. The Central Waste Processing and Storage Unit (CWPSU) of BAEC is the designated national facility with the requisite facility for the treatment, conditioning and storage of radioactive waste until a final disposal facility is established and becomes operational. The Regulatory Authority is responsible for the enforcement of compliance with provisions of the waste management regulation and other relevant requirements by the waste generator and the CWPSU. The objective of this paper is to present, in a concise form, basic information about the radioactive waste management infrastructure, regulations, policies and strategies including the total inventory of low level radioactive waste in the country. For improvement and strengthening in terms of operational capability, safety and security of RW including spent radioactive sources and overall security of the facility (CWPSF), the facility is expected to serve waste management need in the country and, in the course of time, the facility may be turned into a regional level training centre. It is essential for safe conduction and culture of research and application in nuclear science and technology maintaining the relevant safety of man and environment and future generations to come. (authors)« less

  18. Siting process for disposal site of low level radiactive waste in Thailand

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamkate, P.; Sriyotha, P.; Thiengtrongjit, S.

    The radioactive waste in Thailand is composed of low level waste from the application of radioisotopes in medical treatment and industry, the operation of the 2 MW TRIGA Mark III Research Reactor and the production of radioisotopes at OAEP. In addition, the high activity of sealed radiation sources i.e. Cs-137 Co-60 and Ra-226 are also accumulated. Since the volume of treated waste has been gradually increased, the general needs for a repository become apparent. The near surface disposal method has been chosen for this aspect. The feasibility study on the underground disposal site has been done since 1982. The sitemore » selection criteria have been established, consisting of the rejection criteria, the technical performance criteria and the economic criteria. About 50 locations have been picked for consideration and 5 candidate sites have been selected and subsequent investigated. After thoroughly investigation, a definite location in Ratchburi Province, about 180 kilometers southwest of Bangkok, has been selected as the most suitable place for the near surface disposal of radioactive waste in Thailand.« less

  19. Technical and design update in the AUBE French low-level radioactive waste disposal facility

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Marque, Y.

    1989-01-01

    Long-term industrial management of radioactive waste in France is carried out by the Agence Nationale pour la Gestion des Dechets Radioactifs (ANDRA). ANDRA is in charge of design, siting, construction, and operation of disposal centers. The solution selected in France for the disposal of low- and medium-level, short-lived radioactive waste is near-surface disposal in the earth using the principle of multiple barriers, in accordance with national safety rules and regulations, and based on operating experience from the Centre de Stockage de la Manche. Since the center's start-up in 1969, 400,000 m{sup 3} of waste have been disposed of. The Frenchmore » national program for waste management is proceeding with the construction of a second near-surface disposal, which is expected to be operational in 1991. It is located in the department of AUBE (from which its name derives), 100 miles southeast of Paris. The paper describes the criteria for siting and design of the AUBE disposal facility, design of the AUBE facility disposal module, and comparison with North Carolina and Pennsylvania disposal facility designs.« less

  20. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Vienna, John D.; Todd, Terry A.; Gray, Kimberly D.

    The U.S. Department of Energy, Office of Nuclear Energy has chartered an effort to develop technologies to enable safe and cost effective recycle of commercial used nuclear fuel (UNF) in the U.S. Part of this effort includes the evaluation of exiting waste management technologies for effective treatment of wastes in the context of current U.S. regulations and development of waste forms and processes with significant cost and/or performance benefits over those existing. This study summarizes the results of these ongoing efforts with a focus on the highly radioactive primary waste streams. The primary streams considered and the recommended waste formsmore » include: •Tritium separated from either a low volume gas stream or a high volume water stream. The recommended waste form is low-water cement in high integrity containers. •Iodine-129 separated from off-gas streams in aqueous processing. There are a range of potentially suitable waste forms. As a reference case, a glass composite material (GCM) formed by the encapsulation of the silver Mordenite (AgZ) getter material in a low-temperature glass is assumed. A number of alternatives with distinct advantages are also considered including a fused silica waste form with encapsulated nano-sized AgI crystals. •Carbon-14 separated from LWR fuel treatment off-gases and immobilized as a CaCO3 in a cement waste form. •Krypton-85 separated from LWR and SFR fuel treatment off-gases and stored as a compressed gas. •An aqueous reprocessing high-level waste (HLW) raffinate waste which is immobilized by the vitrification process in one of three forms: a single phase borosilicate glass, a borosilicate based glass ceramic, or a multi-phased titanate ceramic [e.g., synthetic rock (Synroc)]. •An undissolved solids (UDS) fraction from aqueous reprocessing of LWR fuel that is either included in the borosilicate HLW glass or is immobilized in the form of a metal alloy in the case of glass ceramics or titanate ceramics. •Zirconium-based LWR fuel cladding hulls and stainless steel (SS) fuel assembly hardware that are washed and super-compacted for disposal or as an alternative Zr purification and reuse (or disposal as low-level waste, LLW) by reactive gas separations. •Electrochemical process salt HLW which is immobilized in a glass bonded Sodalite waste form known as the ceramic waste form (CWF). •Electrochemical process UDS and SS cladding hulls which are melted into an iron based alloy waste form. Mass and volume estimates for each of the recommended waste forms based on the source terms from a representative flowsheet are reported.« less

  1. Special Analysis: 2016-001 Analysis of the Potential Under-Reporting of Am-241 Inventory for Nitrate Salt Waste at Area G

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chu, Shaoping; Stauffer, Philip H.; Birdsell, Kay Hanson

    The Los Alamos National Laboratory (LANL) generates radioactive waste as a result of various activities. Operational waste is generated from a wide variety of research and development activities including nuclear weapons development, energy production, and medical research. Environmental restoration (ER), and decontamination and decommissioning (D&D) waste is generated as contaminated sites and facilities at LANL undergo cleanup or remediation. The majority of this waste is low-level radioactive waste (LLW) and is disposed of at the Technical Area 54 (TA-54), Area G disposal facility.

  2. 2014 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lewis, Mike

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2013 through October 31, 2014. The report contains the following information; Facility and system description; Permit required effluent monitoring data and loading rates; Groundwater monitoring data; Status of special compliance conditions; Noncompliance issues; and Discussion of the facility’s environmental impacts During the 2014 reporting year, an estimated 10.11 million gallons of wastewater were discharged tomore » the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  3. 2013 Annual Industrial Wastewater Reuse Report for the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mike Lewis

    This report describes conditions, as required by the state of Idaho Industrial Wastewater Reuse Permit (WRU-I-0160-01, formerly LA 000160 01), for the wastewater reuse site at the Idaho National Laboratory Site’s Materials and Fuels Complex Industrial Waste Ditch and Industrial Waste Pond from November 1, 2012 through October 31, 2013. The report contains the following information: • Facility and system description • Permit required effluent monitoring data and loading rates • Groundwater monitoring data • Status of special compliance conditions • Discussion of the facility’s environmental impacts During the 2013 reporting year, an estimated 9.64 million gallons of wastewater weremore » discharged to the Industrial Waste Ditch and Pond which is well below the permit limit of 17 million gallons per year. The concentrations of all permit-required analytes in the samples from the down gradient monitoring wells were below the applicable Idaho Department of Environmental Quality’s groundwater quality standard levels.« less

  4. Data Quality Objectives Process for Designation of K Basins Debris

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    WESTCOTT, J.L.

    2000-05-22

    The U.S. Department of Energy has developed a schedule and approach for the removal of spent fuels, sludge, and debris from the K East (KE) and K West (KW) Basins, located in the 100 Area at the Hanford Site. The project that is the subject of this data quality objective (DQO) process is focused on the removal of debris from the K Basins and onsite disposal of the debris at the Environmental Restoration Disposal Facility (ERDF). This material previously has been dispositioned at the Hanford Low-Level Burial Grounds (LLBGs) or Central Waste Complex (CWC). The goal of this DQO processmore » and the resulting Sampling and Analysis Plan (SAP) is to provide the strategy for characterizing and designating the K-Basin debris to determine if it meets the Environmental Restoration Disposal Facility Waste Acceptance Criteria (WAC), Revision 3 (BHI 1998). A critical part of the DQO process is to agree on regulatory and WAC interpretation, to support preparation of the DQO workbook and SAP.« less

  5. Evaluation of solid residues removed from a mangrove swamp in the São Vicente Estuary, SP, Brazil.

    PubMed

    Cordeiro, C A M M; Costa, T M

    2010-10-01

    Mangrove swamps are found in estuaries along the coastal plains of tropical regions and have be subjected to heavy occupation and use pressure due to their privileged locations and abundance of biological resources. The present work evaluated the ecological characteristics and solid wastes accumulated in eight areas along the Santos - São Vicente Estuary Complex. The superficially deposited residues at each sampling site were collected and subsequently washed, drained, counted, weighed and separated into classes according to their composition and predominant use. The predominant litter type in terms of density was plastic (62.81%) and, by weight, wood (55.53%). The greatest deposition of residues was associated with areas that were less inclined and that had low plant density levels, indicating that the presence of obstacles was not critical for retaining floating residues in mangrove areas. The presence of the most frequently encountered types of solid waste residues could be explained by local activities. Copyright © 2010 Elsevier Ltd. All rights reserved.

  6. Waste receiving and processing facility module 1 data management system software project management plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Clark, R.E.

    1994-11-02

    This document provides the software development plan for the Waste Receiving and Processing (WRAP) Module 1 Data Management System (DMS). The DMS is one of the plant computer systems for the new WRAP 1 facility (Project W-026). The DMS will collect, store, and report data required to certify the low level waste (LLW) and transuranic (TRU) waste items processed at WRAP 1 as acceptable for shipment, storage, or disposal.

  7. Planning for the recreational end use of a future LLR waste mound in Canada - Leaving an honourable legacy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kleb, H.R.; Zelmer, R.L.

    2007-07-01

    The Low-Level Radioactive Waste Management Office was established in 1982 to carry out the federal government's responsibilities for low-level radioactive (LLR) waste management in Canada. In this capacity, the Office operates programs to characterize, delineate, decontaminate and consolidate historic LLR waste for interim and long-term storage. The Office is currently the proponent of the Port Hope Area Initiative; a program directed at the development and implementation of a safe, local long-term management solution for historic LLR waste in the Port Hope area. A legal agreement between the Government of Canada and the host community provides the framework for the implementationmore » of the Port Hope Project. Specifically, the agreement requires that the surface of the long-term LLR waste management facility be 'conducive to passive and active recreational uses such as soccer fields and baseball diamonds'. However, there are currently no examples of licensed LLR waste management facilities in Canada that permit recreational use. Such an end use presents challenges with respect to engineering and design, health and safety and landscape planning. This paper presents the cover system design, the environmental effects assessment and the landscape planning processes that were undertaken in support of the recreational end use of the Port Hope long-term LLR waste management facility. (authors)« less

  8. Elevated lead levels and changes in blood morphology and erythrocyte CR1 in preschool children from an e-waste area.

    PubMed

    Dai, Yifeng; Huo, Xia; Zhang, Yu; Yang, Tian; Li, Minghui; Xu, Xijin

    2017-08-15

    Improper dismantling and combustion of electronic waste (e-waste) may release persistent organic pollutants and heavy metals that possess potential risk for human health. Lead (Pb) is carried through the circulatory system by erythrocytes and is known to alter the functions of hematopoietic and immune systems. The aim of the study was to investigate the effect of Pb exposure on blood morphology and erythrocyte complement receptor 1 (CR1) levels as related to immunologic function in preschool children. We recruited 484 preschool children, 2- to 6-years of age, among whom 332 children were from Guiyu, a typical and primitive e-waste processing area, and 152 children from Haojiang (reference area). Results showed that the blood Pb level (BPb) and erythrocyte Pb level (EPb) of exposed children were significantly higher, but, the mean corpuscular hemoglobin concentration (MCHC) and erythrocyte CR1 levels were significantly lower than reference children. Elevated EPb and BPb was related to disadvantageous changes in hematocrit (HCT), mean corpuscular volume (MCV), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), and MCHC, respectively, in children from the e-waste recycling area. Furthermore, in the high Pb-exposed group, the Pb toxicity of erythrocytes was more significant compared to the low Pb-exposed group in e-waste-exposed children. Combine with the BPb and EPb would be better to evaluating the Pb toxicity of erythrocytes. Compared to low Pb exposure, high BPb and EPb were associated with lower erythrocyte CR1 expression in all children. Our data suggests that elevated Pb levels result in adverse changes in blood morphology, hemoglobin synthesis and CR1 expression, which might be a non-negligible threat to erythrocyte immunity development in local preschool children. It is therefore imperative for any intervention to control the Pb exposure of children and actively educate adults to raise their environmental awareness of potential e-waste pollution during the recycling process. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Simulating Radionuclide Migrations of Low-level Wastes in Nearshore Environment

    NASA Astrophysics Data System (ADS)

    Lu, C. C.; Li, M. H.; Chen, J. S.; Yeh, G. T.

    2016-12-01

    Tunnel disposal into nearshore mountains was tentatively selected as one of final disposal sites for low-level wastes in Taiwan. Safety assessment on radionuclide migrations in far-filed may involve geosphere processes under coastal environments and into nearshore ocean. In this study the 3-D HYDROFEOCHE5.6 numerical model was used to perform simulations of groundwater flow and radionuclide transport with decay chains. Domain of interest on the surface includes nearby watersheds delineated by digital elevation models and nearshore seabed. As deep as 800 m below the surface and 400 m below sea bed were considered for simulations. The disposal site was located at 200m below the surface. Release rates of radionuclides from near-field was estimated by analytical solutions of radionuclide diffusion with decay out of engineered barriers. Far-field safety assessments were performed starting from the release of radionuclides out of engineered barriers to a time scale of 10,000 years. Sensitivity analyses of geosphere and transport parameters were performed to improve our understanding of safety on final disposal of low-level waste in nearshore environments.

  10. RCRA Facility Investigation report for Waste Area Grouping 6 at Oak Ridge National Laboratory, Oak Ridge, Tennessee. Volume 3. Appendixes 1 through 8

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    1991-09-01

    This report presents compiled information concerning a facility investigation of waste area group 6(WAG-6), of the solid waste management units (SWMU'S) at Oak Ridge National Laboratory (ORNL). The WAG is a shallow ground disposal area for low-level radioactive wastes and chemical wastes. The report contains information on hydrogeological data, contaminant characterization, radionuclide concentrations, risk assessment from doses to humans and animals and associated cancer risks, exposure via food chains, and historical data. (CBS)

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Petersen, C.A., Westinghouse Hanford

    The overall objective of this report is to provide a technical basis to support a U.S. Nuclear Regulatory Commission determination to classify the low-activity waste from the Hanford Site single-shell and double-shell tanks as `incidental` wastes after removal of additional radionuclides and immobilization.The proposed processing method, in addition to the previous radionuclide removal efforts, will remove the largest practical amount of total site radioactivity, attributable to high-level wastes, for disposal in a deep geologic repository. The remainder of the waste would be considered `incidental` waste and could be disposed onsite.

  12. Radioactive Wastes.

    PubMed

    Choudri, B S; Charabi, Yassine; Baawain, Mahad; Ahmed, Mushtaque

    2017-10-01

    Papers reviewed herein present a general overview of radioactive waste related activities around the world in 2016. The current reveiw include studies related to safety assessments, decommission and decontamination of nuclear facilities, fusion facilities, transportation. Further, the review highlights on management solutions for the final disposal of low and high level radioactive wastes (LLW and HLW), interim storage and final disposal options for spent fuel (SF), and tritiated wastes, with a focus on environmental impacts due to the mobility of radionuclides in ecosystem, water and soil alongwith other progress made in the management of radioactive wastes.

  13. Active and passive computed tomography mixed waste focus area final report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roberson, G P

    1998-08-19

    The Mixed Waste Focus Area (MWFA) Characterization Development Strategy delineates an approach to resolve technology deficiencies associated with the characterization of mixed wastes. The intent of this strategy is to ensure the availability of technologies to support the Department of Energy's (DOE) mixed waste low-level or transuranic (TRU) contaminated waste characterization management needs. To this end the MWFA has defined and coordinated characterization development programs to ensure that data and test results necessary to evaluate the utility of non-destructive assay technologies are available to meet site contact handled waste management schedules. Requirements used as technology development project benchmarks are basedmore » in the National TRU Program Quality Assurance Program Plan. These requirements include the ability to determine total bias and total measurement uncertainty. These parameters must be completely evaluated for waste types to be processed through a given nondestructive waste assay system constituting the foundation of activities undertaken in technology development projects. Once development and testing activities have been completed, Innovative Technology Summary Reports are generated to provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or provide results and conclusions to support EM-30, -40, or -60 end user/customer technology selection. The Active and Passive Computed Tomography non-destructive assay system is one of the technologies selected for development by the MWFA. Lawrence Livermore National Laboratory's (LLNL) is developing the Active and Passive Computed Tomography (A&PCT) nondestructive assay (NDA) technology to identify and accurately quantify all detectable radioisotopes in closed containers of waste. This technology will be applicable to all types of waste regardless of .their classification; low level, transuranic or mixed, which contains radioactivity and hazardous organic species. The scope of our technology is to develop a non-invasive waste-drum scanner that employs the principles of computed tomography and gamma-ray spectral analysis to identify and quantify all of the detectable radioisotopes. Once this and other applicable technologies are developed, waste drums can be non- destructively and accurately characterized to satisfy repository and regulatory guidelines prior to disposal.« less

  14. Monitoring radionuclide contamination in the unsaturated zone - Lessons learned at the Amargosa Desert Research Site, Nye County, Nevada

    USGS Publications Warehouse

    Stonestrom, David A.; Abraham, Jared D.; Andraski, Brian J.; Baker, Ronald J.; Mayers, C. Justin; Michel, Robert L.; Prudic, David E.; Striegl, Robert G.; Walvoord, Michelle Ann

    2004-01-01

    Contaminant-transport processes are being investigated at the U.S. Geological Survey’s Amargosa Desert Research Site (A DRS), adjacent to the Nation’s first commercial disposal facility for low-level radioactive waste. Gases containing tritium and radiocarbon are migrating through a 110-m thick unsaturated zone from unlined trenches that received waste from 1962 to 1992. Results relevant to long- term monitoring of radionuclides are summarized as follows. Contaminant plumes have unexpected histories and spatial configurations due to uncertainties in the: (1) geologic framework, (2) biochemical reactions involving waste components, (3) interactions between plume components and unsaturated-zone materials, (4) disposal practices, and (5) physical transport processes. Information on plume dynamics depends on ex-situ wet-chemical techniques because in-situ sensors for the radionuclides of interest do not exist. As at other radioactive-waste disposal facilities, radionuclides at the ADRS are mixed with varying amounts of volatile organic compounds (VOCs). Carbon-dioxide and VOC anomalies provide proxies for radioactive contamination. Contaminants in the unsaturated zone migrate along preferential pathways. Effective monitoring thus requires accurate geologic characterization. Direct- current electrical-resistivity imaging successfully mapped geologic units controlling preferential transport at the ADRS. Direct sampling of water from the unsaturated zone is complex and time consuming. Sampling plant water is an efficient alternative for mapping shallow tritium contamination.

  15. Transportation needs assessment: Emergency response section

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The transportation impacts of moving high level nuclear waste (HLNW) to a repository at Yucca Mountain in Nevada are of concern to the residents of the State as well as to the residents of other states through which the nuclear wastes might be transported. The projected volume of the waste suggests that shipments will occur on a daily basis for some period of time. This will increase the risk of accidents, including a catastrophic incident. Furthermore, as the likelihood of repository construction and operation and waste shipments increase, so will the attention given by the national media. This document ismore » not to be construed as a willingness to accept the HLNW repository on the part of the State. Rather it is an initial step in ensuring that the safety and well-being of Nevada residents and visitors and the State`s economy will be adequately addressed in federal decision-making pertaining to the transportation of HLNW into and across Nevada for disposal in the proposed repository. The Preferred Transportation System Needs Assessment identifies critical system design elements and technical and social issues that must be considered in conducting a comprehensive transportation impact analysis. Development of the needs assessment and the impact analysis is especially complex because of the absence of information and experience with shipping HLNW and because of the ``low probability, high consequence`` aspect of the transportation risk.« less

  16. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dunn, Darrell; Poinssot, Christophe; Begg, Bruce

    Management of nuclear waste remains an important international topic that includes reprocessing of commercial nuclear fuel, waste-form design and development, storage and disposal packaging, the process of repository site selection, system design, and performance assessment. Requirements to manage and dispose of materials from the production of nuclear weapons, and the renewed interest in nuclear power, in particular through the Generation IV Forum and the Advanced Fuel Cycle Initiative, can be expected to increase the need for scientific advances in waste management. A broad range of scientific and engineering disciplines is necessary to provide safe and effective solutions and address complexmore » issues. This volume offers an interdisciplinary perspective on materials-related issues associated with nuclear waste management programs. Invited and contributed papers cover a wide range of topics including studies on: spent fuel; performance assessment and models; waste forms for low- and intermediate-level waste; ceramic and glass waste forms for plutonium and high-level waste; radionuclides; containers and engineered barriers; disposal environments and site characteristics; and partitioning and transmutation.« less

  17. Overview of ORNL/NRC programs addressing durability of concrete structures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Naus, D.J.; Oland, C.B.

    1994-06-01

    The role of reinforced concrete relative to its applications as either safety-related structures in nuclear power or engineered barriers of low-level radioactive waste disposal facilities is described. Factors that can affect the long-term durability of reinforced concrete are identified. Overviews are presented of the Structural Aging Program, which is addressing the aging management of safety-related concrete structures in nuclear power plants, and the Permeability Test Methods and Data Program, which is identifying pertinent data and information for use in performance assessments of engineered barriers for low-level radioactive waste disposal.

  18. Data for wells at the low-level radioactive-waste burial site in the Palos Forest Preserve, Illinois

    USGS Publications Warehouse

    Olimpio, J.C.

    1982-01-01

    The U.S. Geological Survey is studying the geologic, hydrologic, and geochemical properties of the glacial drift and underlying bedrock at a low-level radioactive-waste burial site in the Palos Forest Preserve, 22 kilometers southwest of Chicago. Data collected from the 33 test wells drilled into the drift plus data from 4 wells drilled into the underlying dolomite bedrock are presented. Data include maps showing the location of the test wells, a general description of the drift, well-construction information, and lithologic descriptions of cores from the wells finished in the drift.

  19. Constructing Acceptable RWM Approaches: The Politics of Participation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Laes, E.; Bombaerts, G.

    2006-07-01

    Public participation in a complex technological issue such as the management of radioactive waste needs to be based on a simultaneous construction of scientific, ethical and socio-political foundations. Confronting this challenge is in no way straightforward. The problem is not only that the 'hard' technocrats downplay the importance of socio-political and ethical factors; also, our 'soft' ethical vocabularies (e.g. Habermasian 'discourse ethics') seem to be ill-equipped for tackling such complex questions (in terms of finding concrete solutions). On the other hand, professionals in the field, confronted with a (sometimes urgent) need for finding workable solutions, cannot wait for armchair philosophersmore » to formulate the correct academic answers to their questions. Different public participation and communication models have been developed and tested in real-world conditions, for instance in the Belgian 'partnership approach' to the siting of a low-level waste management facility. Starting from the confrontation of theoretical outlooks and pragmatic solutions, this paper identifies a number of 'dilemmas of participation' that can only be resolved by inherently political choices. Successfully negotiating these dilemmas is of course difficult and conditional on many contextual factors, but nevertheless at the end of the paper an attempt is made to sketch the contours of three possible future scenarios (each with their own limits and possibilities). (authors)« less

  20. 77 FR 58416 - Comparative Environmental Evaluation of Alternatives for Handling Low-Level Radioactive Waste...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-09-20

    ... NUCLEAR REGULATORY COMMISSION [NRC-2012-0218] Comparative Environmental Evaluation of Alternatives... public comment the Draft Comparative Environmental Evaluation of Alternatives for Handling Low-Level.... Availability of Documents ADAMS Accession No. Document title ML12256A965 Draft Comparative Environmental...

  1. WRAP low level waste restricted waste management (LLW RWM) glovebox acceptance test report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Leist, K.J.

    1997-11-24

    On April 22, 1997, the Low Level Waste Restricted Waste Management (LLW RWM) glovebox was tested using acceptance test procedure 13027A-87. Mr. Robert L. Warmenhoven served as test director, Mr. Kendrick Leist acted as test operator and test witness, and Michael Lane provided miscellaneous software support. The primary focus of the glovebox acceptance test was to examine glovebox control system interlocks, operator Interface Unit (OIU) menus, alarms, and messages. Basic drum port and lift table control sequences were demonstrated. OIU menus, messages, and alarm sequences were examined, with few exceptions noted. Barcode testing was bypassed, due to the lack ofmore » installed equipment as well as the switch from basic reliance on fixed bar code readers to the enhanced use of portable bar code readers. Bar code testing was completed during performance of the LLW RWM OTP. Mechanical and control deficiencies were documented as Test Exceptions during performance of this Acceptance Test. These items are attached as Appendix A to this report.« less

  2. Disorders of lysosomal acidification - the emerging role of v-ATPase in aging and neurodegenerative disease

    PubMed Central

    Colacurcio, Daniel J.; Nixon, Ralph A.

    2016-01-01

    Autophagy and endocytosis deliver unneeded cellular materials to lysosomes for degradation. Beyond processing cellular waste, lysosomes release metabolites and ions that serve signaling and nutrient sensing roles, linking the functions of the lysosome to various pathways for intracellular metabolism and nutrient homeostasis. Each of these lysosomal behaviors is influenced by the intraluminal pH of the lysosome, which is maintained in the low acidic range by a proton pump, the vacuolar ATPase (v-ATPase). New reports implicate altered v-ATPase activity and lysosomal pH dysregulation in cellular aging, longevity, and adult-onset neurodegenerative diseases, including forms of Parkinson Disease and Alzheimer Disease. Genetic defects of subunits composing the v-ATPase or v-ATPase-related proteins occur in an increasingly recognized group of familial neurodegenerative diseases. Here, we review the expanding roles of the v-ATPase complex as a platform regulating lysosomal proteolysis and cellular homeostasis. We discuss the unique vulnerability of neurons to persistent low level lysosomal dysfunction and review recent clinical and experimental studies that link dysfunction of the v-ATPase complex to neurodegenerative diseases across the age spectrum. PMID:27197071

  3. Radioactive and mixed waste - risk as a basis for waste classification. Symposium proceedings No. 2

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    The management of risks from radioactive and chemical materials has been a major environmental concern in the United states for the past two or three decades. Risk management of these materials encompasses the remediation of past disposal practices as well as development of appropriate strategies and controls for current and future operations. This symposium is concerned primarily with low-level radioactive wastes and mixed wastes. Individual reports were processed separately for the Department of Energy databases.

  4. Surface reaction of SnII on goethite (α-FeOOH): surface complexation, redox reaction, reductive dissolution, and phase transformation.

    PubMed

    Dulnee, Siriwan; Scheinost, Andreas C

    2014-08-19

    To elucidate the potential risk of (126)Sn migration from nuclear waste repositories, we investigated the surface reactions of Sn(II) on goethite as a function of pH and Sn(II) loading under anoxic condition with O2 level < 2 ppmv. Tin redox state and surface structure were investigated by Sn K edge X-ray absorption spectroscopy (XAS), goethite phase transformations were investigated by high-resolution transmission electron microscopy and selected area electron diffraction. The results demonstrate the rapid and complete oxidation of Sn(II) by goethite and formation of Sn(IV) (1)E and (2)C surface complexes. The contribution of (2)C complexes increases with Sn loading. The Sn(II) oxidation leads to a quantitative release of Fe(II) from goethite at low pH, and to the precipitation of magnetite at higher pH. To predict Sn sorption, we applied surface complexation modeling using the charge distribution multisite complexation approach and the XAS-derived surface complexes. Log K values of 15.5 ± 1.4 for the (1)E complex and 19.2 ± 0.6 for the (2)C complex consistently predict Sn sorption across pH 2-12 and for two different Sn loadings and confirm the strong retention of Sn(II) even under anoxic conditions.

  5. Characterization of Class A low-level radioactive waste 1986--1990. Volume 6: Appendices G--J

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dehmel, J.C.; Loomis, D.; Mauro, J.

    1994-01-01

    Under contract to the US Nuclear Regulatory Commission, Office of Nuclear Regulatory Research, the firms of S. Cohen & Associates, Inc. (SC&A) and Eastern Research Group (ERG) have compiled a report that describes the physical, chemical, and radiological properties of Class-A low-level radioactive waste. The report also presents information characterizing various methods and facilities used to treat and dispose non-radioactive waste. A database management program was developed for use in accessing, sorting, analyzing, and displaying the electronic data provided by EG&G. The program was used to present and aggregate data characterizing the radiological, physical, and chemical properties of the wastemore » from descriptions contained in shipping manifests. The data thus retrieved are summarized in tables, histograms, and cumulative distribution curves presenting radionuclide concentration distributions in Class-A waste as a function of waste streams, by category of waste generators, and regions of the United States. The report also provides information characterizing methods and facilities used to treat and dispose non-radioactive waste, including industrial, municipal, and hazardous waste regulated under Subparts C and D of the Resource Conservation and Recovery Act (RCRA). The information includes a list of disposal options, the geographical locations of the processing and disposal facilities, and a description of the characteristics of such processing and disposal facilities. Volume 1 contains the Executive Summary, Volume 2 presents the Class-A waste database, Volume 3 presents the information characterizing non-radioactive waste management practices and facilities, and Volumes 4 through 7 contain Appendices A through P with supporting information.« less

  6. Nuclear waste transportation: case studies of identifying stakeholder risk information needs.

    PubMed Central

    Drew, Christina H; Grace, Deirdre A; Silbernagel, Susan M; Hemmings, Erin S; Smith, Alan; Griffith, William C; Takaro, Timothy K; Faustman, Elaine M

    2003-01-01

    The U.S. Department of Energy (DOE) is responsible for the cleanup of our nation's nuclear legacy, involving complex decisions about how and where to dispose of nuclear waste and how to transport it to its ultimate disposal site. It is widely recognized that a broad range of stakeholders and tribes should be involved in this kind of decision. All too frequently, however, stakeholders and tribes are only invited to participate by commenting on processes and activities that are near completion; they are not included in the problem formulation stages. Moreover, it is often assumed that high levels of complexity and uncertainty prevent meaningful participation by these groups. Considering the types of information that stakeholders and tribes need to be able to participate in the full life cycle of decision making is critical for improving participation and transparency of decision making. Toward this objective, the Consortium for Risk Evaluation with Stakeholder Participation (CRESP) participated in three public processes relating to nuclear waste transportation and disposal in 1997-1998. First, CRESP organized focus groups to identify concerns about nuclear waste transportation. Second, CRESP conducted exit surveys at regional public workshops held by DOE to get input from stakeholders on intersite waste transfer issues. Third, CRESP developed visual tools to synthesize technical information and allow stakeholders and tribes with varying levels of knowledge about nuclear waste to participate in meaningful discussion. In this article we share the results of the CRESP findings, discuss common themes arising from these interactions, and comment on special considerations needed to facilitate stakeholder and tribal participation in similar decision-making processes. PMID:12611653

  7. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J. H.

    2015-08-01

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO₄) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe,Cr)₂O₄), while not detrimental to glass durability, can cause an array of processing problems inside of HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic, thermodynamic, and viscositymore » arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies.« less

  8. Integrated Disposal Facility FY2010 Glass Testing Summary Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pierce, Eric M.; Bacon, Diana H.; Kerisit, Sebastien N.

    2010-09-30

    Pacific Northwest National Laboratory was contracted by Washington River Protection Solutions, LLC to provide the technical basis for estimating radionuclide release from the engineered portion of the disposal facility (e.g., source term). Vitrifying the low-activity waste at Hanford is expected to generate over 1.6 × 105 m3 of glass (Puigh 1999). The volume of immobilized low-activity waste (ILAW) at Hanford is the largest in the DOE complex and is one of the largest inventories (approximately 0.89 × 1018 Bq total activity) of long-lived radionuclides, principally 99Tc (t1/2 = 2.1 × 105), planned for disposal in a low-level waste (LLW) facility.more » Before the ILAW can be disposed, DOE must conduct a performance assessement (PA) for the Integrated Disposal Facility (IDF) that describes the long-term impacts of the disposal facility on public health and environmental resources. As part of the ILAW glass testing program PNNL is implementing a strategy, consisting of experimentation and modeling, in order to provide the technical basis for estimating radionuclide release from the glass waste form in support of future IDF PAs. The purpose of this report is to summarize the progress made in fiscal year (FY) 2010 toward implementing the strategy with the goal of developing an understanding of the long-term corrosion behavior of low-activity waste glasses. The emphasis in FY2010 was the completing an evaluation of the most sensitive kinetic rate law parameters used to predict glass weathering, documented in Bacon and Pierce (2010), and transitioning from the use of the Subsurface Transport Over Reactive Multi-phases to Subsurface Transport Over Multiple Phases computer code for near-field calculations. The FY2010 activities also consisted of developing a Monte Carlo and Geochemical Modeling framework that links glass composition to alteration phase formation by 1) determining the structure of unreacted and reacted glasses for use as input information into Monte Carlo calculations, 2) compiling the solution data and alteration phases identified from accelerated weathering tests conducted with ILAW glass by PNNL and Viteous State Laboratory/Catholic University of America as well as other literature sources for use in geochemical modeling calculations, and 3) conducting several initial calculations on glasses that contain the four major components of ILAW-Al2O3, B2O3, Na2O, and SiO2.« less

  9. Condensed Phase Membrane Introduction Mass Spectrometry with Direct Electron Ionization: On-line Measurement of PAHs in Complex Aqueous Samples

    NASA Astrophysics Data System (ADS)

    Termopoli, Veronica; Famiglini, Giorgio; Palma, Pierangela; Cappiello, Achille; Vandergrift, Gregory W.; Krogh, Erik T.; Gill, Chris G.

    2016-02-01

    Polycyclic aromatic hydrocarbons (PAHs) are USEPA regulated priority pollutants. Their low aqueous solubility requires very sensitive analytical methods for their detection, typically involving preconcentration steps. Presented is the first demonstrated `proof of concept' use of condensed phase membrane introduction mass spectrometry (CP-MIMS) coupled with direct liquid electron ionization (DEI) for the direct, on-line measurement of PAHs in aqueous samples. DEI is very well suited for the ionization of PAHs and other nonpolar compounds, and is not significantly influenced by the co-elution of matrix components. Linear calibration data for low ppb levels of aqueous naphthalene, anthracene, and pyrene is demonstrated, with measured detection limits of 4 ppb. Analytical response times (t10%-90% signal rise) ranged from 2.8 min for naphthalene to 4.7 min for pyrene. Both intra- and interday reproducibility has been assessed (<3% and 5% RSD, respectively). Direct measurements of ppb level PAHs spiked in a variety of real, complex environmental sample matrices is examined, including natural waters, sea waters, and a hydrocarbon extraction production waste water sample. For these spiked, complex samples, direct PAH measurement by CP-MIMS-DEI yielded minimal signal suppression from sample matrix effects (81%-104%). We demonstrate the use of this analytical approach to directly monitor real-time changes in aqueous PAH concentrations with potential applications for continuous on-line monitoring strategies and binding/adsorption studies in heterogeneous samples.

  10. Effects of organic fertilizers on soil physicochemistry and on the yield and botanical composition of forage over 3 years.

    PubMed

    Matos-Moreira, Mariana; López-Mosquera, M Elvira; Cunha, Mario; Sáinz Osés, María Jesús; Rodríguez, Teresa; Carral, Emilio V

    2011-07-01

    Organic wastes have been reported to reduce saturation of the exchange complex by Al in Al-rich acid soils. For 3 years, the main soil fertility properties were studied in plots sown with mixed pasture species. These plots were fertilized with cattle slurry, dairy sludge (DS), or granulated broiler litter (BL) in comparison with mineral fertilizer. Al saturation levels were low after the initial inorganic liming treatment (19.00-33.71%) but tended to rise under all treatments (21.09-61.37%) except BL (8.45-30.98%), which was also associated with the highest average soil pH and the highest average levels of exchangeable Ca2+, Mg2+, and K+. Treatment DS performed similarly to mineral fertilizer in most respects, but it led to greater available P levels. Under the dry conditions of the second and third years of the study, BL and DS treatments were associated with significantly greater forage yields than the other treatments. Under DS treatment, available P levels were too low to allow the maintenance of mixed pasture, clover being eliminated by the less P-dependent species.

  11. Effects of Organic Fertilizers on Soil Physicochemistry and on the Yield and Botanical Composition of Forage over 3 Years.

    PubMed

    Matos-Moreira, Mariana; Elvira López-Mosquera, M; Cunha, Mario; Jesús Sáinz Osés, María; Rodríguez, Teresa; Carral, Emilio V

    2011-07-01

    Organic wastes have been reported to reduce saturation of the exchange complex by Al in Al-rich acid soils. For 3 years, the main soil fertility properties were studied in plots sown with mixed pasture species. These plots were fertilized with cattle slurry, dairy sludge (DS), or granulated broiler litter (BL) in comparison with mineral fertilizer. Al saturation levels were low after the initial inorganic liming treatment (19.00-33.71%) but tended to rise under all treatments (21.09-61.37%) except BL (8.45-30.98%), which was also associated with the highest average soil pH and the highest average levels of exchangeable Ca 2+ , Mg 2+ , and K + . Treatment DS performed similarly to mineral fertilizer in most respects, but it led to greater available P levels. Under the dry conditions of the second and third years of the study, BL and DS treatments were associated with significantly greater forage yields than the other treatments. Under DS treatment, available P levels were too low to allow the maintenance of mixed pasture, clover being eliminated by the less P-dependent species. [Box: see text].

  12. 1995 solid waste 30-year characteristics volume summary

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Templeton, K.J.; DeForest, T.J.; Rice, G.I.

    1995-10-01

    The Hanford Site has been designated by the US Department of Energy (DOE) to store, treat, and dispose of solid waste received from both onsite and offsite generators. This waste is currently or planned to be generated from ongoing operations, maintenance and deactivation activities, decontamination and decommissioning (D&D) of facilities, and environmental restoration (ER) activities. This document, prepared by Pacific Northwest Laboratory (PNL) under the direction of Westinghouse Hanford Company (WHC), describes the characteristics of the waste to be shipped to Hanford`s SWOC. The physical waste forms and hazardous constituents are described for the low-level mixed waste (LLMW) and themore » transuranic - transuranic mixed waste (TW{underscore}TRUM).« less

  13. The grout/glass performance assessment code system (GPACS) with verification and benchmarking

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Piepho, M.G.; Sutherland, W.H.; Rittmann, P.D.

    1994-12-01

    GPACS is a computer code system for calculating water flow (unsaturated or saturated), solute transport, and human doses due to the slow release of contaminants from a waste form (in particular grout or glass) through an engineered system and through a vadose zone to an aquifer, well and river. This dual-purpose document is intended to serve as a user`s guide and verification/benchmark document for the Grout/Glass Performance Assessment Code system (GPACS). GPACS can be used for low-level-waste (LLW) Glass Performance Assessment and many other applications including other low-level-waste performance assessments and risk assessments. Based on all the cses presented, GPACSmore » is adequate (verified) for calculating water flow and contaminant transport in unsaturated-zone sediments and for calculating human doses via the groundwater pathway.« less

  14. The politics of toxic waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rahm, D.

    1998-12-31

    Toxic waste, and the public policy that deals with it, is a complex issue. Much of the complexity stems from the science and technology embedded in the topic, but a great deal also results from the intricate interactions between the social organizations and institutions involved. The politics of toxic waste plays out within three key aspects of this complexity. The first of these is the nature of the intergovernmental relations involved. For toxic waste issues, these intergovernmental relations can be between sovereign states or between a nation and an international governing organization, or they may be restricted to a domesticmore » context. If the later is the case, the relationship can be between federal, state, and local governments or between different bureaus, departments, or agencies within the same level of government. A second feature of this complexity can be seen in the consequences of divergent organizational or institutional interests. When conflicting organizational or institutional perspectives, positions, or concerns arise, public policy outcomes are affected.The tug and pull of competing actors move policy in the direction favored by the winner. This may or may not be the most rational alternative. A third aspect of this interorganizational puzzle involves the question of where the locus of authority for decisionmaking resides and to what extent stakeholders, who do not possess direct authority, can influence policy outcomes.« less

  15. Unreviewed Disposal Question Evaluation: Impact of New Information since 2008 PA on Current Low-Level Solid Waste Operations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Flach, G.; Smith, F.; Hamm, L.

    2014-10-06

    Solid low-level waste disposal operations are controlled in part by an E-Area Low-Level Waste Facility (ELLWF) Performance Assessment (PA) that was completed by the Savannah River National Laboratory (SRNL) in 2008 (WSRC 2008). Since this baseline analysis, new information pertinent to disposal operations has been identified as a natural outcome of ongoing PA maintenance activities and continuous improvement in model simulation techniques (Flach 2013). An Unreviewed Disposal Question (UDQ) Screening (Attachment 1) has been initiated regarding the continued ability of the ELLWF to meet Department of Energy (DOE) Order 435.1 performance objectives in light of new PA items and datamore » identified since completion of the original UDQ Evaluation (UDQE). The present UDQE assesses the ability of Solid Waste (SW) to meet performance objectives by estimating the influence of new information items on a recent sum-of-fractions (SOF) snapshot for each currently active E-Area low-level waste disposal unit. A final SOF, as impacted by this new information, is projected based on the assumptions that the current disposal limits, Waste Information Tracking System (WITS) administrative controls, and waste stream composition remain unchanged through disposal unit operational closure (Year 2025). Revision 1 of this UDQE addresses the following new PA items and data identified since completion of the original UDQE report in 2013: New K d values for iodine, radium and uranium; Elimination of cellulose degradation product (CDP) factors; Updated radionuclide data; Changes in transport behavior of mobile radionuclides; Potential delay in interim closure beyond 2025; and Component-in-grout (CIG) plume interaction correction. Consideration of new information relative to the 2008 PA baseline generally indicates greater confidence that PA performance objectives will be met than indicated by current SOF metrics. For SLIT9, the previous prohibition of non-crushable containers in revision 0 of this UDQE has rendered the projected final SOF for SLIT9 less than the WITS Admin Limit. With respect to future disposal unit operations in the East Slit Trench Group, consideration of new information for Slit Trench#14 (SLIT14) reduced the current SOF for the limiting All-Pathways 200-1000 year period (AP2) by an order of magnitude and by one quarter for the Beta-Gamma 12-100 year period (BG2) pathway. On the balance, updates to K{sub d} values and dose factors and elimination of CDP factors (generally favorable) more than compensated for the detrimental impact of a more rigorous treatment of plume dispersion. These observations suggest that future operations in the East Slit Trench Group can be conducted with higher confidence using current inventory limits, and that limits could be increased if desired for future low-level waste disposal units. The same general conclusion applies to future ST’s in the West Slit Trench Group based on the Impacted Final SOFs for existing ST’s in that area.« less

  16. High Level Waste Remote Handling Equipment in the Melter Cave Support Handling System at the Hanford Waste Treatment Plant

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bardal, M.A.; Darwen, N.J.

    2008-07-01

    Cold war plutonium production led to extensive amounts of radioactive waste stored in tanks at the Department of Energy's (DOE) Hanford site. Bechtel National, Inc. is building the largest nuclear Waste Treatment Plant in the world located at the Department of Energy's Hanford site to immobilize the millions of gallons of radioactive waste. The site comprises five main facilities; Pretreatment, High Level Waste vitrification, Low Active Waste vitrification, an Analytical Lab and the Balance of Facilities. The pretreatment facilities will separate the high and low level waste. The high level waste will then proceed to the HLW facility for vitrification.more » Vitrification is a process of utilizing a melter to mix molten glass with radioactive waste to form a stable product for storage. The melter cave is designated as the High Level Waste Melter Cave Support Handling System (HSH). There are several key processes that occur in the HSH cell that are necessary for vitrification and include: feed preparation, mixing, pouring, cooling and all maintenance and repair of the process equipment. Due to the cell's high level radiation, remote handling equipment provided by PaR Systems, Inc. is required to install and remove all equipment in the HSH cell. The remote handling crane is composed of a bridge and trolley. The trolley supports a telescoping tube set that rigidly deploys a TR 4350 manipulator arm with seven degrees of freedom. A rotating, extending, and retracting slewing hoist is mounted to the bottom of the trolley and is centered about the telescoping tube set. Both the manipulator and slewer are unique to this cell. The slewer can reach into corners and the manipulator's cross pivoting wrist provides better operational dexterity and camera viewing angles at the end of the arm. Since the crane functions will be operated remotely, the entire cell and crane have been modeled with 3-D software. Model simulations have been used to confirm operational and maintenance functional and timing studies throughout the design process. Since no humans can go in or out of the cell, there are several recovery options that have been designed into the system including jack-down wheels for the bridge and trolley, recovery drums for the manipulator hoist, and a wire rope cable cutter for the slewer jib hoist. If the entire crane fails in cell, the large diameter cable reel that provides power, signal, and control to the crane can be used to retrieve the crane from the cell into the crane maintenance area. (authors)« less

  17. Greater-than-Class C low-level radioactive waste characterization: Estimated volumes, radionuclide activities, and other characteristics. Revision 1

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Not Available

    1994-09-01

    The Department of Energy`s (DOE`s) planning for the disposal of greater-than-Class C low-level radioactive waste (GTCC LLW) requires characterization of the waste. This report estimates volumes, radionuclide activities, and waste forms of GTCC LLW to the year 2035. It groups the waste into four categories, representative of the type of generator or holder of the waste: Nuclear Utilities, Sealed Sources, DOE-Held, and Other Generator. GTCC LLW includes activated metals (activation hardware from reactor operation and decommissioning), process wastes (i.e., resins, filters, etc.), sealed sources, and other wastes routinely generated by users of radioactive material. Estimates reflect the possible effect thatmore » packaging and concentration averaging may have on the total volume of GTCC LLW. Possible GTCC mixed LLW is also addressed. Nuclear utilities will probably generate the largest future volume of GTCC LLW with 65--83% of the total volume. The other generators will generate 17--23% of the waste volume, while GTCC sealed sources are expected to contribute 1--12%. A legal review of DOE`s obligations indicates that the current DOE-Held wastes described in this report will not require management as GTCC LLW because of the contractual circumstances under which they were accepted for storage. This report concludes that the volume of GTCC LLW should not pose a significant management problem from a scientific or technical standpoint. The projected volume is small enough to indicate that a dedicated GTCC LLW disposal facility may not be justified. Instead, co-disposal with other waste types is being considered as an option.« less

  18. Informal processing of electronic waste at Agbogbloshie, Ghana: workers' knowledge about associated health hazards and alternative livelihoods.

    PubMed

    Yu, Emily A; Akormedi, Matthew; Asampong, Emmanuel; Meyer, Christian G; Fobil, Julius N

    2017-12-01

    This study was conducted to investigate the electronic waste workers' knowledge about the potential health hazards associated with their work as well as the livelihood alternatives that they would prefer if they were given the opportunity. A qualitative cross-sectional study was conducted to gather empirical information on e-waste workers' knowledge about the potential hazards associated with their work and the livelihood alternatives to e-waste recycling with a sample consisting of twenty all-male electronic waste workers at the Agbogbloshie scrap metal yard in Accra, Ghana. Electronic waste workers at Agbogbloshie were found to be exposed to a variety of injuries and illnesses. The workers' knowledge of the association between their health status and their work was generally poor. Apart from the physical injuries, they did not believe their work played any negative role in their health conditions. They preferred occupations such as farming or professional driving located in the northern region of Ghana to be closer to their families. The study concludes that the low knowledge level of the workers on the hazards that are associated with their work has implications for them accepting technologies to protect them and the natural environment from contamination. It is therefore imperative for any intervention to consider the current low level of knowledge and actively educate the workers to raise their awareness level, taking into account the provision of opportunities for workers to acquire applicable skills for future employment in other fields.

  19. Crystallization in high-level waste glass: A review of glass theory and noteworthy literature

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Christian, J. H.

    2015-08-18

    There is a fundamental need to continue research aimed at understanding nepheline and spinel crystal formation in high-level waste (HLW) glass. Specifically, the formation of nepheline solids (K/NaAlSiO 4) during slow cooling of HLW glass can reduce the chemical durability of the glass, which can cause a decrease in the overall durability of the glass waste form. The accumulation of spinel solids ((Fe, Ni, Mn, Zn)(Fe, Cr) 2O 4), while not detrimental to glass durability, can cause an array of processing problems inside HLW glass melters. In this review, the fundamental differences between glass and solid-crystals are explained using kinetic,more » thermodynamic, and viscosity arguments, and several highlights of glass-crystallization research, as it pertains to high-level waste vitrification, are described. In terms of mitigating spinel in the melter and both spinel and nepheline formation in the canister, the complexity of HLW glass and the intricate interplay between thermal, chemical, and kinetic factors further complicates this understanding. However, new experiments seeking to elucidate the contributing factors of crystal nucleation and growth in waste glass, and the compilation of data from older experiments, may go a long way towards helping to achieve higher waste loadings while developing more efficient processing strategies. Higher waste loadings and more efficient processing strategies will reduce the overall HLW Hanford Tank Waste Treatment and Immobilization Plant (WTP) vitrification facilities mission life.« less

  20. Radioactive Waste Streams: Waste Classification for Disposal

    DTIC Science & Technology

    2006-12-13

    INL; and Fort St. Vrain, Colorado .10 In contrast to commercial reactors, naval reactors can operate without refueling for up to 20 years. 11 As of 2003...originally of the states of Arizona, Colorado , Nevada, New Mexico, Utah, and Wyoming.61 Arizona, Utah, and Wyoming later withdrew from the Compact, leaving... Colorado , Nevada, and New Mexico as remaining Compact members.62 The Rocky Mountain Compact defines low-level waste as specifically excluding

  1. Determination of cyanide by a highly sensitive indirect spectrophotometric method.

    PubMed

    Blanco, M; Maspoch, S

    1984-01-01

    Complexation of Pd(2+) with cyanide inhibits the extraction of the palladium complex of 5-phenylazo-8-aminoquinoline. This effect is used for the indirect spectrophotometric determination of cyanide at the mug level. Cyanide in industrial waste water and in sea-water is determined after distillation as HCN from the sample and collection in sodium hydroxide solution.

  2. Secondary Waste Form Development and Optimization—Cast Stone

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sundaram, S. K.; Parker, Kent E.; Valenta, Michelle M.

    2011-07-14

    Washington River Protection Services is considering the design and construction of a Solidification Treatment Unit (STU) for the Effluent Treatment Facility (ETF) at Hanford. The ETF is a Resource Conservation and Recovery Act-permitted, multi-waste, treatment and storage unit and can accept dangerous, low-level, and mixed wastewaters for treatment. The STU needs to be operational by 2018 to receive secondary liquid wastes generated during operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP). The STU to ETF will provide the additional capacity needed for ETF to process the increased volume of secondary wastes expected to be produced by WTP.

  3. Advanced wastewater treatment simplified through research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Souther, R.H.

    A waste water treatment plant was built based on results of a small-scale pilot plant study, conducted largely in a search for efficiency as well as economy. Results were that 98 percent carbonaceous BOD (BOD/sub C/) and nitrogenous BOD (BOD/sub N/) were removed in a simplified, low-cost, single-stage advanced treatment process surpassing even some of the most sophisticated advanced complex waste treatment methods. The single-stage process treats domestic waste alone or combined with very high amounts of textile, electroplating, chemical, food, and other processing industrial wastewater. The process removed 100 percent of the sulfides above 98 percent of NH/sub 3/-N,more » over 90 percent of COD and phenols; chromium was converted from highly toxic hexavalent CrVI to nearly nontoxic trivalent chrome (CrIII). A pH up to 12 may be tolerated if no free hydroxyl (OH) ions are present. Equalization ponds, primary settling tanks, trickling filters, extra nitrogen removal tanks, carbon columns, and chemical treatment are not required. Color removal is excellent with clear effluent suitable for recycling after chlorination to water supply lakes. The construction cost of the single-stage advanced treatment plant is surprisingly low, about /sup 1///sub 2/ to /sup 1///sub 6/ as much as most conventional ineffective complex plants. This simplified, innovative process developed in independent research at Guilford College is considered by some a breakthrough in waste treatment efficiency and economy. (MU)« less

  4. Derivation of Pitzer Interaction Parameters for an Aqueous Species Pair of Sodium and Iron(II)-Citrate Complex

    NASA Astrophysics Data System (ADS)

    Jang, J. H.; Nemer, M.

    2015-12-01

    The U.S. DOE Waste Isolation Pilot Plant (WIPP) is a deep underground repository for the permanent disposal of transuranic (TRU) radioactive waste. The WIPP is located in the Permian Delaware Basin near Carlsbad, New Mexico, U.S.A. The TRU waste includes, but is not limited to, iron-based alloys and the complexing agent, citric acid. Iron is also present from the steel used in the waste containers. The objective of this analysis is to derive the Pitzer activity coefficients for the pair of Na+ and FeCit- complex to expand current WIPP thermodynamic database. An aqueous model for the dissolution of Fe(OH)2(s) in a Na3Cit solution was fitted to the experimentally measured solubility data. The aqueous model consists of several chemical reactions and related Pitzer interaction parameters. Specifically, Pitzer interaction parameters for the Na+ and FeCit- pair (β(0), β(1), and Cφ) plus the stability constant for species of FeCit- were fitted to the experimental data. Anoxic gloveboxes were used to keep the oxygen level low (<1 ppm) throughout the experiments due to redox sensitivity. EQ3NR, a computer program for geochemical aqueous speciation-solubility calculations, packaged in EQ3/6 v.8.0a, calculates the aqueous speciation and saturation index using an aqueous model addressed in EQ3/6's database. The saturation index indicates how far the system is from equilibrium with respect to the solid of interest. Thus, the smaller the sum of squared saturation indices that the aqueous model calculates for the given number of experiments, the more closely the model attributes equilibrium to each individual experiment with respect to the solid of interest. The calculation of aqueous speciation and saturation indices was repeated by adjusting stability constant of FeCit-, β(0), β(1), and Cφ in the database until the values are found that make the sum of squared saturation indices the smallest for the given number of experiments. Results will be presented at the time of conference.

  5. Intramolecular deactivation processes of electronically excited Lanthanide(III) complexes with organic acids of low molecular weight

    NASA Astrophysics Data System (ADS)

    Burek, Katja; Eidner, Sascha; Kuke, Stefanie; Kumke, Michael U.

    2018-02-01

    The luminescence of Lanthanide(III) complexes with different model ligands was studied under direct as well as sensitized excitation conditions. The research was performed in the context of studies dealing with deep-underground storages for high-level nuclear waste. Here, Lanthanide(III) ions served as natural analogues for Actinide(III) ions and the low-molecular weight organic ligands are present in clay minerals and furthermore, they were employed as proxies for building blocks of humic substances, which are important complexing molecules in the natural environment, e.g., in the far field of a repository site. Time-resolved luminescence spectroscopy was applied for a detailed characterization of Eu(III), Tb(III), Sm(III) and Dy(III) complexes in aqueous solutions. Based on the observed luminescence the ligands were tentatively divided into two groups (A, B). The luminescence of Lanthanide(III) complexes of group A was mainly influenced by an energy transfer to OH-vibrations. Lanthanide(III) complexes of group B showed ligand-related luminescence quenching, which was further investigated. To gain more information on the underlying quenching processes of group A and B ligands, measurements at different temperatures (77 K ≤ T ≤ 353 K) were performed and activation energies were determined based on an Arrhenius analysis. Moreover, the influence of the ionic strength between 0 M ≤ I ≤ 4 M on the Lanthanide(III) luminescence was monitored for different complexes, in order to evaluate the influence of specific conditions encountered in host rocks foreseen as potential repository sites.

  6. Generation of domestic waste electrical and electronic equipment on Fernando de Noronha Island: qualitative and quantitative aspects.

    PubMed

    Araujo, Dhiego Raphael Rodrigues; de Oliveira, José Diego; Selva, Vanice Fragoso; Silva, Maisa Mendonça; Santos, Simone Machado

    2017-08-01

    The accelerated growth trajectory of waste electrical and electronic equipment (WEEE) is a matter of concern for governments worldwide. In developing countries, the problem is more complex because municipal waste management is still a challenge for municipalities. Fernando de Noronha Island, an environmentally protected area, has a transfer station for solid waste before it is sent to the final destination abroad, which is different waste management model to most urban areas. In order to check the specifics of management of WEEE, this study aimed to qualitatively and quantitatively evaluate the generation of this type of waste on the main island of Fernando de Noronha, taking into consideration aspects related to consumption habits and handling of waste. During the in situ research, a questionnaire was applied to a sample of 83 households. The results provide a picture of the generation of WEEE for a period of 1 year, when a production of 1.3 tons of WEEE was estimated. Relationships between education level and monthly income and between education level and number of plasma/LCD TVs and washing machines were confirmed. Another important result is that only two socioeconomic variables (monthly income and education level) are related to two recycling behavior variables. In addition, the population and government treat WEEE as ordinary waste, ignoring its contaminant potential. Despite the existence of relevant legislation concerning the treatment and disposal of WEEE, additional efforts will be required by the government in order to properly manage this type of waste on the island.

  7. Removal of heavy metal contamination from peanut skin extracts by waste biomass adsorption

    USDA-ARS?s Scientific Manuscript database

    Polyphenols are a rapidly increasing portion of the nutraceutical and functional food marketplace. Peanut skins are a waste product which have potential as a low-cost source of polyphenols. Extraction and concentration of peanut skin extracts can cause normally innocuous levels of the heavy metal co...

  8. Testing and Performance Validation of a Shielded Waste Segregation and Clearance Monitor Designed for the Measurement of Low Level Waste-13043

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mason, John A.; Burke, Kevin J.; Towner, Antony C.N.

    This paper describes the development, testing and validation of a shielded waste segregation and clearance monitor designed for the measurement of low-density low-level waste (LLW). The monitor is made of a measurement chamber surrounded by detectors and a shielded outer frame. The shielded chamber consists of a steel frame, which contains typically 1.5 inches (3.81 cm) of lead and 0.5 inches (1.27 cm) of steel shielding. Inside the shielding are plastic scintillator panels, which serve as gross gamma ray detectors. The detector panels, with embedded photomultipliers, completely surround the internal measurement chamber on all 6 sides. Care has been takenmore » to distribute the plastic scintillator detectors in order to optimise both the efficiency for gamma ray detection and at the same time achieve a volumetric sensitivity, which is as uniform as possible. A common high voltage power supply provides the bias voltage for each of the six photomultipliers. The voltage signals arising from the detectors and photomultipliers are amplified by six sensitive amplifiers. Each amplifier incorporates a single channel analyser with both upper and lower thresholds and the digitised counts from each detector are recorded on six scalars. Operation of the device is by means of a microprocessor from which the scalars are controlled. An internal load cell linked to the microprocessor determines the weight of the waste object, and this information is used to calculate the specific activity of the waste. The monitor makes background measurements when the shielded door is closed and a sample, usually a bag of low-density waste, is not present in the measurement chamber. Measurements of the minimum detectable activity (MDA) of an earlier large volume prototype instrument are reported as part of the development of the Waste Segregation and Clearance Monitor (WSCM) described in the paper. For the optimised WSCM a detection efficiency of greater than 32% was measured using a small Cs-137 source placed in the centre of the measurement chamber. Small sources have also been used to determine the spatial variation of the detection efficiency for various positions within the measurement chamber. The data have been used to establish sentencing limits and different 'fingerprints' for specific waste streams including waste streams containing fission products and others based on other radionuclides including Am-241. Some of the test data that are presented have been used to validate the instrument performance. The monitor is currently in routine use at a nuclear facility for the measurement and sentencing of low-density low activity radioactive waste. (authors)« less

  9. U.S. Department of Energy worker health risk evaluation methodology for assessing risks associated with environmental restoration and waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blaylock, B.P.; Legg, J.; Travis, C.C.

    1995-06-01

    This document describes a worker health risk evaluation methodology for assessing risks associated with Environmental Restoration (ER) and Waste Management (WM). The methodology is appropriate for estimating worker risks across the Department of Energy (DOE) Complex at both programmatic and site-specific levels. This document supports the worker health risk methodology used to perform the human health risk assessment portion of the DOE Programmatic Environmental Impact Statement (PEIS) although it has applications beyond the PEIS, such as installation-wide worker risk assessments, screening-level assessments, and site-specific assessments.

  10. Radioactive Waste Characterization Strategies; Comparisons Between AK/PK, Dose to Curie Modeling, Gamma Spectroscopy, and Laboratory Analysis Methods- 12194

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Singledecker, Steven J.; Jones, Scotty W.; Dorries, Alison M.

    2012-07-01

    In the coming fiscal years of potentially declining budgets, Department of Energy facilities such as the Los Alamos National Laboratory (LANL) will be looking to reduce the cost of radioactive waste characterization, management, and disposal processes. At the core of this cost reduction process will be choosing the most cost effective, efficient, and accurate methods of radioactive waste characterization. Central to every radioactive waste management program is an effective and accurate waste characterization program. Choosing between methods can determine what is classified as low level radioactive waste (LLRW), transuranic waste (TRU), waste that can be disposed of under an Authorizedmore » Release Limit (ARL), industrial waste, and waste that can be disposed of in municipal landfills. The cost benefits of an accurate radioactive waste characterization program cannot be overstated. In addition, inaccurate radioactive waste characterization of radioactive waste can result in the incorrect classification of radioactive waste leading to higher disposal costs, Department of Transportation (DOT) violations, Notice of Violations (NOVs) from Federal and State regulatory agencies, waste rejection from disposal facilities, loss of operational capabilities, and loss of disposal options. Any one of these events could result in the program that mischaracterized the waste losing its ability to perform it primary operational mission. Generators that produce radioactive waste have four characterization strategies at their disposal: - Acceptable Knowledge/Process Knowledge (AK/PK); - Indirect characterization using a software application or other dose to curie methodologies; - Non-Destructive Analysis (NDA) tools such as gamma spectroscopy; - Direct sampling (e.g. grab samples or Surface Contaminated Object smears) and laboratory analytical; Each method has specific advantages and disadvantages. This paper will evaluate each method detailing those advantages and disadvantages including; - Cost benefit analysis (basic materials costs, overall program operations costs, man-hours per sample analyzed, etc.); - Radiation Exposure As Low As Reasonably Achievable (ALARA) program considerations; - Industrial Health and Safety risks; - Overall Analytical Confidence Level. The concepts in this paper apply to any organization with significant radioactive waste characterization and management activities working to within budget constraints and seeking to optimize their waste characterization strategies while reducing analytical costs. (authors)« less

  11. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hamilton, T.; Jones, H.; Wong, K.

    The Marshall Islands Environmental Characterization and Dose Assessment Program has recently implemented waste minimization measures to reduce low level radioactive (LLW) and low level mixed (LLWMIXED) waste streams at the Lawrence Livermore National Laboratory (LLNL). Several thousand environmental samples are collected annually from former US nuclear test sites in the Marshall Islands, and returned to LLNL for processing and radiometric analysis. In the past, we analyzed coconut milk directly by gamma-spectrometry after adding formaldehyde (as preservative) and sealing the fluid in metal cans. This procedure was not only tedious and time consuming but generated storage and waste disposal problems. Wemore » have now reduced the number of coconut milk samples required for analysis from 1500 per year to approximately 250, and developed a new analytical procedure which essentially eliminates the associated mixed radioactive waste stream. Coconut milk samples are mixed with a few grams of ammonium-molydophosphate (AMP) which quantitatively scavenges the target radionuclide cesium 137 in an ion-exchange process. The AMP is then separated from the mixture and sealed in a plastic container. The bulk sample material can be disposed of as a non- radioactive non-hazardous waste, and the relatively small amount of AMP conveniently counted by gamma-spectrometry, packaged and stored for future use.« less

  12. A review and overview of nuclear waste management

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Murray, R.L.

    1984-12-31

    An understanding of the status and issues in the management of radioactive wastes is based on technical information on radioactivity, radiation, biological hazard of radiation exposure, radiation standards, and methods of protection. The fission process gives rise to radioactive fission products and neutron bombardment gives activation products. Radioactive wastes are classified according to source: defense, commercial, industrial, and institutional; and according to physical features: uranium mill tailings, high-level, transuranic, and low-level. The nuclear fuel cycle, which contributes a large fraction of annual radioactive waste, starts with uranium ore, includes nuclear reactor use for electrical power generation, and ends with ultimatemore » disposal of residues. The relation of spent fuel storage and reprocessing is governed by technical, economic, and political considerations. Waste has been successfully solidified in glass and other forms and choices of the containers for the waste form are available. Methods of disposal of high-level waste that have been investigated are transmutation by neutron bombardment, shipment to Antartica, deep-hole insertion, subseabed placement, transfer by rocket to an orbit in space, and disposal in a mined cavity. The latter is the favored method. The choices of host geological media are salt, basalt, tuff, and granite.« less

  13. Interaction effects of metals and salinity on biodegradation of a complex hydrocarbon waste.

    PubMed

    Amatya, Prasanna L; Hettiaratchi, Joseph Patrick A; Joshi, Ramesh C

    2006-02-01

    The presence of high levels of salts because of produced brine water disposal at flare pits and the presence of metals at sufficient concentrations to impact microbial activity are of concern to bioremediation of flare pit waste in the upstream oil and gas industry. Two slurry-phase biotreatment experiments based on three-level factorial statistical experimental design were conducted with a flare pit waste. The experiments separately studied the primary effect of cadmium [Cd(II)] and interaction effect between Cd(II) and salinity and the primary effect of zinc [Zn(II)] and interaction effect between Zn(II) and salinity on hydrocarbon biodegradation. The results showed 42-52.5% hydrocarbon removal in slurries spiked with Cd and 47-62.5% in the slurries spiked with Zn. The analysis of variance showed that the primary effects of Cd and Cd-salinity interaction were statistically significant on hydrocarbon degradation. The primary effects of Zn and the Zn-salinity interaction were statistically insignificant, whereas the quadratic effect of Zn was highly significant on hydrocarbon degradation. The study on effects of metallic chloro-complexes showed that the total aqueous concentration of Cd or Zn does not give a reliable indication of overall toxicity to the microbial activity in the presence of high salinity levels.

  14. Evaluation of key driver categories influencing sustainable waste management development with the analytic hierarchy process (AHP): Serbia example.

    PubMed

    Tot, Bojana; Srđević, Bojan; Vujić, Bogdana; Russo, Mário Augusto Tavares; Vujić, Goran

    2016-08-01

    The problems of waste management have become increasingly complex in recent decades. The increasing amount of generated waste, adopted legislation in the field of waste management, administrative issues, economic impacts and social awareness are important drivers in achieving a sustainable waste management system. However, in practice, there are many other drivers that are often mutually in conflict. The purpose of this research is to define the precise driver and their corresponding sub-drivers, which are relevant for developing a waste management system and, on the basis of their importance, to determine which has the predominant influence on the slow development of a waste management system at the national and regional level, within the Republic of Serbia and similar countries of southeast Europe. This research presents two levels of decision making: the first is a pair-wise comparison of the drivers in relation to the goal and the second is a pair-wise comparison of the sub-drivers in relation to the driver and in relation to the goal. Results of performed analyses on the waste management drivers were integrated via the decision-making process supported by an analytic hierarchy process (AHP). The final results of this research shows that the Institutional-Administrative driver is the most important for developing a sustainable waste management system. © The Author(s) 2016.

  15. Well-construction and hydrogeologic data for observation wells in the vicinity of a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Mansue, Lawrence J.; Mills, Patrick C.

    1991-01-01

    The U.S. Geological Survey conducted hydrogeologic studies at the low-level radioactive-waste disposal site near Sheffield, Illinois, from 1976 through 1987. During that period, 108 observation wells were installed in the vicinity of the disposal site in glacial and post-glacial deposits of Quaternary age and bedrock of Pennsylvanian age. Data in this report include the location of each well, the date each well was drilled, the geologic units penetrated by each well, the physical measurements of each well, the elevations of the top (measuring point) of each well and geologic-unit contacts at each well, and the highest and lowest recorded water levels in each well.

  16. Hydrologic and micrometeorologic data from an unsaturated zone study at a low-level radioactive waste burial site near Barnwell, South Carolina

    USGS Publications Warehouse

    Dennehy, K.F.; McMahon, P.B.

    1985-01-01

    Two years of selected hydrologic and micrometeorologic data collected at a low-level radioactive waste burial site near Barnwell, South Carolina are available on magnetic tape in card-image format. Hydrologic data include daily measurements of soil-moisture tension, soil-moisture specific conductance, and soil temperature at four monitoring site locations. Micrometeorlogic data include hourly measurements for the following parameters: dry- and wet-bulb temperatures, soil temperatures, soil heat flux, wind speeds and direction, incoming and reflected short-wave solar radiation, incoming and emitted long-wave radiation, net radiation and precipitation. (USGS)

  17. Treatment options for low-level radiologically contaminated ORNL filtercake

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, Hom-Ti; Bostick, W.D.

    1996-04-01

    Water softening sludge (>4000 stored low level contaminated drums; 600 drums per year) generated by the ORNL Process Waste Treatment Plant must be treated, stabilized, and placed in safe storage/disposal. The sludge is primarily CaCO{sub 3} and is contaminated by low levels of {sup 90}Sr and {sup 137}Cs. In this study, microwave sintering and calcination were evaluated for treating the sludge. The microwave melting experiments showed promise: volume reductions were significant (3-5X), and the waste form was durable with glass additives (LiOH, fly ash). A commercial vendor using surrogate has demonstrated a melt mineralization process that yields a dense monolithicmore » waste form with a volume reduction factor (VR) of 7.7. Calcination of the sludge at 850-900 C yielded a VR of 2.5. Compaction at 4500 psi increased the VR to 4.2, but the compressed form is not dimensionally stable. Addition of paraffin helped consolidate fines and yielded a VR of 3.5. In conclusion, microwave melting or another form of vitrification is likely to be the best method; however for immediate implementation, the calculation/compaction/waxing process is viable.« less

  18. Office of River Protection Advanced Low-Activity Waste Glass Research and Development Plan

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kruger, A. A.; Peeler, D. K.; Kim, D. S.

    2015-11-23

    The U.S. Department of Energy Office of River Protection (ORP) has initiated and leads an integrated Advanced Waste Glass (AWG) program to increase the loading of Hanford tank wastes in glass while meeting melter lifetime expectancies and process, regulatory, and product performance requirements. The integrated ORP program is focused on providing a technical, science-based foundation for making key decisions regarding the successful operation of the Hanford Tank Waste Treatment and Immobilization Plant (WTP) facilities in the context of an optimized River Protection Project (RPP) flowsheet. The fundamental data stemming from this program will support development of advanced glass formulations, keymore » product performance and process control models, and tactical processing strategies to ensure safe and successful operations for both the low-activity waste (LAW) and high-level waste vitrification facilities. These activities will be conducted with the objective of improving the overall RPP mission by enhancing flexibility and reducing cost and schedule.« less

  19. Spectroscopic and first-principles calculation studies of the chemical forms of palladium ion in nitric acid solution for development of disposal of high-level radioactive nuclear wastes

    NASA Astrophysics Data System (ADS)

    Watanabe, Shinta; Sato, Toshikazu; Yoshida, Tomoko; Nakaya, Masato; Yoshino, Masahito; Nagasaki, Takanori; Inaba, Yusuke; Takeshita, Kenji; Onoe, Jun

    2018-04-01

    We have investigated the chemical forms of palladium (Pd) ion in nitric acid solution, using XAFS/UV-vis spectroscopic and first-principles methods in order to develop the disposal of high-level radioactive nuclear liquid wastes (HLLW: radioactive metal ions in 2 M nitric acid solution). The results of theoretical calculations and XAFS/UV-vis spectroscopy indicate that Pd is a divalent ion and forms a square-planar complex structure coordinated with four nitrate ions, [Pd(NO3)4]2-, in nitric acid solution. This complex structure is also thermodynamically predicted to be most stable among complexes [Pd(H2O)x(NO3)4-x]x-2 (x = 0-4). Since the overall feature of UV-vis spectra of the Pd complex was independent of nitric acid concentration in the range 1-6 M, the structure of the Pd complex remains unchanged in this range. Furthermore, we examined the influence of γ-ray radiation on the [Pd(NO3)4]2- complex, using UV-vis spectroscopy, and found that UV-vis spectra seemed not to be changed even after 1.0 MGy irradiation. This implies that the Pd complex structure will be still stable in actual HLLW. These findings obtained above are useful information to develop the vitrification processes for disposal of HLLW.

  20. SECONDARY WASTE MANAGEMENT FOR HANFORD EARLY LOW ACTIVITY WASTE VITRIFICATION

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    UNTERREINER BJ

    2008-07-18

    More than 200 million liters (53 million gallons) of highly radioactive and hazardous waste is stored at the U.S. Department of Energy's Hanford Site in southeastern Washington State. The DOE's Hanford Site River Protection Project (RPP) mission includes tank waste retrieval, waste treatment, waste disposal, and tank farms closure activities. This mission will largely be accomplished by the construction and operation of three large treatment facilities at the Waste Treatment and Immobilization Plant (WTP): (1) a Pretreatment (PT) facility intended to separate the tank waste into High Level Waste (HLW) and Low Activity Waste (LAW); (2) a HLW vitrification facilitymore » intended to immobilize the HLW for disposal at a geologic repository in Yucca Mountain; and (3) a LAW vitrification facility intended to immobilize the LAW for shallow land burial at Hanford's Integrated Disposal Facility (IDF). The LAW facility is on target to be completed in 2014, five years prior to the completion of the rest of the WTP. In order to gain experience in the operation of the LAW vitrification facility, accelerate retrieval from single-shell tank (SST) farms, and hasten the completion of the LAW immobilization, it has been proposed to begin treatment of the low-activity waste five years before the conclusion of the WTP's construction. A challenge with this strategy is that the stream containing the LAW vitrification facility off-gas treatment condensates will not have the option of recycling back to pretreatment, and will instead be treated by the Hanford Effluent Treatment Facility (ETF). Here the off-gas condensates will be immobilized into a secondary waste form; ETF solid waste.« less

  1. Estimating Radiological Doses to Predators Foraging in a Low-Level Radioactive Waste Management Area

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    L.Soholt; G.Gonzales; P.Fresquez

    2003-03-01

    Since 1957, Los Alamos National Laboratory has operated Area G as its low-level, solid radioactive waste management and disposal area. Although the waste management area is developed, plants, small mammals, and avian and mammalian predators still occupy the less disturbed and revegetated portions of the land. For almost a decade, we have monitored the concentrations of selected radionuclides in soils, plants, and small mammals at Area G. The radionuclides tritium, plutonium-238, and plutonium-239 are regularly found at levels above regional background in all three media. Based on radionuclide concentrations in mice collected from 1994 to 1999, we calculated doses tomore » higher trophic levels (owl, hawk, kestrel, and coyote) that forage on the waste management area. These predators play important functions in the regional ecosystems and are an important part of local Native American traditional tales that identify the uniqueness of their culture. The estimated doses are compared to Department of Energy's interim limit of 0.1 rad/day for the protection of terrestrial wildlife. We used exposure parameters that were derived from the literature for each receptor, including Environmental Protection Agency's exposure factors handbook. Estimated doses to predators ranged from 9E-06 to 2E-04 rad/day, assuming that they forage entirely on the waste management area. These doses are greater than those calculated for predators foraging exclusively in reference areas, but are still well below the interim dose limit. We believe that these calculated doses represent upper-bound estimates of exposure for local predators because the larger predators forage over areas that are much greater than the 63-acre waste management area. Based on these results, we concluded that predators foraging on this area do not face a hazard from radiological exposure under current site conditions.« less

  2. Spectral analysis of rare earth elements using laser-induced breakdown spectroscopy

    NASA Astrophysics Data System (ADS)

    Martin, Madhavi Z.; Fox, Robert V.; Miziolek, Andrzej W.; DeLucia, Frank C.; André, Nicolas

    2015-06-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to be able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.

  3. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in real-world complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less

  4. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Martin, Madhavi Z; Fox, Dr. Richard V; Miziolek, Andrzej W

    2015-01-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less

  5. Spectral Analysis of Rare Earth Elements using Laser-Induced Breakdown Spectroscopy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Madhavi Z. Martin; Robert V. Fox; Andrzej W. Miziolek

    2001-05-01

    There is growing interest in rapid analysis of rare earth elements (REEs) both due to the need to find new natural sources to satisfy increased demand in their use in various electronic devices, as well as the fact that they are used to estimate actinide masses for nuclear safeguards and nonproliferation. Laser-Induced Breakdown Spectroscopy (LIBS) appears to be a particularly well-suited spectroscopy-based technology to rapidly and accurately analyze the REEs in various matrices at low concentration levels (parts-per-million). Although LIBS spectra of REEs have been reported for a number of years, further work is still necessary in order to bemore » able to quantify the concentrations of various REEs in realworld complex samples. LIBS offers advantages over conventional solution-based radiochemistry in terms of cost, analytical turnaround, waste generation, personnel dose, and contamination risk. Rare earth elements of commercial interest are found in the following three matrix groups: 1) raw ores and unrefined materials, 2) as components in refined products such as magnets, lighting phosphors, consumer electronics (which are mostly magnets and phosphors), catalysts, batteries, etc., and 3) waste/recyclable materials (aka e-waste). LIBS spectra for REEs such as Gd, Nd, and Sm found in rare earth magnets are presented.« less

  6. Microbial activity in argillite waste storage cells for the deep geological disposal of French bituminous medium activity long lived nuclear waste: Impact on redox reaction kinetics and potential

    NASA Astrophysics Data System (ADS)

    Albrecht, A.; Leone, L.; Charlet, L.

    2009-04-01

    Micro-organisms are ubiquitous and display remarkable capabilities to adapt and survive in the most extreme environmental conditions. It has been recognized that microorganisms can survive in nuclear waste disposal facilities if the required major (P, N, K) and trace elements, a carbon and energy source as well as water are present. The space constraint is of particular interest as it has been shown that bacteria do not prosper in compacted clay. An evaluation of the different types of French medium and high level waste, in a clay-rich host rock storage environment at a depth between 500 and 600 m, has shown that the bituminous waste is the most likely candidate to accommodate significant microbial activity. The waste consists of a mixture of bitumen (source of bio-available organic matter and H2 as a consequence of its degradation and radiolysis) and nitrates and sulphates kept in a stainless steel container. The assumption, that microbes only have an impact on reaction kinetics needs to be reassessed in the case where nitrates and sulphates are present since both are known not to react at low temperatures without bacterial catalysis. The additional impact of both oxy-anions and their reduced species on redox conditions, radionuclide speciation and mobility gives this evaluation their particular relevance. Storage architecture proposes four primary waste containers positioned into armoured cement over packs and placed with others into the waste storage cell itself composed of a cement mantle enforcing the argillite host rock, the latter being characterized by an excavation damaged zone constricted both in space and in time and a pristine part of 60 m thickness. Bacterial activity within the waste and within the pristine argillite is disregarded because of the low water activity (< 0.7) and the lack of space, respectively. The most probable zones of microbial activity, those likely to develop sustainable biofilms are within the interface zones. A major restriction for the initial development of microbial colonies is the high pH controlled by the cement solution. Archea are able to survive at high pH, when hydrogen gas is available as an energy sources; they are therefore likely candidates for an initial biofilm formation. It can not be excluded that other micro-organisms such as fungi may develop as well in such conditions. It also needs to be evaluated how conditions change with time and how this affects microbial ecology. The following is known about the impact of microbes on the waste cell biogeochemistry: • enhancement of redox reaction kinetics (particularly involving nitrates, sulphate, selenate, pertechnetate, organic matter and H2), thus a faster move towards reducing conditions, important to guarantee the low mobility of critical RN, • increased retardation of mobile RN in biofilms (i.e. adsorption on microbial cell surfaces and products of possible biomineralization); complexation by embedded extracellular polymeric substances, • secretion of organic substances (i.e siderophores) known to complex RN and to enhance their mobility, • biodegradation of dissolved organic substances, such as those released form the waste (organic acids) or generated by microbes, • production of CO2 or other gases that may affect cement integrity. Quantification of microbial activity has been implemented into biogeochemical models but the important parameters describing their evolution and metabolism in the real system (ecology, mass, energy sources, metabolites) need to be obtained via specific empirical studies. Such studies require a particular trans-disciplinary approach that brings together the competence of chemical and environmental engineers, microbiologists and system modellers.

  7. Department of Energy's first waste determinations under section 3116: how did the process work?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Picha Jr, K.G.; Kaltreider, R.; Suttora, L.

    2007-07-01

    Congress passed the Ronald W. Reagan National Defense Authorization Act (NDAA) for Fiscal Year 2005 on October 9, 2004, and the President signed it into law on October 28, 2004. Section 3116(a) of the NDAA allows the Department of Energy (DOE) to, in consultation with the Nuclear Regulatory Commission (NRC), determine whether certain radioactive waste resulting from reprocessing of spent nuclear fuel at two DOE sites is not high-level radioactive waste, and dispose of that waste in compliance with the performance objectives set out in subpart C of 10 CFR part 61 for low-level waste. On January 17, 2006, themore » Department issued its first waste determination under the NDAA for salt waste disposal at the Savannah River Site. On November 19, 2006, the Department issued its second waste determination for closure of tanks at the Idaho Nuclear Technology and Engineering Center Tank Farm Facility. These two determinations and a third draft determination illustrate the range of issues that may be encountered in preparing a waste determination in accordance with NDAA Section 3116. This paper discusses the experiences associated with these first two completed waste determinations and an in-progress third waste determination, and discusses lessons learned from the projects that can be applied to future waste determinations. (authors)« less

  8. The biogeochemical fate of nickel during microbial ISA degradation; implications for nuclear waste disposal.

    PubMed

    Kuippers, Gina; Boothman, Christopher; Bagshaw, Heath; Ward, Michael; Beard, Rebecca; Bryan, Nicholas; Lloyd, Jonathan R

    2018-06-08

    Intermediate level radioactive waste (ILW) generally contains a heterogeneous range of organic and inorganic materials, of which some are encapsulated in cement. Of particular concern are cellulosic waste items, which will chemically degrade under the conditions predicted during waste disposal, forming significant quantities of isosaccharinic acid (ISA), a strongly chelating ligand. ISA therefore has the potential to increase the mobility of a wide range of radionuclides via complex formation, including Ni-63 and Ni-59. Although ISA is known to be metabolized by anaerobic microorganisms, the biodegradation of metal-ISA complexes remains unexplored. This study investigates the fate of a Ni-ISA complex in Fe(III)-reducing enrichment cultures at neutral pH, representative of a microbial community in the subsurface. After initial sorption of Ni onto Fe(III)oxyhydroxides, microbial ISA biodegradation resulted in >90% removal of the remaining Ni from solution when present at 0.1 mM, whereas higher concentrations of Ni proved toxic. The microbial consortium associated with ISA degradation was dominated by close relatives to Clostridia and Geobacter species. Nickel was preferentially immobilized with trace amounts of biogenic amorphous iron sulfides. This study highlights the potential for microbial activity to help remove chelating agents and radionuclides from the groundwater in the subsurface geosphere surrounding a geodisposal facility.

  9. The U.S. Department of Energy - Office of Environmental Management Cooperation Program with the Russian Federal Atomic Energy Agency (ROSATOM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gerdes, K.D.; Holtzscheiter, E.W.

    2006-07-01

    The U.S. Department of Energy's (DOE) Office of Environmental Management (EM) has collaborated with the Russian Federal Atomic Energy Agency - Rosatom (formerly Minatom) for 14 years on waste management challenges of mutual concern. Currently, EM is cooperating with Rosatom to explore issues related to high-level waste and investigate Russian experience and technologies that could support EM site cleanup needs. EM and Rosatom are currently implementing six collaborative projects on high-level waste issues: 1) Advanced Melter Technology Application to the U.S. DOE Defense Waste Processing Facility (DWPF) - Cold Crucible Induction Heated Melter (CCIM); 2) - Design Improvements to themore » Cold Crucible Induction Heated Melter; 3) Long-term Performance of Hanford Low-Activity Glasses in Burial Environments; 4) Low-Activity-Waste (LAW) Glass Sulfur Tolerance; 5) Improved Retention of Key Contaminants of Concern in Low Temperature Immobilized Waste Forms; and, 6) Documentation of Mixing and Retrieval Experience at Zheleznogorsk. Preliminary results and the path forward for these projects will be discussed. An overview of two new projects 7) Entombment technology performance and methodology for the Future 8) Radiation Migration Studies at Key Russian Nuclear Disposal Sites is also provided. The purpose of this paper is to provide an overview of EM's objectives for participating in cooperative activities with the Russian Federal Atomic Energy Agency, present programmatic and technical information on these activities, and outline specific technical collaborations currently underway and planned to support DOE's cleanup and closure mission. (authors)« less

  10. The economic case for low carbon waste management in rapidly growing cities in the developing world: The case of Palembang, Indonesia.

    PubMed

    Papargyropoulou, Effie; Colenbrander, Sarah; Sudmant, Andrew Heshedahl; Gouldson, Andy; Tin, Lee Chew

    2015-11-01

    The provision of appropriate waste management is not only an indicator of development but also of broader sustainability. This is particularly relevant to expanding cities in developing countries faced with rising waste generation and associated environmental health problems. Despite these urgent issues, city authorities often lack the evidence required to make well-informed decisions. This study evaluates the carbon and economic performance of low-carbon measures in the waste sector at a city level, within the context of a developing country. Palembang in Indonesia is used as a case of a medium-sized city in a newly industrialized country, with relevance to other similar cities in the developing world. Evidence suggests that the waste sector can achieve substantial carbon emission reductions, and become a carbon sink, in a cost effective way. Hence there is an economic case for a low carbon development path for Palembang, and possibly for other cities in developing and developed countries facing similar challenges. Copyright © 2015 Elsevier Ltd. All rights reserved.

  11. Demonstration of geophysical methods for burial ground geophysical characterization study at the DOE Savannah River site

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasbrouck, J.C.; MacLean, H.D.; Geotech, R.

    1996-11-01

    Rust Geotech, operating contractor at the U.S. Department of Energy Grand Junction Projects Office (DOE-GJPO), conducted a demonstration of the trench boundary and large-object location capabilities of five nonintrusive geophysical methods in the Low-Level Radioactive Waste Disposal Facility (LLRWDF) at the DOE Savannah River Site (SRS). The plan for Resource Conservation and Recovery Act (RCRA) closure of the SRS LLRWDF specifies inplace compaction of {open_quotes}B-25{close_quotes} metal boxes containing low-level radioactive wastes. The boxes are buried in Engineered Low-Level Trenches (ELLTs) at the facility. To properly guide and control the compaction operation, the coordinates of the trench boundaries must be determinedmore » to an accuracy within 5 feet and the outer edges of the metal boxes in the trenches must be determined to within 2 feet.« less

  12. Microbial activity of trench leachates from shallow-land, low-level radioactive waste disposal sites.

    PubMed Central

    Francis, A J; Dobbs, S; Nine, B J

    1980-01-01

    Trench leachate samples collected anoxically from shallow-land, low-level radioactive waste disposal sites were analyzed for total aerobic and anaerobic populations, sulfate reducers, denitrifiers, and methanogens. Among the several aerobic and anaerobic bacteria isolated, only Bacillus sp., Pseudomonas sp., Citrobacter sp., and Clostridium sp. were identified. Mixed bacterial cultures isolated from the trench leachates were able to grow anaerobically in trench leachates, which indicates that the radionuclides and organic chemicals present were not toxic to these bacteria. Changes in concentrations of several of the organic constituents of the waste leachate samples were observed due to anaerobic microbial activity. Growth of a mixed culture of trench-water bacteria in media containing a mixture of radionuclides, 60Co, 85Sr, and 134,137Cs, was not affected at total activity concentrations of 2.6 X 10(2) and 2.7 X 10(3) pCi/ml. PMID:7406490

  13. Selection of a computer code for Hanford low-level waste engineered-system performance assessment

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McGrail, B.P.; Mahoney, L.A.

    Planned performance assessments for the proposed disposal of low-level waste (LLW) glass produced from remediation of wastes stored in underground tanks at Hanford, Washington will require calculations of radionuclide release rates from the subsurface disposal facility. These calculations will be done with the aid of computer codes. Currently available computer codes were ranked in terms of the feature sets implemented in the code that match a set of physical, chemical, numerical, and functional capabilities needed to assess release rates from the engineered system. The needed capabilities were identified from an analysis of the important physical and chemical process expected tomore » affect LLW glass corrosion and the mobility of radionuclides. The highest ranked computer code was found to be the ARES-CT code developed at PNL for the US Department of Energy for evaluation of and land disposal sites.« less

  14. Uncertainty analysis for low-level radioactive waste disposal performance assessment at Oak Ridge National Laboratory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lee, D.W.; Yambert, M.W.; Kocher, D.C.

    1994-12-31

    A performance assessment of the operating Solid Waste Storage Area 6 (SWSA 6) facility for the disposal of low-level radioactive waste at the Oak Ridge National Laboratory has been prepared to provide the technical basis for demonstrating compliance with the performance objectives of DOE Order 5820.2A, Chapter 111.2 An analysis of the uncertainty incorporated into the assessment was performed which addressed the quantitative uncertainty in the data used by the models, the subjective uncertainty associated with the models used for assessing performance of the disposal facility and site, and the uncertainty in the models used for estimating dose and humanmore » exposure. The results of the uncertainty analysis were used to interpret results and to formulate conclusions about the performance assessment. This paper discusses the approach taken in analyzing the uncertainty in the performance assessment and the role of uncertainty in performance assessment.« less

  15. Monitoring technologies for ocean disposal of radioactive waste

    NASA Astrophysics Data System (ADS)

    Triplett, M. B.; Solomon, K. A.; Bishop, C. B.; Tyce, R. C.

    1982-01-01

    The feasibility of using carefully selected subseabed locations to permanently isolate high level radioactive wastes at ocean depths greater than 4000 meters is discussed. Disposal at several candidate subseabed areas is being studied because of the long term geologic stability of the sediments, remoteness from human activity, and lack of useful natural resources. While the deep sea environment is remote, it also poses some significant challenges for the technology required to survey and monitor these sites, to identify and pinpoint container leakage should it occur, and to provide the environmental information and data base essential to determining the probable impacts of any such occurrence. Objectives and technical approaches to aid in the selective development of advanced technologies for the future monitoring of nuclear low level and high level waste disposal in the deep seabed are presented. Detailed recommendations for measurement and sampling technology development needed for deep seabed nuclear waste monitoring are also presented.

  16. Bioenergy Potential from Food Waste in California.

    PubMed

    Breunig, Hanna M; Jin, Ling; Robinson, Alastair; Scown, Corinne D

    2017-02-07

    Food waste makes up approximately 15% of municipal solid waste generated in the United States, and 95% of food waste is ultimately landfilled. Its bioavailable carbon and nutrient content makes it a major contributor to landfill methane emissions, but also presents an important opportunity for energy recovery. This paper presents the first detailed analysis of monthly food waste generation in California at a county level, and its potential contribution to the state's energy production. Scenarios that rely on excess capacity at existing anaerobic digester (AD) and solid biomass combustion facilities, and alternatives that allow for new facility construction, are developed and modeled. Potential monthly electricity generation from the conversion of gross food waste using a combination of AD and combustion varies from 420 to 700 MW, averaging 530 MW. At least 66% of gross high moisture solids and 23% of gross low moisture solids can be treated using existing county infrastructure, and this fraction increases to 99% of high moisture solids and 55% of low moisture solids if waste can be shipped anywhere within the state. Biogas flaring practices at AD facilities can reduce potential energy production by 10 to 40%.

  17. Vapor Corrosion Response of Low Carbon Steel Exposed to Simulated High Level Radioactive Waste

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wiersma, B

    2006-01-26

    A program to resolve the issues associated with potential vapor space corrosion and liquid/air interface corrosion in the Type III high level waste tanks is in place. The objective of the program is to develop understanding of vapor space (VSC) and liquid/air interface (LAIC) corrosion to ensure a defensible technical basis to provide accurate corrosion evaluations with regard to vapor space and liquid/air interface corrosion. The results of the FY05 experiments are presented here. The experiments are an extension of the previous research on the corrosion of tank steel exposed to simple solutions to corrosion of the steel when exposedmore » to complex high level waste simulants. The testing suggested that decanting and the consequent residual species on the tank wall is the predominant source of surface chemistry on the tank wall. The laboratory testing has shown that at the boundary conditions of the chemistry control program for solutions greater than 1M NaNO{sub 3}{sup -}. Minor and isolated pitting is possible within crevices in the vapor space of the tanks that contain stagnant dilute solution for an extended period of time, specifically when residues are left on the tank wall during decanting. Liquid/air interfacial corrosion is possible in dilute stagnant solutions, particularly with high concentrations of chloride. The experimental results indicate that Tank 50 would be most susceptible to the potential for liquid/air interfacial corrosion or vapor space corrosion, with Tank 49 and 41 following, since these tanks are nearest to the chemistry control boundary conditions. The testing continues to show that the combination of well-inhibited solutions and mill-scale sufficiently protect against pitting in the Type III tanks.« less

  18. Experimental digester facility modifications and digester gas upgrading research

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Srivastava, V.J.; Biljetina, R.; Akin, C.

    1989-01-01

    The Institute of Gas Technology (IGT) has been participating in an experimental program at the Community Waste Research Facility (CWRF) located at the Walt Disney World Resort Complex, Orlando, Florida. Four institutions have formed a team to provide solutions to community waste treatment and disposal programs. Of primary importance to this research effort is the implementation of low-cost, energy-efficient waste treatment and recovery technologies and the net production of energy (methane) from biomass and waste resources. The production of methane is being studied in a novel, high-rate digester. During 1988, we were responsible for modifying the Experimental Test Unit (ETU)more » to permit dry solids feeding of refuse-derived fuel (RDF) and for conducting bench-scale experiments to evaluate techniques for efficient removal of carbon dioxide produced during anaerobic digestion.« less

  19. Task 3 - Pyrolysis of Plastic Waste. Semiannual report, November 1, 1996--March 31, 1997

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ness, Robert O.; Aulich, Ted R.

    1997-12-31

    Over the last 50 years, the U.S. Department of Energy (DOE) has produced a wide variety of radioactive wastes from activities associated with nuclear defense and nuclear power generation. These wastes include low-level radioactive solid wastes, mixed wastes, and transuranic (TRU) wastes. A portion of these wastes consists of high- organic-content materials, such as resins, plastics, and other polymers; synthetic and natural rubbers; cellulosic-based materials; and oils, organic solvents, and chlorinated organic solvents. Many of these wastes contain hazardous and/or pyrophoric materials in addition to radioactive species. Physical forms of the waste include ion-exchange resins used to remove radioactive elementsmore » from nuclear reactor cooling water, lab equipment and tools (e.g., measurement and containment vessels, hoses, wrappings, equipment coverings and components, and countertops), oil products (e.g., vacuum pump and lubrication oils), bags and other storage containers (for liquids, solids, and gases), solvents, gloves, lab coats and anti-contamination clothing, and other items. Major polymer and chemical groups found in high-organic-content radioactive wastes include polyvinyl chloride (PVC), low-density polyethylene (LDPE), polypropylene (PP), Teflon(TM), polystyrene (PS), nylon, latex, polyethylene terephthalate (PET), vinyl, high-density polyethylene (HDPE), polycarbonate, nitriles, Tygon(R), butyl, and Tyvec(R).« less

  20. 76 FR 50500 - Request for Comments on the Draft Policy Statement on Volume Reduction and Low-Level Radioactive...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-08-15

    ... NUCLEAR REGULATORY COMMISSION [NRC-2011-0183] Request for Comments on the Draft Policy Statement on Volume Reduction and Low-Level Radioactive Waste Management AGENCY: Nuclear Regulatory Commission. ACTION: Request for public comment. SUMMARY: The U.S. Nuclear Regulatory Commission (NRC) is revising its...

  1. 76 FR 10583 - Environmental Impacts Statements; Notice of Availability

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-02-25

    ... No. 20110048, Draft EIS, DOE, 00, Disposal of Greater-Than-Class C (GTCC) Low-Level Radioactive Waste and GTCC-Like Waste, Proposed Development, Operation, and Long-Term Management of a Disposal Facility... Period Ends: 03/28/2011, Contact: Cody Wheeler 816-389-3739. EIS No. 20110051, Draft EIS, USN, CA, Marine...

  2. 40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 9 2012-07-01 2012-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...

  3. 40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 8 2010-07-01 2010-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...

  4. 40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 9 2014-07-01 2014-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...

  5. 40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 8 2011-07-01 2011-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...

  6. 40 CFR 62.14525 - Can my combustion unit be exempt from this subpart?

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 9 2013-07-01 2013-07-01 false Can my combustion unit be exempt from... Commenced Construction On or Before November 30, 1999 Applicability § 62.14525 Can my combustion unit be... fuel and combustion air) of pathological waste, low-level radioactive waste, and/or chemotherapeutic...

  7. 77 FR 10401 - Low-Level Radioactive Waste Management Issues

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-02-22

    ... rather than active systems to limit and retard releases to the environment. Development of the 10 CFR... have been a number of developments that have called into question some of the key assumptions made in... radioactive wastes that did not exist at the time 10 CFR Part 61 was promulgated. The developments previously...

  8. Implementation of the Brazilian National Repository - RBMN Project - 13008

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cassia Oliveira de Tello, Cledola

    2013-07-01

    Ionizing radiation in Brazil is used in electricity generation, medicine, industry, agriculture and for research and development purposes. All these activities can generate radioactive waste. At this point, in Brazil, the use of nuclear energy and radioisotopes justifies the construction of a national repository for radioactive wastes of low and intermediate-level. According to Federal Law No. 10308, Brazilian National Commission for Nuclear Energy (CNEN) is responsible for designing and constructing the intermediate and final storages for radioactive wastes. Additionally, a restriction on the construction of Angra 3 is that the repository is under construction until its operation start, attaining somemore » requirements of the Brazilian Environmental Regulator (IBAMA). Besides this NPP, in the National Energy Program is previewed the installation of four more plants, by 2030. In November 2008, CNEN launched the Project RBMN (Repository for Low and Intermediate-Level Radioactive Wastes), which aims at the implantation of a National Repository for disposal of low and intermediate-level of radiation wastes. This Project has some aspects that are unique in the Brazilian context, especially referring to the time between its construction and the end of its institutional period. This time is about 360 years, when the area will be released for unrestricted uses. It means that the Repository must be safe and secure for more than three hundred years, which is longer than half of the whole of Brazilian history. This aspect is very new for the Brazilian people, bringing a new dimension to public acceptance. Another point is this will be the first repository in South America, bringing a real challenge for the continent. The current status of the Project is summarized. (authors)« less

  9. A Novel Fuel/Reactor Cycle to Implement the 300 Years Nuclear Waste Policy Approach - 12377

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carelli, M.D.; Franceschini, F.; Lahoda, E.J.

    2012-07-01

    A thorium-based fuel cycle system can effectively burn the currently accumulated commercial used nuclear fuel and move to a sustainable equilibrium where the actinide levels in the high level waste are low enough to yield a radiotoxicity after 300 years lower than that of the equivalent uranium ore. The second step of the Westinghouse approach to solving the waste 'problem' has been completed. The thorium fuel cycle has indeed the potential of burning the legacy TRU and achieve the waste objective proposed. Initial evaluations have been started for the third step, development and selection of appropriate reactors. Indications are thatmore » the probability of show-stoppers is rather remote. It is, therefore, believed that development of the thorium cycle and associated technologies will provide a permanent solution to the waste management. Westinghouse is open to the widest collaboration to make this a reality. (authors)« less

  10. Emissions of polychlorinated dibenzodioxins and dibenzofurans and polychlorinated biphenyls from uncontrolled burning of garden and domestic waste (backyard burning).

    PubMed

    Hedman, Björn; Näslund, Morgan; Nilsson, Calle; Marklund, Stellan

    2005-11-15

    To assess emissions of dioxins (chlorinated dibenzodioxins and dibenzofurans) and PCB from uncontrolled domestic combustion of waste ("backyard burning"), test combustions in barrels and open fires were monitored. The waste fuels used were garden waste, paper, paper and plastic packaging, refuse-derived fuel (RDF), PVC, and electronic scrap. Combustions including PVC and electronic scrap emitted several orders of magnitude more dioxins than the other waste fuels. Emissions from the other fuels had considerable variations, but the levels were difficult to relate to waste composition. Emission factors of PCDD/F and PCB from the backyard burning ranged from 2.2 to 13 000 ng (WHO-TEQ)/kg. The levels found in ash usually were less than 5% of the total. For assessment of total emissions of dioxins and PCB from backyard burning of low and moderately contaminated wastes, an emission factor range of 4-72 ng (WHO-TEQ)/kg is suggested. These figures implythat combusting waste in the backyard could contribute substantially to total emissions, even if the amounts of fuel involved are equivalent to just a few tenths of a percent of the amounts combusted in municipal waste incinerators.

  11. Distribution of gases in the unsaturated zone at a low-level radioactive-waste disposal site near Sheffield, Illinois

    USGS Publications Warehouse

    Striegl, Robert G.

    1988-01-01

    The unsaturated zone is a medium that provides pneumatic communication for the movement of gases from wastes buried in landfills to the atmosphere, biota, and groundwater. Gases in unsaturated glacial and eolian deposits near a waste-disposal trench at the low-level radioactive-waste disposal site near Sheffield, Bureau County, Illinois, were identified, and the spatial and temporal distributions of the partial pressures of those gases were determined for the period January 1984 through January 1986. Methods for the collection and analyses of the gases are described, as are geologic and hydrologic characteristics of the unsaturated zone that affect gas transport. The identified gases, which are of natural and of waste origin, include nitrogen, oxygen, and argon, carbon dioxide, methane, propane, butane, tritiated water vapor, 14carbon dioxide, and 222 radon. Concentrations of methane and 14carbon dioxide originated at the waste, as shown by partial-pressure gradients of the gases; 14carbon dioxide partial pressures exceeded natural background partial pressures by factors greater than 1 million at some locations. Variations in partial pressures of oxygen and carbon dioxide were seasonal among piezometers because of increased root and soil-microbe respiration during summer. Variations in methane and 14carbon dioxide partial pressures were apparently related to discrete releases from waste sources at unpredictable intervals of time. No greater than background partial pressures for tritiated water vapor or 222 radon were measured. (USGS)

  12. Thermal regeneration of an electrochemical concentration cell

    DOEpatents

    Krumpelt, Michael; Bates, John K.

    1981-01-01

    A system and method for thermally regenerating an electrochemical concentration cell having first and second aluminum electrodes respectively positioned in contact with first and second electrolytes separated by an ion exchange member, the first and second electrolytes being composed of different concentrations of an ionic solvent and a salt, preferably an aluminum halide. The ionic solvent may be either organic or inorganic with a relatively low melting point, the ionic solvent and the salt form a complex wherein the free energy of formation of said complex is less than about -5 Kcal/mole. A distillation column using solar heat or low grade industrial waste heat receives the first and second electrolytes and thermally decomposes the salt-solvent complex to provide feed material for the two half cells.

  13. ENGINEERED NEAR SURFACE DISPOSAL FACILITY OF THE INDUSTRIAL COMPLEX FOR SOLID RADWASTE MANAGEMENT AT CHERNOBYL NUCLEAR POWER PLANT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ziehm, Ronny; Pichurin, Sergey Grigorevich

    2003-02-27

    As a part of the turnkey project ''Industrial Complex for Solid Radwaste Management (ICSRM) at the Chernobyl Nuclear Power Plant (ChNPP)'' an Engineered Near Surface Disposal Facility (ENSDF, LOT 3) will be built on the VEKTOR site within the 30 km Exclusion Zone of the ChNPP. This will be performed by RWE NUKEM GmbH, Germany, and it governs the design, licensing support, fabrication, assembly, testing, inspection, delivery, erection, installation and commissioning of the ENSDF. The ENSDF will receive low to intermediate level, short lived, processed/conditioned wastes from the ICSRM Solid Waste Processing Facility (SWPF, LOT 2), the ChNPP Liquid Radwastemore » Treatment Plant (LRTP) and the ChNPP Interim Storage Facility for RBMK Fuel Assemblies (ISF). The ENSDF has a capacity of 55,000 m{sup 3}. The primary functions of the ENSDF are: to receive, monitor and record waste packages, to load the waste packages into concrete disposal units, to enable capping and closure of the disposal unit s, to allow monitoring following closure. The ENSDF comprises the turnkey installation of a near surface repository in the form of an engineered facility for the final disposal of LILW-SL conditioned in the ICSRM SWPF and other sources of Chernobyl waste. The project has to deal with the challenges of the Chernobyl environment, the fulfillment of both Western and Ukrainian standards, and the installation and coordination of an international project team. It will be shown that proven technologies and processes can be assembled into a unique Management Concept dealing with all the necessary demands and requirements of a turnkey project. The paper emphasizes the proposed concepts for the ENSDF and their integration into existing infrastructure and installations of the VEKTOR site. Further, the paper will consider the integration of Western and Ukrainian Organizations into a cohesive project team and the requirement to guarantee the fulfillment of both Western standards and Ukrainian regulations and licensing requirements. The paper provides information on the output of the Detail Design and will reflect the progress of the design work.« less

  14. HIGH TEMPERATURE TREATMENT OF INTERMEDIATE-LEVEL RADIOACTIVE WASTES - SIA RADON EXPERIENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sobolev, I.A.; Dmitriev, S.A.; Lifanov, F.A.

    2003-02-27

    This review describes high temperature methods of low- and intermediate-level radioactive waste (LILW) treatment currently used at SIA Radon. Solid and liquid organic and mixed organic and inorganic wastes are subjected to plasma heating in a shaft furnace with formation of stable leach resistant slag suitable for disposal in near-surface repositories. Liquid inorganic radioactive waste is vitrified in a cold crucible based plant with borosilicate glass productivity up to 75 kg/h. Radioactive silts from settlers are heat-treated at 500-700 0C in electric furnace forming cake following by cake crushing, charging into 200 L barrels and soaking with cement grout. Variousmore » thermochemical technologies for decontamination of metallic, asphalt, and concrete surfaces, treatment of organic wastes (spent ion-exchange resins, polymers, medical and biological wastes), batch vitrification of incinerator ashes, calcines, spent inorganic sorbents, contaminated soil, treatment of carbon containing 14C nuclide, reactor graphite, lubricants have been developed and implemented.« less

  15. The influence of spent household batteries to the organic fraction of municipal solid wastes during composting.

    PubMed

    Komilis, Dimitrios; Bandi, Dimitra; Kakaronis, Georgios; Zouppouris, Georgios

    2011-06-01

    The objective of this work was to investigate the potential transfer of 9 heavy metals from spent household batteries (zinc-carbon and alkaline-manganese batteries) to the organic fraction of municipal solid wastes during active composting. Six runs were performed including one control and 2 replications. Eleven types of alkaline and non-alkaline batteries were added at 3 different levels to the organic fraction of municipal solid wastes, namely at percentages equal to 0.98% w/w (low), 5.2% w/w (medium) and 10.6% w/w (high). Experiments were performed in 230 l insulated plastic aerobic bioreactors under a dynamic air flow regime for up to 60 days. Iron, copper and nickel masses contained in the organic fraction of the wastes were found significantly higher in the high level runs compared to the corresponding masses in the control. No metal transfer was obtained in the low and medium level runs. Metal mass balance closures ranged from 51% to 176%. Metals' concentrations in the leachates were below 10 mg l⁻¹ for most metals, except iron, while an increasing concentration trend versus time was measured in the leachates of the high level runs. In all cases, the contents of 5 regulated heavy metals in all end products were below the Hellenic limits. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. A proposed nomenclature and diagnostic criteria for protein-energy wasting in acute and chronic kidney disease.

    PubMed

    Fouque, D; Kalantar-Zadeh, K; Kopple, J; Cano, N; Chauveau, P; Cuppari, L; Franch, H; Guarnieri, G; Ikizler, T A; Kaysen, G; Lindholm, B; Massy, Z; Mitch, W; Pineda, E; Stenvinkel, P; Treviño-Becerra, A; Trevinho-Becerra, A; Wanner, C

    2008-02-01

    The recent research findings concerning syndromes of muscle wasting, malnutrition, and inflammation in individuals with chronic kidney disease (CKD) or acute kidney injury (AKI) have led to a need for new terminology. To address this need, the International Society of Renal Nutrition and Metabolism (ISRNM) convened an expert panel to review and develop standard terminologies and definitions related to wasting, cachexia, malnutrition, and inflammation in CKD and AKI. The ISRNM expert panel recommends the term 'protein-energy wasting' for loss of body protein mass and fuel reserves. 'Kidney disease wasting' refers to the occurrence of protein-energy wasting in CKD or AKI regardless of the cause. Cachexia is a severe form of protein-energy wasting that occurs infrequently in kidney disease. Protein-energy wasting is diagnosed if three characteristics are present (low serum levels of albumin, transthyretin, or cholesterol), reduced body mass (low or reduced body or fat mass or weight loss with reduced intake of protein and energy), and reduced muscle mass (muscle wasting or sarcopenia, reduced mid-arm muscle circumference). The kidney disease wasting is divided into two main categories of CKD- and AKI-associated protein-energy wasting. Measures of chronic inflammation or other developing tests can be useful clues for the existence of protein-energy wasting but do not define protein-energy wasting. Clinical staging and potential treatment strategies for protein-energy wasting are to be developed in the future.

  17. Electrostatic separation for recycling conductors, semiconductors, and nonconductors from electronic waste.

    PubMed

    Xue, Mianqiang; Yan, Guoqing; Li, Jia; Xu, Zhenming

    2012-10-02

    Electrostatic separation has been widely used to separate conductors and nonconductors for recycling e-waste. However, the components of e-waste are complex, which can be classified as conductors, semiconductors, and nonconductors according to their conducting properties. In this work, we made a novel attempt to recover the mixtures containing conductors (copper), semiconductors (extrinsic silicon), and nonconductors (woven glass reinforced resin) by electrostatic separation. The results of binary mixtures separation show that the separation of conductor and nonconductor, semiconductor and nonconductor need a higher voltage level while the separation of conductor and semiconductor needs a higher roll speed. Furthermore, the semiconductor separation efficiency is more sensitive to the high voltage level and the roll speed than the conductor separation efficiency. An integrated process was proposed for the multiple mixtures separation. The separation efficiency of conductors and semiconductors can reach 82.5% and 88%, respectively. This study contributes to the efficient recycling of valuable resources from e-waste.

  18. Performance assessment for continuing and future operations at solid waste storage area 6

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    NONE

    1997-09-01

    This revised performance assessment (PA) for the continued disposal operations at Solid Waste Storage Area (SWSA) 6 on the Oak Ridge Reservation (ORR) has been prepared to demonstrate compliance with the performance objectives for low-level radioactive waste (LLW) disposal contained in the US Department of Energy (DOE) Order 5820.2A. This revised PA considers disposal operations conducted from September 26, 1988, through the projects lifetime of the disposal facility.

  19. Field testing of particulate matter continuous emission monitors at the DOE Oak Ridge TSCA incinerator. Toxic Substances Control Act.

    PubMed

    Dunn, James E; Davis, Wayne T; Calcagno, James A; Allen, Marshall W

    2002-01-01

    A field study to evaluate the performance of three commercially available particulate matter (PM) continuous emission monitors (CEMs) was conducted in 1999-2000 at the US Department of Energy (DOE) Toxic Substances Control Act (TSCA) Incinerator. This study offers unique features that are believed to enhance the collective US experience with PM CEMs. The TSCA Incinerator is permitted to treat PCB-contaminated RCRA hazardous low-level radioactive wastes. The air pollution control system utilizes MACT control technology and is comprised of a rapid quench, venturi scrubber, packed bed scrubber, and two ionizing wet scrubbers in series, which create a saturated flue gas that must be conditioned by the CEMs prior to measurement. The incinerator routinely treats a wide variety of wastes including high and low BTU organic liquids, aqueous, and solid wastes. The various possible combinations for treating liquid and solid wastes may present a challenge in establishing a single, acceptable correlation relationship for individual CEMs. The effect of low-level radioactive material present in the waste is a unique site-specific factor not evaluated in previous tests. The three systems chosen for evaluation were two beta gauge devices and a light scattering device. The performance of the CEMs was evaluated using the requirements in draft Environmental Protection Agency (EPA) Performance Specification 11 (PS11) and Procedure 2. The results of Reference Method 5i stack tests for establishing statistical correlations between the reference method data and the CEMs responses are discussed.

  20. Non-pertechnetate Technetium Sensor Research and Development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bryan, Samuel A.; Rapko, Brian M.; Branch, Shirmir D.

    Several significant uncertainties remain regarding the understanding and modeling of the fate and speciation of technicium-99 ( 99Tc) in Hanford waste tanks, glass, and low-temperature waste forms. A significant (2% to 25%) fraction of the 99Tc in the water-soluble portion of the tank waste may be present as one or more non pertechnetate species that have not been identified and to date, cannot be effectively separated from the wastes. This task will provide a sensor specifically tuned to detect the Tc(I)-carbonyl species believed to constitute the main fraction of the non-pertechnetate form of technetium. By direct measurement of the non-pertechnetatemore » species, such a sensor will help reduce the uncertainties in the modeling of the fate and speciation of 99Tc in Hanford tanks and waste forms. This report summarizes work performed in FY2016 that was sponsored by the Department of Energy’s Office of Environmental Management and demonstrates the protocol for using fluorescent Tc(I)-tricarbonyl complex as a means to detect the non-pertechnetate species within tank waste solutions. The protocol was optimized with respect to ligand concentration, solvent choice, reaction temperature and time. This work culminated in the quantitation of Tc(I)-tricarbonyl within a waste simulant, using a standard addition method for measurement. This report also summarizes the synthesis and high-yield preparation of the low-valence technetium species, [Tc(CO) 3(H 2O) 3] +, which will be used as the technetium standard material for the demonstration of the non-pertechnetate species in actual wastes.« less

Top